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Summary

As the performance demands of applications (e.g., multimedia) are growing, multiple

processing cores are integrated together to form multiprocessor systems. Energy mini-

mization is a primary optimization objective for these systems. An emerging concern for

designs at deep-submicron technology nodes (65nm and below) is the lifetime reliabil-

ity, as escalating power density and hence temperature variation continues to accelerate

wear-out leading to a growing prominence of device defects. As such, reliability and en-

ergy need to be incorporated in the multiprocessor design methodology, addressing two

key aspects:

• lifetime amelioration, i.e. improving the lifetime reliability through energy- and

performance-aware intelligent task mapping; and

• graceful degradation, i.e. determining the task mapping for different fault-scenarios

while minimizing the energy consumption and providing graceful performance degra-

dation.

In this thesis, a platform-based design methodology is first proposed to minimize

temperature-related wear-outs. Fundamental to this methodology is a temperature model

that predicts the temperature of a core incorporating not only its dependency on the

voltage and frequency of operation (temporal effect), but also its dependency on the

temperature of the surrounding cores (spatial effect). The proposed temperature model

is integrated in a gradient-based fast heuristic that controls the voltage and frequency

of the cores to limit the average and peak temperature leading to a longer lifetime,

simultaneously minimizing the energy consumption.

viii



A design flow is then proposed as a part of the hardware-software co-design method-

ology to determine the minimum number of cores and the size of the FPGA fabric of

a reconfigurable multiprocessor system. The objective is to maximize the lifetime reli-

ability of the cores while satisfying a given area, performance, and energy budget. The

proposed flow incorporates individual as well concurrent applications with different per-

formance requirements and thermal behaviors. While the existing studies determine

platform architecture for energy and area minimization, this is the first approach for

reconfigurable multiprocessor system design considering lifetime reliability together with

multi-application use-cases.

To provide graceful performance degradation in the presence of faults, a reactive

fault-tolerance technique is also proposed that explores different task mapping alterna-

tives to minimize energy consumption while guaranteeing throughput for all processor

fault-scenarios. Directed acyclic graphs (DAGs) and synchronous data flow graphs (SD-

FGs) are used to model applications making the proposed methodology applicable to

streaming multimedia and non-multimedia applications. Fundamental to this approach

is a novel scheduling algorithm based on self-timed execution, which minimizes both the

schedule storage overhead and run-time schedule construction overhead. Unlike the ex-

isting approaches which consider task mapping only, the proposed technique considers

task mapping and scheduling in an integrated manner, achieving significant improvement

with respect to these state-of-the-art approaches.

Finally, an adaptive run-time manager is designed for lifetime amelioration of multi-

processor systems by managing thermal variations, both within (intra) and across (inter)

applications. Core to this approach is a reinforcement-learning algorithm, which in-

terfaces with the on-board thermal sensors and controls the voltage and frequency of

operation and the thread-to-core affinity over time. This approach is built on top of

the design-time analysis to minimize learning time, address run-time variability and sup-

port new applications, making the overall thesis objective to provide a complete and

systematic design solution for reliable and energy-efficient multiprocessor systems.
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CHAPTER 1

Trends in Multiprocessor Systems Design

1.1 Trends in Transistor Scaling

Technology scaling principles introduced in 1974 [4] have revolutionized the semicon-

ductor industry, providing a roadmap for systematic and predictable improvement in

transistor density, switching speed and power dissipation, with scaled transistor feature

size. Ever since these principles were introduced, the transistor feature size reduced

by
√

2 approximately every 18 months, starting from a CMOS gate length of 1mm in

1974 [4] to 22nm in 2012 [5]. Many technology barriers were perceived along this path

and scientists responded with innovations to circumvent, surmount and tunnel through

these challenges. Some of these innovations include the use of Strained-Silicon for 90nm

CMOS [6], High-κ/Metal Gate for 32nm CMOS [7] and the Tri-Gate technology for

22nm CMOS [5]. However, post 22nm CMOS gate length offered severe challenges to

the designers due to pronounced transistor short-channel effects, threatening the decline

of Dennard’s Scaling principles and confounding the International Technology Roadmap

for Semiconductors (ITRS) [8]. New research directions were sought and FinFET tech-

nology was adopted due to its superior short channel effects, achieving a gate length as

low as 7nm in 2013 [9]. As the technology scaled approximately every two years, the

transistor integration capacity doubled. This enabled semiconductor manufacturers to
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Figure 1 – Transistor count doubles every 18-24 months [5, 6]

10

100

1000

10000

1987 1991 1995 1999 2003

Year of introduction

Fr
eq

ue
nc

y 
[M

H
z]

1

10

100
frequency

gate delay / clock

386
486

Pentium®

Pentium® Pro

Pentium® II

Pentium®III

Pentium® 4

G
at

e
d

el
ay

s
p

er
cl

o
ck

Figure 2 – Frequency doubles and number of gates per clock reduced 
by 25% each generation [5, 6]
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Figure 1.1: Trend in microprocessor development (source: Intel [1]).

pack millions of logic gates per chip.

1.2 Trends in Microprocessor Design

Just as the transistor technology has evolved all these years, so has the microprocessor

technology since the first microprocessor was introduced in 1971 by Intel. This first

microprocessor used 2300 transistors and was based on 4-bit computation. Shortly af-

terwards, Intel developed the 8-bit microprocessor family – 8008 and 8080 in 1972 and

1974, respectively. Thereafter, the microprocessor technology advanced to 16-bit (Intel

8086 in 1978), 32-bit (Intel 80386 in 1985) and finally to the Pentium series starting from

1993. Although, the microprocessor technhology was pioneered by Intel, the journey saw

several other key players such as Motorola, AMD and ARM, entering into the micropro-

cessor market. Each generation of the processors grew smaller and faster. This growth

was guided mainly by the observation of Gordon Moore (co-founder of Intel), known

as the Moore’s Law, which states that the computer performance will double every 18

months. Thus, Moore’s Law together with Dannard’s Scaling principle enabled building

faster and sophisticated microprocessors.

The trend in the microprocessor development is shown in Figure 1.1. Throughout

the 1990’s and early 2000, microprocessor frequency was synonymous with performance;

higher supported frequency meant a higher performance. This notion of performance was

2
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soon adjusted to consider other aspects, such as temperature hotspots, power dissipation

and energy consumption. In perspective of these new parameters, performance was

predicted to deviate significantly from the trend set by Moore’s Law. This is because,

with every new microprocessor generation, physical dimensions of chips decreased while

the number of transistors per chip increased; the maximum clock frequency was thus

bounded by a power envelop, crossing which could potentially burn the chip. Many

techniques were sought to improve the performance of microprocessor without upscaling

the frequency. Some of these techniques included out-of-order execution, pipelining,

multithreading, use of reorder buffers and data value predictions.

However, a paradigm shift was inevitable to push forward the performance bound-

ary. One of the major breakthroughs of the early 2000 was the concept of multi-core

processor – pioneered by research teams from IBM and Intel. A multi-core processor

refers to a single computing unit with two or more microprocessor components (such as

arithmetic and logic unit, ALU) such that multiple instructions can be read and executed

in parallel. These parallel components are referred to as cores of a multi-core processor.

Figure 1.2 shows a simplified representation of a single-core and a dual-core processor.

The register file and the ALU of the single-core (shown in the red box) are replicated

to form the dual-core processor. The other components, such as the bus interface and

the system bus, are shared across the two cores. In computer terminology, the term

“processor” is often used as an umbrella term to refer to both single core computing unit

(microprocessor) or multi-core computing unit (multi-core processor).

Multi-core processors addressed the thermal, power and energy concerns. A processor

with two cores running at a clock speed of f , can process the same number of instructions

3



Table 1.1: State-of-the-art multi- and many-core processors.

Manufacturer # Cores Release Year Technology Node Max. Power Max. Frequency

Multi-core Processors

IBM POWER7 8 2010 45nm – 4.25 GHz

AMD Bulldozer 4 2011 32nm 125W 3.9 GHz

Intel i7 Haswell 4 2013 22nm 84W 3.5GHz

Many-core Processors

Cell BE 9 2005 65nm 100W 3.2 GHz

Oracle SPARC M6 12 2013 28nm – 3.6 GHz

Intel Xeon Phi 60 2012 22nm 225W 1.05 GHz

as that processed by a single core processor running at 2f within the same time interval;

yet the dual core processor would still consume less energy. Furthermore, the power

dissipation is distributed and so do thermal hotspots. This has motivated researchers

over the next few years to integrate more cores in a single processor – 2-cores (Intel Core

2 Duo, 2006), 4-cores (Intel Core i5, 2009), 6-cores (Intel Core i7, 2010) and 8-cores (Intel

Xeon 2820, 2011). As the technology continued to scale further, the processor architecture

started shifting from multi-core to many-core. Although there is no clear consensus

among researchers to classify a processor as multi- or many-core based on the number of

comprising cores, we adopt one of the popular beliefs, classifying a processor with more

than 8 cores as many-core processor. Table 1.1 reports the state-of-the-art multi- and

many-core processors from some of the common microprocessor manufacturers.

1.3 Evolution of Multiprocessor Systems

As the semiconductor fabrication technology matured with ever new technology nodes,

there emerged a strong demand, especially from the consumer market sector such as

mobile phones, towards single chip computing. This new area of innovation can be dated

back to 1990 and was coined as System-on-Chip (SoC). An SoC is often defined as

a single chip complex integrated circuit, incorporating the major processing elements of

a complete end-product. Usually, an SoC comprises of a single full-fledged processor

(acting as the master) to coordinate the operation of the other processing elements of

the system. The earlier SoCs included a single-core processor (i.e., microprocessor). The

SheevaPlug SoC [10] with one Kirkwood 6281 processor from Marvell Semiconductors

is an example of a single-core SoC. As the processor technology shifted from single-core

towards multi-core, the SoC designers started integrating multi-core processors for faster
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coordination and processing. Intel’s Cloverview [11] (based on dual-core Intel Atom) and

Apple’s A7 (based on dual-core ARM) are examples of multi-core SoCs. Finally, there are

also commercially available SoCs featuring many-core processors. Examples are Sony’s

PlayStation 3 with IBM Cell processor with 9 cores (2006), Texas Advanced Computing

Center’s Stampede SoC with 60-core Intel Xeon Phi processor (2013) and SpiNNaker [12]

(2013) with more than 100 cores.

As the performance demand kept increasing, single processor SoCs soon became the

performance bottleneck, even with up-scaled frequency and multi-core variants. Re-

search took a new direction and thoughts were directed towards integrating multiple

full-fledged processors (masters), to manage the application processes, alongside other

hardware subsystems. Such platforms are commonly referred to as multiprocessor

systems-on-chip (MPSoCs). The Lucent’s Daytona chip [2], introduced in 2000, is the

first known MPSoC, integrating multiple homogeneous processors. Figure 1.3 shows the

Daytona MPSoC architecture. Following this breakthrough, there has been a significant

drive towards MPSoC development especially in the early half of 2000. Examples in-

cluded Nexperia [13] from Philips Semiconductor, OMAP [14] from Texas Instruments

and Nomadik [15] from STMicroelectronics. Since then, the MPSoC technology has ma-
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(a) OMAP multiprocessor system from Texas Instruments
(Source: [14]).

Ï

AMKNSRGLEÏÏ

NPMACQQGLE
Ï

MiCA

m
PI

PE

UART (x2),
USB (x2),

JTAG, I2C, SPI

MiCA

Flexible
I/O

32
 L

an
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

10GbE
XAUI

4x GbE
SGMII

S
er

D
es

Network I/O

DDR3 Controller

DDR3 Controller

DDR3 Controller

DDR3 Controller

TR
IO

24
 L

an
es

PCIe 2.0
8 Lanes

PCIe 2.0
4 Lanes

PCIe 2.0
4 Lanes

PCIe 2.0
8 Lanes

(b) Tilera architecture with 72 cores (source: Tilera [18]).

Figure 1.5: Example multiprocessor architectures.

tured to a great extent, growing in complexity and size. Some of the current day MPSoCs

are UniPhier [16] from Panasonic Semiconductor, Platform 2012 aka STHORM [17] from

STMicroelectronics and Tilera Gx8072 [18] from Tilera Corporation.

Figure 1.4 shows the summary of the four technology trends – transistor technology,

microprocessor technology, SoC technology and MPSoC technology. Shown in the same

figure is the technology scaling following Dennards’ Principles, starting with a gate length

of 1mm in 1974 to 5nm in 2014.

The focus of this thesis is on systems-on-chip with multiple processing cores – single

processor with multi-/many-cores or multiple processors. The umbrella term multipro-

cessor system is used to represent both these classes of systems. Figure 1.5a shows the

OMAP multiprocessor system [14] from Texas Instruments, the state-of-the-art multi-

processor system for mobile phones and Figure 1.5b shows a multiprocessor system with

6



72 cores from Tilera Corporation [18].

Another aspect of multiprocessor systems, relevant to this thesis, is the communica-

tion infrastructure, which interconnects the processing elements of these SoCs. Tradi-

tionally, multiprocessor systems integrated a shared bus, such as QuickPath Interconnect

(QPI) from Intel, STBus from STMicrolelectronics and the AMBA from ARM, to com-

municate among the processing elements. However, the bottleneck soon shifted from

computation capability to large communication delays, severely threatening the integra-

tion of additional processing elements. To circumvent this communication problem, a

group of researchers from the Stanford University pioneered the implementation of net-

working concepts for data communication in multiprocessor system in 2002. This concept

is known as network-on-chip (NoC) [19]. Since then, several commercial NoCs are de-

veloped across different research teams. Examples include Æthereal [20] and Hermes [21].

The classification, the design methodologies and the existing design challenges for

multiprocessor systems are discussed next.

1.4 Multiprocessor System Classification

Multiprocessor systems can be classified according to memory distribution, processor

type and interconnect network.

1.4.1 Memory-Based Classification

The memory-based classification is shown in Figure 1.6. Multiprocessor systems can be

of three types – shared memory, distributed memory and distributed shared memory.

Shared Memory Multiprocessor Systems

In this class of multiprocessor systems, every processing core has its own private L1

and L2 caches, but all the cores share the common main memory. This is shown in

Figure 1.6a. All cores in this architecture share a unique memory addressing space,

which leads to significant simplification of the programming. Data communication across

the cores takes place via the shared memory, accessed using a communication medium,

typically a shared bus. Until recently, this was the dominating memory organization for

multiprocessor systems with few cores (typically 2 to 4). However, as the gap between

7
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Figure 1.6: Memory-based multiprocessor classification.

processor speed and the memory speed increases, and as more interacting parallel tasks

are mapped to these cores, the memory bandwidth is becoming a bottleneck.

Distributed Memory Multiprocessor Systems

In this class of multiprocessor systems, every processing core has its own L1 and L2 cache

and a private memory space. This is shown in Figure 1.6b. This class of multiprocessor

systems allows integration of any number of cores and offers a distinctive advantage over

shared memory architecture in terms of scalability. However, programming is complex as

compared to the shared memory counterpart. In this architecture, computational tasks

mapped on a processing core can operate only on the local data; if remote data is required,

the core communicates with other cores. Data communication takes place using a message

passing interface through the interconnection network. One of the key characteristics of

distributed memory architecture is its non-uniform memory access (NUMA) time. This

is dependent on the interconnect network topology, such as Mesh, Tree, Star and Torus.

Distributed Shared Memory Multiprocessor Systems

Distributed shared memory architecture implements the shared memory abstraction on

a multiprocessor system. The memories are physically separate and attached to indi-

vidual core; however, the memory address space is shared across processing cores. This

architecture combines the scalability of distributed architecture with the convenience of

shared-memory programming. This architecture provides a virtual address space, shared

among the cores of the multiprocessor system. This is shown in Figure 1.6c.
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Table 1.2: Summary of homogeneous and heterogeneous architectures.

Homogeneous Heterogeneous

Advantages Less replication effort, highly scalable
Application specific, high

computation efficiency, low power
consumption

Limitations Moderate computation efficiency, high
power consumption

Less flexible, less scalable

Compatibility
data parallelism, shared memory

architecture, static and dynamic task
mapping

task parallelism, message passing
interface, static task mapping

Examples Lucent Daytona [2],
Philip Wasabi [22]

Texas Instrument OMAP [14],
Samsung Exynos 5 [24]

1.4.2 Processor-Based Classification

Multiprocessor systems can be classified into homogeneous and heterogeneous systems,

based on the types of the processing cores.

Homogeneous Multiprocessor Systems

A homogeneous multiprocessor system is a class of SoC where the processing cores are of

the same type. Examples of homogeneous multiprocessor systems are Philips Wasabi [22]

and Lucent Daytona [2]. One of the advantages of homogeneous multiprocessor systems

is the low design replication effort, leading to high scalability. Historically, server multi-

processor systems favored homogeneous processing cores.

Heterogeneous Multiprocessor Systems

Homogeneous architectures are often associated with high area and power requirements [23];

the current trend is, therefore, to integrate heterogeneous processing cores on the same

SoC. Such architectures are referred to as heterogeneous multiprocessor systems. This

class of systems includes heterogeneity within and across processors. Texas Instrument

OMAP [14] is an example of a heterogeneous multiprocessor system that integrates a

traditional uni-core processor with a digital signal processor (DSP). Here the hetero-

geneity is across the different processors. On the other hand, Samsung Exynos 5 [24] is

an example of an SoC that integrates a processor with heterogeneous cores (quad-core

ARM big.LITTLE architecture [25] i.e., four ARM Cortex A7 cores and four Cortex

A15 cores). One of the major limitations of heterogeneous multiprocessor systems is the

overhead of integration. Table 1.2 reports the summary of these architectures.

An emerging trend in multiprocessor design is to integrate reconfigurable logic such

9



as field programmable gate arrays (FPGAs) alongside homogeneous or heterogeneous

cores [26]. This class of systems belongs to the heterogeneous category (as the FPGA

can be programmed as a processing core, different than the other cores of the system)

and are referred to as reconfigurable multiprocessor systems. These systems allow

FPGA implementation of custom instructions [27] or custom logic [28] specific to the

application being executed. Examples include Xilinx Zynq architecture [29].

1.4.3 Network-Based Classification

Finally, multiprocessor systems can be classified based on the topology of the interconnect

network forming the communication backbone.

Static Topology-Based Multiprocessor System

In this network architecture, the physical links between the processing cores are deter-

mined once at the multiprocessor system design time and remains unaltered throughout.

The logical links (i.e. the data flow) can change dynamically based on the data routing

strategy. Static network topologies are usually associated with message passing inter-

faces. Two of the commonly used static topologies for multiprocessor system are

• Point-to-point: In a point-to-point network, there exists a direct communication

link between every pair of cores of a multiprocessor system. An example is the Intel

QuickPath Interconnect.

• Mesh: In a mesh network, the processing cores are interconnected through the data

routers in a mesh architecture. The data communication takes place through the

routers with the communication links shared across multiple processing cores in

time or space. Intel Paragon is an example of two dimensional mesh interconnect.

Dynamic Topology-Based Multiprocessor System

In this network architecture, the physical as well as the logical links between the process-

ing cores change dynamically. The dynamic network topologies are usually associated

with shared memory interfaces. Two of the commonly used dynamic topologies for mul-

tiprocessor systems are

10
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Figure 1.7: Multiprocessor design flow.

• Bus: In bus network, all the processing cores are connected to a shared communi-

cation link using a dedicated set of wires. Example is the AMBA bus from ARM.

• Crossbar: In a crossbar network, the processing cores are connected to each other

in the form of a matrix. The cross points can be programmed dynamically to

interconnect different pair of cores of the multiprocessor system.

This thesis focuses on mesh-based multiprocessor systems with distributed memory,

using message passing interface for data communication between the processing cores.

Both homogeneous and heterogeneous multiprocessor systems (including the reconfig-

urable category) are studied in this work.

1.5 Multiprocessor System Design Flow

A key concept for a system design is the orthogonalization of concerns [30] i.e., the process

of separating the different aspects of the design in order to explore the design space of

individual aspects more efficiently. Figure 1.7 shows a typical multiprocessor design flow.

The first stage of the design flow is the analysis stage. The input to this stage are

the set of applications supported on the platform and the architectural specification.

Applications are usually represented as task graphs with the nodes representing the
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Figure 1.8: Multiprocessor system design methodology.

computation tasks of the application and the edges representing the dependency between

these tasks as shown in the figure. Application modeling is discussed further in Chapter 2.

Architectural specification is provided as a connected graph, with nodes representing the

processing cores of the platform and the edges representing the communication medium.

There are two aspects of the analysis stage – the hardware aspect and the software

aspect. The hardware aspect determines the resources of the platform i.e., the number

of processing cores needed for the platform to guarantee performances of the supported

applications while satisfying the design budget. The software aspect of the analysis stage

determines the allocation i.e., the mapping of the different tasks of each application on

the processing cores.

The architecture stage determines the architectural details of the resources deter-

mined in the analysis stage. For a general purpose processor, the architectural details

include determining the instruction set and for the memory organization, the architecture

stage addresses the size of the main memory for shared memory architecture or the size

of the private memories for the distributed memory architecture. Finally, the micro-

architecture stage deals with the hardware of the different components. The output of

this stage is the register transfer logic (RTL) representation of the multiprocessor system,

which can be implemented on an FPGA or an ASIC.

This thesis focuses on the analysis stage of the design flow, which can be further

classified into two types – platform-based design and hardware-software co-design.
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1.5.1 Platform-Based Design Methodology

Chip design cost has two components – recurring cost and non-recurring cost. The recur-

ring cost is the engineering cost incurred for production of every chip. This cost comprises

of the cost for manufacturing, packaging, testing, marketing, distribution and some legal

aspects. The non-recurring engineering (NRE) cost is the cost incurred once during

the production process. This includes the cost for system design and generating the

mask set for lithography. Thus, the multiprocessor system design cost is the NRE cost.

Since, the cost of mask set comprises the major share of NRE cost and is increasing with

every new technology node, it is essential to find a common set of design components

that supports not only the specified applications and functions, but also a set of future

applications. The design methodology is thus, to determine a hardware platform, driven

purely by the NRE cost and shifting the application support objective to software. This

design methodology is commonly referred to as platform-based design [31, 32] and is

shown in Figure 1.8a. The software aspect of the platform-based design is to explore the

design space of allocating the available resources of the hardware for every supported

application in order to optimize different objectives such as performance, energy and re-

liability (these objectives are revisited in Section 1.6). Finally the design space is pruned

to obtain the optimal allocation strategy for every application.

1.5.2 Hardware-Software Co-Design Methodology

The hardware-software co-design methodology [33,34] performs the hardware prun-

ing and the software pruning steps in an integrated manner to obtain the optimal solution,

both with respect to hardware platform and software-based application allocation. This

is shown in Figure 1.8b. The NRE design cost is usually considered as a constraint or is

integrated with other optimization objectives such as performance, energy and reliability.

In its simplest form, the approach starts with a set of hardware design alternatives, each

satisfying the NRE economics; the software goal is to explore the design space of allocat-

ing the resources for every design alternatives to optimize the required objective. Since

different hardware alternatives are explored simultaneously with the software alterna-

tives, the hardware-software co-design is able to achieve better optimization objectives.

However, the price paid is the higher exploration time, increasing the time-to-market.
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1.6 Design Challenges for Multiprocessor Systems

One of the major applications for multiprocessor systems is the embedded systems. Over

the last decade, the embedded system market has grown tremendously, both in market

share (product valuation) and in market presence (product variety). The embedded

market was valued at 121 billion US dollars in 2011 and is expected to reach 194 billion

US dollars by 2018. This growth is fueled by increasing demand for embedded systems in

emerging sectors such as smart electricity, automobile and medical systems, in addition

to the traditional ones such as mobile phones, PDA, laptops and consumer electronics.

Energy and reliability are accepted as primary design concerns for embedded devices.

1.6.1 Energy Concern for Multiprocessor Systems

Traditionally, the software aspect of the analysis stage of the design flow has focused

on performance optimization. For designs at deep sub-micron technology nodes, such as

65nm and beyond, the focus is gradually shifting from the notion of performance as faster

computation [35]. With increasing use of multiprocessor systems in embedded devices,

energy optimization has become a primary concern to extend the battery life of these

devices. This is forcing system designers to consider energy optimization at every aspect

of the design flow. This thesis focuses on the energy optimization at the analysis stage

and is orthogonal to the energy optimization techniques at the architecture stage (such as

the instruction compression technique of [36]) or at the micro-architecture stage (such as

the use of clock gating [37]). The energy minimization at the analysis stage have focused

on the following two aspects – reducing the computation energy by slowing down the

application on the processing cores using scaled voltage and frequency and reducing the

data communication between dependent tasks.

Voltage and Frequency Scaling

The power consumption of a CMOS-based circuit is given by P = α ·F ·C ·V 2, where α is

the switching factor, F is the frequency, C is the switching capacitance and V is the volt-

age. Clearly, reducing both the voltage and the frequency by half reduces the total power

dissipation by 87.5%. However, the computational time of a job is inversely proportional

to the frequency of operation and therefore, reducing the frequency by half increases the
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Figure 1.9: Demonstration of the importance of communication energy.

computation time two fold. The overall effect is that, the energy dissipation, measured

as the product of the power dissipation and the computation time, reduces by 75% when

both voltage and frequency are scaled by half. This principle of scaling down the energy

consumption of a system by reducing the voltage and frequency of operations dynami-

cally during application execution is termed as voltage and frequency scaling (VFS).

A significant amount of research has been conducted recently to determine the voltage

and frequency required for the application execution such that energy consumption is

minimized, while satisfying the performance constraint [38–40].

Communication Energy Minimization

When the dependent tasks of an application are mapped to different cores of a multi-

processor system, energy is consumed to transfer data through the interconnect network.

This energy is referred to as the communication energy. As established in [41], the com-

munication energy can be as high as upto 40% of the total energy consumption of an

application. One way to solve this communication energy problem is to allocate the

communicating tasks on the same processing cores. However, this has an impact on the

performance. To demonstrate this, a simple example is provided in Figure 1.9. Here,

tasks B and C are both ready to be executed after task A completes its execution. The

execution time of the tasks (in ms) are labeled as numbers inside the circle. The size of

the data (in Kb) required by tasks B and C, from the output of task A are marked in

the figure on the arrows from A to B and A to C, respectively. The table in the figure

shows the different allocation of the tasks on the two cores (identified as c0 and c1) of an

example multiprocessor system. The amount of data communicated on the interconnect

and the completion time of the application are shown in columns 4 and 5, respectively.

Clearly, the allocation of the tasks on a multiprocessor system needs to be performed

considering the communication energy and performance trade-off [42].

15



1.6.2 Reliability Concern for Multiprocessor Systems

Multiprocessor systems are expected to perform error-free operations. In this respect, an

error of a system is defined as a malfunction i.e., deviation from the expected behavior of

the system. Errors are caused by faults. However, not every system fault leads to erro-

neous behavior. This thesis considers malignant faults i.e., the faults that are manifested

as errors in the system. Such faults can be classified into three categories – transient, in-

termittent and permanent. Transient faults are point failures i.e., these faults occur once

and then disappear. The faults can occur due to alpha or neutron emissions1. Several

techniques have been proposed in literature for transient fault-tolerance. Examples are

the use of error correction codes for processing cores [43], checkpointing [44], rollback-

recovery [45] and duplication with comparison [46]. Intermittent faults are a class of

hardware defects, occurring frequently but irregularly over a period of time, due to pro-

cess, voltage and temperature (PVT) variations. There are techniques that optimize for

intermittent faults by analyzing the steady-state availability [47]. Finally, permanent

faults, as the name itself indicates, are damages to the circuit caused by such phenom-

ena like electro migration, dielectric breakdowns, broken wires etc. These faults are

caused during manufacturing or during the product lifetime due to component wear-out.

Hardware redundancy [48] is an effective technique for permanent fault-tolerance.

This thesis focuses on the permanent faults. The permanent defect rates in integrated

circuits can be described by the bathtub curve as shown in Figure 1.10. Post manufac-

turing, integrated circuits are characterized by high failure rates. As these circuits are

subjected to manufacturing tests (such as stuck-at, at-speed, burn-in, etc., which filters

out defective circuits and circuits with short lifetime), the probability of the successful

circuits surviving for a longer period of time, increases. The failure rate, therefore, de-

creases over time. This phase is known as the infant mortality period. This is followed

by a period of constant failure rate, often referred as useful life. The last phase is known

as the wear-out period and is characterized by increasing fault rate. Recent studies on

reliability reveal that, if wear-out is not addressed from early device usage stage (e.g. the

beginning of useful life period), circuits can age faster than anticipated with the wear-out

phase settling earlier in life (shown by the red dashed line in the figure).

1It is to be noted that for FPGA, transient faults in the lookup table content manifest as permanent
faults until the content is reprogrammed.
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Lifetime Reliability of Multiprocessor Systems

At deep sub-micron technology nodes (especially 65nm and lower), sub-threshold leakage

and non-ideal voltage and gate oxide scaling are causing the power density to increase

with shrinking transistor feature size (contrary to Dennard’s principles [4]). This causes

localization of the heat (hot spots) and a corresponding increase in the temperature. This

increase in chip temperature accelerates wear-out of the semiconductor devices [49–51].

Wear-outs manifest as timing faults and logic faults during the lifetime operation of a

device. This is challenging the reliable operation of integrated circuits, reducing their

useful life. Timing faults are violations in the design caused due to increase in delay in

the circuit due to aging of transistors. A significant research has been conducted recently

to analyze and mitigate wear-out related timing faults [47,52,53]. This thesis focuses on

wear-outs manifested as logic failures and is orthogonal to the techniques for timing fault

mitigation. In this context, lifetime reliability is defined as the long term reliability of

a circuit and is measured in terms of the mean time to permanent failure of the circuit.

As in the case of energy optimization, the reliability optimization can be performed

at different levels of the design flow, with the technique adopted at each stage being

orthogonal to one another. The micro-architecture techniques involve CMOS device

adaptations for wear-out mitigation. Examples include the use of adaptive body biasing

technique [54], 22nm tri-gate transistor architecture [55] and device-geometry aware de-

sign rule [56]. A summary of the design challenges and wear-out mitigation techniques

at the micro-architecture stage is provided in [57]. The architecture-level techniques deal

with processor instruction adaptations and scheduling for minimizing different wear-out

mechanisms. Examples include intelligent instruction scheduling [58], exploiting instruc-

tion timing slacks [59] and the compiler-directed register assignment [60]. Finally, the
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ABSTRACT 
Parameter variation in scaled technologies beyond 90nm will 
pose a major challenge for design of future high performance 
microprocessors. In this paper, we discuss process, voltage and 
temperature variations; and their impact on circuit and 
microarchitecture. Possible solutions to reduce the impact of 
parameter variations and to achieve higher frequency bins are 
also presented. 

Categories and Subject Descriptors 
B.7.1 Microprocessors and microcomputers, VLSI. 

General Terms: Design, Performance, Reliability. 

Keywords: Parameter variation, high performance deisgn, 
body bias. 

1. INTRODUCTION 
Systematic and random variations in process, supply voltage and 
temperature (P, V, T) are posing a major challenge to the future 
high performance microprocessor design [1,2]. Technology 
scaling beyond 90nm is causing higher levels of device 
parameter variations, which are changing the design problem 
from deterministic to probabilistic [3,4]. The demand for low 
power causes supply voltage scaling and hence making voltage 
variations a significant part of the overall challenge. Finally, the 
quest for growth in operating frequency has manifested in 
significantly high junction temperature and within die 
temperature variation. We discuss the impact of P, V, T 
variations on circuits and microarchitecture. We will also 
present possible solutions to reduce or tolerate the parameter 
variations in high frequency  microprocessor designs. 

The paper is organized as follows. Process, supply voltage and 
temperature variations are introduced in Section 2. The serious 
impact of these variations on circuits and microarchitecture is 
presented in Section 3. Section 4 consists of possible solutions 
to mitigate parameter variation including Vt modulation by 
forward body bias (FBB), leakage reduction by reverse body 
bias (RBB) or power/performance tradeoff by adaptive body 
bias (ABB). Section 4 also includes approaches to control 
supply voltage and temperature variations. We conclude this 
paper in Section 5. 

2. VARIATIONS – P, V, T 
In this section, we will introduce the P, V, T variations based on 
measurement data in advanced CMOS technologies.  

2.1 Process Variations 
Figure 1 plots distributions of frequency and standby leakage 
current (Isb) of microprocessors in a wafer. The spread in 
frequency and leakage distributions is due to variation in 
transistor parameters, causing about 20x variation in chip 
leakage and 30% variation in chip frequency. This variation in 
frequency has introduced the concept of frequency binning. 
Notice that the highest frequency chips have a wide distribution 
of leakage, and for a given leakage, there is a wide distribution 
in the frequency of the chips. The highest frequency chips with 
large Isb, and low frequency chips with reasonably high Isb may 
have to be discarded, affecting the yield. 
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Figure 1: Leakage and frequency variations 

The spread in standby current is due to variation in channel 
length and variations in the threshold voltage. Figure 2 
illustrates the die-to-die Vt distribution and its resulting chip Isb 
variation. Vt variation is normally distributed and its 3σ 
variation is about 30mV in a 180nm CMOS logic technology. 
This variation causes a significant variation in circuit 
performance and leakage. The most critical paths in a chip may 
be different from chip to chip. Figure 2 also shows the 20x Isb 
variation distribution in detail. 
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Figure 2: Die-to-die Vt, Isb variation 
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Figure 1.11: Impact of parameter variation on frequency and leakage current [3].

lifetime reliability optimization at the analysis stage involves intelligent application map-

ping and scheduling [61].

1.6.3 Parameter Variation and its Associated Challenges

Another design challenge at deep sub-micron technology node is concerning parameter

variation i.e., the variation of the transistor threshold voltage (Vth) and the effective

channel length (Leff ) [3]. The variation in these parameters effect two key aspects in

microprocessor design – highest frequency supported and the leakage power dissipated.

The variation in the parameters are attributed to the deviation of the process, voltage

and temperature from nominal specification. Process variation is usually caused due

to imprecise fabrication process (e.g. lithographic lens aberration) or intra-die irregu-

lar dopant density. Voltage variations are caused due to IR drop in the voltage supply

network. Finally, temperature variations are caused by non-even distribution of load

causing some part of the circuit generating more heat than others. Figure 1.11 shows a

30% variation in frequency and a 20x variation in leakage current across the micropro-

cessors fabricated on a 180nm CMOS technology node. These variations are expected to

scale up with shrinking feature size.

Several models have been proposed in literature for the parameter variations. Ex-

amples include the correlation model of [62] and analytical model of [63]. On of the

most significant effect of parameter variation during chip lifetime is timing errors. Re-

cent studies show that with different parts of a chip experiencing different temperature

profile, there is a difference in the speed of signal propagation. Specifically, circuits with
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high temperature are slower. This causes timing violations in the circuit and forces the

device to run at a reduced clock frequency [64]. To accommodate these uncertainties at

the system-level design stage, probabilistic variation in worst-case task execution time

is usually considered, and the same is integrated within a statistical timing analysis

framework to determine the long term period of application execution [65–67].

1.7 Objective of this Thesis

The objective of this thesis is to solve the reliability and the energy concerns for multi-

processor systems – both during the analysis stage of the design flow and also during the

in-field operation of the final platform. These two aspects are henceforth referred to as

design-time and run-time, respectively.

1.7.1 Design-time Methodology

The design-time methodology of this thesis is highlighted in Figure 1.12. In order to

analyze the temperature-related wear-out of different mapping alternatives, a fast and

accurate temperature model is developed. This model is characterized using the tem-

perature data obtained from the industry-standard HotSpot [68] tool using the floor-

plan information of a given multiprocessor system. This thermal model is used in the

platform-based design methodology along with application and architecture models. Ap-

plications are represented as Synchronous Data Flow Graphs (SDFGs) [69] that allow

modeling cyclic dependency, multi-input tasks, multi-rate tasks, and pipelined execution.

Multiprocessor systems are often designed for multiple applications, many of them en-

abled concurrently (use-case). Formally, a use-case is defined as a collection of multiple

applications that are active simultaneously on a multiprocessor system [70]. To allow

optimization for concurrent applications, a set of use-cases is also considered in the de-

sign methodology. The multiprocessor platform is represented as a directed graph with

nodes representing the processing cores and the edges representing the physical links

between the cores. The platform-based design methodology analyses every application

and use-case to determine the mapping of the computation tasks on the given platform

such that temperature-related wear-outs and energy consumption are jointly minimized.

This joint optimization methodology is detailed in Chapter 3.
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Figure 1.12: Design-time methodology.

As established in Section 1.4.2, an emerging trend in multiprocessor design is recon-

figurable multiprocessor system. Application mapping on such platform requires parti-

tioning the computation tasks of the application into software and hardware tasks i.e.,

deciding on the computation tasks to be executed on the processing cores and those on

the reconfigurable area. This hardware-software task partitioning technique for reconfig-

urable multiprocessor systems with the objective of improving the lifetime reliability is

developed in Chapter 4. Based on this approach, a hardware-software co-design method-

ology is proposed to design reconfigurable multiprocessor systems. A set of applications

and use-cases represented as SDFGs is used to determine the minimum number of pro-

cessing cores and the size of the reconfigurable area required for the system that satisfies
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Figure 1.13: Run-time methodology.

the area and energy budget while maximizing the lifetime reliability.

Both the platform-based design and the hardware-software co-design methodologies

ameliorate the platform lifetime. These methodologies form part of the proactive fault-

tolerance approach, which is defined as an approach that prevents or delays the occur-

rences of fault. A second aspect of the analysis phase of the design methodology is to

ensure graceful performance degradation in the presence of faults. This methodology

forms part of the reactive fault-tolerance approach, which is defined as an approach

that deals with resource management post fault occurrences. To achieve this, analysis

is performed to determine the minimum energy mapping with the least degradation of

performance for every fault scenario. This analysis is performed for every application

supported on the system and is detailed in Chapter 5. Finally, to ensure that the per-

formance requirement is satisfied using the pre-analyzed offline mapping at run-time, a

self-timed execution-based scheduling technique is proposed for multiprocessor systems.

1.7.2 Run-time Methodology

Figure 1.13 highlights the three layer view of a typical multiprocessor system. At the

top, there is the application layer composed of the set of applications supported on the

platform. At the bottom is the hardware layer which consists of the processing cores

on which the applications are executed. In between these two layers is the operating

system or the system software layer, which co-ordinates the application execution on the

hardware. The operating system is responsible to assign the computation tasks of an
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application on the hardware cores. If the application to be executed on the hardware is

already analyzed at design-time, the operating system performs the allocation according

to the pre-computed mapping. On the other hand, if a new application (not analyzed

beforehand) needs to be executed on the hardware, the operating system needs to de-

termine the correct mapping such that temperature-related wear-out can be minimized.

To achieve this, a machine learning-based run-time approach is developed in Chapter 6.

The run-time approach is built as a part of the operating system and interacts with the

application layer on one hand to determine the performance requirement and with the

hardware on the other hand to collect the thermal data. Based on this information, the

machine learning agent adjusts the voltage-frequency control and the thread allocation

of the operating system to effectively reduce thermal emergencies.

1.8 Key Contributions of This Thesis

Following are the contributions that have led to this thesis:

1. A fast and accurate thermal model to estimate the temperature of the cores of

a multiprocessor system from a given floorplan. The model incorporates both

the temporal and the spatial dependencies. The predicted temperature from this

model is shown to be within 4% of the state-of-the-art accurate thermal model.2

This thermal model is published in [71].

2. A gradient-based fast heuristic to jointly optimize lifetime reliability and energy

computation of a given multiprocessor system with applications represented as SD-

FGs. The proposed methodology distributes the cores of the system among concur-

rently executing applications using integer linear programming. The gradient-based

approach increases lifetime by an average 47% and minimizes energy consumption

by 24% with respect to the existing techniques. This work is published in [72].

3. A hardware-software task partitioning framework for reconfigurable multiprocessor

system to decide on the computation tasks to be executed on the processing cores

and those on the reconfigurable area. The objective is to improve the lifetime reli-

ability of the platform while exploring the trade-off between lifetime reliability and

2The state-of-the-art thermal models are too computation intensive to be included in the design space
exploration process.
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the reliability considering transient faults with checkpointing-based fault-tolerance.

The approach is shown to improve the lifetime reliability by an average 60% with

less than 15% sacrifice of the reliability considering transient faults. This work is

published in [73].

4. A hardware-software co-design methodology to determine the minimum number of

cores and the size of the reconfigurable area for a reconfigurable multiprocessor

system such that, the lifetime reliability is maximized while satisfying the area and

energy budget. This methodology is shown to improve lifetime reliability by an

average 65% for single applications and an average 70% for use-cases with 25%

fewer cores and 20% less reconfigurable area as compared to the existing hardware-

software co-design approaches.

5. A design-time (offline) multi-criteria optimization technique for application map-

ping on multiprocessor systems to minimize the energy consumption for all proces-

sor fault-scenarios while providing graceful throughput degradation. The proposed

technique is shown to minimize energy consumption by an average 22% as com-

pared to the existing techniques. Parts of this contribution are first published in [74]

and [75], and later improved and published in [76] and [77], respectively.

6. A scheduling technique based on self-timed execution to minimize the schedule stor-

age and construction overhead at run-time. The scheduling technique is shown to

minimize schedule construction time by 95% and storage overhead by 92%. This

work is published in [77].

7. A reinforcement learning-based Inter-and intra-application thermal management to

control the peak temperature as well as thermal cycling using thread-to-core al-

location (through CPU affinity) and dynamic frequency control (through CPU

governors). Results demonstrate that the proposed approach minimizes average

temperature, peak temperature and thermal cycling, improving the mean time to

failure by an average of 2x for intra-application and 3x for inter-application scenar-

ios when compared to existing thermal management techniques. Furthermore, the

dynamic and static energy consumption are also reduced by an average 10% and

11%, respectively. This work is published in [78].
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The remainder of this thesis is organized as follows. Chapter 2 provides a detailed

literature survey of the existing techniques for reliability and energy optimization in

multiprocessor systems, identifying the gaps in these studies. Chapter 3 introduces the

reliability and energy-aware platform-based design methodology for multiprocessor sys-

tem. The hardware-software co-design methodology for reconfigurable multiprocessor

system is introduced in Chapter 4. The reactive fault-tolerance methodology is discussed

next in Chapter 5. The run-time thermal management is detailed in Chapter 6. Finally,

Chapter 7 concludes this thesis with an overview of the future research directions.
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CHAPTER 2

Literature Survey on System-level Fault-tolerant Techniques

Multiprocessor systems are becoming increasingly more complex. As mentioned in Chap-

ter 1, lifetime reliability is a growing concern in these systems as escalating power density,

and hence temperature, continues to accelerate wear-out leading to a growing prominence

of permanent device defects. This problem needs to be addressed both for applications

known apriori at the platform design-time and for new applications enabled by users at

run-time. The key to success of the analysis stage of the design-flow is a good model

of an application that allows accurately predicting its performance on a given hardware,

without actually going through the architecture and the micro-architecture stages for

synthesizing the system. Several abstract models have been proposed to represent ap-

plications. Refer to [79] for a comparative study of the different data flow models based

on their expressiveness and succinctness, efficiency of implementation, and analyzabil-

ity. Additionally, reliability analysis and management require a reliability model that is

able to predict the system lifetime from the temperature obtained while executing an

application. This system-level reliability model needs to incorporate the transistor-level

wear-out phenomena and their dependency on temperature.

The remainder of this chapter is organized as follows. Section 2.1 gives an introduc-

tion to synchronous data flow graphs (SDFGs) that is used in this thesis as application

models for design-time analysis. The system-level reliability modeling is discussed next
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Figure 2.1: Application SDFG.

in Section 2.2. This is followed by detailed discussions on the existing design-time based

and run-time based reliability-energy joint optimization techniques in Sections 2.3 and

2.4, respectively, highlighting the limitations that are addressed in this thesis. Finally,

the chapter is concluded in Section 2.5.

2.1 Introduction to Synchronous Data Flow Graphs

Synchronous Data Flow Graphs (SDFGs, see [69]) are often used for modeling modern

DSP applications [80] and for designing concurrent multimedia applications implemented

on multiprocessor systems. Both pipelined streaming and cyclic dependencies between

tasks can be easily modeled in SDFGs. SDFGs allow analysis of a system in terms of

throughput and other performance properties e.g., latency and buffer requirements [81].

The nodes of an SDFG are called actors; they represent functions that are computed

by reading tokens (data items) from their input ports and writing the results of the

computation as tokens on the output ports. The number of tokens produced or consumed

in one execution of an actor is called port rate, and remains constant. The rates are

visualized as port annotations. Actor execution is also called firing, and requires a fixed

amount of time, denoted with a number in the actors. The edges in the graph, called

channels, represent dependencies among different actors.

Figure 2.1 shows an example of a SDFG. There are three actors in this graph. In the

example, a0 has an input rate of 1 and output rate of 2. An actor is called ready when

it has sufficient input tokens on all its input edges and sufficient buffer space on all its

output channels; an actor can only fire when it is ready. The edges may also contain

initial tokens, indicated by bullets on the edges, as seen on the edge from actor a2 to

a0 in Figure 2.1. Formally, an SDFG is a directed graph Gapp = (A,C) consisting of a

finite set A of actors and a finite set C of channels.

One of the most interesting properties of SDFGs relevant to this thesis is throughput.
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Throughput is defined as the inverse of the long term period i.e., the average time needed

for one iteration of the application. (An iteration is defined as the minimum non-zero

execution such that the original state of the graph is obtained.) This is the performance

parameter used in this thesis. The following properties of an SDFG are defined.

Definition 1 (Repetition Vector) Repetition Vector RV of an SDFG, Gapp = (A,C)

is defined as the vector specifying the number of times actors in A are executed for one

iteration of SDFG Gapp. For example, in Figure 2.1, RV [a0 a1 a2] = [1 2 1].

Definition 2 (Application Period) Application Period Per(A) is defined as the time

SDFG, Gapp = (A,C) takes to complete one iteration on an average.

The period of an SDFG can be computed by analyzing the maximum cycle mean

(MCM) of an equivalent homogeneous SDFG (HSDFG). The period thus computed gives

the minimum period possible with infinite hardware resources e.g. buffer space. If worst-

case execution time estimates of each actor are used, the performance at run-time is

guaranteed to meet the analyzed throughput. Self-timed strategy is widely used for

scheduling SDFGs on multiprocessor systems. In this technique, the exact firing of an

actor on a core is determined at design-time using worst-case actor execution-time. The

timing information is then discarded retaining the assignment and ordering of the actors

on each core. At run-time, actors are fired in the same order as determined from design-

time. Thus, unlike fully-static schedules, a self-timed schedule is robust in capturing the

dynamism in actor execution time. The self-timed execution of an SDFG consists of a

transient phase followed by a periodic or steady-state phase [82].

2.2 Wear-out Related Failure Modeling

This section reviews the failure modeling of multiprocessor systems, which will form the

basis for comparing the existing works on reliability optimization. The multiprocessor

system-level reliability modeling is dependent on the core-level reliability modeling, which

in-turn is dependent on the device-level reliability modeling. These are discussed next.

2.2.1 Device-Level Reliability Modeling

Following are the dominant wear-out related failure mechanisms.
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Electromigration

Electromigration refers to the movement of metal atoms from the interconnect wires

and vias due to the flow of current, temperature gradient and electric diffusion, causing

open and short circuits in the interconnect. The mean time to failure (MTTF) due to

electromigration is given by the following equation [83,84].

MTTFEM =
AEM
Jn

exp

(
EaEM
KT

)
(2.1)

where AEM is a material-dependent constant, J is the current density, n is empirically

determined constant with a typical value of 2 for stress related failures, EaEM is the acti-

vation energy of electromigration, K is the Boltzman’s constant and T is the temperature.

The current density J is determined as

J =
f · C · Vdd · Pt

W ·H (2.2)

where C is the parasitic capacitance, Vdd is the supply voltage, f is the clock frequency,

Pt is the probability of line toggling in a clock cycle, W is the width of the metal line

and H is the thickness of the metal line.

Negative Bias Temperature Instability

Negative bias temperature instability refers to the shift in the threshold voltage and

saturation current in p-channel MOS (PMOS) devices after an extended period of stress

caused by the application of negative voltage across the gate to channel region [85,

86]. The MTTF due to negative bias temperature instability is given by the following

equation [87]

MTTFNBTI =
ANBTI
(VGS)γ

exp

(
EaNBTI
KT

)
(2.3)

where ANBTI is a constant dependent on the fabrication process, VGS is the gate voltage,

γ is the voltage acceleration factor and EaNBTI is the activation energy of negative bias

temperature instability.

Hot Carrier Injection

There are three types of carrier injection – channel hot electron injection, drain avalanche

hot carrier injection and secondary generated hot electron injection. Channel hot electron

injection refers to the escape of electrons from the channel causing a degradation of

the Si-SiO2 interface [88, 89]. Drain avalanche hot carrier injection refers to the gate
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oxide degradation due to the electron and hole gate currents caused due to the impact

ionization [88]. Finally, secondary generated hot electron injection refers to the injection

of minority carriers due to secondary impact ionization [88]. The MTTF due to hot

carrier injection is given by

MTTFHCI = AHCI exp

(
θ

VDS

)
(2.4)

where AHCI and θ are empirically determined constants and VDS is the drain to source

voltage.

Time Dependent Dielectric Breakdown

Time dependent dielectric breakdown refers to the degradation of the SiO2 insulating

layer between the gate and the conducting channel of the MOS device. The applied

voltage and the tunneling electrons create defects in the volume of the oxide film, which

accumulates over time triggering a sudden loss of dielectric properties. The exact physical

mechanism behind the degradation is, however, still an open question. The MTTF due

to time dependent dielectric breakdown is given by [84]

MTTFTDDB = ATDDB ·AG ·
(

1

VGS

)α−βT
exp

(
X

T
+

Y

T 2

)
(2.5)

where α, β, X and Y are the fitting parameters, AG is the surface area of the gate oxide

and ATDDB is an empirically determined constant.

Stress Migration

Stress migration refers to the motion of atoms in metal wires due to mechanical stress

caused by the mismatch of temperature between the metal and the dielectric material.

The MTTF due to stress migration is given by

MTTFSM = ASM |T0 − T |−nexp

(
EaSM
KT

)
(2.6)

where ASM is a material dependent constant, T0 is the metal deposition temperature

and EaSM is the activation energy of stress migration.

Thermal Cycling

Thermal cycling refers to the wear-out caused by thermal stress due to a mismatched

coefficient of thermal expansion of the adjacent material layers. Thermal cycling related

MTTF is computed in three steps.
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1. Calculating the thermal cycles from a thermal profile using Downing simple rainflow

counting algorithm [90].

2. Calculating, from each thermal cycle, the number of cycles to failure using Coffin-

Manson’s rule [91].

NTC(i) = ATC (δTi − TTh)−b e
EaTC

KTmax(i) (2.7)

where NTC(i) is the number of cycles to failure due to ith thermal cycle, ATC is

an empirically determined constant, δTi is the amplitude of the ith thermal cycle,

TTh is the temperature at which elastic deformation begins, b is the Coffin-Manson

exponent constant, EaTC is the activation energy of thermal cycling and Tmax(i) is

the maximum temperature in the ith thermal cycle.

3. Calculating the MTTF using Miner’s rule [92].

MTTF =
NTC

∑m
i=1 ti

m
(2.8)

where ti is the time for the ith thermal cycle, m is the number of thermal cycles

obtained in step 1 and NTC is the effective cycles to failure determined using

NTC =
m∑m

i=1
1

NTC(i)

(2.9)

Combining Equations 2.7-2.9,

MTTF =
ATC

∑m
i=1 ti

Thermal Stress
(2.10)

where Thermal Stress is an indication of the stress experienced due to the thermal

cycling. This is obtained using the following equation.

Thermal Stress =
m∑
i=1

(δTi − TTh)
b × e

−Ea
KTmax(i) (2.11)

2.2.2 Core-Level Reliability Modeling

Core-level reliability modeling approach is to combine the device level reliability models

to estimate the mean time to failure of the cores of a multiprocessor system.

The fault density at the device level is typically characterized by Weibull or Log-

normal distribution. For example, time dependent dielectric breakdown follows Weibull

distribution and electromigration follows Lognormal distribution. The distributions for

other wear-out mechanisms are not known with certainty. The reliability computation is

demonstrated for these two types of distribution.
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Weibull Distribution

The reliability of a core considering Weibull distribution for the fault density is given by

R(t) = e
−
(
t
η

)β
(2.12)

where η is the scale parameter and β is the shape parameter. When temperature is not

a constant, but varies over time, any time interval 0 to t can be split into n disjoint time

intervals {[0, t1), [t1, t2). · · · [tn−1, tn)} such that the temperature is constant within each

interval. Let Ti be the temperature at the time interval [ti, ti+1). The scale parameter

for the Weibull distribution for each interval is given by

ηi =
MTTFWO(Ti)

Γ (1 + β)
(2.13)

where Γ is the gamma function and MTTFWO is the MTTF with specific wear-out (WO)

type under consideration, i.e.

WO =


EM for electromigration

NBTI for negative bias temperature instability

· · ·

(2.14)

The reliability is therefore given by [93]

R(t) = e
−
(∑n

i=1

ti−ti−1
ηi

)β
(2.15)

Impact of process variation: The expression for reliability is derived assuming a

constant value for the shape parameter β. When process variation is considered, β is not

constant, but is given by a Gaussian distribution function φ(µg, σg), where µg is the mean

and σ2
g is the variance. The reliability of a component (core) with N devices considering

process variation is given by [94]

R(t) = e
−N

(∑n
i=1

ti−ti−1
ηi

)µg−σ2g2 ln

(∑n
i=1

ti−ti−1
ηi

)
(2.16)

Lognormal Distribution

The reliability of a core considering Lognormal distribution for the fault density is given

by

R(t) =
1

2
− 1

2
erf

(
ln(t)− µ√

2σ2

)
(2.17)
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where µ is the scale parameter, σ is the shape parameter and erf is the error function.

Considering a time distribution of temperature as before, the reliability is

R(t) =
1

2
− 1

2
erf

 ln(t) + ln

(∑n
i=1

ti−ti−1
eµi

t

)
√

2σ2

 (2.18)

where the scale parameter µi for the ith interval is

µi = ln (MTTFWO(Ti))−
σ2

2
(2.19)

The reliability of a core with N devices using Lognormal distribution for fault density

is given by [93]

R(t) = e
N
∫∞
−∞ f(x)ln

(
1
2
− 1

2
erf

(
ln(t)−µ√

2x2

))
dx

(2.20)

where f(x) is the probability density function of µ. This equation is too complex to

integrate in the reliability computation for systems. Furthermore, recent studies reveal

that for large number of devices per component, Weibull distribution provides more

accurate modeling than Lognormal distribution and therefore has been adopted for most

of the existing works on reliability optimization.

MTTF of a Core

The mean time to failure for a core ci is therefore

MTTFi =

∫ ∞
0

R(t)dt (2.21)

2.2.3 System-Level Reliability Modeling

The system-level reliability modeling is to combine the reliability of the different cores

to determine the mean time to failure of the multiprocessor system. Some of the most

widely used MTTF computation techniques are highlighted here.

Max-Min Approach: One of the most widely adopted approaches for MTTF analysis is

the Max-Min approach [95–97], where the MTTF of a system is approximated to the

minimum MTTFs of the different cores i.e.,

MTTFsys = min
i
MTTFi (2.22)

Additive Refinement Approach: In the iterative approach, the mean time to failure is

determined iteratively, considering one failure at a time [98]. After every failure, the tasks

on the faulty core are remapped to the other active cores. This changes the operating

temperature and hence the shape parameter of the fault distribution functions. The new
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Algorithm 1 Iterative reliability computation

Input: Application and architecture graphs

Output: MTTF of the multiprocessor systems
1: Initialize MTTFsys = 0

2: Map and schedule the application on the system
3: while performance requirement is satisfied do

4: for all core ci of the system do

5: Determine MTTFi
6: end for

7: MTTFsys = MTTFsys + min{MTTFi}
8: Task migration and determine new schedule
9: end while

MTTF are computed for the cores and the minimum MTTF of all the cores is added to

system MTTF. This process is repeated until the performance of an application drops

below an acceptable limit. Algorithm 1 provides the pseudo-code of the approach.

Multi-Convolution Integral Approach: The reliability of a multiprocessor system with l

failures is given by [99]

RsysNc−l(t) =

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tl−1

RsysNc−l(t, tl)dtl (2.23)

where Nc is the number of cores of the multiprocessor system, l is the number of failures,

tl = (t1, t2, · · · , tl), where ti is the occurrence of the ith failure and

RsysNc−l(t, tl) = RsysNc−l(t|tl) · g
sys
Nc

(t1) · gsysNc−1(t2|t1) · · · gsysNc−l+1(tl|t1, t2, · · · tl−1) (2.24)

where RsysNc−l(t|tl) is the probability that a core survives at time t given the system expe-

riences l failures and gsysNc−r+1(tr|t1, t2, · · · tr−1) is the probability that a system containing

Nc− r+ 1 working cores experiences the rth failure at time tr with the past r− 1 failures

occurring at t1, t2, · · · tr−1. The MTTF of the system is

MTTFsys =

∫ ∞
0

Nc∑
l=Nminc

RsysNc−l(t)dt (2.25)

where Nmin
c is the minimum number of cores required to satisfy the performance of a

system. For a gracefully degrading system, Nmin
c = 1.

Monte-Carlo Simulation Approach: The MTTF of a system can be derived using Monte-

Carlo simulation using survival lattice to describe system structure. The time to failure

of a component assuming Weibull distribution is given by [93,100]

TTF =
t∑n

i=1

ti−ti−1

ηi

e

µ−

√
µ2+2σln

(
− ln(1−u)

Nc

)
σ2 (2.26)

where u is a uniform random number in [0, 1] representing the expected lifetime during

system-level simulation. The system-level MTTF is determined using the survival lattice.
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The system reliability can be calculated as the percentage of trials for which system

survives longer than TTF .

2.3 Design-time Based Reliability and Energy Optimization

As established in Chapter 1, the design-time methodology addresses three aspects – re-

liability and energy-aware platform-based design, reliability and energy-aware hardware-

software co-design and energy-aware mapping for proactive fault-tolerance. The existing

studies on these three aspects are discussed next.

2.3.1 Existing Approaches on Platform-Based Design

Since temperature has a significant impact on device wear-out, there are quite some

research studies on offline task allocation techniques for temperature minimization. A

thermal-aware task mapping technique is proposed in [101] based on the HotSpot tool.

A mixed integer linear programming (MILP)-based task mapping and scheduling is pro-

posed in [96] that solves the steady-state and spatial temperature dependency from the

resistive capacitive (RC) thermal equivalent model. A fast event-driven approach is

proposed in [102] to estimate the temperature of multiprocessor systems using prebuilt

look-up tables and predefined leakage calibration parameters. All these techniques de-

termine the steady-state temperature only. A temperature-aware technique is proposed

in [103] to distribute the idle time in order to control the power consumption and hence

the temperature. Both the transient and the steady-state phases are modeled in these

approaches. However, spatial dependency is not considered.

Since different wear-out mechanisms are influenced by temperature differently, there

are studies that optimize lifetime reliability, directly considering these wear-out mecha-

nisms through intelligent task mapping. A reliability estimation technique is proposed

in [98] for application specific multiprocessor systems. The model considers multiple

failures by incorporating the change in fault density with core failures. A slack allo-

cation technique is proposed in [104] to improve the lifetime reliability of NoC-based

multiprocessor systems. The proposed technique exploits the critical quantity slack aris-

ing from execution and storage resources to increase the MTTF. A simulated annealing

based technique is proposed in [95] to maximize the lifetime reliability of a multipro-
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cessor system. The steady-state temperature values are determined using the HotSpot

tool for all combinations of the active tasks on different processors. These temperature

data are stored in a lookup and used during the optimization step. Ant-colony based

optimization technique is proposed in [105] to determine the task mapping that maxi-

mizes lifetime defined as the time to the first failure. This technique has shown that the

lifetime of a multiprocessor system using temperature-aware optimization technique can

be significantly lower than when lifetime is explicitly optimized. A simulated annealing

based energy-reliability joint optimization technique is proposed in [106]. based on the

temperature model of [95].

The technique in [97] uses eigen value decomposition based approach to determine

the steady-state dynamic temperature profile using a time-varying and periodic power

profile. The approach is shown to be the most accurate among all the existing tech-

niques. Based on this temperature model, a simple heuristic is proposed to maximize the

lifetime of a multiprocessor system considering thermal cycling-related wear-out effects.

Finally, there are also techniques to optimize the lifetime of multiprocessor systems con-

sidering transient and intermittent faults. A resource management technique is proposed

in [107] to minimize processor wear-out, simultaneously providing tolerance for transient

and intermittent faults. A genetic algorithm based lifetime optimization technique is

proposed in [108]. The approach determines the voltage and frequency of the cores of

a multiprocessor system to maximize the lifetime and minimize the soft-error suscepti-

bility. Markov-decision based multiprocessor steady-state availability is derived in [47]

considering intermittent faults. Table 2.1 summarizes these related works and highlights

the objectives of this thesis.

2.3.2 Existing Approaches on Hardware-Software Co-Design

A hardware-software co-synthesis of fault-tolerant systems is proposed in [109]. The

proposed approach uses task duplication with comparison and re-execution as the fault-

tolerant mechanism. A design methodology is proposed in [110] to handle conditional

execution in multi-rate embedded systems and selectively duplicates critical tasks to cor-

rect transient errors. A technique is proposed in [111] to determine the cost, performance

and reliability trade-offs for multiprocessor system considering permanent faults. A de-

sign space exploration of multimedia multiprocessor systems is proposed in [112]. The

35



Table 2.1: Related works on reliability and energy-aware platform-based design.

Related Works
Temperature

Model
Optimization Objective

Reliability

Modeling

Application

Model

Architecture

Model

Gu et al. [98]
steady-state &

spatial
lifetime reliability

Additive

Refinement

independent

DAGs

static

heterogeneous

Meyer et al. [104],

Huang et al. [95],

Hartman et al. [105]

steady-state &

spatial
lifetime reliability Max-Min

independent

DAGs

static

homogeneous

Huang et al. [106]
steady-state &

spatial

lifetime reliability &

energy
Max-Min

independent

DAGs

static

homogeneous

Ukhov et al. [97]

transient,

steady-state,

temporal &

spatial

lifetime reliability &

energy
Max-Min

independent

DAGs

static

homogeneous

Chou et al. [107],

Das et al. [47,108]

steady-state &

spatial

lifetime reliability,

transient & intermittent

faults

Max-Min
independent

DAGs

static

homogeneous

Objectives of this

thesis [71,72]

transient,

steady-state,

temporal &

spatial

lifetime reliability &

energy

Additive

Refinement

independent &

concurrent

SDFGs

static

homogeneous

proposed approach explores the trade-off between different metrics such as performance,

energy and cost while incorporating soft-error tolerance in the optimization process.

A system level reliability analysis technique is proposed in [113] considering process

re-execution in software and selective hardening of hardware for fault-tolerance. Based on

this, a design optimization heuristic is proposed to select the fault-tolerant architecture

and the task mapping such that, the overall cost is minimized. A system-level synthesis

flow is proposed in [114] for the design of reliable embedded systems. The methodology

explores different hardening strategies under a given user level reliability specification.

The strategy with the least resource utilization is selected and the given application is

mapped on the resulting platform to optimize reliability. All these techniques deter-

mine the multiprocessor platform to maximize the fault-tolerance capability considering

transient and permanent faults.

There are very few research studies on the hardware-software co-design methodology

for proactive fault-tolerance considering temperature-related wear-out. A system-level

design methodology is proposed in [115] for the automatic synthesis of reliable embed-

ded systems. The proposed methodology addresses the following: selection of resources

with different reliability, area and latency parameters; and mapping of a data flow ap-

plication on the platform to simultaneously optimize reliability, area and latency using

multi-objective evolutionary algorithm. A co-design methodology is proposed in [116]

to determine the minimum resources required to improve system lifetime measured as

MTTF. Table 2.2 summarizes the related works and the objectives of this thesis.
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Table 2.2: Related works on reliability and energy-aware hardware-software co-design.

Related Works
Optimization

Objective

Reliability

Modeling
Fault-tolerance

Multiprocessor

Platform

Application

Model

Dave et al. [109],

Xie et al. [110],

Bolchini et al. [114]

area – reactive
static

heterogeneous

independent

DAGs

Bolchini et al. [111],

Stralen et al. [112],

Izosimov et al. [113]

reliability – reactive
static

homogeneous

independent

DAGs

Glaß et al. [115]
lifetime

reliability

Convolution

Integral
proactive

static

homogeneous

independent

DAGs

Zhu et al. [116]
area & lifetime

reliability

Additive

Refinement
proactive

static

heterogeneous

independent

DAGs

Objectives of this

thesis [73]

lifetime

reliability
Max-Min

proactive &

reactive

homogeneous &

reconfigurable

independent &

concurrent

SDFGs

2.3.3 Existing Approaches on Reactive Fault-tolerance

The offline reactive fault-tolerant techniques address the task allocation problem on a

multiprocessor system considering the occurrences of permanent faults. A multi-objective

optimization approach is proposed in [117] to jointly optimize cost, time and dependabil-

ity. The application task graph is extended with certain nodes of the graph replicated

to allow fault tolerance. The dependability of the replicated task graph is evaluated

considering resource crash as the fault model. The approach performs design space ex-

ploration using the replicated graph in a genetic algorithm framework to maximize the

dependability, while satisfying the design cost and execution time constraint. A fixed

order Band and Band reconfiguration technique is studied in [118]. Cores of the target

architecture are partitioned into two bands. When one or more cores fail, tasks on these

core(s) are migrated to other functional core(s) determined by the band in which these

tasks belong. The core partitioning strategy is fixed at design-time and is independent

of the application throughput requirement. A re-execution slot based reconfiguration

mechanism is studied in [119]. Normal and re-execution slots of a task are scheduled at

design-time using evolutionary algorithm to minimize certain parameters like throughput

degradation. At run-time, tasks on a faulty core migrate to their re-execution slot on

a different core. However, a limitation of this technique is that the schedule length can

become unbounded for high fault-tolerant systems. Task remapping technique based on

offline computation and virtual mapping is proposed in [120]. Here, task mapping is

performed in two steps – determining the highest throughput mapping followed by the

generation of a virtual mapping to minimize the cost of task migration to achieve this

highest throughput mapping. An ILP based approach is presented in [121]. Energy opti-
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Table 2.3: Related works on design-time reactive fault-tolerant techniques.

Related Works
Fault-tolerant Energy Migration Application Throughput

Mapping & Scheduling Optimization Overhead Model Degradation

Jhumka et al. [117] task mapping only × × DAGs ×

Yang et al. [118] task mapping only ×
√

DAGs ×

Huang et al. [119] mapping & scheduling × × DAGs ×

Lee et al. [120] task mapping only × × DAGs
√

Wei et al. [121] task mapping only
√

× DAGs ×

Objectives of this thesis ( [74–77]) mapping & scheduling
√ √

SDFGs
√

mization is performed under execution time constraint which incorporates fault-tolerance

overhead using check-pointing based recovery model. Table 2.3 summarizes the existing

reactive fault-tolerant techniques and the objectives of this thesis.

2.4 Run-time Based Reliability and Energy Optimization

A dynamic reliability management technique is proposed in [122], where workload char-

acteristics and thermal information are used to project the degradation caused by various

failure mechanisms. The relationship between temperature and voltage and frequency

of operation is formulated in [123]. Based on this, an online heuristic is proposed to

determine the voltage and frequency of the cores to minimize the temperature. In [124],

a distributed dynamic thermal management technique is proposed to avoid thermal hot

spots that accelerate thermal aging and transient faults. The proposed technique consists

of multiple agents, each managing a cluster of the many-core architecture.

A run-time task mapping technique is proposed in [125] to minimize the wear-out

by utilizing the wear-out sensors. The proposed technique computes task mapping at

regular intervals and when a component fails. The scheduling decision is left to the oper-

ating system. An online approach is proposed in [126] to minimize wear-out considering

different aging mechanisms. The power of a core is used to estimate its temperature and

a simple heuristic is proposed to dynamically manage peak temperature and thermal

cycling. Both these techniques are based on simulation of a real multiprocessor system.

A proactive thermal management policy is proposed in [127] to balance the tempera-

ture on the die. The proposed approach uses auto-regressive moving average modeling to

forecast the future temperature. A proactive dynamic thermal management is proposed

in [128] based on predict-and-act philosophy. In the proposed framework, the operating

system scheduler predicts the temperature of the individual cores; if the temperature of
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Table 2.4: Related works on run-time reliability optimization techniques.

Related Works DRM Approach Workload Variation
Thermal

Cycling

Temperature /

Reliability

Measurements

Validation

Platform

Karl et. al. [122],

Hanumaiah et al. [123],

Faruque et al. [124]

heuristic intra variation × thermal model multicore

Hartman et al. [125] heuristic intra variation × wear-out sensors simulation

Chantem et al. [126] heuristic intra variation
√

thermal model simulation

Coskun et al. [127],

Ayoub et al. [128],

Cochran et al. [129]

predict-and-act intra variation × thermal sensors multicore

Sironi et al. [130] observed-decide-act intra variation × thermal sensors multicore

Bolchini et al. [131] observe-decide-act intra variation × HotSpot simulation

Mercati et al. [132] observe-decide-act intra variation
√

wear-out sensors multicore

Lee et al. [133] machine learning intra variation × sensors multicore

Jayaseelan et al. [134] machine learning intra variation × HotSpot simulation

Ge et al. [135] machine learning intra variation × thermal models

& sensors
multicore

Ebi et al. [136] machine learning intra variation × thermal gun FPGA

Objectives of this

thesis [137]
machine learning inter & intra variation

√
thermal sensors multicore

a core crosses a pre-defined value, the operating system decides to migrate one or more

threads of a given workload to the coldest core in the system. A thermal management

technique is proposed in [129], which predicts the workload phase change and selects the

appropriate voltage and frequency of the cores to minimize the peak temperature.

A discrete-time thermal model is proposed in [130] for dynamic thermal manage-

ment. The proposed technique monitors the temperature sensors and decides on the

length of the idle time needed to reduce thermal emergencies. An adaptive approach

is proposed in [131] to minimize the electromigration-related wear-out by monitoring

the aging at runtime and controlling it through task mapping. A control theoretic ap-

proach is proposed in [132] to maximize the lifetime of homogeneous multicore systems.

The proposed approach is based on long term controller, which samples data from aging

sensors to compute the wear-out degradation. Based on this, the short-term controller

adjusts the voltage and frequency of the tasks to minimize temperature while satisfying

the performance requirement and the user experience.

A machine learning technique is proposed in [133] to dynamically manage the peak

temperature for MPEG2 video decoding. The technique is very application specific and

can be applied only to video decoding applications such as MPEG4 or H.264. A neural

network-based adaptive thermal management policy is proposed in [134]. The technique

relies on temperature prediction using the HotSpot tool. A reinforcement learning algo-

rithm is proposed in [135] to manage performance-thermal trade-offs by sampling temper-
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ature data from the on-board thermal sensors. A distributed learning agent is proposed

in [136] to optimize peak temperature within a given power budget. The technique is

implemented on FPGA with temperature measurement using an external thermal gun.

Table 2.4 summarizes these related works and highlights the objectives of this thesis.

2.5 Remarks

This chapter provided an overview of the operational semantics of the SDFG that is

used in the subsequent chapters as the application model. The chapter also provided

the background for reliability modeling of multiprocessor systems considering different

device-level wear-out mechanisms and their dependency on temperature. Finally, a de-

tailed background study is provided on the existing system-level design techniques for

lifetime optimization, highlighting the objectives achieved in this thesis.
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CHAPTER 3

Reliability and Energy-Aware Platform-Based Design

Methodology

3.1 Introduction

As discussed in Chapter 2, a significant research attention is directed recently to in-

vestigate platform-based design approaches in order to mitigate wear-out and minimize

energy consumption. These studies, however, suffer from the following two limitations –

accuracy and scope.

Accuracy: Most existing studies on thermal and reliability management ignore either

the transient phase of the temperature or the spatial dependency. Ignoring the transient

temperature simplifies the thermal analysis, but is accurate if the execution times of the

tasks are comparable to the thermal time constant of the package, which is typically of

the order of few hundreds of seconds. Finally, ignoring the spatial dependency leads to

simplification of the RC equivalent model, but results in underestimation of the tempera-

ture and a corresponding overestimation of the mean time to failure. Additionally, some

existing studies on lifetime reliability approximate MTTF as the time to the first fault.

This is true for systems that are not provisioned to tolerate faults. In this work, multipro-

cessor systems are considered with support for task migration. Such a system continues
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to operate in the presence of failures, albeit an acceptable performance degradation. For

such systems, estimating the MTTF as the time to first failure leaves a significant scope

of improvement, both in terms of lifetime and energy consumption.

Scope: The existing lifetime optimization techniques are all based on sequential ex-

ecution of applications represented as directed acyclic graphs (DAGs). Synchronous

data flow graphs (SDFGs) allow more suitable modeling for streaming multimedia and

other data flow applications that require support for multi-input tasks, multi-rate tasks,

pipelined execution and a natural way for dealing with latency and buffer requirements..

The existing techniques for DAGs cannot be applied directly on SDFGs due to the cyclic

actor dependencies and the overlapping of multiple iterations (pipelined) in the sched-

ule. Furthermore, all the existing techniques determine lifetime optimum mapping for

a single application. However, multiprocessor systems are often designed for multiple

applications, many of them enabled concurrently (use-case). As shown in this work,

lifetime-aware distribution of the cores among the concurrent applications leads to a

significant improvement in MTTF.

To address the limitations of the existing approaches, a temperature model is first

proposed that is based on off-line thermal characterization of a multiprocessor system

using the HotSpot tool. The model incorporates the following:

1. temporal dependency i.e., the relationship between the temperature of a core as a

function of time and its dependency on the operating voltage and frequency; and

2. spatial dependency i.e., the influence of the neighboring core’s temperature on the

temperature of a core.

A gradient-based fast heuristic is then proposed incorporating the temperature model,

to jointly optimize energy and lifetime reliability of a multiprocessor system with applica-

tions represented as SDFGs. The approach leverage on the native SDF 3 tool [138], and

can be easily ported to applications represented as DAGs, making the approach generic

for both streaming multimedia and non-multimedia applications. Following are the key

contributions of this work:

• a simplified temperature-model considering temporal and spatial dependencies;

• computing the MTTF considering task remapping;
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Figure 3.1: Multiprocessor floorplan.

• a gradient-based fast heuristic to jointly optimize lifetime reliability and energy;

• reliability optimization considering synchronous data flow graphs; and

• MTTF maximization considering single and multi-application use-cases.

The remainder of this chapter is organized as follows. The problem formulation is

discussed in Section 3.2 followed by the proposed temperature model in Section 3.3. The

temperature computation from a given SDFG schedule is demonstrated in Section 3.4.

The design methodology is discussed next in Sections 3.5. Experimental results are

presented in Section 3.6 and Section 3.7 presents the conclusions.

3.2 Problem Formulation

3.2.1 Application Model

An application SDFG is mathematically represented as Gapp = (A, C) consisting of a finite

set A of actors and a finite set C of channels. Every actor a i ∈ A s a tuple (ti, µi), where

ti is the execution time of a i and µi is its state space (program and data memory). The

number of actors in an SDFG is denoted by Na where Na = |A|. The performance of an

SDFG is specified in terms of throughput constraint Tc.

3.2.2 Architecture Model

The multiprocessor architecture for this work is shown in Figure 3.1 with cores (indicated

as labeled boxes) interconnected through switches in a mesh-based topology (the labels

on the cores are explained in Section 3.3). This model is a representative of a single chip
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multi-/many-core system such as Tilera [18].1

For problem formulation, the adopted architecture is represented as a graph Garc =

(C,E), where C is the set of nodes representing cores of the architecture and E is the

set of edges representing communication channels among the cores. The number of cores

in the architecture is denoted by Nc i.e., Nc = |C|. Each core cj ∈ C supports Nf

voltage-frequency pairs denoted by {(Vk, ωk) ∀k ∈ [0, Nf − 1]}.

3.2.3 Mapping Representation

The objective of the optimization problem is to maximize the lifetime reliability (mea-

sured as MTTF) and minimize the energy consumption by solving the following:

• actor distribution: determine the assignment of the actors of the SDFG on the

cores of the multiprocessor system;

• operating point: determine the voltage and frequency of the cores for executing the

actors of the SDFG.

For the ease of problem representation, two variables xi,j (representing the actor

distribution) and yi,k (representing the operating point) are defined as follows.

xi,j =


1 if actor a i is executed on core cj

0 otherwise

yi,k =


1 if actor a i is executed at operating point (Vk, ωk)

0 otherwise

Constraints on these variables are set such that an actor is mapped to only one core

at a single operating point. Thus,

Nc−1∑
j=0

xi,j = 1 and

Nf−1∑
k=0

yi,k = 1 ∀a i ∈ A (3.1)

The actor distribution and operating point of SDFG are represented as two matrices:

Md =



x0,0 x0,1 · · · x0,Nc−1

x1,0 x1,1 · · · x1,Nc−1

...
...

. . .
...

xNa−1,0 xNa−1,1 · · · xNa−1,Nc−1


(3.2)

1The technique proposed in this thesis can also be adopted for other widely-accepted architectures
such as those involving multi-chip systems by interfacing with the operating system’s thread scheduling
and affinity mapping functions.
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Figure 3.2: MTTF computation with different temperature profile.

Mo =



y0,0 y0,1 · · · y0,Nf−1

y1,0 y1,1 · · · y1,Nf−1

...
...

. . .
...

yNa−1,0 yNa−1,1 · · · yNa−1,Nf−1


(3.3)

The core to which actor a i is assigned is denoted by φi and is given by φi = Xi × NNc

where Xi =

(
xi,0 xi,1 · · · xi,Nc−1

)
and NNc is the matrix of integers from 0 to Nc

i.e., NNc =

(
0 1 · · · Nc − 1

)T
. The operating point of actor a i is denoted by θi and

is given by θi = Yi × NNf where Yi =

(
yi,0 yi,1 · · · yi,Nf−1

)
.

3.2.4 MTTF Computation

To demonstrate the MTTF computation using the iterative approach (Chapter 2), an

example is provided with three cores. The initial schedule S0 uses all the three cores

and stresses core 2 more than the other two cores. The reliability curves for the three

cores are shown in Figure 3.2. Core 2 has the least lifetime and it breaks at time τ0. As

indicated in Chapter 2, most existing works on lifetime reliability defines MTTF to be

the time to the first failure, hence the MTTF for these works is τ0. At time t = τ0, a

second schedule S1 (using core 0 and 1) is applied. The change in the reliability profile of

core 0 and core 1 are due to different wear-out, which can be attributed to the difference

in temperature from this new schedule. The new schedule stresses core 0 more than core

1 and therefore core 0 breaks at time t = τ1. At this time, all the actors are remapped

to core 1 and are ordered honoring the actor dependency. This schedule is identified in

the figure as S2 and results in reliability profile of r2
1. With this new reliability profile,

core 1 breaks at time t = τ2. The lifetime (MTTF) of the system is therefore τ2.
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Besides MTTF, another interesting metric for multiprocessor systems supporting task

remapping is the processor years, defined as the aggregate utilization of the different cores

of the system over the entire lifetime. For the above example, this is calculated as follows.

For the interval 0 to τ0, all three cores are active; for the interval τ0 to τ1 two core are

active; and for the interval τ1 to τ2 only one core is active. Assuming the time in this figure

are all in years, the processor years of the above system is 3 ·τ0 +2 · (τ1−τ0)+1 · (τ2−τ1).

3.2.5 Energy Modeling

Actor-level voltage and frequency scaling is assumed for this work i.e, every actor of

an SDFG is associated with a voltage-frequency value that is set on the core executing

the actor. The energy consumed on a multiprocessor system while executing the SDFG

consists of the following components:

• computation energy: dynamic and leakage energy consumed on the cores due to

the actors execution; and

• communication energy: dynamic and leakage energy consumed on the network-on-

chip (NoC) due to the data communication among the connected actors.

A point to note here is that the leakage energy consumed on the NoC is dependent on

the NoC type and the topology. For this work, a spatial division multiplexing-based NoC

is assumed and therefore, the leakage power consumed on the NoC is negligible [139].

Dynamic Energy of SDFG: The dynamic energy of an SDFG is given by Edyn =

Edyntr +Niter ·Edynss , where Edyntr is the actor dynamic energy in the transient phase of the

schedule, Edynss is the actor dynamic energy per iteration of the steady state phase and

Niter is the number of iterations of the steady state phase. Usually, the number of steady

state iterations (i.e.,Niter) is a large number (e.g., periodic decoding of video frames) and

hence for all practical purposes, the dynamic energy of the steady state phase dominates

over that in the transient phase. Throughout the rest of this chapter, computation (or

communication) energy implies computation (or communication) energy of the steady

state phase per iteration.

The dynamic energy consumed by an actor a i executed on core cj at the operating

point k is given by

edyn(i, j, k) = Ceff · β · V 2
k · ωk · tijk ·RV [a i] (3.4)
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where β is the activity factor, Ceff is the effective load capacitance, tijk is the execution

time of actor a i on core cj at operating point k (i.e.,operating voltage Vk and operating

frequency ωk) and RV [a i] is the number of firings of actor a i per steady state iteration

of the SDFG. The total dynamic energy per steady-state iteration of the SDFG is

Edyncore =
∑
∀ai∈A

edyn(i, φi, θi) (3.5)

Leakage Energy of SDFG: The leakage energy of core cj , consumed during the exe-

cution of actor a i at operating point k, is given by the following formula [140].

eleak(i, j, k) = NgatesVkI0

[
AT 2e

αVk+β
T +BeγVk+δ

]
· tijk ·RV [a i] (3.6)

where Ngates is the number of gates of the core, I0 is the average leakage current and

A,B, α, β, γ, δ are technology dependent constants (refer to [140]) and T is the average

temperature of the actor during the steady-state iteration. The total leakage energy is

Eleakcore =
∑
∀ai∈A

eleak(i, φi, θi) (3.7)

Dynamic Energy on the NoC: In [41], bit energy (Ebit) is defined as the energy

consumed in transmitting one bit of data through the routers and links of a NoC.

Ebit = ESbit + ELbit (3.8)

where ESbit and ELbit are the energy consumed in the switch and the link, respectively.

The energy per bit consumed in transferring data between cores cp and cq, situated

nhops(p, q) away is given by Equation 3.9 according to [41].

Ebit(p, q) =


(nhops(p, q) + 1) · ESbit + nhops(p, q) · ELbit if p 6= q

0 otherwise

(3.9)

The dynamic energy consumed on the NoC is therefore given by Equation 3.10 where

φi and φi′ are the cores where actors a i and a i′ are mapped, respectively.

Edynnoc =
∑

∀ai,ai′∈A

dij · Ebit(φi, φi′) (3.10)

The total energy is

Etot = Edyncore + Eleakcore + Edynnoc (3.11)

3.2.6 Reliability-Energy Joint Metric

To jointly optimize lifetime reliability and energy, a single metric lifetime quotient (lq)

is introduced, which as defined as the ratio of the MTTF to the total energy i.e.,

lq =
MTTF

Etot
(3.12)
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The optimization objective is to maximize lq.

3.3 Proposed Temperature Model

Temperature of a multiprocessor system is usually determined using a RC equivalent

thermal model. The temperature of a single core is related to its power dissipation

according to the following equation [68].

C
dT (t)

dt
+G (T (t)− Tamb) = P (t) (3.13)

where C is the thermal capacitance, G is the thermal conductance, t is the time, Tamb is

the ambient temperature, T (t) is the instantaneous temperature and P (t) is the instan-

taneous power that is composed of the dynamic and the static components. The dynamic

power is dependent on the voltage and frequency of operation and the static power is de-

pendent on the temperature (refer to Section 3.2.5). The solution to the above equation

consists of transient and steady-state phases. In the transient phase, the temperature

increases with time up to a point beyond which, the steady-state phase settles in and the

temperature saturates to its steady-state value. The core’s wear-out is dependent on its

operating temperature, which needs to incorporate both the transient and the steady-

state phases. For a multiprocessor system with interconnected cores (refer to Figure 3.1),

the temperature of any core, say core ci depends on

A.1 The time of execution of an actor on ci .

A.2 The voltage and frequency of ci.

A.3 The temperature of the cores surrounding ci.

Thus, A.1 and A.2 represents the temporal dependency and A.3 represents the spatial de-

pendency. For such a system, the temperature, power, thermal capacitance and thermal

conductance in Equation 3.13 are all vectors. The transient and steady-state values can

be obtained by solving the above equation analytically. The solution to the differential

equation is

T(t) = eκtT(0) + κ−1 (eκt − I
)
C−1P (t) (3.14)

where κ = −C−1G, T(0) is the initial temperature and I is the identity matrix. The

direct solution techniques, such as LU decomposition and sparse solver, are usually slow

and results in an exponential design space exploration time. Although the iterative
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technique of [97] simplifies the solution, the execution time is still exponential when

applied to multi-application use-cases.

A simplification to the analytical approach is to ignore the spatial dependency by

considering the temperature for cores individually, such as the one proposed in [141]. To

signify the importance of temperature underestimation by ignoring the spatial depen-

dency (component A.3), an experiment is conducted using the HotSpot tool to measure

the steady-state temperature. The multiprocessor architecture used for the HotSpot tool

is shown in Figure 3.1 with the specifications of the cores reported in Table 3.1. The

temperature is determined by setting the power dissipation of core ci as 0, with a con-

stant power corresponding to the operating point OPP1G (i.e.,1.35V, 1GHz) set for the

one-hop and the two-hop neighboring cores (cores c1 - c4 are the one-hop neighbors and

cores c5 - c12 are the two-hop neighbors of core ci in Figure 3.1). This simulates the

scenario of core ci as idle with the neighboring cores active at the highest voltage and fre-

quency. The temperature results are reported in Figure 3.3 for some combinations of the

neighboring core’s activity. The label c1 − cn in the figure indicates cores c1, c2, · · · , cn

are active simultaneously. There are two bars shown on the plot. The left bar for each

label corresponds to the temperature of core ci obtained with all the core as idle. The

right bar corresponds to the temperature of ci with cores c1, c2, · · · , cn operating at the

highest operating point and core ci as idle. As seen from the figure, with only the east

and the south neighbors active (i.e.,label c1 − c2), the temperature considering spatial

dependency is 5◦C higher than the temperature obtained by ignoring the spatial depen-

dency (i.e., A.3). This difference increases as more number of neighbors become active.
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Finally, with all the one-hop and two-hop neighbors active, the temperature difference is

as high as 18◦C. This temperature underestimation leads to MTTF misprediction.

To provide a simplified solution of Equation 3.14, a regression analysis technique is

proposed in this work. The proposed temperature model is based on:

• temperature characterization to incorporate the temporal dependency (capturing

both the transient and steady-state behaviors); and

• temperature characterization to incorporate the spatial temperature dependency.

The solution to the differential equation is represented as

Ti(t) = f(Vi, ωi, t) + g({Vj , ωj | ∀cj ∈ ℵ(ci)}) (3.15)

where (Vi, ωi) are the voltage and frequency of core ci, t is the time and ℵ(ci) are the

cores in the neighborhood of ci. The function f and g represent the temporal and the

spatial dependency, respectively and are derived in two steps.

• Determine f: The function f can be determined using two alternative approaches

– by solving Equation 3.13 directly for a processing core; or by simulation using the

HotSpot tool for the power consumption corresponding to different operating points

of the processing core to capture the transient and the steady-state behaviors, as

shown in Figure 3.4.

• Characterize g: The temperature data for characterizing the function g are ob-

tained as follows. The core ci is set to idle mode and the operating points for the
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neighboring cores are varied. Performing exhaustive temperature simulations for

different voltage-frequency combinations of all neighbors (one-hop neighbors, two-

hop neighbors, etc.) is time consuming, but only required once during the char-

acterization step. A first order of approximation involves considering the voltage-

frequency of only the immediate neighbors i.e., the east, west, north and south

neighbors of a core referred to as (Ve, ωe), (Vw, ωw), (Vn, ωn) and (Vs, ωs), respec-

tively with all other neighbors set to operate at the highest operating point. This

is shown in Figure 3.5, where the voltage point is only shown for clarity of repre-

sentation. The figure plots the temperature of core ci as its voltage Vi is increased

from 0.93V to 1.35V for few of these neighboring voltage combinations.

The temperature data are fed to the Matlab regression toolbox to derive the temperature

model. The proposed temperature model is determined once during the characterization

process. The final expression for temperature (Equation 3.15) can be easily integrated

in the design space exploration framework. However, the proposed model incorporates

pessimism in three forms – separating the temporal and spatial dependency; character-

izing the spatial dependency with the steady-state temperature of the nearest neighbors;
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and characterizing the spatial dependency with the non-nearest neighbors set to operate

at the highest voltage and frequency. These pessimism lead to a temperature overesti-

mation by as much as up to 6◦C for individual applications. However, as discussed in

Section 3.5.2, this temperature overestimation simplifies the reliability optimization for

multi-application use-cases, which is a common requirement for multiprocessor systems.

3.4 Temperature Computation from a Schedule

Figure 3.6 shows an example of an SDFG with four actors allocated on a platform with

three cores. The schedule corresponding to a particular allocation is also shown in the

same figure. The temperature computation is demonstrated for core 0 using this sched-

ule. The temperature for other cores can be determined in a similar fashion. The time

duration 0 − t6 is divided into seven intervals by putting a time stamp at the instances

where the actors start or end firing.

Core 0: Interval (0→ t0)

In this interval, core 0 executes actor A at operating point (VA, ωA). The temperature

at time t considering the temporal effect is f(VA, ωA, t). The temperature considering

the spatial effect is due to the idle voltages of core 1 and 2 and is given by g(Vidle, Vidle).

The average temperature in this interval is

T0(0, t0) =
1

t0

∫ t0

0

f(VA, ωA, t)dt+ g(Vidle, Vidle) (3.16)

Core 0: Interval (t0 → t1)

In this interval, core 0 executes the first instance of actor B. Note in the SDFG, when

actor A fires, it produces 3 tokens on the channel from actor A to actor B and one of

these tokens is consumed for each firing of actor B. Therefore, there are three firing of

actor B (indicated in the figure by B1, B2 and B3). The temperature at time t due to
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the temporal effect of actor B is f(VB, ωB, t) and the temperature due to spatial effect is

g(VD, VC). The average temperature is

T0(t0, t1) =
1

t1 − t0

∫ t1−t0

0

f(VB , ωB , t)dt+ g(VD, VC) (3.17)

Core 0: Interval (t1 → t2)

The temperature computation in this interval is similar to that in the interval (t0 → t1)

and is given by

T0(t1, t2) =
1

t2 − t1

∫ t2−t1

0

f(VB , ωB , t)dt+ g(VD, VC) (3.18)

Core 0: Interval (t2 → t3)

During the execution of actor B3, there is a change in temperature profile due to the

completion of actor D1 and the interval before actor D2 is executed. Hence, the execution

time of actor B3 is split into two intervals (t2 → t3) and (t3 → t4). The temperature

computation in the interval (t2 → t3) is similar to that in the interval (t0 → t1)

T0(t2, t3) =
1

t3 − t2

∫ t3−t2

0

f(VB , ωB , t)dt+ g(VD, VC) (3.19)

Core 0: Interval (t3 → t4)

The average temperature in this interval is given by

T0(t3, t4) =
1

t4 − t3

∫ t4−t3

0

f(VB , ωB , t)dt+ g(Vidle, VC) (3.20)

Core 0: Interval (t4 → t5)

In this interval, the temporal effect is due to the idle temperature of the core and is

denoted by T idle0 . The average temperature is given by

T0(t4, t5) = T idle0 + g(VD, VC) (3.21)

Core 0: Interval (t5 → t6)

The temperature in this interval is given by

T0(t5, t6) = T idle0 + g(Vidle, VC) (3.22)

Reliability of Core 0

Combining these equations, the aging of core 0 is

r0 =
1

t6

6∑
i=0

ti − ti−1

α (T0(ti, ti−1))
(3.23)

where t−1 = 0 and α is the fault density.
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Figure 3.7: Proposed design methodology.

3.5 Design Methodology

The design methodology consists of two phases – analysis at design-time (consisting

of the application and use-case optimizations) and execution at run-time. The design-

time methodology is highlighted in Figure 3.7. The run-time manager is not part of

the contribution, but is shown here for completeness. There are two databases for the

multiprocessor system – the set of applications (Sapp) and the set of use-cases (Suse). The

proposed approach is to determine the actor distribution and the operating point (refer to

Section 3.2) for every application using n = Nmin
c to Nc cores of the system. Thus, |Sapp|·

(Nc−Nmin
c +1) optimization problems are solved at design-time. This is performed in the

REOpt block. The solution consists of the actor distribution and operating point matrices

stored in the MapDB database and the three-dimensional (3D) vector – throughput,

reliability (MTTF) and core count stored in the ThRiCoDB database.

Algorithm 2 provides the pseudo-code of the design flow. For every application Ai of

the set Sapp, the corresponding SDFG representation and the throughput constraint are

fetched from the database. This application is executed on the multiprocessor system

with n cores identified as Gnarc, where n is varied from Nmin
c to Nc. The reliability-

energy joint optimization is first performed on the application (line 5) to obtain the

actor distribution matrix Md and the operating point matrix Mo. These are stored in
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Algorithm 2 Generate reliability and energy aware mappings.

Input: Application set Sapp and multiprocessor system Garc
Output: MapDB and ThRiCoDB

1: for all Application Ai ∈ Sapp do

2: [Gapp Tc] = GetSDFG(Ai) //Get the corresponding SDFG and the throughput constraint.

3: Determine Nmin
c , the minimum number of cores required for satisfying the throughput requirement.

4: for n = Nmin
c to Nc do

5:
(
Md Mo

)
= REOpt(Gapp,Gnarc,Tc) //Perform individual application optimization

6: [S T] = MSDF 3(Md,Mo,Gapp,Gnarc) //Calculate the schedule and the throughput of the SDFG.

7: MapDB(i, n) =
(
Md Mo S

)
//Store the mapping in the mapping database.

8: M = CalculateMTTF (i, n,Nmin
c ,MapDB)

9: ThRiCoDB(i, n) =
(
T M

)
//Store the throughput and MTTF values for the use-case optimization

step.

10: end for

11: end for

Algorithm 3 CalculateMTTF (): Calculate the mean time to failure.

Input: Application id i, the core index n, the minimum number of cores for throughput satisfaction and mapping

database MapDB

Output: MTTF M

1: Initialize ttf = 0 and ri = n

2: while ri ≥ Nmin
c do

3: [Md Mo S] = MapDB(i, ri) //Fetch the values.

4: Determine reliability profiles from S as demonstrated in Section 3.4

5: Shift the reliability profiles by ttf

6: Determine t, the time to failure of the most stressed core

7: ttf = ttf + t and ri = ri− 1

8: end while

the MapDB (line 7). The actor distribution is used in the MSDF 3 tool that leverage

on the native SDF 3 tool [138]2 to generate the throughput and schedule. The schedule

thus obtained is used in the CalculateMTTF () routine (line 8) to compute the MTTF.

The throughput and the MTTF values corresponding to the number of cores are stored

in the ThRiCoDB for the use-case optimization step that addresses core distribution

among concurrent applications.

The CalculateMTTF routine determines the MTTF in an iterative manner as shown

as pseudo-code in Algorithm 3. A running index ri is maintained to index to the schedule

with one less core. At the start of the iteration, the mapping and the scheduling are

fetched from the MapDB. The schedule is used to compute the reliability profile of

every core of the system. The reliability profiles are shifted to account for the aging

already encountered in the cores. The time-to-failure for all the cores are determined

using Equation 2.21. The minimum time corresponds to the failure of the most stressed

core. This is added to the ttf and the running index is decremented.

2The native SDF 3 tool generates one feasible actor distribution and the corresponding throughput.
The MSDF 3 tool is modified form of SDF 3 that generates the schedule and throughput from a given
actor distribution matrix.
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Algorithm 4 REOpt(): Reliability and energy optimization for an application.

Input: Gapp, Garc and throughput constraint Tc
Output: actor distribution and operating point matrices

(
Md Mo

)
, which maximize lq

1: Initialize Mo =
(
0 0 · · · 1

)
//Initialize the actors to the highest operating point.

2: [Md S T] = SDF 3(Gapp,Garc) //Mapping, schedule and throughput using the native SDF 3 tool.

3: while true do

4: Pbest = 0, Mbest
d =Md, best found = false //Initialize the best values.

5: lq = CalculateLQ(Md,Mo,S,T) //Calculate the initial lifetime quotient.

6: for all ai ∈ A do

7: for all cj ∈ C do

8: for all k ∈ [0, Nf − 1) do

9: Mtemp
d =Md and Mtemp

o =Mo //A temporary allocation matrix is used.

10: Update Mtemp
d ,Mtemp

o using xi,j = yi,k = 1 and xi,l = yi,m = 0, ∀l 6= j and ∀m 6= k

11: [Sn Tn] = MSDF 3(Mtemp
d ,Mtemp

o ,Gapp,Garc) //New schedule is computed.

12: lqn = CalculateLQ(Mtemp
d ,Mtemp

o ,Sn,T) //Calculate the new lifetime quotient.

13: Compute P using Equation 3.24

14: if Tn > Tc and P > Pbest then
15: Pbest = P, Mbest

d =Mtemp
d , Mbest

o =Mtemp
o , best found = true, T = Tn

16: end if

17: end for

18: end for

19: end for

20: if best found then

21: Md =Mbest
d and Mo =Mbest

o //Actor distribution and operating point matrices are updated.

22: else

23: break

24: end if

25: end while

26: Return
(
Md Mo

)
//Actor distribution and operating point matrices are returned.

3.5.1 Reliability Optimization for Individual Application

The objective function (lifetime quotient) of the optimization problem is non-linear; a

gradient-based fast heuristic is proposed to solve it. This is shown as pseudo-code in

Algorithm 4. The algorithm starts from an initial allocation, computed using the native

SDF 3 tool (line 2). Subsequently, the algorithm remaps every actor to every core to

determine a priority function defined as

P =


lqn−lq
T−Tn if Tn < T

(lqn − lq) otherwise

(3.24)

Two conditions are considered in the priority computation: if the throughput of the

current allocation (Tn) is lower than the original throughput (T), a gradient function

is used to calculate its priority i.e.,assignments that increase the lifetime quotient with

the least throughput degradation are given higher priorities. Conversely, if the current

throughput is higher than the original one, high priorities are given to assignments with

the largest increase in the lifetime quotient.

The algorithm remaps actor a i to a core cj at operating point k (lines 6 - 8). The actor

56



distribution and the operating point of actor a i are changed (line 10). These matrices are

used by the MSDF 3 tool to compute the throughput and schedule corresponding to the

allocation Mtemp
d (line 11). The CalculateLQ function computes the lifetime quotient

using Equation 3.11 to compute the energy and Algorithm 3 to compute the MTTF.

The algorithm computes the priority function (line 13). If this priority is greater than

the best priority obtained thus far and the throughput constraint is satisfied, the best

values are updated (line 15). The algorithm continues to remap as long as an assignment

can be found without violating the throughput requirement. When no such remapping

is possible, the algorithm terminates.

3.5.2 Reliability Optimization for Use-cases

In this section, the use-case level optimization problem is formulated based on the results

obtained in Section 3.5.1. It is to be noted that when multiple applications are enabled

simultaneously, the temperature due to the execution of one application is dependent not

only on the temperature of the cores on which it is executed, but also on the tempera-

ture due to other applications executing simultaneously. As a result, the wear-out (or the

MTTF) due to single application can be significantly different than the actual wear-out

(or the MTTF) for use-cases. This limitation is addressed using the pessimism introduced

in the temperature model. Specifically, to determine the temperature for different cores

during single application mode, all unused cores in the architecture (those, which can

potentially execute other applications in multi-application use-case scenario) are consid-

ered to be operating, and their temperature effect are incorporated in determining the

temperature of the actual operating cores. Although this gives a pessimistic bound on

the temperature (and hence, the reliability), the approach simplifies the problem solution

for multi-application use-cases.

As indicated previously, the ThRiCoDB contains 3D databases with throughput and

MTTF number for every core count of every application. The problem addressed here

is to merge these 3D databases for applications enabled simultaneously such that the

distribution of the cores among these applications maximizes the system MTTF. For the
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Algorithm 5 Core distribution for use-cases.

Input: ThRiCoDB

Output: Distribution of cores among applications

1: Initialize : zi = 0, 1 ≤ i ≤ n
2: Initialize : RiList.push(Ai, zi, 0), 1 ≤ i ≤ n
3: for j = 1 to Nc do

4: RiList.sort()

5: Let, Ak = Task with least MTTF

6: zk = zk + 1

7: Mk = ThRiCoDB.getMTTF (Ak, zk)

8: RiList.update(Ak, zk,Mk)

9: end for

ease of problem formulation, the following notations are defined:

A1, · · · , An = n applications enabled simultaneously

zi = number of cores for application Ai

Mi = MTTF of Ai mapped on zi cores = ThRiCoDB.getMTTF (zi)

Ti = Throughput of Ai mapped on zi cores = ThRiCoDB.getThr(zi)

Formulation

The optimization problem is

maximize min
i
{Mi}

subject to

n∑
i=1

zi ≤ Nc (3.25)

∀i,Ti ≥ throughput constraint of Ai

Solution

Algorithm 5 provides the pseudo-code to solve Equation 3.25. A list is defined (RiList) to

store the applications (their IDs) of the use-case, the number of cores dedicated to it, and

the corresponding MTTF value. For every core in the system (line 3), the RiList is sorted

to determine the application with the least MTTF (lines 4 - 5). A core is dedicated to this

application (line 6); the corresponding MTTF is fetched from the ThRiCoDB (line 7),

and the RiList is updated.
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Table 3.1: ARM processor specification.

Power Mode Frequency Voltage (V) Current (mA) Power (mW)

OPP50 300MHz 0.93 151.62 141.01

OPP100 600MHz 1.10 328.79 361.67

OPP130 800MHz 1.26 490.61 618.17

OPP1G 1GHz 1.35 649.64 877.01

3.6 Experiments and Discussions

Experiments are conducted with real-life as well as synthetic SDFGs on a multiprocessor

system with cores arranged in a mesh architecture. The synthetic SDFGs are generated

using the SDF 3 tool [138] with the number of actors ranging from nine to twenty-

five. These encompass both computation and communication dominated applications.

The real-life SDFGs are H.263 Encoder, H.263 Decoder, H.264 Encoder, MPEG4 De-

coder, JPEG Decoder, MP3 Encoder and Sample Rate Converter. Additionally, two non-

streaming applications are also considered for this work. These are FFT and Romberg

Integration from [142]. The supported voltage and frequency pairs are reported in Ta-

ble 3.1, based on ARM Cortex-A8 core [143]. Although these voltage-frequency pairs

are assumed for simplicity, the proposed algorithm and the temperature model can be

trivially applied to any architecture with any supported voltage-frequency pairs.

The bit energy (Ebit) for modeling the communication energy of an application is cal-

culated using the formulas provided in [41] for packet-based NoC with Batcher-Banyan

switch fabric, using 65nm technology parameters from [144]. The parameters used for

computing the MTTF are the same as in [95, 105, 106]. The scale parameter of each

core is normalized so that its MTTF under idle (non-stressed) condition is 10 years.

All algorithms are coded in C++, and used with SDF 3 tool for throughput and sched-

ule construction, and HotSpot for temperature characterization. Additionally, Matlab

regression toolbox is used for modeling the temporal and spatial dependency.

3.6.1 Time Complexity

The time complexity of the algorithms are calculated as follows. There are (Nc−Nmin
c +1)

loops in the algorithm 2 for each application. In each loop, the algorithm executes

the REOpt(), the MSDF 3(), and the iterative technique to compute the MTTF (i.e.,

Algorithm 3). The complexity of Algorithm 3 is calculated as follows. Assuming lines 3
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Table 3.2: Execution time (s) of the MSDF 3 tool with varying actors and cores.

Actors
Multiprocessor platform

6 cores 9 cores 12 cores 16 cores

8 3.1 7.6 7.6 7.6

16 6.8 10.1 26.8 101.1

24 217.4 241.7 323.0 409.8

32 899.4 1021.4 2211.0 2789.9

- 7 can be computed in unit time, the worst case complexity of this algorithm is

C3 = O (Nc) (3.26)

since Nmin
c ≤ Nc. The complexity of REOpt() (Algorithm 4) is computed as follows. Let

there be η iterations of the outer while loop (lines 3 - 25). In each iteration, the algorithm

maps each actor to each core at each operating point to determine its reliability. The

complexity of the this algorithm (C4) is

C4 = O
(
η ·Na ·Nc ·Nf ·O(MSDF 3) · C3

)
(3.27)

The MSDF 3 engine computes the schedule starting from a given actor distribution.

This can be performed in O (Na logNa +Na ·£) (ref. [77]), where £ is the average num-

ber of successors of an actor. Therefore,

C4 = O (η ·Na ·Nc ·Nf · (Na logNa +Na ·£) ·Nc) = O
(
N5
a ·Nf

)
(3.28)

where Nc,£ ≤ Na. The overall complexity of the reliability-energy joint optimization

for each application is C2 = O
(
C4 +O

(
MSDF 3

)
+ C3

)
= O

(
N5
a ·Nf

)
. The execution

time of the MSDF 3 tool is reported in Table 3.2.

Finally, the complexity of Algorithm 5 is calculated as follows. For every iteration

of the outer loop (number of cores), sorting of MTTF is performed once followed by the

memory lookup. If the memory lookup time is assumed to be constant and there are n

applications enabled simultaneously on Nc cores, every loop is executed in O(n log n).

The overall complexity of Algorithm 5 is therefore O(Nc×n log n). On the multiprocessor

platform considered, this algorithm takes between 80-100µsec for two to six simultaneous

applications on an architecture with nine homogeneous cores.

3.6.2 Validation of the Temperature Model

The temperature model in Equation 3.15 incorporates only the voltage and frequency of

the one-hop neighbors with all other cores operating at the highest operating point of

(1.35V, 1GHz). To determine the pessimism in this approach, Figure 3.8 plots the tem-

perature variation obtained using the simplified model of Equation 3.15, in comparison
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Figure 3.8: Temperature variation of the proposed model.

with the temperature obtained using the HotSpot tool by varying the operating points of

the other neighbors. For this experiment, the execution time of the synthetic task is set

to 300s to enable the proposed temperature model to reach its steady-state phase. The

temperature data obtained from the HotSpot tool are the steady-state values generated

by varying the operating point of core ci and all of its one- and two-hop neighbors in

lock-step, with all other cores set as idle. In terms of the HotSpot specification, this

setup translates to varying the power of ci and its one- and two-hop neighbors with the

values from Table 3.1, and setting the power dissipation as zero for all other cores. The

temperature of core ci obtained from the HotSpot tool (in ◦C) is normalized with respect

to the temperature obtained from the model for the different operating points. Similarly,

the results for one-, two-, and three-hop neighbors are obtained. As seen from the figure,

with the one- and two-hop neighboring cores operating at OPP50 (0.93V,300MHz), the

temperature from the proposed model is an overestimate by 6.4% (9.5 ◦C in absolute

terms). This overestimation decreases as the operating point is increased. This is ex-

pected, as more cores operate at the highest operating point, the temperature from the

model is close to the temperature from the HotSpot tool. A similar trend is obtained

for the one-, two-, and three-hop neighbors. For this plot, the temperature difference

between the proposed model and the HotSpot tool is less than 0.1% at OPP1G.

3.6.3 Comparison with Accurate Temperature Model

Finally, the proposed temperature model is compared with the steady-state dynamic

temperature profile (SSDTP) generated using the iterative technique of [97], and the
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Figure 3.9: Comparison with accurate temperature model.

steady-state temperature model of [106]. A synthetic SDFG is considered for this ex-

periment with a throughput requirement of 80 iterations per second. This translates

to a steady-state period of 12.5ms. This SDFG is executed on a multiprocessor system

with 9 cores. The steady-state iteration of the SDFG corresponds to a period of 12ms.

The power profile of the SDGF varies within iteration, and this variable power profile is

repeated every iteration. With such a variable power profile repeated periodically, the

steady-state temperature is not constant, but varies according to the periodic power pat-

tern as shown in Figure 3.9, with the red dashed line showing the results obtained using

the temperature model of [97]. For the same power profile, the results with the proposed

model are shown in the same figure with black solid line. The mean temperature for

this two temperature plots are 63.5◦C and 66.1◦C, respectively. The temperature model

of [106] assumes a steady-state value for the duration of operation, which corresponds to

the average power in this duration. This is shown with blue solid line in the figure and

corresponds to a temperature of 75◦C. (11.5◦C difference from the average temperature

of [97]). Thus, in comparison to the temperature model of [97], the proposed temperature

model is more accurate than the model of [106].

A point to note here is that, although the proposed model results in an average

temperature close to that obtained using the accurate model of [97], the thermal cycling is

not captured accurately leading to a misprediction of the thermal cycling related MTTF.

However, the advantage is its simple form (non-iterative as opposed to the iterative

technique of [97]), which can be included in the design space exploration, especially for

multi-application use-cases.
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Table 3.3: Impact of ignoring the temperature transient phase.

Apps
MTTF using the MTTF using the MTTF using the

model of [95] model of [141] proposed model

FFT 6.1 5.4 6.7

MPEG4 7.2 6.8 8.5

JPEG 8.6 9.4 9.6

MP3 6.4 6.1 7.5

SRC 7.9 8.7 8.7

synth16 6.8 6.0 6.8

3.6.4 Impact of Temperature Misprediction

As mentioned in Chapter 2, some existing techniques ignore the transient phase of the

temperature. This leads to an inaccuracy in the temperature prediction and a correspond-

ing inaccuracy in the MTTF computation. Furthermore, ignoring the spatial dependency

leads to temperature misprediction. To establish the importance of the transient phase

and the spatial dependency of the temperature on the MTTF results, an experiment is

conducted with six applications (five real-life and one synthetic) on the multiprocessor

platform with nine cores. Table 3.3 reports three MTTF values (in years): the MTTF

obtained using the proposed technique with the temperature model of [95] that considers

steady-state temperature phase only; the MTTF obtained using the proposed technique

with the temperature model of [141] that considers the temporal dependency only; and

the MTTF obtained using the proposed technique with the proposed temperature model.

For application FFT, the MTTF considering the proposed temperature model is 10%

and 24% higher as compared to the MTTF considering the temperature model of [95]

and [141], respectively. The MTTF improvement by ignoring the spatial dependency

(column 3 vs column 4) is higher than the MTTF improvement ignoring the transient

phase (column 2 vs column 4). A similar trend is observed for MP3 Decoder and H.264

Encoder. These results signify the importance of the spatial temperature component in

the temperature estimation. A point to note here is that, the MTTF improvement by

ignoring the spatial dependency is dependent on the size of the application executed on

the platform. For JPEG application that uses only two cores of the architecture, the

improvement is less than 3%. A similar trend is observed for Sample Rate Converter

(SRC) application. Finally, as discussed in Section 3.1, considering the steady-state

temperature is accurate only if the execution times of the actors of an application are

comparable to the time constant of the RC equivalent circuit. This is shown for the

synthetic application synth16 (with 16 actors) in the table. The execution times of the
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Figure 3.10: MTTF difference considering steady-state.

actors are generated with a mean of 200s and standard deviation of 20s. As can be seen,

the MTTF obtained using the proposed model and the model of [95] are the same. On

average for all the applications considered (seven real-life and synthetic), including the

six shown in the table, the proposed model improves MTTF by 8% as compared to the

model in [95], and 15% as compared to that of [141].

To give further insight into the temperature misprediction considering the steady-

state temperature model of [95], experiments are conducted with an SDFG with 16 actors.

The mapping and the schedule of this SDFG is generated using the SDF 3 tool. Next,

the ordering of the actors on each core is retained (discarding the timing information),

and the average execution times of the actors is varied from 1s to 100s in steps of 10s.

The MTTF obtained using the temperature model of [95] is normalized with respect

to the MTTF obtained using the proposed model. This is shown in Figure 3.10. The

general trend to follow from this figure is that, the MTTF decreases with an increase

in the average execution time. This is because, with increase in the average execution

time of the actors, the stress on the system increases, reducing the MTTF. Furthermore,

for small mean execution time, the MTTF using the proposed model is higher than that

of [95] by 7%. As the mean execution time is increased, the two models become close

and temperature difference is less than 0.01%.

Thus far, the validation of the proposed temperature model is presented. In the next

few subsections, results to validate the proposed approach are presented.
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Figure 3.11: MTTF considering task remapping.

3.6.5 MTTF Computation Considering Task Remapping

As indicated in Section 3.2.4, modern multiprocessor systems support remapping of tasks

(actors in the SDFG terminology) on detection of faults. The MTTF for these systems

need to be computed by considering task remapping, as opposed to the naive way of

considering the time to the first fault. To determine the MTTF differences in the two

computation techniques, experiments are conducted on a multiprocessor system with six

cores and a set of six real-life applications. This is shown in Figure 3.11a. There are

two bars for every application. The left bar is for the MTTF considering the first failure

and the right one for MTTF considering re-mapping. As seen from the figure, the two

MTTF values are similar for FFT and MP3 decoder applications. For the four other

applications, the two MTTF values differ. On average for all applications considered,

the MTTF improvement is 15%. To give more insight on the reason for such low MTTF

difference for applications such as FFT, as opposed to say, JPEG decoder, Figure 3.11b

plots the mean and the standard deviation of the aging of the different cores for the

six applications. The standard deviation of the aging values is a measure of how much

the aging of the individual cores differ from the mean value. A low standard deviation

indicates a balanced situation with all the cores suffering similar wear-out. On the other

hand, a high standard deviation indicates some cores age faster than others. The standard

deviation is normalized with respect to the mean value of the aging.

As seen from the figure, for applications such as FFT and MP3 Encoder, the standard

deviation of the aging parameters is close to zero and thus the wear-out experienced in the
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Table 3.4: Processor years considering task remapping.

Applications
PY PY with task remapping

considering TTFF 6 cores 5 cores 4 cores Total

FFT 37.9 37.9 1.6 0.3 39.8

MPEG4 39.0 39.0 8.8 2.6 50.4

H.264 42.4 42.4 5.5 0.8 48.7

JPEG 46.9 46.9 8.2 2.4 57.5

MP3 42.6 42.6 1.6 0.3 44.5

SRC 45.2 45.2 6.0 0.9 52.1

Average 15.1%

cores due to these applications are similar. For these applications, the MTTF considering

the first failure is similar (less than 0.5% lower on average) to the MTTF considering

remapping. This is intuitive, because with all cores suffering similar wear-outs, the break

point (the time at which a core fails due to wear-out) for all the cores are similar and

therefore remapping leads to an insignificant gain in lifetime. For all the other applica-

tions, the standard deviations are high, with some applications having standard deviation

as high as 60% of the corresponding mean value. For these applications, the aging values

are not balanced. Although a balanced aging leads to a higher overall MTTF, a further

investigation into these applications reveal that the balanced aging mapping for these ap-

plications consumes high energy; therefore, the proposed gradient-based heuristic selects

the mapping with non-balanced aging, but with significantly low energy consumption.

For these applications, the MTTF computation considering remapping is higher by as

much as 24% (average 10%) than the MTTF computation considering the time to the

first failure (TTFF).

Finally, Table 3.4 reports the processor years considering the time to the first failure

and the overall lifetime considering task remapping. For demonstration purpose, only

two faults are allowed, and therefore the table reports up to 4 cores used. Column 2

reports the processor years considering the time to the first failure. This is the aggregate

years spent with all the 6 cores active. The processor years with task remapping are

shown in columns 3, 4 and 5, with the total in column 6. Specifically, column 3 reports

the aggregate years spent with all the 6 cores active; column 4 reports the aggregate years

with 5 cores active; and column 5 reports the aggregate years spent with 4 active cores.

As seen from the table, the total processor years considering task remapping for MPEG4

is 30% higher than the processor years considering TTFF. This improvement is due to

the non-zero processor years with 5 and 4 active cores. This improvement signifies that,
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Figure 3.12: Energy-reliability joint optimization results.

even after the first fault, the multiprocessor system can be exploited to deliver 30% of

the performance delivered during the time to the first fault. A similar trend is observed

for the other applications in the table. On average, the processor years considering task

remapping is 15% higher than the processor years considering the time to the first failure.

3.6.6 Reliability and Energy Improvement

Figure 3.12 plots the energy and reliability results of the proposed approach in comparison

to the existing reliability-energy joint optimization technique of [106] for six real-life

application. Additionally, to determine the reliability benefit of the dynamic voltage and

frequency scaling, these two techniques are compared with the highest MTTF technique

of [72] (referred to as MMax), which determines MTTF by solving a convex optimization

problem. These results are represented as three bars corresponding to each application.

A point to note here is that, all the application SDFGs are first converted to homogeneous

SDFGs (HSDFGs) before applying the techniques of [72] and [106]3.

The following trends can be followed from the figure. The energy consumption using

the proposed approach and the existing energy-reliability joint optimization technique

of [106] are lower than the highest MTTF technique of [72] that does not consider dynamic

voltage and frequency scaling. The MTTF obtained using these techniques are also higher

than the MTTF of [72]. These results signify that, by slowdown of the actor computation,

the reliability can be improved significantly.

3The conversion of an SDFG to HSDFG is of exponential complexity and therefore the proposed
technique is the first technique for reliability-energy-performance optimization for SDFGs.
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On average for all the applications considered, the existing optimization technique

minimizes energy consumption by 10% with a corresponding reliability improvement of

26% as compared to the highest MTTF technique. A point to note here is that, this

technique is based on sequential execution of applications; therefore, the throughput

slack (difference between the actual throughput and the throughput constraint) is low,

implying a limited scope for actor slowdown. The energy improvement in this technique

is, therefore, not significant. The proposed technique achieves better results than this

technique by minimizing energy consumption further by an average 15%, and increasing

lifetime by an additional 18%. In comparison to [72], the proposed technique minimizes

energy consumption by 24% and increases lifetime by 47%. These improvements can be

attributed to

• the proposed temperature model that considers transient and steady-state phases

as opposed to considering the steady-state temperature only;

• the MTTF computation considering remapping; and

• the pipelined scheduling technique of the proposed approach as opposed to the

sequential execution of [106].

3.6.7 Design Space Exploration Speed-up

To highlight the speedup achieved by using the proposed design space exploration heuris-

tic to jointly optimize energy and reliability, Table 3.5 reports its execution time in com-

parison with the convex optimization based technique of [72] and the simulated annealing

based technique of [106]. The execution time are recorded by running synthetic SDFGs

with varying number of actors on two multiprocessor systems – with four and six cores,

respectively. The number of actors is limited to 8 as the convex optimization fails to

provide results beyond 8 actors, even for running more than 12 hours. The time reported

in this table are the average results obtained by generating multiple SDFGs. For exam-

ple, the execution time for 6 actors on 4 cores is the average time taken by the three

techniques for 10 different synthetic SDFGs, with 6 actors each. For fair comparison,

the time taken by the temperature pre-characterization step is omitted for all these tech-

niques and the time reported are the time for the respective technique – convex solver

for [72], simulated annealing for [106], and proposed heuristic of Algorithm 4. As seen
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Table 3.5: Design space exploration time with varying actors and cores.

Actors

Design Space Exploration Time (in minutes)

cores = 4 cores = 6

Convex [72] SA [106] Proposed Convex [72] SA [106] Proposed

4 8 10 4 18 18 6

6 79 51 23 157 83 36

8 677 319 154 1013 524 274

from the table, for small number of actors the execution time of the convex solver is

comparable to that of the simulated annealing (better for 4 actors on 4 cores). However,

as the number of actors is increased, the simulated annealing outperforms the convex

solver. In comparison to these two techniques, the proposed approach improves execu-

tion time significantly, achieving benefits for small and large problem sizes. On average,

the execution time using the proposed technique is 70% and 50% lower with respect

to [72] and [106], respectively.

3.6.8 Use-case Optimization Result

Since this work is the first work on use-case level MTTF optimization, there is no refer-

ence for comparison. However, two standard strategies are developed to distribute the

cores among concurrent applications in a use-case – throughput-based core distribution

(TCD) and equal core distribution (ECD). For implementing these approaches, the cores

of the architecture are first distributed to the applications based on the corresponding

strategy (equally or in the ratio of the throughput). The proposed optimization technique

is then applied on individual applications to determine their MTTF. The overall MTTF

of the use-case is the minimum of the MTTFs of the concurrent applications. The MT-

TFs obtained for a use-case using both these strategies, are compared with the MTTF

obtained using the proposed MTTF-based core distribution technique. To demonstrate

the advantage of the proposed approach for use-case optimization, a set of six synthetic

use-cases are generated. Four of these uses-cases are composed of synthetic applications

and the two others are composed of real-life applications. These use-cases are executed

on a multiprocessor system with nine cores. Figure 3.13 plots the MTTF for the three

approaches for these uses-cases. The composition of each use-case is indicated in the

label of the figure, where the application with alphabets are the synthetic applications.

For the use-case A-B, the MTTF obtained by distributing the cores equally is 4.6 years.

The TCD achieves better results by distributing the cores in the ratio of their through-
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Figure 3.13: MTTF improvements with synthetic use-cases.

put requirements. The improvement in this technique is 27%. The proposed technique

improves this further by achieving 3% higher lifetime. To understand the reason behind

this improvement, a simple example is provided.

Let us consider a multiprocessor system with four cores and a use-case with two ap-

plications – synthA and synthB, with the throughput requirement of synthA as three

time that of the synthB. The minimum number of cores required to satisfy the through-

put requirement of synthA and synthB are two and one, respectively. Furthermore, let

synthB stresses the system more (with a higher temperature) than synthA due to the

higher execution time of the actors of synthB. Clearly, distributing the cores to these

applications as 3:1 will not be optimal for MTTF. This example motivates and proves

the importance of considering MTTF while distributing the cores of the architecture. As

seen from the figure, for some use-cases, such as A-B and G-H, the improvements using

the proposed technique are insignificant. For other use-cases, such as E-F and SRC-FFT,

the improvements are more than 20%. On average for all these use-cases, the proposed

technique improves MTTF by 10% as compared to TCD and 140% as compared to ECD.

3.7 Remarks

In this work, a simplified temperature model is proposed, based on off-line temperature

characterization using the HotSpot tool. Based on this model, a gradient-based fast

heuristic is proposed to determine the voltage and frequency of cores such that the energy

consumption is minimized, simultaneously maximizing the system mean time to failure

(MTTF). Experiments are conducted on a multiprocessor system using a set of synthetic

70



and real-life application SDFGs, executed individually as well as concurrently. Results

demonstrate that the proposed approach minimizes energy consumption by an average

24% and maximizes lifetime by 47% as compared to the existing work. Additionally, the

proposed MTTF-aware core distribution for concurrent applications results in an average

10% improvement in lifetime as compared to the performance-aware core distribution.
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CHAPTER 4

Reliability and Energy-Aware Co-design Methodology

4.1 Introduction

As discussed in Chapter 1, an emerging trend in multiprocessor design is to integrate re-

configurable area alongside homogeneous processing cores. Hardware-software co-design

of these reconfigurable multiprocessor systems needs to address the following two aspects:

Hardware-software task partitioning: Given a reconfigurable multiprocessor system

and an application represented as a directed graph, the hardware-software task partition-

ing problem is to determine the tasks of the application that need to be executed on the

processing cores (software tasks) and those required to be implemented as hardware on

the reconfigurable area (hardware tasks). This problem has been studied extensively in

literature to maximize performance and to minimize energy consumption [34].

Hardware sizing: The hardware sizing problem for reconfigurable multiprocessor sys-

tems is to determine the minimum resources (number of processing cores and the size

of reconfigurable area) needed such that, the performance of every application (enabled

individually or concurrently) is guaranteed while satisfying the design area budget [28].

Figure 4.1 shows the hardware-software co-design approach for the given set of ap-

plications. The approach invokes the hardware-software task partitioning step for every

application iteratively, to check if the application performance is met. If this is violated,
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Figure 4.1: Hardware-software co-design methodology.

additional resources are allocated and the hardware-software task partitioning step is

repeated; otherwise, the analysis terminates for the application and the process is in-

voked for the next application. The final platform is determined as the maximum of the

resources of all the applications, enabled individually and concurrently.

The existing studies in this hardware-software co-design suffer from the following

limitations. First, checkpointing is used for reconfigurable multiprocessor systems to

tolerate transient faults in the processing cores. The solutions from these approaches

guarantee or maximize fault-free task execution on the cores while exploiting the execu-

tion slack arising from the hardware execution of certain tasks. The area and performance

overhead for the fault-tolerance of the logic implemented on the reconfigurable area are

not accounted in these techniques. Further, the extent of fault-tolerance achieved within

an allocated reconfigurable area in a co-design framework is not addressed. A complete

solution to fault-tolerance needs to incorporate the transient fault-tolerance overhead for

both the software and hardware tasks while satisfying the design performance constraints

and reconfigurable area availability.

Second, none of the existing hardware-software task-partitioning techniques consider

wear-out of the processing cores and transient faults simultaneously. As shown in Sec-

tion 4.2.4, improving the transient fault-tolerance by increasing the number of check-

points, negatively impacts lifetime reliability of the cores due to wear-out. A balance of

the two is essential to mitigate transient faults and wear-out jointly for multiprocessor

systems. Moreover, the only existing wear-out aware co-design technique for a static mul-

tiprocessor system leaves a significant scope of improvement both in terms of reliability

and resource usage when applied to a reconfigurable system.

Third, multimedia applications such as H.264 encoder, decoder, JPEG decoder, etc.,

are characterized by cyclic dependency of tasks, and require a fixed throughput to be
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satisfied to guarantee quality-of-service to end users. Existing studies on hardware-

software co-design are based on acyclic graph model of applications with no consideration

of throughput degradation. These techniques require significant modification (if at all

applicable) for streaming multimedia applications represented as synchronous data flow

graphs (SDFGs). Last, none of the existing works consider multi-application use-cases,

which is a common requirement for most multiprocessor systems.

In this work, a design-time technique is proposed for hardware-software partitioning

of an application i.e., determining the tasks to be executed on the processing cores and

those on the reconfigurable area. The objective is to improve fault-tolerance of the

platform considering three effects – transient faults occurring in the processing cores,

single event upsets occurring in the logic configuration bits of the reconfigurable area,

and the wear-out of the processing cores. The transient faults in the cores are mitigated

using checkpoints1. Single event upsets in the logic configuration bits of the reconfigurable

area (like Xilinx FPGA) manifest as permanent faults and render the affected logic

useless, unless reprogrammed. The proposed approach does not consider reprogramming

the reconfigurable area within an application execution; therefore, redundancy-based

techniques are used for the single event upsets. The corresponding area overhead is

incorporated in the problem formulation. Finally, wear-out of the cores is mitigated using

intelligent task mapping and scheduling. Based on the proposed hardware-software task

partitioning technique, a hardware-software co-design approach is proposed to determine

the minimum resources needed to map and guarantee throughput of applications in all

use-cases, simultaneously improving the lifetime reliability measured as mean time to

failure (MTTF) and satisfying the specified energy budget and design cost. Following

are the key contributions.

• Formulation of the wear-out of processing cores and checkpoint-based transient

error recovery problem in the hardware-software task partitioning framework with

reconfigurable area as a constraint;

• Design space exploration for application partitioning for reconfigurable multipro-

cessor systems;

1Of the different transient fault-tolerant techniques available for processing cores, such as error cor-
rection coding, duplication with re-execution and checkpointing as highlighted in Chapter 1, we selected
checkpointing as this provides the best trade-off between fault-tolerance and execution/resource overhead.
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• Reliability-aware hardware-software co-design framework incorporating the pro-

posed design space exploration technique;

• Integer linear programming (ILP)-based merging of Pareto-optimal solutions for

individual applications to determine the resource requirement for multi-application

use-cases;

• Considering SDFG for the hardware-software co-design of multiprocessor system.

The remainder of this chapter is organized as follows. The proposed reliability-aware

hardware-software task partitioning technique is discussed in Section 4.2. The co-design

framework is introduced next in Section 4.3. Results are presented in Section 4.4 and

the chapter is concluded in Section 4.5.

4.2 Reliability-Aware Hardware-Software Task Partitioning

In this section, an application partitioning technique is introduced for reconfigurable mul-

tiprocessor systems with reliability as the optimization objective. The proposed technique

generates the following decisions for every application enabled on the platform.

1. Tasks to be mapped on the processing cores (software tasks) and tasks to be im-

plemented on the reconfigurable area (hardware tasks);

2. Number of checkpoints for each software tasks; and

3. Mapping and scheduling of the software and hardware tasks on the given platform.

These decisions are computed offline at design-time; the mapping and the reconfig-

urable area configuration (e.g., bit stream) are stored in a database for every application.

When an application is enabled at run-time, the corresponding mapping and configu-

ration data ate fetched. The reconfigurable area is programmed with the configuration

data, and finally the mapping is applied to execute the tasks of the application. The pro-

posed approach does not incorporate dynamic partial reconfiguration i.e., reconfiguring

the fabric during an application execution. This is left as a future work.

4.2.1 Application and Architecture Model

An application is represented as an SDFG Gapp = (A, C), where A is the set of actors

representing tasks of the application and C is the set of directed edges representing
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Figure 4.2: Application and architecture model.

data dependency among various actors. The number of actors is represented as Na i.e.,

(Na = |A|). Every actor a i ∈ A is a tuple 〈RAi, ti, τi〉, where RAi is the area required

to implement a i on the reconfigurable area, ti is the time taken by a i to execute on

the dedicated hardware, and τi is its execution time on the core. If an actor does not

support hardware implementation, the value of this parameter is set to infinite. The

area overhead for redundancy-based transient fault-tolerance for actor a i is incorporated

into RAi. For actors requiring fault-detection only, RAi is the area of duplicating the

logic and the area of a checker circuit. For those actors requiring fault-mitigation, RAi

includes the area for triple-modular redundancy (TMR) and the voter circuit.

The architecture (refer to Figure 4.2b) consists of Nc homogeneous cores connected

to a shared reconfigurable area. The reconfigurable area is a one-dimensional (1D) model

and is divided into Nr equal sized frames. A frame is a basic unit for reconfiguration

(e.g., Xilinx Virtex 6 FPGA). The architecture is represented as Garc = (C,E), where C

is the set of cores and E is the set of links connecting the cores. The number of cores in

the architecture is denoted by Nc i.e., Nc = |C|. For the ease of problem formulation,

the reconfigurable area is considered as a virtual core and the modified graph is denoted

as GNc+1
arc . The following restrictions and relaxations apply for the virtual core.

1. Actors mapped to the virtual core have associated area cost. This is because,

an actor mapped on the virtual core implies dedicated hardware for the actor (in

reality) that consumes few frames of the reconfigurable area.

2. Multiple independent actors can be executed at the same time on the virtual core.

This is because, independent actors implemented on different regions of the re-

configurable area can run independently and concurrently. Although this leads

to a contention on the communication link between the processing cores and the
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reconfigurable area, investigation on the communication aspect of reconfigurable

multiprocessor systems is left as future work.

3. An actor mapped on the virtual core does not need software-based protection tech-

niques, such as checkpointing and rollback. Instead, the protection is provided

by replicating the hardware implementation.

This work analyzes the trade-off between transient fault-tolerance and lifetime re-

liability, considering the impact of temperature resulting from different mapping and

scheduling alternatives (refer to Chapter3 for computing temperature for a schedule). In

future, the work can be extended to consider dynamic voltage and frequency scaling.

The mapping is specified in terms of the actor distribution variable xi,j and the

checkpoint assignment variable zi,k defined as

xi,j =


1 if actor a i is assigned to core cj

0 otherwise

(4.1)

zi,k =


1 if actor a i is assigned k checkpoints

0 otherwise

(4.2)

The mapping of Gapp on Garc is represented in terms of two matrices

(
Md Mc

)
, where

Md and Mc are defined as

Md =



x0,0 x0,1 · · · x0,Nc

x1,0 x1,1 · · · x1,Nc

...
...

. . .
...

xNa−1,0 xNa−1,1 · · · xNa−1,Nc


(4.3)

Mc =



z0,0 z0,1 · · · z0,Nc−1

z1,0 z1,1 · · · z1,Nc−1

...
...

. . .
...

zNa−1,0 zNa−1,1 · · · zNa−1,Nc−1


(4.4)

It is to be noted that the actor distribution matrixMd includes the mapping variable

for the virtual core (i.e., the RA). Throughout the rest of this chapter, the virtual core

is indexed by Nc and the homogeneous cores using indices 0, 1, · · · , Nc − 1.

4.2.2 Reliability Modeling Considering Single Actor

Checkpoint refers to the state of the system at a particular instance of time. The pro-

cess of checkpointing involves periodic storing of the checkpoints (in local or remote
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Figure 4.3: Task execution with and without checkpoints.

memory) by suspending an actor execution. The interval between two successive check-

points is called the checkpoint interval. The actor resumes execution at the beginning

of each checkpoint interval. When transient faults occur during a checkpoint interval,

the useful computation of that interval is discarded and the execution of the actor is

repeated from the last valid checkpoint. A point to be noted is that, the discussions in

this work are limited to transient fault-tolerance and is orthogonal to any fault detection

techniques such as [145]. One important parameter of checkpointing is the checkpoint

overhead, defined as the increase in the execution time. This overhead depends on

1. the number of checkpoints, N ;

2. the time for checkpoint capture and storage, To;

3. the time for recovery from a checkpoint, Tr; and

4. the fault arrival rate, λ.

Following are the assumptions for checkpointing, similar to the works in [119,146].

• transient faults follow Poisson distribution with a rate of λ failures per unit time;

• transient faults are point failures i.e., these faults induce errors in the checkpoint

interval once and then disappear;

• these faults are statistically independent; and

• checkpoints can be inserted anywhere during an actor execution. Although this

assumption is difficult to accomplish in practice, it gives a first-order approximation

of the problem at hand.

Figure 4.3 shows an example actor execution with N checkpoints. Let T denote the

actual computation time of the actor and Tc, the computation time of the actor in each

checkpoint interval. Clearly, Tc = T
N+1 . Assuming Poisson fault arrival, the probability
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of k faults in the interval t and t+ ∆t is

P (t, t+ ∆t, k) =
e−λ∆t (λ∆t)k

k!
for k = 0, 1, · · · (4.5)

Therefore, the probability of at least one fault in the interval ∆t is

P (t, t+ ∆t, k ≥ 1) = 1− P (t, t+ ∆t, k = 0) = 1− e−λ∆t (4.6)

Assuming the interval ∆t as the checkpoint interval (Tc + To), the probability of at

least one fault in this interval is Pe = 1− e−λ(Tc+To). The expected length of checkpoint

interval E[Tc] is calculated as

E[Tc] = P{no fault} · original checkpoint interval + P{fault} ·modified checkpoint interval (4.7)

When there are no faults in a checkpoint interval, the duration of this interval is

Tc+To, where To is the time for checkpoint computation and storage (refer to Figure 4.3).

Let Tf denote the time of the first fault from the start of a checkpoint interval. Since

faults can occur at any time in the checkpoint interval with a probability Pe, Tf is

uniformly distributed in the range 0 to (Tc + To) with an average value of Tc+To
2 . Hence,

the modified checkpoint interval is given by Tf + Tr + (Tc + To), where the first term is the

useful computation lost since the beginning of the checkpoint interval, the second term is

the time for recovery from the last valid checkpoint, and the last term is the re-execution

time of the checkpoint segment starting from the last valid checkpoint. The recovery

time includes the overhead for fetching the checkpoint from the local or remote memory

and re-loading the registers of the core. Thus, Equation 4.7 can be written as

E[Tc] = (1− Pe) · (Tc + To) + Pe · (τ + Tr + Tc + To) =
3(Tc + To)

2
+ Tr −

(
Tc + To + 2Tr

2

)
e−λ(Tc+To) (4.8)

The expected length of the last checkpoint interval (E[TLc ]) is computed from the

above Equation by replacing (Tc + To) with Tc. This is because there is no checkpoint

overhead for the last interval. The expected execution time of the actor is given by

E[T ] = N · E[Tc] + E[TLc ] (4.9)

The reliability of an actor a i with N checkpoints is given by

RCi (t) = (1− Pe)N+1 +

(
N + 1

1

)
Pe(1− Pe)N+1 +

(
N + 2

2

)
P 2
e (1− Pe)N+1 + · · · (4.10)

where the first term on the right hand side is the reliability with no faults, the second

term is the reliability with one transient fault in any of the N+1 checkpoint interval, the

third term is the reliability with two faults in N+2 intervals (N+1 original intervals and
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Figure 4.4: Impact of different parameters on the reliability considering transient faults.

1 re-execution interval of the interval where the first fault occurs), and so on. Assuming

infinite faults in the task execution, the above expression reduces to

RCi (t) =

∞∑
ω=0

(
N + ω

ω

)
Pωe (1− Pe)N+1 = 1 (4.11)

This result is intuitive because if re-execution is allowed every time a fault is detected,

the actor will eventually be executed successfully. However, for real time systems with

throughput constraints, infinite faults will lead to throughput violation. Therefore, for

real time systems, the sum in Equation 4.11 is evaluated from 0 to ζi, where ζi is the

maximum number of faults that can be tolerated for actor a i such that its throughput

constraint is satisfied. The reliability of actor a i is

RCi (t) =

ζi∑
ω=0

(
N + ω

ω

)
Pωe (1− Pe)N+1 (4.12)

Figures 4.4a and 4.4b plot this reliability obtained for execution time T = 50ns and

T = 150ns, respectively as the number of checkpoints is increased from 0 (implying no

checkpoints) to 20. The reported results are for ζ values of 5 and 10. As seen from

the figure, the reliability first increases with the number of checkpoints up to a certain

number (called the reliability drop-off point) beyond which, the reliability starts decreas-

ing. This trend is consistent to that discussed in [147, 148]. Moreover, the reliability

increases with an increase in the number of faults that can be tolerated i.e. ζ (consistent
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with Equation 4.12). Finally, the reliability, corresponding to a particular number of

checkpoints and ζ value, decreases as the actor execution time is increased from 50ns to

150ns. This is because, with increase in the execution time, the length of the checkpoint

interval increases (Tc = T
N+1) and so does the fault probability Pe (Equation 4.6). This

reduces the reliability.

Figures 4.4c and 4.4d plot the dependency of the checkpoint overhead (To) on the

highest reliability value. The checkpoint overhead is expressed as a percentage of the

execution time in these figures. As seen from these figures, the highest reliability point

decreases with an increase in the overhead. This is expected because, with increase in

the checkpoint overhead, the time between two successive checkpoints (Tc+To) increases,

leading to an increase of the fault probability.

4.2.3 Reliability Modeling Considering Multiple Interconnected Actors

Lifetime Reliability: The MTTF of a system considering an application with multiple

interconnected actors is given by the Max-Min approach (Chapter 2). Thus,

MTTF = min
j
{MTTFj} (4.13)

Reliability Considering Checkpoints: For an application consisting of multiple in-

terconnected actors, the overall reliability considering transient faults is derived based

on the assumption that transient fault occurrences are independent of each other, and an

application is successful when all the actors of an application execute successfully. The

reliability and the mean time between failures (MTBF) are given by

RT (t) =

Na∏
i=1

RCi (t) and MTBF =

∫ ∞
t=0

RT (t)dt (4.14)

where Na is the number of actors and RCi (t) is the reliability of actor a i.

4.2.4 Lifetime Reliability and Transient Fault Reliability Trade-off

Figure 4.5a plots the expected execution time of an actor as the number of checkpoints

is increased. The parameters used for simulation are as follows: execution time with no-

checkpoints, T = 150nS, the checkpoint computation and storage overhead To = 15nS,

the recovery time Tr = 0.5nS, and a transient fault rate of one fault every 100 hours.

As seen from the figure, the expected execution time increases with an increase in the

number of checkpoints. With every extra checkpoint, the checkpoint interval reduces
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Figure 4.5: Trade-off between lifetime reliability and transient faults related reliability.

and therefore, the loss in computation reduces when a fault is detected. However, with

every added checkpoint, the corresponding checkpoint overhead is to be included in the

execution time. This increases the expected execution time (Equation 4.9).

As shown in Chapter 2, the lifetime reliability of a core due to wear-out is negatively

dependent on the execution time of the actors executed on the core. Figure 4.5b plots

the decrease in lifetime reliability (considering wear-out) with increase in the number of

the checkpoints. This is according to Equation 2.12, and is shown in the figure with

the dotted line. To highlight the trade-off between lifetime reliability and the reliability

considering transient faults, Equation 4.12 is also plotted on the same figure, and is

shown with the solid line.

As seen from the figure, the two reliability plots cross-over at a certain number of

checkpoints. This cross-over point is dependent on the execution time, the number

of checkpoints, and the overheads To and Tr. Since the transient fault reliability first

increases and then decreases, there can be potentially two cross-over points. Since the

number of checkpoints needs to be an integer, the selected values are rounded to the

nearest integer. As an example, the cross-over point corresponds to 1.8 checkpoints,

which is rounded to 2. Similarly, the number of checkpoints corresponding to the highest

transient fault reliability is 3.6 and is rounded to 4. There are two lines drawn in the figure

corresponding to 2 and 4 checkpoints. As seen from this figure, selecting 4 checkpoints
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Algorithm 6 HSAP (): Hardware-software actor partitioning

Input: Gapp, GNc+1
arc , throughput constraint Tc, size of reconfigurable area SRA

Output:
(
Md Mc

)
1: Initialize HList = ∅
2: while

∑
∀ak∈HListRAk ≤ SRA do

3: for all ai ∈ A \HList do
4: HList.push(ai)

5: [Md Mc rgi] = FindMinRG(Gapp,GNc+1
arc ,Tc, HList)

6: HList.pop(ai)

7: end for

8: Find aj ∈ Gapp \HList such that rgj is minimum

9: HList.push(aj)

10: end while

11: [Md Mc rg] = FindMinRG(Gapp,GNc+1
arc ,Tc, HList)

12: Return
(
Md Mc

)

(corresponding to the highest transient fault reliability) results in a reduction of the

lifetime reliability by 15% as compared to selecting 2 checkpoints (corresponding to the

cross-over point). Clearly a trade-off analysis needs to be performed to select the number

of checkpoints for every actor of a given application.

4.2.5 Hardware-Software Partitioning Flow

To simplify the objective function of the hardware-software actor partitioning, a joint

metric reliability gradient (rg) is defined as

rg =
∆RP (t)

∆RT (t)
(4.15)

where RT (t) and RP (t) are the reliability considering transient faults and wear-out,

respectively. The reliability gradient is interpreted as ratio of the change (decrease) in

reliability due to wear-out per unit change (increase) in reliability due to transient faults.

The optimization objective is to minimize the reliability gradient. A fast design space

exploration technique is proposed. This is shown as pseudo-code in Algorithm 6.

A list (HList) is defined to store the hardware actors i.e., actors that are to be

implemented on the reconfigurable area. The algorithm iterates (lines 2 - 10) as long

as the available reconfigurable area constraint is satisfied (line 2). At every iteration,

the algorithm selects one actor from the set A \ HList (i.e. selects one of those actors

not marked as hardware actors) and assigns it temporarily to the reconfigurable area

(line 4). The hardware actors (from HList) are mapped on the reconfigurable area

and the software actors on the processing cores, and the whole application graph is

scheduled to determine the minimum reliability gradient. This step is performed using

the FindMinRG routine that outputs the actor distribution, checkpoint assignment and
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Algorithm 7 FindMinRG(): Mapping and scheduling to find the minimum reliability gradient

Input: Gapp, GNc+1
arc , throughput constraint Tc and HList

Output: Mapping
(
Md Mc

)
and minimum reliability gradient rg

1: [Md S] = REOpt(Gapp,GNc+1
arc ,Tc, 1) //Wear-out minimum mapping.

2: Initialize Mc with zi,k = 0 ∀i, k //Set checkpoints for all actors equal to zero.

3: [RinitP RinitT ] = CalculateReliability(S,Md,Mc) //Calculate the initial wear-out and transient fault related

reliability using Equations 2.12 and 4.14.

4: Initialize runIter = 1 //Initialize the loop variable.

5: while runIter > 0 do

6: [S T] = MSDF3(Md,Gapp,GNc+1
arc ) //Get the schedule and throughput of the allocation matrix Md.

7: [RP RT ] = CalcReliability(S,Md,Mc) //Calculate reliabilities.

8: ibest = −1; jbest = −1; kbest = −1; rgbest =∞ //Initialize.

9: for all ai ∈ A \HList do
10: for all cj ∈ GNc+1

arc do

11: for k = 1 to Ncp do

12:
(
Mtemp

d Mtemp
c

)
=
(
Md Mc

)
//Use temporary allocation and assignment matrices.

13: Update
(
Mtemp

d Mtemp
c

)
with xi,j = zi,k = 1 //Update these matrices.

14: [S T] = MSDF3(Mtemp
d ,Gapp,GNc+1

app ) //Calculate the new schedule and throughput.

15: [RtempP RtempT ] = CalcReliability(S,Mtemp
d ,Mtemp

c )

16: rg =
RP−R

temp
P

R
temp
T −RT

//Calculate the reliability gradient.

17: if rg < rgbest && T ≥ Tc then

18: ibest = i; jbest = j; kbest = k; rgbest = rg

19: end if

20: end for

21: end for

22: end for

23: if ibest ≥ 0 then

24: Update
(
Md Mc

)
with xibest,jbest = zibest,kbest = 1

25: else

26: runIter = 0 //No possible remapping w/o violating the throughput constraint.

27: end if

28: end while

29: [S T] = MSDF3(Md,Gapp,GNc+1
app ) //Schedule and throughput of the final allocation.

30: [RfinlP RfinlT ] = CalculateReliability(S,Md,Mc) //Final reliabilities.

31: rg =
RinitP −RfinlP

R
finl
T −RinitT

//Overall reliability gradient.

32: Return [Md Mc rg]

the reliability gradient (line 5). The actor, whose assignment to the reconfigurable area

leads to the minimum reliability gradient, is permanently marked as hardware actor and

pushed to the HList (line 9). The key component of this algorithm is the FindMinRG

subroutine, whose pseudo-code is shown in Algorithm 7.

The first step of Algorithm 7 is the initial actor distribution that minimizes wear-out

(line 1). The algorithm continues to remap ever actor to a core with different checkpoints

to determine the reliability gradient (lines 9 - 16). If the reliability gradient obtained for

an assignment is lower than the best value obtained thus far, the best values are updated

(lines 17 - 19). After iterating for all the actors, the actor distribution is changed with

the best value of actor, core and checkpoints. This process is re-iterated (starting with

this changed distribution) as long as no further re-mapping is possible without violat-
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ing the throughput constraint. When this happens, the best value of actor, core and

checkpoints are all negative. The algorithm proceeds to the else section (lines 25 - 27)

where the terminating condition is asserted. The final actor distribution and checkpoint

assignment matrices
(
Md Mc

)
are returned along with the overall reliability gradient.

The actor distribution matrix is used in the MSDF 3 tool (refer to Chapter 3) to gen-

erate the throughput and schedule. The schedule and the mapping matrices are used in

CalcReliability routine to compute the different reliability values. Specifically, the sched-

ule is used to compute the lifetime reliability, RtempP , considering the thermal impact as

detailed in Chapter 3; the mapping matrices are used to compute the reliability consid-

ering checkpointing for transient fault-tolerance, RtempT , as explained in Sections 4.2.2

and 4.2.3. Finally, the wear-out minimum initial mapping is the optimization technique

proposed in Chapter 3.

4.3 Reliability-Aware Co-Design

Figure 4.6 shows the reliability-aware hardware-software co-design approach proposed

in this work. The approach consists of two components – reliability-aware design space

exploration (RDSE) with individual applications and reliability-aware Pareto merging

for use-cases. The RDSE generates a set of Pareto-points (actor distribution and check-

point assignment), which are optimal in terms of reliability and resource usage (i.e. the

number of processing cores and size of the reconfigurable area). Next, analysis is per-

formed with the given set of use-cases. Specifically, an ILP-based technique is proposed

to merge the Pareto-points (obtained in the previous step) of the applications consti-

tuting an use-case to determine the minimum resource usage while satisfying the given

energy and performance budget.

4.3.1 Design Metrics

Performance: The minimum throughput required for an SDFG is denoted by Tc. This

is the performance parameter used in the approach and is considered a design constraint.

Energy: The energy consumption of the multiprocessor system is modeled in Chapter 3.

The energy metric is used as a design constraint. Specifically, Etot ≤ Emax, where Emax

is the given energy budget.
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Figure 4.6: Proposed hardware-software co-design flow.

Algorithm 8 RDSE(): Design space exploration for reliability-resource trade-off

Input: Gapp, Garc, Tc, Emax, Nmax
c , RAmax

Output: Mapping Pareto database ParetoDB

1: for Nc ∈ [1..Nmax
c ] do

2: for {SRA = e;SRA ≤ RAmax;SRA = SRA + e} do
3:

(
Md Mc

)
= HSAP (Gapp,GNc+1

arc ,Tc, SRA) //Hardware-software actor partitioning.

4: Etot = CalculateTotalEnergy(Md) //Calculate the total energy of an application.

5: [S T] = MSDF 3(Md,Gapp,GNc+1
arc ) //Calculate the schedule and throughput.

6: M = CalculateMTTF (S,Md,Mc) //Calculate the MTTF using Equation 4.13.

7: if T ≥ Tc && Etot ≤ Emax then

8: ParetoDB(Nc, SRA).push(Md,Mc,MJ , E
tot) //Store in a database.

9: end if

10: end for

11: end for

12: Process ParetoDB to retain only Pareto-optimal points.

Cost: The design cost is specified in terms of the number of cores and the size of the

reconfigurable area. The maximum number of cores allowed is denoted by Nmax
c and

maximum size of the reconfigurable area is denoted by RAmax. This is used as a design

constraint.

Reliability: The reliability considering wear-out and transient faults are modeled in

Equations 2.12 and 4.14, respectively. The co-design problem is demonstrated here to

maximize the lifetime reliability (measured as mean time to failure) under a given con-

straint of transient fault-tolerance, specified as mean time between failure. However, the

technique can be easily adopted to optimize for these parameters (MTTF or MTBF)

individually, or combined together in the form of a joint metric.
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4.3.2 Reliability-Resource Usage Trade-off

Algorithm 8 provides the pseudo-code of the reliability-aware design space exploration

to determine the reliability-resource trade-off. As shown in Section 4.1 (refer to Fig-

ure 4.1), the given problem can be solved in a hierarchical manner with the reliability-

aware hardware-software actor partitioning on a given reconfigurable multiprocessor sys-

tem (i.e with Nc cores where Nc ≤ Nmax
c and RA frames where RA ≤ RAmax) at the

lower hierarchy, followed by its integration in the higher level problem of determining the

reliability-resource trade-off. An epoch (e = 100) is defined and the frames allocated to

the multiprocessor system is incremented by e at each iteration. The algorithm inputs the

application graph and the design constraints – the throughput constraint Tc, the energy

budget Emax, and the design cost Nmax
c and RAmax. The algorithm then determines the

actor distribution and the MTTF value for every combination of core count and reconfig-

urable area frames by invoking the HSAP subroutine (Algorithm 6). The energy and the

schedule are computed (lines 4 - 5). The schedule and the actor distribution are used to

compute the MTTF (Equation 4.13). If the energy is lower than the energy budget and

the throughput constraint is satisfied, the actor distribution, the MTTF, and the energy

value are stored in the Pareto database ParetoDB corresponding to the number of cores

and size of the reconfigurable area (lines 7 - 9). Finally, the ParetoDB is processed to

retain only the Pareto-optimal points.

4.3.3 ILP-Based Pareto Merging

The objective in the next stage of the co-design is to determine the reliability (MTTF)

maximum mappings for applications enabled simultaneously. These mappings determine

the size of the platform. The problem is formulated as a binary integer linear program-

ming (ILP) problem and is solved using Matlab. The inputs to this step are the set

of mappings (from ParetoDB) for every application of a given use-case. To limit the

scalability of this approach (the ILP), only the Pareto-optimal points (i.e. the actor

distribution and checkpoint assignments that are optimum with respect to reliability,

energy, number of cores, and size of reconfigurable area) are used. Every Pareto-point

of an application is associated with four parameters – number of cores, reconfigurable

area size, reliability and energy. This step selects one Pareto-point for every applica-

tion of a use-case such that the reliability is maximized while satisfying the design cost
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and energy budgets. To aid the understanding of this approach, the ILP is formulated

for a two application use-case. The technique can be trivially extended to include any

multi-application use-cases.

Let App A and App B be the two applications constituting a use-case. The following

notations are defined for the ease of problem formulation.

NX = number of Pareto-points of App X where X = A or B

mX
1 , · · · ,mX

NX = NX Pareto-points of App X

nXi = number of cores of Pareto-point mX
i of application App X

cXi = reconfigurable area usage of Pareto-point mX
i

rXi = reliability of Pareto-point mX
i

eXi = energy consumption of Pareto-point mX
i

Let Yij is defined as follows.

Yij =


1 if mA

i and mB
j are selected

0 otherwise

(4.16)

Constraints of the ILP

• One Pareto-point for each application is to be selected i.e.,
∑NA
i=1

∑NB
j=1 Yij = 1

• Design cost is to be satisfied i.e.,

NA∑
i=1

NB∑
j=1

Yij · (nAi + nBi ) ≤ Nmax
c and

NA∑
i=1

NB∑
j=1

Yij · (cAi + cBi ) ≤ RAmax

• Energy budget is to be satisfied i.e.,
∑NA
i=1

∑NB
j=1 Yij · (e

A
i + eBi ) ≤ Emax

Objective of the ILP

The reliability of the platform with applications A and B executing simultaneously is

RA = Reliability due to A =

NA∑
i=1

NB∑
j=1

Yij · rAi (4.17)

RB = Reliability due to B =

NA∑
i=1

NB∑
j=1

Yij · rBi

The overall reliability optimization objective is to maximize min{RA, RB}.
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ILP Solution

Let the solution of the ILP be represented as Yij = 1 for i = ib and j = jb, and

Yij = 0 otherwise. The resources used for this use-case (with applications A and B)

are as follows: number of cores = (nAib + nBjb) and reconfigurable area size = (cAib + cBjb).

Thus, the ILP is solved for all use-cases to fill the use-case resource table of Figure 4.6.

A point to be noted is that, the execution time to fill the use-case resource table is

strongly dependent on the number of use-cases. As established in [28], the number of use-

cases grows exponentially with the number of applications. Use-case pruning techniques

proposed in [28] are adopted here. Once the use-case resource table is filled, the final

platform is determined as the highest number of cores and reconfigurable area size.

4.4 Results

All proposed algorithms are coded in C++. Fifty synthetic SDFGs are generated from [138]

with number of actors between 8 and 32. Additionally, a set of real-life applications

(streaming and non-streaming) are considered from [138, 142]. These applications are

H.263 Encoder/Decoder, H.264 Encoder, MP3 Decoder, MPEG4 Decoder, JPEG Decoder,

Sample Rate Converter, FFT, iFFT and Romberg Integration. The hardware-software

task partitioning experiments (Sections 4.4.2 - 4.4.5) are conducted on a multiprocessor

system with 9 homogeneous cores and 500 frames of reconfigurable area.

4.4.1 Algorithm Complexity

The complexity of Algorithm 6 is computed as follows. Let η be the average number of

actors that can be accommodated in the given reconfigurable area constraint. There are

therefore η iterations of the outer while loop (lines 2 - 10). At each iteration, lines 4 -

6 are executed for all actors in A \HList. This can be upper bounded by Na, the total

number of actors in the application graph. Line 8 finds the maximum from a list of Na

elements. The complexity of Algorithm 6 is given by

C6 = O (η · (Na ·O(FindMinRG) +Na)) = O
(
N2
a · C7

)
(4.18)

where O(FingMinRG) = C7 is the complexity of the FindMinRG routine and η ≤ Na.

The complexity of the FindMinRG routine is computed as follows. The MSDF 3 engine

computes the schedule starting from a given actor distribution. This can be performed
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Figure 4.7: Mean time to failure for transient and permanent faults for h.263 decoder.

in O (Na logNa +Na ·£) (ref. [77]) where £ is the average number of successors of an

actor. The reliability gradient can be computed in O (Na +Nc). Assuming the outer

while loop executes for χ times on average, the complexity of Algorithm 7 is

C7 = O (χ ·Na ·Nc ·Ncp · (Na logNa +Na ·£ +Na +Nc)) = O
(
N4
a ·Ncp

)
(4.19)

using £ ≤ Na and Nc ≤ Na and Ncp is the maximum number of checkpoints per actor.

Combining Equations 4.18 and 4.19, the complexity of Algorithm 6 is given by

C6 = O
(
N6
a ·Ncp

)
(4.20)

4.4.2 Reliability Trade-off Results

Figure 4.7 plots the mean time to failures considering wear-out (MTTF) and mean time

between transient faults (MTBF) for different design solutions (actor distribution and

checkpoint assignment) obtained from the proposed HSAP algorithm for H.263 Decoder

application. The figure also plots the solution obtained using the wear-out-aware task

mapping technique of [95] (marked in the figure by the alphabet A) and the checkpointing

based transient fault-tolerant technique of [44] (marked in the figure by the alphabet B).

For demonstration purpose, the transient fault arrival rate of 1 fault every 100 hours of

operation is considered. The reliability requirements are set as follows: MTTF = 3 years

and MTBF = 200 hours, and are shown in the figure by the solid lines.

As established previously, the wear-out aware task mapping technique of [95] does

not consider transient fault-tolerance, and therefore the MTBF reported in the figure

is obtained by considering zero checkpoints in the actor execution. On the other hand,
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Figure 4.8: Reliability trade-off results for four different applications.

the checkpoint-based transient fault-tolerance technique of [44] does not consider lifetime

reliability. The number of checkpoints for the actors are selected such that the reliability

is maximized (refer to Figure 4.5). The proposed HSAP algorithm selects the point

marked C in the figure. This point satisfies the reliability requirements for both fault

types and results in minimum reliability gradient i.e. the minimum degradation of lifetime

reliability considering wear-out with a maximum increase in the reliability considering

transient faults. The actor distribution corresponding to this point improves the MTTF

by 100% (2x improvement) as compared to that obtained using [44].

To give more insight into the different trade-off trends obtained for different appli-

cations, Figure 4.8 plots the trade-off between the two reliabilities for four applications,

including the H.263 decoder application result shown in Figure 4.7. The result obtained

using the proposed technique is compared with [95] and [44]. The MTTF and the MTBF

constraint for these applications are set to 3 years and 20 hours, respectively. The plot

for the JPEG decoder (Figure 4.8b) shows that the MTTF and the MTBF requirements

are satisfied by all the three techniques. However, the proposed technique and the tech-

nique of [44] offer better reliability trade-offs than [95]. Results for this application show

that the improvement in the proposed approach is insignificant – 18% higher MTTF and
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Figure 4.9: Normalized MTTF with varying transient fault-tolerance constraint.

10% lower MTBF as compared to [44]. Therefore, both the proposed approach and that

of [44] are good solutions, and either of them can be selected as the final solution.

The application inverse FFT (Figure 4.8c) demonstrate similar trend as H.263 de-

coder. Out of the three techniques, only the proposed technique satisfies both the MTTF

and MTBF requirements. Therefore as discussed previously, only the proposed solution

is the valid one. Finally, for the application MP3 decoder (Figure 4.8d), the MTTF

requirement is violated by all the techniques. This is due to the high stress introduced

in the system due to the large number of actors. The MTBF requirement is violated

by [95], but both the proposed and the [44] satisfy the MTBF requirement. For this

application, the proposed technique results in 125% higher lifetime with less than 15%

lower MTBF as compared to [44], clearly demonstrating its superiority. Out of all the

60 applications (real-life and synthetic) considered, 6 applications (2 real-life and 4 syn-

thetic) show trends similar to the JPEG decoder and other 3 applications (1 real-life and

2 synthetic) that of the MP3 decoder. The remaining 51 applications (7 real-life and 44

synthetic) show trends similar to H.263 decoder.

To summarize the results for all these sixty applications, the proposed technique

improves the platform lifetime by 18% to 225% (with an average of 60%) as compared to

the highest MTBF technique of [44]. Finally, the MTTF using the proposed technique

is within an average 15% of the highest MTTF of [95].
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4.4.3 MTTF Results with Varying MTBF Constraint

Figure 4.9 plots the normalized lifetime (i.e., MTTF) obtained using the proposed tech-

nique with varying transient fault-tolerance constraint for five synthetic and five real-life

applications. The synthetic applications are labeled as synth(n) where n denotes the

number of tasks of the application; the five real-life applications are FFT, H.263 En-

coder, MPEG4 Decoder, Romberg Integration, and Sample Rate Converter. The MTTF

obtained using the proposed technique is normalized with respect to that obtained using

the transient fault-tolerant technique of [44]. The transient fault-tolerance constraint

is specified as MTBF, and is varied from 100 hours to 1000 hours. The constraint is

interpreted as follows: MTBF requirement of say, 100 hours implies that with the given

fault arrival rate, the system should be capable of correcting these faults using check-

pointing mechanism, with the time allowed between two non-correctable faults to be 100

hours. Clearly, higher the MTBF requirement, the more stringent is the transient fault-

tolerance constraint. The range for the MTBF constraint (100 to 1000 hours) represents

the varying reliability requirement of both safety and non-safety critical applications.

An interesting trend to observe from these figures is that, as the transient fault-

tolerance constraint becomes more and more stringent (higher MTBF requirement), the

normalized MTTF drops. This is expected due to conflicting nature of the two fault types

as established in Section 4.2. For critical applications, where high reliability is desired

(e.g. non-correctable faults every 1000 hours of operation), the MTTF obtained using the

proposed technique for applications, such as synth(12), synth(16), synth(24), and Sample

Rate Converter, is similar to the MTTF values obtained using [44] (normalized MTTF

close to one). For the remaining six applications, the proposed technique performs better

at this MTBF requirement. On average for all the sixty applications considered, the

proposed technique outperforms the existing technique by achieving 10% higher MTTF

even at a high transient fault-tolerance requirement of 1000 hours. These results suggest

that the existing transient fault-tolerant techniques leave a significant scope of lifetime

improvement, which is addressed by the proposed technique. On the other hand, for

less stringent reliability requirement of 100 hours, the proposed technique provides an

average 60% lifetime improvement. These results show the need for considering processor

wear-out in the checkpoint selection for transient fault-tolerance.
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Figure 4.10: MTTF and size of reconfigurable area trade-off.

4.4.4 Reliability and Reconfigurable Area Trade-off

An important trade-off analysis for reconfigurable multiprocessor systems is to determine

the gain in reliability with increase in reconfigurable area i.e., reliability and reconfig-

urable area trade-off results. To demonstrate this, an experiment is conducted with the

same set of ten applications (real-life and synthetic) using the proposed technique, and

the reliability results are compared with the reliability obtained with no reconfigurable

area i.e., on a static multiprocessor system with the same number of cores as the recon-

figurable one. Figure 4.10 plots the normalized MTTF as the size of the reconfigurable

area is increased. The MTTF obtained using the proposed HSAP algorithm for an ap-

plication is normalized with respect to the MTTF obtained without reconfigurable area.

Few trends can be observed from the figure. First, the MTTF (i.e. reliability) improves

with an increase in the size of the reconfigurable area. This is because, with increase in

the size of the reconfigurable area, more actors can be implemented as hardware. This

reduces the stress on the processing cores leading to an increase in lifetime reliability.

Second, the improvement in MTTF saturates beyond a certain reconfigurable area

size. This is due to the limited lifetime improvement possible after remapping most of

the actors of an application. For some applications, such as Sample Rate Converter and

H263 Encoder, the saturation point is at lower size of the reconfigurable area. These

applications are marked in the figure by black solid lines. For other applications, the

saturation point is beyond 500 columns. Third, for some applications, such as synth(16),

synth(20) and FFT, the improvement of lifetime is slower up to 300 columns; significant

improvement is observed as the reconfigurable area size is increased beyond 300 columns.
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Table 4.1: Execution time (in sec) of the HSAP algorithm.

Actors
RA size = 100 RA size = 300

cores = 2 cores = 4 cores = 6 cores = 8 cores = 2 cores = 4 cores = 6 cores = 8

8 50 75 100 125 90 145 150 160

16 150 670 720 775 500 1,140 2,140 3,000

24 785 1,860 3,300 5,575 2,580 7,100 12,150 13,560

32 1,140 3,020 5,130 6,790 2,850 7,500 12,700 14,180

For other applications, such as synth(8), synth(12) and Sample Rate Converter, lifetime

improvement is possible even with small reconfigurable area.

The conclusion to derive from these results is that, different applications exhibit differ-

ent trade-offs with respect to reconfigurable area and lifetime performance. It is essential

to characterize each application during the design phase to explore such trade-off. This

knowledge can be applied at run-time during application mapping and reconfigurable

area distribution among multiple simultaneous applications. As an example, if the re-

configurable area available at a given time during operation is 100 frames and application

FFT and Sample Rate Converter needs to be mapped, it is beneficial to reserve the re-

configurable area for Sample Rate Converter that provides significant improvement in

lifetime than FFT.

4.4.5 Execution Time of the HSAP Algorithm

Table 4.1 reports the execution time of the proposed HSAP algorithm as the number

of actors and cores are scaled for reconfigurable area of 100 and 300 frames. As seen

from this table, the execution time increases with increase in the number of actors and

cores. However, the time growth can be accommodated as the analysis are performed

at design-time. Moreover, with an increase in the size of the reconfigurable area, the

execution time also increases. Two factors contribute to this: first, with increase in the

reconfigurable area size, the number of iterations of the outer while loop (lines 2 - 10) of

Algorithm 6 increases; second, at each iteration, the number of actors to be analyzed i.e.

the iterations of Algorithm 7 reduces as more actors are marked as hardware actors.

A point to note is that, the optimization problem formulated in Sections 4.2 can be

solved directly using standard solver e.g., CPLEX. However, the execution time grows

exponentially with the number of actors and cores. The solver fails to provide results

beyond 8 actors mapped on 6 cores even after running for more than 12 hours. For

applications for which the optimization terminates within the given time frame of 12
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Table 4.2: Platform determination with area, energy and reliability results.

single applications use-cases

Applications Technique Cores RA Size Energy MTTF Applications Technique Cores RA Size Energy MTTF

MPEG4 Decoder

ECosynth 9 200 0.75 0.56

usecase 1

ECosynth 16 700 0.81 0.51

RPGen 16 0 1.00 0.73 RPGen 16 0 1.00 0.58

Proposed 8 300 0.90 0.94 Proposed 12 600 1.00 0.90

JPEG Decoder

ECosynth 2 100 0.79 0.68

usecase 2

ECosynth 10 1000 0.85 0.60

RPGen 4 0 0.96 0.81 RPGen 16 0 1.00 0.68

Proposed 4 200 0.91 1.00 Proposed 10 800 0.90 1.00

final platform

ECosynth 9 600 – –

final platform

ECosynth 16 1000 – –

RPGen 16 0 – – RPGen 16 0 – –

Proposed 8 500 – – Proposed 12 800 – –

hours, the proposed HSAP algorithm provides up to 500× reduction in execution time.

4.4.6 Hardware-Software Co-Design Results

To establish the area and energy overhead introduced for reliability aware co-design, the

proposed technique is compared with energy-aware co-synthesis technique of [38] (referred

to as ECosynth) and the reliability-aware platform generation technique of [116] (referred

to as RPGen). It is to be noted that the size of platform for ECosynth is determined

considering energy only, however the platform reliability value is determined using the

HSAP algorithm proposed in Section 4.2. Table 4.2 reports the resource usage (in terms

of the number of cores and reconfigurable area), normalized energy and reliability of

the proposed technique in comparison with ECosynth and RPGen techniques for single

applications as well as for use-cases. The design cost for the reconfigurable multiprocessor

system is set to a maximum of 16 cores and 1000 reconfigurable area columns. The

reference for reliability is obtained by mapping an application on this highest architecture

(with 16 cores and 1000 columns) using the proposed HSAP algorithm. The energy

reference is the energy budget Emax.

Single Application Results:

For all single applications considered, the ECosynth results in the least energy consump-

tion (for energy consumption, lower is better). This is expected as the primary objective

of this technique is to minimize energy. However, the lifetime (measured as MTTF)

obtained using this technique is the least (for MTTF, higher is better). For the MPEG4

decoder application, the ECosynth results in 44% lower MTTF (row 3, column 6) and

25% lower energy (row 3, column 5) as compared to the reference approach. The RPGen
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technique determines the number of cores based on reliability with energy as a constraint.

This technique does not consider reconfigurable area, and therefore the entries reporting

the reconfigurable area usage (row 4, columns 4) is 0. The lifetime reliability using this

technique is on average better than ECosynth by 30% as this is explicitly maximized.

The energy consumption of this technique is, however, higher by 33%. This high energy

overhead of RPGen is attributed to the fact that the underlying architecture for this

technique is the static multiprocessor system with no reconfigurable area. Therefore, the

technique does not benefit from the lower energy consumption of the hardware imple-

mentation of actors. In comparison to both these techniques, the proposed technique

results in the highest MTTF with an improvement of 28% with respect to RPGen and

67% with respect to ECosynth. In terms of energy consumption, the proposed technique

consumes 10% lower energy than RPGen,. Finally, the resource utilization of the pro-

posed technique is also better than the existing techniques. A similar trend is observed

for all the single applications considered (including those not shown in this table). On

average for all these applications, the proposed technique improves lifetime by an average

30% with respect to RPGen and 65% with respect to ECosynth.

The minimum resources required for all the single applications are reported in the

table at rows 9-11, columns 3-4. As seen from these entries, the proposed approach

satisfies the resource constraint and also leads to the minimum resource usage.

Use-case Results:

To demonstrate the performance of the ILP-based Pareto merging technique for use-

cases, an experiment is conducted with ten synthetic use-cases. Two of these are re-

ported in the table. The compositions of these use-cases are as follows: usecase 1 =

〈JPEGDec,MP3Dec〉 and usecase 2 = 〈MPEG4Dec, SRC,H263Dec〉. Since none of

the two existing works consider use-cases for platform determination, the resource usage

for these techniques is performed by optimizing the concurrent applications individually,

with the resource constraint modified according to their throughput requirements. An

example is illustrated below.

Let usecase i = 〈App A,App B〉 with throughput constraint of App A is 1.5 times

the throughput constraint of App B. The overall resource constraint of 16 cores with

1000 reconfigurable columns is distributed to these applications such that the constraint
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on App A is 9 cores with 600 columns, and that of application App B is 7 cores with

400 columns. The proposed approach uses ILP based Pareto merging to determine the

resource requirement for every use-case. As seen from the table, for usecase 1, the

ECosynth still achieves the minimum energy consumption. The MTTF is still the least.

The RPGen although maximizes MTTF, the improvement over that of ECosynth is only

13%. This is due to the non-availability of the reconfigurable area leading to the missing

reliability and reconfigurable area trade-off. The proposed approach improves lifetime

by 55% as compared to RPGen. A similar trend is observed for the second use-case.

On average for all the ten use-cases considered, the proposed approach improves lifetime

by 50% with respect to RPGen and 70% with respect to ECosynth, while satisfying the

given area, energy and performance budget.

The maximum resource used for all the ten use-cases (including the two shown in the

table) is reported in rows 9-11, columns 9-10. As seen from these results, the proposed

approach minimizes the number of processing cores by 25% and reconfigurable area usage

by 20% with respect ECosynth, while maximizing the lifetime by an average 65% for

single application and an average 70% for use-cases and satisfying the area, energy, and

performance constraint. With respect to the lifetime maximum technique (RPGen), the

proposed co-design approach improves lifetime by an average 30% for single applications

and an average 50% for use-cases.

4.5 Remarks

This work presented a fast heuristic for hardware-software task partitioning for reconfig-

urable multiprocessor systems. The objective is to improve the transient fault-tolerance

of the system together with the lifetime reliability of the cores. Based on this heuris-

tic, a hardware-software co-design technique is proposed that determines the minimum

resources needed to maximize the reliability while satisfying the given energy, cost, and

performance constraint. The co-design methodology incorporates integer linear program-

ming to merge the Pareto-points of the individual applications to determine the resource

usage for concurrent applications (use-cases). Experiments conducted with synthetic

and real-life application SDFGs demonstrate that the proposed hardware-software par-

titioning technique maximizes lifetime reliability by 10% for a stringent transient fault-

98



tolerance requirement. With relaxed requirements, the proposed approach is able to im-

prove lifetime by an average 60%. Moreover, the proposed hardware-software co-design

approach improves the lifetime reliability by an average 70%, while consuming 25% fewer

cores and 20% lower reconfigurable area size as compared to the existing technique.
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CHAPTER 5

Design-time Analysis for Fault-Tolerance

5.1 Introduction

One of the highly desired features of modern multiprocessor systems is fault-tolerance

i.e., the ability of these systems to continue operation in the presence of faults, albeit an

acceptable performance degradation. This work attempts to solve the following problem.

Given a heterogeneous multiprocessor architecture and a set of multimedia and other

high-performance embedded applications, how to assign and order the tasks of every ap-

plication on the component cores such that the total energy consumption (computation

and communication) is minimized while guaranteeing to satisfy the performance require-

ment (e.g., throughput) of these application under all possible core fault-scenarios. The

scope of this work is limited to permanent faults of cores. It assumes a given multiproces-

sor architecture (floorplan), and therefore the selection of cores (number and/or types)

for the architecture and their placement (coordinates) are not addressed.

Following are the key contributions of this work:

• a fault-aware task mapping technique to minimize the computation and communi-

cation energy while satisfying the application throughput requirement;

• a scheduling technique to minimize the run-time schedule construction and schedule
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Figure 5.1: Architecture model.

storage overhead; and

• a heuristic to minimize the design space exploration time.

The remainder of this chapter is organized as follows. The problem formulation is

discussed in Section 5.2, followed by the proposed design methodology in Section 5.3.

The energy minimum task mapping technique for different fault-scenarios is discussed

next in Section 5.4 and the proposed self-timed execution-based scheduling technique

in Section 5.5. Experimental setup and results are discussed in Section 5.6. Lastly,

conclusions are presented in Section 5.7.

5.2 Problem Formulation

5.2.1 Application and Architecture Model

An application is represented as synchronous data flow graphs (SDFGs) Gapp = (A, C)

consisting of a finite set A of actors and a finite set C of channels. Every actor a i ∈ A

is a tuple (ti, µi), where ti is the execution time of a i and µi is its state space (program

and data memory). The number of actors in an SDFG is denoted by Na where Na = |A|.

The performance of an SDFG is specified in terms of throughput constraint Tc.

The architecture consists of processing cores interconnected in a mesh-based topol-

ogy as shown in Figure 5.1a. The different zones in the figure represent heterogeneity

with the cores within each zone being homogeneous. In all existing studies on reactive

fault-tolerance, floorplan of the underlying multiprocessor platform is ignored, that is,

heterogeneous cores are considered without their actual coordinates. This can impact

communication energy, as shown in Figure 5.1b. Here, actors a i and a j require core

types 0 and 1, respectively. Floorplan-unaware and floorplan-aware mapping examples
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are provided in the two tables. Clearly, floorplan-unaware mapping can lead to higher

data communication energy (i.e., data communicated over four hops between c0 and c8

as compared to 2 hops between c1 and c5 in floorplan-aware mapping).

The architecture is represented as a graph Garc = (C,E), where C is the set of nodes

representing cores of the architecture and E is the set of edges representing communication

channels among the cores. The total number of cores is denoted by Nc i.e., Nc = |C|.

Each core cj ∈ C is a tuple 〈hj , Oj〉, where hj represents the heterogeneity type of cj ,

and Oj is the set of operating points (voltages and frequencies) supported on cj .

5.2.2 Mapping Representation

The following notations are defined.

No maximum number of operating points of a core

Mn mapping of Gapp on Garc with n cores where n ≤ Nc

φi core on which actor a i is mapped in mapping Mn

θi frequency assigned to actor a i

Ψj set of actors mapped to core cj

sf fault-scenario with f faulty cores = 〈ci1 , ci2 , · · · , cif 〉
The objective of the optimization problem is to minimize energy consumption for all

fault-scenarios by solving the following:

• actor distribution: i.e., to determine the assignment of the actors of the SDFG on

the cores of the multiprocessor system;

• operating point: i.e., to determine the voltage and frequency of the cores for exe-

cuting the actors of the SDFG.

The mapping is represented as Mn =
(
Mn

d Mo

)
. Two variables xi,j (representing the

actor distribution) and yi,k (representing the operating point) are defined as follows.

xi,j =

1 if actor a i is executed on core cj

0 otherwise

yi,k =

1 if actor a i is executed at operating point ok

0 otherwise

Constraints on these variables are set such that an actor is mapped to only one core

at a single operating point. Thus,

Nc−1∑
j=0

xi,j = 1 and

No−1∑
k=0

yi,k = 1 ∀a i ∈ A (5.1)
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The actor distribution and operating point of an SDFG are represented as two ma-

trices:

Mn
d =



x0,0 x0,1 · · · x0,n−1

x1,0 x1,1 · · · x1,n−1

...
...

. . .
...

xNa−1,0 xNa−1,1 · · · xNa−1,n−1


and Mo =



y0,0 y0,1 · · · y0,No−1

y1,0 y1,1 · · · y1,No−1

...
...

. . .
...

yNa−1,0 yNa−1,1 · · · yNa−1,No−1


(5.2)

The core assignment and operating point of actor a i are given by

φi = Xi × NNc where Xi =
(
xi,0 xi,1 · · · xi,Nc−1

)
and NNc =

(
0 1 · · · Nc − 1

)T
θi = Yi × NNo where Yi =

(
yi,0 yi,1 · · · yi,No−1

)
and NNo =

(
0 1 · · · No − 1

)T

5.2.3 Mapping Encoding

An ID is assigned to each mapping Mn as calculated in Equation 5.3.

mID(Mn) =

Na∑
i=1

φi · (Nc)i (5.3)

5.2.4 Energy Modeling

The computation and the communication energy are modeled in Chapter 3; this section

provides the modeling of the energy associated with task-migration. Migration overhead

associated with moving from one mapping to another is governed by two quantities – the

state space of the actors(s) participating in the migration process and the distance (hops)

through which the state space is migrated1. It is assumed that a given multiprocessor

system consists of one or more task migration modules (TMMs), which can access

the memory of a core without interfering with its operation. For these systems, the state

space of an actor (on a faulty core) can be recovered and hence migrated to some other

core. For multiprocessor systems without TMMs, task migration involves migrating the

state space of an actor from the main memory to the new core where it is to be mapped.

To better couple with the computation and the communication energy, the migration

overhead is represented as energy and is termed as migration energy.

MigrationEnergy =
∑
∀ai∈Ψj

Si · Ebit(φiniti , φfinali ) (5.4)

1The state space of an actor consists of the the data memory and the pre-compiled object code for
the h different core types.
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Figure 5.2: Proposed Design Methodology.

where Si is the state space of actor a i, φ
init
i and φfinali are the cores on which, actors a i

is mapped before and after task migration, respectively and Ebit is the energy required

to communicate every bit of data across the NoC (refer to Chapter 3 Equation 3.9).

5.3 Design Methodology

The fault-tolerant task mapping methodology consists of two phases – analysis of ap-

plications at design-time and execution at run-time. The focus of this work is on the

design-time analysis; however, for the sake of completeness, a brief overview is provided

on how to use the design-time analysis results at run-time.

The fault-tolerant task mapping methodology is outlined in Figure 5.2. For every

fault-scenario with f faulty cores, an optimal mapping is generated that satisfies the

throughput requirement and results in minimum energy consumption. These mappings

are encoded by the Encode Mapping block and stored in memory. At run-time, an ap-

plication is executed until faults occur. On the detection of a fault2, the corresponding

fault-scenario is identified and the encoded mapping is fetched from the memory. This

mapping is then decoded by the Decode Mapping block and forwarded to the Task Mi-

gration block where actual migration is carried out3.

2This work is orthogonal to any fault-detection mechanism
3It is to be noted that, mappings and schedules determined at design-time for different fault-scenarios

satisfy an application throughput requirement. By enforcing these mappings and schedules at run-time
post fault occurrences, throughput is guaranteed for the application under all processor fault-scenarios.
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Algorithm 9 Generate fault-tolerant mappings

Input: Initial mapping Mnarc , Gapp, Garc, throughput constraint Tc, fault-tolerance level F
Output: Minimum energy mappings for all fault-scenarios with f = 1 to F faults
1: for f = 1 to F do
2: Sf = genFaultScenarios(f)
3: for sf ∈ Sf do
4: sf = (ci1 , ci2 , · · · , cif−1

, cif ) //represent fault-scenario

5: sf−1 = (ci1 , ci2 , · · · , cif−1
) //generate reduced fault-scenario

6: Mf−1 = HashMap[sf−1].getMap() //fetch mapping for reduced fault-scenario
7: Mf = genMinEnergyMap(Mf−1, Gapp, Garc,Tc, cif , sf ) //generate minimum energy map

8: HashMap[sf ].setMap(Mf ) //store mapping for the fault-scenario
9: end for

10: end for

5.4 Fault-tolerant Mapping Generation

Fault-tolerant mappings are generated using Algorithm 9. There are F stages of the

algorithm, where F is a user-defined parameter denoting the maximum number of faults

to be tolerated in the device. At every stage f (1 ≤ f ≤ F ), mappings are generated –

one for each fault-scenario with f faulty cores.

The first step at every stage of the algorithm is the generation of a set (Sf ) of fault-

scenarios (line 2). The cardinality of this set (denoting the number of fault-scenarios)

is NcPf . An example set with 2 out of 3 cores as faulty (f = 2, Nc = 3) is the set

Sf = {〈0, 1〉, 〈1, 0〉, 〈0, 2〉, 〈2, 0〉, 〈1, 2〉, 〈2, 1〉}4. For every scenario of the set Sf , the last

core (cif ) of the tuple 〈ci1 , ci2 , · · · , cif 〉 is considered as the current faulty core, and a

lower order tuple is generated by omitting cif (line 5). This gives fault-scenario sf−1

with f−1 faulty cores for which the optimal mapping is already computed (and stored in

HashMap) in the previous stage (i.e., at stage f − 1). As an example, the fault-scenario

〈3, 1, 5〉 implies that faults occurred first on core c3, followed by on core c1, and finally on

core c5. Thus, to reach this fault-scenario, the system need to encounter fault-scenario

〈3, 1〉 first. Mapping for 〈3, 1〉 is therefore considered as the starting mapping for 〈3, 1, 5〉

with core c5 as current failing core. Similarly, mapping for 〈3〉 is the starting mapping

for scenario 〈3, 1〉, with core c1 failing next. A point to note here is that, the scenario 〈3〉

is a single fault-scenario, and to reach this, the starting mapping is the no fault initial

mapping MNc .

An important aspect of Algorithm 9 is the generation of the minimum energy mapping

genMinEnergyMap(). This routine takes a starting mapping Mn, the current faulty

core (cj), and the fault-scenario (sf ) and generates a new mapping Mn−1 with core cj

as faulty. This new mapping satisfies the throughput constraint and gives minimum

4A fault-scenario (0,1) implies fault occurring first at core c0 and then at core c1. Thus, fault-scenario
(0,1) is different from fault-scenario (1,0) implying a permutation in the fault-scenario computation.
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Algorithm 10 GenMinEnergyMap(): Energy aware mapping

Input: Mapping Mn, Gapp, Garc, throughput constraint Tc, faulty core cϑ and fault-scenario sf
Output: New mapping Mn−1

1: Γϑ = Set of mappings generated from Mn by remapping all ai ∈ Ψ(cϑ) to some cj ∈ C \ sf
2: Sort the mappings in Γϑ according to communication energy and Mtemp = Γϑ[0]
3: Initialize numIter = 0; Mbest = Mtemp; Ebest = calcEnergy(Mtemp)
4: while numIter ≤ maxIter do
5: [i j k] = RemapActor(Mtemp,Gapp,Garc,Tc, sf )
6: if i ≥ 0 then
7: xij = 1 and xij′ = 0 ∀j′ 6= j; yik = 1 and yik′ = 0 ∀k′ 6= k; Update Mtemp

8: else
9: E = calcEnergy(Mtemp)

10: if E < Ebest then
11: Mbest = Mtemp; Ebest = E
12: end if
13: numIter + +
14: Mtemp = Γϑ[numIter]
15: end if
16: end while
17: Return Mbest

energy (computation and communication). Details of this routine are provided in the

next section. Once an optimal mapping is determined (line 7), the algorithm stores it

in the HashMap for the particular fault-scenario (line 8). This is repeated for every

scenario of set Sf .

5.4.1 Generate Minimum Energy Mapping

Mapping and scheduling applications on a multiprocessor platform is an NP-hard prob-

lem. A heuristic is proposed to simplify this process. This is shown as a pseudo-code in

Algorithm 10. The algorithm has two sections – remapping the mandatory actors (line

1) and searching for the minimum energy mapping (lines 4 - 16). The mandatory map-

pings are generated by remapping only the tasks on the faulty core (cϑ). These actors

are denoted by the set Ψ(cϑ). This is done by selecting |Ψ(cϑ)| cores (not all different)

from the set of operating cores C \ sf to remap all a i ∈ Ψ(cϑ). The number of such

mappings is equal to the number of ways of choosing a sample of |Ψ(cϑ)| balls with re-

placement from a set of |C\ sf | balls. This is equal to |C\ sf ||Ψ(cϑ)|. These mappings are

pruned according to standard speed-up techniques (such as processor load [28]). These

mappings are stored in an array Γϑ, and the array is sorted in terms of communication

energy (line 2). The maxIter best mappings are selected and used in the next stage.

This number (maxIter) is equal to the number of iterations of the performance section

and determines the termination (and hence the execution time) of the algorithm. It is to

be noted that the communication-energy-based sorting provides better results (i.e., less

energy) than migration-overhead- or throughput-based mappings.

The minimum energy search section of the algorithm (lines 4 - 16) remaps one or
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Algorithm 11 RemapActor(): Remap actors to minimize energy

Input: Mapping M , Gapp, Garc, throughput constraint Tc, fault-scenario sf
Output: Determine an actor to be remapped, the corresponding core and operating point
1: E := calcEnergy(M); [S T] = MSDF 3(M,Gapp,Garc,Tc); Gbest = 0; ibest = jbest = kbest = −1
2: for all ai ∈ A do
3: for all cj ∈ C \ sf do
4: for all k ∈ [0, 1, · · ·Nf − 1) do
5: Mnew = M ; Set xij = yik = 1 and xij′ = yik′ = 0 ∀j′ 6= j and k′ 6= k

6: [Snew Tnew] = MSDF 3(Mnew,Gapp,Garc,Tc); E = calcEnergy(Mnew)
7: if ((Tnew ≥ Tc) && (Enew < E)) then

8: G = E−Enew
Tnew−T

9: if G > Gbest then
10: Gbest = G; ibest = i; jbest = j; kbest = k
11: end if
12: end if
13: end for
14: end for
15: end for
16: return [ibest jbest kbest]

more actors selectively to determine the minimum energy. At each iteration, the starting

mapping is one of the mappings of set Γϑ. The RemapActor() routine selects an actor

to be remapped, satisfying the throughput requirement. If the return set is nonempty

(implying actors can be remapped without violating the throughput constraint), the actor

is remapped to a core at an operating point determined by the RemapActor() routine

(line 7). The process is continued as long as no actors can be found to be remapped

without violating the throughput. When this happens (lines 8 - 15), the total energy

of the mapping is calculated using the calcEnergy() routine that incorporates (1) the

computation energy; (2) the communication energy; and (3) the migration energy.

If the total energy of the mapping is lower than the minimum energy (Ebest) obtained

thus far, the best values are updated (line 11). The number of iterations is incremented

(line 13) and the whole search is repeated starting from the next mapping in the set

Γϑ. The algorithm terminates when numIter becomes equal to maxIter and the best

mapping is returned (line 17).

5.4.2 Minimum Energy Actor Remapping

Algorithm 11 provides the pseudo-code for the RemapActor() subroutine that uses a

gradient function to evaluate each actor to core assignment. The total energy and the

throughput are evaluated by assigning every actor to every core at every operating point

(line 6). The MSDF 3 tool (refer to Chapter 3) is used to compute the schedule and

throughput from a given mapping5. If the throughput for the new assignment is greater

than the throughput constraint and the energy is lower than the energy of the initial

5For DAGs, multiple iterations are usually executed sequentially (in a non-overlapped manner). For
these graphs CPTO routine of [149] can be used to compute the performance measured as makespan.
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Algorithm 12 Generate initial mapping

Input: Gapp, Garc and throughput constraint Tc
Output: Minimum energy initial mapping M
1: Initialize [M S T] = SDF 3(Gapp,Garc,Tc)
2: while true do
3: [i j k] = RemapActor(M,Gapp,Garc,Tc, ∅)
4: if i ≥ 0 then
5: Update M with xij = yik = 1 and xij′ = yik′ = 0 ∀j′ 6= j and k′ 6= k
6: else
7: break
8: end if
9: end while

10: Return M

mapping M , the gradient is computed (line 8). If the gradient is higher than the best

gradient obtained thus far, the best values are updated (line 11). The best actor, core,

and operating point are returned.

5.4.3 Generate Initial Mapping

Algorithm 12 provides the pseudo-code for the initial mapping generation procedure of the

proposed methodology. The initial mapping (at line 1) is obtained by any deterministic

task mapping and scheduling algorithm e.g., HEFT of [150] for DAGs and the unmodified

SDF 3 tool for SDFGs. The RemapActor() routine selects one actor to be remapped to a

core at a frequency such that energy is minimized with least degradation of throughput.

This follows the same principle as that of Algorithm 10 with the all working cores i.e.,

setting sf = ∅.

5.5 Fault-tolerant Scheduling

An important aspect of any application graph (cyclic and acyclic) is the scheduling of

actors on cores. There are different scheduling schemes proposed, both for DAGs and

SDFGs [80,151]. None of the existing fault-tolerant techniques address scheduling. If the

run-time schedule is different from that used for analysis at design-time, the throughput

obtained will be significantly different than what is guaranteed at design-time. There are

therefore two approaches to solve the problem:

• store the actor mapping and scheduling for all fault-scenarios and for all applications

from design-time (storage-based); and

• constructs the schedule at run-time based on the mappings stored from the design-

time (construction-based).
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Figure 5.3: Schedule construction from an initial schedule and actor allocation.

The former is associated with high storage overhead and the latter with longer execution

time. Both storage and execution time overhead are crucial for streaming applications.

A self-timed execution based scheduling is proposed to solve the two problems.

Based on the basic properties of self-timed scheduling, it can be proven that if the

schedule of actors on a uniprocessor system is used to derive the schedules for a multipro-

cessor system maintaining the actor firing order, the resultant multiprocessor schedule

would be free of deadlocks [152]. However, the throughput obtained using this technique

could be lower than the maximum throughput of a multiprocessor schedule constructed

independently. Thus, as long as this throughput deviation is bounded, the schedule for

any processor could be easily constructed from the mapping of actors to this processor

and a given uniprocessor schedule.

Figure 5.3 shows the operation of the proposed scheduling technique. The actor-core

mapping indicates that actors a0, a1 and a3 are mapped to core 0. The initial steady-

state schedule indicates that there are two instances of a1 and one each for actors a0 and

a3, respectively. The steady-state order of actor firing on core 0 is determined from this

initial schedule by retaining only the mapped actors. In a similar way, the steady-state

schedules are constructed for all other processors. The transient part of the schedules

are constructed from the given initial uniprocessor transient schedule by retaining the

mapped actors. However, the only difference of the transient-phase schedule construction

with the steady-state phase is that for the transient phase, the number of actors firing is

important and not the exact order. This is indicated by a number against each actor for
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Algorithm 13 Schedule generation

Input: Gapp, Garc, Tc, Ns and ∆
Output: Schedule for all fault-scenarios
1: forall f ∈ [1 · · ·F ] do Sf = genFaultScenarios(f)
2: maxIter = |Sf |; sDB = constructUniSchedule(Gapp, Ns); sDBt = sDB

3: while Sf 6= ∅ do
4: for all schedule li ∈ sDB do
5: Initialize count = 0
6: for all sf ∈ Sf do

7: Mtemp = HashMap[sf ].getMap(); T = SMSDF 3(Mtemp, li,Gapp,Garc)
8: if T ≥ Tc then
9: count+ +

10: end if
11: end for
12: li.rank = count
13: end for
14: lmin = getHighestRankSchedule(sDB)
15: for all sf ∈ Sf do

16: Mtemp = HashMap[sf ].getMap(); T = SMSDF 3(Mtemp, lmin,Gapp,Garc)
17: if T ≥ Tc then
18: Sche[sf ] = lmin; Sf .eliminate(sf )
19: end if
20: end for
21: numIter + +
22: if numIter > maxIter then
23: numIter = 0; C = C −∆
24: end if
25: end while

each processor, as shown in the figure.

During the steady-state operation, every core maintains counts of the number of

remaining steady-state firings for the actors mapped to the core. These numbers are

updated when an actor completes its execution. When a fault occurs, the mapped actors

on the faulty core are moved to new location(s) (cores), along with the remaining firing

count. On such cores, which have at least one incoming migrated actor, all actors are

allowed to execute in a self-timed manner to finish the remaining firing counts of the

current pending iteration (similar to the initial transient phase). From the subsequent

iteration onwards, the steady-state order can be enforced for the moved actors. This will

prevent the application from going into deadlock when a fault occurs. In determining

actor counting in the steady-state iterations, schedule minimization is disabled. As an

example, in Figure 5.3, the steady state schedule constructed for core 2 consists of two

executions of actor a5 as opposed to one in the otherwise minimized schedule.

Algorithm 13 provides the pseudo-code for the modified self-timed execution tech-

nique for generating the steady-state schedule. The first step towards this is the con-

struction of uni-processor schedules (line 2). A list scheduling technique is adopted for

this purpose along with several algorithms for tie-breaking, for example, ETF (earliest

task first), DLS (dynamic level scheduling), etc. These algorithms are implemented in the

constructUniSchedule() routine. The number of uni-processor schedules constructed us-
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ing this routine is a user-defined parameter Ns. These schedules are stored in a database

in memory (sDB). The list of fault-scenarios possible with F faults are also listed in the

set Sf . Using each uni-processor schedule as the initial schedule, throughput is computed

for the given application for all fault-scenario mappings. The SMSDF 3 computes the

throughput of a mapping using a given uni-processor schedule.

For each uni-processor schedule from sDB, a count (termed as rank) is determined

(lines 4 - 13). The value indicates the number of fault-scenarios for which the throughput

constraint is satisfied with this as the initial schedule. The schedule with the highest rank

is selected and assigned as the initial schedule for the successful fault-scenarios (lines 14

- 20). A fault-scenario is termed successful with respect to a schedule if the throughput

constraint is satisfied with the given schedule. The successful fault-scenarios are discarded

from the list of fault-scenarios (Sf ). The process is repeated as long as the set Sf is

non-empty. The limited set of uni-processor schedules does not guarantee throughput

satisfiability for all fault-scenarios. If such a fault-scenario exists, Sf is never ∅ causing

the algorithm to be stuck in a loop. To avoid such situations, a check is performed (line

22 - 24) to limit the number of iterations. The maximum number of iterations is upper

bounded by the number of fault-scenarios. Every time the iteration count reaches this

value, the throughput constraint is decremented by a small quantity, ∆. The algorithm

thus allows for a graceful performance degradation. The granularity of this is based on

the execution time and solution quality trade-off.

5.6 Results

5.6.1 Experimental Setup

Experiments are conducted on synthetic and real application graphs on Intel Xeon 2.4

GHz server running Linux. Fifty synthetic applications are generated with the number of

actors in each application selected randomly from the range 8 to 25. Additionally, fifteen

real applications are considered with seven from streaming and the remaining eight from

non-streaming domain. The streaming applications are obtained from the benchmarks

provided in the SDF 3 tool [138]. These are H.263 Encoder, H.263 Decoder, H.264

Encoder, MP3 Decoder, MPEG4 Decoder, JPEG Decoder and Sample Rate Converter.

The non-streaming application graphs considered are FFT, Romberg Integration and
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VOPD from [142] and one application each from automotive, consumer, networking,

telecom and office automation benchmark suite [153]. These applications are executed

on a multiprocessor system consisting of 4 to 16 cores arranged in a mesh-based topology.

A heterogeneity of 3 (h = 3) is assumed for the cores i.e. each core can be of one of the

three different types. Four operating points are assumed for each core.

All algorithms developed in this work are coded in C++. Since this is the first work

on reactive fault-tolerance considering throughput, computation and communication en-

ergy optimization jointly, there are no existing works for comparison. However, results of

this work are compared with some of the existing reactive fault-tolerant techniques such

as the throughput maximization technique of [120] (referred to as TMax ), the migration

overhead minimization technique of [118] (referred as OMin), the energy minimization

technique of [41] (referred as EMin), the throughput constrained migration overhead

minimization technique of [75] (referred as TConOMin) and the throughput constrained

communication energy minimization technique of [74] (referred as TConCMin). The

technique proposed here minimizes total energy (computation and communication en-

ergy) with throughput as a constraint and is referred as TConEMin. The objective of

these comparisons is to establish the fact that the existing techniques when applied to

multiprocessor systems can lead to sub-optimal results in terms of energy consumption

and throughput per unit energy metric.

5.6.2 Complexity Analysis of Algorithms

There are three algorithms proposed in this work – fault-tolerant mapping generation

algorithm (Algorithms 9, 10 and 11), the initial mapping generation algorithm (Algo-

rithm 12) and the schedule generation algorithm (Algorithm 13). The complexity of

Algorithm 9 is calculated as follows. The number of iterations of the algorithm is de-

termined by the number of fault-scenarios with F faults. This is given by Equation 5.5.

NFS =

F∑
f=1

NcPf (5.5)

At each iteration, the genMinEnergyMap algorithm is invoked. The overall com-

plexity of Algorithm 9 is given by Equation 5.6 where C10 is the complexity of Algo-

rithm 10.

O(C9) = O (NFS ·O(genMinEnergyMap)) = O(NFS · C10) (5.6)
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The complexity of Algorithm 10 is governed by two factors – parameter maxIter and

the routine RemapActor(). Core and frequency assignments for an actors are accom-

plished in constant time. Assuming the RemapActor() routine to be executed η times

on average for each value of numIter, the complexity of Algorithm 10 is

C10 = maxIter · η ·O(RemapActor) (5.7)

The RemapActor() routine remaps each actor on each functional core at each fre-

quency to determine if the throughput constraint is satisfied and the energy is lower than

the minimum energy obtained thus far. If actor assignment operations take unit time and

the complexity of the MSDF 3 engine is denoted by O(MSDF 3), the overall complexity

of Algorithm 11 is given by Equation 5.8.

O(RemapTask) = C11 = O(Na ·Nc ·No ·O(MSDF 3)) (5.8)

Combining Equations 5.6, 5.7 and 5.8, the complexity of the fault-tolerant mapping

generation algorithm is given by equation 5.9.

C9 = O(NFS ·maxIter · η ·Na ·Nc ·No ·O(MSDF 3)) = O
(
NF+4
a ·No

)
(5.9)

whereNc ≤ Na, NFS can be upper bounded byNF
c (in big O notation) andO(MSDF 3) =

O (Na logNa +Na ·£), where £(≤ Na) is the average number of successors of an actor.

The complexity of the schedule generation algorithm (Algorithm 13) is calculated as

follows. The rank computation for all the uni-processor schedules can be performed in

O(Ns · NFS) time, where Ns is the number of uni-processor schedules constructed and

NFS is the number of fault-scenarios. The highest throughput rank can be selected in

O(Ns) and lines 15 - 20 can be performed in O(NFS ·O(SMSDF 3)). Finally, the outer

while loop (lines 3 - 25) is repeated NFS times in the worst case. Combining,

C13 = O
(
NFS · (Ns ·NFS +Ns +NFS ·O(MSDF 3))

)
= O

(
(Ns +O(MSDF 3)) ·N2F

a

)
(5.10)

5.6.3 Selection of Initial Mapping

Figure 5.4 plots the throughput and the energy performance of the proposed technique

in comparison with the three prior research works on reactive fault-tolerance. The start-

ing mapping selection criteria for these works are highest throughput for TMax [120],

migration overhead minimization with throughput constraint for TConOMin [75]), and

communication energy minimization with throughput constraint for TConCMin [74]),
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Figure 5.4: Energy and performance for different applications.

respectively. Additionally, to determine the energy overhead incurred in considering

throughput in the optimization process, the proposed technique is also compared with

the minimum energy starting mapping (EMin of [41]).

Figure 5.4(a) plots the normalized total energy consumption per iteration of 8 real-

life applications for the existing and the proposed techniques. The energy values are

normalized with respect to those obtained using TMax. As can be seen from the fig-

ure, the energy consumption of the proposed technique (TConEMin) is the least among

all the existing reactive fault-tolerant techniques. This trend is also true for all the

42 remaining applications considered (not shown explicitly here). On average, for all

the applications, TConEMin achieves 30%, 25% and 16% less energy as compared to

the TMax, TConOMin and TConCMin, respectively. The energy savings with respect

to TConCMin is lower as compared to the other two techniques, because TConCMin

minimizes communication energy component of the total energy, while the other two

techniques do not consider energy optimization. Finally, the TConEMin consumes 15%

more energy than EMin, which does not consider throughput degradation.

Figure 5.4(b) plots the normalized throughput of all the techniques. The through-

put constraint is shown by the dashed line in the figure. As previously indicated, the

EMin does not consider throughput degradation, and therefore, throughput constraint

is violated for most applications (a total of 45 out of all 50 applications).
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Table 5.1: Number of mappings in exhaustive search.

Actors
Homogeneous Heterogeneous

1 core type 2 core types 3 core types

2 2 6 12

4 15 94 309

6 203 2,430 12,351

8 4,140 89,918 681,870

10 115,975 4,412,798 48,718,569

14 190,899,322 20,732,504,062 461,101,962,108

0                                    n1T n2T T

Single 
Fault

Double 
Fault

lifetime

0 ≤ n1, n2 ≤ 1

Figure 5.5: Simulation environment.

Another aspect of the starting mapping generation algorithm is the execution time.

The reactive fault-tolerant techniques in [74,75,120] search the design space exhaustively

to select a starting mapping. Although this is solvable for homogeneous cores with a

limited number of actors and/or cores, the same becomes computationally infeasible,

even for small problem size, as the cores become heterogeneous. Table 5.1 reports the

growth in the size of the design-space (number of mappings evaluated) as the number of

actors scales. The number of cores in the table is same as the number of actors. If the

SDF 3 engine takes an average 10µS to compute the schedule of a mapping, the design-

space exploration time for 14 actors on 14 cores with three types of heterogeneous cores

is 54 days. The proposed heuristic solves the same problem in less than two hours.

5.6.4 Energy Savings With Core fault-scenarios

This section introduces the energy savings obtained during the overall lifetime of an

MPSoC as one or more permanent faults occur. Experiments are conducted with the

same set of applications (50 in total) and executed on an architecture with 2 × 3 cores.

The number of faults is restricted to 2. These are forced to occur after n1 · T and n2 · T

years, respectively from the start of the device operation, where T is the total lifetime

of the device and 0 ≤ n1, n2 ≤ 1. Figure 5.5 represents the simulation environment.

During 0 to n1 · T years, energy is consumed by the starting mapping, that is, the no-

fault mapping obtained in Subsection 5.6.3; during n1 · T years to n2 · T years and n2 · T

years to T years, energy is consumed by single fault-tolerant and the double fault-tolerant
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Figure 5.6: Lifetime energy consumption with single and double faults.

mappings, respectively. The cores affected by faults are selected randomly, and the results

presented here are an average of all single and double faults for all applications.

Figure 5.6(a) plots the result for single-fault scenario, that is, assuming only single

fault occurs during the lifetime of the device. The average energy per iteration of the

application is plotted with n1 varied from 0 to 1. A lower value of n1 implies a fault

occurs in the early life of the device, while a higher value indicates faults occurring at

later stages. Since EMin does not consider fault-scenarios, only reactive fault-tolerant

techniques (with throughput consideration) are included for comparison.

As can be seen from this figure, the energy consumption of TMax and TConOMin

techniques are comparable and is higher than that consumed by the other two techniques.

This is due to the non-consideration of computation and communication energy for op-

timization. Although TConOMin minimizes migration overhead (energy), this energy is

one-time overhead (i.e., incurred during fault) and is negligible compared to the total en-

ergy consumed in the lifetime of the device. TConCMin considers communication energy

and throughput jointly, and therefore the energy is lower than TMax and TConOMin

by average 23% and 20%, respectively. The proposed TConEMin minimizes the total

energy by achieving an average 22% savings as compared to TConCMin.

Figure 5.6(b) plots the result for double-fault scenarios. A fault-coordinate (n1,n2)
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Table 5.2: Execution time (in secs) of existing and proposed technique.

Actors

Homogeneous (1 core type) Heterogeneous (3 core types)

Existing Proposed Existing Proposed

4 cores 9 cores 4 cores 9 cores 4 cores 9 cores 4 cores 9 cores

4 110 1, 450 100 1, 210 150 2, 150 150 1, 900

8 630 6, 770 410 3, 100 1, 810 17, 440 720 5, 980

12 80, 100 − 1, 320 6, 600 2, 47, 000 − 2, 280 12, 700

16 − − 9, 700 10, 600 − − 16, 750 22, 400

refers to the time for the first and the second fault occurrence, respectively. Although,

experiments are conducted for all values of the fault-coordinates, results for a few of

the coordinates are plotted. Similar to the single fault results, the proposed TConEMin

also achieves 30% lower energy as compared to the existing techniques for multiprocessor

system with two faults. These results prove that energy-aware mapping selection for

fault-tolerance is crucial for minimizing the total energy consumption of a system.

5.6.5 Execution Time Comparison of the Proposed Mapping Algorithm

As established previously, all prior fault-tolerant works search for a suitable mapping

exhaustively for different fault-scenarios. A dynamic programming is proposed in [120]

to compute the minimum migration overhead incurred in moving from an initial mapping

to the fault-scenario mapping. An ILP approach is proposed as an alternative in [74,75]

to compute the minimum migration overhead. However, selection of the fault-tolerant

mapping is based on exhaustive search. Although dynamic programming and ILP are

computationally feasible for small problem sizes, the bottleneck is in the exhaustive map-

ping selection process (which grows exponentially with the number of actors and cores),

limiting their adaptability for large problem sizes and heterogeneous architectures. This

work addresses this problem by proposing a heuristic algorithm with worst-case complex-

ity, given by Equation 5.9. Table 5.2 reports the execution time of the existing approaches

in comparison with the proposed heuristic for homogeneous and heterogeneous architec-

tures with different actors and core count. For the existing approaches, the execution

time reported in the table includes mapping generation time, mapping evaluation time

(throughput computation), and dynamic programming (or ILP) time for fault-tolerant

mapping selection. For the proposed approach, the execution times is the sum of the

execution times of Algorithms 9 and 12.

There are a few trends to be followed from this table. First, the execution time for the

heterogeneous architecture is longer than that for the homogeneous architecture for all
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Table 5.3: Iterations with the proposed and simulated annealing based heuristic.

Actors

Proposed Technique Simulated Annealing Speedup

4 cores 9 cores
4 cores 9 cores 4 cores 9 cores

maxIter η Total maxIter η Total

4 100 5 500 100 5 500 2, 100 3, 900 4.2× 7.8×
8 100 6 600 100 8 800 4, 400 6, 100 7.3× 7.6×
12 100 8 800 100 12 1, 200 7, 300 12, 700 9.2× 10.6×
16 100 10 1, 000 100 14 1, 400 11, 700 21, 400 11.7× 15.3×

Table 5.4: Migration overhead performance.

Migration Total Migration Overhead Extra Energy Iterations

Energy (nJ) Energy (nJ) Savings (nJ) Per Iteration (nJ) to recover

H.264 Encoder

OMin 1.1× 109 7.2× 105 7× 108 3.2× 105 2, 188

TConOMin 1.7× 109 4.6× 105 1× 108 6× 104 1, 667

TConEMin 1.8× 109 4.0× 105 – – –

MP3 Decoder

OMin 7.0× 108 2.9× 106 1.7× 109 1.4× 106 1, 215

TConOMin 1.3× 109 2.0× 106 1.1× 109 5× 105 2, 200

TConEMin 2.4× 109 1.5× 106 – – –

actor-core combinations. This trend is the same for the proposed approach as well as the

existing approaches. This is due to the fact that with core heterogeneity, the execution

time of an actor is different on different cores, and therefore more actor-core combinations

are evaluated. Second, the execution time of the proposed approach is comparable with

that of the existing approaches for fewer actors (four in the table) due to the fewer number

of exhaustive mappings. Third, as the number of actors increases, the number of actor-

core combinations (mappings) grows exponentially, leading to an exponential growth in

the execution time for the existing approaches. Beyond 12 actors, these techniques fail

to provide a solution due to the high memory requirement (to store the mappings) of the

host CPU. The proposed technique scales well with the number of actors and cores. For

12 actors mapped on four cores of three different types, the proposed technique results in

100x reduction in execution time with less than 10% variation from the optimal solutions

obtained by solving the Equations 3.5 and 3.10 directly while satisfying the application

throughput requirement. Further, Table 5.3 reports the number of iterations performed

by the proposed algorithm in comparison with the simulated annealing-based heuristic

for different actor and core combinations. The maximum iterations for the proposed

algorithm is fixed at 100. This gives a satisfactory result quality (less than 1% deviation

from the simulated annealing result). As seen from this table, the proposed approach

achieves up to 15x reduction in the number of iterations and hence a correspondingly

lower execution time as compared to the simulated annealing-based heuristic.
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5.6.6 Migration Overhead Performance

Table 5.4 reports the migration overhead (measured as energy) and total energy of two

existing techniques (OMin and TConOMin) in comparison with the proposed technique

for two different applications (H.264 Encoder and MP3 Decoder) with 5 and 14 actors on

a multiprocessor system with 6 cores arranged in 2 × 3. The core heterogeneity is fixed

to 2. The other existing techniques (TMax, EMin and TConCMin) are not included

for comparison, as they do not optimize migration overhead. Columns 3 and 4 report

the migration overhead incurred when faults occur and the average energy consumption

per iteration of the application graph, respectively. These numbers are average of single-

and double-faults values. Column 5 reports the savings in migration overhead achieved

by OMin and TConOMin with respect to the proposed TConEMin. Column 5 reports

the extra energy (computation + communication) incurred in selecting the same two

techniques with respect to TConEMin.

As can be seen from the table, significant savings in migration overhead are possible

with OMin technique. However, this technique is associated with an energy penalty

(Column 6). For application H.264 Encoder, for example, the migration overhead savings

in OMin is 7×108nJ , while the energy penalty is 3.2×105nJ per iteration. As established

previously, migration is one-time overhead and energy is consumed in every iteration of

the application graph (both pre- and post-fault occurrence). Therefore, the savings in

migration overhead is compensated in 7×108

3.2×105 = 2, 188 iterations (≈ 146s with a 500MHz

clock at encoding rate of 15 frames per sec). This is shown in column 7 of the table.

Interpreting this in reverse manner, selecting TConEMin as the fault-tolerant technique

results in an extra migration overhead of 7 × 108nJ , which is amortized in the next

(post-fault) 2, 188 iterations of the application graph.

For most of the multimedia applications, actors are executed periodically. Examples

of these applications on a mobile phone include decoding of frames while playing video

and fetching emails from server. Typically, these applications are executed countably

infinite times in the entire lifetime of the device. If N denotes the total iterations of

a device post-fault occurrence, then the first 2, 188 iterations will be used to recover

the migration overhead loss, while the remaining (N − 2188) iterations will fetch energy

savings (3.2 × 105nJ per iteration). As N → ∞, the energy savings obtained = (N −

2188) × 3.2 × 105 ≈ N × 3.2 × 105nJ . This substantial energy gain clearly justifies the
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Figure 5.7: Throughput-energy joint performance for real-life applications.

non-consideration of migration overhead in the fault-tolerant mapping selection.

5.6.7 Scalable Throughput Performance

Streaming multimedia applications can be broadly classified into two categories – those

benefiting from scalable QoS and those requiring a fixed throughput. Majority of the

streaming applications, such as video encoding/decoding, falls in the latter category. The

results of the previous sections are based on performance (throughput) as constraint.

However, to signify the importance of the proposed technique for scalable throughput

applications, a metric is defined (throughput per unit energy). The proposed and the

existing techniques are compared based on this metric (Figure 5.7). Experiments are

conducted with a set of six real applications on an architecture with the number of cores

varying from two to eight. Core heterogeneity of the architectures is limited to two

as the existing techniques fail to provide a solution for the applications with higher core

heterogeneity. The results reported in the figure are the average of all single- and double-

fault scenarios. A common trend from these plots is that for most applications (except
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Figure 5.8: Normalized throughput using the proposed self-timed execution.

H.263 Encoder), the throughput per unit energy initially increases with the number of

cores. However, beyond a certain core count, the throughput per unit energy decreases.

This behavior is the same for all the techniques, that is, TMax, TConOMin, TConCMin

and TConEMin. As the number of cores increases, the throughput of an application

increases. At the same time, the two energy components (computation and communica-

tion) also increase. For lower core count, the growth in throughput dominates, causing

an increase in the overall throughput per unit energy. As the core count increases beyond

six cores (four cores for Romberg Integration and FFT ), the energy growth dominates

over throughput growth, and therefore, the throughput per unit energy drops. Although

H.263 Encoder shows a growth in throughput per unit energy up to 8 cores, the drop-off

point is observed for TConEMin with 16 cores. However, the results are omitted, as the

exhaustive search based existing techniques – TMax, TConOMin and TConCMin fail to

give a solution for that value of core count.

As can be seen, the throughput per unit energy of TConEMin is the highest among

all existing techniques, delivering on average 30% better throughput per unit energy.
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5.6.8 Throughput Performance of the Proposed Scheduling

Figures 5.8a - 5.8c plot the throughput obtained in the proposed self-timed execution-

based scheduling technique for six fault-scenarios (three single and three double) of ap-

plication MP3 Decoder as the number of cores is varied from 4 to 14. There are two

initial uniprocessor schedules considered (Ns = 2). The multiprocessor throughput ob-

tained using these uni-processor schedules are normalized with respect to the throughput

obtained using the SDF 3 tool and are plotted in Figures 5.8a and 5.8b.

As can be seen from Figure 5.8a (with initial schedule as S1), for all fault-scenarios,

the normalized throughput decreases with an increase in the number of cores. This is

expected, as uniprocessor schedules fail to capture the parallelism available with multiple

cores. Among the six fault-scenarios considered, the throughput degradation for fault-

scenario (4) is the maximum (≈ 30%), while for others, this is less than 20%. Similarly,

for Figure 5.8b (corresponding to initial schedule S2), fault-scenarios (1) and (4-3) suffer

the maximum throughput degradation of 25%. If the two schedules (S1 and S2) are

considered to be available simultaneously and the one which gives the highest throughput

for a fault-scenario is selected as the initial schedule, the throughput degradation can be

bounded (predicted) at design-time. This is shown in Figure 5.8c, where S1 is selected

as the initial schedule for fault-scenarios (1) and (4-3) and S2 as the initial schedule

for the remaining fault-scenarios. The maximum throughput degradation obtained using

this technique is 18%. Figure 5.8d plots the throughput degradation obtained as the

number of initial schedules is increased from two to ten for five different applications.

The results reported in this plot are the average of all single- and double-fault-scenarios.

As can be seen from this figure, the throughput degradation decreases with an increase

in the number of initial schedules. On average, for all five applications considered, the

throughput degradation is within 5% from the throughput constructed using SDF 3 with

10 initial schedules. A point to note here is that choosing more initial schedules results

in an increase in the storage complexity. Results indicate that Ns = 10 (i.e 10 initial

schedules) offers the best trade-off with respect to storage and throughput degradation.

5.6.9 Scheduling Overhead

Table 5.5 reports the schedule storage overhead (in Kb) and the schedule computation

time using the proposed self-timed execution technique in comparison with the storage-
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Table 5.5: Schedule storage overhead and computation time.

Parameters
H.263 Encoder MP3 Decoder

Storage Construction
Proposed

Storage Construction
Proposed

based based based based

Mapping and schedule storage overhead (Kb) 892.1 68.6 68.6 1464 91.5 91.5

Run-time schedule construction time (s) 0 0.42 0.027 0 3.06 0.035

Design-time schedule construction time (s) 34.44 34.44 2.75 80 80 3.66

based and the construction-based techniques for two applications (H.263 Encoder and

MP3 Decoder) with 5 and 14 actors on an architecture with 12 cores arranged in 3 ×

4. The results are reported for three-fault tolerant systems. The construction-based

and the proposed technique require storing the fault-tolerant mappings only, while the

storage-based technique stores the schedule of actors on all cores and for all fault-scenarios

alongside the fault-tolerant mappings.

The run-time storage construction overhead is 0 for the storage-based technique be-

cause schedule needs to be fetched from a database6. The construction-based technique

results in a execution time of 0.4s. The construction time increases exponentially with

the number of actors and/or cores (Column 3 and 6). This large schedule-construction

time could potentially lead to deadline violations. The proposed technique results in a

linear growth of execution time and is scalable with the number of actors and cores.

Finally, the reported execution-time of the design-time analysis phase for the storage-

based and the construction-based techniques involves construction of the schedule for all

fault-scenarios. Although schedules are not stored in the construction-based technique,

they are still computed at design time for verification. The corresponding number for the

proposed technique denotes the time for constructing initial schedules only. On average,

for all 50 applications considered, the proposed technique reduces storage overhead by

10x (92%) with respect to the storage-based technique and execution time by 20x (95%)

as compared to the construction-based technique.

5.7 Remarks

This work presented a design-time technique to generate mappings of an application on

an architecture for all possible core fault-scenarios. The technique minimizes the en-

ergy consumption while satisfying the application throughput requirement. Experiments

conducted with real and synthetic application graphs on a heterogeneous multiproces-

6Fetching of a schedule from a database is faster.
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sor platform with different core counts clearly demonstrate that the proposed technique

is able to minimize the energy consumption by 22%. Additionally, the technique also

achieves 30% better throughput per unit energy performance as compared to the exist-

ing reactive fault-tolerant techniques. A scheduling technique is also proposed based on

self-timed execution to minimize schedule construction and storage overhead. Experi-

mental results indicate that the proposed approach achieves 95% less time at run-time

for schedule construction. This is crucial in meeting real-time deadlines. Finally, the

scheduling technique also minimizes the storage overhead by 92%, which is an important

consideration, especially for multimedia applications.
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CHAPTER 6

Run-time Adaptations for Lifetime Improvement

6.1 Introduction

As established in previous chapters, energy consumption and reliability are two of the

most important optimization objectives in modern multiprocessor systems. There is a

strong interplay between these two objective functions. Reducing the temperature of a

system by efficient thermal management leads to a reduction of leakage power. On the

other hand, a reduction of power dissipation (by controlling the voltage and frequency

of operation) leads to an improvement in the thermal profile of a system. However,

too frequent voltage and frequency scaling can lead to thermal cycles causing stress

related reliability concern. This has attracted a significant attention in recent years to

investigate on intelligent techniques, such as the use of machine learning, to determine

the relationship between temperature, energy and performance and their control using

voltage and frequency switching. The existing learning-based approaches suffer from the

following limitations.

First, modern multicore systems switch between applications exhibiting wide per-

formance and workload variations, and therefore the thermal behavior of these systems

vary both within (intra) and across (inter) applications. Although intra-application ther-

mal variations are considered in existing studies, inter-application variations are not ad-
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dressed. Second, the existing studies focus on average and peak temperature reduction;

thermal cycling is not accounted. Last, the existing adaptive techniques are either imple-

mented on a simulator or rely on time-consuming thermal prediction from the HotSpot

tool [68], limiting their accuracy and scalability.

In this work, the above gaps are addressed, and a dynamic thermal management

approach is presented for multicore systems that adapts to thermal variations within

(intra) and across (inter) applications. Fundamental to this approach is a run-time sys-

tem, which interfaces with the on-board thermal sensors and uses reinforcement learning

algorithm to learn the relationship between the mapping of threads to cores, the voltage-

frequency of a core, and its temperature. The aim is to control the peak temperature,

average temperature, and the thermal cycling to achieve an extended mean time to failure

(MTTF). This work makes the following contributions:

1. inter-and intra-application thermal management using thread-to-core allocation

(through CPU affinity1) and dynamic frequency control (through CPU governors2);

2. separation of the temperature sampling interval from the decision interval of the

conventional reinforcement learning algorithm to accurately model (and hence con-

trol) the average temperature and thermal cycling; and

3. implementation of the run-time system incorporating the machine learning algo-

rithm on a real platform.

The proposed approach is implemented on an Intel quad-core platform running Linux

kernel 3.8.0. A set of multimedia applications from the ALPBench suite [154] are ex-

ecuted on the platform. Results demonstrate that the proposed approach minimizes

average temperature and thermal cycling, leading to a significant improvement in MTTF

as demonstrated in Section 6.5. Additionally, the static and the dynamic energy con-

sumption are reduced by 11% and 10%, respectively.

The remainder of this chapter is organized as follows. Motivation of the thermal

management for multicore systems is provided in Section 6.2. This is followed by an

overview of the proposed reinforcement learning-based thermal management approach in

Section 6.3 and the implementation details in Section 6.4. Evaluation of the proposed

technique is presented next in Section 6.5, and the chapter is concluded in Section 6.6.

1CPU affinity enables the binding of a thread of an application to a physical core or a range of cores.
2CPU governors are power schemes for the CPU, deciding the frequency of operation of the cores.
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PRiME Thermal Management
Case Study: face recognition and MPEG on 2 cores

Face recognition
Thermal cycles: 
High
Average Temperature: 
High
Reliability Problem: 
All

Mpeg encoding
Thermal cycles: 
Low
Average Temperature: 
Low
Reliability Problem: 
None

Face recognition
Thermal cycles: 
Less
Average Temperature: 
High
Reliability Problem: 
NBTI, EM

Mpeg encoding
Thermal cycles: 
High
Average Temperature: 
Low
Reliability Problem: 
Thermal Stress  TDDB

Linux thread assignment
User thread assignment

Figure 6.1: Thread-to-core affinity influences thermal profile.

6.2 Motivational Example

Thermal management using voltage and frequency control is already demonstrated in

prior works (e.g. [135]). To establish the importance of thread allocation on the thermal

behavior of applications, an experiment is conducted on an Intel quad-core platform

by executing two multi-threaded (6 threads) applications (face recognition and mpeg2

encoding) back-to-back. The thermal profiles obtained using Linux’s default thread-to-

core allocation and scheduling is shown in red in Figure 6.1. From the thermal profiles

it can be seen that face recognition is characterized by a higher average temperature

with lower thermal cycling leading to peak temperature related reliability issues, such as

electro-migration (EM) and negative bias temperature instability (NBTI). Application

mpeg2 encoding on the other hand exhibits lower average temperature with higher thermal

cycling leading to thermal fatigue and its associated reliability problems.

This difference in thermal behavior of the two different applications can be explained

as follows. The thread workloads of the face recognition application are characterized by

longer duration of thread-independent high activity cycles followed by shorter duration

of inter-thread dependent low activity cycles. When these threads are allocated to cores,

the longer independent high-activity cycles of a thread overlap partially with the shorter

dependent low-activity cycles of other threads. This is due to the Linux’s default thread

allocation, where threads are often migrated to balance load on the architecture. This

leads to a higher temperature with lower thermal cycling. For the mpeg2 encoding ap-

plication, the thread-independent high-activity cycles are shorter in duration, while the

inter-thread dependent cycles are relatively longer compared to the face recognition ap-
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plication. When these threads are allocated by Linux, only few of the available cores are

being used. The default allocation results in a combination of independent high-activity

cycles (of more than one threads), which overlap with each other (leading to a higher

temperature) and similarly, the longer low-activity inter-thread dependent cycles overlap

(leading to a lower temperature). This results in alternating high and low temperatures

triggering high thermal cycling.

Next, the same experiment is repeated by arbitrarily fixing the assignment of threads

to cores (two cores execute two threads each and the other two cores execute one thread

each) and leaving only the thread scheduling decision to the operating system. This is

performed by changing all thread’s affinity masks, forcing the Linux kernel to migrate

these threads to the cores specified. The new thermal profiles are shown in blue in the

same figure. As can be seen from the plot, this arbitrary thread assignment results in

higher average temperature with higher thermal cycling for the face recognition applica-

tion triggering all temperature related reliability concerns. This is because when threads

are fixed to cores, the longer high-activity cycles of different threads overlap and so do the

shorter low-activity cycles, resulting in higher temperature and higher thermal cycling.

When the same control is applied for mpeg2 encoding, the shorter high-activity cycles are

not combined but are overlapped with each other. The temperature increases, but for a

shorter duration. This results in reduction of both the average temperature and thermal

cycling thereby improving the lifetime. This example demonstrates two key aspects –

thermal profile varies with application; and thread allocation influences thermal profile.

This motivates the importance of an adaptive algorithm to learn the thermal behavior

of an application and control it using appropriate thread-to-core assignment.

6.3 Proposed Thermal Management Approach

Figure 6.2a visualizes the three design layers typical of a modern multicore system. A

general overview is provided on the interaction of these three layers.

Application Layer: The application layer is composed of a set of applications, which

are executed on the system. Every application is characterized by a performance re-

quirement, which determines the quality-of-service for the corresponding application.

Table 6.1 reports the performance metric for some of the common applications for mod-
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(a) Three design layers
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S2 8 41 ‐45 ‐10

Detect 
Intra/Inter App 

Thermal 
Variation
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Controls CPU affinity 
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/* Affinity mask  & Governor*/
unsigned long mask  = cpu_affinity; 
pthread_setaffinity_np(pthread_self(), 
sizeof(mask),&mask);
cpufreq‐set –d 240000 –c 0 –g userspace

(b) Q-learning based thermal optimization

Figure 6.2: Proposed thermal management approach.

Table 6.1: Performance metric of the common multicore applications.

Applications Performance metric

MPEG2, MPEG4, H264 time to encode/decode a video frame

JPEG Enc/Dec time to encode/decode an image

FFT/iFFT time for 256 Fourier transforms

AES, SHA time to hash 2048-byte message

basicmath, gzip, bitcount time for 100 operations

ern multicore systems. An application is annotated to include its timing requirement,

which is communicated to the operating system through the application programming

interface. Additionally, the source code of the application is modified to insert break-

points in order to signal the operating system to recalculate the thread affinities and

the voltage-frequency values for the next execution interval. For video/image applica-

tions, breakpoints are inserted after encoding or decoding of every frame. Similarly for

FFT/iFFT, the breakpoint interval is every 256 Fourier transforms. Figure 6.3 shows

an example breakpoint-based program execution. The timing overhead τo incorporates

the following: the time for the Q-learning algorithm to generate the new thread affinities

and voltage-frequency values; time to migrate the application threads; and the time to

set the voltage and frequency on the CPU cores through the operating system.

Operating System Layer: The operating system layer is responsible for coordinat-

ing the application execution on the hardware. Of the different responsibilities of the

operating system, such as scheduling, memory management, and device management,
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Figure 6.3: Breakpoints-based task execution.

the focus here is on the cross-layer interaction, which forms the background of the pro-

posed machine learning-based thermal management. At every application breakpoint,

the operating system stalls the application execution and triggers the proposed machine

learning algorithm, which generates the new thread affinities and voltage-frequency val-

ues for the CPU cores. The operating system applies the new voltage-frequency values

on the CPU cores using the cpufreq-set utility. The application threads are migrated

to the corresponding cores, as specified using the affinity masks, using the operating sys-

tem command pthread setaffinity np. The application execution interval is used

to monitor the performance and the temperature. This interval is also referred to as

decision epoch in the machine learning terminology. Throughout the rest of this work,

the execution interval and the decision epoch are used interchangeably.

In most existing works on Q-learning based thermal management, the decision epoch

is used to sample the temperature; actions are selected based on the instantaneous tem-

perature from the sensor, which is not a true indication of the average temperature or

thermal cycling in the interval. Since temperature-related reliability is governed by aver-

age temperature and thermal cycling, which need to be measured over a period of time,

the temperature sampling interval is lower than than of the decision epoch for this work.

Hardware Layer: The hardware layer consists of the processing cores with thermal

sensors and performance monitoring unit (PMU) to record the performance statistics.

Of the different performance statistics available, this work considers CPU cycles, which

gives a fair indication of the workload of a given application. The temperature samples

are collected continuously by the operating system at the temperature sampling interval.

The PMU readings are collected at every breakpoint and subsequently, the readings are

reset to allow performance recording for the next execution interval. Finally, before the

start of the next execution interval, the following sequence of events takes place:
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• the application threads are migrated to the corresponding cores as specified using

the pthread setaffinity np command;

• the frequency value, set by the operating system using the cpufreq-set com-

mand, is converted to a corresponding CPU clock divider setting;

• the divider settings are written into appropriate CPU registers; and

• the divided CPU clock is used to execute the migrated thread for the next execution

interval.

6.4 Q-learning Implementation

The Q-learning [155] based thermal management approach is integrated in the operating

system layer as discussed before. To give more insight into the approach, Figure 6.2b

shows its internal details. The different components of the proposed approach are dis-

cussed next starting with a general overview of the Q-learning algorithm.

6.4.1 General Overview

The Q-learning is a reinforcement learning technique used to find the optimum policy of

a given Markov Decision Process (MDP). A simplistic view of the Q-learning is shown

in Figure 6.4. The algorithm consists of a learning agent that works by observing the

state (s) of the environment and selecting a suitable action (a) to control the state.

The learning is quantified and stored in a table (referred to as Q-Table in machine

learning terminology) corresponding to every state-action pair. Every entry of this table,

corresponding to the state-action pair (s, a), represents the reward (or penalty, if the

entry is negative) obtained by selecting action a when the environment is in state s. The

algorithm works by always selecting the action with the highest reward for any observed

state of the environment.

In the context of multicore thermal management, the learning philosophy is as follows:

S1: determine the previous state-action pair;

S2: update the Q-Table entry for this state-action pair based on the current state;

S3: select the thread affinities and voltage-frequency values based on the current state;
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States VF1 VF2 VF3 VF4

S0 121 ‐65 ‐11 ‐33

S1 ‐28 ‐15 1 19

S2 8 41 ‐45 ‐10

AgentEnvironment

state

action

Figure 6.4: Basic Q-Learning.

S4: apply the selected action for the next execution interval.

Referring back to Figure 6.2b, step S1 is implemented in the Calculate Reward block,

step S2 in the Q-learning block, step S3 is implemented in the Select V-F Settings block

and finally step S4 in the Operating System block. The block Detect Intra/Inter App

Thermal Variation is used to update the Q-Table.

6.4.2 Determine State

As established in Section 6.3, the Q-learning based thermal management is triggered at

every application breakpoint. The Determine State block of the approach determines

the current state of the system from the temperature readings of the thermal sensors.

These temperature readings are used to calculate the thermal aging A (refer to Equa-

tion 2.21) and thermal stress S (refer to Equation 2.11). To limit state space explosion,

the working range of these parameters are divided into Na and Ns disjoint intervals,

respectively. Specifically, stress is the set S = {(0, s0], (s0, s1], · · · , (sNs−1, sNs ]} and

the symbol ŝi is used to represent the interval (si, si+1]. Similarly, aging is the set

A = {(0, a0], (a0, a1], · · · , (aNa−1 , aNa ]} and the symbol âi is used to represent the inter-

val (ai, ai+1]. The environment is represented as E : (A× S).

6.4.3 Action Space of the Q-learning Algorithm

As shown in Section 6.2, the thermal behavior of a multicore system is influenced by

CPU affinity and the voltage-frequency settings. These forms the action space of the

Q-learning algorithm, which is represented by A : (M×V) whereM is the set of thread

affinity mappings and V is the set of governors.
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6.4.4 Q-learning Algorithm

The Q-learning block in Figure 6.2b is responsible for updating the Q-Table entries. The

reward or penalty for selecting an action at a state is calculated at the next breakpoint

based on the goodness of the selected action. In other words, at each breakpoint, the

state-action pair of the last execution interval is evaluated. For this, the last selected

action is read in a local variable laction, through the operating system commands

cpufreq-info and pthread getaffinity np. The last state is stored in another

local variable lstate. This variable is updated with the current state, once its old value

is used to update the Q-Table entry. The goodness of the last action in the last state is

measured as reward (or penalty if it is negative) and is calculated based on

• the performance slack i.e. the difference between the time required to execute

the last execution interval and the timing requirement specified in the annotated

application source code; and

• the thermal safety i.e. the current thermal state of the system.

Mathematically, this is represented as

r =


−ŝi × âi if (ŝi = ŝNs) or (âi = âNa)

f(âi, ŝi) + (Pc − P ) otherwise

(6.1)

where P is the performance, Pc is the performance constraint, and the function f is

determined empirically as f = (a.K1.stress + b.K2.aging), where a and b are relative

importance of stress and aging : For mpeg (large thermal cycles), a > b and for tachyon

(high average temperature), b > a. Two sets of a and b values are used based on the

mean of stress and aging. K1(K2) is the learning weight and is a Gaussian function of

the stress (aging) values. This distribution assigns lower rewards to thermally unstable

as well as the thermal stable states and thus, allows the algorithm to explore other states

and prevent Q-Table clustering.

For the design of the reward function, two cases are considered. If the stress or aging

falls in the unsafe zone (the last interval), the decision is penalized. This is indicated

with a negative value of the reward function. For all other cases, the reward function

is composed of performance penalty and the thermal safety of the state. Specifically, if

the performance requirement is not satisfied, (Pc − P ) is negative and the reward (or
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penalty) is governed by the function f . Finally, rewards are guaranteed if an action leads

to a thermal safe state while satisfying the performance requirements.

The reward value of Equation 6.1 is used to update the Q-table entry using the

following equation.

Q(lstate,laction) = Q(lstate,laction) + α · ri (6.2)

where α is the learning rate. One of the interesting feature of the Q-learning algorithm is

its three phases of operation. This is shown in Figure 6.5. These three phases are explo-

ration, exploration-exploitation, and exploitation. In the exploration phase, the algorithm

learns the goodness of all the different actions. Therefore, the table entries are updated

with all of the calculated reward values (Equation 6.1). This phase is characterized by

α = 1. On the other hand, in the exploitation phase, the algorithm selects the action

based on the previous learning. Therefore, the table entries are not updated with the

reward value. This phase is characterized by α = 0. In between these two phases, the al-

gorithm remains in the exploration-exploitation phase. In this phase, the algorithm learns

the goodness of only the good actions (outcome of the exploration phase) to evaluate it

further. This phase is therefore characterized by 0 < α < 1.
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Figure 6.6 plots the change in the alpha values for these three phases against the

number of invocations of the Q-learning algorithm i.e. the number of breakpoints. The

exploration phase is active for 0 to n1 breakpoints, the exploration-exploitation phase is

active for n1 to n2 breakpoints and the exploitation phase is active beyond n2 breakpoints.

Let N denote the total number of breakpoints to be inserted in the application execution

(refer to Figure 6.3). The following lemma can be stated.

Lemma 1 The convergence of any Q-learning algorithm is guaranteed if N ≥ n2.

In the context of this work, the above lemma states that for thermal management using Q-

learning algorithm, the number of breakpoints to be inserted in the application execution

should be such that the algorithm reaches the exploitation phase. However, too many

breakpoints during a small application execution will incur performance penalty. The

performance parameters in Table 6.1 are defined based on these considerations.

The state transition diagram of the unmodified Q-learning is shown in Figure 6.5

with the dark solid lines. To introduce autonomous reaction of the algorithm to intra-

and inter-application thermal variations, the state transition diagram is modified using

the dotted lines as shown in the figure. When an intra-application thermal variation is

detected, the modified algorithm transits to the exploration-exploitation phase and the

α value is changed accordingly. On the other hand, for inter-application variation, the

modified algorithm transits to the exploration phase resetting α = 1. The detection of

the intra- and inter-application thermal variations is discussed next.

6.4.5 Detection of Intra- and Inter-Application Thermal Variations

To incorporate intra- and inter-application thermal variations, moving averages of the

stress and the aging are determined at every breakpoint. The change in the moving

averages are identified as ∆MAs and ∆MAa. Two thresholds are maintained for each

of these quantities identified with the superscript L and U , respectively. A change in the

moving average is considered as intra-application variation, if the change is greater than

the lower threshold and lower than the upper threshold (for example when ∆MALs ≤

∆MAs < ∆MAUs ). On the other hand, the change in the moving average is considered

as inter-application variation, if the change is greater than the upper threshold.
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Table 6.2: Temperature (◦C) of the proposed approach.

Benchmarks Average Temperature (◦C) Peak Temperature (◦C)

Application Data Linux [158] Ge et. al [135] Proposed Linux [158] Ge et. al [135] Proposed

tachyon
set 1 69.2 52.6 50.6 71.5 63.0 60.0

set 2 50.5 44.5 43.8 57.3 56.3 52.0

set 3 50.8 44.7 41.6 57.8 54.5 48.8

mpeg dec
clip 1 36.0 34.0 34.2 42.7 41.3 39.0

clip 2 35.6 34.4 34.2 42.3 42.0 39.3

clip 3 34.3 34.4 34.0 43.0 39.7 44.3

mpeg enc
seq 1 33.7 34.1 32.6 41.0 40.7 40.3

seq 2 34.4 33.5 32.3 41.3 39.7 41.7

seq 3 33.2 33.7 31.8 40.3 40.0 41.0

6.5 Results

The proposed run-time approach is validated experimentally on an Intel quad-core CPU

running Linux kernel 3.8.0. Performance is monitored using perf [156]; temperature

is measured by sampling the thermal sensors directly; power/energy consumption is

recorded using likwid powermeter [157]. A set of multi-threaded multimedia applica-

tions are considered from the ALPBench [154] benchmark suite. These benchmarks are

mpeg enc, mpeg dec, face recognition, sphinx, and tachyon. These are representative of

the multimedia workloads for most multicore systems. The number of threads in each of

these applications is set to six. The device parameters used for computing the aging and

stress of a core are the same as that used in [97,126].

6.5.1 Intra-Application

Table 6.2 reports the average temperature and peak temperature and Table 6.3 reports

the MTTF due to average temperature (equivalently aging) and thermal cycling (equiva-

lently stress) of the proposed technique in comparison with Linux’s ondemand [158] and

the technique proposed in [135]. Results are reported for three different applications,

each of which is executed for three sets of input data. Furthermore, the minimum of the

two MTTF values are also reported in Table 6.3 (columns 9 - 11).

There are a few trends to follow from this table. First, the technique in [135] minimizes

instantaneous temperature achieving a lower aging (higher MTTF) than Linux (refer to

Table 6.2 columns 3-4 & Table 6.3 columns 6-7). This signifies the importance of the

thermal management feature for operating systems. However, thermal cycling is not

accounted for in this technique and therefore does not guarantee reduction of stress.

This is evident from the thermal cycling-related MTTF values (Table 6.3 columns 3-4)

for scenarios such as tachyon on set 1 and mpeg dec on clip 1, where the MTTF values
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Table 6.3: MTTF (in years) of reinforcement learning algorithm for three applications.
The scaling parameters for computing MTTF are so selected such that the MTTF of an
unstressed core (i.e. an idle core) is 10 years.

Benchmarks Thermal cycling MTTF Thermal aging MTTF Overall MTTF

Application Data
Linux Ge et al.

Proposed
Linux Ge et al.

Proposed
Linux Ge et al.

Proposed
[158] [135] [158] [135] [158] [135]

tachyon
set 1 7.1 2.3 5.5 0.7 3.0 3.6 0.7 2.3 3.6

set 2 2.8 4.3 5.3 2.6 4.5 4.8 2.6 4.3 4.8

set 3 1.3 3.8 6.5 2.4 4.1 5.5 1.3 3.8 5.5

mpeg dec
clip 1 2.1 0.8 6.4 3.7 4.5 4.4 2.1 0.8 4.4

clip 2 1.1 0.9 4.7 3.8 4.3 4.4 1.1 0.9 4.4

clip 3 1.6 3.4 3.7 4.3 4.2 4.5 1.6 3.4 3.7

mpeg enc
seq 1 4.3 4.4 5.2 4.6 4.5 5.2 4.3 4.4 5.2

seq 2 3.9 6.2 4.8 4.3 4.7 5.4 3.9 4.7 4.8

seq 3 4.6 5.1 5.1 4.9 4.6 5.7 4.6 4.6 5.1

obtained using [135] are lower than that of Linux.

Second, the proposed reinforcement learning algorithm minimizes the average tem-

perature by upto 18.6oC and the peak temperature by upto 11.5oC. This reduction

leads to an improvement in MTTF due to aging by upto 5x (average 82%) as reported

in Table 6.3 column 8. For applications such as mpeg dec, the improvement is less as

the average temperature is usually lower, leading to a limited scope to further improve

aging. The thermal cycling effect dominates in this application. For other applications

such as tachyon, the improvement is significant due to the large scope for improving both

aging and stress. Third, the proposed adaptive algorithm also minimizes thermal cycling

which is not considered in Linux and [135]. This is highlighted in Table 6.3 column 5. An

important point to note is that, for the tachyon application with set 1 data, the MTTF

due to stress using Linux’s default thread assignment is higher (7.1 years); however, the

MTTF due to aging is lower (0.7 years). The proposed technique balances the two ef-

fects and improves the MTTF due to aging by 5x with less than 25% sacrifice in MTTF

due to stress (while still maintaining a satisfactory MTTF of 5.5 years). For all other

applications and data sets, the proposed reinforcement learning algorithm outperforms

Linux in terms of thermal cycling by an average 2.3x.

Last, the proposed approach outperforms [135] both in terms of aging (an average

13% higher average temperature related MTTF) and stress (an average 2x higher thermal

cycling related MTTF). While the improvement of thermal cycling is expected (as this is

incorporated explicitly in the proposed approach), the improvement in aging is due to the

following. First, the decoupling of the temperature sampling interval from the decision

epoch (enabling a finer control on the average temperature); second, careful choice of the
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Figure 6.7: Inter-application results.

design parameters as demonstrated in Figure 6.9 and 6.10.

6.5.2 Inter-Application

Figure 6.7 plots the normalized MTTF due to thermal cycling obtained using the pro-

posed technique in comparison with that obtained using the modified technique of [135]

(referred in this figure as Modified Ge et al.) for six different inter-application scenarios.

The MTTF values are normalized with respect to the MTTF obtained using Linux’s on-

demand governor. Furthermore, the technique of [135] is modified to consider application

switching using explicit indication from the application layer. The proposed approach

however, detects application switching autonomously (without communication from the

application layer) and performs re-learning (as discussed in Section 6.4).

There are six inter-application scenarios considered in this experiment. A scenario

appA-appB indicate that appA is executed first followed by application appB. As can be

seen from the figure, the technique of Ge et. al [135] results in higher MTTF than Linux.

For some inter-application scenarios such as mpegdec-tachyon and tachyon-mpegdec, the

improvements are less (≈ 8%). For other inter-application scenarios, the improvement is

higher. On average for all the scenarios, [135] increases MTTF by 80% as compared to
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(a) Exploration phase of the learning algorithm. (b) Exploitation phase of the learning algorithm.

Figure 6.8: Phases of the Q-learning algorithm.

Linux. The approach proposed in this work outperforms both Linux and that of [135]

in terms of thermal cycling, achieving 5x improvement with respect to Linux and 3x im-

provement with respect to [135]. A point to note from the figure is that, the MTTF im-

provement (over [135]) using the proposed approach, increases with frequent application

switching. This is evident from the higher MTTF improvement of 3.5x obtained for the

three-application scenarios (mpegdec-tachyon-mpegenc and tachyon-mpegenc-mpegdec) as

compared to improvements obtained for the four other two-application scenarios. To con-

clude, the proposed approach improves thermal cycling related MTTF significantly for

inter-application scenarios. The improvement increases with an increase in application

switching (typical of a modern multicore system).

6.5.3 Phases of the Reinforcement Learning Algorithm

To further demonstrate the temperature profile obtained using the proposed algorithm,

Figures 6.8a and 6.8b plot the exploration and the exploitation phases, respectively in

comparison with Linux’s popular and default ondemand governor for the face recognition

application. As can be seen, at the beginning of the exploration phase, the temperature

obtained using the proposed algorithm is comparable to that obtained using Linux. This

is because, at this phase, the Q-learning algorithm explores the impact of CPU affinity

and operating frequency choices on the temperature of a core. However, when the al-

gorithm learns the impact of these parameters on temperature (i.e. in the exploitation

phase), the CPU affinities and operating frequencies are selected such that the average

temperature is reduced (Figure 6.8b).
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Figure 6.9: Impact of temperature sampling interval (sec).

6.5.4 Selection of Design Parameters

Figure 6.9 plots the impact of varying the temperature sampling interval on the thermal

stress and the performance, for the tachyon application. The figure also plots the auto-

correlation of temperature samples, which is a measure of how much the temperature

values change across consecutive samples. Specifically, a high auto-correlation indicates

a small difference between the consecutive thermal data. As can be seen from the figure,

the auto-correlation is high for low sampling interval. This is expected because tem-

perature variation is usually slower, being dependent on the thermal property of silicon,

the ambient temperature, and the cooling technology used. The MTTF value increases

with an increase in size of the sampling interval. This is, however, an over estimation

of the actual MTTF value (corresponding to the sampling interval of 1 sec). This over-

estimation is due to the loss of temperature accuracy with increasing sampling interval,

resulting in a low stress and hence high MTTF. Finally, the number of cache-misses and

page faults decrease with an increase in the sampling interval, clearly signifying the per-

formance improvement. Based on these trade-offs, a sampling interval of 3 sec is selected

for the tachyon application. Similarly, the sampling interval for other applications are

determined. An interval of 3 sec provides the best trade-off for most applications. In

140



0 20 40 60 80
1

1.05

1.1

1.15

1.2

Decision epoch (s)

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

(a)

 

 

0 20 40 60 80
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Decision epoch (s)
N

or
m

al
iz

ed
 e

ne
rg

y

(b)

 

 

0 20 40 60 80
0

2

4

6

8

10

12

14

Decision epoch (s)

N
or

m
al

iz
ed

 le
ar

ni
ng

 ti
m

e

(c)

 

 

tachyon mpeg dec mpeg enc

Figure 6.10: Effect of the length of decision epoch.

future, determination of the sampling interval can be incorporated as part of the learning

algorithm itself.

Figure 6.10 plots the performance of the algorithm with increasing decision epochs

for three applications. The execution time, dynamic energy consumption and the adap-

tation time are compared. The execution time refers to the completion time with a fixed

length of input data. For the mpeg enc (or mpeg dec) application, this is the time to

encode(decode) 10MB of video. For the tachyon application, the time is measured as

the rendering time of 300 images. The execution time using the reinforcement learning

algorithm is normalized with respect to the execution time of Linux (with no adaptation)

for the same input data. As can be seen from Figure 6.10a, for all these applications, the

execution time overhead is higher for smaller decision epochs due to the overhead asso-

ciated with frequent decision changes. The execution time overhead reduces with larger

decision epochs. Figure 6.10b reports the dynamic energy consumption of the proposed

approach for the same input data normalized with respect to the Linux (without adapta-

tion). As expected, the energy consumption is also higher for smaller decision epochs due

to the frequent adaptation of the approach. Finally, Figure 6.10c plots the training time

i.e. the time required for the algorithm to learn the thermal behavior of an application.

The results are normalized with respect to the training time of the algorithm with a

decision epoch of 5sec. As can be seen, the training time increases with an increase in

the decision epoch. This is because, the training time is a function of decision epoch and
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Figure 6.11: Convergence of the reinforcement learning algorithm.

number of iterations N . Therefore, for a constant N , the training time increases with

the decision epoch. The decision epoch of the proposed algorithm is selected based on

this energy, execution time, and training time trade-offs.

Figure 6.11 plots the convergence time of the proposed algorithm for the mpeg de-

coding application with a varying number of states and actions. The convergence time

is measured by the number of decision epochs needed to train the proposed learning

algorithm. As can be seen from the figure, the number iterations i.e., the training time

increases with an increase in the number of actions and states. This is expected because,

an increase in the number of states or actions leads to an increase in the size of the

Q-Table and therefore more iterations are needed to learn (fill the table entries). The

figure also reports the MTTF as coordinates (stress, aging) for each design point. As the

size of the Q-Table increases, the reinforcement learning algorithm has finer control on

the temperature, resulting in an improvement in the MTTF. The number of states and

actions are chosen based on this learning time and solution quality trade-off.

6.5.5 Performance and Energy Trade-offs

Table 6.4 reports the execution time of the proposed approach in comparison with the

one proposed in [135] and the Linux-based approach for ondemand, powersave and user-

space power governors. Two user frequencies (2.4GHz and 3.4GHz) are shown in the
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Table 6.4: Execution time (in sec) of the proposed approach.

Application
Linux

Ge et. al [135] Proposed
ondemand powersave 2.4GHz 3.4GHz

tachyon 629 1337 913 627 1137 810

mpeg dec 1208 1222 1183 1127 1328 1204

mpeg enc 1623 1655 1628 1571 1676 1599
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Figure 6.12: Power comparison of the reinforcement learning algorithm.

table. The execution time with the highest frequency of 3.4GHz is the least for all the

applications. This is expected because the execution time decreases with an increase

in the frequency. For the same reason, the execution time with the lowest frequency

(powersave) is the highest. However, the power overhead is the least (as explained next).

For some applications such as tachyon, the proposed approach has higher execution time

than the Linux’s ondemand governor by upto 30%. This is because the workload in

the tachyon application forces the Kernel to execute always at the highest frequency of

3.4GHz in the ondemand mode. Thus, the execution time for ondemand and userspace-

3.4GHz are comparable. The proposed approach on the other hand explores different

power modes to reduce thermal stress and aging and therefore trades-off performance.

For other applications such as the mpeg enc and the mpeg dec, the execution time of the

proposed approach is lower than that of the ondemand governor. Finally, with respect

to [135], the proposed approach reduces execution time by an average 14%.

Figure 6.12 plots the average dynamic power and energy consumption (measured

143



using likwid-powermeter) of the proposed algorithm in comparison with that of [135] and

the Linux governors. Although the power and energy overhead are not reported in [135],

these are calculated here for a comparative study. As can be seen from the figure,

the proposed approach reduces power consumption by an average 6% in comparison

with Linux ondemand governor with 10% increase in execution time. Although the

dynamic power consumption of [135] is lower than the proposed approach (on average

4% lower), the energy consumption (which incorporates both power and performance)

of the proposed approach is 10% lower than [135] (within 3% of the energy consumption

of Linux’s ondemand governor). An interesting point to note here is that, by reducing

the average temperature, the proposed technique improves the leakage power. Although

leakage power is not measured on the board, the established models for the same (such as

the one proposed in [97]) indicate that the proposed algorithm improves leakage energy

by an average 15% as compared to the ondemand governor and 11% as compared to [135].

6.6 Remarks

In this work, a reinforcement learning-based run-time approach is proposed for multicore

system to adapt to thermal variations both within an application as well as when the sys-

tem switches from one application to another. The control is provided by overriding the

operating system mapping decisions using affinity masks and dynamically changing the

frequency of cores using CPU governors. The approach is validated experimentally using

an Intel quad-core platform running Linux kernel 3.8.0. Results demonstrate that the

proposed approach is able to improve MTTF by an average 2x for intra-application and

3x for inter-application scenarios as compared to the existing dynamic thermal manage-

ment technique. Furthermore, the approach also improves dynamic energy consumption

by an average 10% and static energy by 11%.
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CHAPTER 7

Conclusions and Future Directions

Reliability and energy are emerging as two of the growing concerns for multiprocessor

systems at deep sub-micron technology nodes. This thesis presented a system-level ap-

proach, namely application mapping and scheduling, to jointly address the reliability

and energy problems for multiprocessor systems. A detailed background is presented in

Chapter 2 on synchronous data flow graphs (SDFGs), used as application models in this

thesis. This chapter also presented the mathematical background on lifetime reliability

and the related studies on task mapping and scheduling for lifetime improvement.

In Chapter 3, a platform-based design methodology is proposed that involves task

mapping on a given multiprocessor system to jointly minimize energy consumption and

temperature related wear-out, while satisfying the performance requirement. Fundamen-

tal to this methodology is a simplified temperature model that incorporates not only the

transient and steady-state behavior (temporal effect), but also its dependency on the

temperature of the surrounding cores (spatial effect). The proposed temperature model

is integrated in a gradient-based fast heuristic that controls the voltage and frequency of

the cores to limit the average and peak temperature leading to a longer lifetime, simul-

taneously minimizing the energy consumption. A linear programming approach is then

proposed to distribute the cores of a multiprocessor system among concurrent applica-

tions (use-cases) to maximize the lifetime. Experiments conducted with a set of synthetic
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and real-life applications represented as SDFGs demonstrate that the proposed approach

minimizes energy consumption by an average 24% with 47% increase in lifetime.

In Chapter 4 of this thesis, a fast design space exploration technique is presented for

hardware-software partitioning by analyzing the negative impact of increasing the num-

ber of checkpoints for transient fault-tolerance on the lifetime reliability of the processing

cores. Based on this, a hardware-software co-design approach is proposed to determine

the architecture of a reconfigurable multiprocessor system to maximize its lifetime reli-

ability by considering applications enabled individually and concurrently. Experiments

conducted with real life and synthetic applications represented as SDFGs on a reconfig-

urable multiprocessor system demonstrate that the proposed technique improves lifetime

reliability by an average 65% for single applications and an average 70% for use-cases

with 25% fewer GPPs and 20% less reconfigurable area as compared to the existing

hardware-software co-design approaches.

To ensure graceful performance degradation in the presence of faults, a design-time

(offline) multi-criterion optimization technique is proposed in Chapter 5 for application

mapping on embedded multiprocessor systems to minimize energy consumption for all

processor fault-scenarios. A scheduling technique is then proposed based on self-timed

execution to minimize the schedule storage and construction overhead at run-time. Ex-

periments conducted with SDFGs on heterogeneous multiprocessor systems demonstrate

that the proposed technique minimizes energy consumption by 22% and design space

exploration time by 100x, while satisfying the throughput requirement for all processor

fault-scenarios. For scalable throughput applications, the proposed technique achieves

30% better throughput per unit energy, compared to the existing techniques. Addition-

ally, the self-timed execution-based scheduling technique minimizes schedule construction

time by 95% and storage overhead by 92%.

Finally, an adaptive thermal management approach is proposed in Chapter 6 as a part

of the run-time methodology, to improve the lifetime reliability of multiprocessor systems

by considering both inter- and intra-application thermal variations. Fundamental to this

approach is a reinforcement learning algorithm, which learns the relationship between

the mapping of threads to cores, the frequency of a core and its temperature (sampled

from on-board thermal sensors). Action is provided by overriding the operating system’s

mapping decisions using affinity masks and dynamically changing CPU frequency us-
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ing in-kernel governors. Lifetime improvement is achieved by controlling not only the

peak and average temperatures, but also thermal cycling, which is an emerging wear-out

concern in modern systems. The proposed approach is validated experimentally using

an Intel quad-core platform executing a diverse set of multimedia benchmarks. Results

demonstrate that the proposed approach minimizes average temperature, peak temper-

ature and thermal cycling, improving the mean time to failure by an average of 2x for

intra-application and 3x for inter-application scenarios when compared to existing ther-

mal management techniques. Additionally, the dynamic and static energy consumption

are also reduced by an average 10% and 11%, respectively.

7.1 Near and Far Future Challenges

While this thesis presented the design methodologies for multiprocessor systems to jointly

optimize reliability and energy consumption, a number of issues remain to be solved.

Some of these are highlighted below.

7.1.1 Future Challenges for Design-time Analysis

Heterogeneity challenges: One of the key challenges associated with heterogeneous

architectures involve task mapping. The execution times of a task on different processors

are different. Further, not every task can be executed on every processor. This makes the

task mapping and scheduling problem difficult to solve. The task migration approach

also needs to be re-visited. This is because the new object code of a task needs to

be compiled and transferred to the migrating core, if this is of different type than the

core where the task was executing initially. Storing the pre-compiled object code of all

tasks for all core type on every core incurs significant storage overhead and is crucial for

multimedia multiprocessor systems where storage space is limited. Further, the transfer

of object code on the networks-on-chip could lead to potential congestion of the same

and could interfere with the data communication among the non-faulty cores. These

challenges need to be solved for the existing design-time based approaches.

Dynamic partial reconfiguration: This thesis has shown that, there exists a signifi-

cant scope of reliability and energy improvement for FPGA-based reconfigurable multi-

processor systems. Although reconfiguration of the FPGA logic is allowed before enabling
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an application on the system, it is anticipated that further improvement is possible by

allowing dynamic partial reconfiguration i.e., by allowing a part of the FPGA logic to

be programmed for an application, while the remaining part of the logic is in operation.

This will allow to partition more tasks as hardware tasks (i.e., tasks that will be executed

on the FPGA logic) during the hardware-software partitioning stage. This will reduce

the stress on the processing cores, increasing their lifetime reliability. However, dynamic

partial reconfiguration involves timing overhead to program the FPGA bits. Thus, com-

plex analysis frame-work needs to be developed to predict the performance and improve

lifetime reliability. Additionally, dynamic voltage and frequency scaling capabilities is to

be explored, which is not addressed currently for reconfigurable multiprocessor systems.

3D multiprocessor system: Most of the existing reliability optimization techniques

are limited to 2D multiprocessor systems. Recent developments on 3D systems have

attracted a significant research attention towards resource allocation and management

for 3D systems. These systems offer significant performance and energy advantages

over the native 2D multiprocessor systems, but is known to suffer from thermal issues.

An effective approach to solve this challenge involves a thorough understanding of the

reliability concerns for these systems, including the detailed transistor-level reliability

modeling, which is still at an early stage of development; the thermal characterization of

3D systems; and finally the resource allocation for reliability improvement.

7.1.2 Future Challenges for Run-time Analysis

The proposed run-time thermal management for multiprocessor systems addressed intra-

and inter-application workload variations. The next step towards this is to solve the

following three key challenges – accuracy, scalability and scope.

Accuracy: Modern commercial off-the-self multiprocessor systems, such as Intel Ivy

Bridge or Haswell architectures, are equipped with cooling mechanisms in the form of

heat sink and fan. The temperature of the different cores of the architecture varies

according to the fan speed and the heat sink mechanism. The temperature is also depen-

dent on the placement of these cooling mechanisms in the floorplan. Specifically, cores

located closer to the heat sink are often cooler than other cores, even when all the cores

execute the same workload. Additionally, the speed of the fan can also be controlled by

controlling the current drawn and therefore, the heat dissipation can be adapted based
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on the application workload. An efficient thermal management needs to incorporate (1)

the floorplan information and (2) workload-aware cooling control, alongside the existing

techniques, such as dynamic voltage and frequency scaling (DVFS) and task mapping.

Scalability: The future of multiprocessor systems is many-core architecture, integrating

hundreds of cores on the same die. The shared memory architecture for multi-core system

is expected to become a bottleneck for many-core systems, and therefore message passing

interface (MPI) is expected to become the standard communication protocol for many-

core architectures. The existing techniques for multi-core systems need to be re-visited

from the MPI perspective. Another challenge in the many-core domain is concerning the

scalability of the algorithm itself. The problem of finding an optimal task mapping that

reduces the peak or average temperature is an NP-hard problem. This problem grows by

several orders of magnitude for many-core architecture. Moreover, specific optimization

technique also need to be adapted to address the scalability issues. As an example, for the

machine learning-based thermal management, the centralized learning model will become

a bottleneck for many-core architectures. One possible direction to solve this is to have

distributed learning agents. The associated challenges involve efficient handshaking of

the agents and sharing the learning tables among multiple agents. Building a complete

system to address the scalability problem is interesting, but challenging.

Scope: There are two aspects where the existing research works are lacking – hetero-

geneity of cores and thermal measurement. Most works on thermal management have

focused on homogeneous cores. However, to extract performance and energy benefits,

multiprocessor systems are equipped with heterogeneous cores. Examples include ARMs

big.LITTLE architecture. The thermal behavior of different cores are different, even un-

der the same workload. Additionally, not every thread or task can be mapped to every

core. These challenges need to be factored in run-time thermal management policies.

From the thermal measurements point, all the existing approaches have limitations –

high simulation time for HotSpot, limited accuracy for thermal gun and recording speed

for thermal sensors. One way to address the problem is to estimate the temperature

from CPU performance statistics. Although some studies have been performed recently,

accuracy is still an open problem.
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