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Abstract

Correlation filters have been widely used in computer vision for pattern detection

and recognition. The core idea of all correlation filters is to learn a filter/template

that produces desired correlation outputs when correlated with a set of training

examples. Correlation filters exhibit a number of characteristics that make them

interesting to the vision community, e.g. shift-invariance, robustness to noise,

closed-form solutions and most importantly their memory and computation effi-

ciencies. In spite of recent progress in correlation filters, there remains plenty of

scope for new extensions and improvements of traditional correlation filters for

vision problems. In this research, we introduce the following improvements to

the correlation filter theory for vision applications. First, traditional correlation

filters are limited to single-channel image representations (e.g. pixel intensities).

We propose an extension to canonical correlation filter theory that is able to

handle multi-channel signals/features, which refereed to as multi-channel corre-

lation filters. This allows one to exploit modern image descriptors (e.g HOG

and SIFT) to learn discriminative filters for challenging pattern classification

and detection. Second, we demonstrate that multi-channel correlation filters

can be directly applied to learn spatial-temporal patterns in videos with no ex-

tra memory and computation overheads. Third, traditional correlation filters

employ shifted patches for filter training which implicitly are created by circular

boundary effects. These shifted patches are not representative of real patches

and can drastically reduce the discrimination power of the trained filter. We

propose correlation filters with limited boundaries that can significantly reduce

the number of patches affected by boundary effects. Finally, we propose to ap-

ply a set of multi-channel correlation filters with different spatial supports over

a cascaded framework for coarse-to-fine facial landmark detection. We demon-

strate the superior performance, memory and computation efficiencies of all the

proposed techniques in this thesis over an extensive set of experiments including

visual object tracking, object localization, human action recognition and robust

facial landmark detection.
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Chapter 1

Introduction

Pattern recognition has been becoming essential for thousands of practical vi-

sion applications ranging from robotics, surveillance, biometrics, image retrieval,

scene understanding, video analysis, health care etc. The goal of visual pattern

recognition is to automatically recognize instances of patterns (e.g. objects) in

image or video. In spite of significant progress addressing this problem over the

past few decades, current pattern recognition systems are not able to accurately

and quickly recognize and categorize patterns under challenging real-world cir-

cumstances.

The trade-off between accuracy and computational efficiency is the central issue

in all pattern recognition approaches. Accuracy can be adversely affected by

photometric/geometric changes, background clutter, occlusion, large intra-class

variations and inter-class similarities. Many efforts have been devoted to perform

robust pattern recognition by using invariant and discriminative image descrip-

tors (e.g. SIFT and HOG [Dalal and Triggs, 2005] [Lowe, 2004]), extracted from

a huge amount of training examples, in conjunction with sophisticated statistical

learning techniques such as Neural Networks, Support Vector Machines (SVMs)

and various boosing techniques [Viola and Jones, 2001; Dalal and Triggs, 2005].

The main disadvantage with these techniques, however, is the large memory and

computational overheads required for learning over modest size of training set.

From a practical perspective, learning a SVM classifier using HOG features [Vi-

ola and Jones, 2001], which has been extensively employed for recognition tasks,

incurs a memory cost linear in the number of samples. Whilst this seems reason-

able at a glance, consider a simple example of storing 200, 000 50ˆ 50 images in

double precision. In the case of raw pixels this amounts to only 4 GB of storage,
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a manageable figure on current desktop hardware. Using Gabor filter banks of

40 channels (e.g. 5 scales and 8 orientations when using oriented edge energies),

storage blows out to an untenable 160 GB. Strategies have been proposed to save

storage complexity, however they are largely based on heuristic subsampling of

the resolution of image descriptors, or the number of training samples.

Besides, nearly every state-of-the-art detector employs sliding window paradigm

in the spatial domain to detect a pattern of interest in images [Dalal and Triggs,

2005; Felzenszwalb et al., 2010; Lampert et al., 2008; Viola and Jones, 2001].

In sliding window approaches, a classifier which is trained using a set of posi-

tive/negative training examples is evaluated on every possible window in a test

image. The brute-force search of all sliding windows over a set of scales would be

computationally intractable (e.g. 90000 evaluations to process a 150ˆ150 image

over 4 different scales) and, consequently, makes the detection process extremely

slow [Vedaldi and Zisserman, 2012; H. Harzallah and Schmid, 2009].

Canonical correlation filters, on the other hand, enjoy mathematical simplicity,

computational efficiency and tractable memory usage [Bolme et al., 2010]. Cor-

relation filters, developed initially in the seminal work of Hester and Casasent

[Hester and Casasent, 1980] are a method for learning a template/filter in the

frequency domain which have been widely employed for pattern detection in im-

ages and videos. Although many variants have been proposed over the last three

decades [Hester and Casasent, 1980; Kumar, 1986; Mahalanobis et al., 1987; Ku-

mar, 2005; Bolme et al., 2009, 2010], the approach’s central tenet is to learn a

filter/template instead of a simple cropped example, that when correlated with a

set of training signals, returns corresponding desired responses (typically a peak

response at the location of the object, while the response in all other regions of

the correlation plane are close to zero). Like correlation itself, one of the central

advantages of correlation filters is that they attempt to learn the filter in the

frequency domain due to computational efficiency of correlation in that domain.

Shift invariance, high tolerance to noise, robustness to partial occlusions, stabil-

ity against spatial translations and closed-form solution are the other interesting

characteristics of correlation filters.
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Interest in correlation filters has been reignited in the vision world through the

recent work of Bolme et al. [2010] on Minimum Output Sum of Squared Error

(MOSSE) correlation filters for object detection and tracking. This work was

able to circumvent some of the classical problems with earlier correlation filters

(e.g. over-fitting) and performed well in adaptive tracking under changes in

rotation, scale, lighting and partial occlusion. A central strength of the MOSSE

correlation filter is that it is extremely efficient in terms of required learning

memory and computations. It was stated in Bolme et al. [2010] that the amount

of memory required to learn a MOSSE filter is independent of the number of

training images. This allows one to use a huge amount of training examples

with no concern for memory limitation to learn a well-generalized correlation

filter. In addition to the memory efficiency, the computational cost of detecting

a pattern using correlation filters (specially in the Fourier domain) is very low,

making this class of detectors very appropriate for real-time detection tasks (e.g.

visual object tracking with a superior speed of 650 fps [Bolme et al., 2010]).

Current correlation filter, however, are not able to handle some classical issues

in pattern recognition/detection which have been successfully addressed by the

stat-of-the-art non-filter detectors which employ modern image descriptors (e.g.

HOG and SIFT) along with discriminative machine learning techniques. The

main objective of this thesis is to improve existing correlation filters for robust

and invariant pattern detection/recognition in challenging situations, while pre-

serving their superior detection speed, memory and computation efficiencies.

1.1 Thesis Contributions

In this thesis we present several improvements and extensions to current corre-

lation filter techniques. More specifically, the main contributions of this thesis

are as follows:

1. Traditional correlation filters have employed single-channel image repre-

sentation (e.g. intensity) for filter learning. It has been well noted in the
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vision literature that these simple features do not perform well for pattern

detection/recognition in unconstrained circumstances. In the first part

of this work, we propose an extension to canonical correlation filter the-

ory that is able to learn well-generalized multi-channel correlation filters

using invariant and discriminate multi-channel image descriptors, called

Multi-Channel Correlation Filters (MCCF). We show how multi-channel

correlation filter estimation in the frequency domain forms a sparse-banded

linear system which can be efficiently solved through a novel variable re-

ordering technique. Specifically, we demonstrate how our approach does

not have a memory cost that is linear in the number of samples, allow-

ing for substantial savings when learning detectors across large amounts of

data.

2. In the second part of this thesis, we argue that shifted patches generated

over the circular property of correlation drastically degrade the detection

performance of current correlation filters. To deal with this drawback, a

new correlation filter objective is proposed that can remarkably reduce the

number of learning examples affected by boundary effects. Specifically,

we demonstrate how this new objective can be efficiently optimized in an

iterative manner through an Augmented Lagrangian Method (ALM) to

take advantage of efficient correlation in the frequency domain. Moreover,

we show that this new objective can be combined with MCCF’s objective

to address the problem of single-channel feature and the boundary effects

simultaneously.

3. We evaluate the proposed correlation filters across a myriad of vision appli-

cations including, visual object tracking, object detection, facial landmark

localization and video analysis. Particularly, we show that multi-channel

correlation filters are not limited to images (space domain) and can be

easily applied on video patterns (spatial-temporal domain) with no extra

memory and computation overheads. we specifically evaluate the MCCF

for human action recognition in video data, where the experimental re-

sult shows the superior detection speed and memory usage of our method
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versus the state-of-the-art with very competitive recognition performance.

4. Finally, a cascaded correlation filters framework is proposed for global-to-

local facial landmarks detection in face images with high stability against

face pose and expression. Over the experiments, we demonstrate very

competitive performance of our cascaded framework compared to current

state-of-the-art landmark detectors, with superior detection speed, com-

putational and memory efficiencies over the LFPW and BioID datasets.

1.2 Notations

In this thesis vectors are always presented in lower-case bold (e.g., a), Matrices

are in upper-case bold (e.g., A) and scalars in italicized (e.g. a or A). apiq refers

to the ith element of the vector a. All M -mode array signals shall be expressed

in vectorized form a. We shall be assuming M “ 2 mode matrix signals (e.g. 2D

image arrays) in nearly all our discussions throughout this work. A 2D matrix

can be easily vectorized by concatenating its columns into a 1D vector. A M -

mode convolution operation is represented as the ˚ operator. One can express

a M -dimensional discrete circular shift ∆τ to a vectorized M -mode matrix a

through the notation ar∆τ s. The matrix I denotes aDˆD identity matrix and 1

denotes a D dimensional vector of ones. A p applied to any vector denotes the M -

mode Discrete Fourier Transform (DFT) of a vectorized M -mode matrix signal a

such that â Ð Fpaq “
?
DFa. Where Fpq is the Fourier transforms operator and

F is the orthonormal DˆD matrix of complex basis vectors for mapping to the

Fourier domain for any D dimensional vectorized image/signal. We have chosen

to employ a Fourier representation through this thesis due to its particularly

useful ability to represent circular convolutions as a Hadamard product in the

Fourier domain. Additionally, we take advantage of the fact that diagpĥqâ “

ĥ ˝ â, where ˝ represents the Hadamard product, and diagpq is an operator

that transforms a D dimensional vector into a D ˆ D dimensional diagonal

matrix. The role of filter ĥ or signal â can be interchanged with this property.

Any transpose operator J on a complex vector or matrix additionally takes the

5



complex conjugate in a similar fashion to the Hermitian adjoint [Kumar, 2005].

The operator conjpâq applies the complex conjugate to the complex vector â.
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Chapter 2

Background

2.1 Signal Correlation

Correlation is a standard operation to measure signal similarity. The correlation

between two given signals z and h is defined as:

y “ z ‹ h (2.1)

where ‹ denotes the correlation operator and y is the correlation output. The

discrete correlation of two one-dimensional signals z and h is computed as:

pz ‹ hqrxs “
8
ÿ

k“´8

zrkshrx` ks (2.2)

which can be extended for two-dimensional signals as,

pz ‹ hqpx, yq “
8
ÿ

k“´8

8
ÿ

l“´8

zrk, lshrx` k, y ` ls (2.3)

Signal correlation is similar to convolution except that one signal is time-reversed.

In signal processing, convolution of two signals z and h is represented as:

y “ z ˚ h (2.4)

pz ˚ hqrxs “
8
ÿ

k“´8

zrkshrx´ ks (2.5)
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where ˚ denotes the convolution operator. Similar to correlation, two-dimensional

signal convolution can be defined as:

pz ˚ hqpx, yq “
8
ÿ

dx“´8

8
ÿ

dy“´8

zrdx, dyshrx´ dx, y ´ dys (2.6)

where the signal x is time-reversed.

2.2 The Convolution Theorem

The convolution theorem states that convolution in the spatial domain can be

computed as Hadamard product in the Fourier domain [Bracewell and Bracewell,

1986],

y “ z ˚ h “ F´1pẑ ˝ ĥq (2.7)

The power of the above equation lies in its computational efficiency, as it simpli-

fies the computationally intensive operations of convolution in the spatial domain

(including circular-shift, multiplication and summation) with an element-wise

Hadamard product in the Fourier domain [see Section 2.3 for more details].

Using the convolution theorem, correlation in the Fourier domain can be defined

as:

y “ z ‹ h “ F´1pẑ ˝ conjpĥqq (2.8)

where conjp.q is the complex conjugate that reverses a signal, and used to ensure

that the operation is correlation not convolution.
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2.3 Correlation Complexity

According to Equation 2.2, correlating two signals of length N and P in the

spatial domain takes OpNP q. Likewise, the complexity of correlating two im-

ages of size N ˆM and P ˆQ is OpNMPQq. Using the Convolution theorem,

correlation can be performed by Hadamard product of two signals in the Fourier

domain. The FFT/IFFT and Hadamard product can be respectively computed

in OpN logNq and OpNq [Cooley and Tukey, 1965]. This results in a total com-

putation of OpN logNq for one-dimensional correlation. Similarly, we can show

that the two-dimensional correlation in the Fourier domain can be performed in

OpNM logNMq.

In the spatial domain, two-dimensional correlation can be computed faster as

long as one signal is separable, meaning it can be defined as outer product of two

vectors [Breiman, 1996]. A two-dimensional signal H is separable if H “ h1bh2,

where b indicates the outer product of two vectors. Thus, the separable spatial

correlation between two two-dimensional signals H and Z is calculated as:

Y “ Z ‹H “ Z ‹ ph1 b h2q “ pZ ‹ h1q ‹ h2 (2.9)

“ pZ ‹ h2q ‹ h1

For example, some basic image processing filters such as 3ˆ3 Sobel operator can

be broken into two 3ˆ1 and 1ˆ3 one-dimensional vectors,

»
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—
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fi

ffi
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1

2

1

fi

ffi

ffi

ffi

ffi

fl

b

„
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

. In this case, a two-dimensional correlation in the spatial domain

can be performed in two steps for a total cost of OpNMpP `Qqq. This involves

correlating the image with the first vector in OpNMP q, and then correlating the

output with the second vector in OpNMQq.

From the discussion above, it is necessary to have prior knowledge about signals
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Correlation schema Complexity

Spatial Correlation OpNMPQq

Separable Correlation OpNMpP `Qqq
Fourier Correlation OpNM logNMq

Table 2.1: Comparing the complexity of three different correlation schemas.

to choose the appropriate correlation/convolution schema. For example, spatial

correlation of an M ˆN image with a P ˆQ filter is faster than correlation in

Fourier domain if P ˆ Q ă logNM . Likewise, separable correlation is always

faster than spatial correlation. A comparison of computational costs of three

different correlation schemas are shown in Table 2.1, where the computation of

spatial correlation depends on both the size of the image and the filter, while

the complexity of FFT correlation is based on the size of the image, assuming

that the image is larger than the filter.

2.4 Detection by Template Matching

In practice, correlation calculates the inner product of two signals and provides

a measure of signal similarity/dissimilarity which has been commonly used in

many signal processing problems. Assume that two signals h and z are given,

where h is the offset version of z by an unknown time lag and both are affected by

random noise. The problem is to estimate the time lag between these two signals

by signal matching. This can simply done by signal correlation, y “ z ‹ h. The

correlation output y is a new signal whose values are the inner product between

the signal h and all possible translated versions of z. Therefore, each discrete

value of y shows how similar that part of signal z is to the signal h. The

global maximum (peak) in y finds the match between of the signals h and z and

indicates the amount of time offset.

In vision communities, signal correlation is used as a common solution to many

pattern detection/matching problems. The basic idea of detection-by-correlation

is that the pattern of visual appearance can be captured by an image template.

Like one-dimensional correlation, correlation between a template and an input
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image returns a new image where each pixel value indicates the amount of simi-

larity between the template and the shifted versions of the image. By threshold-

ing the local maximums over the correlation output, one can simply determine

the presence and location of the pattern of interest in images.

Current template matching techniques differ mainly in the way they design the

correlation template. The simplest way is cropping an example of the pattern

from training images. This, however, performs well when all images are captured

under heavily controlled situations, to ensure that the template and images have

very similar appearance. This is applicable in some applications such as indus-

trial monitoring, video stabilization and rigid image registration where images

are taken under fixed or slightly different viewpoint and lighting condition, and

have similar visual characteristics in common.

This, however, is not practical in more complicated applications. In object de-

tection, for example, images belong to the same class of objects might look

drastically different (intra-class variations), even under the same imaging condi-

tions. On the other hand, images taken from different objects of different classes

under different imaging conditions can appear to be very similar (inter-class

similarities).

To deal with these difficulties, therefore, correlation filters have been proposed

to learn templates/filters from a set of training samples, instead of cropping

a single raw example from a training image, where the template is referred to

as a correlation filter. In the next subsection, we will briefly review current

correlation filter techniques and their advantages and disadvantages for pattern

detection and matching.

2.5 Overview of Existing Correlation Filters

To date, several correlation filters techniques have been proposed. In this section,

we will review more common techniques in the literature and evaluate their

advantages and disadvantage for pattern detection, localization and recognition.
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2.5.1 Synthetic Discriminant Functions

The first correlation filter technique, called Synthetic Discriminant Functions

(SDF), was proposed to learn correlation filters form a set of training images

[Casasent and Chang, 1986]. Given a set of N vectorized training images and

their corresponding desired outputs txi, uiu
N
i“1, the objective of SDF is training

a filter h that satisfies a set of hard constraints on the correlation outputs,

xJi h “ ui, for i “ 1, ..., N. (2.10)

when the number of training images are less than the number of constraints

(filter’s dimension), there are many filters that satisfy the hard constraints in

Equation 2.10. To learn a single filter, therefore, the SDF technique requires the

filter h to be a linear combination of all training images.

Therefore, the optimal SDF filter is obtained by minimizing the following objec-

tive function in the spatial domain:

h˚ “ arg min hJh (2.11)

s.t. XJh “ u

where u “ ru1, u2, ..., uN s denotes the desired correlation outputs corresponding

to training images, ui “ 1 for positive and ui “ 0 for negative examples, and

X “ rx1,x2, ...,xN s is a D ˆ N matrix containing all N vectorized training

images of length D. The optimal SDF filter in the spatial domain is calculated

as:

h˚ “ XpXJXq´1u (2.12)

Complexity and memory analysis: The memory required to train a SDF
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correlation filter over N training images of length D is OpNDq, because one

needs to hold all training examples X in memory. The training complexity

consists a computational cost of OpN3q for a N ˆN matrix inversion.

2.5.2 Minimum Average Correlation Energy Filters

Later on, the Minimum Average Correlation Energy Filter (MACE) technique

was introduced to address the problem of smooth peaks in SDF. It learns a filter

that produces a sharp peak at the origin of the correlation plane [Mahalanobis

et al., 1987]. This is done by minimizing average correlation energy in the Fourier

domain subject to the hard constraints on correlation output in Equation 2.10:

ĥ
˚

“ arg min ĥD̂ĥ (2.13)

s.t. X̂
J
ĥ “ u

The optimal solution of a MACE filter is calculated as:

ĥ
˚
“ D̂

´1
X̂pX̂

J
D̂
´1

X̂q´1û (2.14)

where X̂ contains vectorized training images in the Fourier domain and D̂ is a

diagonal matrix containing their average power spectrum. It has been shown

that the MACE filter suffers from sensitivity to noise and typically produces

sharp peaks for the images it was trained on (over-training).

Complexity and memory analysis: Inspecting Equation 2.14, one can see

that the memory required to train a MACE correlation filter is OpNDq, where N

and D respectively indicate the number and length of training images, XDˆN .

The overall computations for training a MACE filter are:
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N3
loomoon

matrix inversion

` D3
loomoon

matrix inversion

` ND logD
loooomoooon

Fourier transforms

“ OpmaxtD3, N3uq (2.15)

2.5.3 Minimum Variance Synthetic Discriminate Functions

The Minimum Variance Synthetic Discriminate Function (MVSDF) technique

dealt with SDF noise sensitivity by minimizing noise covariance while satisfy-

ing the hard constraints on correlation outputs [Kumar, 1986]. The MVSDF

filter was formulated the same as the MACE filter except that the matrix D̂ in

Equation 2.14 contains the noise power spectrum. Because estimating the color

of noise often is not practical, the noise is assumed to be white. In this case,

the matrix D̂ becomes the identity matrix I and SDF and MVSDF filters are

equivalent (except that the SDF is formulated in the spatial domain, but the

MVSDF is defined in the Fourier domain), and still suffer from smooth peaks,

poor generalization and over-training.

2.5.4 Optimal Trade-off Filters

Finally, Optimal Trade-off Filters (OTF)[Refregier, 1991] are a trade-off between

the peak sharpness of MACE and the noise tolerance of MVSDF by defining the

matrix D̂ in Equation 2.14 as:

D̂ “ αD̂11 ` p1´ αqD̂
1
2 (2.16)

where D̂
1

1 and D̂
1

2 are respectively the matrix D̂ in MACE and SVMDF, and

0 ď α ď 1 is the trade-off variable. For α equal to 0 and 1, the OTF filter

respectively is equivalent to SVMDF and MACE filters. The computational

cost and memory usage of MVSDF and OTF techniques are same as the MACE

correlation filter.
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2.5.5 Unconstrained Correlation Filters

All the aforementioned correlation filters including SDF, MACE, MVSDF and

OTF are similar in the way that they train a single correlation filter subject to

a set of hard constraints on correlation outputs. This resulted in poor general-

ization for unseen images and over-fitting for training images [Kumar, 2005]. It

has been proposed by [Mahalanobis et al., 1987] that these limitations can be

improved by eliminating the hard constraints, and instead requiring the filter to

produce a high average response to all training images in the Fourier domain.

This technique is generally called unconstrained correlation filters and is defined

as:

ĥ
˚
“ D̂

´1
m̂ (2.17)

where m̂ is the average of training images in the Fourier domain and D̂ is defined

the same as in Equation 2.16. This technique is also known as a Maximum Av-

erage Correlation Height (MACH) filter [Mahalanobis et al., 1987]. According

to Equations 2.17 and (2.16), if α “ 0 then D “ I and the MACH filter is the

average of training images, and the Unconstrained Minimum Average Correla-

tion Energy filter (UMACE) in the case of α “ 1 [Mahalanobis et al., 1994].

The main issue of unconstrained correlation filters is that these techniques do

not employ non-target examples for filter training. Besides, this technique does

not determine the correlation outputs for target examples. These may lead to

strong peaks upon non-target patches and, consequently, affect the detection/lo-

calization accuracy.

Complexity and memory analysis: According to Equation 2.17, uncon-

strained correlation filters just compute average of training examples in the

Fourier domain, instead of holding all training images in memory. This causes

substantial memory saving versus SDF, MACE, MVSDF and OTF techniques,

a constant OpDq compared to OpNDq which is linear in the number of training

examples. Training an unconstrained correlation filter over N training examples
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takes OpD3q computations:

D3
loomoon

matrix inversion

` ND logD
loooomoooon

Fourier transforms

“ OpD3q. (2.18)

2.5.6 Average of Synthetic Exact Filters

Recently, Bolme et al. [2009] introduced a new correlation filter technique called

the Average of Synthetic Exact Filters (ASEF) [Bolme et al., 2009]. The ASEF

technique trains correlation filters that return Gaussian-like correlation output

when correlated upon training images, with a peak value of 1.0 at target location

pi1, j1q and near to zero values elsewhere. A Gaussian function was employed to

define the pi, jqth location of correlation output as:

yi,j “ e´
pi´i1q2`pj´j1q2

δ2 (2.19)

where δ specifies the spatial bandwidth of the Gaussian function.

The main idea behind ASEF is that for each vectorized training image xi and its

corresponding desired output yi, there is a unique filter hi that exactly trans-

forms xi into yi such that:

yi “ xi ‹ hi (2.20)

According to the Convolution theorem, the above equation can be expressed in

the Fourier domain as:

ŷi “ x̂i ˝ conjpĥiq (2.21)

the optimal filter ĥi is called the Exact filter, and is calculated as:
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ĥi “
ŷi

conjpx̂iq
(2.22)

Given a set of Exact filters trained based on N training images tx̂iu
N
i“1 and their

corresponding outputs tŷiu
N
i“1, Bolme et al. [2009] computed the Average of

Synthetic Exact Filter (ASEF) as,

ĥ “
1

N

N
ÿ

i“1

ĥi “
1

N

N
ÿ

i“1

ŷi
conjpx̂iq

(2.23)

2.5.7 Minimizing the Output Sum of Squared Error Filters

The major limitation of the ASEF filter is that thousands of training examples

are required to produce a well-generalized correlation filter [Bolme et al., 2010].

More recently, Bolme et al. [2010] proposed that this drawback of ASEF can be

improved by learning a correlation filter that minimizes the sum of squared error

between the desired and the actual correlation outputs in the Fourier domain,

instead of averaging a set of Exact filters. This technique called Minimizing the

Output Sum of Squared Error (MOSSE) is defined as:

ĥ “ arg min
ĥ

N
ÿ

i“1

}x̂i ˝ conjpĥq ´ ŷi}
2
2 (2.24)

“ arg min
ĥ

N
ÿ

i“1

}diagpx̂iq
Jĥ´ ŷi}

2
2

where diag(.) converts a vector into a diagonal matrix. By solving the above

objective function, the optimal filter ĥ is calculated in the closed-form of:

ĥ “ rdiagpŝxxqs
´1

N
ÿ

i“1

diagpx̂iqŷi “
ŝxy
ŝxx

(2.25)
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where,

ŝxx “
N
ÿ

i“1

x̂i ˝ conjpx̂iq & ŝxy “
N
ÿ

i“1

ŷi ˝ conjpx̂iq (2.26)

are the average auto-spectral and cross-spectral energies of the training images.

Complexity and memory analysis: According to Equations 2.25 and 2.23,

training MOSSE and ASEF correlation filters requires OpDq constant memory

independent of number of training examples. Since, these methods just need

to hold the average of Exact filters (ASEF) and the average auto-spectral and

cross-spectral energies of training images (MOSSE) in memory. From a com-

plexity perspective, these techniques enjoy low computations of OpND logDq to

compute the Fourier transforms of N training examples (OpD logDq for each

example).

As mentioned above, the ASEF filter generalizes well if it is provided with a large

number of training examples. This disadvantage of ASEF technique is illustrated

by Figure 2.1, where ASEF and MOSSE filters are evaluated on the problem of

right eye localization in face images. The localization rate is presented as a

function of number of training examples (the details of training and testing is

clearly described in Section 5.1.8). According to Figure 2.1(a), the ASEF tech-

nique performs does not perform well when a few training images are provided

and its localization rate gradually improves when the amount of training images

increases. In contrast, the MOSSE technique achieves a high localization rate

using only four training images and its accuracy is slightly changed by increas-

ing the size of training set. Some examples of the trained filters used in this

evaluation are shown in Figure 2.1(b).

Although the low generalization of the ASEF is improved by the MOSSE tech-

nique, there still remain some drawbacks which have not been addressed by the

MOSSE and ASEF methods. First, both of these methods explicitly use cir-

cular shifted versions of target patches as non-target examples. These shifted

patches are produced over the circular property of correlation operation and are
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not representative of real-world non-target patches, as illustrated for the right

eye in Figure 2.2. This may result in training correlation filters which produce

strong peaks over real non-target patches. Second, MOSSE and ASSEF tech-

niques directly train correlation filters using raw image intensities, which are not

robust to lighting changes, intra class variations, and inter class similarities. A

full explanations of these two disadvantages will be provided in the following

chapters.

In Figure 2.3, we illustrate three examples of right eye localization using MOSSE

correlation filter. The left example shows a successful localization, where the

peak upon the right eye is the maximum peak over entire correlation plane. A

wrong eye localization is shown in the middle example, where the maximum

correlation peak occurs upon the left eye. In this evaluation we realized that

most of the failure cases are localizing the left eye instead of the right eye, since

the visual pattern of these two eyes looks very similar (inter class similarity),

and the MOSSE technique does not exploit the left eye patches as non-target

examples in the training process. Another type of wrong localization is shown

by the right example, where a non-eye patch is wrongly selected as the right eye.

Most likely because the intensity values of the right eye are blurred/changed

by the eyeglass. This wrong localization can be avoided by using illumination

invariant and more discriminative image descriptors for filter training.

2.5.8 Nonlinear Correlation Filters

All the aforementioned correlation filters are nothing but a linear approximation

to map a set of training images to their corresponding outputs. It has been noted

in the vision literature that this linear modeling cannot efficiently capture large

pattern variations. Nonlinear learning schemas, therefore, have been introduced

for challenging pattern detection/recognition.

Polynomial filters is the first technique that introduced nonlinearity in correla-

tion filters [Mahalanobis and Kumar, 1997; Alkanhal and Vijaya Kumar, 2003].

A set of nonlinear functions is employed to transform input data points into
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Figure 2.1: (a) Examples of trained ASEF (first row) and MOSSE (second row)
correlation filters using 2 (leftmost), 8, 32, 128 and 512 (rightmost) training
images, (b) The right eye localization rate of ASEF and MOSSE versus the size
of training set.

Figure 2.2: The shifted versions of the cropped right eye patch which are ex-
plicitly produced over the circular property of correlation operation. The first
example (top left) with a blue border shows the training patch with zero circular
shift (no shift) and is used as a target example. The other examples with a red
border are shifted versions of the target patch and are used as non-target exam-
ples over the training process. The shifted patches which we refer ao as synthetic
patches are not representative of real non-target patches stemming from differ-
ent parts of images. Training correlation filters by these shifted patches may
result in strong peaks at non-target patches, decreasing the robustness against
translation.
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Figure 2.3: Three examples of eye localization by MOSSE correlation filter. The
left example shows a successful localization. The middle example shows wrong
detection of the left eye instead of the right, caused by the visual similarity
of the right and left eyes (inter class similarity). The right example illustrates
wrong eye localization where a non-eye patch is wrongly selected as the right
eye, since the intensity values of the right eye patch are changed by the eyeglass
and lighting conditions.

nonlinear feature spaces. This technique jointly trains a set of correlation fil-

ters thiu
N
i“1 that returns a set of desired outputs when correlated with nonlinear

versions of the training images:

y “
1

N

N
ÿ

i“1

hi ‹ fipxq (2.27)

where tfip.qu
N
i“1 indicates the N nonlinear functions.

The discrimination power of this nonlinear technique, however, comes at the

cost of large features dimensionality and extra computations. Because of this,

kernel based correlation filters have been proposed, where vector correlations

are replaced by the inner product of two kernel functions satisfying Mercer’s

condition [Jeong et al., 2006].

Using kernel tricks for pattern detection is not new in vision communities and

have been widely exploited to introduce nonlinear versions of many linear clas-

sification schemas. The first kernel correlation filter employed arbitrary kernels

for the challenging problem of face recognition [Xie et al., 2005]. To save com-

putational costs, this method assumed that all training images are pre-aligned

and normal cross-correlation was replaced by the inner product of two kernel

functions. This, however, drastically reduces the shift-invariance of correlation
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filters, which is an essential for robust object detection and tracking.

The correntropy filters introduced nonlinear extensions to the MACE and SDF

techniques, while preserving the shift-invariance property [He et al., 2011; Jeong

et al., 2006; Jeong and Principe, 2006; Jeong et al., 2009]. The kernel of this

technique was selected to be the Gaussian kernel which can be easily connected

to nonlinear correntropy functions. It has been shown in [Jeong et al., 2009]

that directly training a correntropy-kernel filter is not computationally efficient,

therefore, a fast approximation of the filter was introduced using a fast Gaussian

transform.

The work done by [Henriques et al., 2012] exploited a kernel correlation filter for

real-time object tracking. The main advantage of this technique is using all pos-

sible shifted versions of input images to learn a shift-invariant correlation filter.

This is done by expressing correlation using Circulant matrix in the Fourier do-

main, and integrating this new form with Circulant kernel functions. By solving

a kernel regularized least squares (KRLS) in the Fourier domain, this technique

trained a kernel correlation filter in an efficient computation of OpN2 logNq.

Due to limitations of the above techniques, some recent researches have fo-

cused to combine canonical correlation filters with non-filter discriminative clas-

sifiers [Thornton et al., 2004; Rodriguez et al., 2013]. For example, the paper

[Thornton et al., 2004] discussed that the poor generalization of MACE and

OTSDF techniques are mainly caused by wrong peaks at the sidelobes, because,

they do not control the spatial distribution of correlation energy over the correla-

tion plane. Therefore, a SVM-like objective function was proposed to maximize

the separation margin between the peak at the origin of the correlation plane and

the values of sidelobes. The correlation filter was simply trained using SVM opti-

mization over non-shifted (class 1) and circular shifted versions of object patches

(class -1). The main limitation of this method was training a linear SVM which

is very time consuming and requires a huge memory footprint. Similarly, Max-

imum Margin Correlation Filter technique simultaneously combined the good

generalization of SVM classifier and the shift-invariance of MOSSE [Rodriguez
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et al., 2013] in a closed-form objective function with an optimal solution. This

technique, however, suffers from memory and computation issues.

2.6 Non-filter Object Detection and Recognition Ap-

proaches

The challenges of object detection are mainly caused by large intra-class varia-

tions, huge objects diversity, background clutter and uncontrolled imaging condi-

tions. To tackle these challenges, non-filter object detection techniques have been

propose to distinguish object classes by learning discriminative machine learning

techniques over modern image representations. In this section, we briefly review

the most common object detection and recognition framework in the vision lit-

erature.

2.6.1 Appearance based object representation

Appearance based techniques employ visual cues such as color, texture, shape,

and parts to distinguish foreground from the background. The earlier techniques

exploited color cues for object representation and detection. First, Swin and

Ballard [Swain and Ballard, 1991] introduced a simple object detection schema

by means of color histograms, which was invariant to rotation, translation and

scaling. It, however, showed a high sensitivity to illumination changes and occlu-

sions. Recent approaches proposed more complicated color descriptors to tackle

both illumination changes and geometric variations [Shahbaz Khan et al., 2012;

Salas and Tomasi, 2011]. The discriminative power of these approaches, however,

gained in the high computational complexities and memory usage.

Object detection by shape points was also investigated in earlier approaches.

The Chamfer and Hausdorff distances are commonly used for shape matching,

where a shape similarity is defined as the average distance between points on

template shape and the nearest points on the image shape [Borgefors, 1988;

Huttenlocher et al., 1993]. The simple point matching, however, was not able to

23



handle background clutter and object deformation.

Parts based object detection, on the other hand, employ primitive objects parts

(instead of points) and their spatial relationships for discriminative object rep-

resentation. The early part based techniques used hand-defined part templates

and spatial constraints for object detection. These techniques, however, often

fail if the object parts or spatial constraints are ambiguous. More complicated

techniques, contrary, have focused to automatically learn parts appearances and

their spatial relationships over a large training set of part-annotated object im-

ages [Felzenszwalb et al., 2010; Azizpour and Laptev, 2012; Gall and Lempitsky,

2013]. These methods, however, requires a huge processing time and memory

for learning and data annotation.

Texture cues provide rich visual cues for object detection. The Histogram of

Oriented Gradients (HOG) with linear SVM classifier has been successfully ap-

plied to human detection [Dalal and Triggs, 2005]. In general, HOG captures

discriminative texture by histogramming gradient orientation of local cells into

corresponding orientation bins weighted by gradient magnitude. The local cells

are then grouped into normalized blocks to provide strong illumination invari-

ance. The normalized histograms of negative and positive examples are used to

train a linear SVM classifier for object/background classification. Some recent

extension of HOG descriptor for object detection can be found in [Déniz et al.,

2011; Dalal et al., 2006; Laptev, 2009].

Gabor filter banks is also commonly used to extract textural features, due to

its capabilities to capture salient visual properties such as spatial localization,

orientation selectivity and spatial frequency. A bank of Gabor filters with dif-

ferent scales and orientations is often used to extract Gabor magnitudes. These

magnitudes represent high frequencies texture and can be directly used to train a

classifier (e.g. linear SVM) for object detection/recognition. The main disadvan-

tage with these techniques is the large memory and computational complexity

required for learning over modest size of training set.
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2.6.2 Sliding Window

Sliding window is a common technique used to detect objects/patterns in im-

ages and videos. This technique involves scanning the image with a sliding

window, from left to right and top to bottom, and classifying each sub image

as either object or background classes. The main issue of sliding window tech-

niques is the amount of time required to evaluate thousands of sub images for

object/non-object classification. Some approaches employ simple classifiers or

similarity measures such as histogram intersection kernels [Maji et al., 2008] and

χ2 kernels [Vedaldi and Zisserman, 2012] to speed up the classification process.

They, however, suffer from low discriminative power to distinguish challenging

patterns from background.

Recent approaches improved the original idea of the Viola and Jones Cascade

classifier [Viola and Jones, 2001] for more accurate and faster sliding window

based detection [Cevikalp and Triggs, 2012; G. Gualdi, 2012]. In general, Cascade

classifiers consist of a series of binary classifiers where each categorizes sub-

images either as either the foreground or background. A sub-window which is

evaluated as object will be passed to the next classifiers for more evaluation. The

cascade classifier will move on to the next sliding window if the current window

is classified as background.

The cascade levels are constructed by Adaboost training [Freund and Schapire,

1995], where a set of weak classifiers build a strong classifier. In Adaboost

algorithm, early classifiers are trained using a huge set of negative examples

(which may not be always available) and a small set of positive ones such that

a large number of negative sub-images can be quickly rejected with extremely

low false positive rate. The late cascade levels, on the other hand, are used to

classify ambiguous sub-images passed from previous levels. This training schema

allows the algorithm to reject a a high percentage of negative sub-images in the

early levels and save processing time for the late levels to efficiently distinguish

hard background sub-images form the foreground.
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2.7 Literature Summary and Comparison

We have surveyed existing correlation filters and their advantages and disadvan-

tages for pattern detection and matching in images. In Table 2.2 and 2.3, we

summarize all the current correlation filters techniques mentioned in this thesis

including:

• Constrained correlation filters including SDF, MACE, MVSDF and OTF

• Unconstrained correlation filters including MACH and UMACE

• Optimized correlation output filters including ASEF and MOSSE

• Nonlinear correlation filters

and the new approaches proposed in this thesis,

• Multi-Channel Correlation Filters (MCCF)

• Correlation Filters with Limited Boundaries (CF with LB)

• Multi-Channel Correlation Filters with Limited Boundaries (MCCF with

LB)

All of these techniques in Table 2.2 and 2.3 train correlation filters for pattern

detection/matching. They, however, are basically different in terms of image

representation, correlation output, training examples, learning strategy, com-

putational complexity and memory usage which are clearly specified for each

technique in Table 2.2 and 2.3 as follows.

Image Representation. Prior correlation filter techniques are limited to pixel

intensities for filter training. This form of image representation is not discrim-

inative enough to efficiently cover large objects variation, background clutter

and different imaging conditions. Therefore, we will propose a new correlation

filter objective to handle multi-channel image descriptors (e.g. HOG [Dalal and

Triggs, 2005]) for robust pattern detection under uncontrolled circumstances.

Desired Correlation Outputs. All the current techniques (except uncon-

strained correlation filters) learn a filter that returns a set of desired correlation

outputs when correlated over corresponding training images. The constrained

26



correlation filters and most of nonlinear techniques define the correlation outputs

as scaler values of 1 for positive and -1 for negative training examples. We argued

in the previous section that this can result to consume huge memory usage for

nonlinear techniques and produce noisy peaks for linear correlation filters such

as SDF, MAC and OTF.

Recent correlation filters such as ASEF and MOSSE use Gaussian correlation

outputs (two-dimensional) with the same size of the filter and training images

pD “ T q with a peak located upon the center of target images and zero values

elsewhere. In this case, the accuracy of trained filters is affected by boundary

effects and unbalanced synthetic negative examples. We will show in the fol-

lowing chapters that these limitations can be efficiently solved by training filters

whose size is substantially smaller than training images pT ! Dq, where D and

T respectively indicate the size of training images and the correlation filter. The

correlation output in our new approach is a Gaussian function but with a same

size of the training images (much larger than the filter size).

Training Examples. Existing techniques are similar in the way that they

all employ target (positive) examples cropped from a training set. But, they

use different strategies to use non-target (negative) examples in the training

procedure. The techniques with scaler correlation outputs use cropped non-

target patches as negative training examples. These techniques, therefore, learn

correlation filters which are not shift-invariant. The unconstrained approaches

do not make use of non-target examples during the training process. This may

lead to producing undesired peaks over non-target patches.

The ASEF and MOSSE techniques, on the other hand, employ shifted versions

of cropped target patches which are implicitly produced by the circular property

of the correlation operation. We will show that these shifted negative examples,

which we referred to as synthetic examples, suffer from boundary effects and

are not representative of real-word non-target patches. A new technique called

correlation filters with limited boundaries will be introduced which is able to

densely produce non-target patches from training images which are not affected
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by boundary effects and truly represent all possible non-target patches in the

training images.

Incremental Learning and Online Adaption. Similar to ASEF and MOSSE,

our new techniques are able to perform incremental learning in a computationally

efficient manner and manageable memory usage. We will show superior results

of our method (correlation filters with limited boundary) for object tracking,

where the filter is quickly adapted for robust tracking against lighting, pose,

appearance and scale changes over ongoing frames.

Learning by Multi Targets Per Image. ASEF and MOSSE techniques

are able to handle training images with multiple target instances, by defining

Gaussian-like correlation outputs with multiple peaks where each peak is located

upon one target instance. This, however, trains correlation filter whose size is

same as the size of training images, which is often much larger than the object

of interest. Another strategy would be using local patches with a single object

cropped from multi-target training images. This, however, increases sensitivity

to translation. We will show that our method, correlation filters with limited

boundary, is able to handle multi-target training images and train correlation

filters with same size as the target of interest.
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Image
Representation

Correlation
Output

Training
Examples

Incremental
Learning

Multi-targets
per image

P
ri

or
C

or
re

la
ti

on
F

il
te

rs

SDF, MACE, MVSDF and OTF
(Sec. 2.5.1, 2.5.2, 2.5.3, 2.5.4)
[Casasent and Chang, 1986]
[Mahalanobis et al., 1987]
[Kumar, 1986] [Refregier, 1991]

single channel
(intensity)

scalar
cropped target/non-target
examples

N N

UMACE and MACH (Sec. 2.5.5)
[Mahalanobis et al., 1987]
[Mahalanobis et al., 1994]

single channel
(intensity)

N/A
cropped target
examples

N N

ASEF and MOSSE (Sec. 2.5.6, 2.5.7)
[Bolme et al., 2009] [Bolme et al., 2010]

single channel
(intensity)

vector
pD “ T q

cropped target and
shifted non-target
examples

Y Y

Nonlinear correlation filters
(Sec. 2.5.8):
[Mahalanobis and Kumar, 1997]
[Alkanhal and Vijaya Kumar, 2003]
[Jeong et al., 2006] [Jeong et al., 2009]
[Jeong and Principe, 2006]
[Henriques et al., 2012]
[Thornton et al., 2004] [He et al., 2011]
[Rodriguez et al., 2013] [Xie et al., 2005]

single channel
(intensity)

scalar
cropped target/non-target
examples

N N

O
u

r
T

e
ch

n
iq

u
e
s CF with LB (Chap. 5)

single channel
(intensity)

vector
pD ą T q

target and real non-target
examples

Y Y

MCCF (Chap. 3) multi channel
vector
pD “ T q

cropped target and
shifted non-target
examples

Y Y

MCCF with LB (Chap. 5) multi channel
vector
pD ą T q

target and real non-target
examples

Y Y

Table 2.2: Summarizing existing correlation filter techniques and the new approaches proposed in this thesis.
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Time Complexity Memory

P
ri

or
C

o
rr

el
at

io
n

F
il

te
rs

SDF
(Sec. 2.5.1)
[Casasent and Chang, 1986]

OpN3q OpNDq

MACE, MVSDF and OTF
(Sec. 2.5.2, 2.5.3, 2.5.4)
[Mahalanobis et al., 1987]
[Kumar, 1986] [Refregier, 1991]

Opmax tN3, D3uq OpNDq

UMACE and MACH
(Sec. 2.5.5)
[Mahalanobis et al., 1987]
[Mahalanobis et al., 1994]

OpD3q OpDq

ASEF and MOSSE
(Sec. 2.5.6, 2.5.7)
[Bolme et al., 2009] [Bolme et al., 2010]

OpND logDq OpDq

Nonlinear correlation filters
(Sec. 2.5.8):
[Mahalanobis and Kumar, 1997]
[Alkanhal and Vijaya Kumar, 2003]
[Jeong et al., 2006] [Jeong et al., 2009]
[Jeong and Principe, 2006]
[Henriques et al., 2012]
[Thornton et al., 2004] [He et al., 2011]
[Rodriguez et al., 2013] [Xie et al., 2005]

N/A OpNDq

O
u

r
T

e
ch

n
iq

u
e
s CF with LB (Chap. 5) OprN `KsT log T q OpT q

MCCF (Chap. 3) OpDC3 `NDC2q OpC2Dq

MCCF with LB (Chap. 5) OpKT pC3 `NC2qq OpC2T q

Table 2.3: The computational complexity and memory usage of existing corre-
lation filters techniques and the new approaches proposed in this thesis. N and
D respectively denote the number of training examples and the length (size) of
each example (trained filter). K refers to the number of iterations in ADMM
solver. T refers to the size of search window, where T ą D in the correlation
filters with limited boundaries. The number of channels is denoted by C.
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Chapter 3

Multi-Channel Correlation Filters

In computer vision it is now rare for tasks like detection/matching to be per-

formed on single channel image descriptors (e.g. 2D array of intensity values or

gradient magnitudes). With the advent of advanced descriptors like HOG [Dalal

and Triggs, 2005] and SIFT [Lowe, 1999] pattern matching across multi-channel

signals has become the norm rather than the exception in most visual detec-

tion tasks. Most of these image descriptors can be viewed as multi-channel

images/signals with multiple measurements (such the oriented edge energies)

associated with each pixel location. We shall herein refer to all image descrip-

tors as multi-channel images.

The motivation for working with multi-channel image descriptors rather than

raw single channel pixel intensities stems from seminal work on the mammalian

primary visual cortex (V1) [Hubel and Wiesel, 1962]. Here, local object appear-

ance and shape can be well categorized by the distribution of local directional

edges, without precise knowledge of their spatial location. Jarrett et al. [2009]

showed that many V1-inspired features follow a similar pipeline of filtering an

image through a large filter bank, followed by a nonlinear rectification step, and

finally a blurring/histogramming step resulting in a multi-channel signal (where

the number of channels was dictated by the size of the filter bank). It has been

noted [Jarrett et al., 2009] that V1-inspired descriptors obtain superior photo-

metric and geometric invariance in comparison to raw intensities giving strong

motivation for their use in many modern vision applications.

The most notable approach to multi-channel detection in computer vision can

be found in the seminal work of Dalal & Triggs [Dalal and Triggs, 2005] where

the authors employ a HOG descriptor in conjunction with a linear SVM to learn
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a detector for pedestrian detection. This same multi-channel detection pipeline

has gone on to be employed in a myriad of other detection tasks in vision ranging

from facial landmark localization/detection [Zhu and Ramanan, 2012] to general

object detection [Felzenszwalb et al., 2010].

Computational and memory efficiency, however, are issues for Dalal & Triggs

style multi-channel detectors, and originate from solving a quadratic objective

in the spatial domain, and the pre-loading of multi-channel descriptors of all

training images. A central advantage of using a linear SVM for learning a multi-

channel detector, however, is the ability to treat that detector as a multi-channel

linear filter during evaluation. Instead of inefficiently moving the detector spa-

tially across a multi-channel image, one can take advantage of the fast Fourier

transform (FFT) for the efficient application of correlating a desired template/-

filter with a signal.

During training, however, all learning is done in the spatial domain. This can be

a slow and inefficient process. The strategy involves the extraction of positive

and negative multi-channel image patches of the object/pattern of interest across

large amounts of data. From a practical perspective, most algorithms employed

for learning multi-channel object detectors incur a memory cost linear in the

number of samples (e.g. linear SVM in Dalal and Triggs [2005]). Whilst this

seems reasonable at a glance, consider a simple example of storing 200, 000 50ˆ50

single-channel image in double precision. In the case of raw pixels this amounts

to only 3.72 GB of storage, a manageable figure on current desktop hardware.

Using a multi-channel image of 40 channels (e.g. 5 scales and 8 orientations

when using oriented edge energies), storage blows out to an untenable 149 GB.

Strategies have been proposed to curb storage complexity, however they are

largely based on heuristic subsampling of the resolution of the multi-channel

image, or the number of training samples.

From a learning perspective, much of this storage can be viewed as inefficient

as it often involves shifted versions of the same multi-channel image. This is a

real strength of MOSSE correlation filters as the objective provides a way for
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x

h
y

Figure 3.1: An example of multi-channel correlation/convolution where one has a
multi-channel image x correlated/convolved with a multi-channel filter h to give
a single-channel response y. By posing this objective in the frequency domain,
our multi-channel correlation filter approach attempts to give a computational
& memory efficient strategy for estimating h given x and y.

naturally modeling shifted versions of an image without the burden of explicitly

storing all the shifted image patches. In addition, inspecting the objective of the

MOSSE technique in the Fourier domain one can see that its learning processes

only involves an FFT of training samples and an simple summation of the sam-

ples in the Fourier domain, referred as to auto- cross- correlation energies, with

a memory footprint of O(D), where D is the length of the signal/image. This

great memory efficiency of the MOSSE technique gives one the chance to use a

huge amount of positive/negative samples during the learning process with no

memory concern. A nice property which can give the technique the ability to

learning numerous different patterns.

Hitherto, correlation filter theory with efficient memory and computation, to

our knowledge, has been restricted to single-channel signals/filters limited to

image intensities. This does not allow the canonical correlation filters to handle

multi-channel descriptors for accurate detection/matching of complex patterns

as many non-filter detection techniques do.

An example of multi-channel correlation can be seen in Figure 3.1 where a multi-

channel image is convolved/correlated with a multi-channel filter/detector in or-

der to obtain a single-channel response. The peak of the response (in white) in-

dicating where the pattern of interest is located. Training efficient multi channel

correlation filters for pattern detection/matching is at the heart of this chapter.
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3.1 Correlation Filters in the Spatial Domain

Bolme et al. [2010]’s MOSSE correlation filter can be expressed in the spatial

domain as,

Ephq “
1

2

N
ÿ

i“1

||yi ´ h ‹ xi||
2
2 `

λ

2
||h||22 (3.1)

where yi P RD is the desired response for the i-th observation xi P RD, λ is a

regularization term and ‹ indicates the spatial correlation of two signals. In order

to mathematically represent the spatial correlation operator one can express

Equation 3.1 as solving a ridge regression problem in the spatial domain,

Ephq “
1

2

N
ÿ

i“1

D
ÿ

j“1

||yipjq ´ hJxir∆τ js||
2
2 `

λ

2
||h||22 (3.2)

where C “ r∆τ 1, . . . ,∆τDs represents the set of all circular shifts for a signal

of length D. Bolme et al. [2010] advocated the use of a 2D Gaussian of small

variance (2-3 pixels) for yi centered at the location of the object (typically the

centre of the image patch). The solution to this objective becomes,

h “ H´1
N
ÿ

i“1

D
ÿ

j“1

yipjqxir∆τ js (3.3)

where,

H “ λI`
N
ÿ

i“1

D
ÿ

j“1

xir∆τ jsxir∆τ js
J . (3.4)

Solving a correlation filter in the spatial domain quickly becomes intractable

as a function of the signal length D, as the cost of solving Equation (3.3) be-

comes OpD3 `ND2q.
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3.2 Correlation Filters in the Fourier Domain

It is well understood in signal processing that circular convolution in the spatial

domain can be expressed as a Hadamard product in the frequency domain [Ku-

mar, 2005]. This allows one to express the objective in Equation 3.2 more suc-

cinctly and equivalently as,

Epĥq “
1

2

N
ÿ

i“1

||ŷi ´ x̂i ˝ conjpĥq||22 `
λ

2
||ĥ||22 (3.5)

“
1

2

N
ÿ

i“1

||ŷi ´ diagpx̂iq
Jĥ||22 `

λ

2
||ĥ||22 .

where ĥ, x̂, ŷ are the Fourier transforms of h,x,y. The complex conjugate of ĥ is

employed to ensure the operation is correlation not convolution. The equivalence

between Equations 3.2 and 3.5 also borrows heavily upon another well known

property from signal processing namely, Parseval’s theorem which states that

xJi xj “ D´1x̂Ji x̂j @i, j, where x P RD . (3.6)

The solution to Equation 3.5 becomes

ĥ “ rdiagpŝxxq ` λIs´1
N
ÿ

i“1

diagpx̂iqŷi (3.7)

“ ŝxy ˝
´1 pŝxx ` λ1q

where ˝´1 denotes element-wise division, and

ŝxx “
N
ÿ

i“1

x̂i ˝ conjpx̂iq & ŝxy “
N
ÿ

i“1

ŷi ˝ conjpx̂iq (3.8)

are the average auto-spectral and cross-spectral energies respectively of the train-
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ing observations. The solution for ĥ in Equations 3.2 and 3.5 are identical other

than that one is posed in the spatial domain, and the other is in the frequency

domain. The power of this method lies in its computational efficiency. In the

frequency domain a solution to ĥ can be found with a cost of OpND logDq.

The primary cost is associated with the DFT on the ensemble of training sig-

nals txiu
N
i“1 and desired responses tyiu

N
i“1.

Inspecting Equation 3.8 one can see an additional advantage of correlation filters

when posed in the frequency domain, specifically, memory efficiency. One does

not need to store the training examples in memory before learning. As Equa-

tion 3.8 suggests one needs to simply store a summation of the auto-spectral ŝxx

and cross-spectral ŝxy energies. This is a powerful result not often discussed in

correlation filter literature as unlike other spatial strategies for learning detectors

(e.g. linear SVM) whose memory usage grows as a function of the number of

training examples OpNDq, correlation filters have fixed memory overheads OpDq

irrespective of the number of training examples.

3.3 Proposed Multi-Channel Framework

Inspired by single-channel correlation filters we proposed a multi-channel strat-

egy for learning a correlation filter [Kiani et al., 2013]. Our proposed multi-

channel objective in the spatial domain is,

Ephq “
1

2

N
ÿ

i“1

||yi ´
K
ÿ

k“1

hpkq ‹ x
pkq
i ||

2
2 `

λ

2

K
ÿ

k“1

||hpkq||22 (3.9)

where ‹ indicates the spatial correlation of two signals in Figure 3.2(a). As shown

for the single channel correlation filters, the above equation can be expressed as

solving a multi-channel ridge regression problem in the spatial domain as:

Ephq “
1

2

N
ÿ

i“1

D
ÿ

j“1

||yipjq ´
K
ÿ

k“1

hpkqJx
pkq
i r∆τ js||

2
2 `

λ

2

K
ÿ

k“1

||hpkq||22 (3.10)
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where xpkq and hpkq refers to the kth channel of the vectorized image and filter

respectively where K represents the number of filters. As with a canonical filter

the desired response is single-channel y “ ryp1q, . . . ,ypDqsT even though both

the filter and the signal are multi-channel. Solving this multi-channel form in

the spatial domain is even more intractable than the single-channel form with

a cost of OpD3K3 ` ND2K2q since we now have to solve a KD ˆ KD linear

system.

Inspired by the efficiencies of posing single-channel correlation filters in the

Fourier domain we can express Equation 3.10 equivalently and more succinctly

as,

Epĥq “
1

2

N
ÿ

i“1

||ŷi ´
K
ÿ

k“1

diagpx̂
pkq
i q

Jĥpkq||22 `
λ

2

K
ÿ

k“1

||ĥpkq||22 (3.11)

where ĥ “ rĥp1qJ, . . . , ĥpKqJsJ is a KD dimensional supervector of the Fourier

transforms of each channel. This can be simplified further,

Epĥq “
1

2

N
ÿ

i“1

||ŷi ´ X̂iĥ||
2
2 `

λ

2
||ĥ||22 . (3.12)

where X̂i “ rdiagpx̂
p1q
i q

J, . . . ,diagpx̂
pKq
i qJs, Figure 3.2(b). At first glance the

cost of solving this linear system looks no different to the spatial domain as one

still has to solve a KDˆKD linear system with an intractable cost of OpD3K3`

ND2K2q:

ĥ˚ “ pλI`
N
ÿ

i“1

X̂J
i X̂iq

´1
N
ÿ

i“1

X̂J
i ŷi (3.13)

37



3.3.1 A Variable Re-ordering Approach for Efficient Optimiza-

tion

According to Figure 3.2 (b), X̂ is sparse banded and inspecting Equation 3.12 one

can see that the j th element of each correlation response ŷipjq is dependent only

on the K values of Vpĥpjqq and Vpx̂pjqq, where V is a concatenation operator

that returns a K ˆ 1 vector when applied on the j th element of a K-channel

vector tapkquKk“1, i.e. Vpapjqq “ rconjpap1qpjqq, ..., conjpapKqpjqqsJ. Therefore,

we proposed to equivalently express Equation 3.12 through a simple variable

re-ordering as, Figure 3.2(c):

EpVpĥpjqqq “
1

2

N
ÿ

i“1

||ŷipjq ´ Vpx̂ipjqqJVpĥpjqq||22 `
λ

2
||Vpĥpjqq||22,

for j “ 1, ..., D. (3.14)

Therefore, an efficient solution of Equation 3.12 can be found by solving D

independent K ˆK linear systems using Equation 3.14 as:

Vpĥpjqq˚ “ Ĥ
´1

N
ÿ

i“1

Vpx̂ipjqqŷipjq (3.15)

where,

Ĥ “ λI`
N
ÿ

i“1

Vpx̂ipjqqVpx̂ipjqqJ (3.16)

This results in a substantially smaller computational cost of OpDK3`NDK2q,

which is required to solve a set of D independentKˆK linear systems, compared

to optimizing this objective using Equations 3.12 and 3.9 by solving a KDˆKD

linear system of cost of OpD3K3 ` ND2K2q, where in most cases D " K and
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS

• Extending canonical correlation filter theory
to efficiently handle multi-channel signals

• A multi-channel detector whose training
memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance
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NOTATION: ∗: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Figure 3. Car detection on the MIT Street Dataset.
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS

• Extending canonical correlation filter theory
to efficiently handle multi-channel signals

• A multi-channel detector whose training
memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNEL CFS

 

 

(i) Spatial domain:
 

 

arg min
𝐡

           −             ∗

K

k=1

           
2

2
+ λ 

          
2
2

K

k=1

 𝐲 𝐱(k)  𝐡(k)  𝐡(k) 

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

 

 

arg min
h 

      − conj                                                       
2

2
+ 𝜆

          

2

2
 𝐲  

 𝐡 (1) 
⋮ 

 𝐡 (K)    

D × 1 D × KD KD × 1 

𝐱 (1) 
0 

0 

𝐱 (K) 
0 

0 
… 

 𝐡 (1) 
⋮ 

 𝐡 (K)    

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

 

 

arg min
ν(𝐡 j ) 

        −                            
2
2

+ 𝜆
      

2
2
     for  j = 1, … , D. 𝐲 (j) conj(ν 𝐱 j ) 

 

scalar 1 × K K × 1 

 
NOTATION: ∗: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

False positive rate

D
et

ec
tio

n 
ra

te

Our method
SVM + HOG

250 500 1000 2000 4000 8000
0

0.2

0.4

0.6

Number of Training images

D
et

ec
tio

n 
ra

te
 a

t F
P

R
 =

 0
.1

0

SVM + HOG
Our method

250 500 1000 2000 4000 8000 1600024000
0

20

40

60

Number of training images

T
ra

in
in

g 
tim

e 
(s

)

SVM + HOG

Our method

(a) (b) (c)
Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.

FACIAL LANDMARK DETECTION

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Lo
ca

liz
at

io
n 

ra
te

Threshold (fraction of interocular distance)

Human

Our method

Valstart et al.

Everingham et al.

Figure 2. Facial landmark detection on the LFW dataset.

CAR DETECTION

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Threshold (pixels)

D
et

ec
tio

n 
ra

te

Our method

MOSSE

ASEF

Figure 3. Car detection on the MIT Street Dataset.

REFERENCES

[1] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.
Visual object tracking using adaptive correlation filters. In
CVPR ’10.

(c)

Figure 3.2: Visualizing (a) MCCF objective in the spatial domain, (b) MCCF
objective in the Fourier domain, and (c) Variable re-ordering for computationally
efficient optimization. For direct optimization of (a) and (b) in the spatial and
frequency domain one needs to solve a KD ˆKD linear system with a compu-
tational cost of OpD3K3`ND2K2q and memory usage of OpD2K2q. Using the
proposed variable re-ordering approach, the objective in (b) can be expressed by
D independent K ˆ K linear system in a substantially smaller computational
cost of OpDK3`NDK2q and required memory of OpK2Dq independent of the
number of training samples.

D is very large (the dimension of a training example) [Kiani et al., 2013].

3.3.2 Memory Efficiency

As outlined in Section 3.2, an additional strength of single-channel correlation

filters is their memory efficiency. Specifically, one does not need to hold all the

training examples in memory, as SVM does. Instead, they need to just compute

the auto-spectral ŝxx and cross-spectral ŝxy energies respectively of the training

observations (see Equation 3.8). The memory saving become sizable as the

number of training examples increases, the memory overhead remains constant

at OpDq instead of OpNDq if one was to employ a spatial objective.

A similar strategy can be exploited in our multi-channel correlation form. For
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multi-channel correlation filters this saving becomes even more dramatic as the

memory overhead remains constant OpK2Dq as opposed to OpNDKq in the non-

filter learning techniques (e.g. linear SVM). This property stems from the sparse

banded structure of multi-channel correlation filters such that the problem can

be posed as D independent K ˆK linear systems [Kiani et al., 2013].

3.4 Experiments

To demonstrate the efficiency of the proposed technique, we evaluate it across

a number of challenging localization and detection tasks using several publicly

available datasets including the UIUC Cars dataset [Agarwal and Roth, 2002],

INRIA Horses dataset [Ferrari et al., 2010] and Daimler pedestrian dataset [Munder

and Gavrila, 2006]. All these datasets consist of images with large intra-class

variations, cluttered background, partial occlusion, scale and huge out-door light-

ing changes.

Object Detection/Localization. The goal of object detection/localization

is to predict the location and the bounding box of the target object within an

image along with its confidence score. Given a test image and a trained multi-

channel correlation filter of an specific object, the object detection/localization

is performed by correlating each channel correlation filter over its corresponding

feature channel and then summing up all the correlation outputs to get a single

confidence map (correlation output y, Figure 3.1). A local maximum whose con-

fidence score is more than a threshold indicates the presence of the target object

within test images. The bounding box of the detected object is approximated by

the 2D size of the correlation filter/detector whose maximum response indicates

the presence of the target object.

Feature Extraction and Processing. Across all the experiments, we used the

same multi-channel image representation, specifically HOG [Dalal and Triggs,

2005] characterized by nine orientation bins over unsigned [0, π] degrees nor-

malized by cell and block sizes of 5 ˆ 5. All the images are power normalized

to have zero-mean and unit variance to increase the robustness of the detector
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against large lighting changes. A Cosine-window is applied on all the feature

channels (HOGs) in the spatial domain to reduce the frequency effects caused

by high frequencies belonging to the opposite borders of the images in the Fourier

domain.

Desired Correlation Outputs. For all experiments, we defined the desired

correlation response for the positive training samples using a 2D Gaussian func-

tion with a spatial variance of 2-3 pixels whose peak is centered at the location of

the target of interest (car, horse, pedestrian, etc.) and near to zeros values else-

where. The desired correlation filters for negative/background training samples

are defined using a 2D matrix of zero values.

Evaluation Metrics. The detection performance is measured by the number

of true positive (TP - the number of desired foreground objects detected by the

detector) and false positive (FP - the number of background patches wrongly

detected as the object of interest) detections. A detection is considered as false

positive if the predicted bounding box with a correlation response higher than

the detection threshold does not contain the target object. A detection is true

positive if the overlap ratio a0 between the predicted bounding box Bp and a

ground truth bounding box Bgt is more than a decision threshold θ,

a0 “
areapBp

Ş

Bgtq

areapBp
Ť

Bgtq
ě θ (3.17)

The trade-off between TP and FP can be effectively measured using detection

rate versus false positive rate, Precision-Recall and Recall-FPPI (false positive

per image) by varying a threshold and computing the recall and precision/FPPI

for each threshold value, where

Recall “
TP

nP
(3.18)

Precision “
TP

TP ` FP
(3.19)
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FPPI “
FP

N
(3.20)

where TP, nP, FP and N respectively indicate the true positive detections, the

total number of desired objects, the number of false detections and the number

of test images.

3.4.1 Daimler Pedestrian Dataset: Comparison with Linear SVM

We evaluated our method for pedestrian detection using the Daimler pedes-

trian dataset [Munder and Gavrila, 2006] containing five disjoint images sets,

three for training and two for testing. Each set consists of 4800 pedestrian and

5000 non-pedestrian (background) images of size 36 ˆ 18. In total, there are

p4500 ` 5000q ˆ 5 images in this dataset. The HOGs were computed over 5

orientation bins with cell and block sizes of 3 ˆ 3. A multi-channel correlation

filter (MCCF) for pedestrian detection was trained using all the negative and

positive training samples with their corresponding desired responses. Given a

testing image, we first correlate its feature channels with the trained MCCF

and then measure the Peak-to-Sidelobe Ratio (PSR) of the correlation output

plane with a threshold to detect pedestrian. This threshold was chosen through

a cross-validation process. Peak-to-Sidelobe Ratio (PSR) is a common metric

used in correlation filter literature for detection/verification tasks. It is the ra-

tio of the peak response to the local surrounding response, more details on this

measure can be found in [Kumar, 2005]. In this experiment we chose to com-

pare our MCCF directly with a spatial detector learned using a linear SVM (as

originally performed by Dalal and Triggs [Dalal and Triggs, 2005]). The linear

SVM was trained in almost exactly the same fashion as our MCCF so as to keep

the comparison as fair as possible.

Detection Performance. We evaluated the detection performance of our

method and SVM using detection rate versus false positive rate (FPR). The

detection rate refers to the percentage of the pedestrian images which are cor-

rectly classified as pedestrians. False positive rate, on the other hand, indicates
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how often non-pedestrian images are wrongly detected as pedestrian.

Inspecting Figure 3.3 (a) one can see the detection performance of our method

at FPR = 0.10 as a function of the size of the training set. It is interesting

to note that our MCCF objective can achieve good detection performance with

substantially smaller amounts of training data when compared to a linear SVM.

The ROC curves of 250 and 1000 training images are shown in Figure 3.3 (b-

c) for more details, where our method outperformed SVM for all false positive

rates. This superior performance for less training images can be attributed to

how correlation filters implicitly use synthetic circular shifted versions of images

within the learning process without having to explicitly create the images. As a

result our MCCF objective can do “more with less” by achieving good detection

performance with substantially less training data.

Inspecting Figure 3.3 (d) one can see our MCCF obtains almost similar detection

results to the linear SVM in terms of detection performance as a function of

false positive rate (FPR). This result is not that surprising as the linear SVM

objective is quite similar to the MCCF objective (which can be interpreted as a

ridge regression when posed in the spatial domain). It is well understood that

the linear SVM objective enjoys better tolerance to outliers than ridge regression,

but in practice we have found that advantage to be only marginal when learning

multi-channel detectors.

Some examples of true positive, false positive and false negative cases detected

by our method are shown in Figure 3.5. The pedestrian patches (second row)

are classified as non-pedestrian due to their low quality and low contrast that

make gradient computation for HOGs inefficient. The main reason for classifying

non-pedestrian patches as pedestrian (third row) is their vertical pattern (e.g.

trees, bars, fences) which is visually very similar to the human body.

Computation and Memory Efficiency. Figure 3.4 depicts one of the major

advantages of MCCF, and that is its superior scalability with respect to training

set size. One can see how training time starts to increase dramatically for linear
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Figure 3.3: Daimler Pedestrian Dataset. Comparing our method with SVM
+ HOG (a) pedestrian detection rate at FPR = 0.10 versus the number of
training images, and (b-d) ROC curves of detection rate as a function of false
positive rate for (b) 250, (c) 1000 and (d) 8000 training images.

SVM1 where as our training time only increases modestly as a function of training

set size. The central advantage of our proposed approach here is that the solving

of the multi-channel linear system in the frequency domain is independent of the

number of images. Therefore the only component of MCCF that is dependent

on training set size is the actual FFT on the training images which should only

have the moderate computational cost OpND logDq as the training set size N

increases. Finally, inspecting Table 3.1 one can see the superior nature of our

MCCF approach in comparison to linear SVM with respect to memory usage.

As discussed in Section 3.3 our proposed MCCF approach has a modest fixed

memory requirement independent of the training set size, whereas the amount

of memory used by the linear SVM approach is a linear function of the number

of training examples employed.

1We employed the efficient and widely used LibLinear linear SVM package http://www.

csie.ntu.edu.tw/~cjlin/liblinear in all our experiments.
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Figure 3.4: Comparing the training time of our method with SVM as a function
of training set sizes. MCCF’s training time linearly and slowly grows up by
increasing the number of training images, and it is the time required to compute
the FFT of training images. Computing the auto- and cross- correlated energies
in the Frequency domain and filter training are independent of the number of
training images. For SVM, however, the training time nonlinearly increases when
the size of training samples increases. The training images are randomly selected
from three training sets containing 29400 pedestrian and non-pedestrian images.

Figure 3.5: Some samples of (top) true detection of pedestrian (true positive),
(middle) false detection of non-pedestrian (false negative), and (bottom) false
detection of pedestrian (false positive).

250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32

Table 3.1: Comparing minimum required memory (MB) of our method with
SVM as a function of number of training images. The memory footprint of our
method is independent of the number of training images, because all memory
it requires is for auto- and cross- correlation energies with the same size of a
training image. The required memory for SVM is linear to the size of training
size, since this technique requires to load all training samples in the memory for
classifier learning.
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3.4.2 UIUC Cars Dataset

The UIUC cars dataset [Agarwal and Roth, 2002] contains gray level images

of side views of cars with very large intra-class variations, partial occlusion,

different resolution, cluttered background, extreme lighting and scale changes.

The training samples contain 550 cars and 550 non-car images of size 100 ˆ 40

pixels. The dataset consist of two standard test sets. The first contains 200

single-scale cars in 170 street scene images. The cars in this set are all the same

size of 100ˆ40, as in the training images. The other test set contains 139 cars in

108 images in sizes between 89ˆ36 and 212ˆ85 pixels. We used the Equal Error

Rate (EER) of the Precision-Recall curve to evaluate the detection performance,

which is the value where the precision and recall are the same. The overlap ratio

for true/false positive detections is set to a0 ě 0.50 (θ “ 0.50 in Equation 3.17).

Multi-Scale Detection and Bounding Box Approximation. For multi-

scale detection, we use the pyramid approach proposed in [Felzenszwalb et al.,

2010] as illustrated in Figure 3.6. First, an image pyramid is formed by scaling

the test image from 0.4 to 1.4 times the image size with a scale-step of 1.2. Then,

the correlation output for each level of the pyramid is obtained by correlating

the multi-channel correlation filter over its corresponding scaled image. The final

correlation output (confidence map) is the maximum value over all the pyramid

correlation outputs y “ max ty0, ..., yN´1u. The bounding box of a detected

object is approximated by dividing the 2D size of the filter over the scale factor

of the pyramid level whose the maximum value belongs to.

Evaluation. We compare our method against other state-of-the-art approaches

on the UIUC cars dataset as reported in Table 3.2. The evaluation is performed

using the detection rate at the Equal Error Rates (EER) of the Precision-Recall

curve. The results show the overall superiority of our method compared to the

others both in terms of detection rate at EER and detection time. The best

detection rate on the single scale set belongs to Mutch et al. [Mutch and Lowe,

2006] followed by our proposed method. This method, however, suffers from

very low detection speed (0.03 fps), compared to our method with a detection
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Figure 3.6: A pyramid approach for multi-scale object detection. The scale pyra-
mid is formed by scaling up/down the input image by different factors, the first
column (1.5, 1.0 and 0.5, here). The second column shows the correlation out-
puts corresponded to the pyramid levels (scales). The final correlation output
(confidence map) is computed by max-pooling of the resized correlation outputs
over all pyramid levels, the third column. The final correlation output is used
to predict the location of the target objects, where the confidence score is more
than a pre-defined threshold. The bounding box of the predicted target is ap-
proximated using the size of the correlation filter divided by the scale factor of
the pyramid level whose the confidence score belongs to.

speed of 70 fps. For multi scale detection, our method obtained the third

best detection rate lower than Lampert et al. [Lampert et al., 2008] and Gall

et al. [Gall and Lempitsky, 2009]. These methods, however, require a huge

amount of memory and computations to train an efficient sub-window searching

technique. Figure 3.8 visualizes the detection rate (%) and speed (fps) of our

method versus the state of the arts. The average detection speed of our method

with slightly higher accuracy is almost 9 times higher than the fastest previous

approach with same detection rate on the single scale images. Note that we

can easily speed up our system by parallelizing the correlations across different

feature channels and image scales (up to 400 fps) . Figure 3.7 shows some

qualitative car detection results.

3.4.3 INRIA Horses Dataset

The INRIA horse dataset [Ferrari et al., 2010] consists of 170 images with one

or more side-views of horses as positive samples and 170 background images
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Method
Single Scale Images Multi Scale Images

accuracy time (sec.) accuracy time (sec.)

SVM + HOG 95.0% 0.02 77.9% 0.2
Mutch and Lowe [2006] 99.9% 30 90.6% -
Leibe et al. [2008] 97.5% 3 95.0% 3
Kuo and Nevatia [2009] 98.5% 0.5 95.0% 2.8
Lampert et al. [2008] 98.5% 0.125 98.6% 0.40
Gall and Lempitsky [2009] 98.5% 1.5 98.6% 6

Our method 99.5% 0.015 97.84% 0.12

Table 3.2: UIUC car dataset. Detection rate at EER and detection time (sec)
of our method compared to state-of-the-art approaches. Our method achieves
very competitive results with much faster detection speed.

Figure 3.7: Detection results of our method over the UIUC cars dataset. The
proposed method is able to find the cars in street images captured under un-
controlled circumstances with challenging intra-class variations, very textured
background, extreme lighting and scale changes. The ground truth and the
detected cars are respectively shown by the red and dashed blue boxes.
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Figure 3.8: Visualizing accuracy and detection speed of our method compared
to the state of the arts. In a very comparable detection accuracy, our method is
almost 30 times faster than the state of the art for single scale car detection in
the UIUC dataset.

without any horses as negative samples. The horses appear at a wide range

of scales against cluttered backgrounds. For training, as suggested in [Ferrari

et al., 2008] we use the first 50 positive and negative images for training and

the rest for testing. Since the horse patches are not at a same size, we resize

all the ground truth bounding box to the median aspect of all horses in the

dataset (1.3) and then resize them again into positive patches of size 96 ˆ 128

pixels. The negative training patches (of size 96 ˆ 128) are randomly cropped

from the negative samples (20 negative patches per sample, 1000 in total). The

Recall/FPPI curve of a0 ě 0.20 are used for evaluation. Similar to the previous

experiment, we used a pyramid approach to deal with the multi-scale object

detection and bounding box approximation with the difference that the image

pyramid is formed by scaling the test image from 0.3 to 1.6 times the image size.

Results. The results in Figure 3.9 and Table 3.3 show that our method out-

performs the state-of-the-art approaches proposed by Monroy et al. [Monroy

et al., 2011], Toshev et. al [Toshev et al., 2010], Villamizar et al. [Villamizar

et al., 2012] and SVM+HOG in terms of detection time and performance. The

detection rate achieved by our method at 1.0 FPPI (95.35 %) is slightly higher

than those obtained by Monroy et al. and Toshev et al. (92.40% and 94.50%,

respectively). In the case of complexity, our method respectively enjoys 12 and

100 times faster detection speed compared to Monroy et al. and Toshev et

al. respectively. The reason is that Monroy’s work integrates HOG features
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Figure 3.9: Recall versus FPPI ROC curve of our method compared to the
state-of-the-art approaches on the INRIA horses dataset.

with curvature information to improve the detection performance. Moreover,

the computational cost of this method is heavily affected by additional image

processing procedures such as sophisticated edge extraction, connected element

extraction for segment detection and distance accumulation computation. In

Toshevs work, a boundary structure segmentation model is proposed for simul-

taneously object detection and segmentation. It’s huge computational expense

comes from superpixel mining, initial segmentation based on superpixels and an

optimization problem that is solved using semidefinite programming relaxation.

Our method, on the other hand, takes advantage of the mathematical simplicity

and efficiency of correlation/convolution in the Fourier domain for super fast

pattern detection. All that required by our method for detection is the FFT of

feature channels, a set of element-wise multiplications in the Fourier domain and

an IFFT on the correlation output over scale space. Some detection examples

illustrated in Figure 3.10 show the robustness of our method against cluttered

background, partial occlusion, extreme scale and illumination variations.
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Method Recall % Recall % detection time/image
(0.10 FPPI) (1.0 FPPI) (sec.)

SVM + HOG 64.10 83.09 0.3
Monroy et al. [2011] 80.00 94.50 4
Toshev et al. [2010] 64.27 92.40 30
Villamizar et al. [2012] 74.77 86.000 1

Our method 78.19 95.35 0.25

Table 3.3: The detection performance (recall at 0.10 and 1.0 FPPI)and search
time of the competing approaches versus the proposed technique on the INRIA
horses dataset. Our method outperforms the others both in terms of test com-
putation and detection rate.

Figure 3.10: Detection results of our method over the INRIA horses dataset.
Our proposed method is stable against cluttered background, illumination and
scale changes. The ground truth, true positive and false positive detections are
respectively shown by the blue, green and red boxes.
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3.5 Chapter Summary

In this chapter we proposed a novel extension to correlation filter theory for

learning multi-channel correlation filters. We introduced the objective of multi-

channel correlation filters both in the spatial and frequency domain with identical

closed-form solutions. We illustrated that the sparse-banded form of the objec-

tive in the Fourier domain allows one to find the optimal solution with very

efficient memory usage and computational complexity. Specifically, we demon-

strated that the required memory to learn a multi-channel correlation filter is

independent of the number of training images allowing one to employ a large

amount of training data during filter learning. We evaluated the proposed ap-

proach on classification (pedestrian) and detection (car and horse) in images.

The experiments demonstrated the superior computation and efficient mem-

ory usage of our proposed approach compared to the linear classifier SVM and

leading spatial detectors with near to state of the art detection/classification

performance. The experiments and the key findings are summarized as follows.

Pedestrian Classification

• dataset: Daimler Pedestrian dataset including three sets of training and

two sets of testing images. Each individual set contains 4800 positive and

5000 negative examples of size 36ˆ 18.

• compared to: linear SVM + HOG

• challenges: large pedestrian pose and clothing variations, poor image

quality, low contrast to background

• constraints: single scale cropped patches

• key findings: (1) MCCF’s training time linearly grows by increasing

the number of training images. For SVM, the training time nonlinearly

increases when the training size increases. (2) Unlike SVM, the required

memory for MCCF training is constant and independent of the number
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of training images. (3) MCCF achieved better detection rate compared to

linear SVM with substantially less training images.

Car Detetion

• dataset: UIUC Cars dataset including 550 cars and 550 non-car training

images of size 100ˆ 40.

• compared to: linear SVM + HOG, Mutch and Lowe [2006]; Leibe et al.

[2008]; Kuo and Nevatia [2009]; Lampert et al. [2008]; Gall and Lempitsky

[2009]

• challenges: large scale variations, cluttered background, large intra-class

variations, extreme lighting, partial occlusion and varying image quality

• constraints: single side-view cars

• key findings: (1) MCCF is robust against scale variations through a

simple pyramid scaling technique. (2) The detection performance achieved

by MCCF is slightly lower than the state of the art for both single-scale

and multi-scales testing images. (3) The detection speed of MCCF on the

UIUC testing set is around 70 fps. The detection speed for the fastest

previous technique with almost same detection rate is around 8 fps.

Horse Detection

• dataset: The INRIA horse dataset consists of 170 images with one or

more side-views of horses as positive samples and 170 background images

without any horses as negative samples.

• compared to: linear SVM + HOG, Monroy et al. [2011]; Toshev et al.

[2010]; Villamizar et al. [2012]

• constraints: single side-view horses

• challenges: large scale variations, cluttered background, extreme outdoor
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lighting, partial occlusion and different image quality

• key findings: Same as the car detection experiment, this experiment

shows that the MCCF is able to detect multi-scale horses at a superior

detection speed of around 4 fps. Compared to the state of the art with the

same detection performance, MCCF is almost 16 times faster.

A question may that arise is why we evaluated our method on the pedestrians,

cars and horses objects. We selected these object classes because of (1) their

small intra-class variations (in a single view), and (2) the drawback of current

correlation filters learning large intra-class variations. Note that this is not

particularly a disadvantage of correlation filters, as many modern complicated

classifiers/detectors are not robust against large intra-class variation and do not

generalize well on unseen data. In fact, the major goal of these experiments is

showing how the new approach can address some classical limitations of current

correlation filters (e.g. using multi-channel features, here) by preserving their

memory and computation efficiencies. In addition, it is worth to state that

the proposed approach is not limited to single view car and horse detection, as

was done in the experiments. One can easily perform multi-view horse and car

detection by learning a set of filters that corresponded to different object views

(e.g side, front, back views of cars) for view-invariant object detection.
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Chapter 4

Multi-Channel Correlation Filters: From

Image to Video

Human action recognition in video is a challenging problem in computer vi-

sion which has received substantial attention over the past years [Wang and

Mori, 2011; Laptev et al., 2008; Fernandez and Kumar, 2013; Huang et al., 2011;

de Campos et al., 2011]. Action recognition has been considered an important

step for various video understanding problems such as video surveillance, video

retrieval, gesture recognition, human-computer interaction and event analysis.

4.1 Spatial-Temporal Descriptors

From a vision perspective, a video data V with T frames can be represented

as an spatial-temporal volume V “
 

vt
(T

t“1
, where T is the dimension of the

video in the time domain (number of frames) and each vt is a 2D image/frame

(typically intensity) in the space domain, such that t1 ă t2 ă ... ă tT . Based on

this representation, recent developments in feature description in static images

(spatial domain) have been successfully extended to video data (spatial-temporal

domain) to represent the video motion(temporal) and appearance(spatial) char-

acteristics.

Various spatial-temporal representations for video have been evaluated by Dol-

lar et al. [Dollar et al., 2005] for action classification including normalized pixel

values, windowed optical flow and gradient magnitudes. The evaluation showed

the superiority of the magnitude descriptor. Discarding orientation informa-

tion and primarily using magnitudes for representation, however, made this ap-

55



proach very sensitive to illumination variations. This drawback was addressed

by Kluser et al.’s [Kluser et al., 2008] 3D HOG descriptors, where the popular

HOG descriptor [Dalal and Triggs, 2005] was extended to video sequences. The

spatial-temporal HOG descriptors yield promising results and have been used

in several recent works [Wang et al., 2009]. The spatio-temporal extensions of

SIFT and SURF descriptors were defined in a similar manner to 3D HOG and

can be found in [Paul Scovanner and Shah, 2007] and [Willems et al., 2008].

The major problem of these descriptors was their heavy memory usage and very

high computations caused by learning a non-linear SVM over these multi-channel

spatio-temporal features.

Apart from the above spatial-temporal features, some other leading represen-

tations are learned geometrical models of human body parts [Wang and Mori,

2011], space-time pattern templates, shape or form features [Blank et al., 2005] [Ro-

driguez et al., 2008], interest-point-based representations [Laptev et al., 2008],

and motion/optical flow patterns [Efros et al., 2003] which are not in the scope

of this thesis.

4.2 Correlation Filters for Action Recognition: Pros

and Cons

The application of correlation filters has recently been investigated for human

action detection/recognition and has yielded promising results [Ali and Lucey,

2010] [Rodriguez et al., 2008] [Fernandez and Kumar, 2013]. The main idea

of these approaches is to represent actions using spatial-temporal volumes and

learn a correlation filter in the 3D frequency domain that produces a peak at

the origin of the action in both spatial and temporal domain.

More specifically, Rodriguez et al. [Rodriguez et al., 2008] has extended the

Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter to

3D MACH and proposed action MACH to train 3D correlation filters for action

recognition in video sequences. The main advantage of this approach is its
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closed-form solution for both scalar and vector features which makes the training

process computationally very efficient. Moreover, detection can be made fast due

to the efficiency of correlation in the frequency domain.

This method, however, suffers from three major limitations. First, action MACH

trains a correlation filter that satisfies a set of criteria (e.g. maximizing the

average correlation height) over all positive training examples. It has been shown

by Ali and Lucey [Ali and Lucey, 2010] that action filters trained using action

MACH are equivalent to the average of the action specific examples which suffers

from poor generalization for unseen data and over-training for training examples.

Second, action MACH only makes use of positive examples and ignores negative

examples during learning process (according to its learning objective). This

may result in training correlation filters with low discrimination power which do

not perform well against large inter-class similarities (confusions among walking,

jogging and running in [Rodriguez et al., 2008]). Finally, action MACH does not

specify desired values over the entire correlation output of training examples. It

was discussed in [Bolme et al., 2010] that this may increase the sensitivity to

noise or produce smooth peaks which are difficult to accurately recognize/detect.

A cross-correlation in the spatial domain is employed in [Rodriguez et al., 2008]

to deal with smooth peaks. This cross-correlation in the spatial domain, however,

resulted in a very high computational cost.

4.3 Action MCCF

We propose to apply multi-channel correlation filters, see Chapter 3, for human

action recognition in video [Kiani et al., 2014b, 2013]. The core idea is that each

video sequence with N time-ordered frames can be considered as a multi-channel

signal with N channels (scalar features such as intensity, gradient magnitude and

temporal derivatives). Given a set of training examples (including both positive

and negative videos) and their corresponding correlation outputs, the goal is to

learn a multi-channel action filter in the frequency domain that produces the de-

sired correlation outputs when correlated with corresponding training examples.
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Figure 4.1: An example of learning a multi-channel correlation filter for walking
action cycle. The action cycle is represented by N intensity frames and the
goal is to learn an N -channel correlation filter that returns a desired correlation
output (a 2D Gaussian) when correlated with training action examples.

An example of learning a multi-channel correlation filter for the walking action is

shown in Figure 4.1. For training examples with N frames of scalar feature (e.g.

intensity), the temporal dimension (number of channels) of the trained MCCF

is equal to N. Fortunately, the MCCF can be easily extended to vector features

such as HOG and SIFT. In the case of vectored features, an action MCCF of a

video with N frames in a feature space of M channels (e.g. M = 5 for a 5-bin

HOG), the number of the filter channels is M ˆN .

The advantages of MCCF for action recognition are as follows [Kiani et al.,

2014b]. First, the ridge regression form of MCCF in the spatial domain allows

one to specify the desired values for the entire correlation output (e.g. using the

2D Gaussian function). This significantly reduces the sensitivity to noise and

practically produces sharp peaks for more accurate detection/recognition with

no need of any post-processing as done in action MACH [Rodriguez et al., 2008].

Second, the MCCF is able to use both positive and negative training exam-

ples. This allows us to train discriminative action filters which are more robust

against large inter-class similarities, e.g the similarities among jogging, running

and walking actions. Finally, real-time action recognition can be performed due

to the low computation of MCCF in the frequency domain.
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diving bench swing weight lifting high bar swing

bending jumping jack jumping forward one hand waving

Figure 4.2: Examples of actions from (top) the UCF sport, and (bottom) the
Weizmann datasets.

4.4 Experiments

4.4.1 Databases

We used two publicly available action datasets for evaluation: Weizmann dataset [Blank

et al., 2005], and UCF sport dataset [Rodriguez et al., 2008].

Weizmann Dataset: The Weizmann dataset contains 10 actions (bending,

running, walking, skipping, jumping jack, jumping forward, jumping in place,

jumping sideway, waving two hands and waving one hand ) performed by nine

different subjects over a static background with slight changes in view point,

scale and illumination. There all 90 sequences in this dataset, each contains

about 40 - 120 frames of size 189ˆ 144.

UCF Sport Datset: The UCF sport dataset is more challenging and contains

10 different types of human actions including diving, kicking, weight lifting, horse

riding, running, walking, skateboarding, golf swinging, swinging at the high bar

and swinging on the pommel horse (and floor) performed by a different number of

subjects. This dataset consists of 150 video clips filmed under challenging situa-

tions with cluttered background, large lightning/scaling changes, and significant

intra-class variations.
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4.4.2 Feature Extraction and Desired Correlation Outputs

We evaluated our method using different types of features including normalized

intensity, edge magnitude, temporal derivative and multi-channel HOG descrip-

tors computed over 5 orientation bins normalized by cell and block sizes of 5ˆ 5

and 3 ˆ 3, respectively. We used HOG for comparing our technique with the

state of the arts. To compensate for the large illumination variation, all frames

were power-normalized.

For positive examples, a 2D Gaussian with spatial variance of 2 was employed to

define the desired correlation outputs whose peak was centered at the center of

the actor at last frame. A 2D matrix of zero values formed the desired correlation

outputs of negative examples.

4.4.3 Filter Training and Testing

The spatial-temporal annotations from [Tian et al., 2013] were used to extract

training action cycles of both datasets. The cycles of each action class („10 -

60 frames per cycle) were carefully aligned to be consistent in both the spatial

and temporal domains. Given a set of positive and negative training examples

and their corresponding desired correlation outputs, the action specific filter was

trained using Equation 3.13. For testing, we applied the MCCF filter trained

for each class on a test video, and the label of the filter with maximum Peak-

to-Sidelobe Ratio (PSR) [Kumar, 2005] is assigned. To deal with scaling in the

UCF sport dataset, a simple pyramid approach was employed to scan testing

videos across different scales (from 0.4 to 1.5 of scaling-step 1.5) and the cor-

relation output with maximum PSR across the pyramid was selected for each

video. For actions with whole-body translation (e.g. walking and skipping) we

trained two action filters (left-to-right and right-to-left) by vertically flipping the

training examples. We performed leave-one-subject-out cross-validation for the

Weizmann dataset (8 subjects for training and the other one for testing) [Blank

et al., 2005] and leave-one-sample-out for UCF sport dataset (one video sample
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Figure 4.3: The confusion matrix of our method for (top) the Weizmann, and
(bottom) the UCF dataset (best viewed in pdf).

for testing and the rest for training) Rodriguez et al. [2008].

4.4.4 Quantitative Results

The confusion matrix of our approach on the Weizmann dataset is illustrated

in Figure 4.3 (top), showing 100% accuracy of our method for all action classes

except jump and skip. Two confusions occurred between jump versus skip and

skip versus run actions caused by their significant motion/appearance similari-

ties. Figure 4.3 (bottom) shows our confusion matrix on the UCF sport dataset.

The proposed method achieved promising results for most of the actions. There

are more errors in skating, running and kicking. This might be caused by the

disadvantage of correlation filters (and most of the linear classifiers) to deal with

very large intra-class variations and inter-class similarities. In addition, HOG

features are not able to capture motion features in the temporal domain which

has been shown to be more robust to large motion similarities [Wang et al., 2009].

We can increase the robustness of MCCF against large inter-class motion similar-
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Figure 4.4: Qualitative results. PSRs versus frame number obtained by applying
10 trained action MCCFs on some selected testing videos. The jumping sequence
is a misclassified case since the PSR produced by the skipping filter is slightly
higher than jumping filter. For the successful cases, the high peaks (e.g. there
are 5 high peaks in walking) correspond to action cycles (best viewed in color).
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#26 #31 #36 #41

psr: 4.9 psr: 5.6 psr: 5.4 psr: 18.8

#27 #31 #35 #39

psr: 8.2 psr: 6.8 psr: 9.5 psr: 24.4

Figure 4.5: Qualitative results. Selected frames of two actions with correspond-
ing correlation outputs. Please refer to ”Qualitative Results” for more expla-
nation.

63



ities using more discriminative spatio-temporal features such as 3DHOG [Kluser

et al., 2008] and HOG/HOF descriptors [Laptev et al., 2008].

Table 4.1 provides a comparison of our method with those previously reported

in the literature on the Weizmann and UCF sport datasets. For the Weiz-

mann dataset, the highest mean recognition rate (100%) achieved by Huang et

al. [Huang et al., 2011]. This method, however, was evaluated on 9 actions (the

skip action was discarded) using a rich combination of optical flow and color

histogram features (the accuracy of our method would be 100% if we discard

the skip action too). In addition, feature extraction, tracking and stabilization

made Huang’s method very slow. Our accuracy (97.8%) is slightly lower than

this method on more action classes with real-time recognition speed, and higher

than those reported by [de Campos et al., 2011] and [Wang et al., 2009]. For

the UCF sport dataset, our method achieved competitive accuracy compared

to the stat-of-the-art. The best performance obtained by Cai et al. [Cai et al.,

2013] using the dynamic structure preserving map (DSPM) technique. This tech-

nique, however, suffers from heavy computations. For both datasets, the action

MACH [Rodriguez et al., 2008] obtained the lowest performance of 86.6% (Weiz-

mann) and 69.2% (UCF sport) due to its sensitivity to inter-class similarities and

poor generalization.

Moreover, the result reported in Table 4.1 shows that the accuracy of all meth-

ods on the Weizmann dataset is much higher than the UCF sport dataset. The

reason is that unlike the Weizzmann dataset which was filmed under controlled

situations (e.g. plain background, stationary camera, single viewpoint and slight

lighting changes), the UCF sprot dataset contains realistic actions captured un-

der real-world circumstances including stationary and moving camera, diversity

of cluttered backgrounds, different viewpoints, illumination changes, scaling and

low resolution. This implies that the action MCCF performs quite well and

very competitive on action videos captured under fairly controlled situations.

Whereas, similar to the other approaches its accuracy is degraded when action

videos contain real-world situations such as background clutter and large action

variations.
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We also evaluated our method with various types of image representations in-

cluding normalized intensity, edge magnitude, temporal derivative and 5-bin

HOG descriptors. The results reported in Table 4.2 show that our method is

fairly robust against different feature types and performs quite well using simple

features such as image intensity and edge magnitude. Action recognition using

these simple features can significantly improve the training and testing efficien-

cies in terms of feature extraction time, recognition speed and memory usage.

As expected, the best performance belongs to the HOG descriptor.

4.4.5 Qualitative Results

Figure 4.4 shows the PSRs obtained by applying the trained action filters on

some testing examples such as the Jumping jack, Running, Jumping side and

Jumping (from the Weizmann dataset) versus frame numbers. Obviously, the

PSRs produced by same-class filter are significantly higher than those produced

by different-class filters. The Jumping sequence is a failed case, where the PSRs

produced by Skip filter over the test video are slightly higher than those by

Jump filter. Interestingly, our method is able to produce high PSR for each

action cycle through the test sequences. For example, the Jumping side video

contains two ground truth cycles of Jumping side action which correspond to

the (two) high PSRs. The high PSRs can be further used to accurately detect

the action occurrences across the test videos. Figure 4.5 illustrates some se-

lected frames of Jumping jack (left) and Jumping side (right) action cycles with

their corresponding correlation outputs produced by Jumping jack and Jumping

side filters, respectively. For each frame, the frame number and PSR value are

shown. The maximum peak almost occurs at the last frame of each action cycle

(temporal domain) upon the location of the actor (spatial domain).

4.4.6 Runtime Complexity

The average runtime of MCCF (HOG descriptors for each frame) for a 144 ˆ

180ˆ 200 Weizmann testing sequence was 8.15 seconds (real-time) on a Core i7,

65



Method Weizmann UCF sport

Huang et al. [Huang et al., 2011] 100% -
Cai et al. [Cai et al., 2013] 98.7% 90.6%

Wang et al. [Wang et al., 2009] 97.8 % 77.4%
Campos et al. [de Campos et al., 2011] 96.7 % 80.0%
Rodriguez et al. [Rodriguez et al., 2008] 86.6% 69.2%

Yeffet & Wolf [Yeffet and Wolf, 2009] - 79.3%

Our method 97.8% 82.6%

Table 4.1: Mean accuracy of our method compared to the state-of-the-art on the
Weizmann and UCF sport datasets.

Normalized intensity Edge magnitude Temporal derivative HoG (5 bins)

89.4% 91.2% 92.3% 97.8%

Table 4.2: Mean accuracy of different features (the Weizmann dataset)

3.40 GHz. While, action MACH and [Blank et al., 2005] reported a runtime

of 18.65 seconds (without spatial normalized correlation, with normalization it

takes about 11 minutes for the same video) and 30 minutes for a same video

of this dataset [Blank et al., 2005], respectively. Moreover, most of the other

methods in Table 4.1 employed the non-linear SVM over a sliding window (in

the spatial and temporal domains) for classification which is shown to be much

slower than the MCCF [Kiani et al., 2013].

4.5 Chapter Summary

In this Chapter, we proposed to apply multi-channel correlation filters for hu-

man action recognition in videos. Towards this purpose, we present a video

using spatio-temporal feature channels, and then use MCCF to learn a spatio-

temporal correlation filter for each action class. We discussed that the MCCF

can efficiently address the drawbacks of current correlation-based action recog-

nition techniques. The experiments showed the competitive performance of our

approach against the state of the arts with superior computational efficiency and

real-time recognition speed.
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Chapter 5

Correlation Filters with Limited Bound-

aries

The traditional correlation filter objective described in Equation (3.2) produces

a filter that is particularly sensitive to misalignment in translation. A highly

undesirable property when attempting to detect or track an object in terms of

translation. This sensitivity is obtained due to the circular shift operator xr∆τ s,

where ∆τ “ r∆x,∆ysJ denotes the 2D circular shift in x and y. It has been well

noted in correlation filter literature [Kumar, 2005] that this circular-shift alone

tends to produce filters that do not generalize well to other types of appearance

variation (e.g. illumination, viewpoint, scale, rotation, etc.). This generalization

issue can be somewhat mitigated through the judicious choice of non-zero regu-

larization parameter λ, and/or through the use of an ensemble N ą 1 of training

observations that are representative of the type of appearance variation one is

likely to encounter.

A deeper problem with the objective in Equation 3.2, however, is that the shifted

image patches xr∆τ s at all values of ∆τ P C, except where ∆τ “ 0, are not rep-

resentative of image patches one would encounter in a normal correlation opera-

tion (Figure 5.1(c)). In signal-processing, one often refers to this as the boundary

effect.

In computer vision, the boundary effect causes learning correlation filters from

an unbalanced set of “real-world” and “synthetic” examples. These synthetic

examples are created through the application of a circular shift on the real-world

examples, and are supposed to be representative of those examples at different

translational shifts. We use the term synthetic, as all these shifted examples
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are plagued by circular boundary effects and are not truly representative of the

shifted example (see Figure 5.1(c)). As a result the training set used for learning

the template is extremely unbalanced with one real-world example for every D´1

synthetic examples (where D is the dimensionality of the examples) [Kiani et al.,

2014a].

These boundary effects can dramatically affect the resulting performance of the

estimated template. Fortunately, these effects can be largely removed if the

correlation filter objective is slightly augmented, but has to be now solved in the

spatial rather than frequency domains. Unfortunately, this shift to the spatial

domain destroys the computational efficiency that make correlation filters so

attractive.

5.1 Proposed Approach

One simple way to circumvent this problem spatially is to allow the training

signal x P RT to be a larger size than the filter h P RD such that T ą D [Kiani

et al., 2014a]. Through the use of a DˆT masking matrix P one can reformulate

Equation (3.2) as,

Ephq “
1

2

N
ÿ

i“1

T
ÿ

j“1

||yipjq ´ hJPxir∆τ js||
2
2 `

λ

2
||h||22 . (5.1)

The masking matrix P of ones and zeros encapsulates what part of the signal

should be active/inactive. The central benefit of this augmentation in Equa-

tion 5.1 is the dramatic increase in the proportion of examples unaffected by

boundary effects (T´D`1T instead of 1
D ). From this insight it becomes clear that

if one chooses T ąą D then boundary effects become greatly diminished (Figure

5.1(d)). The computational cost OpD3 `NTDq of solving this objective is only

slightly larger than the cost of Equation 3.2, as the role of P in practice can be

accomplished efficiently through a lookup table.

As mentioned earlier, posing the objective in the Fourier domain has been a
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(a) (b)

   (c) (d)

Figure 5.1: (a) Defines the example of fixed spatial support within the image
from which the peak correlation output should occur. (b) The desired output
response, based on (a), of the correlation filter when applied to the entire im-
age. (c) A subset of patch examples used in a canonical correlation filter where
green denotes a non-zero correlation output, and red denotes a zero correlation
output in direct accordance with (b). (d) A subset of patch examples used in
our proposed correlation filter. Note that our proposed approach uses patches
stemming from different parts of the image, whereas the canonical correlation
filter simply employs circular shifted versions of the same single patch. The
central dilemma in this proposal is how to perform (d) efficiently in the Fourier
domain. The two last patches of (d) show that D

T patches near the image border
are affected by circular shift in our method which can be greatly diminished by
choosing D ăă T .

standard solution to deal with the inefficient complexity of learning canonical

correlation filters in the spatial domain. A problem that arises, however, when

one attempts to apply the same Fourier insight to the augmented spatial objec-

tive in Equation 5.1 is its non capability to the Fourier domain ,

Ephq “
1

2

N
ÿ

i“1

||ŷi ´ diagpx̂iq
J
?
DFPJh||22 `

λ

2
||h||22 . (5.2)

Unfortunately, since we are enforcing a spatial constraint the efficiency of this

objective balloons to OpD3 `ND2q as h must be solved in the spatial domain.
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5.1.1 Augmented Lagrangian

Our proposed approach for solving Equation (5.2) involves the introduction of

an auxiliary variable ĝ [Kiani et al., 2014a],

Eph, ĝq “
1

2

N
ÿ

i“1

||ŷi ´ diagpx̂iq
Jĝ||22 `

λ

2
||h||22

s.t. ĝ “
?
DFPJh . (5.3)

We propose to handle the introduced equality constraints through an Augmented

Lagrangian Method (ALM) [Boyd, 2010]. The augmented Lagrangian of our

proposed objective can be formed as,

Lpĝ,h, ζ̂q “
1

2

N
ÿ

i“1

||ŷi ´ diagpx̂iq
Jĝ||22 `

λ

2
||h||22

` ζ̂
J
pĝ ´

?
DFPJhq

`
µ

2
||ĝ ´

?
DFPJh||22 (5.4)

where µ is the penalty factor that controls the rate of convergence of the ALM,

and ζ̂ is the Fourier transform of the Lagrangian vector needed to enforce the

newly introduced equality constraint in Equation 5.3.

5.1.2 Optimization by Alternating Direction Method of Multi-

pliers

ALMs are not new to learning and computer vision, and have recently been used

to great effect in a number of applications [Boyd, 2010; Del Bue et al., 2011].

Specifically, the Alternating Direction Method of Multipliers (ADMMs) has pro-

vided a simple but powerful algorithm that is well suited to distributed convex

optimization for large learning and vision problems. A full description of AD-
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MMs is outside the scope of this work (readers are encouraged to inspect [Boyd,

2010] for a full treatment and review), but they can be loosely interpreted as

applying a Gauss-Seidel optimization strategy to the augmented Lagrangian ob-

jective. Such a strategy is advantageous as it often leads to extremely efficient

subproblem decompositions. A full description of our proposed algorithm can

be seen in Algorithm 1. We detail each of the subproblems as follows:

Subproblem g:

ĝ˚ “ arg minLpĝ; ĥ, ζ̂q (5.5)

“ pŝxy ` µĥ´ ζ̂q ˝´1 pŝxx ` µ1q

where ĥ “
?
DFPJh. In practice ĥ can be estimated extremely efficiently by

applying a FFT to h padded with zeros implied by the PJ masking matrix. ŝxx

and ŝxy are respectively the average auto-spectral and cross-spectral energies of

the training images in the Frequency domain as defined in Equation 2.26.

Subproblem h:

h˚ “ arg minLph; g, ζq (5.6)

“ pµ`
λ
?
D
q´1pµg ` ζq

where g “ 1?
D

PFJĝ and ζ “ 1?
D

PFJζ̂. In practice both g and ζ can be

estimated extremely efficiently by applying an inverse FFT and then applying

the lookup table implied by the masking matrix P.

5.1.3 Lagrange Multiplier Update

ζ̂
pi`1q

Ð ζ̂
piq
` µpĝpi`1q ´ ĥpi`1qq (5.7)

where ĝpi`1q and ĥpi`1q are the current solutions to the above subproblems at

iteration i` 1 within the iterative ADMM.
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5.1.4 Choice of Convergence Rate µ

A simple and common [Boyd, 2010] scheme for selecting µ is the following

µpi`1q “ minpµmax, βµ
pi`1qq . (5.8)

We found experimentally µp0q “ 10´2, β “ 1.1 and µmax “ 20 to perform well.

5.1.5 Computational Analysis

Inspecting Algorithm 1 the dominant cost per iteration of the ADMM optimiza-

tion process is OpT log T q for FFT. There is a pre-computation cost (before the

iterative component, steps 4 and 5) in the algorithm for estimating the auto- and

cross-spectral energy vectors ŝxx and ŝxy respectively. This cost is OpNT log T q

where N refers to the number of training signals. Given that K represents

the number of the ADMM iterations the overall cost of the algorithm is there-

fore OprN `KsT log T q [Kiani et al., 2014a].

Algorithm 1 Our approach using ADMMs

1: Intialize hp0q, ζp0q.
2: Pad with zeros and apply FFT:

?
DFPJhp0q Ñ ĥp0q.

3: Apply FFT:
?
DFζp0q Ñ ζ̂

p0q
.

4: Estimate auto-spectral energy ŝxx using Eqn. (3.8).
5: Estimate cross-spectral energy ŝxy using Eqn. (3.8).
6: i “ 0
7: repeat

8: Solve for ĝpi`1q using Eqn. (5.5), ĥpiq & ζ̂
piq

.
9: Inverse FFT then crop: 1?

D
PFJĝpi`1q Ñ gpi`1q.

10: Inverse FFT then crop: 1?
D

PFJζ̂
pi`1q

Ñ ζpi`1q.

11: Solve for hpi`1q using Eqn. (5.6), gpi`1q & ζpiq.
12: Pad and apply FFT:

?
DFPJhpi`1q Ñ ĥpi`1q.

13: Update Lagrange multiplier vector Eqn. (5.7).
14: Update penalty factor Eqn. (5.8).
15: i “ i` 1
16: until ĝ,h, ζ̂ has converged
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5.2 Extensions to MCCF

Combining the objective of correlation filters with limited boundaries, Equa-

tion 5.1, with that of multi-channel correlation filters, Equation 3.10, we propose

a general framework in the spatial domain to learn multi-channel correlation filter

with limited boundaries thku
K
k“1 by minimizing the following objective function:

Ephq “
1

2

N
ÿ

i“1

T
ÿ

j“1

||yipjq ´
K
ÿ

k“1

hpkqJPx
pkq
i r∆τ js||

2
2 `

λ

2

K
ÿ

k“1

||hpkq||22 (5.9)

Similar to the single-channel case, we employ an auxiliary variable ĝ to (i) ex-

press the circular shift operator r∆τ js in the spatial domain equivalently by a

Hadamard product in the Fourier domain, and (ii) apply the masking matrix P

in the spatial domain to force small spatial supports on h. The new objective

using the auxiliary variable ĝ is defined as:

Eph, ĝq “
1

2

N
ÿ

i“1

||ŷi ´ X̂iĝ||
2
2 `

λ

2
||h||22

s.t. ĝ “
?
DpFPJ b IKqh . (5.10)

where h “ rhp1qJ, . . . ,hpKqJsJ and ĝ “ rĝp1qJ, . . . , ĝpKqJsJ respectively show

the KD ˆ 1 over-complete representations of h and ĝ by concatenating their

K channels. Note that the length of the vectorized hpkq and ĝpkq are D and T ,

respectively, where D ! T and the sparse banded matrix X̂i is defined as X̂i “

rdiagpx̂
p1q
i q

J, . . . ,diagpx̂
pKq
i qJs of size T ˆKT .

In a same manner, we handle the equality constraint caused by the new auxiliary

variable using an Augmented Lagrangian Method. The augmented lagrangian

of the above equation is formulated as below:
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Lpĝ,h, ζ̂q “
1

2

N
ÿ

i“1

||ŷi ´ X̂iĝ||
2
2 `

λ

2
||h||22

` ζ̂
J
pĝ ´

?
DpFPJ b IKqhq

`
µ

2
||ĝ ´

?
DpFPJ b IKqh||

2
2 (5.11)

where µ is the penalty factor and ζ̂ “ rζ̂
p1qJ

, . . . , ζ̂
pKqJ

sJ is the KT ˆ 1 La-

grangian vector in the Fourier domain. Equation 5.11 can be solved using ADMM

by iteratively solving two subproblems g and h with closed-from solutions de-

scribed as below.

Subproblem g

ĝ˚ “ arg minLpĝ; ĥ, ζ̂q (5.12)

“ p

N
ÿ

i“1

X̂J
i X̂i ` µIq´1p

N
ÿ

i“1

X̂J
i ŷi ` µĥ´ ζ̂q

where ĥ “
?
DpFPJ b IKqh. Fortunately, the kronecker product with the

identity matrix can be broken into K independent IFFT computations of ĥpkq “
?
DFPJhpkq. In practice, each ĥpkq can be estimated extremely efficiently by

applying a FFT to each hpkq padded with zeros implied by the PJ masking

matrix. The over-complete vector h can be easily obtained by concatenating

thpkquKk“1.

Subproblem h

h˚ “ arg minLph; g, ζq (5.13)

“ pµ`
λ
?
D
q´1pµg ` ζq

where g “ 1?
D
pPFJ b IKqĝ and ζ “ 1?

D
pPFJ b IKqζ̂. Similarly, due to

separability of the kronecker product with the identity matrix IpKq both g and ζ

can be estimated extremely efficiently by applying an inverse FFT on each ĝpkq

and ζ̂
pkq

and then applying the lookup table implied by the masking matrix P.
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Lagrange Multiplier Update

ζ̂
pi`1q

Ð ζ̂
piq
` µpĝpi`1q ´ ĥpi`1qq (5.14)

where ĝpi`1q and ĥpi`1q are the current solutions to the above subproblems at

iteration i` 1 within the iterative ADMM.

5.2.1 Computational and Memory Analysis

Inspecting Equations 5.12, 5.13 and 5.14 one realizes that the dominant cost

over the ADMM optimization is OpCpT 3K3`NT 2K2qq, where C is the number

of iterations and OpT 3K3 ` NT 2K2q is the amount of computations required

to solve a KT ˆ KT linear system in subproblem g. As explained earlier, X̂

is sparse banded and through the variable reordering proposed in Equation 3.14

we can efficiently compute ĝ in a substantially smaller computational expense

of OpCpTK3 ` NTK2qq by solving T independent K ˆ K linear systems per

iteration. In this case, the memory usage is OpK2T q which is constant and

independent of the number of training images and iterations. In addition, an

overall computational cost of OppN ` CqT log T q is needed to compute the

FFTs/IFFTs of (i) N vectorized training images of length T before the iterations,

and (ii) the ζ, g and h variables during C iterations.

5.3 Experiments

5.3.1 Localization Performance

In the first experiment, we evaluated our method on the problem of eye localiza-

tion, comparing with prior correlation filters (without limited boundaries), e.g.

OTF [Refregier, 1991], MACE [Mahalanobis et al., 1987], UMACE [Savvides

and Kumar, 2003], ASEF [Bolme et al., 2009], and MOSSE [Bolme et al., 2010].

For fair comparison, we trained a limited correlation filter using normalized in-

tensity images (single-channel). The goal of this experiment is to demonstrate
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the superiority of correlation filters with limited boundaries against traditional

correlation filter techniques.

Dataset: The CMU Multi-PIE face database 1 was used for this experiment,

containing 900 frontal faces with neutral expression and normal illumination. We

randomly selected 400 of these images for training and the reminder for testing.

Image Preprocessing: All images were cropped to have a same size of 128ˆ

128 such that the left and right eye are respectively centered at (40,32) and

(40,96). The cropped images were power normalized to have a zero-mean and

unit standard deviation. Then, a 2D cosine window was employed to reduce

the frequency effects caused by opposite borders of the images in the Fourier

domain.

Filters Training: We trained a 64 ˆ 64 filter of the right eye using full face

images for our method (T “ 128ˆ 128 and D “ 64ˆ 64), and 64ˆ 64 cropped

patches (centered upon the right eye) for the others. Similar to ASEF and

MOSSE, we defined the desired response as a 2D Gaussian function with a

spatial variance of s “ 2 whose the peak was located upon the center of the

right eye.

Localization and Evaluation: Eye localization was performed by correlating

the filters over the face testing images followed by selecting the peak of the

output as the predicted eye location. The eye localization was evaluated by the

distance between the predicted and desired eye locations normalized by inter-

ocular distance,

d “
}pr ´mr}2

}ml ´mr}2
(5.15)

where mr and ml respectively indicate the true coordinates of the right and

left eye, and pr is the predicted location of the right eye. A localization with

normalized distance d ă th was considered as a successful localization. The

threshold th was set to a fraction of inter-ocular distance.

1http://www.multipie.org/
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The average of evaluation results across 10 random runs (at each run 400 images

are randomly selected for training and the others for testing) are depicted in

Figure 5.2, where our method outperforms the other correlation filters across

all thresholds and numbers of training examples. The accuracy of OTF and

MACE declines by increasing the number of training images due to over-fitting.

During the experiment, we observed that the low performance of the UMACE,

ASEF and MOSSE was mainly caused by wrong localizations of the left eye

and the nose. This was not the case for our method, as our filter was trained

in a way that returned zero correlation values when centered upon non-target

patches of the face image. A visual depiction of the filters and their outputs can

be seen in Figure 5.3, illustrating examples of wrong and correct localizations.

The high Peak-to-Sidelobe Ratio (PSR) [Bolme et al., 2010] value of our method

(15.7) indicates that our approach produces sharper peaks compared to the other

techniques (9.3 for MOSSE, for example) which makes detection easier and more

reliable.

The Influence of D and T on Detection Accuracy: We examined the

influence of T (the size of training images) on the performance of eye localization.

For this purpose, we employed cropped patches of the right eye with varying sizes

of T “ tD, 1.5D, 2D, 2.5D, 3D, 3.5D, 4Du to train filters of size D “ 32 ˆ 32.

The localization results are illustrated in Figure 5.4(a), showing that the lowest

performance is obtained when T is equal to D (32 ˆ 32) and the localization

rate improved by increasing the size of the training patches with respect to the

filter size. The reason is that (1) by choosing T ą D the portion of patches

not affected by boundary effects pT´D`1T q reduces, and (2) when T ą D more

non-target (negative) patches are involved in the learning process, making the

detector robust against wrong detection.

5.3.2 Runtime and Convergence Evaluation

This experiment demonstrates the utility of our approach to other iterative meth-

ods. Specifically, we compared our proposed approach against other methods in
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Figure 5.2: Eye localization performance as a function of (a) number of training
images, and (b) localization thresholds. Best viewed in color.

UMACE ASEF MOSSE Our method

PSR = 3.1 PSR = 8.4 PSR = 9.3 PSR = 15.7

Figure 5.3: An example of eye localization is shown for an image with normal
lighting. The outputs (bottom) are produced using 64 ˆ 64 correlation filters
(top). The green box represents the approximated location of the right eye
(output peak). The peak strength measured by PSR shows the sharpness of the
output peak.
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Figure 5.4: The localization rate obtained by different sizes of training images
(T ), the size of the trained filter is D “ 32ˆ 32.
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Figure 5.5: Runtime performance and convergence behavior of our method
against another naive iterative method (steepest descent method) [Zeiler et al.,
2010]. Our approach enjoys superior performance in terms of: (a) convergence
speed to train two filters with different sizes (32 ˆ 32 and 64 ˆ 64) and (b) the
number of iterations required to converge.

literature for learning filters efficiently using iterative methods. We compare

our convergence performance with a steepest descent method [Zeiler et al., 2010]

for optimizing the same objective. Results can be seen in Figure 5.5: (a) rep-

resents time to converge as a function of the number of training images, and

(b) represents the number of iterations required to optimize the objective (in

Equation 5.2).

In (a) one notices impressively how convergence performance is largely inde-

pendent of the number of images used during training. This can largely be

attributed to the pre-computation of the auto- and cross-spectral energy vec-

tors. As a result, iterations of the ADMM do not need to re-touch the training

set, allowing our proposed approach to dramatically outperform more naive iter-

ative approaches. Similarly, in (b) one also notices how relatively few iterations

are required to achieve good convergence.

5.3.3 Visual Object Tracking

We evaluated the proposed method for the task of real-time tracking on a se-

quence of commonly used test videos [Ross et al., 2008] shown in Table 5.1. We

compared our approach with state-of-the-art trackers including MOSSE [Bolme
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et al., 2010], kernel-MOSSE [Henriques et al., 2012], MILTrack [Babenko et al.,

2011], STRUCK [Hare et al., 2011], OAB [Grabner et al., 2006], SemiBoost

[Grabner et al., 2008], FragTrack [Adam et al., 2006] and IVT [Ross et al.,

2008].

All of these methods were tuned by the parameter settings proposed in their

reference papers. The desired response for a m ˆ n target was defined as a 2D

Gaussian with a variance of s “
?
mn{16 following [Henriques et al., 2012]. The

regularization parameter λ was set to 10´2. The number of ADMM iterations

for optimization was four as a trade-off between precision and tracking speed. A

track initialization process was employed for our approach and MOSSE, where

for fair comparison eight random affine perturbations were used to initialize the

first filter following Bolme et al. [2010].

5.3.3.1 Implicit Dense Sampling

Almost all current tracking approaches perform online learning and detection

using a random sampling strategy [Babenko et al., 2011], [Grabner et al.,

2008],[Adam et al., 2006], [Hare et al., 2011]. This class of trackers typically

select several non-target examples from the target’s neighborhood for the learn-

ing algorithm to make the tracker robust against wrong detections, as shown in

Figure 5.6(top).

There are three major drawbacks of random sampling trackers. First, the sparse

samples are stemmed from a small and limited region around the target of inter-

est with a large amount of overlap and pattern redundancy. This can drastically

reduce the discrimination of the tracker to unseen patches and lead to over-

training. Second, the spatial information of the randomly selected samples is

ignored in random sampling. Finally, collecting the random samples from small

neighborhood of the target does not allow the tracker to fully exploit all possi-

ble non-target (background) samples over the entire of the frame during online

learning and detection. For example, a video frame of size 100 ˆ 100 contains

almost 104 background samples which can efficiently be employed for a robust
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tracker learning and adaption. Whereas, a random sampling strategy can only

make use of just 10-15 of these patches at each frame to save computation and

memory.

On the other hand, one may say that all of the problems associated with random

sampling can be addressed by dense sampling strategy, where all possible (or at

least a large amount) of samples stemmed from the entire frame can be used for

online learning and tracking. This solution seems helpful at first glance, but it

negates the computational complexity and memory usage of learning algorithms

(SVM, Struct [Hare et al., 2011], Boost [Babenko et al., 2011] [Grabner et al.,

2008]) and, as a result, drastically reduces the tractability and the speed of

the tracker. For clarification, simply consider the amount of computation and

memory required to learn/update a linear SVM using 104 samples of size 60ˆ60

per frame.

Fortunately, the proposed approach exhibits a desired characteristic that makes

it very useful for dense sampling learning and tracking. A stated earlier, our

approach is capable of learning a filter with small spatial support from training

examples with much larger size. Referring to Figure 5.1, suppose that the prob-

lem is tracking the 50 ˆ 50 face object over frame sequences of size 200 ˆ 200.

For this purpose, our approach can be applied to train a small filter of size

D “ 50 ˆ 50 that returns a desired correlation output of size T “ 200 ˆ 200

when correlated over a frame of size T “ 200ˆ 200. The global maximum over

each frame can be used to localize and track the face object over video sequences.

According the Figure 5.1(d), our method implicitly exploits all possible patches

stemmed from different parts of the image/frame during learning including the

target (positive) and background (negative) patches. This is what exactly dense

sampling strategies try to do. As explained in the Figure 5.1 caption, a very

small portion of these patches are affected by circular shift (synthetic) while the

rest exactly show the real world background patches which can be efficiently

used to learn a robust and discriminative tracking filter. The main differences

between our method and the random sampling tracker are clearly illustrated in
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Memory. OpNDq
Complexity. learning algorithms (SVM, Boost, etc)
speed. 10 - 15 fps

Memory. OpDq
Complexity. FFT and ADMM iterations
speed. 50 - 100 fps

Figure 5.6: The main differences between regular random sampling trackers
(top) and our approach with implicit dense sampling strategy (bottom). The
required memory for random sampling trackers is linear to the number of se-
lected training samples, N, while, for our approach is independent of the number
of training samples. The complexity of random sampling trackers is deter-
mined by the type of the learning algorithm used for learning/detection, e.g.
Boosting and SVM. Whereas, all our method needs is computing a FFT of the
frame and performing few ADMM iterations. Due to the very low computational
cost of our method, its tracking speed is remarkably faster (in terms of fps)
compared to the random sampling approaches. D is the length of signal (size of
frame)

Figure 5.6.

In general, the proposed method is very efficient for dense sampling due to the

following reasons:

• Our method exploits all possible patches implicitly collected from the entire

frame with no additional memory usage.

• The computation of our method for implicit dense sampling is limited to

the FFT of the frame and a few iterations of ADMM optimization.

• This dense sampling is embedded in an online adaption, subsection 5.3.3.2,

which make our method much more robust against wrong detection and

challenging circumstances.

5.3.3.2 Online Adaption

We borrowed the online adaption from the work of Bolme et al. [2010] to adapt

our filter at the ith frame by updating the auto-spectral and cross-spectral ener-
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Sequence Frames Main Challenges

Faceocc1 886 Moving camera, occlusion

Faceocc2 812 Appearance change, occlusion

Girl 502 Moving camera, scale change

Sylv 1344 Illumination and pose change

Tiger1 354 Fast motion, pose change

David 462 Moving camera, illumination change

Cliffbar 472 Scale change, motion blur

Coke Can 292 Illumination change, occlusion

Dollar 327 Similar object, appearance change

Twinings 472 Scale and pose change

Table 5.1: Video sequences used for tracking evaluation.

gies in Equation 5.6:

pŝxxq
i “ ηpx̂i ˝ conjpx̂iqq ` p1´ ηqpŝxxq

i´1

pŝxyq
i “ ηpŷi ˝ conjpx̂iqq ` p1´ ηqpŝxyq

i´1 (5.16)

where, η is the adaption rate. We practically found that η “ 0.025 is appropriate

for our method to quickly be adapted against pose, scale, illumination variations,

etc.

5.3.3.3 Quantitative and Qualitative Results

The tracking results are evaluated in Table 5.2, as (i) percentage of frames

where the predicted position is within 20 pixels of the ground truth (precision)

[Babenko et al., 2011] [Hare et al., 2011], (ii) average localization error in pixels,

and (iii) tracking speed as number of frame per second (fps). Our method av-

eragely achieved maximum precision and minimum localization errors, followed

by STRUCK. One explanation for this is that our limited boundaries approach

employs a rich set of training samples containing all possible positive (target)

and negative (non-target of the whole frame) patches to train the correlation

filter, dense sampling. Whilst, the non filter approaches such as STRUCK and

MILTrack are limited by learning a small subset of positive and negative patches
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randomly stemmed from the target’s neighborhoods.

Similarly, it can be explained that the accuracy of MOSSE and kernel-MOSSE

are affected by synthetic negative samples which are not representative of the

”real-world” examples, as illustrated in Figure 5.1(c). In addition, these tech-

niques train an object filter/template using a cropped patch of the target subject

and discard the non-target (background) part of the whole frame. This reduces

the robustness of these methods against cluttered background. Moreover, our

method enjoys a high stability against challenging variations in scale (Cliffbar

and Twinings), illumination (Sylv), pose (David), appearance (Girl) and par-

tial occlusion (Faceocc1 and Faceocc2 ) due to the online adaption. In case of

the tracking speed, MOSSE outperformed the other methods by 600 fps. Our

method obtained lower fps compared to MOSSE and kernel-MOSSE, due to

its iterative manner. However, it obtained a tracking speed of 50 fps which is

appropriate for real-time tracking. Our method can run at 100 fps using two

ADMM iterations with superior average position error and precision compared

to MOSSE and kernel-MOSSE. The position error as a function of iteration

number is shown in Figure5.7.

A visual depiction of tracking results for some selected videos is shown in Fig-

ure 5.8, where our method achieved higher precision over all videos except Tiger1

and Twinings. Moreover, Figure 5.9 shows that our approach suffers from less

drift over the test videos. In Figure 5.10, tracking results of some selected frames

of the tested videos are shown, including ground truth, objects of interest, trained

filter per frame, tracking result and the estimated correlation outputs.

5.3.3.4 Parameter Selection

Number of ADMM Iterations. We evaluated our method with different

iterations of t1, 2, 4, 8, 16, 32, 64u, as shown in Figure 5.7, and eventually se-

lected four iterations (as a tradeoff between precision and tracking speed) for

our tracker. The tracking speed of our method using 4 iterations is around 50

fps with an average position error of 8 pixels as reported in Table 5.2. The

84



1 2 4 8 16 32 64
0

20

40

60

80

Number of iteration

P
os

iti
on

 e
rr

or
 (

pi
xe

l)
Figure 5.7: The position error of tracking versus the number of ADMM itera-
tions. We selected 4 iterations as a tradeoff between tracking performance and
computation.

average position error of 2 iterations is around 9.5 pixels with tracking speed of

100 fps. This allows one to choose the number of ADMM iterations respect to

the desired tracking speed and performance.

Initial Filter Learning. Following [Bolme et al., 2010], we randomly generated

eight affine perturbations of the first frame to initially train the target filter. For

this, the first frame was randomly perturbed by rotating by up to ˘ π
36 , scaling by

up to 1.0˘0.1 and translating by up to ˘4.0 pixels. Eight random perturbations

were selected for fair comparison to the MOSSE technique.

Adaption Rate η. The adaption rate for auto- cross- correlation adaption was

empirically set to η “ 0.025, Equation 5.16. We evaluated different values of η

form 0.001 to 0.500 and eventually selected η “ 0.025 with less average tracking

error over all testing videos. This rate for the MOSSE and kernel-MOOSE was

selected as 0.05 and 0.075, respectively.

Regularization Parameter λ. We evaluated the proposed approach by ad-

justing λ form 0.0001 to 1.0. Similar to MOSSE [Bolme et al., 2010], we trained

an initial filter using the first frame of each video and evaluated its PSR on the

second frame. We realized that 0.001 ď λ ď 0.1 produced high PSRs for all

videos and eventually selected λ “ 0.01 for tracking. We used the same value of

λ for all experiments in this thesis.
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FaceOcc1
1.00 1.00 0.75 0.97 0.22 0.97 0.94 1.00

7 5 17 8 43 7 7 8

FaceOcc2 0.74 0.95 0.42 0.93 0.61 0.60 0.59 0.97
13 8 31 7 21 23 27 7

Girl 0.82 0.44 0.37 0.94 - - 0.53 0.90
14 35 29 10 - - 27 12

Sylv 0.87 1.00 0.96 0.95 0.64 0.69 0.74 1.00
7 6 8 9 25 16 25 4

Tiger1 0.61 0.62 0.94 0.95 0.48 0.44 0.36 0.79
25 25 9 9 35 42 39 18

David 0.56 0.50 0.54 0.93 0.16 0.46 0.28 1.00
14 16 18 9 49 39 72 7

Cliffbar 0.88 0.97 0.85 0.44 0.76 - 0.22 1.00
8 6 12 46 - - 39 5

Coke Can 0.96 1.00 0.58 0.97 0.45 0.78 0.15 0.97
7 7 17 7 25 13 66 7

Dollar 1.00 1.00 1.00 1.00 0.67 0.37 0.40 1.00
4 4 7 13 25 67 55 6

Twinings 0.48 0.89 0.76 0.99 0.74 - 0.82 0.99
16 11 15 7 - - 14 9

mean 0.80 0.84 0.72 0.91 0.53 0.62 0.51 0.97
11 12 16 12 31 29 37 8

fps 600 100 25 11 25 25 2 50

Table 5.2: The tracking performance is shown as a tuple of {precision within
20 pixels, average position error in pixels}, where our method achieved the best
performance over 8 of 10 videos. The best fps was obtained by MOSSE. Our
method obtained a real-time tracking speed of 50 fps using four iterations of
ADMM. The best result for each video is highlighted in bold.
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Figure 5.8: Tracking results for selected videos, precisions versus the thresholds.
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Figure 5.9: Tracking results for selected videos, position error per frame.
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Figure 5.10: Tracking results of our method over testing videos with challenging
variations of pose, scale, illumination and partial occlusion. The blue (dashed)
and red boxes respectively represent the ground truth and the positions predicted
by our method. For each frame, we illustrate the target, trained filter and
correlation output.
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5.4 Chapter Summary

In this chapter, we investigated the influence of boundary effects on correlation

filter estimation. We theoretically demonstrated that current techniques learn

correlation filters using an unbalanced training set of D´1 shifted and one non-

shifted training patches, where D is the signal length. These shifted patches are

implicitly created through the circular property of the correlation/convolution

operator. We explained that the number of patches affected by boundary effects

can be drastically reduced by learning correlation filters whose spatial support is

much smaller than the dimension of training images. For this purpose, we pro-

posed a new objective to learn correlation filters with limited spatial support.

Particularly, we demonstrated how this objective can be iteratively optimized

in the frequency domain through an augmented lagrangian method with very

efficient memory and computation expenses. Moreover, we proposed an exten-

sion of this objective to handle multi-channel features for learning multi-channel

correlation filters with limited boundaries. We demonstrated the superior per-

formance of the proposed approach for a localization task against the state of the

art correlation filters. In addition, the convergence performance of our method

was compared with a spatial steepest descent method for optimizing the same

objective function, where we empirically showed that our approach converges in

a few iterations and its convergence time is almost independent of filter size and

the number of training images. Our method outperformed the state of the art

trackers for the task of visual object tracking.
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Chapter 6

Cascaded Correlation Filters for Fa-

cial Landmark Detection

Facial landmark detection is very important for face analysis, and has been stud-

ied widely in recent years [Belhumeur et al., 2011; Yang and Patras, 2013a,b;

Dantone et al., 2012; Valstar et al., 2010; Zhou et al., 2013; Milborrow and

Nicolls, 2008]. The main challenges of this problem come from imaging con-

ditions, when face images are captured under uncontrolled circumstances such

as extreme pose, illumination, expression and partial occlusions. To deal with

these challenges, many approaches have been proposed which can be generally

categorized in two classes: global face shape and local features based approaches.

The Active Appearance Model [Cootes et al., 2001], Active Shape Model [Cootes

et al., 1995] and their variations [Belhumeur et al., 2011; Milborrow and Nicolls,

2008; Saragih et al., 2011; Zhao et al., 2013] are typical methods which exploit

face global shape and geometric information for facial point detection. Although

these approaches are able to handle wrong detections caused by visually similar

landmarks, they are not robust against large variations in the face pose and

expression. Moreover, their optimization strategies (e.g. gradient descent) are

very sensitive to the initialization.

The local feature based methods, on the other hand, basically try to learn in-

dividual local detectors for each facial landmark. In [Vukadinovic and Pantic,

2005], 20 independent GentleBoost detectors are trained to detect 20 facial land-

marks in face images. Although landmark localization is performed within lim-

ited search regions, this approach suffered from wrong detections caused by the

lack of global face information. The approach proposed in [Zhao et al., 2012]
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is another technique that integrates context constraints with local texture de-

scriptors in the cascaded AdaBoost framework to independently detect facial

landmarks. Again, because of using just local texture information this method

does not show robustness to uncontrolled environments.

In recent years, several regression-based approaches have been proposed to di-

rectly map the local or global face appearance to facial landmarks [Dantone

et al., 2012; Valstar et al., 2010; Yang and Patras, 2013a,b]. Valstar et al. [2010]

proposed to learn regressors that map local image patches into the individual

landmarks. The work in Dantone et al. [2012] tried to implicitly map the global

face appearance into an average shape configuration using a conditional regres-

sion forest. But as stated in [Saragih, 2011], it is challenging to directly learn

an ideal regressor to map face appearance into global face shape with complex

non-linear variations.

6.1 Proposed Cascaded Framework

A cascaded correlation filters framework is proposed for facial landmark detec-

tion/localization in face images. In this framework, a set of correlation filters

with different spatial support (size) are connected together in a cascade manner,

where the size of the correlation filter decreases at lower levels. At the first level,

a global correlation filter which trained over the whole face image is applied to

predict its corresponding facial landmark. Since this correlation filter is trained

over an entire face, it implicitly encodes the geometric constrains and shape

information of facial landmarks. Exploiting global appearance and geometric

face information can significantly reduce the risk of wrong detections caused by

visually similar landmarks, e.g. the right eye center and the left eye center, and

approximately predict (not detect/localize) the position/region of the landmark

of interest, even in images with challenging pose, expression and occlusion.

The prediction in the first level, however, suffers from inaccurate detection typ-

ically with small position error, especially in those landmarks which might be
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affected by extreme pose and expression, e.g. outer lower and upper lip points.

To deal with this problems, the cascaded framework contains smaller correlation

filters with limited boundaries at the next levels to locally refine the prediction

of the previous levels. To avoid wrong detections and ambiguities of the small

size correlation filters, the search regions at each level are limited to a small

region around the predicted location of the previous level.

A three-level cascaded correlation filter is shown in Figure 6.1. The input for all

the three levels are the whole face returned by a face detector. The filter size at

level 1, 2 and 3 are respectively 128 ˆ 128, 64 ˆ 64 and 32 ˆ 32 pixels. Given

an input face image of size 128 ˆ 128, the location of the landmark of interest

is predicted at level 1. For this, a 128 ˆ 128 correlation filter is correlated over

the entire face and the global maximum peak is selected as the initial prediction

of each target landmark, the blue filled circle on the face image in level 1. The

red box indicates the search region which is the entire image at level 1. At level

2, a smaller 64 ˆ 64 correlation filter is similarly correlated on the entire face

and the maximum peak of the search region is selected as the refined landmark

location. Note that the search region in level 2 is limited to a small region

around the initial prediction of the previous level, level 1. In a similar manner,

the prediction in level 2 is used to refine the landmark position in level 3. The

final location of the landmark of interest is detected by averaging all the three

predictions over the cascade (the yellow filled circle).

6.2 Experimental Results

We evaluated our cascaded correlation filter technique on two publicly available

datasets, BioID [Jesorsky et al., 2001] and LFPW [Belhumeur et al., 2011].

6.2.1 Datasets

LFPW (Labeled Face Parts in the Wild) dataset has been used widely in facial

landmark detection experiments. All face images in this dataset are downloaded
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Level 3 Level 2 Level 1 

Figure 6.1: Framework of the cascaded correlation filters for facial landmark
detection. At the first level an inaccurate prediction is performed using global
landmark filter trained using whole face images. The prediction with small
position error is refined downward to the cascade levels using correlation filters
with smaller size (limited boundaries). The search area at each level is shown
by the red square. The color filled circles show the predicted landmark of the
interest in each level. The final detection/localization is performed by averaging
all the predicted locations over the all cascade levels, the yellow filed circle in
the right most face image. Best viewed in color.

from the web and represent large variations in pose, illumination, expression and

occlusion. The original version of this dataset contains 1100 training and 300

testing images. Since this dataset provides only web image URLs, some of image

URLs are not currently available. Therefore, we only downloaded 714 training

and 214 testing images. We used this dataset for parameter tuning, validation

and comparison of our method against the stat-of-the-art.

BioID dataset consists of 1521 near frontal face images of 23 subjects captured

with various scales and face expressions in lab environment, and is therefore less

challenging compared to LFPW. We used 20 landmarks manually annotated in

the FGNET project. This dataset has been commonly used to evaluate most

of the previous methods for facial landmark detection, allowing us to compare

our method to them. We used the training/testing split provided by [Yang and

Patras, 2013a], where 1000 images are randomly selected from the dataset for

training and the rest for testing.
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6.2.2 Implementation Details

We first investigate the number of cascade levels and feature channels using the

LFPW dataset. Then, we compare our technique against several state-of-the-art

approaches on both the BioID and LFPW datasets.

Face Bounding Box. The Viola and Jones face detector [Viola and Jones,

2001] is applied to find the face bounding box and is enlarged by 20% in order

to ensure that all facial landmarks are enclosed. All the boxes are resized to

128ˆ 128 pixels. We assumed that there is only one face in each image and all

images are in gray scale.

Desired Correlation Outputs. A 2D Gaussian function with spatial variance

of 2 is employed to define the desired correlation outputs whose the peak was

located upon the center of the landmark of interest. Note that the dimension of

correlation outputs is the same as the size of image (128ˆ 128).

Landmark Detection and Evaluation: Landmark prediction at each cascade

level is performed by correlating the trained landmark filters over face image fea-

ture channels and then selecting the peak over the summation of the correlation

outputs as the predicted landmark location. The detection at the last cascade

level is evaluated by the distance between the predicted and ground truth land-

mark location normalized by inter-ocular distance,

d “
}pi ´mi}2

}ml ´mr}2
(6.1)

where mr and ml respectively indicate the true coordinates of the right and

left eye, and pi and gi are the predicted and ground truth location of the ith

landmark, respectively. A localization with normalized distance d ă th was

considered as a successful localization. The threshold th is set to a fraction of

inter-ocular distance (0.10 in our experiments).

Feature Extraction. We extracted 43 feature channels for each face image, in-

cluding 40 Gabor features (eight different orientations and five scales), two Sobel
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features (horizontal and vertical gradient magnitudes) and one power-normalized

intensity image. A Cosine-window is applied on all the feature channels to reduce

the frequency effects caused by opposite borders of the images in the Fourier do-

main. According to Figure 6.2, Soble features obtained the highest detection

error followed by image intensities, due to their sensitivity to lighting and low

discrimination power to model different parts of human face. Gabor features

which have been widely used for various face problems, remarkably reduced the

detection error. This shows the advantage of using multi-channel features (e.g.

Gabor) over scalar features (intensity) for facial point detection. Eventually, we

used a combination of all these features (40 Gabors features, two Soble features

and the normalized intensity image) with the lowest detection error to improve

the overall detection performance as proposed in [Yang and Patras, 2013a].

Number of Cascade Levels. We investigated the performance of our tech-

nique versus the number of cascade levels. For this, we trained five different

multi-channel correlation filters of size 128ˆ 128, 64ˆ 64, 32ˆ 32, 16ˆ 16 and

8ˆ8 using 128ˆ128 LFPW training images. Then we employed these five filters

to form five cascaded correlation filters with different number of levels, namely

L0 (one level just whole face - 128ˆ128), L1 (two levels - 128ˆ128 and 64ˆ64),

L2, L3 and L4 (five levels, including all the correlation filters).

The performance of these cascaded filters for detecting 10 landmarks of the

LFPW testing images are shown in 6.3. The lowest localization rate and highest

mean error belong to L0 detector with a whole-face 128 ˆ 128 multi-channel

correlation filters. The reason is that holistic correlation filter is not robust

against face expression and pose, specially for those face landmarks which are

more affected by pose and expression, e.g. mouth landmarks. Reducing the size

of the correlation filters down to the cascade increases the detection performance.

For those landmarks which are not heavily involved in face expression, e.g. the

eyes and nose, the improvement is marginal.

The correction of the initial prediction at the first level of the cascade down-

ward to the last level is shown for several of the LFPW examples with partial
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Figure 6.2: Exploring different types of feature channels for five-levels cascaded
landmark detection using the LFPW dataset.

occlusions, pose variation and expression in Figure 6.4. The prediction at the

first level is not very accurate, particularly for occluded and under expression

landmarks, e.g. eyes and mouth corners. But, these inaccurate predications

at the first level are improved through the cascade refining over the next lev-

els. These small corrections over the cascade levels provides more accurate and

robust landmark detection.

6.2.3 Comparison with The-state-of-the-art Landmark Detec-

tors

We compared our proposed framework with the-start-of-the-art and leading land-

mark detectors in the literature on the LFPW and BioID datasets, including

Structured-Output Regression Forests (SO-RF) [Yang and Patras, 2013a], Con-

ditional Regression Forests (C-RF) [Dantone et al., 2012], Privileged Information-

based Conditional Regression Forest (PI-CRF) [Yang and Patras, 2013b], [Bel-

humeur et al., 2011], Boosted Regression [Valstar et al., 2010], Exemplar-based

Graph Matching [Zhou et al., 2013], Extended Active Shape Model [Milborrow

and Nicolls, 2008].

Figure 6.5 illustrated the detection performance of our method compared to the

others for the LFPW dataset. Our method is trained using 714 available train-

ing and tested on 214 available testing examples. For the other approaches, the

accuracy is reported using 821-870 and 214 available training and testing exam-
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Figure 6.3: Evaluating the proposed approach with different levels of cascade by
(top) mean normalized localization error, and (bottom) localization accuracy at
threshold of d ă 0.10 on the LFPW dataset.

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 6.4: Accurate landmark detection over cascade levels. The ground truth
and predicted locations are shown by blue dots and red squares, respectively.
The images are selected form the LFPW testing set (best viewed in color).
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Figure 6.5: Comparing the proposed approach to state of the art methods on
the LFPW dataset. (top) Mean normalized localization error, and (bottom)
localization accuracy at threshold of d ă 0.10.
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ples, respectively. As mentioned earlier, a part of the dataset is not available

anymore. We also compared our approach to the performance of human anno-

tators by calculating the average error of a user in comparison to the mean of

the other users [Yang and Patras, 2013a].

According to Figure 6.5, the proposed approach outperformed all the leading

approaches except SO-RF [Yang and Patras, 2013a]. The main reason is that

SO-RF method has considered the shape constraints, while our method captures

the global appearance with no shape constraints. Lacking shape constraints for

landmark detection sometimes leads to wrong detections with large location

errors. Even a very small number of these wrong detections will result in a very

large average error. This rarely happens in approaches with shape constraints.

Our method obtained superior performance compared to Conditional Regression

Forests (C-RF) [Dantone et al., 2012], Privileged Information-based Conditional

Regression Forest (PI-CRF) [Yang and Patras, 2013b], [Belhumeur et al., 2011]

for both mean detection error and localization rate. The average localization rate

of our method for all the ten landmarks is 93.73% compared to 81.86% of C-RF

and 83.80% PI-CRF. This superior performance is achieved by the capability of

our method for local improvement over cascade levels and its robustness against

wrong detection at the first level of the cascade. The accuracy of our method is

competitive to the accuracy of human annotators. Our method even performed

much better for five landmarks, left eye right, right eye left, nose left, nose right

and outer upper lip.

The results on the BioID dataset are shown in Figure 6.7 and Table 6.1, where

we compared our method to state of the art techniques on this dataset. Fig-

ure 6.7(a) shows the cumulative error versus the fractions of inter-ocular dis-

tance d for me17 (for 17 facial landmarks of all 19 internal landmarks) of our

proposed approach and the state of the arts. These results are reported by

[Zhou et al., 2013], [Belhumeur et al., 2011], [Valstar et al., 2010] and [Yang

and Patras, 2013a]. The results show the superiority of our method against all

the other approaches for almost all fractions of inter-ocular distance. This re-

sult demonstrates that our method achieved the state of the art performance
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for the BioID dataset and efficiently can detect all internal facial landmarks (by

internal landmark we mean the points located inside the face image not on the

face border, e.g. chain) when the face images are not captured under large pose

variations.

Figure 6.7(b) illustrates the mean detection error normalized by inter-ocular

distance (as pixel) of our method, [Valstar et al., 2010] and [Yang and Patras,

2013a] for all 19 internal landmarks (again chain landmark is discarded) of the

BioID dataset. We borrowed the parts ID from defined [Yang and Patras, 2013a].

The mean error of P9 and P14 is not reported in [Valstar et al., 2010]. The

detection rates for d “ 0.1 of our method, [Valstar et al., 2010] and [Yang and

Patras, 2013a] for all 19 internal landmarks of the BioId dataset are reported in

Table 6.1. The results show that our method achieved the best localization rates

for 13 of 19 landmarks, shown in bold font. Figure 6.8 visualizes the landmarks

of some BioID images localized by our method.

Aside from the competitive accuracy, our approach achieved the superior detec-

tion speed by localizing an individual landmark of 400 face images in one second

(2.5 ms to detect a landmark in a 128ˆ 128 face image), which is 16 times more

faster than the state-of-the-art approaches with real-time detection speed (25

face images per second) reported by [Yang and Patras, 2013a], [Dantone et al.,

2012] and [Yang and Patras, 2013b]. The detection time includes the amount of

time required for computing the FFT/IFFT of the feature channels, landmark’s

filters and correlation outputs and evaluating the correlation outputs to find the

global maximum over the entire correlation outputs, excluding the time required

to detect the bounding box of faces and feature extraction. The main drawback

of the cascaded framework, however, is that it is not able to refine the wrong

detections occur at the first level. This means that if a landmark is wrongly de-

tected in the first level (global filter) with large position error (e.g. the left mouth

corner instead of the right eye center), it is not possible to correct the error down

the cascade levels, a scenario which rarely happens in complicated frameworks

which employ face shape constraints and prior information (e.g. pose, occlusion

and expression) during the learning and testing processes.
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Figure 6.6: Detection examples of the LPFW dataset. The firs two rows show the
successful detections under challenging circumstances of expression, occlusion,
pose, lighting and poor quality. The third row shows some failed cases. The red
and blue marks respectively show the detected landmark and the ground truth
(best viewed in color).

Part Valstar SO-RF Our method Part Valstar SO-RF Our method

P1 94.75% 98.25% 99.35% P11 92.25% 100% 99.57%

P2 94.75% 98.50% 99.14% P12 92.25% 100% 99.35%

P3 93.50% 98.50% 98.71% P13 90.50% 99.75% 99.14%

P4 92.50% 99.00% 96.99% P14 – 97.00% 97.42%

P5 89.00% 95.25% 95.27% P15 96.25% 95.50% 97.63%

P6 90.25% 97.15% 97.20% P16 93.50% 97.75% 99.35%

P7 91.25% 96.50% 98.28% P17 93.25% 97.25% 99.57%

P8 81.00% 96.50% 98.06% P18 95.00% 98.50% 98.92%

P9 – 97.75% 96.99% P19 89.50% 97.25% 95.27%

10 92.25% 97.50% 99.78%

Table 6.1: The detection rate of our approach, [Valstar et al., 2010] and [Yang
and Patras, 2013a] for 19 individual landmarks of the BioID dataset. The bold
parts are those landmarks our method achieved the highest detection rate for.
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Figure 6.7: Comparison on the BioID dataset. (a) Average detection rate as a
function of fraction of inter-ocular distance. (b) mean normalized error for each
landmark. The parts (landmarks) ID are defined in [Yang and Patras, 2013a].
The mean error of P9 and P14 is not reported in [Valstar et al., 2010].

Figure 6.8: Detection examples of the BioID dataset. The red squares and
blue dots represent the detected and ground truth landmarks, respectively (best
viewed in color).
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6.2.4 Comparison with Prior Correlation Filters

In this experiment we compare the proposed cascaded framework with the prior

correlation filters in the literature and the works which are proposed in this

thesis, including single-channel correlation filters (MOSSE ) [Bolme et al., 2010],

single-channel correlation filters with limited boundaries (MOSSE w LB, Chap-

ter 5) [Kiani et al., 2014a], Multi-Channel Correlation filters (MCCF, Chapter

3) [Kiani et al., 2013], Multi-Channel Correlation Filters with Limited Bound-

aries (MCCF w LB, Chapter 5) and the cascaded framework (Cascaded CF )

using the BioID dataset.

Similarly, 1000 of the face images are randomly selected for training and the rest

for testing. We use normalized image intensities to train and test the single-

channel correlation filters, and 43 feature channels (40 Gabor magnitudes, 2 So-

bels and one normalized intensities) to train and test the multi-channel features.

We employ 64 ˆ 64 landmark patches cropped from the face images (centered

upon the landmark of interest) to train the MOSSE and MCCF correlation fil-

ters and apply the trained filters on the 128 ˆ 128 testing face images. For the

correlation filters with limited boundaries (MOSSE w LB and MCCF w LB) we

employ the entire 128 ˆ 128 face images to train 64 ˆ 64 landmark filters, and

apply the trained filters on the 128ˆ128 testing face images. The configuration,

training and testing of the cascaded filters are same as the previous experiment.

The result of this experiment is shown in Figure 6.9. The lowest localization rate

is obtained by MOSSE filter. During the experiment, we realized that most of

the wrong detections were caused by (i) the landmarks with very similar visual

appearance, e.g. left corners of the right eye and the left eye, and (ii) illumination

variations. As mentioned earlier, this drawback of traditional correlation filters

(e.g. MOSSE) can be improved using invariant and more discriminative multi-

channel features (e.g. HOG rather than raw pixel values) and employing a large

amount of negative training examples to accurately distinguish landmarks from

non-landmark patches.
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Figure 6.9: Comparison with prior correlation filters on the BioID dataset.

The localization rates obtained by the MOSSE with limited boundaries and

MCCF are significantly higher (around 10 %) than the MOSSE filter, showing

how using multi-channel features by MCCF and dense negative training patches

by MOSSE with limited boundaries can reduce the wrong detections caused

by visually similar landmarks and lighting changes, respectively. By combining

the MCCF (multi-channel features) and MOSSE with limited boundaries (dense

negative training patches) we increase the accuracy of these approaches around

5%.

In spite of great improvement form MOSSE (77.45 %) to MCCF with limited

boundaries (92.84 %), there still remain some inevitable wrong detections even

by using adequate negative training examples and discriminative features, due

to the lack of face shape and geometric information. We reduce the number

of these wrong detections by exploiting the geometric information of the entire

face over a cascaded framework. The superior localization rate obtained by the

cascaded framework (98.14%) states that the face geometric information is very

useful to deal with challenging wrong detections.

6.3 Chapter Summary

In this chapter, we proposed a cascaded correlation filter framework for coarse-

to-fine landmark detection in face images. In this framework, a set of correlation
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filters with different spatial supports are connected together in a way that the

size of the correlation filter reduces downward to the lower levels. The role of

the correlation filter at the first level is to predict the location of the landmark

of interest. Since the spatial support of the correlation filter at the first level

is large (same size of the face images), the prediction may suffer from small

position error, specially for those landmarks which may be affected by face pose

and expression. This position error is then corrected by filters at the lower

levels of the cascade which are more robust against pose and expression. The

evaluation on the LPFW and BioID datasets demonstrated the state of the art

performance of our approach.
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Chapter 7

Conclusions

This chapter concludes this thesis by summarizing the work presented in the pre-

vious chapters, including multi-channel correlation filters, correlation filters with

limited boundaries, MCCF for human action recognition, cascaded correlation

filters for facial landmark detection, evaluations and analysis. This is followed

by several suggestions for possible future directions.

7.1 Summary

Pattern recognition is a challenging problem in computer vision which has re-

ceived substantial attention over the years. The primary objective of this thesis

was to develop techniques to improve pattern detection performance in terms of

accuracy, memory usage and computational cost. Towards this purpose, we in-

vestigated the application of correlation filters to detect patterns in image/video

and proposed advances to correlation filter theory to improve their performance

to various pattern detection tasks.

It is well understood in computer vision that image intensity is not robust against

challenging circumstances such as lighting changes, large intra-class variations

and inter-class similarities. To deal with this, multi-channel features (e.g. HOG

and SIFT) have been applied along with discriminative learning techniques on

a wide range of vision tasks. These techniques, however, suffer from heavy com-

putational cost and intractable memory usage. On the other hand, correlation

filters show very efficient computation and memory usage since both training and

testing can be performed in the Fourier domain. The main issue of traditional

correlation filters, however, is that they are not able to handle multi-channel
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signals/features and, consequently, do not perform well under uncontrolled sit-

uations. First, we proposed multi-channel correlation filters to employ multi-

channel features for filter learning. We specifically demonstrated that the new

objective in the Fourier domain is a sparse-banded linear system and can be effi-

ciently optimized using a novel variable re-ordering technique. Like any learning

approach, multi-channel correlation filters can be employed for a broad range

of vision tasks including tracking, object detection, face recognition and video

analysis. The comparison of the proposed approach with linear SVM for pedes-

trian classification showed the superiority of our method in terms of required

memory and complexity in training and its comparable detection performance

in the testing phase. The evaluation of our method for object detection (car and

horse) demonstrated very comparable detection accuracy and superior detection

speed of our method compared to leading spatial detectors.

Second, we proposed a different application of multi-channel correlation filters to

recognize human action in video. The core idea was that each video of N frames

can be considered as a N ˆM time-ordered feature channels, where M indicates

the number of feature channels per frame (e.g. M is 1 for intensity and 5 for

5-bin HOG). This representation can be easily fed into the multi-channel cor-

relation filter framework to learn action filters for action recognition/detection.

The main advantages of MCCF over the previous correlation filters for action

recognition can be summarized as its abilities to (1) employ both positive and

negative training examples for filter learning, (2) specify the desired values over

the entire correlation plane, and (3) recognize actions in real-time complexity.

The experiments on the UCF sport and Weizmann action datasets demonstrated

superior classification speed of our method compared to the state of the arts. In

future work, we will show that the MCCF is not limited to recognizing action

but similarly can be used to detect actions in video.

Third, we introduced a new objective to reduce the number of learning patches

affected by boundary effect, called correlation filters with limited boundaries.

By expressing the MOSSE correlation filter in the spatial domain, it was shown

that traditional correlation filters extensively employ shifted versions of training
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patches for filter learning. These shifted patches which are implicitly produced

by the circular property of convolution/correlation are not representative of real-

world patches and may drastically reduce the discrimination of the trained filters.

To deal with this, we proposed an augmented objective that learns correlation

filters with limited spatial support whose size is much smaller than the size of

training images. Specifically, we proposed the application of Alternating Direc-

tion Method of Multipliers (ADMM) to find the closed-form solution of the new

objective with very efficient memory footprint and computations compared to

spatial optimizers. An extension of correlation filters with limited boundaries

was proposed to handle multi-channel features. The comparison of our method

with a leading steepest descent method showed the superior performance of our

method in terms of (1) the convergence time/speed as the number of training

images and size of trained filters, and (2) the number of iterations required to

converge. We demonstrated the superiority of our method against the state of

the art correlation filters on the problem of eye localization in face images. More-

over, we evaluated our method on the problem of visual object tracking, where

the proposed method outperformed the leading trackers under very challenging

situations such as cluttered background, partial occlusion, lighting variations,

extreme scaling and view point changes. Similar to the single-channel correla-

tion filters with limited boundaries, the multi-channel extension can be applied

on visual tracking and detection problems, provided that the size of training

images are much larger than the desired trained filter.

Finally, we proposed to cascade a set of correlation filters with different spatial

supports for facial landmark detection. The motivation was that correlation

filters with large spatial support (at higher levels of the cascade) are able to

approximate landmark positions with small position error mainly caused by face

pose and expression. Whereas, the correlation filters with small spatial sup-

port (at lower cascade levels) are more robust against pose and expression, but

may be affected by ambiguity of visually alike landmarks (e.g the left and right

eye centers). As a result, we proposed to cascade different size of correlation

filters for robust and accurate landmark detection. In this framework, the loca-
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tion/region of each landmark is first predicted by higher levels of the cascade.

This prediction is then corrected downwards to the lower levels by smaller fil-

ters. The experiments on the LFPW and BioID benchmarks demonstrated the

superiority of our method against the state of the arts.

7.2 Potential Application and Impact of Correlation

Filters in Computer Vision

Hitherto, different types of Correlation filters have been developed to address

many vision problems including automatic target recognition, face recognition,

object detection, facial landmark localization, visual object tracking and human

action recognition. Of course, there are other potential applications of corre-

lation filters to real-world vision problems such as detection and classification

problems in medical imaging (e.g. automatic mitosis detection in breast cancer

tissue images and classification of human cell images) and video analysis (e.g.

abnormal activity detection, surveillance, facial motion analysis etc ), where

real-time processing and efficient memory and computations are very important.

Furthermore, the impact of correlation filters in computer vision can be inves-

tigated from two practical perspectives. First, their efficient learning expenses

that allow one to incrementally learn a pattern class from a huge amount of

training examples (e.g. billions of images) with very manageable memory and

computations. Second, using correlation filters in the Fourier domain can dras-

tically reduce the detection and recognition time which most of current detector

in the spatial domain suffer from (due to sliding window).

7.3 Future Work

The following research directions are suggested for future work:

• Robust Correlation filters with L1-norm loss function. It has been

shown that L2-norm loss function is not very robust against outliers, as just
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a few (or even one) outliers with large squared error may drastically affect

the filter training. L2-norm loss function, however, enjoys differentiability,

a closed-form stable solution and efficient optimization which made it suit-

able to accomplish the primary objective of this thesis. On the other hand,

L1-norm loss function has been known as a robust error function against

outliers. It, however, is not differentiable and may suffer from multiple

unstable solutions and heavy computations. All the approaches proposed

in this thesis made use of L2-norm loss function for filter learning. There-

fore, investigating the proposed objectives with L1-norm loss function for

robust filter estimation is worth being pursued as future work.

• L1-regularization vs. L2-regularization. Regularization is a very im-

portant technique in machine learning to avoid over-fitting and stabilize

the estimations against data collinearity (particularly matrix singularity in

correlation filters). We employed the L2-regularization in our objectives

since it is differentiable and computationally efficient. It, however, pro-

duces non-sparse coefficients (non-zero filter values) which may be noise-

sensitive, redundant or irrelevant to estimate the desired outputs for unseen

data (over-fitted to the training examples). L1-regularization, on the other

hand, gives sparse (a small number of non-zero) coefficients and acts as an

in-built feature selection mechanism. L1-regularization, however, does not

have an analytical solution and thus suffers from high computational cost.

Another possible research direction could be evaluating the proposed ob-

jectives with L1-normalization to figure out its influence on multi-channel

correlation filter estimation.

• Correlation filters for feature channel selection. In recent years,

numerous image representations are developed including shape and texture

features (e.g. SIFT, HOG, SURF, LBP, GLOH, DAISY, Gabor phase and

magnitude, etc.), color-based descriptions (e.g. RGB, HSV, LUV, etc.),

motion-based features (e.g. temporal derivatives, optical flow, 3DHOG,

3DSIFT, etc.) with various extensions to improve the performance of a

wide range of vision tasks such as image/video retrieval, object detection
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and recognition, biometrics, matching, tracking, registration, etc. Despite

the great achievements in feature representation and learning, the question

of which feature channels are more appropriate for a particular vision task

still remains unanswered. The capability of MCCF to jointly handle feature

channels allows one to select the best task-specific feature channels. This

can intuitively done by adding a constraint on the channel cardinality to

select the optimal features that minimizes the MCCF objective. Feature

selection via MCCF can open a new direction of correlation filters behind

pattern detection and matching.

• Correlation filters to handle large intra-class variation. An object

class may include a wide variation of the object differing in shape, color,

size, pose, etc. Handling such a large intra-class variation is the Achilles

heel of correlation filter techniques. This is mainly caused by the linear

form of the spectral energies in 3.8, where all the training images are

simply averaged to represent the object class. One trivial solution could

be training a set of correlation filters instead of one single filter to cover

all possible variations in the target class. This may work for objects with

limited variations (e.g cars and faces) but is impractical for cases with huge

variations (e.g. birds and chairs). Learning robust correlation filters for

object detection/recognition with large variation could be considered as

the main direction for the future work on correlation filters.

7.4 List of Publications

• Hamed Kiani, Terence Sim and Simon Lucey, ”Multi-Channel Correla-

tion Filters”, IEEE International Conference on Computer Vision (ICCV’13),

2013 (Chapter 3).

• Hamed Kiani, Terence Sim and Simon Lucey, ”Multi-Channel Correla-

tion Filters for Human Action Recognition”, ICIP’14, 2014 (Chapter 4).

• Hamed Kiani, Terence Sim and Simon Lucey, ”Correlation Filters with
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