
SYMBOLIC EXECUTION FOR ADVANCED

PROGRAM REASONING

VIJAYARAGHAVAN MURALI

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48736118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SYMBOLIC EXECUTION FOR ADVANCED

PROGRAM REASONING

VIJAYARAGHAVAN MURALI

B.Comp. (Hons.), NUS, 2009

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the

sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any uni-

versity previously.

Vijayaraghavan Murali

Monday 25th August, 2014

i

Acknowledgment

First and foremost I would like to thank Professor Joxan Jaffar, who has been

not only my advisor, but also a mentor and role-model. He has supported and

motivated me throughout my Ph.D., during which I learned numerous things

from him about research, teaching, career and life in general. I thank Baba

(God) for bringing this great person into my life.

A special thanks goes to my old teammates Jorge Navas and Andrew Santosa

who showed me that a good researcher needs to first be a good engineer – we

together built the TRACER framework which helped actualise many ideas in this

thesis.

I thank my other collaborators Satish Chandra, Duc-Hiep Chu, Nishant

Sinha and Emina Torlak for showing me the breadth of research in this field

and working together to solve many interesting problems.

I thank Professors Wei-Ngan Chin, Jin-Song Dong, Sanjay Jain, Siau-Cheng

Khoo, Abhik Roychoudhury, Weng-Fai Wong, Roland Yap and many others for

providing valuable insights through teaching. I also thank Professor Razvan

Voicu for directing me to Joxan at the right time in life.

I thank Rasool Maghareh, Gregory Duck, Asankhaya Sharma, Pang Long,

Marcel Böhme, Konstantin Rubinov and other colleagues and friends in the

lab for their lively discussions. I thank my 6-year housemate Thyagu for his

company and being almost a brother to me. I also thank anyone who would

have helped me but I might have forgotten inadvertently.

Last but not least, I cannot find words to express thanks for my Amma

(mother) and Appa (father) who gave all they had, and more, to see their son

titled Ph.D. They are, simply put, my life and to whom I dedicate this thesis...

ii

To my parents Meera and Murali, with Baba’s blessings

iii

Contents

1 Introduction 1

1.1 Overview of Current Techniques 2

1.2 Overview of Symbolic Execution 6

1.3 Thesis Contributions . 8

2 Preliminaries 12

2.1 Symbolic Execution . 12

2.2 Interpolation and Witnesses . 16

2.3 Implementation: TRACER . 22

3 Backward Slicing 25

Part I: Static Backward Slicing 26

3.1 Motivating Example . 29

3.2 Background . 32

3.3 Algorithm . 33

3.4 Experimental Evaluation . 41

3.5 Related Work . 43

3.6 Summary . 45

Part II: Slice-based Program Transformation 46

3.7 Related Work . 48

3.8 Basic Idea . 51

3.9 Background . 57

3.10 Algorithm . 57

3.11 Experimental Evaluation . 66

iv

3.12 Summary . 70

4 Concolic Testing 71

4.1 Related Work . 73

4.2 Running Example . 75

4.3 Background . 79

4.4 Algorithm . 80

4.5 Experimental Evaluation . 86

4.6 Summary . 94

5 Interpolation-based Verification 95

5.1 Examples . 97

5.2 Background . 101

5.3 Algorithm . 102

5.4 Experimental Evaluation . 106

5.5 Related Work and Discussion 110

5.6 Summary . 112

6 Trace Understanding 113

6.1 Related Work . 123

6.2 Background . 126

6.3 Algorithm . 127

6.4 Experimental Evaluation . 136

6.5 Summary . 143

7 Conclusion 144

7.1 Future Directions . 146

v

Summary

This thesis aims to address a number of program reasoning problems faced

every day by programmers, using the technique of symbolic execution. Sym-

bolic execution is a method for program reasoning that executes the program

with symbolic inputs rather than actual data. It has the advantage of avoid-

ing “infeasible” paths in the program (i.e., paths that cannot be exercised for

any input), exploring which could provide spurious information about the pro-

gram and mislead the programmer. However, as symbolic execution considers

the feasibility of individual paths, the number of which could be exponential in

general, it suffers from path explosion. To tackle this, we make use of the tech-

nique of interpolation, which was recently developed to alleviate path explosion

by intelligently pruning the exploration of certain paths.

In this thesis, we investigate the following problems, elaborate challenges

that our method faces in solving each problem, and show with evidence how

our method is either better than current state-of-the-art techniques or benefits

them significantly:

• Backward Slicing: the (static) slice of a program with respect to a par-

ticular variable at a program point is, informally, the subset of program

statements that might affect the value of said variable at that point. The

challenge here is to find the right balance between precision of slicing

information and efficiency. Addressing this challenge, we formulate the

most precise slicing algorithm that works with reasonable efficiency. In-

spired by this result, we extend our method to go beyond static slicing,

by introducing the notion of “Tree slicing” that produces a more general

transformation of the program compared to static slicing. We show how

tree slicing can be much more powerful than static slicing in reducing the

program’s search space.

• Concolic Testing: recently, a technique called concolic testing was pro-

posed to automatically generate test cases that maximise coverage. Con-

colic testing also suffers from path explosion as it aims to test every path

vi

in the program, which could be exponential in number. Employing in-

terpolation in this setting fails to provide much benefit, if any, due to the

poor formation of interpolants from test cases the concolic tester executes.

Thus, we introduce a novel algorithm to accelerate the formation of inter-

polants which, for the first time, brings to concolic testing the exponential

benefit that interpolation is known for.

• Interpolation-based Verification: verifying a program is the process of

proving that a program satisfies a given property. Recently, symbolic ex-

ecution has gained traction in verification due to its ability to avoid infea-

sible paths, exploring which may result in spurious “false-positives”. We

conjecture that this aversion of infeasible paths hinders the discovery of

good interpolants, which are vital in pruning the search space in future.

We formulate a new strategy for symbolic execution that temporarily ig-

nores the infeasibility of paths in pursuit of better interpolants. Although

this may seem antithetical to the principle of symbolic execution, our re-

sults show this “lazy” method of symbolic execution that ignores infea-

sibilities is able to outperform the canonical method significantly. This

unprecedented result opens up a new dimension for symbolic execution

and interpolation based reasoning.

• Trace Understanding: understanding execution traces (typically error

traces) has been a nightmare for programmers, mainly due to long loop

iterations in the trace. We propose a new method to aid in the under-

standing of traces by compressing loops using invariants that preserve the

semantics of the original trace with respect to a “target” (e.g., an assertion

violated by an error trace). The novelty of this method is that if we are un-

able to find such an invariant, we dynamically unroll the loop and attempt

the discovery at the next iteration, where we are more likely to succeed as

the loop stabilises towards an invariant.

vii

List of Tables

3.1 Results on Intel 3.2Gz 2Gb. 1 timeout after 2 hours or 2.5 Gb of

memory consumption . 42

3.2 Statistics about the PSS-CFG 66

3.3 Experiments on the PSS-CFG for concolic testing 68

3.4 Experiments on the PSS-CFG for verification 69

5.1 Verification Statistics for Eager and Lazy SE (A T/O is 180s (3

mins)) . 108

6.1 Trace statistics for our experiments. %C: percentage compres-

sion, #U: number of unrolls until compression was achieved (in-

ner loop unrolls, if any) . 136

6.2 Trend with varying loop bounds for cdaudio and floppy 141

viii

List of Figures

2.1 (a) A program to swap two integers (b) Its transition system . . . 14

2.2 Symbolic Execution Tree of the program in Fig. 2.1 15

2.3 (a) A verification problem (b) Its full symbolic execution tree . . 20

2.4 Building the Symbolic Execution Tree with Interpolation (WP) . 21

2.5 Architecture of TRACER . 23

3.1 (a) A program and its transition system, (b) its naive sym-

bolic execution tree (SET) for slicing criterion (underlined state-

ments) 〈`9,{z}〉 . 29

3.2 Interpolation-based Symbolic Execution Tree for Fig. 3.1 30

3.3 Main Abstract Operations for Dω 34

3.4 Path-Sensitive Backward Slicing Analysis 37

3.5 A program and its symbolic execution tree 51

3.6 The PSS-CFG and corresponding transformed program for

Fig. 3.5 . 54

3.7 Symbolic execution interleaved with dependency computation

to produce the SE tree . 59

3.8 Transformation rules to produce the final PSS-CFG 63

4.1 A program and its symbolic execution tree 76

4.2 A Generic Concolic Tester . 80

4.3 Symbolic execution with interpolation along a path 81

4.4 A Generic Concolic Tester with Pruning 83

4.5 Timing for (a) cdaudio (b) diskperf (c) floppy (d) kbfiltr. X-axis:

Paths, Y-axis: time in seconds 89

ix

4.6 Subsumption for (a) cdaudio (b) diskperf (c) floppy (d) kbfiltr.

X-axis: Paths, Y-axis: % subsumption 91

4.7 Extra coverage provided for (a) cdaudio (b) diskperf (c) floppy

(d) kbfiltr by our method. X-axis: Crest path coverage, Y-axis:

Additional path coverage from subsumption. 93

5.1 Proving y≤ n: Eager vs Lazy 97

5.2 A Program and its (Eager) SE Tree with Learning 99

5.3 Lazy SE Tree with Learning 100

5.4 A Framework for Lazy Symbolic Execution with Speculative

Abstraction . 103

6.1 Hoare triples generated for the program for_bounded_loop1.c 118

6.2 (a) Program with nested loops (b) Its compressed trace 120

6.3 Loop Compression with Invariants 128

6.4 Basic Individually Invariant Discovery 131

6.5 Invariant Generalisation using Weakest Precondition 133

6.6 Symbolic Execution trees for the invariants in Fig. 6.2(b) 134

6.7 The SSH client program, the error trace and the compressed trace 137

6.8 The SSH server program, the error trace and the compressed trace139

x

Chapter 1

Introduction

“The most important property of a program is whether it accomplishes the in-

tentions of its user”, writes C.A.R. Hoare in his seminal article [55] laying the

foundations of formal program reasoning. It is widely accepted that this prop-

erty is the “Holy Grail” of modern computer science.

Today, every programmer endeavours to achieve this goal at every stage of

software production. While developing the software, the programmer tries to

make sure that bugs are not unwittingly introduced into the code, although this

sentence is an utter understatement of the complexity of the problem. Once the

software is developed, the programmer then tries to increase confidence of its

correctness by designing test cases that effectively explore the code. In case a

bug is found, the programmer has to typically reason about a particular “error

trace” that failed to comply with his/her intentions for the software.

On this note, a recent study [4] by Cambridge University showed that “soft-

ware developers spend 50% of their programming time finding and fixing bugs”

and that “the global cost of debugging software has risen to $312 billion annu-

ally”. Despite this, bugs still manifest regularly in software shipped today. For

instance, the infamous “Heartbleed” bug [5], found just weeks before the time

of writing of this thesis, was the result of the lack of a bounds check, which

caused a read overflow and potentially leaked sensitive information to attackers.

More serious bugs have resulted in the loss of huge amounts of money or worse,

human life [3].

Thus, it is of utmost importance to develop techniques to reason about pro-

1

grams and expose these bugs before the software is made available for pub-

lic use. In a broad sense, the whole area of program analysis was developed

over the past few decades for this purpose. A comprehensive survey of the

entire field would appear daunting at this point, as there have been hundreds,

if not thousands, of papers and books contributing techniques such as, to list

a few, software model checking and abstract interpretation [27, 37], program

slicing [104, 72], automated testing and debugging [49, 97, 108] and more.

1.1 Overview of Current Techniques

The goal of this thesis is to contribute in the following areas of program reason-

ing: program slicing, testing, verification and trace understanding. We briefly

survey some traditional and contemporary techniques in each area.

Program Slicing

Slicing, as defined by Weiser [104], is a technique that identifies the parts of

a program that potentially affect the values of specified variables at a specified

program point—the slicing criterion. This is sometimes referred to as back-

ward slicing. Since Weiser’s original definition, many variants of the notion of

slicing have been proposed, with different methods to compute them (see [103]

for a survey). An important distinction is that between static and dynamic slic-

ing [72], where the former does not assume any input provided to the program,

and the latter assumes a particular input. Our focus here is on static backward

slicing, which was originally intended to help programmers in debugging.

Static slicing was initially performed in [104] using data-flow analysis, by

computing consecutive sets of indirectly relevant statements according to data

and control dependencies. A different method that applies reachability analysis

on the Program Dependence Graph (PDG) was proposed in [86, 42]. The prob-

lem of interprocedural slicing was later addressed in [57, 58], which proposed

the idea of using a System Dependence Graph (SDG). The key argument was

that slices computed by previous works were too imprecise due to not being able

to distinguish between a realisable and non-realisable calling context.

2

Parallel to this, the framework of abstract interpretation was developed

by [27], which simulates execution of the program on an abstract domain that

shares a Galois-connection with the concrete domain. Once a fixed point is

reached in the abstract domain, several concrete states can be combined to a

single abstract state and the process terminates. Slicing can be formulated in

abstract interpretation by defining the abstract domain to be the set of all possi-

ble dependency variables at a program point.

Today, slicing is being applied in program testing, differencing, mainte-

nance, debugging, optimisation etc. However, the main problem still being

faced is that slices are bigger than expected and sometimes too big to be useful,

as [10] experimentally found out. One of the most important reasons for im-

precision is the lack of consideration of the feasibility of program paths, many

of which could be infeasible (i.e., not executable for any input), similar to the

claim laid by [57, 58] for calling contexts. Our work aims to address this issue.

Program Testing

Software testing is any activity aimed at evaluating an attribute or capability of

a program or system and determining that it meets its required results [54]. The

process of testing executes a given program with some inputs, and the objective

is to find bugs or validate the program with respect to the given inputs. Indeed,

Dijkstra expressed in his notes [35] that “testing can only prove the presence

of bugs, but not their absence”. Nevertheless, testing is the oldest and still the

most commonly used method to ensure software quality. Traditionally, testing

was carried out manually, by programmers writing test cases themselves based

on their understanding of the code (of course, this practice exists even today).

Automated testing methods such as random testing [102, 48], also called

“fuzzing”, were introduced to generate random inputs with an aim to make the

program crash or observe for memory leaks. This has the advantage of not re-

quiring the source code of the program (referred to as “black-box” testing), and

hence can be readily applied to test large applications such as C compilers [107].

Although random testing has helped in detecting various bugs throughout his-

tory, the randomness of inputs used in fuzzing is often seen as a disadvantage,

3

as catching a boundary value condition with random inputs is highly unlikely.

A primitive fuzzer may also have poor code coverage; for example, if the input

to a program is a file and its checksum, and the fuzzer generates random files

and random checksums, only the checksum validation code in the program will

be tested.

More recently, a technique called Directed Automated Random Testing

(DART) [49, 97] was proposed as an alternative to random testing. DART ex-

ecutes the program with a given input, and obtains a formula describing the

program path that was executed by the input (making this a “white-box” testing

technique). Then, it makes sure to not execute the same path by negating one

of the branches in the path formula, solving the new formula using a theorem

prover, and generating (random) test inputs that satisfy the new formula. This

has been shown to significantly increase the coverage of random testing [16].

An important technical problem with DART, also referred to as “concolic

testing”, or more formally “dynamic symbolic execution”, is that as it aims to

test every path in the program, it can run into path explosion. In this thesis, we

address this issue.

Program Verification

Verification is the process of constructing a mathematical proof that a program

satisfies a given property. Properties come in two types: safety (i.e., those that

state that something “bad” will never happen) and liveness (i.e., those that state

that something “good” will eventually happen). In this work, we are only con-

cerned with safety properties.

The seminal work by Hoare [55] established the foundations of reasoning

by which to prove a program correct. For each building block of the program, a

Hoare triple—an assume-guarantee style proof—is computed, which can then

be composed with other such triples to construct a proof for the program. The

disadvantage of this method is that a significant amount of manual effort is

needed in the form of invariants and user-assertions.

Model checking [37] was proposed as a technique to automatically verify

hardware designs, by typically constructing a finite state machine of the hard-

4

ware model and reducing the problem to graph search. In the case of software

systems, which are typically infinite-state, abstraction has to be employed to

make the model finite. This can result in spurious counter-examples (i.e., false

positives). Recent techniques such as Counter-Example Guided Abstraction Re-

finement (CEGAR) [24, 9] have addressed this by starting with a coarse model

of the program and then refining the model by analysing the spurious counter-

examples, until a “real”1 counter-example is found.

Recently, the technique of symbolic execution, which we will use in this

work, has gained momentum in program verification [59]. It presents a dual

approach to CEGAR, by starting with the concrete model of the program and

removing irrelevant facts from it that are not needed for the proof. The main

advantage of symbolic execution is that it avoids the expensive computation of

the abstract post operation as in CEGAR.

Trace Understanding

When a program fails, the cause of the failure is often buried in a long, hard-to-

understand error trace. For this reason, techniques to help with understanding

an error trace are valuable in debugging. “Understanding” is a very subjective

term, so we make it concrete: our focus is on the loop iterations that typically

make the trace long, and our goal is to compress them. Since this is a relatively

narrow area of research, prior work in this area is limited.

Traditional methods of trace compression include dynamic slicing [72] on

the variables in the assertion violated by the error trace. Dynamic slicing, how-

ever, only removes statements that it can deem irrelevant through dependency

information (data or control flow). It does not reason about the semantics of the

trace. This weakness was addressed recently in [39], that computed so-called

“error invariants”—abstractions of the state that are still sufficient to violate

the assertion—at each point along the trace. If two points have the same error

invariants, any intervening statement is deemed irrelevant to the error, as the

reason the trace violated the assertion has not changed between the two points.

1We say “real” (in quotes) because undecidability restricts any software verification method
from being complete; the method can sometimes fail to prove or disprove a property.

5

However, these error invariants are not guaranteed to be loop invariants. Thus,

the practical problem of long loop iterations in error traces still remains directly

unaddressed, which is the motivation for our work in this area.

1.2 Overview of Symbolic Execution

So far, we have just seen the “tip of the iceberg” in the area of program reason-

ing. Even at this level, many static analyses often suffer from the problem of

imprecision, mainly due to the assumption that all program paths are executable.

Many paths, in fact, are not executable (or feasible) for any input because of con-

flicts in the logic of statements along the path. Gathering analysis information

from these paths gives rise to spurious results, which may mislead the program-

mer. The art of analysing programs paying heed to whether individual paths are

feasible or not is commonly referred to as path sensitivity.

It is folklore that path sensitive analyses are much more precise than path in-

sensitive analyses. Hence it is natural to wonder “why are not all analyses path

sensitive?” The reason is that path sensitivity suffers from a major problem: the

number of paths to explore in a program is in general exponential in the number

of branches. Considering the feasibility of each path to derive analysis informa-

tion results in an exponential blowup. This is referred to as the path explosion

problem and it severely limits the scalability of path sensitive analyses.

Due to this, many program analyses are either path insensitive or use some

heuristics to skirt the path explosion issue. For instance, many state-of-the-

art slicers available today (e.g., [25]) are path insensitive, and concolic testers

which are (or rather, must be) path sensitive (e.g., [16]) use metrics such as

branch coverage (as opposed to path coverage) to measure the quality of their

testing procedure. That is, they forfeit the goal of generating tests to exercise

every program path and instead target the much easier goal of generating tests

to just exercise every branch (i.e., basic block) in the program. Thus, there is

much need to perform path sensitive program analyses efficiently.

In this thesis, we employ a technique called symbolic execution to address

6

these problems. Symbolic execution [71], as the name implies, executes a pro-

gram not with actual inputs but with symbolic inputs. The program statements

that are encountered during this execution are collected in a first-order logic

(FOL) formula called the path condition2. This formula is the crux of the versa-

tility of symbolic execution, as it can be analysed to derive a host of information.

For instance, it can be checked for satisfiability in order to infer whether the cor-

responding path is feasible (i.e., the path can be exercised by some input), it can

be checked for the existence of bugs (i.e., assertion violations), it can be used to

compute variable dependencies along the path, compute the (abstract) execution

time of the path, and so on. Such information can be collected across multiple

symbolic paths to derive some property about a program point, variable or even

the whole program.

The key advantage of symbolic execution is that it can avoid the exploration

of paths that are not feasible by stopping and backtracking the moment unsatisfi-

ability is detected in the path condition. This offers a natural way to perform pre-

cise path sensitive analysis. However it suffers from the path explosion problem,

as it attempts to consider the feasibility of every single path in the program. To

address this problem, we use the technique of interpolation [28, 81, 66], which

has been recently employed to mitigate state space blowup in model checking,

and the concept of witnesses [66].

Briefly, the high level idea of interpolation and witnesses is as follows3.

Whenever symbolic execution explores an entire tree of path arising from a

node, we “learn” some relevant information about the tree— for instance, in the

case of testing, we learn the essence of why the tree is bug-free. This informa-

tion, called the interpolant, can be learned from the path condition of the tree’s

root node, and is typically much more succinct than (formally, an abstraction of)

its path condition. We also compute what is called a witness, a formula which

describes the (sub)-analysis of the tree.

Then, when reaching the same program point through a different path, we

check if the stored interpolant and witness are implied by the new path condi-

2The variables in constraints arising from the statements are assumed to be implicitly exis-
tentially quantified.

3Interpolation and witnesses are explained in full detail in the rest of the thesis.

7

tion. If the implication holds, the node can be subsumed (or covered), because

it can be guaranteed to produce the same analysis result if explored. This can

result in exponential savings because the entire tree of paths arising from the

program point is pruned due to subsumption. The key insight is that the sub-

sumed node can reuse the analysis computed previously by the subsuming node.

Interpolation is therefore critical to the scalability of symbolic execution.

If the subsumption test failed (i.e., the entailment does not hold), symbolic

execution will naturally perform node splitting and duplicate all successors of

the node until the next merge point.

1.3 Thesis Contributions

The thesis that is explored in this work is the following: using symbolic exe-

cution with interpolation, we can develop efficient and powerful techniques for

path sensitive analysis for a variety of program reasoning problems.

In Chapter 2, we setup the formal background of symbolic execution and

present our framework TRACER, first demonstrated in [64], on which the ideas in

this thesis are implemented. In Chapter 3, we present our two main contributions

to the area of slicing: first, a method to efficiently perform static path-sensitive

backward slicing, published in [65], and second, a more powerful program trans-

formation technique based on path-sensitive slicing, published in [61]. In Chap-

ter 4, published in [63], we introduce interpolation for the first time to the area of

concolic testing and show its exponential benefits in boosting concolic testing.

In Chapter 5, published in [21], we propose a novel technique of “lazy” sym-

bolic execution that outperforms current techniques significantly in the context

of interpolation-based program verification. In Chapter 6, presented in [62], we

employ symbolic execution to tackle the very practical problem of compressing

long loop iterations in error traces and explain the compressed trace to the pro-

grammer. Finally, Chapter 7 concludes the thesis. The published work [84] is

also a part of our contribution to trace understanding, and is alluded to in the

concluding chapter.

8

Organisation

In each chapter, we present a symbolic execution and interpolation based algo-

rithm to address a particular problem, and show with evidence how our proposed

method is either more powerful than existing techniques or benefits them signif-

icantly. Importantly, we also elaborate the challenges that symbolic execution

and interpolation themselves face in each setting and how to adapt them for

solving each problem. Specifically, the problems addressed in this work are the

following:

• Backward Slicing (Chapter 3)

In Chapter 3, the first part of which was published in [65], we propose a

novel symbolic execution based algorithm to compute static slices. One

ground-breaking result of our method is that it produces exact slices for

loop-free programs. By “exact” we mean that the algorithm guarantees

to not produce dependencies from spurious (i.e., non-executable) paths.

In other words, our algorithm produces the smallest possible slice of a

loop-free program for any given slicing criterion, limited only by gen-

eral theorem proving technology that can deduce the (un)satisfiability of

a (first-order logic) formula4.

Inspired by the previous result that slicing is more effective when there

is path sensitivity, we present in the second part of Chapter 3 (published

in [61]) a transformation of programs with specified target variables, sim-

ilar to a slicing criterion. These programs are ready to be analysed by a

third-party application that seeks some information about the target vari-

ables, such as a verifier seeking a property on them. The transforma-

tion embodies a path-sensitive expansion of the program so that infeasible

paths can be excluded, and is sliced with respect to the target variables.

4Of course, this problem is undecidable in general, and so is the exact slicing problem.

9

Due to path-sensitivity, the slicing is more precise than otherwise. Third-

party applications of testing and verification perform substantially better

on the transformed program compared to a statically sliced one.

• Concolic Testing5 (Chapter 4)

Recently, to alleviate the problem of manually generating test cases

and poor quality of code coverage from random testing, concolic test-

ing [97, 49, 18, 16]—a portmanteau of “concrete” and ”symbolic”—was

proposed. As mentioned in Section 1.1, concolic testing also suffers from

path explosion, as there are an exponential number of paths to test.

In Chapter 4, published in [63], we propose a novel algorithm to address

path explosion in concolic testing using interpolation. We first show that

the typical modus operandi of interpolation does not work in concolic

testing due to the lack of control of a search order, which in this setting is

imposed by the concolic tester. This greatly hinders the formation of in-

terpolants from running test cases. Then, we propose a new method based

on subsumption to accelerate the formation of interpolants in order to get

back the exponential benefits that it is known for. Finally, we show with

evidence that our proposed algorithm boosts the coverage of an existing

concolic tester significantly.

• Interpolation-based Verification (Chapter 5)

In Chapters 3 and 4, we show how powerful symbolic execution with

interpolation is in program analysis (slicing) and testing. In both set-

tings, its effectiveness heavily relies on the quality of the computed in-

terpolants, which are the key to mitigating path explosion. Symbolic exe-

cution avoids the exploration of infeasible paths by stopping the moment

infeasibility is encountered in its path condition, a property referred to as

being eager, and one considered an advantage.

5Concolic testing is now commonly referred to as “dynamic symbolic execution”. We use
the former term for historical reasons.

10

In Chapter 5, published in [21], we show that in the setting of program

verification, being eager is not always beneficial for symbolic execution,

as it can hinder the discovery of better interpolants. We present a sys-

tematic algorithm that speculates that an infeasibility may be temporarily

ignored for the purpose of “learning” better interpolants about the path in

question. This speculation is bounded and so does not make symbolic ex-

ecution lose its intrinsic benefits. We demonstrate using real benchmarks

that this “lazy” variant of symbolic execution that ignores infeasibilities

outperforms its eager counterpart by a factor of two or more.

• Trace Understanding (Chapter 6)

Reasoning about long execution (typically, error) traces is an integral but

tedious part of software development, especially in debugging. In Chap-

ter 6, presented in [62], we propose an algorithm to compress execution

traces by discovering loop invariants for the iterations in the trace. The

invariants discovered are “safe”, such that the compressed trace obeys the

original trace’s semantics regarding the assertion at the end. Thus, the

compressed trace concisely explains the original trace without unrolling

the loops fully.

A central feature is the use of a canonical loop invariant discovery al-

gorithm which preserves all atomic formulas in the representation of a

symbolic state which can be shown to be invariant. If this fails to pro-

vide a “safe” invariant, then the algorithm dynamically unrolls the loop

and attempts the discovery at the next iteration, where it is more likely to

succeed as the loop stabilises towards an invariant. We show via realistic

benchmarks, which present the compressed trace as a Hoare proof, that

the end result is significantly more succinct than the original trace.

11

Chapter 2

Preliminaries

Throughout this thesis, we restrict our presentation to a simple imperative pro-

gramming language where all basic operations are either assignments or assume

operations, and the domain of all variables are integers (pointers are treated as

indices on a special array representing the heap). The set of all program vari-

ables is denoted by Vars. An assignment x = e corresponds to the assignment

of the evaluation of the expression e to the variable x. In the assume opera-

tor, assume(c), if the Boolean expression c evaluates to true, then the program

continues, otherwise it halts. The set of operations is denoted by Ops. We

then model a program by a transition system. A transition system is a quadru-

ple 〈Σ, I,−→,O〉 where Σ is the set of states and I ⊆ Σ is the set of initial

states. −→⊆ Σ× Σ×Ops is the transition relation that relates a state to its

(possible) successors. This transition relation models the operations that are

executed when control flows from one program location to another. We shall

use `
op−−→ `′ to denote a transition relation from ` ∈ Σ to `′ ∈ Σ executing the

operation op ∈ Ops. Finally, O⊆ Σ is the set of final states.

2.1 Symbolic Execution

A symbolic state υ is a triple 〈`,s,Π〉. The symbol ` ∈ Σ corresponds to the

current program location. For clarity of presentation in our algorithm, we will

use special symbols for initial location, `start ∈ I, final location, `end ∈ O, and

bug location `error ∈ O (if any). W.l.o.g we assume that there is only one initial,

12

final, and bug location in the transition system. We shall use a similar notation

υ
op−−→ υ′ to denote a transition from the symbolic state υ to υ′ corresponding

to their program locations.

The symbolic store s is a function from program variables to terms over

input symbolic variables. Each program variable is initialised to a fresh in-

put symbolic variable. This is done by the procedure init_store(). The eval-

uation JcKs of a constraint expression c in a store s is defined recursively as

usual: JvKs = s(v) (if c ≡ v is a variable), JnKs = n (if c ≡ n is an integer),

Je opr e′Ks = JeKs opr Je′Ks (if c ≡ e opr e′ where e,e′ are expressions and opr

is a relational operator <,>,=, ! =,>=,<=), and Je opa e′Ks = JeKs opa Je′Ks

(if c ≡ e opa e′ where e,e′ are expressions and opa is an arithmetic operator

+,−,×, . . .). Sometimes, when the context of usage is clear, we simply say JυK

to mean the evaluation of the symbolic state υ with its own symbolic store.

Finally, Π is called path condition, a first-order formula over the symbolic

inputs that accumulates constraints which the inputs must satisfy in order for

an execution to follow the particular corresponding path. The set of first-order

formulas and symbolic states are denoted by FOL and SymStates, respectively.

Given a transition system 〈Σ, I,−→,O〉 and a state υ≡ 〈`,s,Π〉 ∈ SymStates, the

symbolic execution of `
op−−→ `′ returns another symbolic state υ′ defined as:

SYMSTEP(υ, `
op−−→ `′) ,

υ
′ ,

〈`′,s,Π∧ JcKs〉 if op ≡ assume(c) and

Π∧ JcKs is satisfiable

〈`′,s[x 7→ JeKs],Π〉 if op ≡ x = e

(2.1)

Note that Equation (2.1) queries a constraint solver for satisfiability checking on

the path condition. We assume the solver is sound but not necessarily complete.

That is, the solver must say a formula is unsatisfiable only if it is indeed so.

Abusing notation, given a symbolic state υ ≡ 〈`,s,Π〉 we define JυK :

SymStates → FOL as the formula (
∧

v ∈ Vars JvKs)∧Π where Vars is the set

of program variables.

A symbolic path π≡ υ0 ·υ1 · ... ·υn is a sequence of symbolic states such that

13

`1 if (x > y) {
`2 x = x + y;
`3 y = x - y;
`4 x = x - y;
`5 if (x - y > 0)
`6 error();

}
`7

`1 assume(x > y) `2
`2 x := x + y `3
`3 y := x - y `4
`4 x := x - y `5
`5 assume(x-y > 0) `6
`5 assume(x-y ≤ 0) `7
`1 assume(x ≤ y) `7

(a) (b)

Figure 2.1: (a) A program to swap two integers (b) Its transition system

∀i•1≤ i≤ n the state υi is a successor of υi−1, denoted as SUCC(υi−1, υi)1. A

symbolic state υ′ ≡ 〈`′, ·, ·〉 is a successor of another υ≡ 〈`, ·, ·〉 if there exists a

transition relation `
op−−→ `′. A path π≡ υ0 ·υ1 · ... ·υn is feasible if υn≡ 〈`,s,Π〉

such that JΠKs is satisfiable. If `∈O and υn is feasible then υn is called terminal

state. Otherwise, if JΠKs is unsatisfiable the path is called infeasible and υn is

called an infeasible state. If there exists a feasible path π ≡ υ0 ·υ1 · ... ·υn then

we say υk (0 ≤ k ≤ n) is reachable from υ0 in k steps. We say υ′′ is reachable

from υ if it is reachable from υ in some number of steps.

We also define a (partial) function MergePoint : SymStates→ SymStates×
SymStates that, given a symbolic state υ≡〈`, ·, ·〉 if there is an assume statement

at υ (i.e., ` corresponds to a branch point), returns a tuple 〈υ1 ≡ 〈`′, ·, ·〉,υ2 ≡ 〈`′, ·, ·〉〉
such that υ1 and υ2 are reachable from υ, and `′ is the nearest post-dominator of

`. In other words, υ1 and υ2 are the symbolic states at the merge point reached

through the “then” and “else” body respectively.

Finally, a symbolic execution tree contains all the execution paths ex-

plored during the symbolic execution of a transition system by triggering Equa-

tion (2.1). The nodes represent symbolic states and the arcs represent transitions

between states.

Let us exemplify symbolic execution with the help of the program in

Fig. 2.1(a), taken from [94]. This program poses a verification problem, namely,

to verify if the swap of two integers is correct. Verification can be done by ex-

ploring the symbolic execution tree and ensuring that the error location `error,

in this case designated to be `6, is not reachable. In Fig. 2.1(b), we model the

1W.l.o.g, we assume each state has at most two successors.

14

〈1, (x : X, y : Y), true〉

〈2, (x : X, y : Y), X > Y 〉

〈3, (x : X + Y, y : Y), X > Y 〉

〈4, (x : X + Y, y : X), X > Y 〉

〈5, (x : Y, y : X), X > Y 〉

〈6, (x : Y, y : X), X > Y ∧ Y − X > 0〉

〈7, (x : Y, y : X), X > Y ∧ Y − X ≤ 0〉

〈7, (x : X, y : Y), X ≤ Y 〉

assume(x > y)

x := x + y

y := x - y

x := x - y

assume(x – y > 0)

assume(x – y ≤ 0)

assume(x ≤ y)

Figure 2.2: Symbolic Execution Tree of the program in Fig. 2.1

program semantics faithfully using our simplified transition system.

The corresponding symbolic execution tree is shown in Fig. 2.2. This tree

is obtained by repeated invocations of SYMSTEP starting with the initial state

〈1,(x : X ,y : Y), true〉, i.e., the initial program point `1, variables initialised to

arbitrary distinct symbols (X and Y) and the path condition initialised to true.

Note that at program point `5, the symbolic store maintains that the variables

x and y now contain the values Y and X respectively, and the path condition

declares X > Y . Therefore, executing the statement assume(x-y>0) results

in an infeasible state at `6 because of the unsatisfiability of the formula X >

Y ∧Y −X > 0. Thus, the error location `6 is proven to be unreachable.

In general, when a path is symbolically executed, we can extract analysis

information from it. In the above case of verification, the “analysis” was to

prove the path safe, but we can also compute variable dependency information

(slicing), live variable information (liveness analysis), check for bugs along the

path (testing), compute its execution time (worst-case execution time analysis),

etc. This analysis information can be annotated at each symbolic state along

the path to allow merging of analysis results from different paths and re-use of

previously computed results, which we will see next.

15

2.2 Interpolation and Witnesses

During symbolic execution, if two symbolic states υ and υ′ at a program point `

are encountered such that JυK≡ Jυ′K then exploring υ is clearly a waste of effort

(assuming υ′ was already explored). One can instead merge υ with υ′ and reuse

its already computed solution. Unfortunately, the chances of encountering such

υs are highly unlikely in practice.

Interpolation and witnesses help to increase this likelihood by discarding

some irrelevant information when comparing υ and υ′. We use the notion of

state interpolation introduced in [66] and representative witness paths intro-

duced in [67]. The idea is to merge certain symbolic states with another and

reuse the pre-computed analysis result in a sound and precise manner, provided

certain merging conditions are met. We now formalise these conditions.

Definition 1 (Interpolant). Given a pair of first order logic formulas A and B

such that A∧B is f alse, an interpolant [28] INTP(A,B) is another formula Ψ

such that

(a) A |= Ψ,

(b) Ψ∧B is false, and

(c) Ψ is formed using common variables of A and B.

Interpolation allows us to remove irrelevant facts from A without affecting the

unsatisfiability of A∧B. Whenever an infeasible path is met, with A being the

path “prefix” and B being typically the last encountered guard, the interpolant

succinctly captures the reason of infeasibility of the path, discarding irrelevant

information from the path condition. An interpolant is then generated at the state

of infeasibility and is propagated back through the path to be generated at each

state. Efficient interpolation algorithms exist for quantifier-free fragments of

theories such as linear real/integer arithmetic, uninterpreted functions, pointers

and arrays, and bitvectors (e.g., see [23] for details) where interpolants can be

extracted from the refutation proof in linear time on the size of the proof.

For instance, in Fig. 2.2, at program point 5, A is the formula Y0 > X0 and

B is the formula X0−Y0 > 0, where X0 and Y0 are the initial symbolic values

of x and y. These are obtained from evaluating the path conditions at program

16

point 5 and the branch condition at program point 6, respectively. One possible

interpolant is the formula X0−Y0 ≤ 0, which when propagated to program point

4 would become X0− 2×Y0 ≤ 0 (it may appear that we are doing a weakest

pre-condition computation; indeed, as we will see in later, it is one of the ways

to compute interpolants).

Definition 2 (Witness Paths and Formulas). Given a symbolic state υ ≡ 〈`, ·, ·〉
that is annotated with the analysis result συ, a witness path, represented as

ωυ, is a representative feasible symbolic path π ≡ υ · ... ·υend from which the

analysis result συ is derived.

Intuitively, a witness path at a symbolic state υ is a representative path through

the state from which the analysis result at υ was obtained. Note that there may

be a large number of paths passing through υ but the analysis result at υ could

have been obtained only from a few.

For instance, in the case of slicing, the analysis information stored at each

state would be the set of dependency variables (i.e., variables at this state that

affect the target “slicing criterion”). In this case, a witness path for a dependency

variable x at υ is a path along which x affects the slicing criterion at the end. In

general there may be more than one witness path for a particular symbolic state.

Now, using the notions of interpolants and witness paths, we define our most

important condition for merging two symbolic states:

Definition 3 (Merging Conditions). Given a current symbolic state υ≡ 〈`,s,Π〉
and an already annotated symbolic state υ′ ≡ 〈`,s′,Π′〉 such that Ψυ′ is an

interpolant generated for υ′, συ′ is the analysis result for υ′, and ωυ′ is the

witness path at υ′, we say υ can be merged with υ′ if the following conditions

hold:

(a) JυK |= Ψυ′

(b) ωυ′ is feasible from υ

(2.2)

Note importantly that both υ and υ′ must correspond to the same program point

` in order to be merged. Once υ is merged with υ′, symbolic execution of υ can

17

simply stop, and the analysis result συ′ from υ′ can be reused at υ.

The condition (a) of Eqn. 2.2, also called the “subsumption check”, affects

soundness and it ensures that the set of feasible symbolic paths reachable from

υ is a subset of those from υ′. This is a necessary condition for two states to be

merged, formalised below.

Lemma 1. Given states υ ≡ 〈`,s,Π〉 and υ′ ≡ 〈`,s′,Π′〉, let Ψυ′ be the inter-

polant for υ′. If JυK |= Ψυ′ , the set of feasible paths from υ is a subset of those

from υ′.

PROOF. (By contradiction). Assume there exists a feasible path π, with path

condition Ππ, from υ but π is infeasible from υ′. If π is infeasible from υ′ then

Jυ′K∧Ππ is unsatisfiable, and by definition of interpolant, Ψυ′∧Ππ is unsatisfi-

able. Since JυK |= Ψυ′ , it follows that JυK∧Ππ is unsatisfiable. However, since

π is feasible from υ, JυK∧Ππ cannot be unsatisfiable.

To understand the intuition behind the subsumption check, it helps to know

what an interpolant at a node actually represents. An interpolant Ψυ′ at a node

υ′ succinctly captures the reason of infeasibility of all infeasible paths in the

symbolic tree rooted at υ′. Let us call this tree T1. Then, if another state υ at

` is encountered such that JυK |= Ψυ′ , it means that any infeasible path in T1 is

also infeasible in the tree rooted at υ, say T2. In other words, any feasible path

in T2 is also feasible under T1. Thus, the analysis information derived from T1 is

a sound approximation of the analysis information about T2.

The condition (b) of Eqn. 2.2 is the witness check which affects accuracy

and ensures that the merging of two states does not incur any loss of precision.

This is formalised in the following theorem.

Theorem 1. Given states υ≡ 〈`,s,Π〉 and υ′≡ 〈`,s′,Π′〉, let συ′ be the analysis

result associated with υ′. If υ can be merged with υ′ by satisfying the conditions

of Eqn. 2.2, then by exploring υ there cannot be produced an analysis result συ

such that συ 6= συ′ .

Theorem 1 guarantees that had one explored υ instead of merging (and reusing)

with υ′, one would obtain exactly the same analysis information as συ′ . The

proof for Theorem 1 is given in Chapter 3, in the context of program slicing.

18

A subtle point is that witnesses are not required if the “analysis” being per-

formed is program verification and testing. Typically, in verification and testing,

there are only two results that an analysis of a tree can provide: “safe” or “un-

safe”. If the result at any state is “unsafe”, the process generally terminates.

Otherwise, soundness of reuse—dictated by condition (a) of Eqn. 2.2 using

interpolants—automatically guarantees precision of reuse, as “safe” is trivially

the most precise result. This important observation allows for optimisations in

the implementation of our algorithms for verification and testing.

Interpolant strength and Weakest Preconditions

It is easy to see that the weaker the interpolant is in logical strength, the more

likely it is to subsume other states, as it would have filtered away more irrelevant

information. Ideally, the weakest precondition [55] (WP), denoted by ŵl p, at a

symbolic state υ (w.r.t. the infeasibility of paths that pass through υ) is the per-

fect interpolant. Since WP is computationally expensive, we under-approximate

it by a mix of existential quantifier elimination, unsatisfiable cores, and some

heuristics. Whenever an infeasible path is detected we compute ¬ (∃y ·G), the

postcondition that we want to map into a precondition, where G is the guard

where the infeasibility is detected and y are G-local variables. The two main

rules for propagating WP’s are:

(A) ŵl p(x := e, Q) = Q[e/x]

(B) ŵl p(if(C) S1 else S2,Q) = (C⇒ ŵl p(S1,Q))∧ (¬C⇒ ŵl p(S2,Q))

Rule (A) replaces all occurrences of x with e in the formula Q. Rule (B), the

standard WP propagation rule for branch points, poses a problem as it makes

the formula disjunctive and grow exponentially in size. The challenge is to

produce non-disjunctive formulas from rule (B) but still as weak as possible to

increase the likelihood of subsumption. To tackle this, during forward symbolic

execution when an infeasible path is detected we discard irrelevant guards by

using unsatisfiable cores (UC) to avoid growing the WP formula unnecessarily.

Definition 4 (Unsatisfiable Core). Given a constraint set S whose conjunction

is unsatisfiable, an unsatisfiable core (UC) S′ is any unsatisfiable subset of S. An

unsatisfiable core S′ is minimal if any strict subset of S′ is satisfiable.

19

`0 s = 0;
`1 if (*)
`2 s = s + 1;

else
`3 s = s + 2;
`4 if (*)
`5 s = s + 1;

else
`6 s = s + 2;
`7 if (s > 10)
`8 error();
`9

s++

2

4

false false

1

s+=2

s=0

6

7

9 9

5

false false

4

3

7

9 9

5

7

s++ s+=2

s>10
7

s++ s+=2

6

(*)

(*)

(*)

(*) (*) (*)

s>10 s>10 s>10 s<=10

(a) (b)

Figure 2.3: (a) A verification problem (b) Its full symbolic execution tree

For instance, the formula C⇒ ŵl p(S1,Q) can be replaced with ŵl p(S1,Q)

if C 6∈ C where C is a (not necessarily minimal) UC. Otherwise, we underap-

proximate C⇒ ŵl p(S1,Q) as follows. Let d1 ∨ . . .∨ dn be ¬ ŵl p(S1,Q) then

we compute
∧

1≤i≤n(¬ (∃ x′ · (C∧di))), where existential quantifier elimination

removes the post-state variables x′. A very effective heuristic if the resulting for-

mula is disjunctive is to delete those conjuncts that are not implied by C because

they are more likely to be irrelevant to the infeasibility reason.

Let us now exemplify the use of interpolation during symbolic execution.

Consider the program in Fig. 2.3(a) (taken from [64]), where a * represents an

operation that returns a non-deterministic outcome (true or false). The program

initialises a variable s to 0, and performs two increments of either 1 or 2. The

safety property checks whether the value of s is greater than 10, and if so, an

error is thrown. The full symbolic execution tree2 of this program is shown in

Fig. 2.3(b). Clearly the program is safe, as the error location `8 is never reached.

However, the symbolic execution tree is exponential in the number of branches.

Suppose that we symbolically executed the program with interpolation. Af-

ter executing the first path, as shown in Fig. 2.4(a), we would annotate each

program point along the path with WP interpolants (starting from Ψ7 and prop-

2From now on, for clarity, we do not show the symbolic states explicitly as in Fig. 2.2, but
rather only the program points and transitions.

20

s++

s++

s=0

1

2

4

5

7

9false

s<=10

s<=9

s<=8

true

s<=8

s<=9

(*)

(*)

s>10 s<=10

s++

s++ s+=2

s=0

s>10

1

2

4

5 6

7 7

9false

s<=10

s<=9

s<=8

true

s<=8

s<=9

(*)

(*)

(*)

s<=10

subsumed

s++

s++ s+=2

s=0

s>10

1

2

4

5 6

7 7

9false

s<=10

s<=9

s<=8

4

2

true

s<=9

s<=8

s+=2

subsumed

subsumed

(*)

(*)

(*)
(*)

s<=10

(a) (b) (c)

Figure 2.4: Building the Symbolic Execution Tree with Interpolation (WP)

agating backwards through the assignments): Ψ7 : s≤ 10, Ψ5 : s≤ 9, Ψ4 : s≤ 9,

Ψ2 : s≤ 8, and Ψ1 : s≤ 8. Note that the interpolant at a point is to be interpreted

on the latest version of the program variables at that point.

In this example, the WP computations are notably simplified since the

guards are clearly irrelevant for the infeasibility of the path, and hence, only rule

(A) is triggered. For instance, Ψ7 : s≤ 10 is obtained by ¬ (∃V \{s} · s > 10)≡
s≤ 10 where V is the set of all program variables (including renamed variables),

and Ψ6 : s ≤ 9 is obtained by ŵl p(s′ = s+ 1, s′ ≤ 10) = s ≤ 9, where s and s′

are the pre-state and post-state variables. Fig. 2.4(b) shows the second sym-

bolic path but note that the path can be now subsumed at location 7 since the

symbolic state s = 0∧ s′ = s+ 1∧ s′′ = s′+ 2 |= s′′ ≤ 10. Dashed edges rep-

resent subsumed paths and are labelled with “subsumed”. Finally, Fig. 2.4(c)

illustrates how the third symbolic path can be also subsumed at location 4 since

s = 0∧ s′ = s+2 |= s′ ≤ 9. Now, we have managed to prove safety again but the

size of the symbolic tree is linear on the number of branches.

This example shows that interpolation can result in exponential savings.

However, it is important to note that this benefit is greatly affected by the qual-

ity of interpolants. For instance, had we used strongest postcondition (SP) in-

terpolants for proving the above program safe, we might not have obtained a

linear tree. In this thesis, we use either WP or SP interpolants in our examples,

although there are also numerous other interpolation methods. Hence we make

21

it clear that the actual interpolation method used is orthogonal to this work.

2.3 Implementation: TRACER

This section presents TRACER, the framework that we developed for performing

symbolic execution with interpolation, and provides implementation details and

tricks for anyone who may interested in implementing the algorithms in this

thesis. TRACER was originally presented in [64] as a verifier of safety properties

of C programs, and can be downloaded from [2].

Essentially, TRACER implements classical symbolic execution [71] with

some novel features that we will outline along this section. It takes symbolic

inputs rather than actual data and executes the program considering those sym-

bolic inputs. During the execution of a path all its constraints are accumulated

in a first-order logic (FOL) formula called path condition (PC). Whenever code

of the form if(C) then S1 else S2 is reached the execution forks the current sym-

bolic state and updates path conditions along both the paths: PC1 ≡ PC∧C and

PC2 ≡ PC∧¬C. Then, it checks if either PC1 or PC2 is unsatisfiable. If yes,

then the path is infeasible and the execution halts backtracking to the last choice

point. Otherwise, it follows the path.

The first key aspect of TRACER, originally proposed in [66] for symbolic

execution, is the avoidance of full enumeration of symbolic paths by learn-

ing from infeasible paths computing interpolants [28]. Preliminary versions

of TRACER [59, 66] computed interpolants based on strongest postconditions.

Given two formulas A (symbolic path) and B (last guard where infeasibility is

detected) such that A∧B is unsat, an interpolant was obtained by ∃x ·A where

x are A-local variables (i.e., variables occurring only in A). However, as men-

tioned in Section 2.2, weaker interpolants favour better subsumption, and hence

we implemented the weakest precondition approximation method explained be-

fore. Having said that, we have indeed encountered benchmarks in practice

where interpolants based on strongest postconditions were good enough and

faster to compute than weakest preconditions.

22

Loop Inv. Gen

Error

Safe Refinement

Loop Inv.

Abstract
Error

C program

SE Interpreter

C frontend

Alias Analysis

InterProc

Interpolation

Constraint Solving

Interpreter

Frontend

Figure 2.5: Architecture of TRACER

Usage and Architecture of TRACER

Input. TRACER takes as input a C program with either assertions of the form

_TRACER_abort(Cond), where Cond is a quantifier-free FOL formula, or anno-

tations of the form _TRACER_slice(Vars), where Vars is a set of variables to slice

on. In the former case (i.e., verification or testing), each path that encounters the

assertion tests whether Cond holds or not. If yes, the symbolic execution has

reached an error node and thus, it reports the error and aborts if the error is real,

or refines if spurious. Otherwise, the symbolic execution continues normally. In

the latter case (i.e., slicing mode), each path that encounters the _TRACER_slice

annotation is used to compute backward dependency information.

Output. If in verification or testing mode, the symbolic execution terminates

and all _TRACER_abort assertions failed then the program is reported as safe and

the corresponding symbolic execution tree is displayed as the proof object. If

the program is unsafe then a counterexample is shown. In slicing mode, once the

symbolic execution terminates computing dependency information at all nodes,

the slice is computed using this information.

Architecture. Fig. 2.5 outlines the architecture of TRACER. It is divided into

two components. First, a C-frontend based on CIL [85] translates the program

23

into a constraint-based logic program. Both pointers and arrays are modeled

using the theory of arrays. An alias analysis is used in order to yield sound

and finer grained independent partitions (i.e., separation) as well as infer which

scalars’ addresses may have been taken. Optionally, INTERPROC [74] (option

-loop-inv) can be used to provide loop invariants. The second component is

an interpreter which symbolically executes the constraint-based logic program

and it aims at demonstrating that error locations are unreachable. This inter-

preter is implemented in a Constraint Logic Programming (CLP) system called

CLP(R) [60]. Its main sub-components are:

• Constraint Solving relies on the CLP(R) solver to reason fast over lin-

ear arithmetic over reals augmented with a decision procedure for arrays

(option -mccarthy).

• Interpolation is implemented in TRACER by two methods with different

logical strength. The first method uses strongest postconditions [59, 66]

(-intp sp). The second computes weakest preconditions (-intp wp) but

currently it only supports linear arithmetic over reals. TRACER also pro-

vides interfaces to other interpolation methods such as CLP-PROVER [92]

(-intp clp).

• Unbounded Loops are handled by TRACER using the technique described

in [59]. With unbounded loops the only hope to produce a proof is ab-

straction. In a nutshell, upon encountering a cycle TRACER computes

the strongest possible loop invariants Ψ by using widening techniques in

order to make the SE finite. If a spurious abstract error is found then a re-

finement phase (similar to CEGAR [24] methods) discovers an interpolant

I that rules the spurious error out. After restart, TRACER strengthens Ψ by

conjoining it with I and the symbolic execution checks path by path if the

new strengthened formula is loop invariant. If this test fails for a path π,

then TRACER unrolls π one more iteration and continues with the process.

Notice that the generation of invariants is dynamic in the sense that loop

unrolls will expose new constraints producing new invariant candidates.

24

Chapter 3

Backward Slicing

Backward slicers are typically path-insensitive (i.e., they ignore the evaluation

of predicates in guards), or they are only partially path-sensitive sometimes pro-

ducing too big slices. Though the value of path-sensitivity is always desirable,

as mentioned in Chapter 1, the major challenge is that there are, in general, an

exponential number of predicate combinations to be considered.

We make two contributions to the area of backward slicing. Firstly, in Part I

of this chapter, we present a path-sensitive backward slicer and demonstrate

its practicality with real C programs. The core is a symbolic execution-based

algorithm that excludes spurious dependencies lying on infeasible paths while

pruning paths that cannot improve the accuracy of the dependencies already

computed by other paths.

Secondly, in Part II of this chapter, we present a program transformation

technique intended for programs that are about to be processed by third-party

applications querying target variables, such as a verifier or tester. The trans-

formation embodies two concepts – path-sensitivity to exclude infeasible paths,

and slicing with respect to the target variables. This key step is founded on a

novel idea introduced in this work, called “Tree Slicing”. Compared to the orig-

inal program, the transformed program may be bigger (due to path-sensitivity)

or smaller (due to slicing). We show that it is not much bigger in practice, if at

all. The main result however concerns its quality: third-party testers and veri-

fiers perform substantially better on the transformed program compared to the

original.

25

Part I: Static Backward Slicing

Weiser [104] defined the backward slice of a program with respect to a pro-

gram location ` and a variable x, called the slicing criterion, as all statements

of the program that might affect the value of x at `, considering all possible

executions of the program. Slicing was first developed to facilitate software de-

bugging, but it has subsequently been used for performing diverse tasks such

as parallelisation, software testing and maintenance, program comprehension,

reverse engineering, program integration and differencing, and compiler tuning.

Although static slicing has been successfully used in many software en-

gineering applications, slices may be quite imprecise in practice - ”slices are

bigger than expected and sometimes too big to be useful [10]”. Two possible

sources of imprecision are: inclusion of dependencies originated from infeasible

paths, and merging abstract states (via join operator) along incoming edges of a

control flow merge. A systematic way to avoid these inaccuracies is to perform

path-sensitive analysis. An analysis is said to be path-sensitive if it keeps track

of different state values based on the evaluation of the predicates at conditional

branches. Path-sensitive analyses are very rare due to the difficulty of designing

efficient algorithms that can handle their combinatorial nature.

The main result of this work is a practical path-sensitive algorithm to com-

pute backward slices. Symbolic execution (SE) is the underlying technique that

provides path-sensitiveness to our method. The idea behind SE is to use sym-

bolic inputs rather than actual data and execute the program considering those

symbolic inputs. During the execution of a path all its constraints are accumu-

lated in a formula P. Whenever code of the form if(C) then S1 else S2 is reached

the execution forks the current state and updates the two copies P1 ≡ P∧C and

P2 ≡ P∧¬C, respectively. Then, it checks if either P1 or P2 is unsatisfiable. If

yes, then the path is infeasible and hence, the execution stops and backtracks to

the last choice point. Otherwise, the execution continues. The set of all paths

explored by symbolic execution is called the symbolic execution tree (SET).

Not surprisingly, a backward slicer can be easily adapted to compute slices

on SETs rather than control flow graphs (CFGs) and then mapping the results

26

from the SET to the original CFG. It is not difficult to see that the result would

be a fully path-sensitive slicer. However, there are two challenges facing this

idea. First, the path explosion problem in path-sensitive analyses that is also

present in SE since the size of the SET is exponential in the number of condi-

tional branches. The second challenge is the infinite length of symbolic paths

due to loops. To overcome the latter we borrow from [98] the use of inductive

invariants produced from an abstract interpreter to automatically compute ap-

proximate loop invariants. Because invariants are approximate our algorithm

cannot be considered fully path-sensitive in the presence of loops. Nevertheless

our results in Sec. 3.4 demonstrate that our approach can still produce signifi-

cantly more precise slices than a path-insensitive slicer.

Therefore, the main technical contribution of this chapter is how to tackle

the path-explosion problem. We rely on the observation that many symbolic

paths have the same impact on the slicing criterion. In other words, there is no

need to explore all possible paths to produce the most precise slice. Our method

takes advantage of this observation and explores the search space by dividing

the problem into smaller sub-problems which are then solved recursively. Then,

it is common for many sub-problems to be “equivalent” to others. When this is

the case, those sub-problems can be skipped and the search space can be signif-

icantly reduced with exponential speedups. In order to successfully implement

this search strategy we need to (a) store the solution of a sub-problem as well as

the conditions that must hold for reusing that solution, (b) reuse a stored solution

if a new encountered sub-problem is “equivalent” to one already solved

Our approach symbolically executes the program in a depth-first search man-

ner. This allows us to define a sub-problem as any subtree contained in the SET.

Given a subtree, our method following Weiser’s algorithm computes dependen-

cies among variables that allow us to infer which statements may affect the

slicing criterion. The fundamental idea for reusing a solution is that when the

set of feasible paths in a given subtree is identical to that of an already explored

subtree, it is not possible to deduce more accurate dependencies from the given

subtree. In such cases we can safely reuse dependencies from the explored sub-

tree. However, this check is impractical because it is tantamount to actually

27

exploring the given subtree, which defeats the purpose of reuse. Hence we de-

fine certain reusing conditions, the cornerstone of our algorithm, which are both

sound and precise enough to allow reuse without exploring the given subtree.

First, we store a formula that succinctly captures all the infeasible paths de-

tected during the symbolic execution of a subtree. We use efficient interpolation

techniques [28] to generate interpolants for this purpose. Then, whenever a new

subtree is encountered we check if the constraints accumulated imply in the log-

ical sense the interpolant of an already solved subtree. If not, it means there are

paths in the new subtree which were unexplored (infeasible) before, and so we

need to explore the subtree in order to be sound. Otherwise, the set of paths in

the new subtree is a subset of that of the explored subtree. However, being a

subset is not sufficient for reuse since we need to know if they are equivalent,

but the equivalence test, as mentioned before, is impractical. Here, we make use

of our intuition that only few paths contribute to the dependency information in

every subtree. Hence, to check for equivalence of subtrees we need not check

all paths, but only those that contribute to the dependencies, what we call the

witness paths (cf. Fig. 3.1 example). Now, if the implication succeeds we also

check if the witness paths of the explored subtree are feasible in the new subtree.

If yes, we reuse dependencies. Otherwise, the equivalence test failed.

Finally, as we will discuss in Sec. 3.5, some previous works have tackled the

problem of path-sensitive backward slicing before. However, to the best of our

knowledge either they suffer from the path-explosion problem or scalability is

achieved at the expense of losing some path-sensitiveness. One essential result

of our method is that it produces exact slices for loop-free programs. By “ex-

act” we mean that the algorithm guarantees to not produce dependencies from

spurious1 (i.e., non-executable) paths. In other words, it produces the small-

est possible, sound slice of a loop-free program for any given slicing criterion.

Our method mitigates the path-explosion problem using a combination of inter-

polants and witness paths that allows pruning significantly the search space.

1Of course, limited by theorem prover technology which decides whether a formula is un-
satisfiable or not.

28

`1 x=0;y=5;
`2 if (a>0)
`3 b=x+y;
`4 if (*)
`5 x=1;

else
`6 y=0;
`7 if (y>0)
`8 z=x;
`9

x=0;y=5

a>0

a<=0

1

2

3

true true

x=1 y=0

y<=0

y>0

z=x

4

5 6

7

8

9

b=x+y

2:1

1:1

a>0

x=0;y=5

{y}

{ }

5:1

true true

7:27:1

y=0

y>0

z=x

8:1

9:1

6:1

9:3

8:29:2

y<=0

{ }

{ }

x=1

{x,y}

{y}

{y} 4:1

3:1
{y}

5:2

true true

7:47:3

y=0

y>0

z=x

8:3

9:4

6:2

9:6

8:49:5

y<=0

{x}

{ }

{ }

x=1

{x,y}

{y}

{y} 4:2

a<=0

{x}

b=x+y

(a) (b)

Figure 3.1: (a) A program and its transition system, (b) its naive symbolic exe-
cution tree (SET) for slicing criterion (underlined statements) 〈`9,{z}〉

3.1 Motivating Example

We first describe our approach through an example. Consider the program in

Fig. 3.1(a) and assume we would like to slice it w.r.t. location `9 and variable

z. The statement x=0 at `1 should not be included in the slice because any path

that reaches `8 through `5 redefines x and any path that reaches `8 through `6

(without redefining x) is infeasible. Note that a path insensitive algorithm would

not be able to infer this from the CFG.

Fig. 3.1(b) shows the naive symbolic execution tree of the program. The

nodes are labelled with ` : k (` is a program location and k is an identifier to dis-

tinguish nodes with the same program location belonging to different symbolic

paths) and edges between two locations are labelled by the intervening program

operation. Black (solid) edges denote feasible transitions and red (zigzag) edges

denote infeasible transitions. Each node is annotated with its dependency set in

blue (between brackets) obtained by running, for instance, Weiser’s [104] al-

gorithm. Informally, a dependency set at location ` contains all variables that

may affect the slicing criterion from any path reachable from `. A statement

29

at ` is included in the slice if the intersection between the dependency set at `

and the set of variables defined at ` (i.e., left-hand side of the assignment) is not

empty. Note that the dependency set at 2:1 only contains y and therefore, the

statement x=0 at `1 would not be included in the slice. Hence it is clear that the

path-sensitive SET improves the accuracy of slices. The problem is that the size

of the tree is exponential in the number of branches.

2:1

1:1

a>0

x=0;y=5

{y}

{ }

5:1

true true

7:27:1

y=0

y>0

z=x

8:1

9:1

6:1

9:3

8:29:2

y<=0

{ }

{ }

x=1

{x,y}

{y}

{y} 4:1

3:1
{y}

4:2

{x}

b=x+y

{y}

a<=0

Figure 3.2: Interpolation-based Sym-
bolic Execution Tree for Fig. 3.1

However, consider now the tree in

Fig. 3.2 constructed by our method2

where green (dotted) edges denote

reusing transitions. This tree contains

the same relevant information needed

to exclude x=0 from the slice but

without some redundant paths present

in Fig. 3.1(b), achieving exponential

savings. Let us see how the tree in

Fig. 3.2 is generated.

Our algorithm performs symbolic

execution guided by depth-first search

exploring first the path π≡ `1 · `2 · `3 ·
`4 · `5 · `7 · `8 · `9. As usual, it accumu-

lates the constraints along the path in

a formula Π, where variable redefini-

tions are denoted by primed versions.

For the above path, Π9:1 ≡ x = 0∧ y = 5∧ a > 0∧ b = x + y∧ x′ = 1∧ y >

0∧z = x′ is the formula built at 9:1, which is satisfiable. It then applies Weiser’s

algorithm to compute the dependency set at each node along the path. Briefly,

Weiser’s algorithm computes dependency sets starting backwards from the slic-

ing criterion. Whenever an assignment statement modifies a variable appearing

in the dependency set following it, the variables in the RHS are added to the

dependency set due to data-dependency. If the statement is within a branch, the

variables in the branch condition are added to the dependency set at the branch

2In fact, it is a Directed Acyclic Graph (DAG) due to the existence of reusing edges.

30

point due to control-dependency.

In addition to this, our algorithm also computes at each node one of the

reusing conditions: the (smallest possible) set of paths from which the depen-

dency set was generated. For example, at 7:1 the dependency set {x,y} was

obtained from the path `7 · `8 · `9, at 4:1 the dependency set {y} was obtained

from `4 · `5 · `7 · `8 · `9, and so on. These paths are called the witness paths and

they represent the paths along which each variable in the dependency set affects

the slicing criterion.

Next our algorithm backtracks and explores the path π ≡ `1 · `2 · `3 · `4 · `5 ·
`7 · `9 with constraints Π9:2 ≡ x = 0∧ y = 5∧a > 0∧b = x+ y∧ x′ = 1∧ y≤ 0.

This formula is unsatisfiable and hence the path is infeasible. Now it generates

another reusing condition: an interpolant that captures the essence of the reason

of infeasibility of the path. The main purpose of the interpolant is to exclude

irrelevant facts pertaining to the infeasibility so that the reusing conditions are

more likely to be reusable in future. For the above path a possible interpolant

is y = 5 which is enough to capture its infeasibility and the infeasibility of any

path that carries the constraint y ≤ 03. In summary, our algorithm generates

two reusing conditions: witness paths from feasible paths and interpolants from

infeasible paths.

Next it backtracks and explores the path π≡ `1 · `2 · `3 · `4 · `6 · `7. At 7:2, it

checks whether it can reuse the solution from 7:1 by checking if the accumulated

constraints Π7:2 ≡ x = 0∧y = 5∧a > 0∧b = x+y∧y′ = 0 imply the interpolant

at 7:1, y′ = 54. Since the implication fails, it has to explore 7:2 in order to be

sound. The subtree after exploring this can be seen in Fig. 3.2. Importantly, note

here that while applying Weiser’s algorithm, it has obtained a more accurate

dependency set (empty set) at 7:2 than that which would have been obtained if

it reused the solution from 7:1. Also note that at 4:1, the dependency set is still

{y} with witness path `4 · `5 · `7 · `8 · `9 and interpolant y = 5.

Now, when our algorithm backtracks to explore the path π ≡ `1 · `2 · `4, it

checks at 4:2 if it can reuse the solution from 4:1. This time, the accumulated

constraints x = 0∧y = 5∧a≤ 0 imply the interpolant at 4:1, y = 5. In addition,

3For simplicity, we are using strongest postcondition based interpolants here instead of WP.
4The interpolant always considers the latest versions of the variables.

31

the witness path at 4:1 is also feasible under 4:2. Hence, it simply reuses the

dependency set {y} from 4:1 both in a sound and precise manner, and backtracks

without exploring 4:2. In this way, it achieves exponential savings while still

maintaining as much as accuracy as the naive SET in Fig. 3.1(b). Now, when

Weiser’s algorithm propagates back the dependency set {y} from 4:2, we get the

dependency set {y} again at 2:1, and the statement x=0 at 1:1 is not included in

the slice.

3.2 Background

Program Slicing via Abstract Interpretation. The backward slice of a pro-

gram w.r.t. a program location ` and a set of variables V ⊆ Vars, called the

slicing criterion 〈`,V 〉, is all statements of the program that might affect the

values of V at `.5 We follow the dataflow approach described by Weiser [104]

reformulated as an abstract domain D ≡ {⊥}∪P (Vars) (where P (Vars) is the

powerset of program variables) with a lattice structure 〈v,⊥,t,u,>〉, such that

v≡⊆, t ≡ ∪, and u ≡ ∩ are conveniently lifted to consider the element ⊥.

We say σ` ∈ D is the approximate set of variables at location ` that may

affect the slicing criterion. We will abuse notation to denote the dependencies

associated to a symbolic state υ also as συ. Backward data dependencies can be

formulated using this set, defining two kinds of dataflow information. Given a

transition relation `
op−−→ `′ we define def (op) and use(op) as the sets of variables

altered and used during the execution of op, respectively. Then,

σ` ,

 (σ`′ \def(op))∪use(op) if σ`′ ∩ def(op) 6= /0

σ`′ otherwise
(3.1)

where σ`′ = V if `′ = `end. We say a transition relation `
op−−→ `′ where op

≡ x = e is included in the slice if:

σ`′ ∩ def(op) 6= /0 (3.2)

5W.l.o.g., we assume in this chapter a single slicing criterion at `end. A slicing criterion at `
can be converted to one at `end by assigning a special variable w at ` and slicing on w at `end.

32

Backward control dependencies can also affect the slicing criterion. A transition

relation δ ≡ `
op−−→ `′ where op ≡ assume(c) is included in the slice if any

transition relation under the range of influence6 (the function INFL will compute

the range of influence) of δ is included in the slice, and (3.3)

σ` , σ`′ ∪use(op) (3.4)

Finally, a function p̂reD (σ`,op) that returns the pre-state after executing back-

wards the operation op with the post-state σ` is defined using Eqs. (3.1,3.2,3.3,3.4).

3.3 Algorithm

A path-sensitive slicing algorithm over a symbolic execution tree (SET) can be

defined as an annotation process which labels each symbolic state υ ≡ 〈`, ·, ·〉
with σ` ∈ D by computing a fixpoint (later formalised) over the tree, using

Eqs. (3.1,3.4) described in Sec. 3.2. In an interleaved process, the final SET

is obtained through Eqs. (3.2,3.3). Since the SET may have multiple instances

of the same transition relation, we say that a transition relation is included in

the final slice if at least one of its instances is included in the slice on the SET.

It is easy to see that the path-sensitiveness comes from how symbolic execu-

tion builds the tree since no dependencies from a non-executable path can be

considered.

Our algorithm performs symbolic execution in a depth-first search manner

excluding all infeasible paths. Whenever the forward traversal of a path finishes

due to a (a) terminal state, (b) infeasible state, or (c) reusing state (i.e., a state

reusing a solution from another state), the algorithm halts and backtracks to the

next path. During this backtracking each symbolic state υ is labelled with its

solution, i.e., the set of variables συ at υ that may affect the slicing criterion.

Furthermore, the reusing conditions are computed at each state for future use.

We first introduce formally the two key concepts which will decide whether

a solution can be reused or not. The first reusing condition is the interpolant, as

defined in Definition 1 of Chapter 2. The second reusing condition is the notion

6More formally, the range of influence for δ is the set of transition relations defined in any
path from δ to its nearest postdominator in the transition system.

33

- t : Dω×Dω→Dω

σω
1tσω

2 , σω
1∪σω

2

- v: Dω×Dω→ Bool
σω

1 v σω
2 if and only if σω

1 ⊆ σω
2

- p̂re : Dω× (Σ×Σ×Ops)× (Vars→ SymVars)→Dω.

p̂re(σω′, `
op−−→ `′,s) ,

let σω = p̂re_aux(σω′, `
op−−→ `′,s)

foreach 〈x,ωx〉 ∈ σω,〈x,ωx′〉 ∈ σω

σω=σω \{〈x,ωx〉,〈x,ωx′〉}
if ωx |= ωx′ then σω=σωt{〈x,ωx′〉}
else σω=σωt{〈x,ωx〉}

if (σω∩de f (op) or INFL(` −→ `′)∩S 6= /0) then
S=S∪{` −→ `′}

in σω

where: p̂re_aux(σω′, `
op−−→ `′,s) ,

{〈x,ωx∧ Jy = eKs〉 | 〈x,ωx〉 ∈ σω′,op≡ y = e, x 6∈ de f (op)}∪
{〈v,ωx∧ Jy = eKs〉 | 〈x,ωx〉 ∈ σω′,op≡ y = e, x ∈ de f (op),v ∈ use(op)}∪
{〈x,ωx∧ JcKs〉 | 〈x,ωx〉 ∈ σω′,op≡ assume(c)}∪
{〈x,JΠπKs∧ JcKs〉 | 〈x, ·〉 /∈ σω′,op≡ assume(c),x ∈ use(op),

INFL(` −→ `′)∩S 6= /0,∃ π≡ `′ · . . . · `end}

Figure 3.3: Main Abstract Operations for Dω

of witness paths, as defined in Definition 2, which is slightly tweaked here to

consider the slicing criterion and dependency variables.

Definition 5 (Witness Paths for a Dependency Variable). Given a symbolic state

υ≡ 〈`, ·, ·〉 annotated with the set of variables συ that affect the slicing criterion

at `end, a witness path for a variable v ∈ συ is a symbolic path π≡ 〈`, ·, ·〉 · ... ·
〈`end, ·,Πend〉 with the final symbolic state υ′ ≡ 〈`end, ·,Πend〉 such that Jυ′K is

satisfiable (i.e., π is feasible). We call Jυ′K the witness formula of v, denoted ωv.

Intuitively, a witness path for a variable at a node is a path below the node along

which the variable affects the slicing criterion at the end. A witness formula

represents a condition sufficient for the variable to affect the slicing criterion

along the witness path.

Prior to establishing the reusing conditions, we augment the abstract domain

D to accommodate the witness formulas. Here, and in the rest of the chapter,

we will refer to the term “dependency” as the set of variables that may affect the

34

slicing criterion together with their witnesses.

Definition 6 (Dω). We define a new abstract domain Dω as a lattice 〈v,⊥,t,>〉
such that Dω , {⊥} ∪ P (Vars×FOL) (i.e., set of pairs of the form 〈x,ωx〉
where x is a variable and ωx is its witness formula) and abstract operations

described in Fig. 3.3.7

Note that the witness formulas can be obtained only from (feasible) paths

in the program. Therefore, the number of witness formulas is always finite.

As we will see later, even with loops, the size of each witness formula is also

finite because we make the symbolic subtree of the loop finite. That is, we

perform symbolic execution on a finite program once loop invariants are given.

This ensures that the abstract domain Dω is finite and hence, termination is

guaranteed for any fixpoint computation based on it.

In Fig. 3.3, the operator t computes the least upper bound of the abstract

states by simply applying the set union of the two set of states. The operator

v is simply defined to be the subset relation. p̂re is a bit more elaborated but

basically consists of the Eqs. (3.1,3.2,3.3,3.4) defined in Sec. 3.2 extended with

witnesses formulas. We assume here and in the algorithm in Fig. 3.4 that p̂re ac-

cesses S which is the set of transitions included in the slice. In function p̂re_aux,

there are four cases to handle different kinds of statements and dependencies:

- In the first two cases, if the operation is an assignment, the dependencies

are propagated from the defined to the used variables and any dependency

from a variable not defined is kept. In these cases, the pre-state witness

formula is the conjunction of the post-state witness formula with the cor-

responding statement.

- In the third case, if the operation is an assume, any used variable is pre-

served, with its pre-state witness formula being the conjunction of the

post-state witness formula and the corresponding guard.

- In the last case, for any variable x occurring in an assume statement with-

out any dependency, if any transition under the range of influence (com-

puted by INFL) of the assume is already in the slice, then x is added (due

to control dependency) and its witness formula is the conjunction of the
7For clarity, trivial treatment of the element ⊥ is omitted from operations in Fig. 3.3.

35

guard and the path condition of any (feasible) path from the assume state-

ment that leads to the end of the program.

In addition, in function p̂re whenever two pairs from the set of dependencies

computed by p̂re_aux refer to the same variable, we choose the one with the

weaker witness formula (which is more likely to be reused) by checking if one

logically implies the other. Finally, a transition is included in the slice if one of

the Eqs. (3.2,3.3) holds.

We now define our main condition for reusing dependencies computed at

another node, very similar to the merging conditions in Definition 3.

Definition 7 (Reusing Conditions). Given a current symbolic state υ≡ 〈`, ·,Π〉
and an already solved symbolic state υ′ ≡ 〈`, ·, ·〉 such that Ψ is the interpolant

generated for υ′ and σω are the dependencies together with their attached wit-

nesses at υ′, we say υ is equivalent to υ′ (or υ can reuse the solution at υ′) if the

following conditions hold:

(a) JυK |= Ψ

(b) ∀〈x, ·〉 ∈ σω •∃〈x,ωx〉 ∈ σω such that JυK∧ωx is satisfiable
(3.5)

The condition (a) affects soundness and it ensures that the set of symbolic paths

reachable from υ must be a subset of those from υ′. The condition (b) is the

witness check which essentially states that for each variable x in the dependency

set at υ′, there must be at least one witness path with formula ωx that is feasible

from υ. This affects accuracy and ensures that the reuse of dependencies does

not incur any loss of precision.

We now describe in detail the main features of our algorithm defined by the

function BackwardDepsV in Fig. 3.4. The main purpose of BackwardDepsV is

to keep track of the backward dependencies between the program variables and

the slicing criterion by inferring for each state the set of variables that may affect

the slicing criterion. From these dependencies it is straightforward to obtain the

slice of the program as explained at the beginning of this section. For clarity of

presentation, let us omit the content of the grey boxes and assume programs do

not have loops, which we will come to later.

BackwardDepsV : SymStates×Dω → FOL×Dω×Bool requires the pro-

36

BackwardDepsV (υ≡ 〈`,s,Π〉,σω)
1: change = false
2: if INFEASIBLE(υ) then 〈Ψ,σω〉 = 〈false, /0〉 and goto 13
3: if TERMINAL(υ) then 〈Ψ,σω〉 = 〈true,{〈v, true〉 | v ∈V}〉 and goto 13
4: if ∃ υ′ ≡ 〈`,s, ·〉 labelled with 〈Ψ,σω〉 such that REUSE(υ,υ′) then goto 13

5: if ` is the header of a loop then
6: υ = invariant(υ, `→ . . .→ `)
7: 〈Ψ,σω,change〉 = UnwindTreeV (υ,σ

ω) and goto 13
8: if ∃ `′ such that `→ `′ is a backedge of a loop then
9: 〈·, ·,Π〉 = invariant(υ, `′→ . . .→ `)
10: 〈Ψ,σω〉 = 〈Π,σω〉 and goto 13

11: 〈Ψ,σω,change〉 = UnwindTreeV (υ, σω)
12: change = change ∨ υ is labelled with 〈·,σω

old〉 such that ¬(σω
old vDω σω)

13: label υ with 〈Ψ,σω〉 and return 〈Ψ,σω,change〉

UnwindTreeV (υ≡ 〈`,s,Π〉,σω
in)

1: Ψ=true, σω = σω
in, change = false

2: foreach transition relation `
op−−→ `′

3:
υ
′ ,

{
〈`′,s,Π∧ JcKs〉 if op ≡ assume(c)
〈`′,s[x 7→ Sx],Π∧ Jx = eKs〉 if op ≡ x = e and Sx fresh variable

4: 〈Ψ′,σω′,c〉= BackwardDepsV (υ
′,σω

in)

5: Ψ= Ψ∧ ŵl p(op,Ψ
′
)

6: σω= σω tDω p̂reDω(σω′,op,s)
7: change = change ∨ c
8: return 〈Ψ,σω,change〉

BackwardDepsLoopV (υ, σω)
1: σω′ = σω, change = false
2: do 〈·,σω′,change〉 = BackwardDepsV (υ,σ

ω′) while change end

Figure 3.4: Path-Sensitive Backward Slicing Analysis

gram to have been translated to a transition system 〈Σ, I,−→,O〉 and takes as

input an initial symbolic state υ≡ 〈` ∈ I,ε, true〉 and an initially empty σω. V

is the set of variables of the slicing criterion. The set of transitions included in

the slice, S, is also empty. Recall that S is only modified by p̂re, and hence,

we omit it from the description of the algorithm defining it as a global variable.

The output is a triple with the interpolant, dependencies (i.e., reusing conditions

and solution) and a boolean flag representing whether any change occurred in a

dependency set at any symbolic state during the algorithm’s backward traversal

37

(this is used mainly to handle loops later). The actual object of interest com-

puted by the algorithm is the set of transitions S included in the slice.

BackwardDepsV implements a recursive algorithm whose objective is to

generate a finite complete SET while reusing solutions whenever possible to

avoid path explosion. Line 1 initialises the (local) variable change to false,

which will be updated later. Next, the three base cases for symbolic states are

handled - infeasible, terminal, and reuse:

- In line 2, the function INFEASIBLE(〈·, ·,Π〉) checks whether Π is satisfi-

able. If not, the symbolic execution detects an infeasible path and halts,

excluding any dependency which would have been inferred from the non-

executable path. In addition, it produces an interpolant from Π and false,

namely Ψ ≡ false, which generalises the current path condition (Π |= Ψ

and Ψ is false). Since the path is not executable there is no variable that

may affect the slicing criterion and hence, the set of dependencies re-

turned is empty.

- In line 3, the function TERMINAL(〈`, ·, ·〉) checks if the symbolic state is

a terminal node by checking if `= `end. If yes, the execution has reached

the end of a path. Since the path is feasible, it can be fully generalised

returning the interpolant Ψ ≡ true. Since ` is a terminal node, the set of

dependencies is the set of variables in the slicing criterion, V . The witness

formula for each variable from V is initially true.

- In line 4 the algorithm searches for another state υ′ whose dependencies

can be reused by the current state υ so that the symbolic execution can be

stopped. For this, the function REUSE(υ,υ′) tests both the reusing con-

ditions in Eq. 3.5. If the test holds, the state υ can reuse the dependencies

computed by υ′.

If all three base cases fail, the algorithm unwinds the execution tree by call-

ing the procedure UnwindTreeV at line 11. UnwindTreeV , at line 3, executes one

symbolic step 8 and calls the main procedure BackwardDepsV with the succes-

sor state (line 4). After the call the two key remaining steps are to compute:

8Note that the rule described in line 3 is slightly different from the one described in Sec. 3.2
because no consistency check is performed. Instead, the consistency check is postponed and
done by the first base case at line 2.

38

- the interpolant Ψ (UnwindTreeV line 5) that generalises the symbolic ex-

ecution tree below υ while preserving its infeasible paths. The procedure

ŵl p : Ops×FOL→ FOL ideally computes the weakest liberal precondi-

tion (wlp) [36] which is the weakest formula on the initial state ensuring

the execution of op results in a final state Ψ
′. In practice, we approximate

wlp by making a linear number of calls to a theorem prover following

techniques described in [66]. The interpolant Ψ is an FOL formula con-

sisting of the conjunction of the result of ŵl p on each child’s interpolant.

- the solution, σω, for the current state υ at line 6 which is computed by ex-

ecuting p̂reDω on each child’s solution and then combining all solutions

using tDω .

In addition, at line 7 it also records changes in any child’s symbolic state

(if any) and then returns a triple in the same format as BackwardDepsV ’s return

value. In BackwardDepsV , line 12 updates change to true if either it was set

to true in UnwindTreeV at line 11 or the current symbolic state is about to be

updated with a more precise solution than that it already has. The final operation

before returning from BackwardDepsV is to label the state υ with the reusing

conditions and solution (line 13).

Now we continue describing our algorithm by discussing how it handles

loops. The main issue is to produce a finite symbolic execution tree on which a

fixpoint of the dependencies can be computed.

For this, the algorithm in Fig. 3.4 takes an annotated transition system in

which program points are labelled with inductive invariants inferred automat-

ically by an abstract interpreter using an abstract domain such as octagons or

polyhedra (we borrow the ideas presented in [98] for this purpose). We assume

the abstract interpreter provides a function getAssrt which, given a program

location ` and a symbolic store s, returns an assertion in the form of an FOL for-

mula renamed using s, which holds at `. Note that when applied at loop headers,

getAssrt will return a loop invariant. However, we would like to strengthen it

using the constraints propagated from the symbolic execution. The function

invariant performs this task as follows:

39

invariant(〈`,s,Π〉, `1→ `n) ,

let s′ = havoc(s,modifies(`1→ `n))

Π = getAssrt(`,s′)∧Π

in 〈`,s′,Π〉

havoc(s,Vars) , ∀v ∈Vars• s[v 7→ z]

where z is a fresh variable (implicitly ∃-quantified).

modifies(`1→ . . .→ `n) takes a sequence of transitions and

returns the set of variables that may be modified during its symbolic execution.

Intuitively, invariant clears the symbolic store of all variables modified in the

loop (using the havoc function) and then enhances the path condition Π of the

symbolic state with the invariants from the abstract interpreter.

Let us now explain the grey boxes in Fig. 3.4. Lines 5-7 in BackwardDepsV

cover the case when a loop header has been encountered. The main purpose here

is to abstract the current symbolic state by using the loop invariant obtained from

the abstract interpreter. The algorithm calls the function invariant (at line 6) with

the transitions in the loop so as to obtain a copy of the current symbolic state

annotated with the approximate loop invariant in its path condition. At line 7,

the UnwindTreeV procedure is called on the resulting symbolic state to explore

the symbolic subtree of the loop.

If the symbolic execution encounters a loop backedge (lines 8-10) from ` to

`′ it halts and backtracks. The reason is that the loop header at `′ has already

been symbolically executed with a loop invariant. Hence there is no need to

continue the loop since the invariant ensures that no new feasible paths will be

encountered if it is explored again. This is our basic mechanism to make the

symbolic execution of the loop finite.

Finally, the main algorithm to handle loops, BackwardDepsLoopV , makes

calls to the function BackwardDepsV until there is no change detected in the

symbolic state of any program point. We present it in its simplest form, but it

can be easily optimised to call BackwardDepsV only with the loop in which the

change was detected.

40

3.4 Experimental Evaluation

We implemented the path-sensitive slicer described in this chapter and per-

formed experiments to address the following questions:

1. Is our path-sensitive slicer practical for medium-size programs?

2. What is the impact of reusing ?

3. How effective is a path-sensitive slicer against a path-insensitive version?

Our proof-of-concept implementation models the heap as an array. A flow-

insensitive pointer analysis is used to partition updates and reads into alias

classes where each class is modelled by a different array. Given an operation

that involves pointers the sets def and use utilise the results of the pointer anal-

ysis. For instance, given the statement *p =*q the set def contains everything

that might be pointed to by p and the set use includes everything that might be

pointed by q. A theorem prover is used to decide linear arithmetic formulas

over integer variables and array elements in order to check the satisfiability and

entailment of formulas, and computing interpolants and witnesses. Programs

are first annotated with approximate loop invariants using the abstract inter-

preter InterProc [74]. Functions are inlined (hence recursion is not supported)

and external functions are modelled as having no side effects and returning an

unknown value.

We used several instrumented device driver programs previously used as

software model checking benchmarks: cdaudio, diskperf, floppy, and serial.

In addition, we also considered mpeg, the mpeg-1 algorithm for compressing

video, and fcron.2.9.5, a cron daemon. For the slicing criterion we consider

variables that may be of interest during debugging tasks. For the instrumented

software model checking programs, we choose as the slicing criterion the set of

variables that appear in the safety conditions used for their verification in [53].

In the case of mpeg we choose a variable that contains the type of the video to

be compressed. Finally, in fcron.2.9.5 we choose all the file descriptors opened

and closed by the application.

Table 3.1 compares our path-sensitive slicer (columns labelled with Path-

Sens) against the same slicer but without path-sensitivity (labelled with Path-

Insens). Path-insensitivity is achieved by the following modifications in our

41

Path-Insens Path-Sens
Reuse No Reuse

Program LOC Size Red Time Size Red Time Time

mpeg 5K 4% 21s 8% 628s ∞1

diskperf 6K 32% 2s 57% 94s ∞

floppy 8K 36% 9s 47% 263s ∞

cdaudio 9K 23% 10s 52% 301s ∞

serial 12K 39% 16s 50% 395s ∞

fcron.2.9.5 12K 42% 32s 61% 832s ∞

Mean 23% 15s 38% 418s −

Table 3.1: Results on Intel 3.2Gz 2Gb. 1 timeout after 2 hours or 2.5 Gb of
memory consumption

slicer: (1) considering all paths as feasible, and (2) always forcing reuse. These

changes have the same effect as always merging the abstract states along incom-

ing edges in a control-flow merging node. In other words, they mimic running a

path-insensitive slicer on the original CFG. We could have used a faster off-the-

shelf path-insensitive program slicer (using e.g., [57]), however, our objective

here is to isolate the impact of path-sensitivity and hence, we decided to perform

the comparison on a common platform to produce the fairest results. Finally, we

also tried running with different abstract domains, such as octagons and polyhe-

dra, to generate loop invariants and the results were the same.

The column LOC represents the number of lines of program without com-

ments. The column Size Red shows the reduction in slice size (in %) w.r.t.

the original program size. The reduction size is computed using the formula

(1− size o f slice
size o f original)× 100. By size we mean all executable statements in the

program, excluding type declarations, unused functions, comments, and blank

lines. A minor complication here is that the SET may contain multiple instances

of program points in the CFG, as can be seen in Fig. 3.1(c). To compare the

reduction in slice sizes fairly, we use the rule mentioned at the beginning of

Sec. 3.3 to compute slices: a transition in the original CFG is included in the

slice if any of its instances in the SET is included in the slice.

The column Time reflects the running time of the analysis in seconds exclud-

ing the alias analysis and the external abstract interpreter. Column Reuse is our

path-sensitive slicer with reusing, and No Reuse uses the same symbolic execu-

tion engine with automatic loop invariants but without interpolation and witness

42

paths. Finally, we summarise in row Mean the numbers of columns Size Red

and Time by computing their geometric and arithmetic mean, respectively.

We summarise our results as follows. The running times (column Reuse) of

our path-sensitive slicer (with a mean of 418 secs) are reasonable considering

the size of the programs and the current status of our prototype implementation

which can be optimised significantly. The analysis of mpeg is especially slow

and it is due to the existence of many nested loops. On the other hand, the

reuse of solutions clearly pays off. Without our reuse mechanism (column No

Reuse) we were not able to finish the analysis of any program after a timeout of

2 hours or memory consumption of 2.5 Gb. Finally, the improvement in terms of

reduction shown in column Reuse is roughly 38% against only 23% of its path-

insensitive counterpart (column Path-Insens). Again, the mpeg program is an

exception since the size of the slices in both Path-Insens and Path-Sens are quite

big (i.e., very small reduction). The reason is that in mpeg all the computations

depend on the type of video to be compressed which is our slicing criterion.

3.5 Related Work

Static slicing remains a very active area of research. We limit our discussion

to the most relevant works that take into account path-sensitiveness. We also

discuss pruning techniques that might have influenced our work.

Fully path-sensitive methods. Conditioned slicing [19, 31, 33] performs sym-

bolic execution in order to exclude infeasible paths before applying a static slic-

ing algorithm, so they are fully path-sensitive (for loop-free programs) similar

to us. However, they perform full path enumeration and essentially explore the

search space of the naive SET. Hence, they suffer from path explosion.

Partially path-sensitive methods. A more scalable but not fully path-sensitive

approach is described by Snelting et al. [100, 90, 99]. They compute the de-

pendency between two program points y and x using the Program Dependence

Graph (PDG) [57] and apply the following rule to remove spurious dependen-

cies: I(y,x)⇒∃v̄ : PC(y,x), where I(y,x) stands for y influences x (i.e., there is

a dependency at x on y), v̄ is some assignment of values to program variables

43

and PC(y,x) is the path condition from y to x. Essentially it means that if the

path condition from y to x is found to be unsatisfiable, then there is definitely no

influence from y to x. If there are multiple paths between two points, the path

condition is computed as a disjunction of each path.

For the program in Fig. 3.1(a), [100, 90, 99] would proceed as follows. In

the PDG there will be a dependency edge from `8 to `1, hence they would check

to see if the path condition PC(1,8) is unsatisfiable. First they calculate the path

condition from `4 to `8 as PC(4,8) ≡ (x = 1∧ y > 0∧ z = x)∨ (y = 0∧ y >

0∧ z = x)≡ (x = 1∧ y > 0∧ z = x). Now they use this to calculate PC(1,8)≡
(x = 0∧ y = 5∧ ((a > 0∧b = x+ y∧PC(4,8))∨ (a ≤ 0∧PC(4,8))))9, which

is not unsatisfiable. Hence the statement x=0 at `1 will be included in the slice.

The fundamental reason for this is that for [100, 90, 99], path conditions are

only necessary and not sufficient, so false alarms in examples such as the above

are possible. An important consequence of this is the fact that even for loop-free

programs, their algorithm cannot be considered “exact” in the sense described

in Sec. 3. However, our algorithm guarantees to produce no false alarms for

such programs.

Finally, another slicer that takes into account path-sensitiveness up to some

degree is Constrained slicing [43] which uses graph rewriting as the underlying

technique. As the graph is rewritten, modified terms are tracked. As a result,

terms in the final graph can be tracked back to terms in the original graph iden-

tifying the slice of the original graph that produced the particular term in the

final graph. The rules described in [43] mainly perform constant propagation

and dead code detection but not systematic detection of infeasible paths. More

importantly, [43] does not define rules to prune the search space.

Interpolation and SAT. Interpolation has been used in software verifica-

tion [9, 53, 82, 59] as a technique to eliminate facts which are irrelevant to

the proof. Similarly, SAT can explain and record failures in order to perform

conflict analysis. By traversing a reverse implication graph it can build a no-

good or conflict clause which will avoid making the same wrong decision. Our

9We have simplified this formula since [100, 90, 99] uses the SSA form of the program and
adds constraints for Φ-functions, but the essential idea is the same.

44

algorithm has in common the use of some form of nogood learning in order

to prune the search space. But this is where the similarity ends. A fundamental

distinction is that in program verification there is no solution (e.g., backward de-

pendencies) to compute and hence, there is no notion of reuse and the concept

of witness paths does not exist. [44] uses interpolation-based model checking

techniques to improve the precision of dataflow analysis but still for the purpose

of proving a safety property.

Finally, the recent work [67] has been a clear inspiration for this work. [67] uses

interpolation and witnesses as well to solve not an analysis problem, but rather,

a combinatorial optimisation problem: the Resource-Constrained Shortest Path

(RCSP) problem. Moreover, there are other significant differences. First, [67]

is totally defined in a finite setting. Second, [67] considers only the narrower

problem of extraction of bounds of variables for loop-free programs while we

present here a general-purpose program analysis like slicing. Third, this work

presents an implementation and demonstrates its practicality on real programs.

3.6 Summary

We have so far presented a path-sensitive backward slicer. The main result is

a symbolic execution based algorithm which excludes infeasible paths while

pruning redundant paths. The key idea is to halt the symbolic execution while

reusing dependencies from other paths if some conditions hold. The condi-

tions are based on a notion of interpolation and witness paths aiming to detect

whether the exploration of a path can improve the accuracy of the dependencies

computed so far by other paths. We have demonstrated the practicality of the

approach with a set of real C programs.

Finally, we want to mention that although this work targets slicing our ap-

proach can in fact be generalised and applied to other backward program anal-

yses providing them path-sensitiveness. Nevertheless, note that there are other

factors that may affect the effectiveness of our approach: precision of the nu-

merical abstract domain to generate the loop invariants, completeness of the

theorem prover (e.g., no support for bitwise operations), etc. But these issues

are orthogonal to our main contribution.

45

Part II: Slice-based Program Transforma-
tion

Based on our previous result that slicing is more effective when there is path-

sensitivity, we extend our slicing to a more general program transformation

method. Specifically, the transformation will produce a new intermediate graph

representation for C programs with specified target variables. These programs

are intended to be processed by third-party applications such as verifiers and

testers. The representation embodies two concepts. First, it is path-sensitive in

the sense that there may be multiple nodes representing one program point so

that infeasible symbolic execution paths can be excluded. Second, and more

importantly, the graph is sliced with respect to the target variables.

We begin with a promotional example: consider the C program

if (c) p = 1; else p = 0;
x = 0;
if (p > 0) x = 1;
if (x == 0) z = 1;
TARGET: {z}

No static slicing is effective on this program because each statement and variable

affects the target z along at least one path. However, we can transform this

program into an equivalent one:

if (!c) z = 1;

which produces, on any given input, the same values for z as the original pro-

gram. Clearly this transformed program would be more efficient when input to

a verifier or tester which seeks properties of z. We arrived at this transforma-

tion as follows. Let S denote the program fragment comprising of all but the

first if-statement of the original program. Now consider slicing S in the context

p = 1 (the “then” body of the first if-statement). Clearly S would not modify the

variable z because only the statements x=0 and x=1 would be executed in this

context. Next consider the alternative context p = 0 (the “else” body). Now S

46

would execute the statements x=0 and z=1, from which the former can be sliced

away, as it does not affect the target z. Hence we get the transformed program.

In other words, we arrived at this new program by first considering path-

sensitivity, and more specifically, the original program’s symbolic execution

tree. The general idea is that slicing of a program fragment can be much more

effective when it is done with a given context. A symbolic execution tree in

fact displays the context of a program fragment as it unfolds through the various

paths that bring execution to this fragment. Now consider the example:

if (c) p = 1; else p = 0;
S
TARGET: {z}

where S now represents a program fragment which cannot be sliced by restrict-

ing consideration of the values of z at the end of the program. That is, all

symbolic execution paths in S produce some (different) output value in z at the

end, regardless of the initial values of c or p. Here, by being path-sensitive, we

would produce a CFG that corresponds to the program:

if (c) { p = 1; S; }
else { p = 0; S; }

This new program is effectively twice the size of the original program due to the

duplication of S, and yet there is no benefit from using this enlarged representa-

tion.

It is folklore that a fully path-sensitive representation of symbolic execu-

tion is simply intractable, for the representation doubles in size for each branch

statement encountered. The only alternative is to have some form of merging

where, at some stages in the construction of the graph, certain paths in the graph

transition into the same node. If the merging is performed at every opportunity,

the original CFG would be obtained. If not performed at all, the full, possibly

intractable, symbolic execution tree would be obtained. The big question is,

therefore, how much merging is needed?

In this work, we present a method for producing a path-sensitive CFG by

constructing a symbolic execution tree but merging nodes exactly when the

47

merge does not hide any information that affects slicing. That is, when our

algorithm merges a node in the tree with another, it guarantees that had the node

been symbolically executed instead, one would obtain precisely the same slicing

information as that of the node it’s being merged with. A key step involved in

the construction of our CFG, which we call the Path-Sensitively Sliced CFG or

PSS-CFG for short, is “Tree Slicing”, a powerful technique to merge and slice

arbitrarily different symbolic execution sub-trees under certain conditions.

Our main result is that the PSS-CFG, when “decompiled” (or transformed)

into regular programs that can be directly used by applications which query

target variables (e.g., a concolic tester that targets the program’s outputs, or a

verifier with a safety property), produces significant improvement in terms of

time usage as compared to using the original program. The strength of the

PSS-CFG is that it can be used “out-of-the-box” by a wide number of third-

party software engineering applications. We consider two main applications -

program testing and verification, and show in Section 3.11 how they can benefit

from the PSS-CFG to gain in performance.

3.7 Related Work

With regards to performing an “offline” program transformation for general use,

our closest related work is by Balakrishnan et al. [8], performing a path-sensitive

transformation with an aim to “improve the path-insensitive analysis used inside

the F-SOFT tool to obtain the effects of path-sensitive analysis”. The main dif-

ference with our work is that their transformation only removes infeasible paths

from the CFG without performing slicing. As a result, it is not clear how the

performance of a verifier or tester could be improved because they are them-

selves path-sensitive and hence would not consider the infeasible paths anyway.

Hence, their target application is a path-insensitive analyser within F-SOFT that

can benefit from the removal of infeasible paths, as it would spuriously consider

them otherwise. Nevertheless we share with them the high level goal of per-

forming an “offline” program transformation that helps an external application.

Since program transformation is a very specific area, we also discuss re-

48

lated work that do not perform transformation but still provide benefits of path-

sensitivity in general for external consumption. In this regard, another related

work is by Boonstoppel et al. [15] that discards irrelevant tests in concolic test-

ing by tracking values read and written by executed program statements. Then,

when two states differing only in program values not subsequently read are vis-

ited, the exploration of the second state can be pruned. The main difference

is that they use live range information of variables to make the decision about

pruning paths, which results in lesser pruning compared to our method that uses

slicing (specifically, dependency information). Moreover they do not perform

program transformation themselves, but work with the concolic tester to discard

certain tests during execution. Thus, they are dependent on the external appli-

cation, whereas we perform an offline transformation that is independent of the

application.

Another related work is by Jhala & Majumdar [69] that performs slicing of

paths, but their goal is to reduce the size of the counterexample path generated

by CEGAR-based verifiers during their process. As a result, they do not work

with the entire program’s CFG and hence, they are not concerned with splits

and merges in the CFG. However a program transformation algorithm like ours

needs to work with the whole CFG to decide where to split or merge.

The recent work [73] performs dynamic state merging during symbolic ex-

ecution in order to combine paths. While reducing the number of paths, the

formulas corresponding to merged states are more complicated. They showed

that their chosen heuristic for deciding which states are merged produced sig-

nificant speedups in overall symbolic execution. A similarity to our work here

is that we also perform state merging but we do so by learning when different

states need not be explored. Also, [73] does not consider slicing, but our algo-

rithm merges only when it can guarantee lossless-ness of slicing (dependency)

information.

We will see in Section 3.10 that our method uses the concept of interpo-

lation to perform state merging. Interpolation has been successfully used in

program testing and verification [80, 66, 83, 63] to reduce state space and con-

tain “path-explosion”. However the similarity with our work is only in the use

49

of interpolation for state merging. Our method has to additionally guarantee

that the merging is lossless, something that is inapplicable to these works. Also,

in Section 3.11, we experimentally evaluate the PSS-CFG using applications of

testing and verification, which may be another source of confusion with these

works. The fundamental difference is that these works involve directly perform-

ing the testing or verification process on the program. We do neither of those –

we simply happened to evaluate the PSS-CFG on third-party testing and verifi-

cation tools to show that they benefit in performance (in fact, [80] is one of the

verifiers used in Section 3.11). But the PSS-CFG is a much more generic object

not limited to just testing and verification.

We finally compare with our own work [65], presented in Part I of this chap-

ter, which performed static slicing. The technical approach there was to first

generate a path-sensitive symbolic execution tree which then was used to deter-

mine which primitive program statements could be sliced. It performed static

slicing on the program, using the symbolic tree to slice a statement that does

not affect the target anywhere in the tree. In contrast, here we perform slicing

on the tree itself to transform it into a new tree using the transformation rules.

Our new method allows the same program statement to be sliced from one part

of the tree but not another, a scenario in which we previously simply could not

slice the statement from the program at all. This fundamental difference will

be exposed in Section 3.8, where our previous work cannot slice anything since

every statement is relevant along some path, whereas now we are able to slice

statements depending on the contexts in which they are (ir)relevant.

Moreover, a key technical slicing step of our new method, called “Tree slic-

ing” (elucidated in Section 3.8), involves slicing a compound statement from a

tree, a problem not relevant to our previous setting: in general, the symbolic ex-

ecution subtrees rooted at what corresponds to the end of a compound statement

may not be identical. A main theoretical result concerning the correctness of the

transformation (Theorem 3), is that under certain conditions we can correctly

slice away the entire compound statement, and merge the following subtrees

even though they are different, while still retaining the necessary equivalent be-

haviour of the original program on the target variables.

50

if (read(c)) flag=1;
else flag=0;
x=2;
if (read(d)) y=4;
else y=5;

if (flag) z=y+x;
else z=x+1;
TARGET: {z}

c

flag=1
x=2

d

y=4

flag

z=y+x

!d

y=5

!flag

!c

<flag=1, {y,x}>

<flag=1, {d,x}>

flag=0
x=2

d !d

y=4 y=5

flag !flag

z=x+1

<flag=0

{x}>

<flag=0

{x}>

<true,{z}> <true,{z}>

<false, { }>

(a) (b)

Figure 3.5: A program and its symbolic execution tree

3.8 Basic Idea

We now explain our basic idea through an example, using concolic testing to

show how it can benefit from the PSS-CFG. Consider the program in Fig. 3.5,

where a read call signals the concolic tester to generate an input, and the target

of interest (say, the program’s output) is the variable z in the end. The program

has two inputs c and d which are used to decide the control flow and there are

8 paths to traverse. At the outset, note that no static slicers, even path-sensitive

ones like [65] or the well-known Frama-C [29], are effective on this program

because each statement along some path affects the target.

Our algorithm has two steps: first, it performs symbolic execution to gen-

erate the symbolic execution tree (SE tree) that is annotated with dependency

information at each node (Fig. 3.5(b)). The goal here is to be as path-sensitive

as possible since it makes dependency information more precise. However path-

sensitivity also makes the SE tree easily grow to be exponential in the number

of branches. Hence the challenge is to keep its size in check by merging, but

ensuring this does not cause imprecision of dependencies. In the second step,

transformation rules are applied on the SE tree to get the final PSS-CFG. These

51

rules take advantage of the precise dependency information to make different

decisions that apply to different contexts of the same program statement. We

will now explain both steps in detail.

Phase One: Building the SE tree

In Fig. 3.5(a), our algorithm first encounters a branch on c. To be path-sensitive,

it splits symbolic execution into two – one with context c and the other with con-

text !c. In a DFS fashion, it first explores the context c, symbolically executing

the statements flag=1 and x=2 and as usual, carrying these path constraints in

a logic formula. Upon reaching the next branch, it again splits into two – with

context d and !d. Continuing along the context d it executes y=4 and reaches the

final branch. Again it splits into two – with context flag and !flag, following

the former and finally executing z=y+x before reaching the terminal point.

Our algorithm now generates the backwards dependency information for this

feasible path, resulting in the dependency set {z}, the target at the terminal

point (shown in blue between curly braces). This is then propagated back to

the branch point on flag by applying Weiser’s formulas [104], resulting in the

set {y,x}. In addition to the dependency set, our algorithm also computes the

witness path (see Definition 2) for each variable in the set. For instance, the

witness path for the above set of variables is the path executing flag and z=y+x,

corresponding to the formula f lag∧ z = y+ x.

Now, our algorithm backtracks and explores the other context from the last

split point: !flag. The path formula c∧ f lag = 1∧ x = 2∧ d ∧ y = 4∧¬ f lag

is unsatisfiable, hence the path is infeasible. Now it computes the interpolant

(see Definition 1) f lag = 1 (blue) that captures the essence of infeasibility of

the path at the branch point. Thus, at the branch point on flag, the dependency

set is {y,x}, the witness path is f lag∧ z = y+ x and the interpolant is f lag = 1.

Notice that our algorithm did not include the variable flag in the depen-

dency set, whereas a traditional slicer such as [29, 65] would have included it

due to control dependency. The reason is that along this particular path only

one branch, the one where flag is true (non-zero), is feasible and the other

is infeasible. Hence the value of flag does not really affect the execution of

52

the statement z=y+x, therefore this statement is not control-dependent on flag.

However, flag being true (non-zero) is needed to preserve the infeasibility of

that branch and this is captured in the interpolant. In general, we do not need to

add control-dependencies on branch variables where only one branch is feasible.

Next our algorithm backtracks again to the previous split point to explore the

other branch: !d. It executes the statement y=5 and reaches the branch on flag,

this time under the different context !d. Now, the important step of checking

whether the current context of the branch can be merged with the previously

explored context is performed, using the merging conditions in Definition 3.

Both checks succeed here as (a) the current path formula c∧ f lag = 1∧ x =

2∧¬d∧y = 5 implies the interpolant f lag = 1, and (b) the witness path f lag∧
z = y+ x is feasible in the current context. Therefore, the current context of the

branch on flag can be merged (green dotted arrow) with the previous context

without any loss of precision, as formalised in Theorem 1.

Our algorithm now propagates backwards the dependency sets, interpolants

and witness paths to the previous branch on d, resulting in the set {d,x}, inter-

polant f lag = 1, and witness path d ∧ y = 4∧ f lag∧ z = y+ x. Note that this

time, it considered the control-dependence of y on d as both paths from the d

branch were feasible, thus adding d to the dependency set. It then backtracks to

the first split point on c and explores the other branch !c. Upon reaching the

branch on d again, it tries to merge with the previous context of the d branch

by checking if the current path formula ¬c∧ f lag = 0∧ x = 2 implies the in-

terpolant f lag = 1. It does not, so the merging cannot be performed and so it

proceeds to explore the rest of the tree under the node, resulting in the final SE

tree as shown in Fig. 3.5(b).

There are a few important things to note in the final tree. The branch on

d is duplicated due to the split at the previous branch on c. However under

the context !c, the dependency set at the branch point on flag is only {x} as

opposed to {y,x} under the context c. This is the advantage of path-sensitivity –

we have obtained a more precise dependency information at a different context

of the same program point by considering the contexts separately, although at

the price of duplication of the d branch. However we will see soon that because

53

c

x=2

d

y=4

z=y+x

!d

y=5

!c

x=2

z=x+1

if(read(c)) {
x=2
if(read(d))
y=4

else
y=5

z=y+x
}
else {

x=2
z=x+1

}

if (read(c)) {
x=2;
if (read(d)) y=4;
else y=5;
z=y+x;

}
else {

x=2;
z=x+1;

}

(a) (b)

Figure 3.6: The PSS-CFG and corresponding transformed program for Fig. 3.5

of the more precise information, the duplication can be controlled by slicing.

Phase Two: Transformation of the SE tree

We have defined a set of rules that will process the SE tree annotated with depen-

dency information to transform it into the final PSS-CFG. We give an informal

description of each rule here, as they are formalised in Section 3.10.2.

• Rule 1 states if the LHS of an assignment statement does not occur in

the dependency set after it, the statement can be removed. This is the

traditional slicing rule for assignment statements.

• Rule 2 states that if a branch point has only one feasible path arising from

it, the branch point can be removed. The reasoning is that if a branch

point has only one feasible path from it, then in that particular context

the branch condition can be deterministically evaluated to true (or false).

Thus it can simply be replaced with the “then” (or “else”) body.

• Rule 3 (called “Tree Slicing”), which is more powerful in reducing the

PSS-CFG’s size, states that an entire branch is irrelevant to the target and

can be removed if both the “then” and “else” bodies contain no statement

that is included in the slice. This rule is more complicated than it seems

at first because working with trees, a problem arises when we remove a

branch point: conceptually there could be two sub-trees whose parent, the

54

branch point, is about to be removed. The two sub-trees could be arbitrar-

ily different because of the different contexts leading into them. Which

one should be linked to the branch point’s parent? The rule guarantees that

regardless of which sub-tree is picked, the transformation is still sound,

provided that our algorithm declared the sub-trees to be merged. This im-

portant non-trivial result is formalised in Section 3.10.2, and is one of the

many fundamental differences between our transformation method and

static slicing methods, that slice on the program, not the tree.

Note that in general, the rules are not limited to the above three, and one can

indeed formulate more sophisticated rules. But for our benchmarks these rules

were sufficient to provide benefit. These rules are applied on the SE tree until

none of them can be applied any more (fixpoint), and the resultant graph is the

PSS-CFG.

In our example, applying Rule 1 on the SE tree removes the statements

flag=1 and flag=0. Applying Rule 2 then removes the two branches on flag

that have an infeasible path. More interesting is the application of Rule 3. It

cannot be applied on the d branch under the context c because in that context,

y=4 and y=5 will be included in the slice (recall that the dependency set after the

branch is {y,x}). However, it can indeed be applied on the d branch under the

context !c because neither y=4 nor y=5 is included in the slice (recall that the

dependency set after the d branch in this context is only {x}), and our algorithm

had merged the symbolic state after its “then” and “else” body.

Thus, Rule 3 removes the d branch under the context !c to get the final

PSS-CFG in Fig. 3.6(a). This reduction of the graph due to slicing counteracts

the blow-up due to path-sensitivity, and is critical to maintaining the size of the

PSS-CFG. Finally, note that Rule 3 cannot be applied on the top-level c branch

because the two subtrees after its “then” and “else” body have not been merged.

This means the split due to the c branch is causing some differences in the

two subtrees related to the target, and hence removing the branch could make

the PSS-CFG incorrect. Indeed, the c branch assigns different values to flag

which ultimately causes different values to be assigned to the target z. Thus the

branch must be kept to preserve the original program’s semantics.

55

Finally, as a third “step” of our algorithm, we produce an equivalent C pro-

gram from the PSS-CFG. The transformation process is quite straightforward

so we do not detail it here. It is done primarily so that external off-the-shelf ap-

plications can be executed on the PSS-CFG. The transformed program for our

example is shown in Fig. 3.6(b).

At the outset, one can notice that the transformed program has only 3 paths

compared to 8 paths in the original program. Moreover, information that can-

not be captured from the original program can be captured by the transformed

program. For instance, a concolic tester on the original program will always

generate a value for d regardless of the value generated for c. However in the

transformed program, if the value of c was generated to be 0, the tester would

not generate the value of d because it will not affect the target z.

It can also be seen that the variable flag, which was mainly used for control

flow between different parts of the code, is not even present in the transformed

program. This information cannot be captured by static slicers like [29, 65],

which cannot statically remove the assignments to flag or the branch on flag

from the program without becoming unsound.

Remark. One might wonder if our complete algorithm to produce the PSS-CFG

is equivalent to simply expanding the paths of the original program producing

a semantically equivalent program, deleting the infeasible paths, and applying

standard slicing w.r.t. the target. Even though conceptually it may be similar,

there are many practical differences with our method. Without our algorithm’s

merging, one would run into exponential blowup of paths during symbolic exe-

cution, before even producing the semantically equivalent program.

Even if a merging mechanism is used to contain the blowup, without the

guarantee of lossless merging provided by our algorithm, one could obtain im-

precise dependency information thereby keeping irrelevant statements in the

new program. However, our algorithm provides the right balance between pre-

cision and performance of such a target-based transformation. Thus, the pro-

cess of constructing the SE tree and the process of dependency computation

are closely intertwined and cannot be separated and outsourced to an external

slicer.

56

3.9 Background

Tree transformation rules. In addition to the formalisms for dependency com-

putation in Section 3.2, we formalise the representation of the SE tree to be

conveniently processed by the transformation rules. The SE tree produced by

our algorithm, together with the dependency information of each symbolic state,

is represented using the set S of facts of the following types:

• edge(υ
op−−→ υ′), denoting a feasible edge from υ to υ′

• inf_edge(υ
op−−→ υ′), denoting an infeasible edge from υ to υ′

• merged(υ,υ′), denoting that υ has been merged with υ′ (will be for-

malised later)

• in_slice(υ
op−−→ υ′), denoting that the transition from υ to υ′ is included

in the slice due to Eqs. 3.1,3.4.

Note that we do not explicitly store the dependency information at each state,

but rather just the fact whether a transition from the state is included in the slice

or not (denoted by the in_slice fact). In Section 3.10.2, the transformation of

the SE tree into the final PSS-CFG will be modelled using certain rules that act

upon these facts.

3.10 Algorithm

We describe our algorithm in two phases: in phase one (Section 3.10.1), we

explore symbolic paths in the program to generate the symbolic execution (SE)

tree annotated with dependencies. In phase two (Section 3.10.2), we transform

this tree by removing edges and sub-trees, to finally produce the PSS-CFG.

At a high level, our algorithm performs forward symbolic execution, as usual

in a depth-first manner interleaved with backward dependency computation.

Symbolic execution avoids the exploration of infeasible paths, thus increasing

the precision of the computed dependencies. However, it allows multiple copies

of the same program point to exist as different symbolic states, along different

symbolic paths. Thus an important challenge again to overcome is to avoid this

inherent exponential blowup of symbolic execution. Our solution is to merge

different symbolic states provided certain conditions are met. These merging

57

conditions, dictated by interpolants and witness paths, (defined in Definition 3),

guarantee that the merge does not incur any loss of slicing information.

We now provide the important proof of Theorem 1 (restated below), given

that the analysis information at each symbolic state υ is a set of dependency

variables συ.

Theorem 2. Given states υ≡ 〈`,s,Π〉 and υ′ ≡ 〈`,s′,Π′〉, let συ′ be the depen-

dencies and witness formulas associated with υ′. If υ can be merged with υ′

then by exploring υ there cannot be produced a set of dependencies συ such

that συ 6= συ′ .

PROOF. Assume that although υ can be merged with υ′ (i.e., both conditions

of Eqn. 2.2 are satisfied), it is instead symbolically explored and a dependency

set συ is obtained.

Proof that συ′ ⊆ συ: Since υ can be merged with υ′, by condition (b) of

Eqn. 2.2, ∀〈x, ·〉 ∈ συ′ , there is a witness path, say πx, with formula ωx such

that JυK∧ωx is satisfiable. That is, πx is feasible from υ. By the definition of

a witness path (Definition 2), ∃v1 ∈ V s.t v1 is control- or data-dependent on x

along the path πx, which is feasible from υ. Therefore x must be in συ.

Proof that συ ⊆ συ′: (by contradiction) Assume ∃x ∈ συ s.t x /∈ συ′ . Then,

the witness path for x, πx with formula ωx must be such that JυK∧ωx is satis-

fiable but Jυ′K∧ωx is unsatisfiable (otherwise from the definition of a witness

path, x would have been included in συ′). That is, πx is feasible from υ but

infeasible from υ′. From Eqn. 2.2 condition (a) and Lemma 1, this is impossi-

ble.

3.10.1 Generating the SE tree structure with dependencies

We now describe our main algorithm GENPSSCFG in Fig. 3.7. The purpose

of GENPSSCFG is to generate a finite complete symbolic execution tree an-

notated with dependency information at each symbolic state. As mentioned in

58

GENPSSCFG (υ≡ 〈`,s,Π〉)
1: if ∃ υ′ ≡ 〈`,s′,Π′〉 s.t. υ and υ′ satisfy Eqn. 2.2
2: then MERGE (υ, υ′)
3: else if υ is at a branch point then
4: SPLIT(υ)
5: else
6: SYMEXEC (υ)

MERGE (υ, υ′)
1: Ψυ = Ψυ′

2: συ = συ′

3: S=S ∪merged(υ,υ′)

SPLIT (υ≡ 〈`,s,Π〉)
1: Ψυ = true

2: foreach transition `
assume(c)−−−−−−→ `′ do

3: if (υ is a loop header) then
4: υ′ , 〈`′, ·, invariant(υ)∧ JcKs〉
5: else
6: υ′ , 〈`′,s,Π∧ JcKs〉
7: if υ′ is infeasible state then
8: S=S ∪ inf_edge(υ

assume(c)−−−−−−→ υ′)
9: Ψυ′ = false, συ′ = /0

10: else
11: S=S ∪edge(υ

assume(c)−−−−−−→ υ′)
12: GENPSSCFG (υ′)
13: Ψυ = Ψυ ∧ ŵl p (Ψυ′ , assume(c))
14: συ = συ t p̂re (συ′ , assume(c), s)

15: if δ≡ υ
assume(c)−−−−−−→ υ′ satisfies Eqn. 3.4 then

16: S=S ∪ in_slice(υ
assume(c)−−−−−−→ υ′)

SYMEXEC (υ≡ 〈`,s,Π〉)
1: if @ transition relation `

x:=e−−→ `′ then
2: Ψυ =true, συ = V
3: else
4: υ′ , 〈`′,s[x 7→ JeKs],Π〉
5: S=S ∪edge(υ

x:=e−−→ υ′)
6: if υ′ is not a loop header
7: GENPSSCFG (υ′)
8: Ψυ = ŵl p (Ψυ′ , x:=e)
9: συ = p̂re (συ′ , x:=e)
10: if υ

x:=e−−→ υ′ satisfies Eqn. 3.1 then
11: S=S ∪ in_slice(υ

x:=e−−→ υ′)

Figure 3.7: Symbolic execution interleaved with dependency computation to
produce the SE tree

Section 3.9, the tree is represented using a set of facts that are added to the set

S , which is assumed to be a global variable to the algorithm.

GENPSSCFG requires the program to have been translated to a transition

system 〈Σ, I,−→,O〉 in SSA form [30], and accepts a symbolic state as argu-

ment. It is initiated with the state υ≡ 〈`start,ε, true〉. GENPSSCFG implements

a mutually recursive algorithm with a few other procedures.

First, the most important decision of whether to merge a symbolic state with

another is taken by GENPSSCFG at line 1. It attempts to find another symbolic

state υ′ such that υ and υ′ satisfy the two merging conditions in Equation 2.2. If

yes, it merges υ with υ′ by calling the procedure MERGE at line 2. If such a υ′

59

does not exist, GENPSSCFG decides whether to split the symbolic execution

of υ or not by checking if υ corresponds to a branching point in the program

(line 3). If yes it calls the procedure SPLIT at line 4 which, as we will see, forks

the symbolic execution of different branches from υ. If both the above cases do

not match, GENPSSCFG simply continues the symbolic execution by calling

the procedure SYMEXEC with υ. GENPSSCFG is in essence the high level

backbone of our method.

The procedure MERGE, given a current symbolic state υ and an already

explored state υ′, merges the former with the latter by setting the interpolant

and dependency set of υ to those of υ′. Recall that Theorem 2 guaranteed such

a merge to have no loss of precision. That is, had υ been explored instead

of being merged with υ′, the resulting dependency set at υ would be exactly

συ′ . Finally the procedure adds the fact merged(υ,υ′) to S to record the merge

between the two states.

The procedure SPLIT is used to fork the symbolic execution of a state from

which multiple transitions are possible (typically a branch point). Given a sym-

bolic state υ with program point ` and path condition Π, it first initialises its

interpolant Ψυ to true at line 1. At line 2 it iterates its main body over each tran-

sition possible from υ. Now there is an issue: if the current state is a loop header

(line 4), then symbolically executing the loop could result in an unbounded tree,

which we want to avoid. Therefore, we need to execute the loop with a loop

invariant to make the tree finite.

Our method to compute a loop invariant is simple but effective: from the

loop header’s symbolic state υ, we only keep the constraints that are unchanged

through the loop, and delete the rest. For instance, if x > 5 holds at the loop

header and x is only incremented in the loop, then x > 5 is unchanged through

the loop. This widened state at υ ultimately forms a loop invariant. This tech-

nique provides a balance between getting the strongest invariant – which is

needed to maximise path-sensitivity – and efficiency. We found experimentally

that this technique preserves most of the important information through the loop.

Nevertheless, we remind the reader that no matter what the invariant is, it does

not affect the guarantee of lossless-ness of dependency information during our

60

merging, and the correctness of our transformation as stated by Theorem 3.

We assume a function invariant that given a symbolic state υ, returns a FOL

formula representing the loop invariant. With this invariant, the next state is

constructed by augmenting it with JcKs where c is the branching condition of

the assume statement (line 4). If not, υ′ is constructed (line 6) by augmenting

the path condition Π with JcKs. At line 7 an important check is performed: if

υ′ is an infeasible state (i.e., the augmented path condition is unsatisfiable), it

means symbolic execution has encountered an infeasible path. Therefore it adds

to S the fact that the transition from υ to υ′ is infeasible (line 8), and sets the

interpolant and dependency set of υ′ to false and /0 respectively (line 9) to signify

that the state is unreachable. Otherwise it adds a normal edge to S at line 11 and

(mutually) recursively calls GENPSSCFG with υ′.

In either case, υ′ would have been annotated with an interpolant Ψυ′ and

dependency set συ′ . Now it computes the same information for υ at lines 13-

14. The interpolant Ψυ is supposed to generalise the SE tree below υ while

preserving its infeasible paths. For this, the procedure ŵl p : FOL×Ops→ FOL

is called that ideally computes the weakest liberal precondition [36], the weakest

formula on the initial state ensuring the execution of assume(c) results in the

state Ψυ′ . In practice we approximate wlp by making a linear number of calls

to a theorem prover following techniques described in [66], usually resulting in

a formula stronger than the weakest liberal precondition. The dependency set

συ is computed by applying the pre-operation p̂re on συ′ and joining with any

existing set (across different iterations of the main loop).

Finally, in lines 15-16 of SPLIT, it checks if any transition from δ to its

nearest postdominator is included in the slice (Eqn. 3.4). If yes, it adds an

in_slice fact to S with the transition from υ to υ′.

The final procedure SYMEXEC is called by GENPSSCFG when the current

symbolic state υ corresponding to program point ` cannot split (typically an

assignment statement). Initially, at line 1, it checks if there exists a program

transition from ` to any other `′. If not, symbolic execution has reached the

end of a (feasible) path whose final state is υ. In other words, it has reached a

terminal node. Hence it sets the interpolant Ψυ to true and its dependency set

61

συ to V (recall that the target variables are specified at `end) at line 2.

If there exists a transition from ` to say `′ with the assignment x:=e, it con-

structs the next symbolic state (line 4) υ′ by setting in the store s the value of

x to JeKs and adds to S the appropriate edge fact (line 5). Then, if υ′ is not a

loop header, it recursively calls GENPSSCFG with υ′ (line 7). If υ′ is a loop

header, then there is no need to explore it again since it would have already been

explored with the loop invariant (at SPLIT line 4). Our algorithm thus makes the

symbolic execution finite. In SYMEXEC line 8 and 9, it sets the interpolant (and

dependency set) of υ by calling ŵl p (and p̂re) on the interpolant (and depen-

dency set) of υ′. Finally, at lines 10-11, if x contains a variable in συ′ (Eqn. 3.1)

it adds to S the fact that the transition from υ to υ′ is included in the slice.

To perform the fixpoint computation at the highest level, we keep making

calls to GENPSSCFG until there is no change in S . This is the simplest way to

describe the fixpoint computation but in practice we can optimise it by calling

GENPSSCFG with the symbolic state of the loop header in which the change

was detected.

3.10.2 Transformation of the annotated SE tree

The algorithm described so far produces a symbolic execution tree represented

as a set of facts S . Now we present certain rules in Fig. 3.8 that act upon S

to modify it, in essence modelling the transformation of the SE tree into the

final PSS-CFG. The rules are presented in a declarative fashion and can be im-

plemented conveniently in a rule-based programming language (e.g., Constraint

Handling Rules).

STRAIGHT LINE SLICING: This rule states that if there is a transition (or edge)

from state υ0 to υ1 and an assignment transition from υ1 to υ2 such that the latter

is not included in the slice, then both transitions can be removed and replaced

with one linking υ0 directly to υ2. This is the typical rule for slicing assignment

statements using dependencies.

INFEASIBLE PATH REMOVAL: This rule states that if there is a transition from

62

RULE 1 (STRAIGHT LINE SLICING)

E1 ≡ edge(υ0
op−−→ υ1) ∈ S

E2 ≡ edge(υ1
x:=e−−→ υ2) ∈ S in_slice(υ1

x:=e−−→ υ2) /∈ S

S=S \{E1,E2}∪{edge(υ0
op−−→ υ2)}

RULE 2 (INFEASIBLE PATH REMOVAL)

E1 ≡ edge(υ0
op−−→ υ1) ∈ S E2 ≡ edge(υ1

assume(c1)−−−−−−→ υ2) ∈ S
E3 ≡ inf_edge(υ1

assume(c2)−−−−−−→ υ3) ∈ S

S=S \{E1,E2,E3}∪{edge(υ0
op−−→ υ2)}

RULE 3 (TREE SLICING)

edge(υ0
op−−→ υ1) ∈ S

edge(υ1
assume(c1)−−−−−−→ υ2) ∈ S edge(υ1

assume(c2)−−−−−−→ υ3) ∈ S υ2 6= υ3

in_slice(υ1
assume(c1)−−−−−−→ υ2) /∈ S in_slice(υ1

assume(c2)−−−−−−→ υ3) /∈ S
〈υk,υ

′
k〉 ≡MergePoint(υ1) merged(υk,υ

′
k) ∈ S

S=S \{edge(υ′
op−−→ υ

′′) | υ
′ op−−→ υ

′′ ∈ INFL(υ1
assume(c1)−−−−−−→ υ2)∨

υ
′ op−−→ υ

′′ ∈ INFL(υ1
assume(c2)−−−−−−→ υ3)}∪{edge(υ0

op−−→ υk)}

Figure 3.8: Transformation rules to produce the final PSS-CFG

state υ0 to υ1, and υ1 is a branch point such that there is branching edge (edge)

from υ1 to υ2 and an infeasible branching edge (inf_edge) from υ1 to another

υ3, then all three edges can be removed and υ0 can be directly linked to the

feasible state υ2.

TREE SLICING: This rule is more complicated and the most powerful in terms

of reducing the symbolic state space of the PSS-CFG. It states that if there is a

transition from υ0 to υ1, and υ1 is a branching point with branching transitions

to υ2 (with condition assume(c1)) and υ3 (with condition assume(c2)) such that

neither transition is included in the slice, then we can remove all transitions

υ′
op−−→ υ′′ that occur either in the dynamic range of influence (given by INFL)

of υ1 −−→ υ2 or υ1 −−→ υ3. In other words, we can remove all transitions that

occur in the “then” or “else” body of the branch at υ1. But there is a problem:

63

since we are working on a symbolic tree, removing the branch point υ1 would

conceptually leave two different subtrees “hanging” without a parent. The ques-

tion arises as to which subtree should we link to the node υ0. TREE SLICING

guarantees that if the symbolic states at the end of the branch 〈υk,υ
′
k〉 (as re-

turned by MergePoint(υ1)) are merged by our algorithm (i.e., merged(υk,υ
′
k)

exists), the differences in the trees do not affect the target variables. Hence it

simply adds a transition directly linking υ0 to one of the symbolic states υk.

We explain the reasoning behind the above rules by defining our correctness

statement for the transformation of the SE tree into the PSS-CFG and providing

a proof outline for it. For an example of application of the rules, refer to Sec-

tion 3.8. First let two CFGs be defined equivalent w.r.t. target variables V if for

any input, the programs corresponding to both CFGs produce the same values

for all variables in V .

Theorem 3. (Correctness of transformation) An application of RULE 1, RULE

2 or RULE 3 to a CFG G produces a transformed CFG G′ such that G′ is

equivalent to G w.r.t. target variables V .

We now provide a proof outline for Theorem 3. The correctness of

STRAIGHT LINE SLICING follows directly from the correctness of slicing as-

signment statements using dependency information, formalised in Eqn. 3.1. As

for INFEASIBLE PATH REMOVAL, for any input that executes a path in G leading

to the state υ1, the condition c1 will evaluate to true and the condition c2 will

evaluate to false. Moreover, an assume statement does not modify any variable

in the program state. Thus, both checks assume(c1) and assume(c2) are useless

because we deterministically know their outcomes, and hence can be replaced

with a transition linking υ0 to the next feasible state υ2 to produce G′.

The correctness proof of TREE SLICING is as follows. Assume that some in-

put executes a path in G starting from υstart to υ0 and then reaches υ1. W.l.o.g,

assume that the condition c1 holds at υ1, therefore it chooses to follow υ2,

reaches the merged point υk and continues to eventually reach the terminal state

υend. Let us call this executed path πG. In G′, obtained by applying TREE

SLICING on G, thereby removing the entire branch at υ1, the same input would

64

follow a path, say πG′ , such that πG′ is the exact same path as πG starting from

υstart till υ0, thus having the same symbolic state at υ0. At this point, πG′ differs

from πG by implicitly “skipping” the execution of the branch at υ1 and instead

directly reaches υk.

Since υk and υ′k were merged, the dependency sets at both points are the

same. Now, since the transition υ1
assume(c1)−−−−−−→ υ2 in G was not included in

the slice, it means that no statement “skipped” by πG′ affected the dependency

information at υk. This implies that the symbolic state of the path πG′ at υk is

the same as the symbolic state of the path πG at υk as far as the dependency

variables at υk are concerned. To be precise, the values of the dependency vari-

ables at υk are the same in both πG and πG′ . Since these are the only variables

affecting the target variables V at υend, it is sufficient to preserve their values to

ensure that πG′ will produce the same values for V as πG. Of course πG′ may

produce different values than πG for variables not in V , but we are not interested

in those variables.

The three rules are applied until fixpoint is reached (i.e., none of them can

be applied anymore). Termination of rule applications is guaranteed from the

initial finiteness of the set S and the fact that all three rules remove more edges

from S than they add. Soundness of individual rule applications is guaranteed

from Theorem 3. Transitiveness of the rules is also guaranteed by Theorem 3

since each new CFG is equivalent to the previous CFG. Once fixpoint is reached,

the final PSS-CFG structure can be extracted from S .

Thus, Theorem 3 guarantees that the PSS-CFG is equivalent to the original

program w.r.t. the target variables V . Therefore, any analysis of the original

program concerned only with V can be applied on the PSS-CFG instead to take

advantage of its benefits. In the next section, we will see two such applications:

program testing and verification.

65

Benchmark Lines of code Blow PSS #Rule Triggers
Orig St.slice PSS up Time Rul1 Rul2 Rul3

cdaudio 1817 1599 4452 2.78 24s 2685 1101 169
diskperf 937 706 2967 4.20 18s 1594 1132 73
floppy 1005 766 2086 2.72 7s 1062 651 99
floppy2 1513 1250 3507 2.81 16s 1514 819 120
kbfiltr 549 275 170 0.62 1s 111 46 7
kbfiltr2 782 492 410 0.83 1s 249 69 23
tcas 286 227 311 1.37 2s 138 204 47

Table 3.2: Statistics about the PSS-CFG

3.11 Experimental Evaluation

We evaluate the PSS-CFG using applications of program testing and verification

to show considerable increase in their performance. We implemented the algo-

rithm described in Section 3.10 on the TRACER [64] framework for symbolic ex-

ecution. We used as benchmarks device drivers from the ntdrivers-simplified cat-

egory of SV-COMP 2012 [11], and a traffic collision avoidance program called

tcas, and chose the target variables from the safety properties of the programs.

All programs had multiple safety properties on several variables, all of which

were used in the slicing criterion. For practically applying external tools on the

PSS-CFG structure, we used its equivalent decompiled program. Since both the

original and decompiled programs are in C, we can easily apply external tools

on them and measure how their benefit from our transformation.

For all our experiments we compare the PSS-CFG10 with a static slice of

the benchmark program on the target variables. Comparing with a static slice

is more challenging as some statements would have already been sliced away

from the original program. We obtained the static slice through the well-known

state-of-the-art slicer Frama-C [29, 1]. Frama-C is a path-sensitive static slicer

that can detect infeasible paths through techniques such as constant propagation,

constant folding and abstract interpretation. Also, before the target variables are

provided and our algorithm is initiated, we process the program and store an

intermediate representation (IR). This processing involves computing informa-

tion about infeasible paths in the program and is completely independent of the

10We use the terms “decompiled program” and PSS-CFG interchangeably.

66

target variables. Then, when the target variables are provided, our algorithm is

invoked and it uses information from this IR. All experiments were run on an

Intel 3.2 Ghz system with 2GB memory.

Now, we provide statistics about the PSS-CFG and its construction in Ta-

ble 3.2. The Lines of code column shows the number of non-commented lines

of code in the original (Orig) program, its static slice (St.slice) and its decom-

piled program (PSS) respectively. In the column Blowup we show the ratio of

the LOC of PSS-CFG compared to the static slice. The blowup is a result of the

balance between the splits introduced by path-sensitivity, and the merges and

slicing from our algorithm. It is clear that the blowup is manageable, some-

times even smaller than the program, being on average around 2. In the column

PSS Time we show the time taken in seconds for our algorithm to produce the

PSS-CFG given the target variables, which is modest. In the final column #Rule

Triggers we show the number of times each transformation rule was triggered

during PSS-CFG construction. Although RULE 3 is shown to be triggered fewer

number of times than RULE 1 or RULE 2, it is the most powerful rule in reduc-

ing the search space of the PSS-CFG. In tcas we see RULE 2 triggering more

frequently than RULE1 due to its large number of infeasible paths.

Note that the PSS-CFG construction is only performed once for a given set

of target variables. The resulting program can however be subjected to an innu-

merable number of properties to be verified or tested. For example, using the

same PSS-CFG, one can verify different bounds on a target variable depending

on different preconditions to the program.

3.11.1 Testing

We consider software testing an important application for the PSS-CFG to be

used. For this, we consider the typical DART [49] methodology that performs

concolic testing, i.e., executing the program with both concrete and symbolic

inputs and symbolically negating branches to explore new paths. We chose the

publicly available concolic tester CREST, an implementation of DART for C

programs. Since the statically sliced and decompiled programs are in C, the

experiment was simply to run the concolic testing process on both programs

67

Benchmark Testing Time Speed #Solver calls
St.slice PSS up St.slice PSS

cdaudio 1m30s 43s 2.1 16k 7k
diskperf 900m 34m 26.5 26mil 1mil
floppy 9m6s 24s 22.8 260k 4k
floppy2 525m 429m 1.2 613k 479k
kbfiltr 2s 1s 2 63 52
kbfiltr2 22s 6s 3.7 7k 2k
tcas 4s 1s 4 1.5k 188
Total 23h56m 7h44m 3.1 26.9mil 1.5mil

Table 3.3: Experiments on the PSS-CFG for concolic testing

and measure the time taken to complete, i.e., time taken to test all feasible paths

in the program.

In Table 3.3, we show the measures of the experiment. The second and

third columns (St.slice and PSS) show the time taken to complete the concolic

testing process on the statically sliced and decompiled programs respectively.

The third column shows the Speedup obtained by using the PSS-CFG, i.e., the

ratio of the columns St.slice and PSS. It is immediately apparent that the PSS-

CFG provides speedup in all benchmarks. In programs diskperf and floppy the

speedup is exceptionally high around 22-26, reducing the concolic testing time

from, for instance, 900 minutes (15 hours) to just 34 minutes. On the other

hand, in floppy2 the speedup of 1.2 is not that high, but still the absolute benefit

in time can be seen – around 96 minutes or 1.5 hours. Ultimately, the total time

taken for concolic testing to run on all our statically sliced programs was almost

24 hours, whereas it took less than 8 hours to run on the decompiled programs,

providing a net benefit in time of a magnitude of 3.1. Although it is understood

that in practice concolic testing may not terminate by exploring all paths, we

gave a huge timeout (24 hours) for the process to terminate simply to see how

much benefit the PSS-CFG can provide in timing. From the table, it is clear that

the PSS-CFG can make the difference between termination and timing-out of

the concolic testing process.

In addition to time, we also measured the number of calls made by CREST

to its underlying solver. This measure, shown in the column #Solver calls, gives

an idea of how the PSS-CFG would still benefit the concolic tester even if a

68

IMPACT ARMC CPA-CHECKER

Benchmark

cdaudio
diskperf
floppy
floppy2
kbfiltr
kbfiltr2
tcas
Total

Verification Time Speed
St.Slice PSS up

95s 14s 6.8
146s 18s 8.1
34s 8s 4.3
39s 13s 3.0
4s 1s 4.0
8s 2s 4.0
3s 1s 3.0

329s 57s 5.8

Verification Time Speed
St.Slice PSS up

T/O 21s N/A
T/O 6s N/A

259s 6s 43.17
T/O 17s N/A

3s 1s 3.00
13s 2s 6.50
3s 1s 3.00

T/O 54s N/A

Verification Time Speed
St.Slice PSS up

26s 14s 1.86
7s 6s 1.17
6s 5s 1.20

10s 8s 1.25
3s 2s 1.50
4s 2s 2.00
2s 1s 2.00

58s 38s 1.53
(a) (b) (c)

Table 3.4: Experiments on the PSS-CFG for verification

different, faster solver was used. Again we see several magnitudes of less solver

calls for all benchmarks when CREST was run on the PSS-CFG. This is because

of the considerably less number of paths the tester has to execute, in turn lead-

ing to less constraint solving. The maximum benefit is in diskperf where 26

million calls were made for the statically sliced program, compared to only 1

million for the decompiled program. This is in-line with the speedup in time

for diskperf, around 26. This indicates that even if a faster solver is used, the

relative speedup in time for this benchmark would still be around 26, although

the absolute timings may be faster. Ultimately, this table shows that concolic

testing would definitely benefit by using the PSS-CFG instead of the statically

sliced program.

3.11.2 Verification

Another important application for the PSS-CFG is program verification. In Ta-

ble 3.4 we compare the verification times of the benchmarks across three differ-

ent state-of-the-art verifiers: IMPACT [80], ARMC [87] and CPA-CHECKER [14],

each representing different approaches to verification—interpolant-based, CE-

GAR-based and SMT-based. Since IMPACT is not publicly available, we use

CPA-CHECKER’s implementation of the IMPACT algorithm. In each table, the

second and third columns show the verification time (in seconds) of the stat-

ically sliced program (St.Slice) and the PSS-CFG (PSS), respectively. In the

69

third column Speedup, we show the ratio of St.slice to PSS.

For all three verifiers, it can be clearly seen that the PSS-CFG is verified

in a much faster time than the static slice. For IMPACT, verifying all statically

sliced programs in our suite took 329 seconds whereas verifying the respective

PSS-CFGs took only 57 seconds. Thus, the speedup across all programs on

aggregate is 5.8. As for ARMC, it was unable to terminate its verification of the

statically sliced programs for cdaudio, diskperf and floppy2 with a timeout of 10

minutes, whereas it was able to verify each of their respective PSS-CFGs in less

than 30 seconds, thus providing a huge benefit to ARMC. For CPA-CHECKER,

the benefit was relatively smaller, providing on average a speedup of 1.5. The

reason is because CPA-CHECKER is a more sophisticated verifier than the other

two, but still the fact that the PSS-CFG provides a speedup for CPA-CHECKER

is to be considered noteworthy. Thus, we believe that the PSS-CFG is quite a

useful object in general for verification.

3.12 Summary

In conclusion, we presented a new representation for programs with target vari-

ables. We started by considering the (full) symbolic execution tree in order to

perform slicing on each path. The sliced paths remove both boolean guards and

assignments, thus saving the symbolic execution process from some constraint

solving. We overcame the main challenge which was to restrict attention to just

the paths that exhibit dependencies toward the target variables. In the end, we

showed that the blowup, in the final representation, is manageable. The most

important result, however, was in the quality of the representation when it was

used in a number of verification and testing benchmarks. In all experiments,

the representation produced significant performance gains. Preliminary experi-

ments of its use in other application areas are also promising.

70

Chapter 4

Concolic Testing

Testing is the most commonly used method to ensure software quality. It exe-

cutes a given program with some inputs and the objective is then to find bugs or

validate the program with respect to the given inputs. Traditionally, testing was

carried out using manually generated inputs which became cumbersome and

ineffective. Random testing alleviates this problem by generating random test

inputs, but suffers from poor code coverage. Recently, more intelligent meth-

ods [97, 49, 18, 16] based on concolic testing, a variant of symbolic execution,

have emerged, that generate inputs by systematically exploring program paths

attempting to increase coverage.

The main idea of concolic testing is to execute the program simultaneously

with concrete values and symbolic values. When the program is executed, sym-

bolic constraints along the executed path are collected in a formula called a path

condition. Then, a branch is picked and negated from the path condition re-

sulting in a new formula which is then fed to a constraint solver to check for

satisfiability. If it is satisfiable, concrete test inputs are generated to follow the

new feasible path. If it is unsatisfiable, the new path is infeasible and another

branch has to be picked to be negated. This way concolic testing attempts to im-

prove the poor code coverage of random testing. A key characteristic of concolic

testing is that path conditions can be simplified using concrete values whenever

the decidability of their symbolic constraints goes beyond the capabilities of the

underlying constraint solver.

One major problem with concolic testing is that there are in general an ex-

71

ponential number of paths in the program to explore, resulting in the so-called

path-explosion problem. Recently, several methods have been proposed to at-

tack this problem from various angles: using heuristics focused on branch cover-

age [16], function summaries [47], using static/dynamic program analysis [15]

and so on. We propose a new method based on interpolation, largely comple-

mentary to existing approaches, that significantly mitigates path-explosion by

pruning a potentially exponential number of paths that can be guaranteed to not

encounter a bug.

Our method, inspired by [66], aims at assisting concolic testing by making

use of the concept of interpolation [28] interleaved with the concolic execution

process. The use of interpolation for pruning paths in the context of symbolic

execution is well-known (see e.g., [66, 83]). The idea is as follows: first, assume

that the program is annotated with certain bug conditions of the form “if C then

bug”, where if the condition C evaluates to true along a path, the path is buggy.

Then, whenever an unsatisfiable path condition is fed to the solver, an inter-

polant is generated at each program point along the path. The interpolant at a

given program point can be seen as a formula that succinctly captures the reason

of infeasibility of paths at the program point. In other words it succinctly cap-

tures the reason why paths through the program point are not buggy (infeasible

paths are not buggy, by definition). As a result, if the program point is encoun-

tered again through a different path such that the interpolant is implied, the new

path can be subsumed, because it can be guaranteed to not be buggy. The expo-

nential savings are due to the fact that not only is the new path subsumed, but

also the paths that this new path would spawn by negating its branches.

Unfortunately, methods such as [66, 83] cannot be used directly for concolic

testing due to several challenges. First, the soundness of these methods relies on

the assumption that an interpolant at a node has been computed after exploring

the entire “tree” of paths that arise from the node. In concolic testing, this

assumption is invalid as the tester can impose an arbitrary search order. For

example, concolic testers such as Crest [16] and KLEE [17] use often many

heuristics that may follow a random walk through the search space, thus making

this method unsound. To address this problem, we need to keep track of nodes

72

whose trees have been explored fully (in which case we say the node is annotated

with a full-interpolant) or partially (similarly, a half-interpolant).

Under this new setting, only nodes with full-interpolants are capable of sub-

sumption in a sound manner. As a result, the amount of subsumption depends on

how often nodes get annotated with full-interpolants from the paths explored by

the concolic tester. Unfortunately our benchmarks in Section 4.5 showed that the

above method by itself results in very few nodes with full-interpolants, thereby

providing poor benefit to the concolic tester, because the tester rarely explores

the entire tree of paths arising from a node. Hence, an important challenge now

is to “accelerate” the formation of full-interpolants in order to increase sub-

sumption. For this, we introduce a novel technique called greedy confirmation

that performs limited path exploration (i.e., execution of a few extra paths) by

itself, guided by subsumption, with an aim to produce a full-interpolant at nodes

currently annotated with a half-interpolant. It is worth mentioning that this ex-

ecution of few paths is done without interfering with the search order of the

concolic tester. This technique resulted in a significant increase in subsumption

for our benchmarks, and is vital for the effectiveness of our method.

We implemented our method and compared it with a publicly available con-

colic tester, Crest [16]. We found that for the price of a reasonable overhead to

compute interpolants, a large percentage of paths executed by those heuristics

can be subsumed thereby increasing their coverage substantially.

4.1 Related Work

The main innovation introduced by concolic testing (originally presented in

DART [49] and Cute [97]) was the fact that concrete inputs can be generated

based on some intelligent decision by symbolically negating one of the executed

branches. Since the seminal papers of [49, 97] many works have been published

improving concolic testing in different ways. We limit our discussion to related

works that attempt at mitigating the scalability issues in concolic testing due to

the exponential numbers of paths.

Recent extensions (e.g., EXE [18], Crest [16], Sage [51] and KLEE [17])

73

have tried to address this challenge by using novel heuristics to guide the explo-

ration of paths improving the naive depth-first search strategy originally used in

DART. They target branch coverage (i.e., number of branches evaluated to true

and false) rather than path coverage. Although branch coverage does not suffer

from path-explosion it is understood that the ultimate goal of the concolic tester

is path coverage. Branch coverage is just an inexpensive measure of the quality

of a test suite, and a good branch coverage is more of a necessary requirement

for quality than sufficient. The main difference with the above methods is that

we focus on path coverage rather than branch coverage while respecting those

search strategies.

Another interesting line of research has addressed the caching of func-

tion summaries as a way of reducing the exponential number of paths (e.g.,

SMART [47] and [7]). Our method performs function inlining, thus being naive

compared to them interprocedurally, while these methods execute the DART

algorithm to generate reusable summaries, thus being naive compared to us in-

traprocedurally. This suggests that both approaches are orthogonal and could

work together to benefit from each other.

The closest related tester to ours in the line of pruning paths is [15]. This

method eliminates redundant paths by analysing the values read and written in

memory by the program. The main idea is to prune paths that only differ in pro-

gram variables that are not subsequently read (i.e., dead variables). We share

with them the high-level idea of removing irrelevant information in order to in-

crease the chances of subsumption, but the similarity ends there. The most im-

portant difference is that [15] defines “irrelevant information” using live (dead)

variables so the subsumption test is simply a subset operation. We use interpola-

tion to prune paths so our subsumption test involves logical entailment checks,

which are more expensive. However, interpolants are much more powerful for

subsumption, which can result often in a greater amount of pruned paths. We

exemplify these differences with [15] through an example in Section 4.2.

Finally, as mentioned before, we have been clearly inspired by [66] in the

idea of interpolating infeasible paths which has been also applied in [83]. How-

ever, [66, 83] assume full control of the search space by performing a DFS-

74

traversal to compute their interpolants, which ensures an interpolant at a node

always represents the entire tree of paths below a node. This is the key to mak-

ing sound subsumption. This assumption is no longer valid in concolic testing

since the tester controls the search space using some heuristic which may not

be DFS. Interestingly, Crest [16] compares different heuristics for concolic test-

ing and concluded that DFS is actually the worst in terms of branch coverage.

Thus, [66, 83] are not readily suitable for concolic testing. More importantly, as

we will see in Section 4.5, even if somehow the DFS-restriction is lifted in these

methods (e.g., by augmenting them with half and full-interpolants), it is not

enough to provide a reasonable benefit to concolic testing, as they scale poorly

without greedy confirmation.

4.2 Running Example

Consider the program in Fig. 4.1, where a read() call signals the concolic tester

to generate a concrete input. In this case, the inputs are only used to decide the

program’s control flow, and hence are not stored in a variable. Assume initially

the concolic tester generates a positive value for both inputs. This drives the

tester down the path `1 · `2 · `3 · `4 · `5 · `6 · `8, shown by the left-most path in the

program’s symbolic execution tree. A symbolic execution tree represents the set

of paths traversed by the program where each node corresponds to a program

location and an edge between two nodes corresponds to the program transition.

Now, the concolic tester provides us this path, on which we perform sym-

bolic execution and annotate it with interpolants in a backward manner. At `8

the path is not buggy and there is no infeasibility, therefore the interpolant true

is stored there (denoted by `8 : {true}). Propagating this to `6 we note that there

is another branch (to `7) that has not been explored, so we annotate the inter-

polant true at `6 as a half-interpolant to denote this fact. Once a node has been

annotated with a half-interpolant, we stop and give control back to the tester.

Assume now the concolic tester attempts to “turn-around” at `6 into the path

`1 · `2 · `3 · `4 · `5 · `6 · `7. This path is infeasible as its path condition s = 0∧ s′ =

s+1∧ s′′ = s′+2∧ s′′ > 3 is unsatisfiable (for simplicity we omitted the read

75

`1 int s=0;
`2 if (read())
`3 s=s+1;
`4 if (read())
`5 s=s+2;
`6 if (s>3)
`7 bug;
`8

��

� = 0

��: {� ≤ 0}
���() ≠ 0

��� 	 = 0

��

��: {� ≤ 1} ��′

� += 1

���() ≠ 0

��
� += 2

��: {� ≤ 3}
� ≤ 3

��: {����} ��: { ���}

��′

��� 	 = 0

Figure 4.1: A program and its symbolic execution tree

constraints). Now we generate interpolants for this path by first annotating `7 :

{ f alse} because it is an unreachable node. Propagating this back to `6 through

the label s > 3, we obtain the interpolant s≤ 31. We now note all paths from `6

have been explored, so we conjoin all interpolants at `6 (true∧s≤ 3) annotating

it with the full-interpolant s ≤ 3, denoting that the entire tree of paths under `6

has been explored.

Now, when the concolic tester generates a zero for the second read() and

executes the path `1 · `2 · `3 · `4 · `′6, we check2 if the path condition at `′6, s =

0∧ s′ = s+ 1 implies the full-interpolant at `6, s′ ≤ 3 (after proper renaming).

It does, so we can guarantee the entire tree of paths below `′6 to not be buggy

and subsume it. The exponential savings is because we saved the concolic tester

from executing a potentially exponential number of paths in the tree under `′6

(in this case, two paths, but in general exponential). Importantly, note that only

full-interpolants are capable of subsumption and the amount of savings provided

by our method is directly proportional to the number of full-interpolants formed

from exploring entire trees of paths.

Unfortunately, the method discussed so far has a catch. We conveniently

1Note that for this example we use interpolants based on weakest preconditions, but our
method is not limited to them and any interpolation method can be used.

2The symbolic path in fact continues to `8, but our check suceeds and stops execution at `6.

76

assumed the concolic tester would execute the paths in that specific order, which

resembles a depth-first search (DFS). If after executing the first path the tester

did not attempt to turn-around at `6 (thus leaving `6 with a half-interpolant), `6

would not have been able to subsume `′6. Even worse is the fact that because of

the half-interpolant at `6 all its ancestors along the path also become incapable

of subsumption, thereby losing a great amount of savings.

Thus, we need to “accelerate” the formation of full-interpolants instead of

simply relying on the concolic tester to explore the paths. However a challenge

in concolic testing is that whatever technique is employed for this purpose, it

must always stay proportional to the executed path, that is, not become in-

tractable. For this, we introduce a technique called greedy confirmation that

is both tractable (proportional to the path length in the worst-case) and accel-

erates the formation of full-interpolants resulting in a substantial increase in

subsumption.

The basic idea is while backtracking along a path, once we encounter a node

with another branch that has not been explored by the concolic tester, instead

of simply annotating the node with a half-interpolant and halting the process,

we explore the other branch ourselves (while the concolic tester is waiting to

generate the next path) and attempt to confirm whether a full-interpolant can be

generated from it, so that we can annotate the node as full and continue the back-

ward propagation. However, the sub-tree under the other branch could be ex-

ponentially large, in which case we must avoid exploring it to remain tractable.

Hence we introduce a restriction: while exploring the sub-tree, each program

point is allowed to be explored at most once. If a program point is visited along

more than one path, we demand that it be subsumed. If not, we declare that

the greedy confirmation process failed at the original branch node, which will

remain annotated with a half-interpolant.

The reasoning behind the restriction is as follows. During greedy confirma-

tion, we want to give each program point at least one chance to become sub-

sumed, so we must allow at least one visit to each program point. However, we

do not want to resort to a full search within the sub-tree, which could become

intractable. Thus, this restriction ensures that the “search” is linearly bounded

77

by the longest path in the program3. The motivation behind this technique is

that the difference between the two branching sub-trees might not affect the bug

condition and so one tree can quickly subsume the other.

Let us see how greedy confirmation works on the example. When back-

tracking along the first path, `1 · `2 · `3 · `4 · `5 · `6 · `8, once we reach `6 with the

interpolant true, we trigger greedy confirmation and attempt to explore the other

tree under `6. We immediately notice the other branch to `7 is infeasible, and

annotate it with f alse. Propagating this back to `6 we get the full-interpolant

s ≤ 3, which can now be propagated back further. Hence at `5 we get the full-

interpolant s≤ 1. Propagating this to `4 makes it a half-interpolant since there is

another branch from `4 to `′6. Triggering greedy confirmation, this time at `4, we

notice that `′6 is subsumed by `6 with the full-interpolant s≤ 3. Propagating this

to `4 and conjoining it with the existing half-interpolant, we get s≤ 3∧s≤ 1, or

simply s≤ 1 at `4, which is now a full-interpolant that can be propagated back.

Similar reasoning at `2 subsumes a large tree of paths under `′4 resulting in the

full-interpolant s≤ 0 at `2.

Now, in this contrived example, if the concolic tester executes any path in

the program, we are able to subsume it immediately at `2. Essentially, greedy

confirmation has pushed subsumption from happening at lower levels in the

symbolic execution tree to upper levels. A simple but effective optimisation is if

greedy confirmation failed at a node, thereby leaving it with a half-interpolant,

we can simply halt the annotation process because there is no use propagating a

half-interpolant to the node’s parents.

Finally, note importantly that this example does not contain any dead vari-

ables, so techniques like [15] will not be able to prune any path, whereas with

interpolation we are able to.

Remark. The correctness of our method relies on the fact that whenever

we subsume a path (i.e., we skip its execution) we can ensure that the path will

not be buggy (see Theorem 4 in Sec. 4.4). This guarantee is only feasible if

the program is annotated with assertions. Without them we have no basis to

make such a guarantee and subsume the path. A key observation is that without

3We tried restricting to two, three and other constant instances of each program point, but
we found no difference in our benchmarks.

78

assertions each path is unique because at least it will differ in one branch from

the rest of paths, and hence, there is no hope for boosting the concolic execution.

However, with an assertion many paths can be considered equivalent and this

allows our method reporting savings. In conclusion, our method is only effective

if we consider programs annotated with assertions. We believe that this step can

be done automatically and it is not a big hassle in practice. Of course, our

technique works with multiple assertions in the program.

4.3 Background

Concolic Testing. We first define a concolic path p as the path executed by the

concolic tester represented as a sequence of program locations `1 · . . . · `n and

define the transition relation `
op−−→ `′ as before. In order to manipulate concolic

paths we also define prefix(p,`) of a path p w.r.t. a location ` as the prefix up to

` without including `. We also define constraints(p) that maps a concolic path

into a formula representing the conjunction of the symbolic constraints along

the path. Of course, this formula is properly renamed (i.e., SSA form) to take

into account variables that are redefined more than once.

We now show in Fig. 4.2 a generic algorithm that performs concolic testing

as described in [16]. The algorithm is generic in the sense that it can be param-

eterised with different search strategies by simply choosing different heuristics

to pick a branch at line 2. The algorithm is instantiated with the program P and

an initial concolic path p, usually chosen by running the program with random

inputs. In line 2, a branch bi is chosen from the path p based on the heuristic

used. In line 3, a new path p′ is built by keeping the prefix up to bi and negating

the constraints at the branch bi. In line 4 the symbolic constraints associated

with p′ are then fed to a constraint solver to check for satisfiability. If they are

unsatisfiable, the algorithm returns to line 2 and picks another branch to negate.

Otherwise, an assignment I (concrete inputs) is extracted from the solver which

is used to guide the next concrete path along the negated branch. This is done

using the call to ConcretePath(P,I) in line 5. Once the new path, say q, is exe-

cuted, depending on the heuristic, it is processed by either replacing the old path

79

GENERICCONCOLIC(program P, path p)
1: while termination conditions are not met do
2: bi= pick a branch from p
3: p′= construct a path passing through

the branches b0, . . . ,bi−1,bi
4: if ∃ satisfying assignment I forcing P through p′ then
5: q← ConcretePath(P,I)
6: process q by either p← q or

GENERICCONCOLIC(P,q)
7: endif
8: endwhile

Figure 4.2: A Generic Concolic Tester

p with q or by making a recursive call to GENERICCONCOLIC with q in line 6.

The entire process continues until some termination condition is met (usually a

fixed number of iterations or recursive call depth) shown in line 1.

4.4 Algorithm

We now present our symbolic execution based algorithm that runs synchronised

with GENERICCONCOLIC and helps the concolic testing strategy mitigate the

path-explosion problem. First, we give few definitions critical to our algorithm:

Definition 8 (Full and half interpolants). An interpolant annotated at a symbolic

state υ is a full-interpolant if either:

(a) υ is a leaf node (terminal, infeasible, subsumed) in the symbolic tree, or

(b) ∀υ′ such that SUCC(υ,υ′), υ′ is annotated with a full-interpolant.

An interpolant that is not full is called a half-interpolant4.

Definition 9 (Subsumption check). Given a current symbolic state υ ≡ 〈`,s, ·〉
and an already explored symbolic state υ′ ≡ 〈`, ·, ·〉 annotated with the inter-

polant Ψ, we say υ is subsumed by υ′ (SUBSUME(υ,〈υ′,Ψ〉)) if Ψ is a full-

interpolant and JυKs |= Ψ.

The subsumption check here is defined similar to the notion of merging de-

fined in Definition 3, but with two differences. Firstly, in the setting of concolic

4“Partial-interpolant” is a better term but we use half-interpolant for historical reasons.

80

SYMEXEC(υ≡ 〈`, ·, ·〉, p)
1: if TERMINAL(υ) then〈Ψ, f〉 = 〈true, full〉
2: else if INFEASIBLE(υ) then〈Ψ, f〉= 〈 f alse, full〉
3: else if ∃ υ′ ≡ 〈`, ·, ·〉 annotated with 〈Ψ′, full〉 such that SUBSUME(υ,〈υ′,Ψ′〉) then
4: 〈Ψ, f〉 = 〈Ψ′, full〉
5: else 〈Ψ, f〉 = UNWINDPATH(υ,p)
6: endif
7: annotate υ with 〈Ψ, f〉
8: if f 6= full then halt

UNWINDPATH(υ≡ 〈`,s,Π〉, p)
1: Ψ =existing interpolant at υ

2:
υ
′ ,

{
〈`′,s,Π∧ JcKs〉 if `

op−−→ `′ ∈ p ∧ op ≡ assume(c)
〈`′,s[x 7→ Sx],Π〉 if `

op−−→ `′ ∈ p ∧ op ≡ x = e and Sx fresh variable

3: SYMEXEC(υ′,p) and let the resulting annotation at υ′ be 〈Ψ′, ·〉
4: Ψ= Ψ∧ INTP(constraints(prefix(p, `)),constraints(` · `′)∧¬ Ψ

′
)

5: if ∃υ′′ ≡ 〈`′′, ·, ·〉 such that υ′′ is not annotated 〈·, full〉 and SUCC(υ,υ′′) then
6: GREEDYCONFIRMATION(υ′′) and let the resulting annotation at υ′′ be 〈Ψ′′, f′′〉
7: if f′′ = full then
8: Ψ= Ψ∧ INTP(constraints(prefix(p, `) · `),constraints(` · `′′)∧¬ Ψ

′′
)

9: endif
10: endif

11:
f≡
{

full if ∀υ′′′ s.t. SUCC(υ,υ′′′),υ′′′ is annotated with 〈·, full〉
half otherwise

12: return 〈Ψ, f〉

Figure 4.3: Symbolic execution with interpolation along a path

testing, there needs to exist a distinction between full and half interpolants. Note

that a half-interpolant at a symbolic state cannot be used to subsume other states.

Secondly, the subsumption check here does not consider witnesses due to the

reason mentioned in Section 2.2.

4.4.1 Symbolic Execution of Paths with Interpolants

We first present the algorithm SYMEXEC (Figure 4.3) that takes a path chosen

by the concolic tester and executes it symbolically in order to annotate each

program point in it with interpolants. A collection of such annotated paths im-

plicitly represents the symbolic execution tree. Then, we will present GENER-

81

ICCONCOLICWITHPRUNING, a modified version of GENERICCONCOLIC that

can prune paths using the annotated symbolic execution tree.

SYMEXEC takes as arguments a symbolic state υ and a path p. Initially, υ

refers to the start state 〈`start, ·, ·〉. It is also assumed that all procedures have

access to the program’s original transition system P, which can considered a

global variable to the algorithm. The actual object of interest is the annotation

done by the procedure which is persistent across multiple calls to it. For the

sake of simplicity, ignore the gray box which we will come to later.

First, lines 1-4 handle the three possible base cases for the symbolic exe-

cution of a path: terminal, infeasible and subsumed. In line 1, the function

TERMINAL checks if `= `end. If yes, the path can be fully generalised returning

the full-interpolant true, since it is feasible. In line 2, the function INFEASIBLE

checks if the path condition Π of υ is unsatisfiable. If yes, again the path can

be fully generalised, but this time to f alse since it is infeasible. Finally, line 3

checks if there is another state υ′ that can subsume υ, using the function SUB-

SUME which implements Definition 9. If yes, we can simply annotate υ with

the (full) interpolant of υ′ (line 4).

If the three base cases described above are not applicable, the algorithm

executes symbolically the next location of the path by calling the procedure

UNWINDPATH. This procedure, at line 1, obtains any interpolant that may be

annotated at υ (it can be assumed that initially all symbolic states are annotated

with the default interpolant 〈true,half〉). In line 2, it executes one symbolic step

along the path and calls the main procedure SYMEXEC with the new successor

state υ′ (line 3). This mutually recursive call will in the end annotate υ′ with an

interpolant, say Ψ
′. In line 4, it computes the interpolant for the current state

υ, using Ψ
′ and the constraints along the transition `

op−−→ `′ and then conjoin-

ing the result with any existing interpolant at υ. Finally, in line 11, it computes

whether Ψ is a full or half-interpolant by implementing Definition 8. For ex-

ample, consider the case where constraints(prefix(p, `))≡ x0 = 1∧ x1 = x0 +3,

constraints(` · `′)≡ x2 = x1 +2, and Ψ
′
= x2 ≤ 10 (after proper renaming). The

call at line 11 will generate an interpolant whose variables must be common

to constraints(prefix(p, `)) and constraints(` · `′) together with Ψ
′. Thus, it can

82

GENERICCONCOLICWITHPRUNING(program P, path p)
1: while termination conditions are not met do
2: bi= pick a branch from p
3: p′= construct a path passing through

the branches b0, . . . ,bi−1,bi

4: if ISSUBSUMEDPATH(p′) then continue
5: endif
6: if ∃ satisfying assignment I forcing P through p′ then
7: q← ConcretePath(P,I)
8: SYMEXEC(υ0 ≡ 〈`start, init_store(), true〉,q)
9: process q by either p← q or

GENERICCONCOLICWITHPRUNING(P,q)
10: endif
11:endwhile

Figure 4.4: A Generic Concolic Tester with Pruning

only include x1. An interpolant generated by MathSAT [23] would be x1 ≤ 4. A

weaker interpolant is x1 ≤ 8 which can be computed by weakest preconditions.

Returning back the tuple 〈Ψ, f〉 to the caller SYMEXEC, at line 7, it performs

the actual annotation of υ. Finally, in line 8, SYMEXEC checks if it just anno-

tated the state with a full interpolant. If not, it halts in a normal manner and

returns control to the concolic tester (this can be seen as a system-wide halt and

is also notified to UNWINDPATH)5. The reason for halting is that there is no use

propagating the half interpolants to parent nodes, because they will still remain

as half interpolants and be of no use for subsumption. In other words, the al-

gorithm only propagates full interpolants to parent nodes. This is a simple but

very effective optimisation. Note however, that the annotation of states done so

far is still persistent. More importantly, a half interpolant at a node now could

get converted to a full interpolant later when all successors of the node get full

interpolants.

We now present a modified concolic tester GENERICCONCOLICWITH-

PRUNING, shown in Fig. 4.4, with the gray boxes highlighting the changes made

in order to prune paths using our method. First, after picking a branch bi to

negate (line 2) and constructing the corresponding path p′ that goes through

5This halting may make the algorithm seem “impure” but we believe it makes it much easier
to understand.

83

it (line 3), the concolic tester makes a call to ISSUBSUMEDPATH with p′ at

line 4. This call queries the persistent annotated symbolic execution tree to

check whether the path p′ has been subsumed already. Note that this is just a

look-up and hence does not involve symbolic execution. If yes, the tester can

simply skip p′ from being executed and continue, thus pruning a potentially ex-

ponential number of recursive calls at line 9 and all those paths it would have

generated. The second change is that once a path has been concolically exe-

cuted in line 7, the tester has to invoke our method so that we can annotate it

with interpolants. Thus, line 8 makes a call to SYMEXEC with the initial state

of the path υ0 and the path q that was executed.

4.4.2 Greedy Confirmation to Accelerate Formation of Full-

Interpolants

The method discussed so far has laid out the framework to bring interpolation to

concolic testing with the help of half and full-interpolants. The benefit provided

by our technique relies heavily on the formation of full-interpolants from paths

explored by the concolic tester (i.e., the amount of times f is assigned full in

UNWINDPATH, line 11). Unfortunately the method explained so far does not

perform well in practice (as we will see in Section 4.5) because relying only on

the tester to explore paths results in poor formation of full-interpolants. This

is because the tester’s arbitrary search strategy seldom explores the entire tree

of paths arising from a node, a requirement to annotate the node with a full-

interpolant and enable it to subsume other nodes.

Hence, an important challenge to deal with in concolic testing is to “accel-

erate” the formation of full-interpolants. For this, we introduce a new concept

called greedy confirmation. The basic idea was described in Section 4.2, here

we explain it in technical terms (gray box in Fig. 4.3). If the call to SYMEXEC

(line 3 of UNWINDPATH) returned successfully, it means υ′, the successor of

υ, was annotated with a full-interpolant, say Ψ
′. Now, we check (at line 5) if

the other successor of υ (say, υ′′) is also annotated with a full-interpolant. If

not, then this half-interpolant, say Ψ
′′, is the one preventing Ψ from becoming

a full-interpolant. Now, we greedily explore υ′′ by ourselves in an attempt to

84

confirm whether we can make Ψ
′′ a full-interpolant, so that we can immediately

upgrade Ψ to full, thus enabling it to perform subsumption. The intuition behind

this technique is that the difference between the trees below the two “siblings”

υ′ and υ′′ might have no effect on the bug condition, and since the tree below

υ′ has been fully explored, thereby annotated with full-interpolants, it opens up

opportunities to subsume nodes in the tree below υ′′. Thus, we make the call to

GREEDYCONFIRMATION in line 6.

GREEDYCONFIRMATION essentially performs symbolic execution of υ′′ sim-

ilar to SYMEXEC. However, a key impediment is that the symbolic execution

of υ′′ must not become expensive and it should have a proportional cost to the

length of path, otherwise we consider it intractable. However the tree under υ′′

might be arbitrarily large and so we impose an important restriction to maintain

tractability: each program point is allowed to be explored at most once during

greedy confirmation of υ′′. If a program point `k is visited in two states υk1

and υk2 then we demand that one of them be subsumed (not necessarily by the

other). If it is not possible, then we declare that the invocation of greedy con-

firmation failed at υ′′, which will not be annotated with a full-interpolant. This

restriction ensures that in the worst case, greedy confirmation at any symbolic

state is bounded linearly by the length of the longest path in the program.

Note that GREEDYCONFIRMATION does not need the help of the concolic

tester to explore its paths. In fact, this is the whole point. Thus, it does not take

as argument the path p, but instead explores paths on its own. Since GREEDY-

CONFIRMATION is almost exactly identical to SYMEXEC, we do not show its

(rather tedious) pseudo-code here. The only modification to SYMEXEC is to

keep track of counters for each visited program location that is not subsumed

and stop if a counter becomes greater than one. Finally, to perform the symbolic

step (line 3, UNWINDPATH), GREEDYCONFIRMATION must pick `
op−−→ `′ from

the program’s transition system P instead of the path p.

Coming back to the description of UNWINDPATH, consider the call to

GREEDYCONFIRMATION at line 6 produced the annotation 〈Ψ′′, f′′〉 at υ′′. If sup-

pose Ψ
′′ was a full-interpolant (i.e., greedy confirmation succeeded), then at

line 8 we augment the interpolant Ψ at υ with this full-interpolant. More im-

85

portantly, at line 11, f will be assigned full because both successors of υ (υ′ and

υ′′) have been annotated with full-interpolants (Ψ′ and Ψ
′′ respectively). This

directly accelerates the formation of full-interpolants, resulting in more sub-

sumption (line 3 of SYMEXEC succeeding more often). In Section 4.5 we will

see this greatly increases the savings provided for concolic testing, while still

maintaining tractability.

Theorem 4. When a symbolic state υ is subsumed by another state υ′, the error

location `error is unreachable from υ.

The proof follows from the correctness of the algorithms described in [66,

83], Lemma 1, and the fact we only subsume if the interpolant is full.

Corollary 5. If GENERICCONCOLIC will execute a path p that leads to the bug

location `error, then GENERICCONCOLICWITHPRUNING will also execute p.

Theorem 4 states that we never subsume a node from which the error lo-

cation `error would be reachable. Thus, it can be shown that we never pre-

vent GENERICCONCOLICWITHPRUNING from executing a path that will reach

`error.

Finally, note that it is entirely possible that the concolic tester can detect

infeasible paths after simplifying a complex constraint using concrete values

that we cannot detect symbolically. Therefore if unsatisfiability cannot be deter-

mined symbolically, we cannot compute interpolants. As a result, the pruning of

paths is limited only to those where unsatisfiability does not require reasoning

about complex constraints. Moreover, it is possible for GREEDYCONFIRMATION

to reach `error during the exploration of a path in the presence of constraints

whose unsatisfiability cannot be determined. In this case, we also declare that

greedy confirmation failed and return the control to the concolic tester, since

only the tester can decide the reachability of `error in order to ensure zero toler-

ance for false alarms.

4.5 Experimental Evaluation

We implemented our algorithm on the TRACER [64] framework for symbolic

execution and modified the concolic tester CREST [16] to communicate with

86

TRACER during its testing process. To achieve this, the algorithm in Fig. 4.3

was implemented in TRACER while CREST was slightly modified to implement

the procedure in Fig. 4.4. The two work as separate processes coordinating their

tasks.

We conducted experiments on three strategies: Depth-First Search (DFS),

Uniform Random Search (URS) and Control Flow Graph (CFG) directed

search. DFS explores the paths in a depth-first order naturally forming full-

interpolants in a bottom-up manner (even without the need for greedy confirma-

tion) and maximising the benefit of subsumption, so it is the best-case strategy

for our method. However according to [16], it is the worst strategy in terms of

branch coverage, so we mainly provide it for completeness. CFG is a heuristic-

based strategy that first computes the shortest distances between every basic

block using the CFG of the program and decides on a “target” basic block to

cover. Then, when a path is executed it chooses the next path by turning around

at a branch along the path with the least distance to the target block. If it is

unable to do so (due to infeasibility of constraints), it chooses the next clos-

est branch to the target that is along the path, and so on. Once the target is

reached, it randomly chooses a new target block to cover. It is worth noting that

CFG-directed search was shown to be best strategy in terms of branch coverage

by [16], so we consider it an illustrative concolic testing strategy. Finally, URS

explores paths in a random order by choosing to turn-around at a random branch

in a currently executed path. We included URS just to provide another example

of a typical random concolic testing strategy. This random element in both CFG

and URS hinders greatly with the formation of full-interpolants and is the main

challenge for our algorithm to overcome.
As benchmarks, we used four programs from the ntdrivers-simplified cate-

gory of SV-COMP’12: cdaudio, diskperf, floppy and kbfiltr. These programs

range from 1000 to 2000 lines of code. In spite of their relative small sizes in

terms of LOC, these programs have a large number of paths due to the number

of branches. Thus, we believe these programs can stress more the computation

of interpolants and subsumption checks since symbolic paths contain a high

number of constraints and it is often harder to reason about the infeasibility of

87

these constraints. One of the consequences is that interpolants are stronger (in

the logical sense) since they must consider multiple reasons of infeasibility and

hence, they are less likely to be reusable. We ran three main experiments with

them on an Intel 3.2Ghz with 2Gb memory.

A technical problem with the experiments is that if our algorithm prevented

CREST from exploring subsumed trees, we would never know how many paths

CREST would have executed in those trees (and subsequently the time taken for

the same) had we not prevented it. Also, we do not want to meddle with the ran-

dom number-based sequence in CFG and URS by forbidding CREST to execute

certain paths. Hence for measurement purposes, we do not forbid CREST from

exploring subsumed trees in our experiments, but instead take note when CREST

is in subsumed trees and discard any measurements taken during that time.

First experiment – Performance

At the outset we would like to measure the actual performance improvement

provided by our method. For this we measure the time taken by each strategy

of naive CREST (i.e., original version) and CREST aided by our method (i.e.,

algorithms in Figs. 4.3 and 4.4) to execute a target number of paths, chosen

based on the size of the benchmark: 200k for cdaudio and floppy, 500k for

diskperf and around 20k for kbfiltr (due to its smaller size). The results are shown

in Fig. 4.5, where the number of executed paths is shown on the X-axis and the

time taken (in seconds) to execute those paths is shown on the Y-axis. For

naive CREST, we noticed that the time taken to execute a path is almost constant

across all three strategies, so for simplicity we took the average time of the

three strategies (shown as Naive in Fig. 4.5). When running with our method

(and with greedy confirmation), we show the strategies separately labelled as

CFG+GC, DFS+GC and URS+GC.

It can be seen that in each benchmark, naive CREST takes almost linear time

to execute the target number of paths because the generation of each path in-

volves simply one constraint solving, which takes almost constant time, and

possibly a heuristic to choose the branch to negate, which is negligible. When

aided by our method, CREST starts out a bit slower due to the overhead of in-

88

0

200

400

600

800

1000

1200

0k 50k 100k 150k 200k

Naïve

CFG+GC

DFS+GC

URS+GC

CFG-GC

0

400

800

1200

1600

2000

0k 100k 200k 300k 400k 500k

Naïve

CFG+GC

DFS+GC

URS+GC

CFG-GC

(a) (b)

0

200

400

600

800

0k 50k 100k 150k 200k

Naïve

CFG+GC

DFS+GC

URS+GC

CFG-GC

0

10

20

30

40

50

60

70

0k 2k 4k 6k 8k 10k 12k 14k 16k

Naïve

CFG+GC

DFS+GC

URS+GC

CFG-GC

(c) (d)

Figure 4.5: Timing for (a) cdaudio (b) diskperf (c) floppy (d) kbfiltr. X-axis:
Paths, Y-axis: time in seconds

terpolation, however after a certain time the benefits of interpolation (i.e., sub-

sumption) start to pay off, ultimately reaching the target number of paths much

faster. The magnitude of improvement depends on the strategy. As expected, our

method works best with DFS, providing more than 10-20 times improvement,

followed by CFG and URS with about 3-5 times improvement. For example,

in diskperf, naive CREST takes on average 1700s to complete, whereas with our

aid, CFG and URS take about 600s and DFS takes 50s. Note that every path

subsumed in this experiment is a path executed by CREST that need not have

been executed. More importantly, the trend of the graphs of CREST running

with our algorithm indicates potentially exponential benefit in time over naive

89

CREST.

To measure the effectiveness of greedy confirmation in our algorithm, we

measured the timing of CREST with our algorithm but with greedy confirmation

turned off (i.e., the gray box in Fig. 4.3 removed). Hence, the full-interpolants

would be generated only by CREST exploring full sub-trees in the symbolic ex-

ecution tree. We chose the canonical CFG strategy for this experiment, and its

result is shown as CFG-GC (double-dotted line) in the graphs in Fig. 4.5. It can

be seen immediately that the timing without greedy confirmation is much worse

than otherwise. Especially for diskperf in Fig. 4.5(b), the timing is even slower

than running naive CREST, because the overhead incurred due to interpolation

does not pay off in subsuming other paths. In other benchmarks it pays off re-

sulting in a benefit to CREST, but the amount of benefit is small compared to

running CFG with greedy confirmation(CFG+GC). More importantly, the trend

of CFG-GC does not appear to provide exponential benefit to CREST, if at all.

This experiment shows that greedy confirmation is a indeed major contribution

to the effectiveness of our algorithm and interpolation-based methods without

it [83, 66] are not readily suitable for concolic testing.

Second experiment – Subsumption

Now we would like to understand the basis on which the first experiment pro-

vided benefit. A good measure for this is the amount of subsumption that our

method provides, i.e., the percentage of CREST paths that are subsumed. A thing

to take note is that CFG and URS may repeat execution of some paths due to

their random element which we cannot control. For this and the subsequent ex-

periment, we do not include such paths in the calculations because a repeated

path does not contribute to the percentage of subsumption. We included them in

the previous experiment because they indeed contribute to execution time.

The results are shown in Fig. 4.6. In the graph of each benchmark, the X-

axis represents the number of paths executed by CREST and the Y-axis represents

the percentage of those paths subsumed. It can be clearly seen that DFS very

quickly reaches almost 100% subsumption (i.e., almost all executed paths are

subsumed by interpolants) whereas the other two strategies CFG and URS show

90

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

CFG

DFS

URS

0

20

40

60

80

100

0 750 1500 2250 3000 3750 4500

CFG

DFS

URS

(a) (b)

0

20

40

60

80

100

0 1000 2000 3000 4000

CFG

DFS

URS

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

CFG

DFS

URS

(c) (d)

Figure 4.6: Subsumption for (a) cdaudio (b) diskperf (c) floppy (d) kbfiltr. X-axis:
Paths, Y-axis: % subsumption

an increasing trend towards it, with DFS as their asymptote. This is in line

with the first experiment where the magnitude of performance benefit was the

greatest in DFS, followed by the other two. In diskperf we notice some noise,

as CFG and URS fluctuate between 50-65% subsumption. The next experiment

below suggests that this is because even though we subsume trees during this

period, CFG and URS are not interested in executing paths in those trees. This

is possibly why the magnitude of improvement was low (only around 2) for

diskperf in Fig. 4.5(b). Theoretically, the rate of subsumption could decrease

(even be zero) if CREST constantly avoids executing paths in subsumed trees,

but we expect this to seldom happen in reality.

91

Third experiment – Extra path-coverage

Now we present a different view of the provided benefit. When we subsume

a tree, we not only provide the direct benefit of saving the paths that CREST

indeed executes in the tree (the first experiment), but also the indirect benefit of

covering paths in the tree that CREST cannot cover within its budget. Although

such paths are of low priority to the strategy’s heuristics, they are provided “free

of charge” by our method because the time we spend to subsume the whole tree

is inclusive of these paths as well. This can be considered extra path coverage

because CREST has no hope of executing them in its budget, but if its budget

were longer it may execute them in future. Note that this experiment does not

make sense for DFS, because when we subsume a tree, DFS would immediately

proceed to execute all paths in the tree anyway.

In Fig. 4.7, we measure the number of such “free” paths per path executed

by CREST. Note that we again do not include repeated paths in this experiment

since they do not contribute to path coverage. In each graph, the X-axis shows

the actual path coverage of CREST, and the Y-axis shows the extra path coverage

obtained due to subsumption. The ratio of extra path coverage to CREST’s actual

path coverage varies greatly depending on the benchmark, from a magnitude of

10 in cdaudio to about 1000 in diskperf (note the logarithmic scale). Specifically,

for the CFG strategy in diskperf, we subsume a huge number of trees around

1500 paths, but the previous experiment showed yet fluctuating percentage of

subsumption around that time, indicating that CFG is not interested to execute

paths in those subsumed trees.

In this experiment, by “taking credit” for entire subsumed trees, we mea-

sured the upper bound on the magnitude of benefit in path coverage that we can

provide, a mean of 100. The lower bound, around 3 to 5, is dictated by the first

experiment (although we did not explicitly measure it there, we can extract it

from the timing), where we took credit only for the paths that CREST actually

executed in the subsumed trees, within its budget. In general, one can expect

the benefit we provide to lie somewhere in between, depending on the budget.

92

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000 2500 3000

CFG

URS

1

10

100

1000

10000

100000

1000000

10000000

0 750 1500 2250 3000 3750 4500

CFG

URS

(a) (b)

0

50000

100000

150000

200000

250000

300000

0 1000 2000 3000 4000

CFG

URS

0

4000

8000

12000

16000

20000

24000

28000

0 150 300 450 600 750 900

CFG

URS

(c) (d)

Figure 4.7: Extra coverage provided for (a) cdaudio (b) diskperf (c) floppy (d)
kbfiltr by our method. X-axis: Crest path coverage, Y-axis: Additional path
coverage from subsumption.

Fourth experiment – Terminating testing

Finally, we discuss a small but important experiment. We wanted to make a

“pure” comparison of concolic testing with and without our method, notwith-

standing the complications with measuring the number of subsumed paths, ran-

dom number sequences and repeated paths we encountered in the previous ex-

periments. In other words, we wanted to actively forbid CREST from exploring

subsumed trees instead of letting it run and discarding measurements like be-

fore. The problem in doing this is that when terminating with a budget, the

sequence of paths executed by naive CREST and our method would be different

93

and hence, incomparable. However, if the testing process terminates having ex-

plored the entire search space (i.e., verified the program), the sequence of paths

it took to do so does not matter.

We obtained a smaller non-buggy version of kbfiltr from the same benchmark

suite and ran CREST’s CFG strategy on it with and without our method, this time

actively forbidding CREST from exploring subsumed trees. With our aid, CREST

was able to completely verify the program in 20 seconds, whereas naive CREST

was able to complete only after 256 seconds. This experiment shows concrete

evidence that our method indeed accelerates a typical concolic testing strategy

such as CFG towards more path coverage, in this case verifying the program

much faster than otherwise. Unfortunately, we could not run this experiment on

other benchmarks as they contain a prohibitive number of paths and concolic

testing could not explore all of them in a reasonable amount of time making it

not possible to make such an interesting comparison.

Remark. Although we focus on path coverage in this work, it is worthwhile

to note that our method can be also used to improve branch coverage. In fact, in

some of our preliminary experiments we targeted branch coverage and observed

that we were achieving the same branch coverage but sometimes faster with

our method than without. However, the problem of branch coverage is simpler

than path coverage and hence, pruning is not always vital. In these cases, the

overhead of interpolation and subsumption may not pay off.

4.6 Summary

We attacked the path-explosion problem of concolic testing by pruning redun-

dant paths using interpolation. The main challenge for interpolation in concolic

testing is the lack of control of search order. To solve this, we presented the

concept of half and full interpolants that makes the use of interpolants sound,

and the technique of greedy confirmation that accelerates the formation of full-

interpolants thereby increasing the likelihood of subsuming paths. We imple-

mented our method and empirically presented its performance and path cover-

age gains.

94

Chapter 5

Interpolation-based Verification

The previous chapters explored how symbolic execution can be employed in

program analysis (slicing) and testing. Now, we consider the setting of program

verification, where symbolic execution has recently gained traction [66, 83, 64],

primarily due to its ability to avoid infeasible paths. Such infeasible paths

cause “spurious” false-positives to be encountered during the verification pro-

cess, thereby triggering typically expensive refinement mechanisms. By default,

symbolic execution will backtrack at once when it encounters an infeasible path

(i.e., when unsatisfiability is detected in the path condition) and avoid these

false-positives preemptively.

In that regard, symbolic execution by default is eager. This eagerness has

been considered as a clear advantage of symbolic execution, in comparison with

Abstract Interpretation (AI) [27] or Counterexample-Guided Abstraction Re-

finement (CEGAR) [24], since infeasible paths could block exponentially large

symbolic trees in practice. We have also repeatedly seen that the main chal-

lenge for symbolic execution is addressing the path explosion problem. The

approaches of [66, 83, 59, 64] tackle this fundamental issue by eliminating from

the model those facts which are irrelevant or too-specific for proving the un-

reachability of the error nodes. This “learning” phase consists of computing

interpolants in the same spirit of no-good learning in SAT solvers.

Informally, in the context of program verification, the interpolant at a given

program point can be seen as a formula that succinctly captures the reason of

infeasibility of paths which go through that program point. In other words it

95

succinctly captures the reason why paths through the program point are safe.

As a result, if the program point is encountered again through a different path

such that its path condition implies the interpolant, the new path can be sub-

sumed, because it can be guaranteed to be safe. The previous chapters showed

that interpolation is crucial in scaling symbolic execution because it can poten-

tially result in exponential savings by pruning large sub-trees. We have also

seen that the efficiency of symbolic execution relies heavily on the “quality” of

the computed interpolants. Particularly, the weaker the interpolant is in logical

strength, the more powerful it is in subsuming other symbolic states.

This is where a conflict between eagerness and learning arises. Eagerly stop-

ping and backtracking at an infeasible state can make the learned interpolants

unnecessarily too restrictive – while the interpolant would typically capture the

reason for infeasibility of the state, the infeasibility could have nothing to do

with the safety of the program. In practice, safety properties often involve a

small number of variables whereas conditional expressions, which act as guards

by causing infeasibility in paths, could be on any unrelated variable. Ultimately,

this causes the (restrictive) interpolant to disallow subsumption in future, mit-

igating its benefit. In other words, eagerness hinders a property-directed ap-

proach.

In this chapter, we propose a new method to enhance the learning of power-

ful interpolants but without losing the intrinsic benefits of symbolic execution.

Whenever an infeasible path is encountered, instead of backtracking immedi-

ately, we selectively abstract (i.e., logically weaken) the infeasible state so that

it becomes feasible, and proceed with the search. By performing such an ab-

straction, we say that we have entered speculation mode. More generally, as we

progressively abstract away infeasibility from a symbolic path, we are exhibit-

ing a property-directed strategy, i.e., ignoring the infeasibilities along the path

until the real reason why the path is safe is found. Note that the sole purpose

of speculation is to find better interpolants – we already know any path with an

infeasible prefix is safe.

However, since exploration of infeasible states is in general a wasteful effort,

we subject the speculation to a bound. This mitigates the potential blowup of

96

the speculative search, while still retaining the possibility of discovering good

interpolants. Intuitively, this bound should be linearly related to the program

size: anything less than this could make the speculation phase arbitrarily short.

It is a main contribution of this work, that in the other direction, a linear bound

is good enough.

5.1 Examples

We first exemplify the case when (eager) symbolic execution is clearly not an

efficient way to conduct a proof. For the programs in Fig. 5.1, assume (1) the

boolean expressions ei do not involve the variables x and y, and (2) the desired

postcondition is y≤ n for some constant n > 0. A path expression is of the form

E1∧E2∧·· ·∧En where each Ei is either ei or its negation. Note that each of the

(2n) path expressions represents a unique path through each of the programs.

x = y = 0
if (e1) y++ else x++
if (e2) y++ else x++
...
if (en) y++ else x++

(a) Lazy is Good

x = y = 0
if (e1) y += 2
if (e2) y += 2
...
if (en) y += 2

(b) Eager is Good

x = y = 0
if (e1) y++ else x++
...
if (e j) y++ else y = n+1
...
if (en) y++ else x++

(c) Lazy is Still Better

Figure 5.1: Proving y≤ n: Eager vs Lazy

Given the first program in Fig. 5.1(a), we can reason that the postcondition

y ≤ n always holds, without considering the satisfiability of the path expres-

sions. Using symbolic execution, in contrast, many of the unsatisfiable path

expressions need to be detected and worse, their individual reasons for unsatis-

fiability (the “interpolants”) need to be recorded and managed. Note that if we

97

used a CEGAR approach [24] here, where abstraction refinements are performed

only when a spurious counter-example is encountered, we would have a very

efficient (linear) proof.

In the next program in Fig. 5.1(b), slightly modified from the previous, we

present a dual and opposite situation. Note that the program is safe just if,

amongst the path expressions that are satisfiable, less than n/2 of these involve

a distinct and positive expression ei (as opposed to the negation of ei), for i

ranging from 1 to n. This means that the number of times the “then" bodies

of the if-statements are (symbolically) executed is less than n/2. Here, it is in

fact necessary to record and manage the unsatisfiable path expressions as they

are encountered during symbolic execution. CEGAR, in contrast, would require

a large number of abstraction refinements in order to remove counter-examples

arising from not recognising the unsatisfiability of “unsafe” path expressions,

i.e. those corresponding to n/2 or more increments of y.

In practice, a typical program would correspond to being in between the

above two extreme cases in Fig. 5.1(a) and 5.1(b). Our key argument, however,

is that in fact a typical program lies closer to the first example rather than the

second. For the final example program in Fig. 5.1(c), assume that all and only

the path expressions which contain the subexpression e j are unsatisfiable. (In

other words, the only way to execute the jth if-statement is through its “then"

body.) Here we clearly need to detect the presence of the expression e j and

not any of the other expressions. More generally, we argue that while some path

expressions must be recorded and managed, this number is small. The challenge

is, of course, is how to find these important path expressions, which is precisely

the objective of our speculation algorithm. We next exemplify this.

Consider the program fragment in Fig. 5.2 executed under two different ini-

tial contexts: y = 4∧ x > 0 and y ≤ 3∧ x ≤ 1. In both contexts, the program

is safe because y ≤ 100 at the end. Throughout the example, assume weakest

preconditions (WP) are used as interpolants.

Symbolic execution (eager) would start at program point `1 with the first

context y = 4∧ x > 0. Assume it first takes the then branch with condition

x==1, executing x++ and reaching `4. Proceeding along the then branch from

98

context1 : y = 4∧ x > 0
context2 : y≤ 3∧ x≤ 1

`1 if (x == 1)
`2 x++;

else
`3 x += 2;

`4 if (x + y >= 6)
`5 y += 2;

else
`6 y++;

if (y > 100) error();

y=4,x>0!

x==1! x≠1!

x++!

x+y≥6! x +y<6!

y+=2!

x+=2!

y≤3,x≤1!

x==1! x≠1!

x++! x+=2!

x+y ≥6! x +y<6!

y++!

ι4:{x+y≥6,y≤98}

ι2:{x+y≥5,
y≤98}

{y≤100}

ι4:{x+y<6,y≤99}

ι2:{x+y<5,
y≤99}

ι3:{x+y≥4,
y≤98}

ι3:{x+y <4,
 y≤99 }

{y≤100}

ι5:{y≤98} ι6:{y≤99}

ι1:{y≤98,x+y≥5}

Figure 5.2: A Program and its (Eager) SE Tree with Learning

`4, it executes y+=2 and reaches the end of the safe path, generating the (WP)

interpolant y≤ 98 at `5. Now from `4, it finds that the else branch is infeasible as

the path condition y = 4∧x > 0∧x = 1∧x′ = x+1∧x′+y < 6 is unsatisfiable.

Being eager, symbolic execution would immediately backtrack, and to preserve

this infeasibility, it would learn the interpolant x′+ y ≥ 6. Combining the then

and else body’s interpolants, it would generate x′+ y ≥ 6∧ y ≤ 98 at `4 (note

that in Fig. 5.2 we project the formula on the original variable names). Passing

this back through WP propagation would result in x+ y≥ 5∧ y≤ 98 at `2.

Now, executing the else body x+=2 from `1, it would reach `4 with the

path condition y = 4∧ x > 0∧ x 6= 1∧ x′ = x+2, which implies the interpolant

x′+ y≥ 6∧ y≤ 98. Therefore the path would be subsumed (dotted line). Prop-

agating this interpolant through x+=2 would result in x+ y ≥ 4∧ y ≤ 98 at `3.

Now, combining the then and else body’s interpolant at `1 would result in the

disjunction: (x = 1⇒ (x+ y ≥ 5∧ y ≤ 98))∧ (x 6= 1⇒ (x+ y ≥ 4∧ y ≤ 98)).

For the sake of clarity, we strengthen this to y ≤ 98∧ x+ y ≥ 5, but we assure

the reader that our discussion is not affected by this. Thus, the final symbolic

execution tree explored for this context will be the one on the left in Fig. 5.2.

Now, when the program fragment is reached along the second context y ≤
3∧x≤ 1, subsumption cannot take place at `1 as the context does not imply the

99

interpolant y ≤ 98∧ x+ y ≥ 5. Symbolic execution would therefore proceed to

generate the symbolic tree shown on the right. It is worth noting that even if

the program was explored with the order of the contexts swapped, subsumption

cannot take place at the top level.

ι6:{y≤99} ι5:{y≤98}

y=4,x>0!

x==1! x≠1!

x++!

x+y≥6! x +y<6!

y++!

x+=2!

y≤3!
x≤1!

ι4:{y≤98}

ι2:{y≤98} ι3:{y≤98}

{y≤100}

y+=2!

{y≤100}

ι1:{y≤98}

Figure 5.3: Lazy SE Tree with Learning

Consider now our lazy symbolic ex-

ecution process invoked on this pro-

gram. We would perform symbolic

execution exactly the same as be-

fore, except when the unsatisfiable

path condition y = 4 ∧ x > 0 ∧ x =

1∧ x′ = x+ 1∧ x′+ y < 6 is encoun-

tered, instead of backtracking, we se-

lectively abstract the formula to make

it satisfiable. Since we are doing for-

ward symbolic execution, we selec-

tively abstract by deleting the con-

straint(s) from the latest guard that we

encountered (i.e., x′+ y < 6) to make

the formula satisfiable.1

After performing selective abstraction, we enter “speculation mode” with

the abstracted path condition y = 4∧ x > 0∧ x = 1∧ x′ = x+ 1. A problem

now is that in general, the sub-tree underneath the infeasible branch may be

exponentially large, exploring which is wasteful as we already know that it is

safe. Therefore it is necessary to impose a bound on the speculative search. We

remark on our design choice of such a bound in later technical Sections.

Triggering speculation at `4, we execute the statement y++ at `6 and reach

the end of the (safe) path. Speculation has now succeeded, hence we annotate

`6 with y ≤ 99. Combining the interpolants at `4, we get y ≤ 98. Propagating

it back through the tree as shown in Fig. 5.3 we get the interpolant y ≤ 98 at

`1. Now, when the program fragment is reached along the second context y ≤
1In principle, selective abstraction can be done in many ways, for instance, by also deleting

y = 4, x′ = x+1 or any combination. We defer to Section 5.4 the reasoning behind our design
choice of deleting the latest guard.

100

3∧x≤ 1, the interpolant is implied at `1, and the entire tree can be subsumed at

the top level. Note that we applied strengthening of WP as before, but we assure

that even without strengthening the subsumption will still take place.

This example has shown that speculation can potentially result in exponen-

tial savings. The reason speculation works in practice is that safety properties

are only on a small subset of variables whereas program guards that cause in-

feasibility can be on any of them. Temporarily ignoring the infeasibility helps

in discovering interpolants closely related to the safety, such as those in Fig. 5.3,

rather than interpolants that blindly preserve the infeasibility, such as those in

Fig. 5.2. In Section 5.4, we empirically show that the exponential gains provided

by speculation clearly outweigh its cost.

5.2 Background

Symbolic Execution. For the purposes of this chapter, we make two changes

to our formalism of symbolic execution. First, we re-define the symbolic step

function SYMSTEP, as follows:

υ
′ ≡ SYMSTEP(υ, t) ,

 〈`′,s,Π∧ JcKs〉 if op ≡ assume(c)

〈`′,s[x 7→ JeKs],Π〉 if op ≡ x = e
(5.1)

This definition ensures that SYMSTEP will return a symbolic state υ′ re-

gardless of whether it is a feasible state or not. Note that the original definition

of SYMSTEP in Section 2.1 checked whether Π∧ JcKs is satisfiable, and only

returned the next state if it was indeed so.

Secondly, we define a “selective abstraction” operator ∇ : FOL×FOL that

accepts an unsatisfiable formula Π and returns a satisfiable formula that is an

abstraction of Π (i.e., logically weaker than Π).

The rest of the formalisms, including the definition of interpolants and sub-

sumption check, are as defined in Section 2.2.

Eager vs. Lazy. We say that a symbolic execution approach is eager if the

successor relation SUCC is defined only for feasible states. In other words, when

101

we encounter an infeasible state, we immediately backtrack and compute an

interpolant, succinctly capturing the reason of the infeasibility. Though different

systems might employ different search strategies for symbolic execution (our

formulation above is called forward symbolic execution [78]), it is worth to note

that all common symbolic execution engines are indeed eager. This eagerness

has been considered as a clear advantage of symbolic execution, since it avoids

the consideration of infeasible paths, which could be exponential in number.

However, with learning (interpolation), being eager might not give us the

best performance. The intuition behind this is as follows. Lemma 1 showed us

that if a symbolic state υ′ subsumes another state υ, then the tree rooted at υ,

say Tυ, has less feasible paths (in a subset sense) than the tree rooted at υ′, say

Tυ′ . Therefore, if Tυ′ itself has very few feasible paths due to eagerness, it is

unlikely that the learned interpolant at υ′ would be able to subsume many of

such instances of Tυ.

5.3 Algorithm

We present our algorithm as a symbolic execution engine with interpolation

and speculative abstraction. In Fig. 5.4, the recursive procedure SymExec is of

the type SymExec : SymStates×N→ FOL∪{ε}. It takes two parameters – a

symbolic state υ typically on which to do symbolic execution, and a number

representing the current level of speculative abstraction, which we will define

soon. Its return value is a FOL formula representing the interpolant it generated

at υ. A special value of ε is used to signify failure of speculation.

Initially, SYMEXEC is called with the initial state s0 with `start as the program

point, an empty symbolic store, and the path condition true. For clarity, ignore

lines 2-5 which we will come to later. Lines 6-12, represent the three base cases

of eager symbolic execution in general – terminal, subsumed and infeasible node

(of course, in our lazy method infeasible node is not a base case). In line 6, if the

current symbolic state υ is a terminal node (defined by ` being the same as `end),

we simply set the current interpolant Ψ to true, as the path is safe and there is no

infeasibility to preserve. In line 7, the subsumption check is performed to see

102

if there exists another symbolic state υ′ at the same program point ` such that

υ′ subsumes υ (see Definition 3(a)). If so, the current interpolant Ψ is set to be

the same as the subsuming node’s interpolant Ψ
′. Note that this is an important

case for symbolic execution to scale as it can result in exponential savings.

In line 8, we check if the current state υ is infeasible, defined by JυKs being

unsatisfiable. Normally at this point, eager symbolic execution would simply

generate the interpolant false to denote the infeasibility of υ and return. For lazy

symbolic execution, we begin our speculation procedure here. Line 9 creates a

new symbolic state υ′ such that it has the same program point ` and symbolic

store s as υ, but its (unsatisfiable) path condition Π is selectively abstracted us-

ing ∇ to make the new path condition, which is satisfiable. In our implementa-

tion of ∇, since SYMEXEC does forward symbolic execution, the path condition

Assume initial state s0 ≡ 〈`start, ·, true〉
1 : Initially : SymExec(s0,0)

function SymExec(υ≡ 〈`,s,Π〉, AbsLevel)
2 : if AbsLevel > 0 then
3 : if (bounds violated) or (` ≡ `error) then return ε endif
4 : else if ` ≡ `error then report error and halt
5 : endif

6 : if TERMINAL(υ) then Ψ = true
7 : else if ∃ υ′ ≡ 〈`, ·, ·〉 annotated with Ψ s.t. SUBSUME(υ,〈υ′,Ψ′〉) then Ψ = Ψ

′

8 : else if INFEASIBLE(υ) then
9 : υ′ = 〈`,s,∇(Π)〉

10 : Ψ
′ = SymExec(υ′, AbsLevel+1)

11 : if Ψ
′ ≡ ε then Ψ = false else Ψ = Ψ

′ endif
12 : if AbsLevel≡ 0 then clear data on bounds endif
13 : else
14 : Ψ = true
15 : foreach transition t: ` −−→ `′ do
16 : υ′ = SYMSTEP(υ, t)
17 : Ψ

′ = SymExec(υ′, AbsLevel)
18 : if Ψ

′ ≡ ε then return ε

19 : else Ψ = Ψ ∧ INTP(Π,constraints(t)∧¬ Ψ
′
)

20 : endfor
21 : endif
22 : annotate υ with Ψ and return (Ψ)
end function

Figure 5.4: A Framework for Lazy Symbolic Execution with Speculative Ab-
straction

103

would have been feasible until the preceding state whose successor is υ. That

is, the state υ′′ such that SUCC(υ′′, υ) must have been a feasible state. Hence

simply setting Π to the path condition of υ′′ would make it satisfiable. This

mimics deleting the latest constraint(s) from Π that caused its infeasibility. In

Section 5.4, we discuss the reasons for implementing ∇ in this way.

Once the abstraction is made, we now speculate by recursively calling

SYMEXEC with υ′ and incrementing the abstraction level by 1. An abstrac-

tion level greater than 0 means that we are under speculation mode. SYMEXEC

essentially performs symbolic execution on the selectively abstracted state but

with a condition – focus now on lines 2-5. Running under speculation mode, if

at any point the bound is violated or if the error location `error is encountered, it

means the speculation failed. In this case, we return a special value ε to signify

the failure (line 3). Of course, if we are not speculating and `error is encountered

(line 4), then it is a real error to be reported and the entire verification process

halts. Otherwise, SYMEXEC proceeds to normally explore υ and finally return

an interpolant.

Now in line 10, the interpolant returned from speculation is stored in Ψ
′.

If ε was returned, indicating that speculation failed, we simply resort to using

false as the interpolant, just like a fully eager symbolic execution procedure.

Otherwise, we use the interpolant computed by speculation (line 11). Finally,

in line 12, if the current abstraction level is 0 (i.e., we are at the ‘root’ of the

speculation tree), then regardless of whether we succeeded or not, we reset all

the data that count towards the bounds. For instance, in our implementation, we

restrict the speculation to not explore more than one state per program point `,

which would result in a bound that is linear in the program’s size. In this case,

we have to maintain a count of the number of states explored for each program

point. At line 12 this data is cleared since the speculation has finished.

Note that there are two reasons why speculation can fail. A first reason is

simply that an abstracted guard is needed to avoid a counter-example. If this

guard corresponds to abstraction level 0, speculation resulted in nothing learnt

at this program point (but we could have learnt something from the start of spec-

ulation until encountering the counter-example, for descendant program points).

104

If however the guard abstraction is at a deeper level, the top-level invocation of

speculation still can learn new interpolants. The second reason why speculation

can fail is that the bound was exceeded. In this case, we put forward that, by

increasing the bound, it is not likely to result in significant learning. That is,

increasing the bound is a strategy of diminishing returns. We will return to this

point when we discuss certain statistics in Section 5.4.

If none of the base cases were activated, SYMEXEC proceeds to unwind

the path, in lines 13-20. It first initialises the interpolant Ψ to true. Then, for

every transition from the current program point `, it does the following. First

it performs a symbolic step (SYMSTEP) to obtain the next symbolic state υ′

along the transition t : ` −−→ `′. Then, it recursively calls itself with υ′ to

obtain an interpolant Ψ
′ for υ′ (note that we are not speculating here so the

abstraction level is unchanged). Now, if the returned interpolant is ε, it means

further down some speculation resulted in failure. Hence it simply propagates

back this failure by returning ε (line 18). Otherwise, it computes the current

interpolant by invoking INTP on the path condition Π and the conjunction of

the constraints of the current transition, constraints(t), with the negation of Ψ
′

(where Π∧ constraints(t)∧¬Ψ
′ is unsatisfiable). The result is conjoined with

any existing interpolant (line 19). Finally, in line 22 the current state υ is anno-

tated with the interpolant Ψ, which is then returned. This annotation is persistent

such that the subsumption check at line 7 can utilise this information.

On loop handling: In the presence of unbounded loops, symbolic execution

might not terminate in general. An important contribution of the work [59] is

to attempt to make symbolic execution terminate by discovering inductive loop

invariants strong enough to prove safety, and unrolling the loop until this can be

achieved. We were able to incorporate the loop handling technique in [59] into

the implementation of our algorithm without difficulty. Note that while attempt-

ing to discover loop invariants to make the symbolic execution finite, [59] can

itself go into non-termination, but this issue is orthogonal to our work.

We conclude this section with some insights about the new interpolants dis-

covered by speculation. At the root of speculation, the eager algorithm would

have returned false as an interpolant. Therefore any other valid interpolant is

105

clearly better. However, is it the case that using the new (and better) interpolant

here, results in better interpolants higher up in the tree? Intuitively the answer

is yes, provided that the interpolation algorithm is, in some sense, well behaved.

We formalise this as follows.

Definition 10 (Monotonic Interpolation). The interpolation method used in our

algorithm is said to be monotonic if for all transition t, path condition Π,

and formulas Ψ1,Ψ2 • Ψ1 |= Ψ2 implies INTP(Π,constraints(t)∧¬ Ψ1) |=
INTP(Π,constraints(t)∧¬ Ψ2)

Monotonicity ensures that better interpolants at a program point translate

into better interpolants at a predecessor point. The supreme interpolation algo-

rithm, based on the weakest precondition, is of course monotonic. A more prac-

tical algorithm, however, may not be guaranteed to be monotonic. For example,

an algorithm which is based on computing an unsatisfiable core (i.e., simply

disregarding constraints which do not affect unsatisfiability), is in general not

monotonic because it can arbitrarily choose between choices of cores.

Nevertheless, we noticed in our experiments, detailed in Section 5.4, that

new interpolants from speculation do translate into better interpolants and this,

in turn, produces more subsumption. This indicates that the interpolation al-

gorithm employed in [64], is indeed relatively well behaved. Some random

inspections of the interpolants obtained in the experiments showed that we of-

ten have monotonic behaviour in practice, although not theoretically. We show

via concrete statistics that as a result of this, we obtain fewer and yet better

interpolants.

5.4 Experimental Evaluation

We implemented our lazy algorithm on top of TRACER [64], an eager symbolic

execution system, and made use of the same interpolation method and theory

solver presented in [64]. Let us now remark on our two design choices.

Selective abstraction: in principle, selective abstraction (∇) can be done in

many ways, formally, by deleting any “correction subset” [77] of the unsatis-

fiable formula. We implemented selective abstraction by deleting constraint(s)

106

from the latest guard that we encountered during forward symbolic execution.

The reason for this is two-fold. Firstly, deleting the latest guard guarantees the

formula to become satisfiable without requiring to compute any of its correction

subsets (the latest guard is trivially a minimal correction subset), which could

be expensive. Secondly, given an incremental theory solver, deleting the latest

constraint can be implemented more efficiently than deleting one encountered

earlier. Nevertheless, although more sophisticated analysis techniques may be

employed here to make a well-informed decision, the empirical results show

that this approach works well in practice.

Speculation bound: we used a linear bound for the speculation. In particular,

during speculation if a program point is visited more than once and it cannot

be subsumed, we stop the speculative search, and use the interpolant false at

the latest speculation point. Intuitively, anything less than a linear bound could

make speculation arbitrarily short, hence we need to give each program point at

least one chance to be explored. Our experiments confirm that often, a linear

bound that gives each program point at most one chance, is good enough.

We used as benchmarks sequential C programs from a varied pool – five

device drivers from the ntdrivers-simplified category of SV-COMP 2013 [12]:

cdaudio, diskperf, floppy, floppy2 and kbfiltr, two Linux drivers qpmouse and

tlan, an air traffic collision avoidance system tcas, and two programs from the

Mälardalen WCET benchmark [79] statemate and nsichneu for which the safety

property was the approximate WCET. All experiments are carried out on an Intel

2.3 Ghz machine with 2GB memory.

To give a perspective of where TRACER stands in the spectrum of verifi-

cation tools, we compare its performance with two competitive verifiers CPA-

CHECKER [106] (ABM version) and IMPACT [80]. Of these, IMPACT implements

an interpolation-based model checking procedure, whereas CPA-CHECKER is a

hybrid of SMT-based search and CEGAR. Since IMPACT is not publicly avail-

able, we use CPA-CHECKER’s implementation of the IMPACT algorithm [80].

For each benchmark, we record in the shaded columns in Table 5.1 the veri-

fication time (in seconds) of CPA-CHECKER (CPA), IMPACT (IMP) and TRACER

with eager symbolic execution (TRACER EAG.), respectively. As it can be seen

107

Bench- CPA IMP TRACER
mark Time Time Time (sec) States #Interpolants

(sec) (sec) EAG LZY Speedup EAG LZY Red. EAG LZY Red.

cdaudio 19 30 41 23 1.78 4396 2864 35% 3854 2689 30%
diskperf 28 149 53 19 2.79 4309 1617 62% 4012 1514 62%
floppy 27 36 25 12 2.08 3535 1635 54% 3208 1534 52%
floppy2 98 40 42 29 1.45 5063 3153 38% 4536 2863 37%
kbfiltr 3 8 4 3 1.33 973 756 22% 860 691 20%
qpmouse 3 8 32 15 2.13 1313 779 41% 1199 723 40%
tlan T/O T/O 41 26 1.58 3895 2545 35% 3542 2324 34%
nsichneu 5 41 40 5 8.00 4481 1027 77% 4379 1018 77%
statemate 2 T/O 72 5 14.40 6680 616 91% 4370 471 89%
tcas 2 11 19 1 19.00 5500 369 93% 5248 348 93%
Total 367 683 369 138 2.67 40145 15361 62% 35208 14175 60%

Table 5.1: Verification Statistics for Eager and Lazy SE (A T/O is 180s (3 mins))

TRACER is generally competitive with IMPACT (faster in overall timing) but

sometimes slower than CPA-CHECKER so it can be roughly positioned between

the two (closer to CPA-CHECKER) in terms of performance. This comparison is

to show that we chose a competitive verifier to implement our algorithm and we

fully expect the same benefits to be provided to other similar verifiers.

We now present the main results in the rest of Table 5.1. In the set of columns

labelled Time (sec) we show the verification time of TRACER in seconds for each

benchmark. In this, the (shaded) column EAG which we just saw, performed

eager symbolic execution, while the LZY column performed lazy symbolic exe-

cution, and Speedup is the ratio of the two. It can be seen that in all programs,

laziness makes the verification much faster, providing an average speedup of

2.67. This also makes lazy TRACER perform much better than eager TRACER.

We notice enormous improvement for nsichneu, statemate and tcas, as these

are programs with a large number of infeasible paths and the safety property on

a small number of variables, the perfect scenario for our speculation to shine.

We move on to a more fine-grained measurement than time in the next set of

columns States, which shows the number of symbolic states TRACER encoun-

tered during verification. In total, we found that 40145 states were encountered

without speculation (EAG) and just 15361 states with speculation (LZY), a re-

duction of about 62%. This shows that speculation is resulting in more sub-

108

sumption, which thereby causes a reduction in the search space.

Next, we measure the improvement in memory provided by speculation.

In the set of columns #Interpolants, we show the total number of interpolants

stored by TRACER at the end of the verification process. Interpolants typically

contribute to a major part of memory used by modern symbolic execution ver-

ifiers. In this regard, laziness reduced the number of interpolants in TRACER

from 35208 (EAG) to 14175 (LZY), a reduction of 60% across all benchmarks.

We focus on the two metrics seen above: number of interpolants (#Inter-

polants), and amount of subsumption, in terms of states (States) encountered.

The critical point is the inverse relationship: laziness provided a much smaller

number of interpolants while simultaneously increasing subsumption. In other

words, the quality of interpolants discovered through speculation is enhanced.

We conclude this section with a few more statistics which, while not directly

linked to absolute performance, nevertheless shed additional insight. First, con-

sider the number of distinct program variables that are involved in the inter-

polants. In the case without speculation, we noticed across all benchmarks that

there were 363 such variables. In contrast, with speculation, the number is only

229. This means that many (134) variables were not required to determine the

safety of the program. They were being needlessly tracked by interpolants sim-

ply to preserve infeasible paths.

Next consider the “success rate” of speculation: how often does speculation

find an alternative interpolant? For simplicity, consider only those speculations

triggered at the top-level of the algorithm (from abstraction level 0 to 1). We

found, across the benchmark programs, a rate of 40-90%, more often at the

higher end. This means that speculation returns something useful most of the

time. However, note importantly that even when speculation was not successful

at the top-level, there is likely to have been interpolants discovered at the lower

levels. These are interpolants one would have not found without speculation.

To elaborate on the success rate of 40-90%, programs having large number

of infeasible paths tend to produce a high success rate, because as per our key

intuition, many such paths will be unrelated to the safety. Similarly, programs

with few infeasible paths produce a low success rate. In our experiments, the

109

highest success rates (90%) were from nsichneu, tcas and statemate, which

have a large number of infeasible paths as mentioned before.

Finally, reconsider the bound. The above success rate also indicates that

there are a significant, though minor, number of failures. We wish to mention

that when we do fail, the overwhelming reason is not the bound, but instead, the

(spurious) counterexamples. In summary, the rather high rate of success, and the

rather low rate of failure caused by the bound, together suggest that increasing

the bound would be a strategy of diminishing returns.

5.5 Related Work and Discussion

Symbolic execution [71] has been widely used for program understanding and

program testing. We name a few notable systems: KLEE [17], Otter [88], and

SAGE [50]. Traditionally, execution begins at the first program point and then

proceeds according to the program flow. Thus symbolic execution is actually

forward execution. Recently, [78] proposed a variation, directed symbolic exe-

cution, making use of heuristics to guide symbolic execution toward a particular

target. This has shown some initial benefits in program testing.

For the purpose of having scalability in program verification, however, sym-

bolic execution needs to be equipped with learning, particularly in the form of

interpolation [66, 83, 59, 64, 6]. Due to the requirement of exhaustive search,

as in the case of this work, these systems naturally implement forward symbolic

execution. All the above-mentioned systems can be classified as eager symbolic

execution. In other words, we do not continue a path when the accumulated con-

straints are enough to decide its infeasibility.

In the domain of SAT solving and hardware verification, property directed

reachability (PDR) [38] has recently emerged as an alternative to interpolation

[81]. Some notable extensions of PDR are [56, 22, 105]. However, the impact of

PDR to the area of software verification is still unclear. While such “backward”

execution has merits in terms of being goal directed, it has lost the advantage of

using the (forward) computation to limit the scope of consideration.

In contrast, our lazy symbolic execution preserves the intrinsic benefits of

110

symbolic execution while at the same time, by opening the infeasible paths se-

lectively, it enables the learning of property directed interpolants. We believe

this is indeed the reason for the efficiency achieved and demonstrated in Sec-

tion 5.4.

The traditional CEGAR-based approach to verification may also be thought

of “lazy”. This is because it starts from a coarsely abstracted model and sub-

sequently refines it. Such concept of laziness is, therefore, different from what

discussed in this work. In the context of this work, given a refined abstract

domain, a CEGAR-based approach is in fact considered as eager, since it avoids

traversal of infeasible paths, which are blocked by the abstract domain. Some of

such paths are indeed counter-examples learned from the previous phases. The

work [83] discussed this as a disadvantage of CEGAR-based approaches: they

might not recover from over-specific refinements. Our contribution, therefore,

is plausibly applicable in a CEGAR-based setting.

There is now an emerging trend of employing generic SMT solvers for

(bounded) symbolic execution, and since modern SMT solvers, e.g. [34], do pos-

sess the similar power of interpolation – in the form of conflict clause learning

or lemma generation – we now make a few final comments in this regard.

First, note that lazy symbolic execution has no relation with the concept of

lazy SMT. In particular, the dominating architecture DPLL(T), which underlies

most state-of-the-art SMT tools, is based on the integration of a SAT solver and

one (or more) T -solver(s), respectively handling the Boolean and the theory-

specific components of reasoning. On the one hand, the SAT solver enumerates

truth assignments which satisfy the Boolean abstraction of the input formula.

On the other hand, the T -solver checks the consistency in T of the set of literals

corresponding to the assignments enumerated. This approach is called lazy (en-

coding), and in contrast to the eager approach, it encodes an SMT formula into

an equivalently-satisfiable Boolean formula and feeds the result to a SAT solver.

See [96] for a survey.

Second, we note that though the search strategies used in modern DPLL-

based SMT solvers would be more dynamic and different from the forward sym-

bolic execution presented in this work, it is safe to classify these SMT solvers

111

as eager symbolic execution. This is because, in general, whenever a con-

flict is encountered, a DPLL-based algorithm would analyse the conflict, learn

and/or propagate new conflict clauses or lemmas, and then immediately back-

track (backjump) to some previous decision, dictated by its heuristics [32].

We believe that for the purpose of program verification, the benefit of be-

ing lazy by employing speculative abstraction, would also be applicable to SMT

approaches. This is because, in general, we can always miss out useful (good)

interpolants if we have not yet seen the complete path. In this work, we have

demonstrated that in verification, property directed learning usually outperforms

learning from “random” infeasible paths. Eagerly stopping when the set of con-

straints is unsatisfiable might prevent a solver from learning the conflict clauses

which are more relevant to the safety of the program. In SMT solvers, the search,

however, is structured around the decision graph. Therefore, some technical

adaptations to our linear bound need to be reconsidered. For example, a bound

based on the number of decisions seems to be a good possibility.

5.6 Summary

We presented a systematic approach to perform speculative abstraction in sym-

bolic execution in pursuit of program verification. The basic idea is simple:

when a symbolic path is first found to be infeasible, we abstract the cause of

infeasibility and enter speculation mode. In continuing along the path, more ab-

stractions may be performed, while remaining in speculation mode. Crucially,

speculation is only permitted up to a given bound, which is a linear function

of the program size. A number of reasonably sized and varied benchmark pro-

grams then showed that our speculative abstraction produced speedups of a fac-

tor of two and more.

112

Chapter 6

Trace Understanding

Programmers often have to reason about execution traces during the software

development process. Especially in debugging, when an input violates an as-

sertion and the corresponding error trace is obtained, programmers have to un-

derstand why the input failed. This is a laborious process since execution traces

are typically very long due to loops the input has iterated through. Tradition-

ally, dynamic slicing [72] was used to remove irrelevant statements that do not

contribute to the assertion, using dependency information. More recently tech-

niques such as [39, 20] have been proposed to use more intelligent semantic

information to remove irrelevant statements. However, none of the above meth-

ods directly address the practical problem of long loop iterations in the trace.

We propose a novel method of compressing loop iterations in the trace by

discovering loop invariants. Consider as a motivating example the program be-

low:

i=j=0

while (i != n) do

i=i+1

j=j+2

end

TARGET: {j ≥ n}

Running this program with input

n=100 would produce a trace that as-

signs i and j to 0, iterates through

the loop 100 times, in the end assign-

ing i and j to 100 and 200 respec-

tively, thus implying the TARGET1

that j≥ n. Now, to understand why

1In general the target can be any formula that is implied by the trace. For an error trace, the
target would be the negation of the violated assertion.

113

the trace implies the target the programmer needs to go through the 100 itera-

tions. Note that dynamic slicing does not help as the statement j=j+2 is control-

dependent on i through the loop condition, which in turn is data-dependent on

i=i+1, and so no statement would be sliced away.

Our method would produce the following compression and explanation of the

trace:

i=j=0 INV: { j ≥ i}
INV: { j ≥ i} −−−−−−−−−−−→ i=i+1

i == n j=j+2

TARGET: { j ≥ n} INV: { j ≥ i}

On the left is the actual compressed trace. It explains that initially the trace

assigned i and j to 0. Then, on reaching the loop the invariant that j ≥ i held

at the loop header at every iteration, and eventually the exit condition i==n was

taken. These two pieces of information entail (logically) that j≥n, the target.

On the right, we provide an explanation for the fact that j ≥ i was indeed a loop

invariant, in the form of a Hoare-triple [55]. Starting with the “pre-condition”

j ≥ i, executing the statements in the loop body results in the “post-condition”

j≥ i again, thus the formula is invariant. The compressed trace and explanation

are much shorter than the original trace and easier to understand as they capture

very closely the intuition a programmer would have.

On the surface, this technique may sound quite simple. However, a number

of challenges arise when delving deep into it:

A. What kind of invariants do we need to discover?

In the above example, all the following formulas are invariants for the loop:

i ≥ 0, 0 ≤ j ≤ 2n, true (trivially an invariant for any loop), etc. But not all

invariants can be used for this purpose – the invariant used in the compressed

trace needs to imply the target in the end, similar to the original trace. Only if

it does so, in which case we call it a “safe invariant”, we can claim the com-

pressed trace is an explanation of the original trace. For instance, the invariant

0≤ j ≤ 2n is not safe because combined with the loop’s exit condition i==n, it

does not imply the target j ≥ n. Thus, discovering safe invariants is not trivial

114

and is a primary challenge. This is made even more complicated in the presence

of nested loops in the trace, when we may encounter an inner loop while dis-

covering an invariant for the outer loop.

B. What if we are unable to discover a safe invariant?

In the above contrived example, the invariant j ≥ i conveniently happened to

be safe. But in many cases, a safe invariant could be very hard to discover.

In our experiments in Section 6.4, we noticed several state-of-the-art invariant

generators using powerful abstract domains unable to find a safe invariant for

our benchmarks. Thus, we need measures to handle such cases when the dis-

covered invariant turns out to be unsafe. In our method, we dynamically unroll

the loop and attempt the invariant discovery at the next iteration. We found that

this is a very reasonable measure in practice as many loops converge towards

an invariant as they iterate. For instance, loops typically either keep increasing

or decreasing values of variables, and after a few unrolls we can discover lower

or upper bounds on those variables, forming an invariant. Again, nested loops

make the unrolling more complicated, as we will see in Section 6.

C. What if a discovered safe invariant is not so relevant to the target?

When discovering invariants, we have the choice to aim for stronger or weaker

invariants (logically), both of which have pros and cons. Weaker invariants are

less likely to be safe because they abstract (hide) more information about the

loop. Stronger invariants may carry too much information about the loop, many

of which may be irrelevant to the target, making the loop explanation harder

to understand. For instance, in the above example, j ≥ i∧ j ≤ 2n is a stronger

invariant than just j ≥ i but in fact, j ≤ 2n is not needed to imply the target.

Our method provides a fine balance between the two – first, we aim to dis-

cover strongest invariants in order to increase the likelihood of being safe, and

once we reach the target along the trace, we generalise (weaken) the discovered

invariants, removing information from them that were not really needed to im-

ply the target. Thus our method provides the benefits of both worlds.

115

D. Ultimately, is the compressed trace with invariants easier to understand

than the original trace?

The “explanation” is provided as Hoare-triples of the form {P}S{Q} where ex-

ecuting S with the pre-condition P results in the post-condition Q. If S is a basic

block of code as in the above example, this can be proof checked easily. More

complex triples are obtained by combining such triples using the standard Hoare

inference rules [55]. The complexity of the explanation therefore depends on the

number of triples produced. In the worst case however, the number of triples for

the proof can be exponential in the size of S if it is an arbitrary piece of code.

Thus, we need measures to keep the number of triples from growing exponen-

tially.

Consider a more sophisticated example, which we will use to elaborate our

method. This example is taken from the benchmark program for_bounded_loop1.c

from the Software Verification Competition 2013 (SV-COMP13) [12].

`1 x=0, y=0, err=0 /* assume n > 0 */
`2 for (i=0; i < n; i++) do
`3 x = x-y
`4 if (x != 0) err = 1 else skip
`5 y = read() /* assume read does not return a 0 */
`6 x = x+y
`7 if (x == 0) err = 1 else skip

end
`8 TARGET: {x 6= 0,err 6= 1}

Assume that the program is executed with input n=10 and y, read at `5, is

never input as 0. This will produce a trace that iterates through the loop 10

times, and exits with x being non-zero and err being 0, implying the target

{x 6= 0,err 6= 1}.
Our method performs symbolic execution on the trace, collecting the con-

straints into a symbolic state at each location. For instance, the symbolic state

at `2 would be the set of constraints {x = 0,y = 0,err = 0, i = 0}. When a loop

is encountered, it attempts to discover an invariant. While technically any in-

variant generation algorithm can be used in this step, we describe a specific one

suitable to our overall method. Briefly, we symbolically execute every path in

116

the loop exercised by the trace, and delete individual constraints from the loop

header’s symbolic state that do not still hold at the end of each path. The whole

process is repeated till no deletions are made, i.e., a fixpoint is reached at the

loop header, at which point the remaining constraints form the loop invariant.

We call this technique basic individually invariant discovery (BIID).

BIID works well with our unrolling mechanism because the symbolic state

at the loop header is very likely to change after unrolling, at which point BIID

keeps individual constraints that are invariant considering the changes in the

new state. This is very important as unrolling may expose constraints that were

not originally invariant before but are indeed invariant from now on. Hence it is

a “basic” requirement to at least check if individual constraints in the new sym-

bolic state are now invariant. More sophisticated methods may consider dis-

junctions of constraints, linear relationships between variables, user-provided

predicates, etc., which may result in better (stronger) invariants. Such sophis-

tications are indeed admitted in our algorithm, but we found that in practice

BIID is fast and yet smart enough to capture safe invariants for our benchmarks.

Note that BIID is dependent on the internal representation of a symbolic state in

choosing the “candidate” invariant constraints. For instance, the symbolic states

{v = 5,w = v} and {v = 5,w = 5} are semantically equivalent, but BIID may re-

turn different invariants for each state (if, for example, {w = v} is not invariant

in the loop but {w = 5} is). This of course depends on the implementation of

the underlying symbolic execution engine.

In our example, let us see how BIID finds an invariant at `2. Since both

x and y are zero at `2, x=x-y makes no change to the state, so we reach `4

with the state {x = 0,y = 0,err = 0, i = 0}. This makes the branch condition

false, so we continue along the path to read y, which we assume is non-zero.

Since y is now non-zero and x is zero, executing x=x+y at `6 results in the state

{x = y,y 6= 0,err = 0, i = 0} at `7. This makes the branch condition false, and

we reach the looping point `2 again with the state {x = y,y 6= 0,err = 0, i = 1}.
Recall that the initial symbolic state at `2 was {x = 0,y = 0,err = 0, i = 0}.

From this, BIID deletes constraints that do not hold anymore. x = 0 and y = 0 do

not hold because both x and y have now become non-zero, so they are deleted.

117

`2 {x = y,y 6= 0,err = 0} i<n {x = y,y 6= 0,err = 0} `3

`3 {x = y,y 6= 0,err = 0} x=x-y {x = 0,y 6= 0,err = 0} `4
`4 {x = 0,y 6= 0,err = 0} if(x!=0)err=1 {x = 0,y 6= 0,err = 0} `5
`5 {x = 0,y 6= 0,err = 0} y=read() and read() {x = 0,y 6= 0,err = 0} `6

returns non-zero
`6 {x = 0,y 6= 0,err = 0} x=x+y {x = y,y 6= 0,err = 0} `7
`7 {x = y,y 6= 0,err = 0} if(x==0)err=1 {x = y,y 6= 0,err = 0} `2

Figure 6.1: Hoare triples generated for the program for_bounded_loop1.c

Similarly, i = 0 does not hold because it has been incremented to 1. err = 0

still holds, and so we get the new state {err = 0} at `2. Since we did not reach

fixpoint (i.e., some deletions were made), we repeat this process again with the

new state, but it can be clearly seen that without constraints on x and y, the

branches at `4 and `7 can also be evaluated to true, and so err = 0 also cannot

be invariant. Therefore we eventually delete it to get the invariant true, which

fails to imply the target {x 6= 0,err 6= 1} (i.e., it is unsafe).

This triggers our failsafe that basically discards all the above work, unrolls

the loop and attempts the same process at the next iteration. It is as though

we roll back in time and do not try to discover an invariant, because we now

know that it will fail. In other words, we follow the trace till the end of the

first iteration, executing the statements from `2 to `7 and then reaching `2 this

time with the state {x = y,y 6= 0,err = 0, i = 1}. Now, we trigger BIID again

with this state. Since x and y are equal, x=x-y at `3 results in the state {x =

0,y 6= 0,err = 0, i = 1} at `4. This makes the branch condition at `4 false, so

we read y (non-zero) at `5, which makes no change to the state. Therefore the

statement x=x+y produces the state {x = y,y 6= 0,err = 0, i = 1} at `7, which

makes the branch condition false. Thus we reach the loop header `2 with the

state {x = y,y 6= 0,err = 0, i = 2} after incrementing i.

Comparing this with the original state {x= y,y 6= 0,err = 0, i= 1} at `2, BIID

would only delete the constraint i = 1 to end up with the invariant {x = y,y 6=
0,err = 0}. This is a safe invariant because combined with the rest of the trace

after the loop (i.e., the exit condition i≥ n), it implies the target {x 6= 0,err 6= 1}.
Thus our method compresses the remaining 9 iterations of the loop. The final

compressed trace returned is shown below:

118

`1 x=0, y=0, err=0
`2 i=0, i < n
`3 x = x-y
`4 x == 0, skip
`5 y = read(), y != 0
`6 x = x+y
`7 x != 0, skip
`2 INV: {x = y,y 6= 0,err = 0}
`2 i ≥ n
`8 TARGET: {x 6= 0,err 6= 1}

To provide an explanation that the formula INV is indeed an invariant, we will

generate the Hoare triples shown in Fig. 6.1.

Note that the invariant (underlined) holds at `2 at the beginning and at the

end after going through the loop. We believe the compressed trace together

with the triples is a better explanation of the trace than the original trace itself.

Instead of going through 10 iterations, the programmer needs to only go through

1 iteration and understand using the Hoare triples the safe invariant that implies

the target.

It is important to note that for the above example, all constraints in the dis-

covered invariant are needed to imply the target. One may be tempted to replace

{x = y,y 6= 0} with {x 6= 0}, as the target only talks about x, not y. However

{x 6= 0} is not an invariant for the loop. That is, starting with the pre-condition

{x 6= 0}, one cannot generate valid Hoare-triples through the loop body such that

{x 6= 0} still holds at the end. Thus, the current invariant cannot be generalised

any further2. However an invariant generated by a different method than ours

could contain, for instance, the invariant {i ≤ n}, which can can be removed

since it is not needed to imply the target.

Compressing Traces with Nested Loops

Nested loops pose important technical challenges to our method because when

attempting invariant discovery for the outer loop, we may encounter another

inner loop. Should we recursively attempt invariant discovery for the inner loop?

2In general, there may be other forms of weakening such as slackening [66] err = 0 to
err ≤ 0, which is still a safe invariant. Such general forms of weakening are also admitted in
our algorithm.

119

`1 i=0
`2 while (i < 10) do
`3 x=0, j=i
`4 while(j < 10) do
`5 if (j ≥ 1) x=1 else x= -1
`6 j=j+1

end
`7 i=i+1

end
`8 for (y=0,k=0; k < 10; k++) do
`9 y=y+x

end
`10 TARGET: {y ≥ 0}

`1 i=0
`2 i < 10
`3 x=0, j=i
`4 INV: {i = 0}
`4 j ≥ 10
`7 i=i+1
`2 i < 10
`3 x=0, j=i
`4 INV: {i = 1, j ≥ i,x≥ 0}
`4 j ≥ 10
`7 i=i+1
`2 INV: {i≥ 1,x≥ 0}
`2 i ≥ 10
`8 y=0, k=0
`8 INV: {i≥ 1,x≥ 0,y≥ 0,k ≥ 0}
`8 k ≥ 10
`10 TARGET: {y≥ 0}

(a) (b)

Figure 6.2: (a) Program with nested loops (b) Its compressed trace

Should we unroll the inner loop if we are unable to discover a safe invariant?

More importantly, what is the meaning of a safe invariant for the inner loop, and

its relation with the outer loop’s invariant? We exemplify these issues with the

program in Fig. 6.2(a).

There are two nested loops, the outer one running i from 0 to 10 and the

inner one running j from i to 10 every iteration. The inner loop assigns a value

to x, namely 1 or -1, depending on the value of j being greater than or equal to

1. There is a final loop outside the nest that adds x to a variable y (initialised

to 0) 10 times, and the target is that y is non-negative. This of course mandates

that the value of x is non-negative when this loop is executed. Note that for

simplicity, we have grounded the inputs into the program. When the program is

executed, it would produce a trace containing 10 outer loop iterations, and for

each, 10-i inner loop iterations (i.e., 55 iterations), followed by the third loop,

for a total of 65 iterations.

Suppose that our algorithm is invoked on this program3. It would follow

the trace till `2 when it encounters the loop with the state {i = 0}. We say we

are at “trace level” whenever we are following the trace, executing statements

3For demonstration purposes, we assume that we are allowed to slacken [66] constraints in
this example. That is, we consider a constraint {v = w} as the conjunction {v ≤ w,v ≥ w} so
that BIID has more candidates to test for invariance.

120

grounded by the input. At `2 we would invoke BIID for the loop by symbolically

executing all paths in its body. At this point, we depart from trace level as we are

not guided by the input anymore. During this BIID attempt, we would encounter

the inner loop at `4 with the state {i = 0,x = 0, j = i}. Now, since we are not

at trace level, it is required for us to find an invariant for the inner loop in order

to proceed symbolically executing the rest of the outer loop’s body. That is,

we cannot unroll the inner loop during the process of discovering an invariant

for the outer loop, because in general, unrolling when not at trace level (i.e.,

bounded by the input) can lead to unbounded unrolling.

The good news is that this (recursive) BIID procedure has the liberty to pro-

duce any valid invariant for the inner loop. Our aim here is not to discover a safe

invariant, but to simply produce an invariant so that we may discover an invari-

ant for the outer loop that is at trace level. In the worst case, this procedure can

return true, but it is good to try to discover strongest invariants as much as possi-

ble because the inner loop’s invariant indirectly affects the strength of the outer

loop’s invariant. In this example, BIID would discover the inner loop invariant

{i = 0, j ≥ i} given the state at `4 (we slackened j = i to { j ≤ i, j ≥ i} of which

the latter was invariant), but we cannot say anything about x as it may be greater

than or less than 0. Thus the state at `7 is {i = 0, j ≥ i}, and after executing

i=i+1, we reach the loop header `2 with the state {i = 1}. We dropped the con-

straint { j≥ i} as i has been incremented (more sophisticated methods may still

track constraints such as { j ≥ i−1}, but this does not change our discussion of

this example).

Comparing this with the original state {i = 0} at `2, BIID would produce

{i ≥ 0} as the outer loop invariant. Since we are back at trace level, we now

check if this outer loop invariant is safe. To check if an invariant is safe, we

symbolically execute the rest of the trace after the loop starting with the invariant

as the symbolic state. If the target is implied at the end, the invariant is safe,

otherwise it is not. Here, since we discovered an invariant for the outer loop at

`2, the rest of the trace would contain 10 iterations of the loop at `8. Executing

it starting with the state {i ≥ 0} would certainly not imply {y ≥ 0} at the end,

because the invariant failed to capture any constraint on x, which is added to y.

121

Our failsafe mechanism now activates, and begins to unroll the outer loop’s

first iteration. The inner loop is now lifted to trace level, as though the outer

loop’s first iteration was placed outside the loop in the program. Now, we would

again reach `4 with the state {i = 0,x = 0, j = i}, and discover the invariant

{i = 0}. But this time, since we are at trace level, we have to check if this is

safe. Note that we now discovered an invariant only for the inner loop at `4, and

so the rest of the trace would still contain 9 outer loop iterations. This would

finally assign x to 1 and cause y to be incremented, implying the target. Hence,

{i = 0} is indeed a safe invariant for the inner loop at trace level. Thus, even

though we were unable to compress the outer loop immediately, we unrolled its

first iteration and managed to compress the inner loop in that iteration with the

invariant {i = 0}.
Next, we follow the trace executing i=i+1, and reach the second iteration of

the outer loop at `2 with the state {i = 1}. Note what happens this time, when

we again trigger BIID at `2. We reach `4 with the state {i = 1,x = 0, j = i}.
As before, j is indeed incremented in the loop, but the symbolic state guaran-

tees that it will always be greater than or equal to 1. This makes the “else”

branch at `5 an infeasible path, which ensures that x would never be assigned

-1. Therefore, this time we discover the invariant {i = 1, j ≥ i,x ≥ 0} for the

inner loop (we could not have deduced this the first time because the state at

`4 was {i = 0,x = 0, j = i}, which does not make the “else” branch infeasible).

Now, executing i=i+1, we reach `2 with the state {i = 2,x ≥ 0}. Now, we can

discover the outer loop invariant {i≥ 1,x≥ 0} for its remaining iterations. This

is a safe invariant, as executing the rest of the trace (i.e., the loop at `8) with this

state will imply the target {y≥ 0}.
Thus, the compressed trace, as shown in Fig. 6.2(b) would contain 2 itera-

tions of the outer loop, both of which contain a compression of the inner loop

with the invariants {i = 0} and {i = 1, j ≥ i,x ≥ 0} respectively, followed by a

compression of the outer loop with the invariant {i ≥ 1,x ≥ 0}. It can be seen

that symbolically executing the third loop at `8 with this state, BIID can dis-

cover the (safe) invariant {i ≥ 1,x ≥ 0,y ≥ 0,k ≥ 0}, and compress it without

any unrolling.

122

Now, our invariant generalisation proceeds as follows. It computes the weak-

est precondition (WP) along the compressed trace starting from the end. At

loop headers, it attempts to weaken the discovered invariant as long as the post-

condition is still implied. For instance, the weakest precondition of the trace

in Fig. 6.2(b) at `8 is {y ≥ 0}. Now, it deletes constraints from the invariant

{i≥ 1,x≥ 0,y≥ 0,k ≥ 0} as long as the resulting formula is still invariant and

implies {y ≥ 0}. This way, it can delete {i ≥ 1} and {k ≥ 0} as the resulting

invariant {x≥ 0,y≥ 0} implies {y≥ 0}. However it cannot delete {x≥ 0} be-

cause without it, {y≥ 0} cannot be invariant, and hence cannot imply the post-

condition. Thus, it ends up with the now generalised invariant {x≥ 0,y≥ 0} at

`8. The WP of this formula is then passed up along the trace, and the process

repeats till the top is reached. Note that for this trace, no more invariants can be

generalised using WP.

The proof for invariance of the INV formulas is in the form of a symbolic

execution tree, which is a tree of all paths explored during symbolic execution

of the loop’s body. In Section 6.3, we describe a fairly straightforward process

of extracting Hoare triples from symbolic execution trees, using this trace as an

example. There we will also see that many Hoare triples are in fact much easier

to understand than others because of what is called the “frame-rule”.

6.1 Related Work

The works that try to explain traces by removing irrelevant information are the

most closely related ones to ours. Dynamic slicing [72, 111, 110] is the tradi-

tionally used technique that uses dependency information to remove statements

from the trace not contributing to the target. Some enhancements to the pruning

power of dynamic slicing were proposed in [109], using “confidence” metrics

to rank statements based on their likelihood of being responsible for the error.

However, compared to loop invariants, dependency information is limited in its

ability to compress loop iterations. In our example above, dynamic slicing can-

not remove any iteration, as the target variable x is data-dependent on y and

(thereby) control-dependent on i in each iteration.

123

Recently, more intelligent methods to find irrelevant statements in the trace

were proposed in [39, 20], using the so-called “error invariants”. These are

abstractions of the program state at each point that, combined with the rest of

the trace, will imply the target. If the error invariant at two points is the same,

the code between them is deemed irrelevant. The most important difference with

our work is that these “error invariants” are not guaranteed to be loop invariants

even at looping points, whereas the whole purpose of our work is to find loop

invariants. This difference is because fundamentally, [39, 20] consider the trace

simply as a sequence of transitions and are agnostic about loops.

Other related work include those that generate loop invariants, but may

not be concerned with compressing execution traces. For instance, [13] uses

a template-based invariant generation technique proposed in [26] to refine

counter-example paths in the context of CEGAR [24]. Contrary to execution

traces that terminate, CEGAR systems generate abstract counter-examples, and

so [13] does not unroll loops, for it may go into non-termination. Other works

that discover invariants using program analysis such as [52, 68] do not guaran-

tee to find a safe invariant – a crucial requirement of trace compression. In our

experiments, we used the tools [52] and [74] to generate invariants for some of

our benchmarks, only to find that they did not return safe invariants.

Another work called Daikon by Ernst et al. [40] discovers “likely invariants”

by instrumenting the program with predicates, executing test cases and checking

which predicates are not falsified upto some sufficient degree of tests. These are

reported to the programmer as being likely invariants at their respective program

points. The main difference with our work is that we strive to produce safe

invariants, whereas [40] only attempts to produce predicates that are “likely” to

be invariants, but may or may not be safe. Having said that, their underlying

invariant generation technique can still be utilised in our method to discover

more sophisticated invariants. For instance, providing our BIID algorithm with

likely predicates inferred by their method can help us confirm if the predicate

is indeed an invariant. Another related work [45] presents several heuristics

for computing invariants by mutating postconditions of loops. However their

method performs no unrolling of loops in case the invariant was found to be

124

unsafe. Nevertheless, we believe their heuristics would be a good addition to

our BIID algorithm to obtain better candidate invariants.

There are numerous other works such as [93, 41, 101, 75, 95] that discover

invariants through static/dynamic analysis, testing, constraint solving, heuris-

tics, etc. Invariant discovery is a heavily studied area for decades and so it is

formidable to compare extensively with every technique proposed in the com-

munity. However, we make it clear that in our work, any invariant discovery

method can be applied, i.e., our proposed BIID method can be augmented with

any amount of sophistication to make our trace compression algorithm better.

The main contribution of this work is not BIID itself, but an algorithm to utilise

an invariant discovery technique such as BIID to compress traces, a novel backup

mechanism if the discovery fails, and a method to provide an explanation of in-

variance.

Finally, our work is inspired by [59], which performs full symbolic execu-

tion of the program in the context of program verification. It however does not

handle traces, and therefore has no way of checking if an invariant is safe until

all loops in the program are compressed and the target is reached. Then, if the

target is not implied, it needs a “refinement step” (similar to CEGAR) to find the

unsafe invariant. Moreover, since it performs unbounded symbolic execution

on the program, it is guaranteed to terminate. Nevertheless, our work can be

considered an adaptation of [59] for traces. To the best of our knowledge, ours

is first method to merge the two ideas: generate loop invariants to compress

execution traces and provide a proof of invariance as an explanation.

Finally, we make it clear that there are some works such as [46, 76] that

perform trace compression with an entirely different meaning. Working with a

low level representation of a trace, their goals are to reduce its storage space,

compression/decompression rate, and evaluating computer architecture (e.g.,

caches) with trace simulation. Clearly, we are completely unrelated to them

except for the words “trace compression”.

125

6.2 Background

Symbolic Execution. We define symbolic execution in a slightly different man-

ner than in Section 2.1 to suit the algorithm in this chapter. A symbolic state

υ is now defined as a tuple 〈`,C 〉. The symbol ` ∈ Σ corresponds to the cur-

rent program location (with special symbols for initial location, `start, and final

location, `end). C is a set of constraints on the program variables at the loca-

tion `, which is to be interpreted as a conjuncted first-order logic formula (e.g.,

C = {x > 5,y < 3} is interpreted as the formula x > 5∧y < 3) that must be satis-

fied for symbolic execution to follow the particular corresponding path. The set

of first-order formulas and symbolic states are denoted by FOL and SymStates,

respectively.

Given a transition system 〈Σ,−→〉 and a state υ ≡ 〈`,C 〉 ∈ SymStates, the

symbolic execution of `
op−−→ `′ returns another symbolic state defined as:

SYMSTEP(υ, `
op−−→ `′) ,

〈`′,C ∪{c}〉 if op ≡ assume(c) where c is c

with proper renaming

〈`′,C ∪{xk = e}〉 if op ≡ x = e where xk is fresh

and e is e with proper renaming

(6.1)

Note that while adding the constraint to C , we rename each variable in the con-

straint to its latest version in C . For assignments, we create a fresh variable on

the left hand side. This intuitively mimics a Static Single Assignment (SSA)

based symbolic execution of the transition `
op−−→ `′.

Given a symbolic state υ≡ 〈`,C 〉 we define the evaluation of υ, represented

as JυK : SymStates→ FOL as the projection of the constraints in C onto the set of

program variables Vars. The projection is performed by eliminating existentially

all auxiliary variables that are not in Vars. Intuitively JυK is an FOL formula only

on the latest versions of variables in C , and is equisatisfiable with C .

Trace Semantics. A trace T is a sequence of transitions `start
op1−−→ `1 ·

`1
op2−−→ `2 · · ·`n−1

opn−−→ `end such that each `i+1 is a successor of `i, and is

126

obtained by executing the program P with certain inputs. W.l.o.g, we assume

that the inputs have been encoded as transitions in the trace itself. Abusing nota-

tion, we say “υ is the symbolic state at ` along the trace” if symbolic execution,

starting with the state υstart ≡ 〈`start, /0〉 at the beginning of the trace, results in

the state υ at ` (if ` is within a loop, there may be multiple symbolic states at `,

in which case we would make unambiguous the state that we are referring to).

Again w.l.o.g, we assume that a target property (e.g., an assertion) is provided

at `end that is implied by T . We interpret this property as a FOL formula φ on

the program variables. Formally, if υend is the symbolic state at `end along the

trace T , then JυendK |= φ.

A compressed trace Tc is a sequence of transitions where some pro-

grams points are annotated with loop invariants. Formally, Tc is a sequence

`start
op1−−→ `1 ·`1

op2−−→ `2 · · · `m−1
opm−−→ `end where there may exist transitions

`loop
I ,S−−→ `loop where `loop is a looping point, I is a FOL formula representing

the loop invariant, and S is the proof tree (essentially the symbolic execution

tree) from which the Hoare-triples for the proof that I is an invariant will be

extracted. An important property of Tc is that the invariants are safe. That is, if

υ′end is the symbolic state at `end along Tc, then JυendK |= Jυ′endK |= φ. Moreover,

the length of Tc is at most the length of T (i.e., m ≤ n) as a result of looping

points being compressed using invariants.

6.3 Algorithm

We now present our algorithm in two phases. In the first phase, we perform

forward symbolic execution along the trace to compute inductive invariants to

compress the loops. Here we attempt to discover the strongest possible invari-

ants and also build the symbolic execution tree for each invariant discovered

from which we will extract Hoare-triples. In the second phase, we generalise

the invariants in the compressed trace obtained in phase one using backward

weakest-precondition computation.

127

COMPRESSTRACE(T , P , φ)
1: υ = 〈`start, /0〉 and t = 1
2: while t 6= tend do
3: let T [t] = `

op−−→ `′

4: if ` is a loop from T [t] to T [texit] then
5: 〈υ′,S〉 = LOOPINV_FIXPO(υ, P)
6: if (CHECKSAFEINV(υ′, T , texit, φ)) then
7: t = texit + 1

8: Tc = Tc · `
Jυ′K,S−−−−→ `

9: υ = 〈`exit,C ′〉 where C ′ is the constraint list
of υ′ and `exit is the loop exit point

10: continue
11: endif
12: endif
13: Tc = Tc · ` op−−→ `′

14: υ= SYMSTEP(υ, `
op−−→ `′) and t = t + 1

15: end
16: return GENERALISE(Tc, P , φ)

CHECKSAFEINV(υ, T , texit, φ)
17: for t = texit to tend do
18: let T [t] ≡ `

op−−→ `′

19: υ = SYMSTEP(υ, `
op−−→ `′)

20: end
21: if JυK |= φ then return true else return false

Figure 6.3: Loop Compression with Invariants

6.3.1 Loop compression with invariants

Our main algorithm consists of the procedures shown in Fig. 6.3. The main

procedure, COMPRESSTRACE, takes as inputs the trace T , program P and the

target φ, and returns a compressed trace Tc as defined in Section 6.2. It models

the trace T as an array using the variable t as the index variable, and tend its

length.

It starts by initialising υ, representing the current symbolic state, to 〈`start, /0〉
and t to 1. In line 2, a loop runs till the end of the trace is reached (i.e., till t

becomes tend), doing the following in each iteration. Assuming that the current

transition along the trace is from ` to `′, it checks if ` is the starting point of a

loop. If so, then let the loop’s iterations in T run from the current trace index t

128

to, say, texit. That is, T [t] is the transition from ` to the loop body and T [texit]

is the transition from ` to the loop’s exit.

Now the algorithm attempts to discover an invariant for this loop in the pro-

gram by calling the procedure LOOPINV_FIXPO with the current symbolic state

υ and the program P (line 5). In principle, this procedure can implement any

algorithm that generates a loop invariant, for example [13, 26, 74]. We only

require the procedure to return a tuple 〈υ′,S〉 where υ′ is an invariant state at

` (i.e., JυK |= Jυ′K and Jυ′K is an invariant) and S is some kind of proof that

Jυ′K is indeed invariant through the loop at `. In this work, this procedure will

implement the BIID technique, which is one particular way of discovering in-

variants using symbolic execution (SE) and using the SE tree as the proof tree

for invariance.

Now that υ′ is an invariant at `, the algorithm then checks whether it is a

safe invariant. The idea is to symbolically execute the trace after the loop with

the discovered invariant as the state and to check if the target is implied at the

end. This is done by calling CHECKSAFEINV at line 6 with the invariant state

υ′, the trace T and texit, the index of the loop’s exit transition along T , and the

target φ. CHECKSAFEINV basically implements the symbolic execution along

the trace starting at texit till tend (lines 17-20), and checks whether the symbolic

state at tend implies φ (line 21).

If the check passed, then υ′ represents a safe invariant, meaning the loop has

been compressed. Therefore we can continue with our method along the rest of

the trace after the loop. Recall that texit was the index in T for the loop’s exit

transition. Hence, in line 7, the algorithm assigns the trace index variable t to

texit+1. In the next line, it records the safe invariant in the compressed trace Tc

by adding to it the (looping) transition `
Jυ′K,S−−−−→ `, where Jυ′K is the invariant,

and S is the proof for its invariance. Finally, the symbolic state υ is updated

to 〈`exit,C ′〉 to signify that symbolic execution should continue from the loop’s

exit point `exit with the constraint list C ′ that carries the invariant’s (υ′) state.

If the check at line 6 failed, it means the invariant turned out to be unsafe,

in which case our algorithm discards the work done, and unrolls the loop by

simply following the trace T . It adds the current transition from ` to `′ to the

129

compressed trace Tc (line 13), and symbolically executes the current state υ

with the current transition to get the next state (line 14). These steps simulate

unrolling the loop along the trace T , until a loop header is reached again at

line 4. The entire process continues until the end of the trace T is reached, at

which point it calls GENERALISE to generalise the invariants in Tc.

Basic Individually Invariant Discovery (BIID)

We now present our particular method to discover invariants and their respective

proofs when calling LOOPINV_FIXPO. At a high level, our method follows

paths in the transition system P starting at the given loop header, and at the end

of each path π that reaches the looping point again (making a cycle), it deletes

individual constraints at the loop header that do not still hold at the end of π. It

then backtracks and explores all symbolic paths in the loop.

The entire process is repeated until no deletions are made (i.e., fixpoint is

reached). This entails that the constraints left undeleted at the loop header still

hold at the end of every path through the loop, in other words, being invariant

through the loop. The symbolic execution tree generated at fixpoint provides

the proof of invariance. This method provides a fine a balance between getting

the strongest invariants and efficiency.

LOOPINV_FIXPO (Fig. 6.4) is a wrapper procedure that implements the fix-

point computation (lines 1-4) on the symbolic state υ. It initialises π to ∅ (the

empty sequence) and S to /0, where π will be used by another procedure to rep-

resent the current symbolic path, and S will eventually represent the symbolic

execution tree from which the proof that JυK is an invariant is extracted. It then

calls the procedure LOOPINV passing the state υ and these initialised variables.

This process is repeated until fixpoint is reached (line 4).

LOOPINV is a recursive procedure that symbolically explores all paths in the

loop from the current symbolic state υ. In lines 9-13, for each transition from

` in the program P , it first obtains the next state υ′ by performing a symbolic

step from υ. Then, if υ′ is not an infeasible state, it recursively calls itself

with υ′, appending υ to the current path π to signify that it has been reached.

The symbolic tree returned, corresponding to the execution of υ′, is stored in

130

LOOPINV_FIXPO(υ, P)
1: do
2: υ′′ = υ and π = ∅ and S = /0

3: 〈υ,S〉 = LOOPINV (υ, P , π, S)
4: until υ′′ == υ

5: return 〈υ,S〉

LOOPINV(υ≡ 〈`,C 〉, P , π, S)
6: if ∃ υh ≡ 〈`, ·〉 ∈ π then
7: REMOVENONINV(υh, υ)
8: S = S ∪ {π} and return 〈υ,S〉
9: foreach `

op−−→ `′ ∈ P do
10: υ′= SYMSTEP(υ, `

op−−→ `′)
11: if Jυ′K is unsat then continue
12: 〈·,S ′〉 = LOOPINV (υ′, P , π ·υ, S)
13: S = S ∪S ′
14: end
15: return 〈υ,S〉

REMOVENONINV (υh ≡ 〈`,C 〉, υ)
16: let JυhK be c1∧ c2∧ . . .∧ cn
17: foreach ci in JυhK do
18: if JυK 6|= ci then C = C \{ci}
19: end

Figure 6.4: Basic Individually Invariant Discovery

S ′ which is then combined together with S (line 13). In lines 6-8, it checks if

a cyclic looping point has been reached (i.e., the current program point ` has

already been visited along the path π). If so, we need to remove constraints

from the loop header that were not invariant through π. This is done by calling

REMOVENONINV with υh, the symbolic state at the loop header. Then, since

the of the path has been reached, it simply adds π to the symbolic tree S and

returns (line 8).

REMOVENONINV is a straightforward procedure. It first obtains the list of

constraints at υh in evaluated form by applying JυhK (line 16). Then, for each

constraint ci it checks if ci still holds at the end of the path by checking if JυK

entails ci. If not, ci is deleted from the list of constraints at υh (lines 17-19).

At the highest level LOOPINV_FIXPO repeatedly calls LOOPINV until no

more deletions are made at the loop header in REMOVENONINV. Once fixpoint

131

is reached (line 4), υ becomes an invariant state at the loop header. It is then

returned along with S which serves as the proof that υ is indeed invariant.

Important note about complexity. In general, there can be an exponential

number of paths in a loop. Since our algorithm naively explores all paths, it

can easily become intractable. This problem, called “path-explosion”, is well-

known in symbolic execution and is tackled using interpolation [66, 83, 63]

(see Chapter 2 Definition 1). The idea is to avoid the (redundant) exploration

of a symbolic state υ at a program point ` if it is found to be equivalent to

another state υ′ at ` (i.e., JυK= Jυ′K). Interpolation increases the chances of this

happening by discarding certain irrelevant information when comparing υ and

υ′.

In other words, when υ′ was explored, interpolation would remove certain

constraints from it such that even if JυK |= Jυ′K (a weaker condition than be-

fore), υ can be considered equivalent to υ′, and need not be explored. Although

interpolation itself is orthogonal to this particular chapter, it is an important op-

timisation without which our algorithm cannot scale. We tacitly assume that if

interpolation is used to build the symbolic tree, symbolic states are interpolated

and merged when they need not be redundantly explored.

6.3.2 Invariant Generalisation

The idea in this phase is to perform a (backward) weakest precondition computa-

tion along the compressed trace starting from the target, and to logically weaken

the invariants as long as the weakest precondition is implied. This algorithm is

shown in Fig. 6.5.

The GENERALISE procedure takes as input the compressed trace Tc along

with the target φ and the program. It begins by initialising the “post-condition”

variable Ψ to φ at line 1. Then, starting at tcend (the end of Tc) and going back-

wards, it does the following at each step. If the current transition is not an

annotated loop invariant, it computes the weakest liberal precondition (ŵl p) of

Ψ along the transition op (lines 3-4). The wlp is defined as the weakest formula

on the pre-state such that the execution of op results in the post-state Ψ, modulo

termination. In practice, it can be approximated by making a linear number of

132

GENERALISE(Tc, P , φ)
1: Ψ = φ

2: for tc = tcend to 1 do
3: if Tc [tc] ≡ `1

op−−→ `2 then
4: Ψ = ŵl p (Ψ, op)

5: else if Tc [tc] ≡ `
I ,S−−→ ` then

6: I ′= ∇ (I ,Ψ)
7: υ′= 〈`,I ′〉
8: if LOOPINV_FIXPO (υ′, P) returns 〈υ′′,S ′〉

s.t. υ′′ = υ′ then

9: Tc [tc] = `
I ′,S ′−−−→ `

10: Ψ = I ′
11: else Ψ = I

end
12: return Tc

Figure 6.5: Invariant Generalisation using Weakest Precondition

calls to a theorem prover using techniques outlined in [66].

If the current transition is a loop invariant annotation (line 5) I ,S at `, it

first computes a widening of the invariant I w.r.t. the post-condition Ψ. The

widening operator ∇ returns a formula I ′ such that I |= I ′ |=Ψ, i.e., I ′ is weaker

than I but still strong enough to imply the post-condition. However, we need to

check if the weakened formula is still invariant through the loop. This is done

in lines 7-8 by calling LOOPINV_FIXPO and checking whether it returns the

same invariant state υ′ at the loop header. If so, then line 9 replaces the current

invariant annotation in Tc with the new annotation I ′,S ′ where S ′ is the symbolic

tree generated for I ′ by LOOPINV_FIXPO (note that S ′ can be different from S

because it is a proof tree for a different, weaker, invariant). Finally, line 10 sets

I ′ to be the post-condition that is propagated backward.

If the weakened formula I ′ was not invariant, the algorithm makes no change

to the existing annotation and simply propagates I backward (line 11). Once

the beginning of the compressed trace is reached, the algorithm returns Tc – the

compressed trace containing now generalised invariants with proofs.

133

j<10! j≥10!
{i=0}

{i=0}
j≥1!

{i=0}

j<1!

{i=0}

x=1!

{i=0}

j=j+1!
{i=0}

x=-1!

{i=0}

j=j+1!
{i=0}

j<10! j≥10!
{i=1,j≥i,x≥0}

{i=1,j≥i,x≥0}
j≥1!

{i=1,j≥i,
x≥0}

j<1!

x=1!

{i=1,j≥i,x≥0}

j=j+1!
{i=1,j≥i,x≥0}

y=0!
k=0!

k<10! k≥10!

y=y+x!

{i≥1,x≥0,y≥0}

{i≥1,x≥0,y≥0}

{i≥1,x≥0, y≥0}

{i≥1,x≥0, y≥0}

k=k+1!

{i≥1,x≥0,y≥0}

(a) (b) (c)

Figure 6.6: Symbolic Execution trees for the invariants in Fig. 6.2(b)

6.3.3 Extracting Hoare triples from the SE tree

We now discuss how Hoare-triples are obtained from a symbolic execution

tree, which serves as an explanation that a formula is invariant. The process is

straightforward, so we give an informal discussion with an example. Consider

our nested loops example in Section 6. Fig. 6.6 shows three symbolic execu-

tion trees corresponding to the invariants (a) {i = 0} , (b) {i = 1, j ≥ i,x ≥ 0}
for loop at `4 and (c) {i ≥ 1,x ≥ 0,y ≥ 0} for the loop at `8. The trees are

such that the vertices are program points annotated with the symbolic state, and

edges are transitions between states. It should be immediately clear that the

pre and post-conditions for the triples come directly from the symbolic states.

Axiomatic triples arise from basic blocks, and triples for branch statements are

formed by combining triples for the then and else body using the Hoare infer-

ence rules [55]. These triples are then linked together to form a Hoare proof.

Let us show an example of this using, say, the invariant {i= 0} in Fig. 6.6(a).

First, the following axiomatic triples are obtained from basic blocks:

1) {i = 0} x=1 {i = 0}
2) {i = 0} x=-1 {i = 0}
3) {i = 0} j=j+1 {i = 0}

Along with the branch conditions, we get the triples:

134

4) {i = 0, j ≥ 1} x=1 {i = 0}
5) {i = 0, j < 1} x=-1 {i = 0}

Applying the rule for conditional statements on triples 4 and 5:

6) {i = 0} if(j≥1) x=1 else x=-1 {i = 0}
Applying the rule for composition on triples 6 and 3 we get:

7) {i = 0} if(j≥1) x=1 else x=-1

j=j+1 {i = 0}
Along with the loop condition, we get the triple:

8) {i = 0, if(j≥1) x=1 else x=-1

j < 10} j=j+1 {i = 0}
Finally, applying the rule for loops on triple 8 we get:

9) {i = 0} while(j<10)

if(j≥1) x=1 else x=-1

j=j+1 {i = 0}
which proves the invariance of {i = 0} through the loop.

The basic idea is of course that our Hoare proof is often more concise than

the original trace, thus enhancing understandability. There is however an ad-

ditional observation that emphasises this: that many triples are in fact trivial

because their validity follows from the frame rule. Informally, this means any

triple {P}S{P}, where the precondition is the same as the postcondition, holds

if all write operations in S can be shown to be separate from the “footprint” of

P. This footprint is, informally, the set of all stack and heap locations which

influence the truth value of P. This observation is widely used and formalised

in Separation Logic [89].

For instance, in the above proof, all triples are in fact trivial because all

statements neither affect the fact that i = 0 nor modify i. As another example,

in Fig. 6.6(c), the triple

{i≥ 1,x≥ 0,y≥ 0} k=k+1 {i≥ 1,x≥ 0,y≥ 0}
is trivial because the pre- and post-conditions are the same and none of the

variables in the them are modified by the statement k=k+1.

For our purposes, we will show in our experimental evaluation that not only

is the total number of triples significantly smaller than the length of the original

135

trace (that is, significant compression is achieved), but further, that a large pro-

portion of the triples are in fact trivial. This then further strengthens the position

that our Hoare proofs are more understandable.

6.4 Experimental Evaluation

Benchmark Trace length %C #Triples #U Time
Orig. Com. (trivial)

SSH client 462 95 80% 47(43) 6 289s
SSH server 346 13 96% 91(84) 0 94s
tokenring 885 218 75% 66(37) 2(2) 161s
cdaudio 1434 121 92% 15(11) 0 128s
floppy 398 83 80% 4(2) 1 2s

Table 6.1: Trace statistics for our experiments. %C: percentage compression,
#U: number of unrolls until compression was achieved (inner loop unrolls, if
any)

We implemented our algorithm on the TRACER [64] framework for symbolic

execution and evaluated it on several medium-sized benchmarks from the soft-

ware verification competition (SV-COMP 2013). The programs are all unsafe,

and in order to work with a meaningful trace, we invoked Directed Automated

Random Testing (DART) [49], commonly known as concolic testing, to obtain

inputs that caused the safety property to be violated. We then grounded the in-

puts into the program, and set our target for the resulting “error trace” to be the

negation of the safety property. We also implemented slackening [66] in BIID

to get more candidates to test for invariance. To make the experiments simpler

we applied static slicing (provided by Frama-C [1]) to remove statically irrele-

vant statements. All experiments were run on an Intel 2.3Ghz system with 2GB

memory. We first tabulate the results in Table 6.1 for convenience, and explain

each benchmark in detail.

6.4.1 SSH Client (s3_clnt_1_false.cil.c)

Our first example is a buggy SSH client program from the ssh-simplified suite.

A simplified view of the program is shown in Fig. 6.7. It consists of a big loop

that reads the current state variable s and performs some action, then setting s

136

SSH Client
Program Trace Compressed

(len: 462) (len: 95)

end=flag=err=0
s=A
while (end==0) do
if (s==A)
if (flag==0)
flag=1

s=B
else if (s==B)
if (flag==1)
flag=2

s=C
...
else if (s==I)
if (flag==4)
err=1

s=J
else if (s==J)
s=K

...
else end=1

end
TARGET:
{err = 1}

end=flag=err=0
s=A
end==0

s==A
flag==0

flag=1
s=B

end==0
s==B

flag==1
flag=2

s==C
...
end==0

s==I
flag==4

err=1
s=J

end==0
s==J

s=K
end==0
...

end=1
end 6=0
TARGET:
{err = 1}

end=flag=err=0
s=A
end==0

s==A
flag==0

flag=1
s=B

end==0
s==B

flag==1
flag=2

s==C
...
end==0

s==I
flag==4

err=1
s=J

INV: {err = 1,
f lag = 4}

end6=0
TARGET:
{err = 1}

Figure 6.7: The SSH client program, the error trace and the compressed trace

to the next state (A, B, etc. are the states). In certain states, a flag variable is

checked to be of some value, and is set to the next value. In a particular state

I, if flag was found to be 4, the error variable err is set to 1, and flag is not

modified thereafter.

We set the target to the negation of the safety property, namely, {err = 1}.
On running the code with buggy inputs from concolic testing, the trace iterated

through the loop 40 times, executing a total of 462 transitions, and implied the

target as shown under Trace in Fig. 6.7. It is noteworthy that dynamic slicing

was unable to remove any loop iteration as a whole, as the state s changes in

each iteration and the loop’s exit is (control) dependent on s being a certain

value.

137

In order to compare with other invariant discovery methods, we encoded the

inputs into the program itself and computed invariants using (1) the polyhedra

abstract domain of APRON [68] and (2) the INVGEN [52] tool. Both of them

returned the unsafe invariant {flag≥0, 0≤ end≤1}.

Our algorithm initially only discovered the unsafe invariant true. After one

unroll, it again discovered an unsafe invariant that the initial state was A. Then,

after six(6) unrolls, the trace reached the state I, checked if flag was 4, and

set err to 1 and the next state to J. At this point, our algorithm discovered the

safe invariant {err=1, flag=4}, that implies the target {err = 1}, as shown on

the right of Fig. 6.7. Note that f lag = 4 is needed to preserve the invariance

of err = 1. This is a practical example of a loop converging towards stronger

invariants as it iterates, culminating in a safe invariant.

Ultimately, the trace was reduced from 462 transitions to 95 transitions

(80% compression). Our algorithm also discovered 3 invariants on a few other

variables in the program, but the generalisation phase deleted them as they were

irrelevant to the target. The proof for the invariant contained 47 triples, of which

43 were classified as “trivial” according to the frame-rule in Section 6.3.3. The

rest 4 of the triples are the ones non-trivially contributing to the explanation

of the invariant (the 4 triples correspond to the specific case I where the error

occurred). The process took 289s to complete.

6.4.2 SSH Server (s3_srvr_6_false.cil.c)

Our next benchmark is a buggy SSH server program from the ssh-simplified

suite. The structure of this program is similar to the SSH Client benchmark,

in that a main loop iterates using a state variable s until it reaches a particular

value. There are two safety properties: one outside and one inside the loop, as

shown in Fig. 6.8 under SSH Server. As before the target is {err = 1}. On

running the buggy inputs, the trace executed the loop 14 times before implying

the target, executing a total of 346 transitions. Also, both external invariant

discovery methods – the polyhedra abstract domain of APRON, and the INVGEN

tool computed the unsound invariant false as they somehow interpreted the loop

to be never executed at all.

138

SSH Server
Program Trace Compressed

(len: 346) (len: 13)
end=flag=err=0
if (s_info_cb!=0)

cb=s_info_cb
else {
if (s_ctx_cb!=0)

cb=s_ctx_cb
if (cb!=0)
err=1

}
while (end==0) do
if (s==A)
if (flag==0)
flag=1

s=B
...
else if (s==I)
if (flag==4)
err=1

s=J
...
else end=1

end
TARGET:
{err = 1}

Input:
s_info_cb = 0
s_ctx_cb = -1

end=flag=err=0
s_info_cb == 0

s_ctx_cb != 0
cb=s_ctx_cb

cb != 0
err=1

end==0
s==A

flag==0
flag=1

s=B
end==0
...

s==I
flag==4

err=1
...

end=1
end 6=0
TARGET:
{err = 1}

Input:
s_info_cb = 0
s_ctx_cb = -1

end=flag=err=0
s_info_cb == 0

s_ctx_cb!=0
cb=s_ctx_cb

cb!=0
err=1

INV: {err = 1}
end 6= 0
TARGET:
{err = 1}

Figure 6.8: The SSH server program, the error trace and the compressed trace

On invoking our algorithm, we reached the loop header with the symbolic state

that included {err = 1} because the safety property before the loop was itself

violated. On symbolically exploring the loop, we concluded that even though

err is modified in the loop, this constraint on err remains invariant, which hap-

pened to be safe. Thus, we were able to compress the loop even without any

unrolling. The resulting compressed trace contained only 13 transitions and 91

triples, of which 84 were classified trivial. The 7 non-trivial triples correspond

to the case where the error occurred in the loop. We also discovered 20 other in-

variant constraints which were removed by the generalisation phase. The entire

process took 94s to complete.

139

6.4.3 Tokenring (token_ring01_unsafe.c)

Our third benchmark is a buggy token ring algorithm from the loops suite. We

do not show the program or its trace due to its large size, but give an overview.

It consists of two functions master and transmit, and in the main function, a

loop is executed calling (non-deterministically) these two functions in each it-

eration. This loop is nested within another loop that keeps re-running the whole

simulation for a given number of times. In a certain simulation of the inner loop,

when the two functions are called in a particular sequence, an error is triggered

in master.

The inputs in this program controlled the number of iterations of the inner

and outer loops, and determined the specific combination of calls that triggers

the error. The inputs directed the trace to execute 5 iterations of the outer loop,

and for each of those, 6 iterations of the inner loop – a total of 30 iterations that

resulted in 885 transitions. We were unable to invoke the two external invariant

generators on this benchmark (as well as the next two cdaudio and floppy) as

their C front-end does not support programs with function calls.

On applying our method, it was unable to find an invariant for the outer loop

immediately, so it began unrolling it. However, for the first iteration of the outer

loop, it was able to find an invariant for the inner loop and compress it. In the

second iteration, it in turn unrolled the inner loop twice to find a safe invariant

and compress it, which then compressed the outer loop as well. This benchmark

exhibited a remarkable feature of our method in practice – even if we are unable

to compress an outer loop iteration, we can still compress the inner loop in that

iteration.

Ultimately, the trace was reduced from 5 outer loop iterations, each con-

taining 6 inner loop iterations, to just 2 outer loop iterations, each containing

a compression of the inner loop, and finally a compression of the outer loop.

The number of transitions was reduced from 885 to 218 (75% compression).

Importantly, this compressed trace shows that the particular sequence of calls

that triggers the error happened only in the second simulation (i.e., second outer

loop iteration). This is quite valuable information to a programmer as he/she can

quickly focus debugging efforts on that part, rather than checking which sim-

140

Bench Bound Trace length %C #U Time
-mark Orig. Compr.

4 342 121 65% 0 97s
cdaudio 8 498 121 75% 0 99s

16 810 121 85% 0 106s
32 1434 121 92% 0 128s

4 146 83 43% 1 2s
floppy 8 182 83 54% 1 2s

16 254 83 67% 1 2s
32 398 83 80% 1 2s

Table 6.2: Trend with varying loop bounds for cdaudio and floppy

ulation caused the error. Finally, 66 triples were generated, of which 37 were

classified as trivial, and the rest 29 as non-trivial. The entire process took 161s

to complete.

6.4.4 cdaudio (cdaudio_simpl1_unsafe.cil.c)

Our fourth benchmark is the buggy version of the Windows NT Driver “cdau-

dio” from the ntdrivers-simplified suite. It consists of about 15 safety properties

of which exactly 1 is violated (i.e., the program is safe without that property).

Concolic testing generated inputs that violated this property after going through

the (only) loop in the program. We noticed that the loop has an arbitrary bound,

i.e., the bound is simply the number of attempts made to start the CD-device, set

to 4 by default. Once the device is started, signified by a status variable being

a certain value, the loop exits.

Within the loop, there exist statements modifying variables that appear in

the safety of other properties in the program. However, these properties are not

affected because of two reasons: (1) the properties capture the relationship be-

tween the variables and not the actual value (e.g., the property s==NP, where s

is set to NP in the loop) and (2) given the incoming context to the loop, many

of these statements are along infeasible paths. Executing the program with the

default bound of 4, the trace ran through 342 statements. On invoking our algo-

rithm, we were able to compress all 4 iterations of the loop with safe invariants

that either captured the exact relationship between the variables (e.g., s==NP)

or their values which are sufficient to establish the relationship (e.g., s==1 and

141

NP==1). The trace was reduced to 121 statements, and 15 triples were produced,

of which 11 were classified trivial.

Since the bound is arbitrary, we tried to increase it in order to see a trend of

our compression method. In Table 6.2, the row cdaudio shows the statistics for

bounds 4, 8, 16 and 32 for the loop. In all cases our compression resulted in the

trace being 121 transitions long. That is, even if the loop bound is increased, we

were able to compress it using the same invariant without additional unrolling.

In all cases, 15 triples were generated as before, out of which 11 were trivial.

As it can be seen, the amount of compression approaches more than 90% as the

number of iterations increases. Moreover, the timing is not affected drastically,

as we were able to finish in about 2 minutes in all cases. The slight increase in

timing is due to the CHECKSAFEINV procedure that has to run along the now

longer trace to check if a discovered invariant is safe.

6.4.5 floppy (floppy_simpl3_unsafe.cil.c)

Our final benchmark is another buggy Windows NT Driver “floppy” from the

ntdrivers-simplified suite. Similar to cdaudio, this program also has about 20

safety properties out of which exactly 1 causes the program to be unsafe. There

is one loop in the program that among other things, assigns either 0 or a negative

value, say N, to a variable ntStatus non-deterministically. If ntStatus is

assigned 0, or the loop’s bound is exhausted, the loop exits. If it is never assigned

0, its value is passed across many functions to a variable in the main function

called status, which is then checked to be equal to 259. If it is not, the error is

triggered.

On generating inputs that exercise the error trace, we set the target to be

{status = N}. We again noted that the loop bound is arbitrary, and in fact, not

even specified in the program. Hence we experimented with varying bounds.

Due to lack of a “default” bound, we simply used the loop bounds from cdau-

dio, i.e., 4, 8, 16 and 32. Again, dynamic slicing was unable to remove any

iteration as the safety variable status depends on ntStatus which is modified

for every iteration within the loop, whose exit is in turn control-dependent on

the assignment to ntStatus.

142

When our algorithm was invoked on the trace, we were unable to discover a

safe invariant right away, as the loop destroys the initial value of ntStatus (i.e.,

0) by setting it to N thereby preventing our invariant to capture any constraint

on ntStatus. After one unroll however, we were able to capture the constraint

{ntStatus = N} which is now invariant through the loop. This turned out to be

a safe invariant, compressing the remaining iterations of the loop.

As before, we show in Table 6.2 the compression trend for this benchmark.

We obtained traces of sizes 146 to 398 by varying the bounds. In all cases

however, we were able to compress the trace to 83 transitions after 1 unroll. The

amount of compression varies between 43% to 80% depending on the bound.

In all cases, 4 triples were generated out of which 2 were classified trivial. The 2

non-trivial triples explain that ntStatus is assigned the value N within the loop.

We were able to finish compressing the traces very quickly, within 2 seconds.

6.5 Summary

We presented a novel method that combines loop invariant discovery with trace

compression. We discussed major challenges that face this seemingly simple

idea – (1) ensuring that invariants are safe, (2) a backup measure in case a safe

invariant could not be found, (3) generalising safe invariants to aid in under-

standing, and (4) generating a proof of invariance as an explanation. We showed

our method works well in practice by evaluating it on real-life benchmarks. We

believe this would be one more step towards helping programmers with their

daily practical problem of debugging.

143

Chapter 7

Conclusion

In this thesis we studied the application of symbolic execution to various pro-

gram reasoning problems. We began by motivating the need for path-sensitivity,

the art of analysing programs paying heed to the feasibility of paths, so that

spurious information about the program from infeasible paths is excluded. We

showed that symbolic execution is a powerful and versatile technique for path-

sensitive program reasoning, owing to its “path condition” that forms the core

of its flexibility.

We then looked at one of the major challenges faced by symbolic execu-

tion and path-sensitive analyses in general—the “path explosion” problem. This

problem exists because of considering, in general, the feasibility of an exponen-

tial number of paths in a program. To address this problem, we made use of

two techniques: interpolation, which has been employed recently to mitigate

state space blowup in model checking, and the concept of witnesses. The idea

is to alleviate path explosion during symbolic execution by opportunistically

merging several symbolic states into one provided certain conditions—dictated

by interpolants and witnesses—are met. We then put forward perhaps the most

important theorem of the thesis (Theorem 1) that stated that no analysis infor-

mation is lost during a merge that is governed by these two conditions.

Having established the above path-sensitive analysis framework with sym-

bolic execution, we addressed four specific problems faced often by program-

mers: program slicing, testing, verification and trace understanding. We briefly

summarise our contributions below.

144

In the area of backward slicing, our contribution is two-fold. First, we for-

mulated an algorithm for efficient path-sensitive static slicing, which guarantees

to produce “exact” slices for loop-free programs, and limited only by general

loop invariant discovery technology for programs with loops. Second, we ex-

tended this slicing technique beyond static slicing, introducing a program trans-

formation method based on the notion of tree slicing. We showed how tree slic-

ing can be more powerful in reducing the program’s search space for external

applications such as testing and verification.

In the area of testing, our contribution is to bring the machinery of inter-

polation and subsumption to concolic testing for the first time. We presented

the framework of full and half interpolants, and showed how in concolic testing,

the modus operandi of interpolation fails to provide benefit. We then proposed a

novel technique of greedily accelerating the formation of interpolants during the

testing process, that brings back the exponential benefits typical of interpolation.

In the area of verification, we first examined the problem with symbolic exe-

cution’s inherent avoidance of infeasible paths, a characteristic that degrades the

quality of the discovered interpolants, thereby hindering subsumption in future.

We then proposed a novel “lazy” strategy for symbolic execution that ignores

these infeasibilities in pursuit of better interpolants. Although sounding contra-

dictory to the principle of symbolic execution—which by default “eagerly” de-

tects and avoids infeasibilities—we showed that this lazy version outperformed

its canonical counterpart substantially in verification.

In the relatively new area of trace understanding, our contribution is a new

algorithm to compress and explain error traces by discovering safe loop invari-

ants for loop iterations in the trace. We showed that our algorithm produces

significantly smaller traces, with loops replaced by a concise “explanation” in

the form of Hoare-triples that prove that the discovered safe invariant for the

loop is indeed one. Our algorithm is based on the principle that loops typically

converge towards an invariant as they iterate, and we showed that this holds in

practice by discovering safe invariants for several programs after a few unrolls.

Finally, we demonstrated our implementation of symbolic execution with

interpolation—the TRACER framework, which forms the basis of this work.

145

7.1 Future Directions

There are two other major areas of application for our PSS-CFG, presented in

Part II of Chapter 3, namely program analysis and execution. In analysis, the use

of target variables is limited, or more often, nonexistent. Instead, the PSS-CFG

provides a path-sensitive representation for insensitive (or limitedly sensitive)

analysers to take advantage of the lack of infeasible paths to increase analysis

precision. In program execution, the idea is, as in partial evaluation, to run a spe-

cialised version of the program depending on the target variables. This would

always be faster than executing the general original program. We in fact have

some early experimental results, not presented here. For analysis, we consid-

ered the (insensitive) alias analysis tool Crystal [91] on several programs and

consistently noticed accuracy gains. For execution timing, we noticed, again on

several programs, that the number of executed program steps was significantly

reduced when using the PSS-CFG over the original program.

We are also conducting research (ongoing) [84] in the area of error trace ex-

planation and localisation using interpolants. Recently, two different approaches

have emerged for error trace explanation—one based on minimal unsatisfiable

cores [70] and another based on interpolants [39]. We conjecture that there is

an underlying similarity between the two methods, as both strive to compute

a succinct explanation of the error trace by reducing the problem to reasoning

about an unsatisfiable formula. Based on this, we are formulating a new hybrid

algorithm that combines the benefits of both approaches. Our technique works

by automatically reducing an error trace to its essential components—a minimal

set of statements that are responsible for the error, together with key predicates

that explain how these statements lead to the failure. We have proven that our

approach is sound (i.e., captures all statements relevant to the error), and are

working to show that it is useful for debugging real programs.

In conclusion, through this thesis, we believe to have set forth the stage for

symbolic execution based reasoning and made the reader conversant with its

intricacies and subtleties. We hope to have nurtured further research in this

area, and conclude by stating that the future is bright for symbolic execution.

146

Bibliography

[1] Frama-C Software Analyzers. http://frama-c.com/.

[2] TRACER. paella.d1.comp.nus.edu.sg/tracer.

[3] History’s worst software bugs. http://archive.wired.com/software/coolapps/

news/2005/11/69355?currentPage=all, August 2005.

[4] Cambridge university study states software bugs cost economy $312 bil-

lion per year. http://undo-software.com/company/press/press-release-8,

January 2013.

[5] OpenSSL TLS heartbeat extension read overflow discloses sensitive in-

formation. http://www.kb.cert.org/vuls/id/720951, April 2014.

[6] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An

interpolation-based algorithm for inter-procedural verification. In VM-

CAI, 2012.

[7] S. Anand, P. Godefroid, and N. Tillmann. Demand-Driven Compositional

Symbolic Execution. In TACAS, pages 367–381, 2008.

[8] G. Balakrishnan, S. Sankaranarayanan, F. Ivancic, O. Wei, and A. Gupta.

SLR: Path-sensitive analysis through infeasible-path detection and syn-

tactic language refinement. In SAS, 2008.

[9] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic pred-

icate abstraction of C programs. In PLDI’01, pages 203–213.

[10] L. Bent, D. C. Atkinson, and W. G. Griswold. A comparative study of two

whole program slicers for C. Technical report, University of California

at San Diego, La Jolla, CA, USA, 2001.

147

http://frama-c.com/
paella.d1.comp.nus.edu.sg/tracer

[11] D. Beyer. Competition on software verification - (SV-COMP). In TACAS,

2012.

[12] D. Beyer. Second competition on software verification. In TACAS, 2013.

[13] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path

Invariants. In PLDI’07.

[14] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for Configurable

Software Verification. In CAV, 2011.

[15] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attacking Path

Explosion in Constraint-Based Test Generation. In TACAS, pages 351–

366, 2008.

[16] J. Burnim and K. Sen. Heuristics for Scalable Dynamic Test Generation.

In ASE, pages 443–446, 2008.

[17] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs. In

OSDI, pages 209–224, 2008.

[18] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.

EXE: Automatically Generating Inputs of Death. In CCS, pages 322–

335, 2006.

[19] G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned program slicing.

Information and Software Technology, 40, no. 11-12:595–607, 1998.

[20] J. Christ, E. Ermis, M. Schaf, and T. Wies. Flow-sensitive fault localiza-

tion. VMCAI, 2013.

[21] D.-H. Chu, J. Jaffar, and V. Murali. Lazy Symbolic Execution for En-

hanced Learning. In RV, 2014.

[22] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. IC3 modulo theories

via implicit predicate abstraction. CoRR, 2013.

148

[23] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation

in satisfiability modulo theories. In TACAS’08, pages 397–412, 2008.

[24] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. CounterExample-

Guided Abstraction Refinement. In CAV’00.

[25] CodeSurfer. Grammatech Inc. http://www.grammatech.com/pro-

ducts/codesurfer/.

[26] M. Colon, S. Sankaranarayanan, and H. Sipma. Linear invariant genera-

tion using non-linear constraint solving. In CAV, 2003.

[27] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice

Model for Static Analysis. In 4th POPL, pages 238–252. ACM Press,

1977.

[28] W. Craig. Three uses of Herbrand-Gentzen theorem in relating model

theory and proof theory. Journal of Symbolic Computation, 22, 1955.

[29] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and

B. Yakobowski. Frama-C: A software analysis perspective. In Proceed-

ings of the 10th International Conference on Software Engineering and

Formal Methods, SEFM’12, 2012.

[30] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Ef-

ficiently computing static single assignment form and the control depen-

dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[31] S. Danicic, C. Fox, and C. Harman. Consit: A conditioned program slicer.

In ICSM’00, pages 216–226.

[32] O. S. Daniel Kroening. Decision procedures: An algorithmic point of

view, 2008.

[33] M. Daoudi, L. Ouarbya, J. Howroyd, S. Danicic, M. Harman, C. Fox, and

M. Ward. Consus: A scalable approach to conditioned slicing. Working

Conference on Reverse Engineering, 2002.

149

[34] L. De Moura and N. Bjørner. Z3: an efficient smt solver. In TACAS,

2008.

[35] E. W. Dijkstra. Structured programming. chapter Chapter I: Notes on

Structured Programming, pages 1–82. Academic Press Ltd., London,

UK, UK, 1972.

[36] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in

Automatic Computation. Prentice-Hall, 1976.

[37] J. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT

Press, 1999.

[38] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of

property directed reachability. In FMCAD, 2011.

[39] E. Ermis, M. Schäf, and T. Wies. Error invariants. In FM, 2012.

[40] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically

Discovering Likely Program Invariants to Support Program Evolution.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 27:213–224,

2001.

[41] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly de-

tecting relevant program invariants. ICSE 2000, 2000.

[42] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence

graph and its use in optimization. ACM Trans. Program. Lang. Syst.,

1987.

[43] J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In

POPL ’95, pages 379–392.

[44] J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with predicates.

In ESEC/FSE-13, pages 227–236, 2005.

[45] C. A. Furia and B. Meyer. Inferring loop invariants using postconditions.

In Fields of Logic and Computation, 2010.

150

[46] X. Gao, A. Snavely, and L. Carter. Path grammar guided trace compres-

sion and trace approximation. In High Performance Distributed Comput-

ing, 2006.

[47] P. Godefroid. Compositional dynamic test generation. In M. Hofmann

and M. Felleisen, editors, 34th POPL, pages 47–54. ACM Press, 2007.

[48] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox

fuzzing. In Proceedings of the 2008 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’08, pages 206–

215, New York, NY, USA, 2008. ACM.

[49] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Ran-

dom Testing. In PLDI, pages 213–223, 2005.

[50] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox fuzzing for

security testing. Queue, 2012.

[51] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated Whitebox Fuzz

Testing. In NDSS, 2008.

[52] A. Gupta and A. Rybalchenko. InvGen: An Efficient Invariant Generator.

In CAV, 2009.

[53] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-

tions from proofs. In 31st POPL, pages 232–244. ACM Press, 2004.

[54] B. Hetzel. The Complete Guide to Software Testing. QED Information

Sciences, Inc., Wellesley, MA, USA, 2nd edition, 1988.

[55] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.

ACM, 1969.

[56] K. Hoder and N. Bjørner. Generalized property directed reachability. In

SAT, 2012.

[57] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-

pendence graphs. In PLDI ’88, pages 35–46.

151

[58] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-

pendence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[59] J. Jaffar, , J. Navas, and A. Santosa. Unbounded Symbolic Execution for

Program Verification. In RV 2011, pages 396–411, 2011.

[60] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)

language and system. ACM TOPLAS, 14(3):339–395, 1992.

[61] J. Jaffar and V. Murali. A Path-Sensitively Sliced Control Flow Graph.

In FSE, 2014.

[62] J. Jaffar and V. Murali. Trace Compression with Loop Explanations.

Submitted, 2014.

[63] J. Jaffar, V. Murali, and J. Navas. Boosting Concolic Testing via Interpo-

lation. In FSE, 2013.

[64] J. Jaffar, V. Murali, J. Navas, and A. Santosa. TRACER: A Symbolic

Execution Tool for Verification. In CAV 2012, pages 758–766, 2012.

[65] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. Path-sensitive back-

ward slicing. In SAS, pages 231–247, 2012.

[66] J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for CLP

traversal. In CP, 09.

[67] J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for dynamic

programming with ad-hoc constraints. In 23rd AAAI, pages 297–303.

AAAI Press, 2008.

[68] B. Jeannet and A. Mine. Apron: A Library of Numerical Abstract Do-

mains for Static Analysis. In CAV, 2009.

[69] R. Jhala and R. Majumdar. Path slicing. In PLDI, 2005.

[70] M. Jose and R. Majumdar. Cause clue clauses: Error localization using

maximum satisfiability. SIGPLAN Not., 46(6):437–446, 2011.

152

[71] J. C. King. Symbolic Execution and Program Testing. Com. ACM, pages

385–394, 1976.

[72] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett.,

29(3):155–163, 1988.

[73] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient State Merging

in Symbolic Execution. In PLDI, 2012.

[74] G. Lalire, M. Argoud, and B. Jeannet. The Interproc Analyzer. http://pop-

art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc, 2009.

[75] M. Li. A practical loop invariant generation approach based on random

testing, constraint solving and verification. ICFEM’12, 2012.

[76] X. Li, T. Mitra, H. S. Negi, and A. Roychoudhury. Design space explo-

ration of caches using compressed traces. In International Conference on

Supercomputing, 2004.

[77] M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal

unsatisfiable subsets of constraints. J. Autom. Reasoning, 40(1), 2008.

[78] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic

execution. In SAS, 2011.

[79] Mälardalen WCET research group benchmarks. URL http://www.mr-

tc.mdh.se/projects/wcet/benchmarks.html, 2006.

[80] K. L. McMillan. Lazy abstraction with interpolants. In CAV ’06, pages

123–136.

[81] K. L. McMillan. Interpolation and SAT-based model checking. In 15th

CAV, volume 2725 of LNCS, pages 1–13. Springer, 2003.

[82] K. L. McMillan. Lazy annotation for program testing and verification. In

22nd CAV, 2010.

[83] K. L. McMillan. Lazy annotation for program testing and verification. In

T. Touili, B. Cook, and P. Jackson, editors, 22nd CAV, volume 6174 of

LNCS, pages 104–118. Springer, 2010.

153

[84] V. Murali, N. Sinha, E. Torlak, and S. Chandra. A Hybrid Algorithm for

Error Trace Explanation. In VSTTE, 2014.

[85] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate

Language and Tools for Analysis and Transformation of C Programs. In

CC’02.

[86] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in

a software development environment. In SDE 1: Proceedings of the first

ACM SIGSOFT/SIGPLAN software engineering symposium on Practical

software development environments, pages 177–184, 1984.

[87] A. Podelski and A. Rybalchenko. ARMC. In PADL’07.

[88] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using symbolic

evaluation to understand behavior in configurable software systems. In

ICSE, 2010.

[89] J. C. Reynolds. Separation logic: A logic for shared mutable data objects.

In 17th LICS, pages 55–74. IEEE Computer Society Press, 2002.

[90] T. Robschink and G. Snelting. Efficient path conditions in dependence

graphs. In ICSE ’02, pages 478–488.

[91] R. Rugina, M. Orlovich, and X. Zheng. Crystal: A program analysis

system for C. http://www.cs.cornell.edu/projects/crystal, 2007. [Online;

accessed 09-July-2011].

[92] A. Rybalchenko. CLP-prover. URL http://www7.in.tum.de/˜rybal/clp-

prover/.

[93] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop in-

variant generation using Gröbner bases. POPL ’04, 2004.

[94] A. Saswat. Techniques to Facilitate Symbolic Execution of Real-world

Programs. PhD thesis, Georgia Institute of Technology, 2012.

154

[95] P. H. Schmitt and B. Weiß. Inferring invariants by symbolic execution.

In Proceedings, 4th International Verification Workshop (VERIFY’07),

2007.

[96] R. Sebastiani. Lazy satisability modulo theories. JSAT, 2007.

[97] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine

for C. In ESEC/FSE, pages 263–272, 2005.

[98] S. Seo, H. Yang, and K. Yi. Automatic construction of Hoare proofs from

abstract interpretation results. In APLAS’03, pages 230–245.

[99] G. Snelting, T. Robschink, and J. Krinke. Efficient path conditions in

dependence graphs for software safety analysis. volume 15, pages 410–

457.

[100] G. Snelting and A. Softwaretechnologie. Combining slicing and con-

straint solving for validation of measurement software. In SAS, pages

332–348, 1996.

[101] J. Stark and A. Ireland. Invariant discovery via failed proof attempts. In

Logic-Based Program Synthesis and Transformation, 1999.

[102] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software Security

Testing and Quality Assurance. Artech House, Inc., Norwood, MA, USA,

1 edition, 2008.

[103] F. Tip. A survey of program slicing techniques. Journal of Programming

Languages, 3:121–189, 1995.

[104] M. Weiser. Program slicing. In ICSE ’81, pages 439–449, 1981.

[105] T. Welp and A. Kuehlmann. QF BV model checking with property di-

rected reachability. In DATE, 2013.

[106] D. Wonisch. Block Abstraction Memoization for CPAchecker. In TACAS,

2012.

155

[107] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs

in C compilers. In Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’11, pages

283–294, New York, NY, USA, 2011. ACM.

[108] A. Zeller. Isolating cause-effect chains from computer programs. In FSE

’02, pages 1–10, 2002.

[109] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confi-

dence. PLDI, 2006.

[110] X. Zhang and R. Gupta. Cost effective dynamic program slicing. PLDI,

2004.

[111] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms.

ICSE, 2003.

156

	Introduction
	Overview of Current Techniques
	Overview of Symbolic Execution
	Thesis Contributions

	Preliminaries
	Symbolic Execution
	Interpolation and Witnesses
	Implementation: tracer

	Backward Slicing
	 Part I: Static Backward Slicing
	Motivating Example
	Background
	Algorithm
	Experimental Evaluation
	Related Work
	Summary
	 Part II: Slice-based Program Transformation
	Related Work
	Basic Idea
	Background
	Algorithm
	Experimental Evaluation
	Summary

	Concolic Testing
	Related Work
	Running Example
	Background
	Algorithm
	Experimental Evaluation
	Summary

	Interpolation-based Verification
	Examples
	Background
	Algorithm
	Experimental Evaluation
	Related Work and Discussion
	Summary

	Trace Understanding
	Related Work
	Background
	Algorithm
	Experimental Evaluation
	Summary

	Conclusion
	Future Directions

