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ABSTRACT

This dissertation explicitly distinguishes between risk, where the frequency

of outcomes is exactly known, and ambiguity, where it is not, and studies

problems in two service systems: transportation system and healthcare sys-

tem. At its core, we collectively address three issues: 1) how to properly

model uncertainties to incorporate empirical data and reflect real-world con-

cerns, 2) how to describe and prescribe individual preferences when facing

uncertainties and account for behavior issues such as fairness, and 3) how to

incorporate the two aspects in optimization or equilibrium models so that

meaningful decisions can be obtained with modest computational effort.

In the transportation system, we first study the preferences for uncertain

travel times in which probability distributions may not be fully characterized.

In particular, we propose a new criterion named ambiguity-aware CARA trav-

el time for evaluating uncertain travel times under various attitudes of risk

and ambiguity, which is a preference based on blending the Hurwicz criteri-

on and Constant Absolute Risk Aversion. More importantly, we show that

when the uncertain link travel times are independently distributed, finding

the path that minimizes travel time under the new criterion is essentially a

shortest path problem. We also study the implications on Network Equilib-

rium model where travelers on the traffic network are characterized by their
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knowledge of the network uncertainty as well as their risk and ambiguity

attitudes. The results suggest that as uncertainty increases, the influence of

selfishness on the inefficiency diminishes.

Based on the new criterion, we then consider a class of routing optimiza-

tion problems on networks with deadlines imposed at a subset of nodes, and

with uncertain arc travel times. We introduce the lateness index to evaluate

the deadline violation level of a given policy for the network with multiple

deadlines. We provide two mathematical programming formulations: a linear

decision rule formulation, and a multi-commodity flow formulation and devel-

op practically “efficient” algorithms involving Benders decomposition to find

the exact optimal routing policy. The numerical results clearly demonstrate

the benefit of the lateness index policies, and the practicality associated with

the computation time of the solution methodology.

In the healthcare system, we study an appointment system design prob-

lem in which heterogeneous participants are sequenced and scheduled for

service. As service times are uncertain, the aim is to mitigate the unpleas-

antness experienced by the participants in the system when their waiting

times or delays exceed acceptable thresholds, and address fairness concerning

the balancing of service levels among participants. In evaluating uncertain

delays, we propose the Delay Unpleasantness Measure which accounts for the

frequency and intensity of delays above a threshold, and introduce the con-

cept of lexicographic min-max fairness to design appointment systems from

the perspective of the worst-off participants. The optimal sequencing and

scheduling decisions can be derived by solving a sequence of mixed-integer

programming problems.
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1. INTRODUCTION

This dissertation focuses on the analytics of service systems, with the goals of

eliciting operational insights and providing solutions for supporting decision-

making in practice. At its core, it seeks to address three issues in service sys-

tems: 1) how to properly model uncertainties to incorporate empirical data

and reflect real-world concerns, 2) how to describe and prescribe individual

preferences when facing uncertainties and account for behavior issues such

as fairness, and 3) how to incorporate these two aspects in optimization or

equilibrium models so that meaningful decisions or insights can be obtained

with modest computational effort. This dissertation clearly distinguishes the

risk, in which the frequency of outcomes is exactly known, and ambiguity,

in which it is not, and studies decision makers’ preferences on the risk and

ambiguity in three operational problems. It is a collection of interrelated

essays, including the traffic equilibrium problem and vehicle routing problem

in the transportation system, and the appointment scheduling problem in

the healthcare system.
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1.1 Motivation and Literature Review

Uncertainty is ubiquitous. In healthcare operations, the consultation time,

patients’ arrival rate and length of stay are uncertain. In the transportation

area, the travel time is uncertain. To describe and analyze uncertainties, a

popular and classic approach is using probability theory, which assumes that

each uncertainty follows a known probability distribution. Based on that,

researchers tend to use expected utility theory to capture decision makers’

attitudes towards risk. However, in many cases, complete probability distri-

bution of a random variable is seldom known exactly, and even the estimated

one could be considerably affected by the sampling procedure. Moreover, if

the probability distribution of a random variable is not fully known, then

it would be impossible to establish the preferences based on the expected

utility criterion. In fact, the distinction between risk, where the frequency

of outcomes is known, and ambiguity, where it is not, can be retrospected to

Knight (1921): But uncertainty must be taken in a sense radically distinct

from the familiar notion of Risk, from which it has never been properly sep-

arated. . . . It will appear that a measurable uncertainty, or “risk” proper, as

we shall use the term, is so far different from an unmeasurable one that it

is not in effect an uncertainty at all. We shall accordingly restrict the term

“uncertainty” to cases of the non-quantitative type.

Since then, risk and ambiguity have been extensively studied in eco-

nomics (see for instance, Camerer and Weber 1992; Mukerji and Tallon 2003;

Maccheroni et al. 2006; Gilboa et al. 2008; Wakker 2008), finance (see for

instance, Dow and da Costa Werlang 1992; Chen and Epstein 2002; Epstein
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and Schneider 2008; Bossaerts et al. 2010; Guidolin and Rinaldi 2013), and

marketing (see for instance, Swait and Erdem 2007; Muthukrishnan et al.

2009). Ellsberg (1961) shows convincingly by means of paradoxes that ambi-

guity preference cannot be reconciled by classical expected utility theory. He

argues that the ambiguity of information brings a degree of “confidence” in

the estimation of the likelihood. Inspired by this seminal work, numerous ex-

perimental and theoretical studies spring up to verify and accommodate this

behavior issue. Notably, in Hsu et al. (2005) groundbreaking experiments,

economists and neuroscientists collaborate to establish significant physiolog-

ical evidence via functional brain imaging that humans have varying and

distinct attitudes towards risk and ambiguity. The results also indicate that

people’s attitudes towards risk and ambiguity are not fully correlated, i.e.,

there exists a population of people that are ambiguity averse and risk-seeking,

or ambiguity seeking and risk-averse.

From the normative perspective, ambiguity is also an active area of re-

search within the domains of decision theory and operations research. Gilboa

and Schmeidler (1989) consider ambiguity as a set of possible probability dis-

tributions, and present the Max-Min Expected Utility (MEU) model, which

appeals to ambiguity averse decision makers. To accommodate the hetero-

geneity of ambiguity and risk attitudes found in the experiments, Ghirarda-

to et al. (2004), based on Hurwicz criterion (Hurwicz 1951), axiomatize the

α−MEU model, which represents a compromise via a convex combination

of the worst and best case expected utility. The parameter α is an index of

pessimism or optimism.

However, in the service industries, for example, transportation and health-
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care, the majority of studies still assumes that the full knowledge of the un-

certainties is known to every one. These assumptions on the uniformity of the

agents and the known distribution are unrealistic in many operational prob-

lems and may also complicate the solution procedure. For example, in the

traffic equilibrium problem, various travelers may have distinct information

on the uncertain travel time and the attitudes towards it. A local resident,

who is very familiar with the area, would be less ambiguous, compared to a

tourist, in characterizing the uncertain travel times. Even different residents

may have different information. In the appointment system design problem,

it is generally hard to construct a probability distribution of the consultation

time, that could be verified by the empirical data but also help us develop a

tractable model.

Motivated by the evidence above, we aim to investigate the decision

making in the service systems under both risk and ambiguity. Specifically,

by clearly distinguishing between risk and ambiguity, we first study people’s

preferences and attitudes towards them. Then, we provide guidance for man-

agers or central planners to make decisions based on these preferences. In

this thesis, we focus on the transportation system and the healthcare system.

The ideas and formulations can be generalized to other service systems.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows.

• Chapter 2: Preferences for Travel Time under Risk and Am-

biguity.
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In this chapter, we study the preferences for uncertain travel times in

which probability distributions may not be fully characterized. In e-

valuating an uncertain travel time, we explicitly distinguish between

risk and ambiguity. In particular, we propose a new criterion called

ambiguity-aware CARA travel time (ACT) for evaluating uncertain

travel times under various attitudes of risk and ambiguity, which is a

preference based on blending the Hurwicz criterion and Constant Ab-

solute Risk Aversion (CARA). More importantly, we show that when

the uncertain link travel times are independently distributed, finding

the path that minimizes travel time under the ACT criterion is es-

sentially a shortest path problem. We also study the implications on

Network Equilibrium (NE) model where travelers on the traffic net-

work are characterized by their knowledge of the network uncertainty

as well as their risk and ambiguity attitudes under the ACT. We de-

rive and analyze the existence and uniqueness of solutions under NE.

Finally, we obtain the Price of Anarchy that characterizes the ineffi-

ciency of this new equilibrium. The computational study suggests that

as uncertainty increases, the influence of selfishness on the inefficiency

diminishes.

• Chapter 3: Routing Optimization with Deadlines under Un-

certainty.

In this chapter, inspired by the ACT defined in Chapter 2, we consid-

er a class of routing optimization problems on networks with deadlines

imposed at a subset of nodes, and with uncertain arc travel times. The
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problems are static in the sense that routing decisions are made prior

to the realization of uncertain travel times. The goal is to find optimal

routing policies such that arrival times at nodes respect deadlines “as

much as possible”. We propose a precise mathematical framework for

defining and solving such routing problems. We first introduce a perfor-

mance measure, called lateness index, to evaluate the deadline violation

level of a given policy for the network with multiple deadlines. The cri-

terion can handle the risk, when probability distributions of the travel

times are considered known, and ambiguity, when these distributions

are partially characterized through descriptive statistics, such as means

and bounded supports. We show that for the special case in which there

is only one node with a deadline requirement, the corresponding short-

est path problem with deadline can be solved in polynomial time under

the assumption of stochastic independence between arc travel times.

For the general case, we provide two mathematical programming for-

mulations: a linear decision rule formulation, and a multi-commodity

flow formulation. We develop practically “efficient” algorithms involv-

ing Lagrangian relaxation and Benders decomposition to find the exact

optimal routing policy, and give numerical results from several compu-

tational studies, showing the attractive performance of lateness index

policies, and the practicality associated with the computation time of

the solution methodology.

• Chapter 4: Mitigating Delays and Unfairness in Appointment

Systems.
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In this chapter, we consider an appointment system design in the

healthcare system, where heterogeneous participants are sequenced and

scheduled for service. As service times are uncertain, the aim is to

mitigate the unpleasantness experienced by the participants in the sys-

tem when their waiting times or delays exceed acceptable thresholds,

and address fairness concerning the balancing of service levels among

participants. In evaluating uncertain delays, we propose the Delay Un-

pleasantness Measure (DUM) which takes into account the frequency

and intensity of delays above a threshold, and introduce the concept

of lexicographic min-max fairness to design appointment systems from

the perspective of the worst-off participants. The model can be adapt-

ed in the robust setting when the underlying probability distribution

is not fully available. To capture the correlation between uncertain

service times, we suggest using mean absolute deviation as descriptive

statistics in the distributional uncertainty set to preserve linearity of

the model. The optimal sequencing and scheduling decisions could be

derived by solving a sequence of mixed-integer programming problems

and we report the insights from our computational studies.

• Chapter 5: Conclusions and Future Research. This chapter

concludes the thesis and highlights future research.

1.3 Notation

We adopt the following notations throughout the thesis. We use boldface

lowercase characters to represent vectors, for example, x = (x1, x2, . . . , xn),
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and x′ represents the transpose of a vector x. Given a vector x, we define

(yi,x−i) to be the vector with only the ith component being changed, i.e.,

the vector (yi,x−i) = (x1, . . . , xi−1, yi, xi+1, . . . , xn). x ≥ y represents the

element-wise comparison. We use tilde (˜ ) to denote uncertain quantities,

for example, t̃ represents a random variable, and c̃ represents a random vec-

tor. We model uncertainty t̃ by a state-space Ω and a σ−algebra of events in

Ω. We use V to represent the set of all real-valued random variables. The in-

equality between two random variables x̃ ≥ ỹ denotes state-wise dominance,

i.e., x(ω) ≥ y(ω) for all ω ∈ Ω. To model distributional ambiguity, instead

of specifying the true distribution P on (Ω,F), we assume that it belongs to

a certain distributional uncertainty set F, as P ∈ F. Accordingly, the case of

knowing the exact probability distribution is incorporated in the assumption

as well, where F = {P}. We denote by EP
(
t̃
)

the expectation of t̃ under the

probability distribution P. The cardinality of a set N is denoted by |N |. For

notational simplicity, we use k ∈ [1;N ] and k ∈ {1, . . . , N} interchangeably.



2. PREFERENCES FOR TRAVEL TIME UNDER RISK

AND AMBIGUITY

2.1 Introduction

The travel time from an origin to a destination in an urban transportation

network is almost always uncertain because of the traffic congestion, which

is found to be one the most important factors in the path selection decision-

s (Abdel-Aty et al. 1995). Individuals’ preferences greatly depend on their

knowledge about the uncertain travel time as well as their attitudes towards

uncertainty. In transportation literatures, an uncertain travel time is often

associated with a random variable with the known probability distribution.

In other words, the traveler knows the exact frequency of travel time out-

comes, and his/her preference relies on his/her risk attitude, that is usually

characterized by taking an expectation over a disutility function (an increase

in the travel time amounts to a loss). Deliberating on reliability, Mirchandani

(1976), Fan et al. (2005) and Nie and Wu (2009) consider the probability of

punctuality as a preference criterion, which could be treated as a step disu-

tility function. Unfortunately, since in general, computing the probability

of a sum of random variables is NP-hard (Khachiyan 1989), it is a compu-
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tationally intractable problem to find the path with the minimum expected

disutility over a transportation network, which severely limits our analysis

and implementation. Murthy and Sarkar (1998) consider a piece-wise linear

concave disutility function, and solve the problem with certain enumeration

algorithms. Loui (1983) and Eiger et al. (1985) consider disutility functions

in the form of linear, quadratic or exponential, in which the resultant static

path selection problems are computationally tractable. In particular, de Pal-

ma and Picard (2005) justify empirically the relevance of the exponential

disutility function, which appeals to travelers with Constant Absolute Risk

Aversion (CARA) and has the best fit on path selection behavior amongst

common disutility functions.

Implications of risk in Network Equilibrium (NE) problems, which model

a collective behavior of a large population of travelers, have also been studied.

One stream suggests using disutility function to capture travel time uncer-

tainty, and travelers’ attitudes towards risk (see Mirchandani and Soroush

1987; Yin and Ieda 2001; Chen et al. 2002; Nagurney and Dong 2002; and

Yin et al. 2004). The second stream discusses the travel time variability by

adding the mean travel time with a safety margin, which can be described

by a penalty function (see Noland and Polak 2002; Watling 2006), or the

standard deviation (see Uchida and Iida 1993; Lo et al. 2006; Siu and Lo

2008; Connors et al. 2007). However, adding the safety margin in these ways

may violate first-order stochastic dominance, and it generally cannot be sep-

arated by links, which makes the model hard to solve. We refer interested

readers to the review papers of Noland and Polak (2002) and Connors and

Sumalee (2009).



2. Preferences for Travel Time under Risk and Ambiguity 11

Nevertheless, the assumption that travelers know the exact frequency

of travel time outcomes is unrealistic. In a real world, it is conceivable that

a traveler is incapable of knowing the entire probability distributions of the

transportation network. Major exceptional events (e.g., natural disaster-

s) and minor regular events (e.g., minor accident, traffic signal) will incur

uncertainty to travel time. Hence, complete distribution of travel time is

seldom known exactly, and even the estimated one could be considerably

affected by the sampling procedure. If the actual travel time probability

distribution is not fully known, then it would be impossible to establish the

preferences for travel times based on the expected disutility criterion. How-

ever, the discussion on travel time ambiguity is relatively new. Yu and Yang

(1998) propose a worst-case shortest path problem over a set of discrete s-

cenarios, which results in an NP -hard problem. Bertsimas and Sim (2003)

introduce the “budget of uncertainty” in characterizing uncertain travel time

and show that the worst-case shortest path problem is a tractable optimiza-

tion problem. Ordóñez and Stier-Moses (2010) extend the work to address

an NE problem. They generally consider three cases of equilibrium with

uncertain travel times: α-percentile equilibrium, added-variability equilibri-

um, and robust Wardrop equilibrium. The α-percentile equilibrium assumes

travelers minimize the α quantile (or Value-at-Risk) of their experienced

travel times, which are generally computationally intractable optimization

problems. Added-variability equilibrium provides a safety margin to the ex-

pected travel time as a proxy to account for risk-averse behavior, an approach

that may not be coherent with decision analysis such as violating first or-

der stochastic dominance. Robust Wardrop equilibrium borrows the idea
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of Bertsimas and Sim (2003), and assumes that ambiguity averse travelers

minimize the worst-case travel time given that the total variation is bounded

by a certain parameter. However, the assumptions that the entire popula-

tion of travelers are only ambiguity averse and not risk sensitive limit the

application of this model.

In contrast to the aforementioned works that consider risk and ambigu-

ity separately, our main contribution is to explicitly distinguish between risk

and ambiguity in a unified framework in articulating travelers’ preferences

for travel times. We present a new criterion named ambiguity-aware CARA

travel time (ACT) for evaluating uncertain travel times for travelers with

various attitudes of risk and ambiguity. Apart from the behavioral relevance

of the ACT, we also present a computational justification by showing that

when the uncertain link travel times are independently distributed, finding

the path that minimizes travel time under the ACT criterion is essentially a

shortest path problem. We also study the implications on NE problem, in

which travelers minimize their own travel times under the ACT criterion, and

no traveler can improve his/her travel time under the ACT by unilaterally

changing routes. Our new NE model under the ACT criterion shares similar

properties with deterministic multi-class NE model, and can be solved by

the traditional Frank-Wolfe algorithm. We also examine the inefficiency of

this NE model compared with System Optimum (SO), which minimizes the

aggregate travel time under the ACT criterion of all travelers, by deriving

its Price of Anarchy. The computational study suggests that as uncertainty

increases, the influence of selfishness on inefficiency diminishes. Moreover,

when uncertainty is neglected in traffic equilibrium analysis, the social op-
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timum solution may become more inefficient than the solution under selfish

routing.

The remainder of this chapter is organized as follows. In Section 2.2,

we formally define the ACT criterion and its properties. In Section 2.3, we

investigate a path selection problem under the ACT criterion. In Section

2.4, we extend to the study of the NE problem under the ACT criterion and

discuss its computational solvability when the uncertain link travel time is

independent with each other. We also analyze the corresponding NE ineffi-

ciency by calculating its Price of Anarchy. Finally, in Section 2.5, we make

our conclusions and some suggestions for future research.

2.2 Preferences for Travel Time

In the empirical study of de Palma and Picard (2005), they conclude that

exponential disutility function, which is the unique disutility function that

appeals to travelers with Constant Absolute Risk Aversion (CARA), aptly

characterizes travelers’ preferences for travel times under risk. Besides, Cheu

and Kreinovich (2007) also verify that exponential disutility function is the

only function that is consistent with common sense and could simplify the

model. Hence, we first introduce the exponential disutility function in the

following form,

u(x) =


1
λ

exp(λx), when λ 6= 0,

ax+ b, when λ = 0,

in which a ∈ <+ and the parameter λ ∈ < is known as the coefficient of

absolute risk aversion. The corresponding certainty equivalent of t̃, CEλ(t̃) :
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V → < is defined as

u
(
CEλ

(
t̃
))

= EP
(
u
(
t̃
))
.

The concept of certainty equivalent CEλ(t̃) is popularized in economic lit-

erature, and represents a fixed interval of travel time that the traveler with

risk tolerance parameter λ will view equally acceptable as the uncertain trav-

el time t̃ under disutility function u(·). When u(·) is exponential disutility

function, we have

CEλ
(
t̃
)

=


1
λ

lnEP
(
exp

(
λt̃
))
, when λ 6= 0,

EP
(
t̃
)
, when λ = 0.

Parameter λ specifies the traveler’s risk attitude. If λ > 0, he/she is risk-

averse and evaluates an uncertain travel time longer than its average. In

contrast, a traveler with risk-seeking attitude has λ < 0 and perceives the

uncertain travel time shorter than its average. At neutrality (λ = 0), the

traveler is indifferent between the uncertain travel time and its mean. When

travel time is deterministic, we have CEλ (constant) = constant for all λ ∈ <.

When travel time follows certain probability distribution, function CEλ(t̃)

can be derived through calculating the moment generating function of ran-

dom variable t̃. For example, if t̃ is normally distributed N(µ, σ2), we have

EP
(
exp

(
λt̃
))

= exp
(
λµ+ 1

2
σ2λ2

)
, and certainty equivalent CEλ(t̃) is

CEλ
(
t̃
)

= µ+
1

2
λσ2,
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which is consistent with mean-variance measure (Markowitz 1959) of uncer-

tain travel time t̃. Note that CEλ
(
t̃
)

is different from the mean-variance

measure when t̃ follows other kinds of distributions. Moreover, the nice

thing about CEλ
(
t̃
)

is it preserves first-order stochastic dominance (see for

instance Föllmer and Schied 2011), which is violated by the mean-variance

measure. Take two paths as an example, one with travel time equal to 1

or 2 with 0.5 probabilities and the other with travel time equal to 3 (with

certainty). Though the first path stochastically dominates the second, mean-

variance measure would favor the second path for an extremely risk-averse

traveler, while the CARA model always supports the first path, as the cer-

tainty equivalent of the first is always less than that of the second.

If the actual travel time probability distribution is not fully known,

then it would be impossible to establish preferences for travel times based

on the expected disutility criterion. The CARA model could not reveal

travelers’ preferences when facing ambiguity. We study the preference for

uncertain travel times in which the traveler is oblivious to the true probability

distribution P but knows the distributional uncertainty set F, which can

be characterized by certain descriptive statistics. The “size” of the set F

indicates the level of ambiguity perceived by the traveler. For instance, the

distributional uncertainty set perceived by an informed traveler may be a

subset of that perceived by a clueless traveler. To evaluate an ambiguity

preference, the Hurwicz criterion (Hurwicz 1951) represents a compromise

between the worst-case and the best-case evaluation of travel time under
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distributional ambiguity as follows:

Hα

(
t̃
)

= α sup
P∈F
EP
(
t̃
)

+ (1− α) inf
P∈F
EP
(
t̃
)
,

where the parameter α ∈ [0, 1] indicates the level of optimism, with α = 0

being the most optimistic and α = 1 being the most pessimistic.

2.2.1 Ambiguity-aware CARA travel time (ACT)

Instead of considering risk and ambiguity separately, we explicitly distinguish

between them in a unified framework for articulating travelers’ preferences

for travel times. We propose the ambiguity-aware CARA travel time (AC-

T) criterion for evaluating an uncertain travel time under various attitudes

of risk and ambiguity, which is based on blending Hurwicz and Constant

Absolute Risk Aversion (CARA) criteria.

The traveler has a distributional uncertainty set F to characterize the

uncertain travel time. Similar to the Hurwicz criterion, his/her attitude

towards ambiguity is described by parameter α ∈ [0, 1] and risk attitude

under CARA is given by parameter λ ∈ <. Accordingly, we identify the

traveler under the ACT by V = (α, λ,F).

Definition 2.1. The ambiguity-aware CARA travel time ACTV

(
t̃
)

: V → <
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specified by the traveler with parameter V = (α, λ,F) is

ACTV

(
t̃
)

=


α sup
P∈F

1

λ
lnEP

(
exp

(
λt̃
))

+ (1− α) inf
P∈F

1

λ
lnEP

(
exp

(
λt̃
))
, when λ 6= 0,

α sup
P∈F
EP
(
t̃
)

+ (1− α) inf
P∈F
EP
(
t̃
)
, when λ = 0.

Observing that if the probability distribution is known, i.e., F = {P},

we have

ACTV

(
t̃
)

= ACT(α,λ,P)

(
t̃
)

=

 α
1

λ
lnEP

(
exp

(
λt̃
))

+ (1− α)
1

λ
lnEP

(
exp

(
λt̃
))
, when λ 6= 0,

αEP(t̃) + (1− α)EP(t̃), when λ = 0.

= CEλ

(
t̃
)
.

Hence, the ACT criterion is a generalization of certainty equivalent func-

tion under CARA. It is a weighted sum of the best-case certainty equivalent

and the worst-case certainty equivalent when the true probability distribu-

tion belongs to a distributional uncertainty set. α = 0 represents an ex-

tremely ambiguity seeking traveler, while α = 1 representing an extremely

ambiguity averse traveler. To quantitatively characterize travelers’ attitudes

towards risk and ambiguity, economists have summarized the procedure to

sought these two parameters α, λ in experimental studies (see for instance

Wakker 2010; Abdellaoui et al. 2011). We believe this could shed some

light on the future empirical studies on travelers’ preferences. Next, we



2. Preferences for Travel Time under Risk and Ambiguity 18

provide some useful properties of the ACT criterion. For any given distri-

butional uncertainty set F, we first define the corresponding bound as tF =

inf
{
t ∈ <|P(t̃ ≤ t) = 1,∀ P ∈ F

}
and tF = sup

{
t ∈ <|P(t̃ ≥ t) = 1, ∀ P ∈ F

}
.

Proposition 2.1.

(a) ACTV

(
t̃
)

is nondecreasing in λ ∈ < and α ∈ [0, 1], and

lim
λ→+∞

ACT(1,λ,F)

(
t̃
)

= tF, lim
λ→−∞

ACT(0,λ,F)

(
t̃
)

= tF.

(b) For any x̃, ỹ ∈ V , if x̃ ≥ ỹ, we have ACTV (x̃) ≥ ACTV (ỹ);

(c) Suppose t̃1, . . . , t̃J are independent random variables, and t0 ∈ <. Then

ACTV

(
t0 +

J∑
j=1

t̃j

)
= t0 +

J∑
j=1

ACTV

(
t̃j
)
.

Proof. (a) Note that ACTV

(
t̃
)

being nondecreasing in α follows directly

from supP∈F
1
λ

lnEP
(
exp

(
λt̃
))
≥ infP∈F

1
λ

lnEP
(
exp

(
λt̃
))

and supP∈F EP
(
t̃
)
≥

infP∈F EP
(
t̃
)
. Based on Jensen’s inequality, for any λ1 ≤ λ2 < 0 or 0 < λ1 ≤

λ2, we can get

1

λ2

lnEP
(
exp

(
λ2t̃
))

=
1

λ2

lnEP
((

exp
(
λ1t̃
))λ2/λ1

)
≥ 1

λ2

λ2

λ1

lnEP
(
exp

(
λ1t̃
))

=
1

λ1

lnEP
(
exp

(
λ1t̃
))
.
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When λ1 < 0 < λ2, we have

1

λ2

lnEP
(
exp

(
λ2t̃
))
≥ 1

λ2

ln exp
(
EP
(
λ2t̃
))

= EP
(
t̃
)
≥ 1

λ1

lnEP
(
exp

(
λ1t̃
))
.

Therefore, for any λ1 ≤ λ2,

ACT(α,λ2,F)

(
t̃
)

= α sup
P∈F

1

λ2

lnEP
(
exp

(
λ2t̃
))

+ (1− α) inf
P∈F

1

λ2

lnEP
(
exp

(
λ2t̃
))

≥ α sup
P∈F

1

λ1

lnEP
(
exp

(
λ1t̃
))

+ (1− α) inf
P∈F

1

λ1

lnEP
(
exp

(
λ1t̃
))

= ACT(α,λ1,F)

(
t̃
)
.

Equivalently, ACTV

(
t̃
)

is nondecreasing in λ.

When α = 1, the traveler is most pessimistic towards ambiguity, then

ACT(1,λ,F)

(
t̃
)

=


sup
P∈F

1

λ
lnEP

(
exp

(
λt̃
))
, when λ 6= 0,

sup
P∈F
EP
(
t̃
)
, when λ = 0.

We have for any P ∈ F and λ ∈ <\{0},

1

λ
lnEP

(
exp

(
λt̃
))
≤ 1

λ
ln
(
exp

(
λtF
))

= tF.

Therefore,

lim
λ→+∞

ACT(1,λ,F)

(
t̃
)
≤ tF.

Moreover, according to the definition of tF, for any ε > 0, ∃P ∈ F such that
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P
(
t̃ ∈
[
tF − ε, tF

])
> 0, we have

lim
λ→+∞

1

λ
lnEP

(
exp

(
λt̃
))

= lim
λ→+∞

1

λ
lnEP

(
exp

(
λtF
)

exp
(
λ
(
t̃− tF

)))
= tF + lim

λ→+∞

1

λ
lnEP

(
exp

(
λ
(
t̃− tF

)))
≥ t+ lim

λ→+∞

1

λ
ln
(
exp

(
λ
(
tF − ε− tF

))
P
(
t̃ ∈
[
tF − ε, tF

]))
= tF + lim

λ→+∞

1

λ
ln (exp(−λε)) + lim

λ→+∞

1

λ
ln
(
P
(
t̃ ∈
[
tF − ε, tF

]))
= tF − ε,

which means,

lim
λ→+∞

sup
P∈F

1

λ
lnEP

(
exp

(
λt̃
))
≥ lim

λ→+∞

1

λ
lnEP

(
exp

(
λt̃
))
≥ tF − ε ∀ ε > 0.

Combining these two inequalities together, we have

lim
λ→+∞

ACT(1,λ,F)

(
t̃
)

= tF.

Similarly, we can modify the above proof to show that

lim
λ→−∞

ACT(0,λ,F)

(
t̃
)

= tF.

(b) If x̃ ≥ ỹ i.e., x(ω) ≥ y(ω) for all ω ∈ Ω, we have when λ = 0,

ACTV (x̃) = α sup
P∈F
EP(x̃)+(1−α) inf

P∈F
EP(x̃) ≥ α sup

P∈F
EP(ỹ)+(1−α) sup

P∈F
EP(ỹ) = ACTV (ỹ).
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When λ 6= 0, noting that 1
λ

lnEP(exp(λx̃)) ≥ 1
λ

lnEP(exp(λỹ)) for all P ∈ F,

we have

ACTV (x̃) = α sup
P∈F

1

λ
lnEP (exp (λx̃)) + (1− α) inf

P∈F

1

λ
lnEP (exp (λx̃))

≥ α sup
P∈F

1

λ
lnEP (exp (λỹ)) + (1− α) inf

P∈F

1

λ
lnEP (exp (λỹ))

= ACTV (ỹ).

(c) Since t̃1, . . . , t̃J are independently distributed, we have

ACTV

(
t0 +

J∑
j=1

t̃j

)

= α sup
P∈F

1

λ
lnEP

(
exp

(
λ

(
t0 +

J∑
j=1

t̃j

)))

+(1− α) inf
P∈F

1

λ
lnEP

(
exp

(
λ

(
t0 +

J∑
j=1

t̃j

)))

= αt0 + α sup
P∈F

1

λ
ln

(
J∏
j=1

EP
(
exp

(
λt̃j
)))

+(1− α)t0 + (1− α) inf
P∈F

1

λ
ln

(
J∏
j=1

EP
(
exp

(
λt̃j
)))

= t0 +
J∑
j=1

(
α sup
P∈F

1

λ
lnEP

(
exp

(
λt̃j
))

+ (1− α) inf
P∈F

1

λ
lnEP

(
exp

(
λt̃j
)))

= t0 +
J∑
j=1

ACTV

(
t̃j
)
.

Remark 2.1. Property (a) is a trivial statement, it indicates that when a trav-

eler is more risk-averse or ambiguity averse than the others, he/she perceives

the uncertain travel time longer than the others’ perception. The extreme
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cases occur when λ = ∞, α = 1 and λ = −∞, α = 0, respectively. When

a traveler is extremely risk-averse and ambiguity averse, he/she pessimisti-

cally regards the uncertain travel time from the worst-case perspective, and

the corresponding ACTV (t̃) takes the largest possible value. Property (b)

captures traveler’s essential preference for a shorter travel time. His/her per-

ceived travel time becomes longer when the travel time increases. Property

(c) suggests that ACTV (·) is additive for independent random variables. This

property is quite helpful for modeling, since ACTV (·) along a path could be

easily separated by links.

Next, we will provide an example to illustrate travelers’ preferences for

travel times under the ACT criterion. Figure 2.1 shows three paths from

the origin O to the destination D. Travel time on path A is deterministic,

1.5hrs; travel time on path B is stochastic and the duration is 1hr or 2hrs

with equal probability; travel time on path C is uncertain, and bounded by

1hr and 2hrs. We present in Table 2.1 the path preferences induced by the

ACT criterion under various attitudes and degrees of risk and ambiguity.

O D 

 A 

C 

B 

Fig. 2.1: A simple network with uncertain travel time.
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When a traveler is extremely risk-averse and pessimistic towards am-

biguity (λ → +∞, α = 1) as property (a) described, he/she will perceive

the uncertain travel time as taking the longest duration. Hence, path A is

preferred as it has the smallest ACT. On the other hand, when the traveler

is radically risk-seeking and optimistic towards ambiguity (λ→ −∞, α = 0),

then path A would be least preferred. At risk neutrality, both paths A and

B are equally preferred and the preference for path C depends on the travel-

er’s attitude towards ambiguity. For instance, if he/she is optimistic towards

ambiguity, then path C will be preferred over paths A and B.

Risk attitude Ambiguity
attitude

ACTV

(
t̃A
)

ACTV

(
t̃B
)

ACTV

(
t̃C
)

Preferences

λ α
+∞ 1 1.5 2 2 A � B ∼ C

0 1 1.5 1.5 2 A ∼ B � C
0 0 1.5 1.5 1 C � A ∼ B
−∞ 0 1.5 1 1 B ∼ C � A

Tab. 2.1: Preferences for travel times under the ACT criterion.

2.2.2 Two uncertainty models for travel time

If the probability distribution of an uncertain travel time t̃ is completely

known, there exists no ambiguity, and ACTV (t̃) reduces to CEλ(t̃), which

can be calculated directly. When the probability distribution is not fully

available, the characterization of uncertain travel time can be in various

ways depending on the available information. We then propose two simple

models for characterizing the uncertain travel time and provide analytical

forms of the ACT criterion.

Uncertainty model I
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Driven by pragmatism, the traveler may have a simple description of the

uncertain travel time by providing the ranges in which travel time and average

travel time would fall within. Specifically, the travel time takes values in [t, t],

0 < t ≤ t and the average travel time falls within the range [µ, µ] ⊆ [t, t].

Hence, the distributional uncertainty set F of the uncertain travel time t̃ is

given by

F =
{
P
∣∣EP (t̃) ∈ [µ, µ] ,P (t̃ ∈ [t, t]) = 1

}
. (2.1)

Proposition 2.2. Given a distributional uncertainty set F described by (2.1),

the uncertain travel time under the ACT criterion is

ACTV

(
t̃
)

=



α
λ

ln

(
(t−µ) exp(λt)+(µ−t) exp(λt)

t−t

)
+ (1− α)µ, when λ > 0,

αµ+ 1−α
λ

ln

(
(t−µ) exp(λt)+(µ−t) exp(λt)

t−t

)
, when λ < 0,

αµ+ (1− α)µ, when λ = 0.

Moreover,

lim
λ→+∞

ACTV

(
t̃
)

= αt+ (1− α)µ,

lim
λ→−∞

ACTV

(
t̃
)

= (1− α)t+ αµ.

Proof. We first provide the analytical expressions for supP∈F EP
(
exp

(
λt̃
))

and infP∈F EP
(
exp

(
λt̃
))

. According to Proposition 3 in Brown et al. (2012),

sup
P∈F
EP
(
exp

(
λt̃
))

=


(t−µ) exp(λt)+(µ−t) exp(λt)

t−t , when λ > 0,

(t−µ) exp(λt)+(µ−t) exp(λt)
t−t , when λ < 0.
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To determine infP∈F EP
(
exp

(
λt̃
))

, we note that by Jensen’s inequality,

EP
(
exp

(
λt̃
))
≥ exp

(
EP
(
λt̃
))

= exp
(
λEP

(
t̃
))
,

consequently,

inf
P∈F
EP
(
exp

(
λt̃
))
≥

 exp
(
λµ
)
, when λ > 0,

exp (λµ) , when λ < 0.

Equality holds when t̃ is deterministic,

 P
(
t̃ = µ

)
= 1, when λ > 0;

P
(
t̃ = µ

)
= 1, when λ < 0.

Note that this distribution also belongs to the distributional uncertainty set

F, and ACTV

(
t̃
)

can be accordingly calculated. Based on L’Hôpital’s rule,
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when λ > 0,

lim
λ→+∞

ACTV

(
t̃
)

= lim
λ→+∞

(
α

λ
ln

((
t− µ

)
exp (λt) + (µ− t) exp

(
λt
)

t− t

)
+ (1− α)µ

)

= lim
λ→+∞

(
α

λ
ln

((
t− µ

)
exp (λt) + (µ− t) exp

(
λt
)

t− t

))
+ (1− α)µ

= α lim
λ→+∞

((
t− µ

)
exp (λt) t+ (µ− t) exp

(
λt
)
t(

t− µ
)

exp (λt) + (µ− t) exp
(
λt
) )+ (1− α)µ

= α lim
λ→+∞

((
t− µ

)
exp

(
λ(t− t)

)
t+ (µ− t) t(

t− µ
)

exp
(
λ(t− t)

)
+ (µ− t)

)
+ (1− α)µ

= αt+ (1− α)µ.

Likewise, the result could extend to

lim
λ→−∞

ACTV

(
t̃
)

= (1− α)t+ αµ.

We further analyze paths preferences on the simple network depicted in

Figure 2.1 as an example.

Example: In Figure 2.1, travel times on path A and C remain unchanged.

As for path B, we now assume that the travel time is within 1hr to 2hrs, and

the mean travel time is exactly 1.5hrs. Given the above information of three

paths, travelers’ preferences ranked by the ACT criterion are summarized in

Table 2.2.

To show the results in Table 2.2, from Proposition 2.2, we calculate

the travel time under the ACT criterion for each of the three paths. The
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Risk attitude λ Ambiguity attitude α Preferences

[0,+∞) [f(λ), 1]1 A � B � C
[0,+∞)

[
1
2 , f(λ)

]
A � C � B

[0,+∞)
[
0, 1

2

]
C � A � B

(−∞, 0]
[

1
2 , 1
]

B � A � C
(−∞, 0]

[
g(λ), 1

2

]
2 B � C � A

(−∞, 0] [0, g(λ)] C � B � A
1 f(λ) = λ

3λ+2 ln 2−2 ln(1+exp(λ))
;

2 g(λ) =
2 ln(1+exp(λ))−2 ln 2

λ+2 ln(1+exp(λ))−2 ln 2
.

Tab. 2.2: Path preferences under the ACT criterion.

information is specified as follows:

tA = 1.5, tA = 1.5 µ
A

= 1.5, µA = 1.5,

tB = 1, tB = 2, µ
B

= 1.5, µB = 1.5,

tC = 1, tC = 2, µ
C

= 1, µC = 2.

Therefore, the ACT can be calculated correspondingly,

ACTV (tA) =
3

2
;

ACTV

(
t̃B
)

=



α

λ
ln

(
1

2
exp(λ) +

1

2
exp(2λ)

)
+

3

2
(1− α), when λ > 0,

3

2
α +

1− α
λ

ln

(
1

2
exp(λ) +

1

2
exp(2λ)

)
, when λ < 0,

3

2
α +

3

2
(1− α), when λ = 0;

ACTV

(
t̃C
)

=


α

λ
ln (exp(2λ)) + (1− α), when λ > 0,

2α +
1− α
λ

ln (exp(λ)) , when λ < 0,

2α + (1− α), when λ = 0

= 1 + α.

Since the travel time under the ACT criterion is nondecreasing in both λ and



2. Preferences for Travel Time under Risk and Ambiguity 28

α, the preference relationships between paths A and B, and between paths

A and C can be readily established. When λ ≥ 0, we have A � B. Likewise,

when 1 ≥ α ≥ 1
2
, then A � C. Hence, we focus on the preferences between

paths B and C.

ACTV

(
t̃B
)
≥ ACTV

(
t̃C
)

implies



α

λ
ln

(
1

2
exp(λ) +

1

2
exp(2λ)

)
+

3

2
(1− α) ≥ 1 + α, when λ > 0,

3

2
α +

1− α
λ

ln

(
1

2
exp(λ) +

1

2
exp(2λ)

)
≥ 1 + α, when λ < 0,

3

2
≥ 1 + α, when λ = 0.

Equivalently, path C is preferred to path B when


α ≤ f(λ) =

λ

3λ+ 2 ln 2− 2 ln (1 + exp(λ))
, when λ > 0,

α ≤ g(λ) =
2 ln (1 + exp(λ))− 2 ln 2

λ+ 2 ln (1 + exp(λ))− 2 ln 2
, when λ < 0.

The preferences expressed by travelers with varied λ and α are depicted

in Figure 2.2. When the traveler is risk-averse (λ > 0), he/she prefers path A

over path B, and the converse is true when the traveler is risk-seeking. With

α decreases from 1 to 0, the traveler’s attitude towards ambiguity shifts from

being pessimistic to optimistic, in which case, path C, which has complete

ambiguity, will become more favorable. This example may suggest a way

to empirically identify travelers’ attitudes towards risk and ambiguity by

providing travelers with different choice scenarios.

Uncertainty model II

In practice, the uncertain travel time only takes a set of discrete values. Next,
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Fig. 2.2: Path preferences under different attitudes towards risk and ambiguity.

we present a general model for this discrete case where the uncertain travel

time has finite realizations, for example, t1, . . . , tM , and more statistics on

the moment are available, i.e., the distributional uncertainty set F is given

by

F =
{
P
∣∣∣EP (t̃lk) ∈ [µk, µk] , k = 1, . . . , K, P

(
t̃ ∈ {t1, . . . , tM}

)
= 1

}
,

(2.2)

where lk ∈ Z+, k = 1, . . . , K.

Proposition 2.3. If the distributional uncertainty set F is described by (2.2),

the uncertain travel time under the ACT criterion can be derived by solving
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two linear optimization problems,

ACTV (t̃)

=



α
1

λ
ln

(
sup
P∈F
EP
(
exp(λt̃)

))
+ (1− α)

1

λ
ln

(
inf
P∈F
EP
(
exp(λt̃

))
, when λ > 0,

(1− α)
1

λ
ln

(
sup
P∈F
EP
(
exp(λt̃)

))
+ α

1

λ
ln

(
inf
P∈F
EP
(
exp(λt̃

))
, when λ < 0,

αµ1 + (1− α)µ
1
, when λ = 0.

where

sup
P∈F
EP
(
exp

(
λt̃
))

= max
(p1,...,pM )∈P

M∑
m=1

pm exp(λtm)

inf
P∈F
EP
(
exp

(
λt̃
))

= min
(p1,...,pM )∈P

M∑
m=1

pm exp(λtm)

and

P =


(p1, . . . , pM)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∑
m=1

pmt
lk
m ≤ µk, k = 1, . . . , K,

M∑
m=1

pmt
lk
m ≥ µ

k
, k = 1, . . . , K,

M∑
m=1

pm = 1,

pm ≥ 0, m = 1, . . . ,M.


.

Proof. The proof for this proposition is rather straight forward.

2.3 Path Selection under the ACT Criterion

In this section, we study the problem of selecting the path that minimizes the

ACT criterion when the link travel times on the network are uncertain. We

consider a directed network G = (N ,A) and let R be the set of all admissible
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paths, which are sets of links connecting the origin node to the destination

node. The uncertain travel time along the link a ∈ A is denoted by t̃a.

The deterministic version of this path selection problem or shortest path

problem is well known to be polynomial time solvable. When the travel

times are uncertain, the path selection problem that minimizes the travel

time under the ACT criterion is given by

min
r∈R

ACTV

(∑
a∈r

t̃a

)
. (2.3)

In Proposition 2.4 below, we show that the solvability of Problem (2.3) de-

pends on whether the uncertain link travel times are correlated.

Proposition 2.4. (a) If the uncertain link travel times are independently

distributed, then Problem (2.3) is a shortest path problem on the same

network in which the link travel time on a ∈ A is given by ACTV

(
t̃a
)
.

(b) If the uncertain link travel times are correlated, then the recognition

version of Problem (2.3) is NP-complete.

Proof. (a) According to Proposition 2.1, if the link travel times are inde-

pendently distributed, the objective function in Problem (2.3) can be written

additively as

ACTV

(∑
a∈r

t̃a

)
=
∑
a∈r

ACTV

(
t̃a
)
.

In this case, we can regard the travel time under the ACT criterion along

each link as the deterministic link travel time, and polynomially solve it by
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the shortest path algorithm.

(b) We will prove its NP-complete by reduction from the following problem,

which is proved to be NP-complete by Yu and Yang (1998):

min
r∈R

max

{∑
a∈r

t1a,
∑
a∈r

t2a

}
, (2.4)

where t1a and t2a are two travel time scenarios on link a ∈ A.

We construct an instance of Problem (2.3), in which the uncertain travel

time on link a is

t̃a =
1

2

(
t1a + t2a

)
+

1

2

(
t1a − t2a

)
z̃, ∀ a ∈ A,

that is, the travel times of all the links are influenced by a common random

variable z̃, which we assume is +1 or −1 with equal probability. Hence, for an

extremely risk-averse and pessimistic towards ambiguity traveler (λ→ +∞,

α = 1), finding a path with minimum travel time under the ACT criterion

from the origin node to the destination node can be written as

min
r∈R

lim
λ→+∞

sup
P∈F

1

λ
lnEP

(
exp

(
λ
∑
a∈r

(
1

2

(
t1a + t2a

)
+

1

2

(
t1a − t2a

)
z̃

)))
.

According to Proposition 2.1, it can be simplified further as

min
r∈R

∑
a∈r

1

2

(
t1a + t2a

)
+ max

{∑
a∈r

1

2

(
t1a − t2a

)
,
∑
a∈r

1

2

(
t2a − t1a

)}
,
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which could be equivalently written as Problem (2.4). Thus, Problem (2.3)

is NP-complete.

Proposition 2.4 shows that when the link travel times are independent-

ly distributed, we can easily find the optimal path under the ACT criterion,

which accounts for both risk and ambiguity. The result, though simple, shows

that the ACT criterion not only is descriptive relevant by being able to ac-

count for a traveler’s different attitudes of risk and ambiguity over uncertain

travel times, but also can be used normatively to find the most preferred

path using modest computational effort.

2.4 Analysis of Network Equilibrium with Risk and

Ambiguity Aware Travelers

We study the network equilibrium problem when travelers are sensitive to

risk and ambiguity and evaluate the travel times along paths using the ACT

criterion. In section 2.4.1, we characterize the network equilibrium such that

no traveler could improve his/her travel time under the ACT criterion by

unilaterally changing routes. In section 2.4.2, we investigate the inefficiency

of the NE by comparing with the System Optimal solution that minimizes

the total travel time under the ACT criterion of all travelers. We also provide

a simple network equilibrium study in section 2.4.3.



2. Preferences for Travel Time under Risk and Ambiguity 34

2.4.1 Network equilibrium formulation

Given a network G = (N ,A), we let W ⊆ N × N be a set of Origin-

Destination (OD) pairs, and Rw be a set of all simple paths connecting a

given OD pair w ∈ W . To derive a tractable model, we assume that the

uncertain link travel times are independently distributed. We define the

uncertain travel time along link a ∈ A as

t̃a(va) = sa(va)z̃a + τ̃a,

where sa(va) is a differentiable, monotonically increasing function in its own

link traffic flow va, and z̃a, τ̃a, a ∈ A are independently distributed nonnega-

tive random variables. The multiplicative uncertainty z̃a can be interpreted

as the flow dependent disturbance, while τ̃a, the additive uncertainty, is the

flow independent disturbance.

For generality, we allow travelers to have different perceptions on uncer-

tainty in link travel times. For example, a local resident, who is very familiar

with the area, would be less ambiguous, compared to a tourist, in character-

izing the uncertain travel times along the network links. To characterize the

heterogeneity, we classify all travelers on the network into n types. The ith

type of travelers, i ∈ I = {1, . . . , n} are characterized by their risk param-

eter λi, ambiguity parameter αi, and their distributional uncertainty set Fi

of the travel times on the network. For notational convenience, we denote

Vi = (λi, αi,Fi). Under the ACT criterion, the uncertain travel time t̃a(va)
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perceived by the ith type of travelers is given by

tai(va) = ACTVi

(
t̃a(va)

)
= ACTVi (sa(va)z̃a + τ̃a)

= ACTVi (sa(va)z̃a) + ACTVi (τ̃a) .

For a given OD pair w ∈ W , let dwi be the number of trips made by the

ith type of travelers and fri be the flow on path r ∈ Rw contributed by the

ith type of travelers, and f = (fri)r∈Rw,w∈W,i∈I is the vector of flows of all

travelers along all paths. The aggregate flow on link a ∈ A is

va(f) =
∑
i∈I

∑
w∈W

∑
r∈Rw

friδar,

where δar equals 1 if the link a is along the path r and 0 otherwise. Moreover,

since the travel time along any path r is given by

c̃r(f) =
∑
a∈A

t̃a (va(f)) δar,

the travel time along path r ∈ Rw under the ACT criterion perceived by the
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ith type of travelers is given by

cri(f) = ACTVi (c̃r(f))

= ACTVi

(∑
a∈A

(sa(va(f))z̃a + τ̃a) δar

)
=

∑
a∈A

(ACTVi (sa(va(f))z̃aδar) + ACTVi (τ̃aδar))

=
∑
a∈A

tai(va(f))δar.

Let c(f) = (cri(f))r∈Rw,w∈W,i∈I be the vector of the travel time under the

ACT criterion of all types of travelers over all paths, and F be the feasible

set of possible flows on all paths denoted by

F =

{
f ≥ 0

∣∣∣∣∣∑
r∈Rw

fri = dwi, w ∈ W , i ∈ I

}
,

in which the constraints are OD demand conservation conditions for all class-

es of travelers among all OD pairs. We then characterize the NE as follows.

Definition 2.2. A path flow f ∗ ∈ F is a NE if and only if

cri(f
∗) ≥ µwi, ∀ r ∈ Rw, w ∈ W , i ∈ I,

f ∗ri (cri(f
∗)− µwi) = 0, ∀ r ∈ Rw, w ∈ W , i ∈ I,

where µwi ≥ 0.

At NE, the travel time along any path connecting the OD pair w per-

ceived by the ith type of travelers under the ACT criterion is at least µwi.
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Moreover, on the paths that have been actually traveled (f ∗ri > 0), the per-

ceived travel times are exactly at the minimum cri(f
∗) = µwi. In other words,

no traveler could improve his/her travel time under the ACT criterion by u-

nilaterally changing routes.

Clearly, we can also formulate the NE by means of Variational Inequal-

ities (VI). We let v = (vai)a∈A,i∈I be the vector of flows of all travelers along

all links, and we have va =
∑

i∈I vai, a ∈ A. Let t(v) = (tai(va))a∈A,i∈I be

the vector of travel time under the ACT criterion of all traveler types and

along all links. The set of feasible link flows is represented by

V =

{
v

∣∣∣∣∣vai =
∑
w∈W

∑
r∈Rw

friδar, a ∈ A, i ∈ I,f ∈ F

}
.

Proposition 2.5. The path flow of the NE can be equivalently characterized

by the following VI problem:

Find f ∗ ∈ F , such that

〈f − f ∗, c(f ∗)〉 ≥ 0, ∀ f ∈ F ,

where 〈·〉 denotes the Euclidean inner product. Likewise, the link flow of NE

is characterized by finding v∗ ∈ V , such that

〈v − v∗, t(v∗)〉 ≥ 0, ∀ v ∈ V . (2.5)
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Proof. This is an extension of the single class deterministic NE problem and

we refer interested readers to Smith (1979) and Dafermos (1980).

If travelers are homogeneous, i.e., n = 1, the NE defined under the ACT cri-

terion reduces to a single class deterministic NE model. For the general case,

n > 1, we could adopt algorithms for solving the generic VI (see Nagurney

1998; Facchinei and Pang 2003).

Corollary 2.1. The link flow of NE exists, but may not be unique.

Proof. Since set V is a compact set, and function t(v) is continuous, Problem

(2.5) admits at least one solution v∗. Furthermore, this link flow of NE may

not be unique, as t(v) is not strictly monotone in V .

For the special case in which uncertainty along links is flow independent,

we show that the corresponding NE problem can be solved via a convex

optimization problem. Under this case, the uncertain travel time on link

a ∈ A can be simplified as

t̃a(va) = sa(va) + τ̃a,

and travel time perceived by the ith type of travelers under the ACT criterion

is

tai(va) = sa(va) + ACTVi (τ̃a) .

Proposition 2.6. When the uncertainty is flow independent, we can compute
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the NE traffic flow by solving the following convex optimization problem:

min
v∈V

∑
a∈A

∫ va

0

sa(x)dx+
∑
a∈A

∑
i∈I

ACTVi (τ̃a) vai. (2.6)

Proof. First, set V is convex and compact. Let Z(v) =
∑
a∈A

∫ va
0
sa(x)dx +∑

a∈A

∑
i∈I

ACTVi (τ̃a) vai, we can easily verify that

∂Z(v)

∂vai
= sa (va) + ACTVi (τ̃a) = tai(va), ∀ a ∈ A, i ∈ I,

and Z(v) is convex in v. Therefore, from the necessary optimality condition,

we know v∗ is an optimal solution to the convex optimization problem

min
v∈V

Z(v),

if and only if it solves VI Problem (2.5) when the uncertainty is flow inde-

pendent.

We next derive the uniqueness of the NE traffic flow under the assump-

tion that uncertainty along links is flow independent.

Corollary 2.2. If the travel time function is a strictly monotonically increas-

ing function of its own link flow, then the optimal solution of aggregate flow

on each link is unique.

Proof. Suppose two distinct link flow solutions v1 and v2 are both optimal

solutions to Problem (2.6). That is, ∃ a ∈ A, v1
a 6= v2

a, and Z(v1) = Z(v2).
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Then we will show the contradiction.

Since sa(x) is a strictly monotonic increasing function,
∫ va

0
sa(x)dx is a

strictly convex function in va. For any η ∈ (0, 1),

Z
(
ηv1 + (1− η)v2

)
−
(
ηZ
(
v1
)

+ (1− η)Z
(
v2
))

=
∑
a∈A

∫ ηv1
a+(1−η)v2

a

0

sa(x)dx+
∑
a∈A

∑
i∈I

ACTVi (τ̃a)
(
ηv1

ai + (1− η)v2
ai

)
−η

(∑
a∈A

∫ v1
a

0

sa(x)dx+
∑
a∈A

∑
i∈I

ACTVi (τ̃a) v
1
ai

)

− (1− η)

(∑
a∈A

∫ v2
a

0

sa(x)dx+
∑
a∈A

∑
i∈I

ACTVi (τ̃a) v
2
ai

)

=
∑
a∈A

∫ ηv1
a+(1−η)v2

a

0

sa(x)dx−

(
η
∑
a∈A

∫ v1
a

0

sa(x)dx+ (1− η)
∑
a∈A

∫ v2
a

0

sa(x)dx

)
< 0,

it follows that

Z
(
ηv1 + (1− η)v2

)
< ηZ(v1) + (1− η)Z(v2) = Z(v1) = Z(v2).

Now we have a contradiction to the assumption that v1 and v2 are both

optimal. Therefore, the optimal solution of aggregate flow on each link is

unique.

We can interpret Problem (2.6) as a deterministic multi-class NE prob-

lem, which is easily solved by the traditional Frank-Wolfe algorithm (see for

instance Frank and Wolfe 1956; Yang and Huang 2004).
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2.4.2 Inefficiency of network equilibrium

Another concept accompanied with NE is to compare with the so-called

System Optimum (SO) in which the aggregate travel time of all travelers is

minimized (Nash 1951; Wardrop 1952). As travelers choose routes without

considering about possible negative impacts on the system performance, it

is obvious that the NE solution usually deviates from SO and is less efficient

in attaining the minimum aggregate travel time. Led by the seminal work

of Koutsoupias and Papadimitriou (2009), the loss of efficiency in NE is an

active area of research. The authors propose the concept of Price of Anarchy,

which is formally defined as the worst-case inefficiency or the ratio between

the aggregate cost of NE and that of SO. In particular, Roughgarden and

Tardos (2002) and Correa et al. (2004) present a surprising, but welcome

result that NE is near optimal in the sense that the aggregate travel time of

all travelers under NE is at most that under SO with double traffic in the

same network. In addition, when the travel time function depends linearly on

traffic flow, the aggregate travel time of all travelers under NE is at most 4/3

times that under SO. A sequence of results with respect to a more general

link travel time function are further developed by Roughgarden (2003), Chau

and Sim (2003), Perakis (2007), Correa et al. (2008), Han et al. (2008) and

Han et al. (2014). In this section, we derive similar results in the NE problem

for the case when travelers are sensitive to risk and ambiguity. To obtain

analytical results, we again assume that the uncertainty along links is flow

independent. Since in the network, each traveler may not have complete

information about uncertain travel times, his/her perceived travel time (the
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travel time under the ACT criterion) is the only foundation to make route

choice decisions. Therefore, to be consistent with travelers’ choices, we define

SO as the minimum aggregate perceived travel time, i.e., minimum aggregate

travel time under the ACT criterion.

For a given traffic flow, v ∈ V , we represent the aggregate travel time

under the ACT criterion on the entire network by

Cv(v) = 〈t(v),v〉 =
∑
a∈A

∑
i∈I

tai(va)vai =
∑
a∈A

∑
i∈I

(sa(va) + ACTVi (τ̃a)) vai.

By defining Cv∗(v) = 〈t(v∗),v〉, variational inequalities (2.5) can be replaced

as Cv∗(v∗) ≤ Cv∗(v), where v∗ = (v∗ai)a∈A,i∈I is traffic flow vector at NE for

types of travelers along all links, and v ∈ V is the vector of any feasible

flows. Let x∗ = (x∗ai)a∈A,i∈I denote the traffic flow vector at SO, which

minimizes aggregate travel time under the ACT criterion. We can analyze

the inefficiency of NE by comparing Cv∗(v∗) and Cx∗(x∗). In particular, we

are interested in the Price of Anarchy, which is the worst-case ratio between

the aggregate travel time of NE and that of SO under the ACT criterion.

Proposition 2.7. Consider an instance of Problem (2.6). The vectors v∗ =

(v∗ai)a∈A,i∈I and x∗ = (x∗ai)a∈A,i∈I represent link flows at NE and SO, respec-

tively.

(a) Let vector u = (uai)a∈A,i∈I be a feasible flow for the same network but
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with twice as many travelers of the same type. Then

Cv∗(v∗) ≤ Cu(u).

(b) If travel time function is a monomial function sa(va) = ba (va)
m (m ≥

0), then

Cv∗(v∗)
Cx∗(x∗)

≤
(
1−m(m+ 1)−(m+1)/m

)−1
.

(c) If travel time function is a general continuous and nondecreasing func-

tion, we have

Cv∗(v∗)
Cx∗(x∗)

≤ 1

1− β(A)
,

where

β(A) = sup
a∈A

sup
v≥0

maxx≥0 x (sa(v)− sa(x))

sa(v)v
, and 0 ≤ β(A) ≤ 1.

Proof. The proof of this result follows from Correa et al. (2004).

(a) Note that sa(va) is a differentiable, monotonically increasing function in

va, and u = (uai)a∈A,i∈I is a feasible flow for the same network but with

double demands. We have

sa(ua)ua + sa(v
∗
a)v
∗
a − sa(v∗a)ua ≥ sa(ua)ua ≥ 0, if ua ≤ v∗a;

sa(ua)ua + sa(v
∗
a)v
∗
a − sa(v∗a)ua ≥ sa(v

∗
a)v
∗
a ≥ 0, if ua ≥ v∗a.
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Therefore,

Cu(u) + Cv∗(v∗)− Cv∗(u)

=
∑
a∈A

∑
i∈I

(tai(ua)uai + tai(v
∗
a)v
∗
ai − tai(v∗a)uai)

=
∑
a∈A

∑
i∈I

(sa(ua)uai + sa(v
∗
a)v
∗
ai + ACTVi (τ̃a) v

∗
ai − sa(v∗a)uai)

=
∑
a∈A

∑
i∈I

ACTVi (τ̃a) v
∗
ai +

∑
a∈A

(sa(ua)ua + sa(v
∗
a)v
∗
a − sa(v∗a)ua)

≥
∑
a∈A

∑
i∈I

ACTVi (τ̃a) v
∗
ai

≥ 0.

Besides, we note that u/2 = (uai
2

)a∈A,i∈I is a feasible flow for the original

instance. From the NE property,

Cu(u) ≥ Cv∗(u)−Cv∗(v∗) = 2Cv∗
(u

2

)
−Cv∗(v∗) ≥ 2Cv∗(v∗)−Cv∗(v∗) = Cv∗(v∗).

(b) If travel time is a monomial function, defined as sa(va) = ba (va)
m such

that

tai(va) = ba (va)
m + ACTVi (τ̃a) .
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Then, we have

Cv∗(x)

=
∑
a∈A

∑
i∈I

(ta (v∗a) + ACTVi (τ̃a))xai

=
∑
a∈A

∑
i∈I

ACTVi (τ̃a)xai +
∑
a∈A

ba (v∗a)
m xa

≤
∑
a∈A

∑
i∈I

ACTVi (τ̃a)xai +
∑
a∈A

ba
(
xm+1
a +m(m+ 1)−(m+1)/m(v∗a)

m+1
)

=
∑
a∈A

∑
i∈I

(ba (xa)
m + ACTVi (τ̃a))xai +m(m+ 1)−(m+1)/m

∑
a∈A

∑
i∈I

ba (v∗a)
m v∗ai

≤ Cx(x) +m(m+ 1)−(m+1)/m
∑
a∈A

∑
i∈I

(ba (v∗a)
m + ACTVi (τ̃a)) v

∗
ai

= Cx(x) +m(m+ 1)−(m+1)/mCv∗(v∗),

where the first inequality is tenable because the function f(x) = vmx−xm+1

(x ≥ 0) will get its maximumm(m+1)−(m+1)/mvm+1 at x = v(m+1)−1/m; and

the second inequality holds because
∑

a∈A
∑

i∈I ACTVi (τ̃a) v
∗
ai ≥ 0. Then,

since Cv∗(v∗) ≤ Cv∗(x), we get

(
1−m(m+ 1)−(m+1)/m

)
Cv∗(v∗) ≤ Cx∗(x∗).

When x∗ = (x∗ai)a∈A,i∈I is the system optimum, we can find the Price of

Anarchy bounded at
(
1−m(m+ 1)−(m+1)/m

)−1
, which is the same as that

in deterministic cases.

(c) We could generalize the travel time function to continuous, nondecreasing
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case.

Cv∗(x) =
∑
a∈A

∑
i∈I

tai(v
∗
a)xai

=
∑
a∈A

sa(v
∗
a)xa +

∑
a∈A

∑
i∈I

ACTVi (τ̃a)xai

=
∑
a∈A

xa (sa(v
∗
a)− sa(xa)) + Cx(x)

=
∑
a∈A

xa (sa(v
∗
a)− sa(xa))

sa(v∗a)v
∗
a

sa(v
∗
a)v
∗
a + Cx(x)

≤
∑
a∈A

β(v∗a, sa(v
∗
a))sa(v

∗
a)v
∗
a + Cx(x)

≤ sup
a∈A

β(v∗a, sa(v
∗
a))
∑
a∈A

sa(v
∗
a)v
∗
a + Cx(x)

≤ β(A)Cv∗(v∗) + Cx(x),

where β(v, s(v)) =
1

s(v)v
max
x≥0
{x (s(v)− s(x))}, and β(A) = supa∈A supv≥0 β(v, sa(v)).

Since the travel time function s(v) is a continuous nondecreasing function,

the following relationship holds:

0 =
v(s(v)− s(v))

s(v)v
≤ β(v, s(v))

≤ max0≤x≤v x(s(v)− s(x))

s(v)v
≤ max0≤x≤v xs(v)

s(v)v
≤ vs(v)

s(v)v
= 1.

Assuming x∗ = (x∗ai)a∈A,i∈I is SO solution, we have the Price of Anarchy as

Cv∗(v∗)
Cx∗(x∗)

≤ 1

1− β(A)
.

As far as we know, classical Price of Anarchy results on traffic equilibriums do

not consider the influence of uncertainty on travelers’ choice and our result

is possibly the first attempt in this direction. It is interesting to observe
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that after accounting for travelers preferences for risk and ambiguity in the

traffic equilibrium problem, the Price of Anarchy results remain similar to

the classical ones where travel times are deterministic.

2.4.3 A network equilibrium example

The following example explicitly illustrates the calculation of NE and SO un-

der the ACT criterion, and demonstrates the inefficiency issues under various

mixtures of travelers’ profiles. It elucidates the importance of taking travel-

ers’ risk and ambiguity attitudes into account in analyzing traffic networks.

O D t (x) 
t (x) 

Fig. 2.3: Two paths network with uncertain travel times.

We consider a two paths network from origin O to destination D depicted

in Figure 2.3. The traffic rate is assumed to be 1. The paths have travel

times as follows:

t̃A(vA) = (vA)4 + τ̃A, t̃B(vB) =
6

5
,

where τ̃A is uncertain. We assume that all travelers have the same infor-

mation on the uncertain parameter τ̃A. Specifically, τ̃A has a mean value

of 1
5

and support in [0,∆], ∆ > 1
5
. Hence, the corresponding distributional
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Type i Demand αi λi ACTVi
(τ̃A)

1 2
3

4
5 5 1

25 + 4
25 ln

(
1 + 1

5∆ (exp(5∆)− 1)
)

2 1
3

1
5 -5 1

25 −
4
25 ln

(
1 + 1

5∆ (exp(−5∆)− 1)
)

Tab. 2.3: Travelers’ profile in Case 3.

uncertainty set is given by

F(∆) =

{
P
∣∣∣∣EP (τ̃A) =

1

5
,P (τ̃A ∈ [0,∆]) = 1

}
.

Note that the parameter ∆ represents the worst-case delay of τ̃A and implies

the level of uncertainty along Path A. On the other hand, Path B has de-

terministic travel time and is unaffected by ∆. With various compositions of

travelers in terms of risk and ambiguity attitudes, the NE and SO under the

ACT criterion will yield different flow patterns. To explore the impact of ∆

on these flow patterns, we consider the following three cases:

Case 1: All travelers are risk-neutral and ambiguity neutral (λ = 0, α = 1
2
);

Case 2: All travelers are extremely risk-averse and pessimistic towards am-

biguity (λ→ +∞, α = 1).

Case 3: Travelers composition with profiles is shown in Table 2.3.

In Case 1, all travelers are risk and ambiguity neutral and they intuitively

perceive the uncertain term as its mean value. Hence, the solutions are

consistent with traditional deterministic NE and SO models. In Case 2,

travelers who are radically risk-averse and pessimistic towards ambiguity

consider the worst-case travel time in deciding between paths. In Case 3,

type 1 travelers are risk-averse and pessimistic towards ambiguity, while type

2 travelers are risk-seeking and optimistic towards ambiguity. We derive flow



2. Preferences for Travel Time under Risk and Ambiguity 49

solutions of NE and SO under the ACT criterion in Table 2.4. For notational

simplicity, in this example, we let tA1 = ACTV1(τ̃A) and tA2 = ACTV2(τ̃A).

Note that ∆1 and ∆2 are the unique solutions satisfying
(

6
25
− 1

5
tA1

)1/4−1
3

= 0

and
(

6
5
− tA1

)1/4 − 1
3

= 0, and ∆1 ≈ 1.8136, and ∆2 ≈ 1.8829, respectively.

Ca- Cond- Crit- Ty- Traffic flow Path ACT1

se ition erion pe A B A B

1
NE 1 0 6

5
6
5

SO 5−1/4 1− 5−1/4 2
5

6
5

2

1
5 < ∆ NE ( 6

5 −∆)1/4 1− ( 6
5 −∆)1/4 6

5
6
5

≤ 6
5 SO

(
6
25 −

1
5∆
)1/4

1−
(

6
25 −

1
5∆
)1/4 6

25 + 4
5∆ 6

5

6
5 ≤ ∆

NE 0 1 ∆ 6
5

SO 0 1 ∆ 6
5

3

NE
1

(
6
5 − tA1

)1/4

− 1
3

1 −
(

6
5 − tA1

)1/4 6
5

6
5

1
5 < ∆ 2 1

3
0 6

5 − tA1 +tA2
6
5

≤ ∆1
SO

1

(
6
25 −

1
5 tA1

)1/4

− 1
3

1 −
(

6
25 −

1
5 tA1

)1/4 6
25 + 4

5 tA1
6
5

2 1
3

0 6
25 −

1
5 tA1 +tA2

6
5

NE
1

(
6
5 − tA1

)1/4

− 1
3

1 −
(

6
5 − tA1

)1/4 6
5

6
5

∆1 ≤ ∆ 2 1
3

0 6
5 − tA1 +tA2

6
5

≤ ∆2
SO

1 0 2
3

1
81 + tA1

6
5

2 1
3

0 1
81 + tA2

6
5

∆2 ≤ ∆

NE
1 0 2

3
1
81 + tA1

6
5

2 1
3

0 1
81 + tA2

6
5

SO
1 0 2

3
1
81 + tA1

6
5

2 1
3

0 1
81 + tA2

6
5

1 Path ACT refers to the travel time along the path under the ACT criterion;

Tab. 2.4: Flow patterns of NE and SO under the ACT criterion for three cases.

We now study the inefficiency of NE under the ACT criterion with re-

spect to the parameter ∆. We represent the aggregate travel times under

the ACT criterion in Case i under the NE and SO model by ACTNE
i and

ACTSO
i respectively, and quantify the inefficiency of NE via the ratio

ACTNEi
ACTSOi

.
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For these three cases, the ratios are calculated as:

ACTNE
1

ACTSO
1

=
6

6− 4× 5−1/4
;

ACTNE
2

ACTSO
2

=


6

6− 20
(

6
25
− 1

5
∆
)5/4

, when 1
5
< ∆ ≤ 6

5
,

1, when 6
5
≤ ∆;

ACTNE
3

ACTSO
3

=



6
5
− 1

3
tA1 + 1

3
tA2

6
5
− 1

3
tA1 + 1

3
tA2 − 4

(
6
25
− 1

5
tA1

)5/4
, when 0.2 < ∆ ≤ ∆1,

6
5
− 1

3
tA1 + 1

3
tA2

4
5

+ 1
243

+ 1
3
tA2

, when ∆1 ≤ ∆ ≤ ∆2,

1, when ∆2 ≤ ∆.

Figure 2.4 depicts the ratios of Case 2 and 3. We observe that the ratios

decrease with the increase of upper bound ∆. For this specific example,

when the travel time becomes more uncertain, the change of traffic flow has

less impact on the traveler’s path choice decisions, correspondingly, the flow

pattern at NE will approach to that at SO. In other words, it suggests that

if the travel time along a traffic network is highly uncertain, then there is

little benefit from having the system optimal solution in which the aggregate

travel time under the ACT criterion is minimized.

Next, we highlight that it is essential for traffic managers to consider

travelers’ risk and ambiguity attitudes when determining the system optimal

flow pattern. Specifically, if we ignore uncertainty and calculate the deter-

ministic system optimal (DSO) flow pattern, the system performance may

be worse than that of NE in terms of the aggregate travel time under the

ACT criterion. We represent the DSO flow pattern by u∗ = (u∗a)a∈A, which
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is the unique optimal solution of

min
∑
a∈A

(sa(ua) + E (τ̃a))ua

s.t. ua =
∑
w∈W

∑
r∈Rw

frδar, ∀ a ∈ A,∑
r∈Rw

fr =
∑
i∈I

dwi, ∀ w ∈ W ,

fr ≥ 0, ∀ r ∈ Rw, w ∈ W .

Note that the flow pattern u∗ = (u∗a)a∈A only identifies the aggregate traffic

flow on each link. Therefore, with the mixture of travelers, the traffic flow

for each type of travelers on each link may not be unique. We represent its

feasible set as

U =

{
v ∈ V

∣∣∣∣∣∑
i∈I

vai = u∗a,∀ a ∈ A

}
.

Then, for any v ∈ U , we define ACTDSO (v) as the total travel time under

the ACT criterion of all travelers when the traffic flow is v, that is,

ACTDSO (v) =
∑
a∈A

∑
i∈I

(sa (u∗a) + ACTVi (τ̃a)) vai.

Since ACTDSO (v) is a function of v ∈ U , we define its lower and upper

bound by ACTDSO and ACT
DSO

respectively, where

ACTDSO = min
v∈U

∑
a∈A

∑
i∈I

(sa (u∗a) + ACTVi (τ̃a)) vai;

ACT
DSO

= max
v∈U

∑
a∈A

∑
i∈I

(sa (u∗a) + ACTVi (τ̃a)) vai.



2. Preferences for Travel Time under Risk and Ambiguity 52

Hence, for any v ∈ U , ACTDSO (v) ∈
[
ACTDSO,ACT

DSO
]
. Similarly, we

quantify the inefficiency of DSO under the ACT criterion via the ratios

ACTDSOi

ACTSOi
and ACT

DSO
i

ACTSOi
as follows:

ACTDSO
2

ACTSO
2

=
ACTDSO

2

ACTSO
2

=
ACT

DSO

2

ACTSO
2

=


6 + 53/4 (∆− 1)

6− 20
(

6
25
− 1

5
∆
)5/4

, 1
5
< ∆ ≤ 6

5
,

6 + 53/4 (∆− 1)

6
, 6

5
≤ ∆;

ACTDSO
3

ACTSO
3

=


6
5
− 5−1/4 +

(
5−1/4 − 1

3

)
tA1 + 1

3
tA2

6
5
− 1

3
tA1 + 1

3
tA2 − 4

(
6
25
− 1

5
tA1

)5/4
, 1

5
< ∆ ≤ ∆1,

6
5
− 5−1/4 +

(
5−1/4 − 1

3

)
tA1 + 1

3
tA2

4
5

+ 1
243

+ 1
3
tA2

, ∆1 ≤ ∆;

ACT
DSO

3

ACTSO
3

=


6
5
− 5−1/4 + 2

3
tA1 +

(
5−1/4 − 2

3

)
tA2

6
5
− 1

3
tA1 + 1

3
tA2 − 4

(
6
25
− 1

5
tA1

)5/4
, 1

5
< ∆ ≤ ∆1,

6
5
− 5−1/4 + 2

3
tA1 +

(
5−1/4 − 2

3

)
tA2

4
5

+ 1
243

+ 1
3
tA2

, ∆1 ≤ ∆.
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Fig. 2.4: Inefficiency of NE and DSO under the ACT criterion in Case 2 and 3 in
two-nodes network.

Figure 2.4 demonstrates the inefficiency of NE and DSO under the ACT
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criterion of Cases 2 and 3. In Case 2, for the network where travelers are

extremely risk-averse and pessimistic towards ambiguity, with the increase

of ∆, the NE flow pattern under the ACT criterion becomes less inefficien-

t, while the inefficiency of DSO grows increasingly severe. When ∆ > 1,

ACTDSO
2 > ACTNE

2 suggests if we instruct the traffic flow following DSO

criterion, which does not account for travelers’ attitudes towards risk and

ambiguity, the performance will turn worse than its original anarchy state.

Similarly, in Case 3, with two types of travelers, the ratio
ACTDSO3 (v)

ACTSO3
lies

between the two curves
ACTDSO3

ACTSO3
and ACT

DSO
3

ACTSO3
. The increase of upper bound ∆

will cut down the inefficiency of NE, but result in the deterioration of DSO

in terms of system performance. Moreover, when the level of travel time

uncertainty increases to some specific value, the DSO performance will be no

better than the NE performance, which suggests this guidance effort would

be in vain.

Following the same strategy, we extend our computational study from

this two links small network to a five-nodes complete network, which includes

5 nodes, and 20 links. Since calculating ACTDSO and ACT
DSO

is generally a

hard problem, we only use this simple network for illustrative purpose. The

demand on each OD pair for each type of travelers is uniformly generated

from the set {101, 102, . . . , 800}. Uncertain travel time on each link is written

as

t̃a(va) = sa(0) + 0.15

(
va
ca

)4

+ τ̃a, ∀ a ∈ A.

Free flow travel time sa(0) follows uniform distribution U(2, 6), and capacity

ca is generated from uniform distribution U(200, 1000). Instead of determin-
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istic travel time, we assume that uncertainties occur on each link indepen-

dently. Moreover, the disturbance is flow independent, with the mean equal

to 20% of free flow travel time on that link, and lower bound equal to ze-

ro. We vary the upper bound of uncertainties by ∆. The uncertainty τ̃a is

characterized as

F = {P |EP (τ̃a) = 0.2sa(0), P (τ̃a ∈ [0,∆× EP (τ̃a)]) = 1, ∀ a ∈ A} .

Travelers’ characteristics are consistent with Case 3. We randomly gener-

ate 50 instances, and summarize the average performance. The inefficiency

results of NE and DSO under the ACT criterion of five-nodes network are

listed in Figure 2.5. Similar conclusions could be derived here. When the

flow independent disturbance on travel time becomes highly uncertain, the

influence of selfishness on inefficiency diminishes.

2.5 Conclusion

This chapter studies the preferences for uncertain travel times in which the

probability distributions may not be fully characterized. By explicitly dis-

tinguishing risk and ambiguity concepts, we propose a new criterion called

ambiguity-aware CARA travel time for ranking the uncertain travel time,

which systematically integrates the travelers’ inability to capture the exact

information of uncertain travel times, and their attitudes towards risk and

ambiguity. This setting is based on the Hurwicz criterion and constant abso-

lute risk aversion, which is empirically supported and provides computational
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Fig. 2.5: Inefficiency of NE and DSO under the ACT criterion in Case 3 in five-
nodes network.

benefits.

With this criterion, we explore computational solvability of the path

choice problem on a network where travel times are uncertain. We show that

finding a path with the minimum travel time under the ACT criterion is

polynomially solvable when link travel times are independently distributed.

We also prove that the problem becomes intractable when link travel times

are correlated. Focusing on independently distributed link travel times, we

present the general VI formulation of NE under the ACT criterion. We

analyze the case when the uncertainty along links is flow independent and

show that it can be addressed as a convex optimization problem. We also

determine the inefficiency of NE by deriving the Price of Anarchy, which is

similar to the deterministic NE case.

The ACT criterion could potentially enhance the predictive capability
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of path choice and traffic equilibrium. First, it does not require traveler-

s to know the probability distributions of the network. Second, it has the

potential to incorporate risk and ambiguity in travelers’ decision making.

Third, the path choice problem and network equilibrium established retain

the computational tractability of their deterministic counterparts. It will be

valuable to establish empirically the risk and ambiguity profiles of a pop-

ulation of travelers residing in different cities and possibly having different

cultures. We hope that our work could encourage future research in this

direction. This is joint work with Melvyn Sim, Defeng Sun and Xiaoming

Yuan.



3. ROUTING OPTIMIZATION WITH DEADLINES

UNDER UNCERTAINTY

3.1 Introduction

Routing optimization problems on networks consist of finding paths (either

simple paths, closed paths, tours, or walks) between nodes of the networks

in an efficient way. These problems and their solutions have proved to be

essential ingredients for addressing many real-world decisions in applications

as diverse as logistics, transportation, computer networking, internet routing,

to name a few.

In many of these routing applications, specially those imposing deadlines

on when to visit nodes, the presence of uncertainty in the networks (e.g.,

presence or not of some of the nodes, arc travel times) is a critical issue

to consider explicitly if one hopes to provide solutions of practical values

to the end users. There are two related issues: (i) how to properly model

uncertainty in order to reflect real-world concerns, and (ii) how to do so in

models which will be computationally tractable? In this chapter, we provide

novel ways to address such issues for a subclass of these routing problems

under uncertainty.
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More specifically, we study routing problems on networks with deadlines

imposed at a subset of nodes, and with uncertain arc travel times that can

be characterized by exact distributions, or by a distributional uncertainty

set incorporating ambiguity. Our model is static in the sense that routing

decisions are made prior to the realization of uncertain travel times. To in-

corporate ambiguity, instead of defining an exact probability distribution P

for an arc travel time, we assume its true distribution lies in a distribution-

al uncertainty set denoted by F, which is characterized by some descriptive

statistics, e.g., means and bounded supports. The goal is to find optimal

routing policies such that arrival times at nodes respect deadlines “as much

as possible”, in a mathematically precise way under an appropriately defined

performance measure which takes into account such distributional uncertain-

ty assumptions.

This framework can be applied to transportation networks, for example,

for delivery service providers to route their vehicles, where multiple vehicles

and uncertain service time could be incorporated, or for individuals to make

their travel plans. It can also be employed to solve problems arising from

telephone networks or electronic data networks.

The deterministic version of many routing optimization problems (e.g.,

shortest path problems, traveling salesman problems, vehicle routing prob-

lems) have been studied extensively over many decades (see the literature

reviews of Toth and Vigo 2001; Öncan et al. 2009; and Laporte 2010, to

name a few). Due to the recognized practical importance of incorporating

uncertainty, the uncertain versions of routing problems have also attracted in-

creasing attention. Researchers have formulated various problems depending
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on the uncertainty under consideration; for example, uncertainty in customer

presence (Jaillet 1988; Jaillet and Odoni 1988; Campbell and Thomas 2008),

uncertainty in demand (Bertsimas 1992; Bertsimas and Simchi-Levi 1996),

and uncertainty in travel time (see below). A comprehensive overview can

be found in Cordeau et al. (2006) and Häme and Hakula (2013).

In this chapter, our particular attention is on the uncertainty of travel

times, and we now review the literature specific to this area, first concentrat-

ing on the shortest path problems with deadline. Under uncertainty about

arc travel times, and given a deadline at the destination node, these problems

consist of finding paths from the origin to the destination in such a way that

the deadline is “effectively” met. At the heart of this problem, one has to (i)

model the uncertainty, and (ii) explicitly and quantitatively define the word

“effectively”. Researchers have established distinct selection criteria.

One intuitive and well-discussed way is to select a route with the largest

probability of arriving on time (see Frank 1969; Mirchandani 1976; Nie and

Wu 2009). However, maximizing the arrival probability fails to take the

delay level into account. Everything else being equal, a path with a proba-

bility of 0.01 of incurring a delay may not be better than another one with

a probability 0.011 if the delays are 10 hours and 10 minutes, respectively.

Furthermore, evaluating the probability of a weighted sum of random vari-

ables is generally difficult, as we have discussed in Chapter 2. By assuming

that travel times follow normal distributions, researchers have reformulated

the problem of maximizing the arrival probability using different techniques.

Chen et al. (2012) formulate the problem as a multi-criteria shortest path

finding problem. Nikolova (2009) and Xiao et al. (2012) equivalently formu-
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late the problem as maximizing the earliness per unit of standard deviation

(i.e., a “punctuality ratio” criterion). Nevertheless, the problem is still a

computationally hard problem, and the chosen criterion does not respect the

first order stochastic dominance property, which essentially makes it not so

appealing. Kosuch and Lisser (2010) minimize the delay excess penalty for

the stochastic shortest path problem under normally distributed arc travel

times. They embed a stochastic projected gradient method within a branch-

and-bound framework to solve it. Nie et al. (2012) approach the problem

using a second order stochastic method, and suggest sampling and dynamic

programming techniques.

The above approaches necessitate a complete distributional knowledge

about uncertain travel times. However, in reality, it is hard to figure out

the exact frequency associated with an uncertain event. Additionally, be-

cause of complex phenomena due to traffic congestion, weather conditions,

and drivers’ behaviors, travel times cannot easily be modeled using simple

probability distributions, and cannot even be estimated accurately without

the “bias” of a chosen sampling procedure. Henceforth, with only limited

information about travel time distributions, robust approaches have been

proposed to model the uncertainty.

Researchers have either considered that each arc travel time is associ-

ated with an interval or with a discrete set of scenarios, and have suggested

different optimization criteria and methodologies. Kouvelis and Yu (1997)

use the min-max approach to find an optimal path such that its worst-case

performance across all possible realizations is superior to that of any other

path. The problem is proved to be NP-hard. Karaşan et al. (2001), Monte-
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manni et al. (2004), Averbakh and Lebedev (2004), Catanzaro et al. (2011)

study a relative robustness criterion, which finds a path minimizing the max-

imal robust deviation. Gabrel et al. (2013) propose to use bw-robustness, in

which robust solutions should provide good performances in most scenarios

without being too bad for the rest, to formulate the shortest path problem

into a large scale integer linear programming problem. However, all the ro-

bust formulations introduced above do not inherit one key property of its

deterministic version, i.e., polynomial solvability. The only exception comes

from Bertsimas and Sim (2003, 2004). To adjust the conservatism level, they

introduce a parameter Γ, named the budget of uncertainty, to represent the

maximum number of coefficients that could deviate from the nominal value.

With their formulation, the optimal solution can be obtained by solving only

a small number of deterministic shortest path problems.

The modeling issues are further complicated when we have a subset of

nodes with deadline requests. Campbell and Thomas (2008) show that the

problem of incorporating deadlines is much more computationally complex

than the version without deadlines. To the best of our knowledge, only few

studies consider such general routing problems with deadlines in the presence

of uncertain travel times.

Laporte et al. (1992) consider a multiple vehicle routing problem with

stochastic travel times and service times. Each vehicle has a targeted time

to complete the route. They propose a chance constrained model and a

stochastic programming model, and suggest branch and cut algorithms to

solve moderate-size problems. Kenyon and Morton (2003) mainly focus on

the length of the longest route traveled by multiple vehicles and develop
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two versions of the model by minimizing the expected completion time or

maximizing the probability of completion within a given deadline, and finally

solve the model by branch-and-cut scheme.

Jula et al. (2006), Chang et al. (2009), and Mazmanyan et al. (2009)

consider a stochastic routing problem with time windows in which they seek

a solution guaranteeing that the probability of violating the latest time is no

larger than a threshold. To estimate the arrival time at each node, Jula et al.

(2006) approximate its first two moments based on dynamic programming,

while Chang et al. (2009) and Mazmanyan et al. (2009) impose a normal

distribution assumption on arrival times. Russell and Urban (2008) study

the problem with time windows, assuming the travel time follows a shifted

gamma distribution. After investigating several different functions of penalty

incurred from the deviation of the time window, they develop a tabu-search

meta-heuristic. Li et al. (2010), Taş et al. (2013) solve the stochastic vehi-

cle routing problem with time windows based on certain known probability

distributions.

To achieve robust performances, Montemanni et al. (2007) assume that

the travel times take a range of possible values, and propose several exact al-

gorithms and heuristics to find a route minimizing the robust deviation. Cho

et al. (2010) consider the uncertain travel time as an interval, and propose

a modified Soyster’s model. To adjust conservatism level, they introduce a

common parameter to interpolate along the range of data. Following the

robust formulation suggested by Bertsimas and Sim (2003), Sungur (2007),

Souyris et al. (2013), Agra et al. (2013), and Lee et al. (2012) formulate

the vehicle routing problem with time windows, and propose different ap-
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proaches, for example, Dantzig-Wolfe decomposition approach and dynamic

programming, to solve the problem.

Our main contribution comes from two aspects.

• Introduction of lateness index: We propose a new criterion, which

we call the lateness index, to evaluate how well the arrival times at the

nodes, which are uncertain, could meet the deadlines. The criterion

can handle risk, where probability distributions of the travel times are

known, and ambiguity, where these distributions are partially charac-

terized through descriptive statistics such as means and supports. The

criterion possesses important properties including monotonicity, punc-

tuality satisficing, non-abandonment, and convexity. Moreover, it can

easily be computed and incorporated in the general routing optimiza-

tion problem under uncertainty and with deadlines.

• Optimization of routing problems with lateness index: To solve

the general routing optimization problem under uncertainty and with

deadlines, we provide two mathematical programming formulations (a

linear decision rule formulation, and a multi-commodity flow formula-

tion) to improve upon a big-M formulation. We show that with the

lateness index, we can develop practically “efficient” algorithms to find

the exact optimal routing policy through decomposition techniques.

We also show the “effectiveness” of our approach through computa-

tional studies where we benchmark against other methods.

The chapter is structured as follows. In Section 3.2, we introduce the

lateness index as a performance measure for evaluating how arrival times
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at nodes meet the deadlines, and present some of its important character-

istics. We also explain a special case, in which only one node has a dead-

line requirement. The associated shortest path problem with deadline is

polynomial-time solvable when travel times are independent of each other.

In Section 3.3, we formulate the general routing optimization problem with

deadlines, and provide a solution methodology. In Section 3.4, we perform

several computational studies with encouraging results on the performance

of lateness index policies. In Section 3.5, we extend the model to account for

correlation between uncertain travel times.

3.2 Lateness Index

We consider a directed network G = (N ,A), whereN = {1, . . . , n} represents

the set of nodes and A denotes the set of arcs in the network. We will use

(i, j) and a interchangeably to represent an arc in A. We define NR ⊆ N

as the set of nodes that we need to visit. In addition, among these nodes to

be visited, we define the subset ND ⊆ NR as the set of nodes with deadline

impositions. Without loss of generality, node 1 ∈ NR\ND and node n ∈ ND

represent the origin and destination nodes respectively. Two common special

cases for the set NR are NR = N , which requires all the nodes in the network

to be visited, and NR = ND
⋃
{1}, which corresponds to the situation where

only the deadline nodes are required to be visited. For any node set N 0 ⊂ N ,

we define the following arc sets

δ+(N 0) , {(i, j) ∈ A : i ∈ N 0, j ∈ N\N 0},
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and

δ−(N 0) , {(i, j) ∈ A : i ∈ N\N 0, j ∈ N 0}.

Hence, we have δ+({n}) = ∅ and δ−({1}) = ∅.

We consider an off-line routing problem where the routing decisions are

made at the beginning before the realization of uncertainty, and they will not

change dynamically in response to information updates along the network.

Since the travel times along the arcs are uncertain, the actual arrival time, say

at each node i ∈ N , denoted by t̃i, is also uncertain. If i ∈ ND, then it would

be ideal for the uncertain travel time, t̃i to always fall below the pre-specified

deadline, τi. However, as such idealistic solution may not always be feasible,

our goal is to find an optimal routing solution such that arrival times at

nodes respect deadlines “as much as possible”, while keeping the optimization

problem tractable from a practical point of view. In order to do so, we

introduce a new performance measure, named lateness index, to evaluate

how the uncertain arrival times respect the corresponding deadlines from a

systematic point of view. Let function ϕ (α) be a sub-differentiable mapping

[0,+∞]|ND| → [0,+∞] that is convex in α ≥ 0. Besides, function ϕ (α) is

non-decreasing in αi for all i ∈ ND, with boundary conditions ϕ (0) = 0 and

for all j ∈ ND, ϕ((+∞,α−j)) = lim
αj→+∞

ϕ((αj,α−j)) = +∞. The lateness

index is formally defined as follows.

Definition 3.1. (Lateness Index) Let τ = (τi)i∈ND represent the deadlines

pre-specified on the network, let t̃ =
(
t̃i
)
i∈ND

represent the arrival times

at corresponding nodes associated with a given routing policy, and let α =
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(αi)i∈ND be a vector of nonnegative real-valued parameters. The lateness

index ρτ
(
t̃
)

: V → [0,+∞] is defined as

ρτ
(
t̃
)

= inf
{
ϕ(α) | Cαi

(
t̃i
)
≤ τi, αi ≥ 0, i ∈ ND

}
,

or +∞ if no such α exists, where Cα
(
t̃
)

is the worst-case certainty equivalent

under exponential disutility defined as

Cα
(
t̃
)

=


sup
P∈F

α lnEP
(

exp

(
t̃

α

))
, if α > 0,

lim
γ↓0

Cγ(t̃), if α = 0.

Note that the lateness index involves minimization of a nondecreas-

ing, convex function of the risk tolerance parameters, α, while constraining

the worst-case certainty equivalent of arrival times within the corresponding

deadlines.

Lemma 3.1. The worst-case certainty equivalent has some rather well known

and useful properties that we list here:

(a) Cα
(
t̃
)

is decreasing in α ≥ 0 and strictly decreasing when t̃ is not

constant. Moreover,

lim
α↓0

Cα(t̃) = tF, lim
α→+∞

Cα(t̃) = sup
P∈F
EP
(
t̃
)
,
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where tF = inf{t ∈ <|P
(
t̃ ≤ t

)
= 1,∀ P ∈ F};

(b) For any λ ∈ [0, 1], t̃1, t̃2 ∈ V , and α1, α2 ≥ 0,

Cλα1+(1−λ)α2

(
λt̃1 + (1− λ)t̃2

)
≤ λCα1

(
t̃1
)

+ (1− λ)Cα2

(
t̃2
)

;

(c) If the random variables t̃1, t̃2 ∈ V are independent from each other,

then for any α ≥ 0,

Cα
(
t̃1 + t̃2

)
= Cα

(
t̃1
)

+ Cα
(
t̃2
)
.

Proof. (a) Kaas et al. (2001) has shown that function α lnEP
(

exp
(
t̃
α

))
is

decreasing in α and strictly decreasing when t̃ is constant. Besides,

lim
α↓0

α lnEP
(

exp

(
t̃

α

))
= ess sup

(
t̃
)
, lim

α→∞
α lnEP

(
exp

(
t̃

α

))
= EP

(
t̃
)
.

Hence, taken the supremum over the distributional uncertainty set F pre-

serves the monotonicity, besides,

lim
α↓0

Cα
(
t̃
)

= sup
P∈F

ess sup
(
t̃
)

= tF, lim
α→∞

Cα
(
t̃
)

= sup
P∈F
EP
(
t̃
)
.
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(b) For any λ ∈ [0, 1], we define αλ = λα1 + (1− λ)α2, we have

Cαλ
(
λt̃1 + (1− λ)t̃2

)
= sup

P∈F
αλ lnEP

(
exp

(
λt̃1 + (1− λ)t̃2

αλ

))
= αλ sup

P∈F
lnEP

(
exp

(
λα1

αλ

λt̃1
λα1

+
(1− λ)α2

αλ

(1− λ)t̃2
(1− λ)α2

))
≤ αλ sup

P∈F

(
λα1

αλ
lnEP

(
exp

(
λt̃1
λα1

))
+

(1− λ)α2

αλ
lnEP

(
exp

(
(1− λ)t̃2
(1− λ)α2

)))
≤ λ sup

P∈F
α1 lnEP

(
exp

(
t̃1
α1

))
+ (1− λ) sup

P∈F
α2 lnEP

(
exp

(
t̃2
α2

))
= λCα1

(
t̃1
)

+ (1− λ)Cα2

(
t̃2
)
,

where the first inequality holds based on the Holder’s inequality.

(c) Since t̃1 and t̃2 are independently distributed, we have

Cα
(
t̃1 + t̃2

)
= sup

P∈F
α lnEP

(
exp

(
t̃1 + t̃2
α

))
= sup

P∈F
α ln

(
EP

(
exp

(
t̃1
α

))
× EP

(
exp

(
t̃1
α

)))
= sup

P∈F
α ln

(
EP

(
exp

(
t̃1
α

)))
+ sup

P∈F
α ln

(
EP

(
exp

(
t̃1
α

)))
= Cα

(
t̃1
)

+ Cα
(
t̃2
)
.

Remark 3.1. Property (a) shows that function Cα(·) is monotonic in α, the

smaller risk tolerance parameter α, the larger certainty equivalent will be.

Property (b) indicates that function Cα(t̃) is jointly convex in (α, t̃). Property

(c) explains a very attractive property for optimization, Cα(t̃) is additive for

independent random variables.
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Function ϕ (α) is defined in a general sense, and the travelers could

designate their own suitable functions to evaluate the performance based

on its properties. Two special cases are ϕ (α) =
∑

i∈ND αi, and ϕ (α) =

maxi∈ND αi.

To motivate the lateness index as a reasonable criterion for evaluating

how well uncertain arrival times meet deadlines, we next present important

properties of this criterion.

Proposition 3.1. Lateness index ρτ
(
t̃
)

satisfies the following properties:

(a) Monotonicity: if t̃, ṽ ∈ V and t̃ ≥ ṽ, then ρτ
(
t̃
)
≥ ρτ (ṽ);

(b) Punctuality satisficing: ρτ (τ ) = 0. For any t̃,
(
ṽj, t̃−j

)
∈ V , if

t̃j ≤ ṽj ≤ τj, then ρτ
(
(t̃j, t̃−j)

)
= ρτ

(
(ṽj, t̃−j)

)
= ρτ

(
(τj, t̃−j)

)
;

(c) Non-abandonment: if there exists j ∈ ND, such that supP∈F EP
(
t̃j
)
>

τj, then ρτ
(
t̃
)

= +∞;

(d) Convexity: for any t̃1, t̃2 ∈ V and β ∈ [0, 1], ρτ
(
βt̃1 + (1− β)t̃2

)
≤

βρτ
(
t̃1
)

+ (1− β)ρτ
(
t̃2
)
;

(e) Probabilistic envelope: For any i ∈ I, let ρ∗i = ρτi
(
t̃i
)
, then the

probabilistic envelope for the deadline violation is

P
(
t̃i ≥ τi + θρ∗i

)
≤ exp(−θ), ∀ θ ≥ 0.
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Proof. (a). Monotonicity : if t̃ ≥ ṽ, for any αi ≥ 0 satisfying Cαi
(
t̃i
)
≤ τi,

we have Cαi (ṽi) ≤ τi. Therefore, the monotonicity of function ϕ (α) indicates

ρτ
(
t̃
)
≥ ρτ (ṽ).

(b). Punctuality satisficing : since Cαi(τ) = τ for any αi ≥ 0, we have

ρτ (τ ) = ϕ(0) = 0. Therefore, if t̃j ≤ ṽj ≤ τj, we could observe that

Cαj
(
t̃j
)
≤ Cαj (ṽj) ≤ τj for any αj ≥ 0. It follows that

ρτ
(
t̃
)

= inf
{
ϕ(α)|Cαi

(
t̃i
)
≤ τi, αi ≥ 0, i ∈ ND

}
= inf

{
ϕ(0,α−j)|Cαi

(
t̃i
)
≤ τi, αi ≥ 0, i ∈ ND, i 6= j

}
= ρτ

(
(ṽj, t̃−j)

)
= ρτ

(
(τj, t̃−j)

)
.

(c). Non-abandonment : if there exists j ∈ ND, such that supP∈F EP
(
t̃j
)
> τj,

then Cαj
(
t̃j
)
> τj for any αj ≥ 0. It follows that

ρτ
(
t̃
)

= inf
{
ϕ(+∞,α−j)|Cαi

(
t̃i
)
≤ τi, αi ≥ 0, i ∈ ND, i 6= j

}
= +∞.

(d). Convexity : let ρτ
(
t̃1
)

= ϕ(α1) and ρτ
(
t̃2
)

= ϕ(α2), we have

Cα1i

(
t̃1i
)
≤ τi, Cα2i

(
t̃2i
)
≤ τi, ∀ i ∈ ND.

Since the worst-case certainty equivalent satisfies for any β ∈ [0, 1] and i ∈
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ND,

Cβα1i+(1−β)α2i

(
βt̃1i + (1− β)t̃2i

)
≤ βCα1i

(
t̃1i
)

+ (1− β)Cα2i

(
t̃2i
)

≤ βτi + (1− β)τi

= τi,

we have

ρτ
(
βt̃1 + (1− β)t̃2

)
≤ ϕ (βα1 + (1− β)α2)

≤ βϕ (α1) + (1− β)ϕ (α2)

= βρτ
(
t̃1
)

+ (1− β)ρτ
(
t̃2
)
.

(e). Probabilistic envelope: For any i ∈ I, since ρ∗i = ρτi
(
t̃i
)
, we have for

any θ ≥ 0,

P
(
t̃i ≥ τi + θρ∗i

)
= P

(
t̃i − τi
ρ∗i

≥ θ

)
= P

(
exp

(
t̃i − τi
ρ∗i

)
≥ exp(θ)

)
≤

EP
(
exp

(
(t̃i − τi)/ρ∗i

))
exp(θ)

≤ exp(−θ).

The first inequality holds because of the Markov inequality, while the second

inequality holds since Cρ∗i (t̃i) ≤ τi.

Remark 3.2. Monotonicity captures travelers’ intrinsic preferences for a short-

er travel time, that is, if for any i ∈ ND, the travel time t̃i is state-wise

greater than its counterpart ṽi, the lateness index returns a larger value for
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t̃. Punctuality satisficing indicates that an arrival time that is guaranteed

to meet the deadline is most preferred. However, any improvement on that

arrival time will not affect the lateness index. For the lateness index to be

finite, the non-abandonment property requires all the arrival times to meet

the corresponding deadlines in expectation. The convexity property serves

two purposes. First, it is synonymous with risk pooling and diversification

preference in the context of risk management. If two arrival profiles, t̃1 and

t̃2 are preferred over the profile t̃3, then any convex combination of these

two profiles will be preferred over t̃3. Moreover, as we will later illustrate, it

has important ramifications in the context of formulating a computationally

attractive problem which we can use to find optimal solutions via standard

solvers.

When only one node has a deadline requirement, i.e., ND = {n}, the

lateness index reduces to

ρτ
(
t̃
)

= inf
{
ϕ(α)

∣∣Cα (t̃) ≤ τ, α ≥ 0
}
,

or +∞ if no such α exists. This criterion is similar to the riskiness index of

Aumann and Serrano (2008). It is a particular case of the satisficing measure

proposed by Brown and Sim (2009) and Brown et al. (2012) for evaluating

uncertain monetary outcomes and has been applied in project selection by

Hall et al. (2014). We use this lateness index as an optimization criterion to
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formulate a shortest path problem under uncertainty with deadline prescribed

at the destination node n only.

Assuming the deadline at node n is given by τ , we are seeking a path

from node 1 to node n that minimizes the lateness index. Given the definition

of the lateness index, we formulate the problem as follows:

inf ϕ(α)

s.t. Cα (c̃′x) ≤ τ,

α ≥ 0,

x ∈ XSP ,

where,

XSP =

x ∈ {0, 1}
|A|

∣∣∣∣∣∣∣∣∣∣
∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =


1, when i = 1,

−1, when i = n,

0, otherwise

 ,

with the standard convention that a sum of an empty set of indices is 0.

Since functions ϕ(α) and Cα (·) are monotone in α, bisection can be used to

calculate the optimal α if, for any given α ≥ 0, we can solve the following

sub-problem:

min
x∈XSP

Cα (c̃′x) (3.1)

When the travel time on each arc is independent of each other, similar to

Chapter 2, the problem is a classical shortest path problem. In the next

section, we show that the worst-case certainty equivalent can be calculated
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under both a given probabilistic distribution and distributional uncertainty

set of travel time. Therefore, as far as we know, the shortest path prob-

lem based on minimizing the lateness index is possibly the only formulation

that incorporates a deadline, accounts for both probabilistic and ambiguous

distributions of travel times and retains a polynomial time complexity. N-

evertheless, when the travel times are correlated, Chapter 2 has shown that

the recognition version of Problem (3.1) is NP-complete. In Section 3.5, we

provide one formulation to address the correlation issue. Observe that in the

presence of multiple deadlines, the bisection process would not be generaliz-

able. Hence, in the following section, we explore a different solution approach

to address the general routing problem.

3.3 General Routing Optimization Problem with Deadlines

We propose here a general routing optimization model when there is a subset

of nodes with deadline requirements. Our objective is to determine a rout-

ing policy such that the route (a) starts at the origin node 1, ends at the

destination node n, (b) visits each node in set NR exactly once, and the rest

of nodes at most once, and (c) effectively respects the deadlines specified at

nodes in set ND. We first assume the travel time on each arc is independent

of each other.
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3.3.1 Model definition

We formulate a general routing optimization problem as follows.

inf ρτ
(
t̃
)

s.t. t̃j ≥ t̃i + c̃ijxij − (1− xij)M, (i, j) ∈ A, (a)

t̃1 = 0, (b)

x ∈ XRO,

(3.2)

where

XRO =


x ∈ {0, 1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a∈δ+(i)

xa = 1, i ∈ NR\{n},∑
a∈δ−(i)

xa = 1, i ∈ NR\{1},∑
a∈δ+(i)

xa ≤ 1, i ∈ N\NR,∑
a∈δ−(i)

xa −
∑

a∈δ+(i)

xa = 0, i ∈ N\NR


.

The objective is to minimize the lateness index for all the nodes with deadline

requirements. Constraint (3.2a) uses a big-M method to calculate the arrival

time at each node by linking it to its successive node’s arrival time, eventually

eliminating subtours. Constraint (3.2b) specifies that the starting time at

node 1 is zero. Set XRO represents flow conservation constraints, which

enforces that each node in set NR should be visited exactly once, while the

other nodes can be visited at most once.

When there is a subset of nodes required to be visited, i.e., NR ⊆ N , one

intuitive way to formulate this problem is to convert the current network into
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a standard network, in which all the nodes belong to NR, and the arc travel

time is represented by the shortest paths between each pair of nodes. How-

ever, it is worth pointing out that even if the original network is sparse, this

transformation will lead to a complete graph with |NR| (|NR| − 1) /2 arcs,

which may increase the number of decision variables substantially. Interest-

ed readers could refer to Cornuéjols et al. (1985) for more details. Besides,

the new arc travel times in the transformed network may not necessarily be

independent, even though they were independent in the original one, since

the shortest paths between different pairs of nodes may share common arcs.

According to the definition of the lateness index, Problem (3.2) is equiv-

alent to

inf ϕ(α)

s.t. Cαi
(
t̃i
)
≤ τi, i ∈ ND,

αi ≥ 0, i ∈ ND,

t̃j ≥ t̃i + c̃ijxij − (1− xij)M, (i, j) ∈ A,

t̃1 = 0,

x ∈ XRO.

(3.3)

3.3.2 Model reformulation

In Problem (3.3), the choice of M could pose serious computational issues.

Smaller M may rule out the actual optimal solution from the feasible set,

while larger M may lead to longer computation time. Moreover, when the arc

travel time c̃ij follows a continuous probability distribution, the uncertainty

of travel time t̃i and t̃j may yield an infinite number of constraints. In this

section, we propose efficient ways to address these issues. Two formulation
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techniques are introduced.

Linear decision rule formulation

The first formulation is inspired by the linear decision rule, a common ap-

proach in robust optimization to address problems with recourse. We intro-

duce auxiliary variables siLDR ∈ <
|A|
+ for all i ∈ N , and define a |A| × |N |

matrix sLDR = (siLDR)i∈N . The linear decision rule formulation is provided

as follows.

Proposition 3.2. Problem (3.3) can be equivalently formulated as

inf ϕ(α)

s.t. Cαi
(
c̃′siLDR

)
≤ τi, i ∈ ND,

αi ≥ 0, i ∈ ND,

(x, sLDR) ∈ SLDR,

(3.4)
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where

SLDR =



x ∈ {0, 1}|A|

s ∈ <|A|×|N |+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ XRO, (a)

sja − sia ≤ 1− xij, a, (i, j) ∈ A, a 6= (i, j), (b)

sja − sia ≥ xij − 1, a, (i, j) ∈ A, a 6= (i, j), (c)

sia = xa, a ∈ δ−(i), i ∈ N\{1}, (d)

sia = 0, a ∈ δ+(i), i ∈ N\{1, n}, (e)

s1
a = 0, a ∈ A, (f)∑
a∈A

sia ≤ |A|
∑

a∈δ−(i)

xa, i ∈ N\NR, (g)



.

(3.5)

Proof. For notational simplicity, let us omit the subscript “LDR”. First, we

prove by contradiction that, with this linear decision rule formulation, there

exists no subtour in a feasible solution. Suppose there exists a subtour going

through i1 → i2 → . . . → ik−1 → ik → i1, that is, xi1i2 = . . . = xik−1ik =

xiki1 = 1. Constraints (3.5d) and (3.5e) indicate si2i1i2 = 1, si1i1i2 = 0, while

constraints (3.5b) and (3.5c) suggest siki1i2 = si1i1i2 = 0 and siki1i2 = s
ik−1

i1i2
=

. . . = si2i1i2 = 1, respectively, which generates the contradiction.

Now, we prove that the arrival time at each deadline node can be written

as t̃i = c̃′si. After the decision variable x is selected, we observe that the

arrival time t̃i representing the path travel time between the origin node 1

and node i is only a recourse variable. We prove it by induction. Suppose x is

given, representing a path i0 → i1 → . . .→ ik−1 → ik, in which i0 = 1, ik = n,

and ND ⊂ {i0, i1, . . . , ik}. Correspondingly, xi0i1 = . . . = xik−1ik = 1, and all
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others are 0. To start, we have t̃i0 = t̃1 = 0 = c̃′s1. Since xilil+1
= 1, for all

l = 0, . . . , k − 1, constraints (3.5b)∼(3.5e) indicate that

sil+1
a = sila , a 6= (il, il+1), a ∈ A,

s
il+1

ilil+1
= 1,

sililil+1
= 0.

If t̃il = c̃′sil , we could get the formulation of t̃il+1
from the above as

t̃il+1
= t̃il + c̃ilil+1

= c̃′sil + c̃ilil+1
=

∑
a6=(il,il+1),a∈A

c̃as
il
a + c̃ilil+1

sililil+1
+ c̃ilil+1

=
∑

a6=(il,il+1),a∈A

c̃as
il+1
a + 0 + c̃ilil+1

s
il+1

ilil+1
= c̃′sil+1 .

Finally, we observe that when the feasible solution x is given, the solu-

tion s is uniquely determined, and s ∈ {0, 1}|A|×|N |. If i /∈ {i0, i1, . . . , ik},

based on constraint (3.5g),
∑

a∈A s
i
a ≤ |A|

∑
a∈δ−(i) xa = 0, which leads to

si = 0. While i = il+1, l = 0, . . . , k − 1, if a 6= (i0, i1), . . . , (il, il+1), a ∈ A,

constraints (3.5b), (3.5c) and (3.5f) suggest s
il+1
a = sila = . . . = si0a = 0.

Otherwise, from constraints (3.5b)∼(3.5e), we have

s
il+1

i0i1
= sili0i1 = . . . = si1i0i1 = 1, si0i0i1 = 0,

s
il+1

i1i2
= sili1i2 = . . . = si2i1i2 = 1, si1i1i2 = si0i1i2 = 0,

...

s
il+1

ilil+1
= 1, sililil+1

= s
il−1

ilil+1
. . . = si0ilil+1

= 0.

The solution satisfies all constraints (3.5b)∼(3.5g).



3. Routing Optimization with Deadlines under Uncertainty 80

In this formulation, we have a total of |N ||A|+|ND| continuous variables,

|A| binary variables, and 2|A|2 + |A|+ 3|N | − |NR|+ |ND| − 2 (≈ O(|A|2))

constraints.

Multi-commodity flow formulation

Apart from the linear decision rule formulation, we can also adapt the multi-

commodity flow (MCF) formulation of the traveling salesman problem to

reformulate Problem (3.3). We add auxiliary variables siMCF ∈ <
|A|
+ for all

i ∈ N , and define a |A| × |N | matrix sMCF = (siMCF )i∈N . The formulation is

as follows.

Proposition 3.3. Problem (3.3) can be equivalently written as

inf ϕ(α)

s.t. Cαi
(
c̃′siMCF

)
≤ τi, i ∈ ND,

αi ≥ 0, i ∈ ND,

(x, sMCF ) ∈ SMCF ,

(3.6)
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where

SMCF =



x ∈ {0, 1}|A|

s ∈ <|A|×|N |+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ XRO, (a)∑
a∈δ−(u)

sia −
∑

a∈δ+(u)

sia = 0, i ∈ N\{1},

u ∈ N\{1, n, i}, (b)∑
a∈δ+(1)

sia =
∑

a∈δ−(i)

xa, i ∈ N\{1}, (c)

∑
a∈δ−(i)

sia −
∑

a∈δ+(i)

sia =
∑

a∈δ−(i)

xa, i ∈ N\{1}, (d)

sia ≤ xa, i ∈ N\{1},

a ∈ A, (e)

s1
a = 0, a ∈ A, (f)



.

(3.7)

Proof. As in the proof of the validity of the LDR formulation, we first prove

by contradiction that the feasible solution does not contain a subtour. We

observe that constraint (3.7a) coupled with (3.7e) indicate that constraint

(3.7d) could be equivalently written as

sia = 0, a ∈ δ+(i), i ∈ N\{1}, (3.7g)

sia = xa, a ∈ δ−(i), i ∈ N\{1}. (3.7h)

If there exists a subtour i1 → i2 → . . .→ ik → i1 in the feasible solution, we

could infer that nodes 1, n /∈ {i1, i2, . . . , ik} since δ+(n) = ∅ and δ−(1) = ∅.
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Therefore, we have

Constraint (3.7a) =⇒ 1 = xiki1 =
∑

a∈δ−(i1)

xa,

Constraint (3.7h) =⇒ xiki1 = si1iki1 ,
∑

a∈δ−(i1)

xa =
∑

a∈δ−(i1)

si1a ,

Constraints (3.7a), (3.7e) =⇒ si1iki1 ≤
∑

a∈δ+(ik)

si1a ≤
∑

a∈δ+(ik)

xa ≤ 1,

Constraint (3.7b) =⇒
∑

a∈δ+(ik)

si1a =
∑

a∈δ−(ik)

si1a

With the above constraints, we could show subsequently,

1 =
∑

a∈δ−(i1)

xa =
∑

a∈δ−(i1)

si1a = si1iki1 =
∑

a∈δ+(ik)

si1a =
∑

a∈δ−(ik)

si1a = . . .

=
∑

a∈δ−(i2)

si1a =
∑

a∈δ+(i1)

si1a ,

whereas constraint (3.7g) shows
∑

a∈δ+(i1) s
i1
a = 0.

Next, we explain that when the feasible solution is given, the artificial

decision variables s are uniquely determined. Suppose there exists a feasible

path i0 → i1 → . . . → ik−1 → ik, in which i0 = 1, ik = n, and we define arc

set Ax = {(i0, i1), . . . , (ik−1, ik)}, correspondingly,

xa =

 1, when a ∈ Ax,

0, otherwise.

From constraints (3.7e) and (3.7f), we observe s1
a = 0, a ∈ A, and sia = 0, i ∈

N\{1}, a ∈ A\Ax, which has |A|+ (|A|−k)(|N |−1) zero variables. For the
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rest of decision variables sia, i ∈ N\{1}, a ∈ Ax, we could derive the solution

from constraints (3.7b)∼(3.7e) as:

For any it, t ∈ {1, . . . , k},

constraint (3.7c) =⇒ siti0i1 =
∑

a∈δ−(it)

xa = 1,

constraint (3.7b) =⇒ sitit−1it
= . . . = siti0i1 = 1,

constraint (3.7d) =⇒ sititit+1
= 0,

constraint (3.7b) =⇒ sititit+1
= . . . = sitik−1ik

= 0.

For any i /∈ {i0, i1, . . . , ik},

constraint (3.7c) =⇒ sii0i1 =
∑

a∈δ−(i)

xa = 0,

constraint (3.7b) =⇒ siik−1ik
= siik−2ik−1

= . . . = sii0i1 = 0.

Clearly, this solution satisfies all constraints (3.7b)∼(3.7f). Hence, s is a

uniquely determined integer solution when x is a feasible solution.

In addition, due to the integer property of s, c̃′si actually represents the

cost of sending this unit flow, which is equivalently interpreted as the travel

time from node 1 to node i, i.e., t̃i = c̃′si. Therefore,

Cαi
(
t̃i
)

= Cαi
(
c̃′siMCF

)
.

In this MCF formulation, the additional non-negative variable sia is de-

fined as the amount of commodity i passing through arc a, and constraints

(3.7b)∼(3.7e) ensure that
∑

a∈δ−(i) xa unit of commodity i travels from source



3. Routing Optimization with Deadlines under Uncertainty 84

node 1 to sink node i, with capacity bound xa on arc a. Constraint (3.7b)

enforces the requirement that for commodity i, the incoming flow to node l,

which is different from node i, should be equal to the outgoing flow. Con-

straint (3.7c) ensures that for all these |N | − 1 commodities, node 1 is their

common source node. Constraint (3.7d) represents that node i in set N\{1}

is the sink node for commodity i. Constraint (3.7e) describes that commod-

ity flow can only go through the selected arcs with maximal amount 1. This

MCF formulation was first proposed by Claus (1984), and has been verified

as a relative strong formulation for the traveling salesman problem in terms

of LP relaxation (Öncan et al. 2009). Letchford et al. (2013) also extend this

formulation to the Steiner traveling salesman problem. In total, the MCF

formulation has |N ||A|+|ND| continuous variables, |A| binary variables, and

|N ||A|+ |N |2 + |ND| − 1 (≈ O(|N ||A|)) constraints.

For the feasible sets SLDR and SMCF , we relax the binary constraints

for x, such that x ∈ [0, 1]|A|, and define the corresponding feasible sets

after linear relaxations as PLDR and PMCF , respectively. We provide counter

examples to show that

PLDR  PMCF and PMCF  PLDR.

We only consider a five nodes network shown in Figure 3.1, where N =

{1, 2, 3, 4, 5},NR = {1, 2, 5},ND = {2, 5}. The solution (x, sLDR) given as

follows satisfies (x, sLDR) ∈ PLDR and (x, sLDR) /∈ PMCF , since s2
14 = 1

2
violates
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1"

2" 3"

4"

5"

Fig. 3.1: An illustrative example explaining the difference between LDR and MCF
formulations.

constraint (3.7e).

(i, j) (1, 2) (1, 3) (2, 3) (2, 5) (3, 2) (3, 5) (1, 4) (4, 5)

x 1
2

1
2

1
2

1
2

1
2

1
2

0 0

s1
LDR 0 0 0 0 0 0 0 0

s2
LDR

1
2

1
2

0 0 1
2

0 1
2

0

s3
LDR

1
2

1
2

1
2

0 0 0 0 0

s4
LDR 0 0 0 0 0 0 0 0

s5
LDR

1
2

1
2

0 1
2

0 1
2

0 0
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Besides, we could also construct a solution (x, sMCF ) as

(i, j) (1, 2) (1, 3) (2, 3) (2, 5) (3, 2) (3, 5) (1, 4) (4, 5)

x 1
2

1
2

1
2

1
2

1
2

1
2

0 0

s1
MCF 0 0 0 0 0 0 0 0

s2
MCF

1
2

1
2

0 0 1
2

0 0 0

s3
MCF

1
2

1
2

1
2

0 0 0 0 0

s4
MCF 0 0 1

2
0 1

2
0 0 0

s5
MCF

1
2

1
2

0 1
2

0 1
2

0 0

and (x, sMCF ) ∈ PMCF , (x, sMCF ) /∈ PLDR, since s4
23 = 1

2
violates constraint

(3.5g).

3.3.3 Solution procedure

With the above formulations, the general routing optimization problem is

still complicated since the function Cαi (c̃′si) is non-linear in αi, and involves

the uncertain travel time c̃. In this section, we further study the function

Cαi (c̃′si) in Problems (3.4) and (3.6), and develop algorithms to solve them.

As the approach is applicable to both the LDR and MCF formulations, we

will drop the subscript for notational simplicity. To guarantee the feasibility

of the problem, we impose the requirement for the deadline τ , such that

there exists a feasible solution s ∈ S satisfying

sup
P∈F
EP
(
c̃′si
)
≤ τi, i ∈ I.
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This implies that the deadline must be set to guarantee that there exists a

feasible solution in which we can stay within the deadline in expectation.

This assumption is reasonable since violating it indicates the optimal value

is infinite, and hence, the deadline is irrational. Now, the constraint set is

updated as

X = S ∩

{
(x, s)

∣∣∣∣∣∑
a∈A

sup
P∈F
EP (c̃a) s

i
a ≤ τi, i ∈ ND

}
. (3.8)

Given (x, s) ∈ S, we define function f(s) as

f(s) = inf ϕ(α)

s.t. Cαi
(
c̃′si
)
≤ τi, i ∈ ND,

αi ≥ 0, i ∈ ND.

(3.9)

Observing that functions ϕ(α) and Cαi (c̃′si)) are both convex in αi, Problem

(3.9) is a classical convex problem, which could be solved efficiently. We next

show the convexity of function f(s) and concentrate on the calculation of its

subgradient.

Calculation of the subgradient of f(s)

The Lagrange function L(s,α,λ) of Problem (3.9) is given by

L(s,α,λ) = ϕ(α) +
∑
i∈ND

λi
(
Cαi

(
c̃′si
)
− τi

)
,



3. Routing Optimization with Deadlines under Uncertainty 88

where λi is the Lagrange multiplier associated with the inequality constraint

Cαi (c̃′si) ≤ τi. We next show that the subgradient of f(s) can be calculated

through its Lagrange function.

Proposition 3.4. Function f(s) is convex in s, and if the vector

 dLs (s,α∗,λ∗)

dLα(s,α∗,λ∗)


is the subgradient of function L(s,α,λ∗) at (s,α∗), and dLα(s,α∗,λ∗) = 0,

then dLs (s,α∗,λ∗) is the subgradient of f(s), where

(α∗,λ∗) ∈ Z(s) =

{(
ᾱ, λ̄

) ∣∣∣∣L (s, ᾱ, λ̄) = sup
λλλ≥000

inf
ααα≥000

L (s,α,λ)

}
.

Proof. Let αs,αy be the optimal solution of f(s) and f(y) respectively, such

that f(s) = ϕ(αs) and f(y) = ϕ(αy). With the convexity of function Cαi(t̃i)

described in Lemma 3.1, function Cαi (c̃′si) is jointly convex in (αi, s
i). It

implies that for any i ∈ I,

cβαsi+(1−β)αyi
(c̃′ (βsi + (1− β)yi)) ≤ βCαsi

(
c̃′si
)

+ (1− β)Cαyi
(
c̃′yi

)
≤ βτi + (1− β)τi

= τi.

In other words, solution βαs + (1− β)αy satisfies the constraints

Cβαsi+(1−β)αyi

(
c̃′
(
βsi + (1− β)yi

))
≤ τi, i ∈ ND.
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Hence, with the convexity of ϕ(α),

f(βs+(1−β)y) ≤ ϕ(βαs+(1−β)αy) ≤ βϕ(αs)+(1−β)ϕ(αy) = βf(s)+(1−β)f(y),

which indicates f(s) is convex in s.

Since

lim
αi→+∞

Cαi
(
c̃′si
)

= sup
P∈F
EP
(
c̃′si
)

=
∑
a∈A

sup
P∈F
EP (c̃a) s

i
a ≤ τi, i ∈ ND,

with the monotonicity of function Cαi (c̃′si) in α, there exists an α > 0 such

that

Cαi
(
c̃′si
)
< τi, i ∈ ND.

Observing that Problem (3.9) is a convex problem, we have strong duality

f(s) = sup
λλλ≥000

g(s,λ)

holds because the constraint qualification (in particular, Slater’s condition)

can be satisfied.

Since for all i ∈ ND, function Cαi (c̃′si) is jointly convex in (αi, s
i), as

an immediate conclusion, function L (s,α,λ) is also jointly convex in (s,α)
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given λ ≥ 0. Therefore, based on strong duality,

f(y)− f(s) = sup
λλλ≥000

inf
ααα≥000

L(y,α,λ)− sup
λλλ≥000

inf
ααα≥000

L(s,α,λ)

≥ inf
ααα≥000

L(y,α,λ∗)− inf
ααα≥000

L(s,α,λ∗)

= L(y,αy,λ∗)− L(s,α∗,λ∗)

≥ dLsss (s,α∗,λ∗)′(y − s) + dLααα(s,α∗,λ∗)′(αy −α∗)

≥ dLsss (s,α∗,λ∗)′(y − s),

whereαy ∈ arg inf
ααα≥000

L (y,α,λ∗) , (α∗,λ∗) ∈ Z(s) and vector

 dLsss (s,α∗,λ∗)

dLααα (s,α∗,λ∗)


is the subgradient of function L (s,α,λ∗) at (s,α∗), and dLα (s,α∗,λ∗) = 0.

The second inequality holds as L (s,α,λ∗) is jointly convex in (s,α). The

last inequality holds sinceα∗ is the optimal solution of problem infααα≥000 L (s,α,λ∗).

To calculate the subgradient of f(s), Proposition 3.4 suggests we could

equivalently calculate the subgradient of L(s,α∗,λ∗). Given (x, s) ∈ X ,

after solving Problem (3.9), we separate the set ND into two sets ND1 and

ND2, such that ND1 = {i ∈ ND|α∗i > 0} and ND2 = {i ∈ ND|α∗i = 0}.

Proposition 3.5. The subgradient of f(s) with respect to sia for all i ∈

ND, a ∈ A can be calculated as

df
sia

(s) =


−
dcsia(α

∗
i , s

i)

dcαi(α
∗
i , s

i)
dϕαi(0, (α

∗
i )i∈ND1

), when i ∈ ND1, a ∈ A,

0, when i ∈ ND2, a ∈ A,
(3.10)
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where dcsia (α∗i , s
i) and dcαi (α∗i , s

i) is the subgradient of Cαi (c̃′si) with respect

to sia and αi at point (α∗i , s
i), and dϕαi(0, (α

∗
i )i∈ND1

) is the subgradient of

ϕ(0, (αi)i∈ND1
) at point (0, (α∗i )i∈ND1

).

Proof.

We first study set ND2. Since ϕ(α) is non-decreasing in α ≥ 0, for any

i ∈ ND2, i.e., α∗i = 0, we have

f((yi, s−i))− f((si, s−i)) = f((yi, s−i))− ϕ(0, (αi)i∈ND1
) ≥ 0,

consequently, for any i ∈ ND2, a ∈ A,

df
sia

(s) = 0.

We next study the set ND1. Since when i ∈ ND2, α∗i = 0, with the

monotonicity property of function Cαi (c̃′si), we have Cαi (c̃′si) ≤ τi for any

αi ≥ 0. Hence, for given s ∈ S, Problem (3.9) can be equivalently formulated

as

f(s) = inf ϕ(0, (αi)i∈ND1
)

s.t. Cαi
(
c̃′si
)
≤ τi, i ∈ ND1,

αi ≥ 0, i ∈ ND1.

We then calculate the subgradient by the KKT condition. Note that for

i ∈ ND1, a ∈ A,

∂

∂sia
L(s,α,λ) = λid

c
sia

(α∗i , s
i),

so we focus on the calculation of λ∗. Since the strong duality holds, the



3. Routing Optimization with Deadlines under Uncertainty 92

KKT conditions are both necessary and sufficient to characterize the optimal

solutions. Therefore, according to the generalized KKT Theorem, α∗ is

primal optimal if and only if


dϕαi(0, (α

∗
i )i∈ND1

) + λ∗i d
c
αi

(α∗i , s
i) = 0, i ∈ ND1,

λ∗i
(
Cα∗i

(
c̃′si
)
− τi

)
= 0, i ∈ ND1,

Cα∗i
(
c̃′si
)
− τi ≤ 0, i ∈ ND1.

For any i ∈ ND1, i.e., α∗i > 0, then

Cα∗i
(
c̃′si
)

= τi, and λ∗i = −
dϕαi(0, (α

∗
i )i∈ND1

)

dcαi (α∗i , s
i)

.

After obtaining α∗ and λ∗, we can calculate the subgradient

df
sia

(s) = dLsia (s,α∗,λ∗) = λ∗i d
c
sia

(
α∗i , s

i
)

= −
dcsia (α∗i , s

i)

dcαi (α∗i , s
i)
dϕαi(0, (α

∗
i )i∈ND1

).

We have shown how to calculate f(s) and its subgradient. Since f(s) is

a convex function, we next approximate it with a piece-wise linear function,

and use Benders decomposition algorithm to solve problem inf
(xxx,sss)∈X

f(s).

Proposition 3.6. For any (v,y) ∈ S, we have

f(y) = sup
(xxx,sss)∈X

{
f(s) + dfsss (s)′(y − s)

}
, (3.11)

where dfsss (s) is the vector of subgradient of f(s) with respect to s.
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Proof.

According to Proposition 3.4, we have

f(y) ≥ f(s) + dfsss (s)′(y − s), ∀ (x, s) ∈ X ,

therefore,

f(y) ≥ sup
(x,x,x,sss)∈X

{
f(s) + dfsss (s)′(y − s)

}
.

Since

f(y) = f(y) + dfyyy(y)′(y − y),

proposition is proved.

As the size of the set X defined in Equation (3.8) is generally too large

for us to directly tackle the problem. We use Benders decomposition method

and summarize the entire algorithm as follows.

Algorithm RO

1. Select any (x, s) ∈ X , and define the set U = {(x, s)}.

2. Given current solution (x, s), solve the convex problem (3.9) and find

the optimal α. Calculate the subgradient function dfsss (s) according to

Equation (3.10).

3. Solve the following subproblem

inf w

s.t. w ≥ f(s) + dfsss (s)′(y − s), ∀ (x, s) ∈ U ,

(v,y) ∈ X ,

(3.12)
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and denote the solution by (v∗,y∗) and the optimal value w∗.

4. If w∗ = f(y∗), then output the optimal value and optimal solution

(v∗,y∗), and stop.

5. If w∗ < f(y∗), update, U = U
⋃
{(v∗,y∗)}, and go to step 2.

Proposition 3.7. Algorithm RO finds an optimal solution to Problem (3.11)

in a finite number of steps.

Proof.

When the algorithm terminates, we have

w∗ = f(y∗) ≥ f(s) + dfsss (s)′(y∗ − s), ∀ (x, s) ∈ X .

Hence, (v∗,y∗, w∗) is feasible for Problem (3.11). Since Problem (3.12) is

a relaxation of Problem (3.11), (v∗,y∗) is also optimal for Problem (3.11).

Moreover, since U at most includes all feasible solution, it is finite, and for

each iteration, it increases by one element, the algorithm will terminate in a

finite number of steps.

Now the only difficulty left is to calculate the subgradient of Cα∗i (c̃′si),

which undoubtedly depends on the information set of uncertain travel time.

For notational simplicity, we drop the script i.
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Calculation of Cα (c̃′s) with different distributional uncertainty sets

Since c̃ = (c̃a)a∈A is a vector of independently distributed random variables,

we have

Cα(c̃′s) =
∑
a∈A

Cα(c̃asa) =
∑
a∈A

Cα(c̃a)sa,

where the first equality holds since Cα(·) is additive for independent random

variables, while the second equality holds because sa is a binary decision

variable.

Known distribution

When the probability distribution of the random variable c̃a is completely

known, the function Cα(c̃a) can be calculated through the moment generating

functions. For example, if c̃a follows a normal distribution N(µa, σa), its

certainty equivalent is

Cα (c̃asa) = α lnEP
(

exp

(
c̃asa
α

))
= α ln

(
exp

(
µasa
α

+
σ2
as

2
a

2α2

))
= µasa+

σ2
as

2
a

2α
,

and the subgradient can be calculated sequentially as

dcsa(α, s) =
∂

∂sa
Cα(c̃′s) =

∂

∂sa
Cα(c̃asa) = µa +

σ2
a

α
sa,

dcα(α, s) =
∂

∂α
Cα(c̃′s) =

∑
a∈A

∂

∂α
Cα(c̃asa) = −

∑
a∈A

σ2
a

2α2
s2
a.

Discrete distribution with known samples

Suppose that we know the random variable c̃a can only take the discrete

values c̃a ∈ {ca1, . . . , caKa} and we may have the moment information on c̃a
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as follows.

Fa =
{
P
∣∣∣EP(g(c̃a)) ∈

[
η
a
,ηa

]
,P (c̃a ∈ {ca1, . . . , caKa}) = 1

}
,

where function g(c̃a) = (gl(c̃a))l∈L, and gl(c̃a) can be any power of the

random variable c̃a, i.e., gl(c̃a) = c̃ma ,m ∈ Z. The certainty equivalen-

t Cα(c̃a) = α ln supP∈Fa EP (exp (c̃a/α)) = α lnEQa (exp (c̃a/α)), where the

probability distribution Qa is the optimal solution of the following linear

optimization problem, i.e., Qa ∈ arg supP∈Fa EP (exp (c̃a/α)).

sup
P∈F
EP
(

exp

(
c̃a
α

))
= sup

Ka∑
k=1

pak exp
(zak
α

)
s.t.

Ka∑
k=1

pakg(zak) ≤ ηa,

Ka∑
k=1

pakg(zak) ≥ ηa,

Ka∑
k=1

pak = 1,

pak ≥ 0, k = 1, . . . , Ka.

Hence, we could calculate the subgradient as

dcsa(α, s) =
∂

∂sa
Cα(z̃′s) =

∂

∂sa
Cα(c̃asa) =

∂

∂sa
{α lnEQa (exp (c̃asa/α))}

=
EQa (exp (c̃asa/α) c̃a)

EQa (exp (c̃asa/α))
,

dcα(α, s) =
∂

∂α
Cα(z̃′s) =

∑
a∈A

∂

∂α
Cα(c̃asa) =

∑
a∈A

∂

∂α
{α lnEQa (exp (c̃a/α))} sa

=
∑
a∈A

(
lnEQa (exp (c̃a/α))− EQa (exp (c̃a/α) c̃a)

αEQa (exp (c̃a/α))

)
sa
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Continuous distribution with certain descriptive statistics

When the random variable c̃a is a continuous random variable, and the un-

certainty set

Fa =
{
P
∣∣∣EP (c̃a) ∈

[
µ
a
, µa

]
, P (c̃a ∈ [ca, ca]) = 1

}
, (3.13)

where [ca, ca] is bounded support.

Lemma 3.2. If the distributional uncertainty set of random variable c̃a is

given as Equation (3.13), then

Cα (c̃a) = sup
P∈F

α lnEP
(

exp

(
c̃a
α

))

=


α ln

(
g(c̃a) exp

(ca
α

)
+ h(c̃a) exp

(
ca
α

))
, when α > 0,

ca, when α = 0.

,

where g(c̃a) = ca−µa
ca−ca

and h(c̃a) =
µa−ca
ca−ca

.

Proof. Please refer to Proposition 2.2 in Chapter 2.

Immediately, as the function Cα(c̃′s) is differentiable, we calculate its
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gradient with respect to sa as

dcsa(α, s) =
∂

∂sa
Cα (z̃′s)

=
∂

∂sa
Cα (c̃asa)

=
∂

∂sa
{α ln (g(c̃a) exp (casa/α) + h(c̃a) exp (casa/α))}

=
g(c̃a) exp (casa/α) ca + h(c̃a) exp (casa/α) ca
g(c̃a) exp (casa/α) + h(c̃a) exp (casa/α)

.

When sa = 0, we have ∂Cα(c̃′s)
∂sa

∣∣∣
sa=0

= µa. Meanwhile, the gradient of Cα(z̃′s)

with respect to α is

dcα(α, s) =
∂

∂α
Cα (c̃′s)

=
∑
a∈A

∂

∂α
Cα(c̃asa)

=
∑
a∈A

 ln (g(c̃a) exp (casa/α) + h(c̃a) exp (casa/α))

−g(c̃a) exp (casa/α) ca + h(c̃a) exp (casa/α) ca
g(c̃a) exp (casa/α) + h(c̃a) exp (casa/α)

sa
α

 .

3.4 Computational Study

In this section, we conduct computational studies intending to address two

concerns. First, whether this newly proposed lateness index model could

provide us with a reasonable policy under uncertainty. Second, as the de-

terministic version of the general routing optimization problems is already

hard to solve, whether this lateness index model is practically solvable. The

program is coded in python and run on a Intel Core i7 PC with a 3.40 GHz

CPU by calling CPLEX 12 as ILP solver.
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3.4.1 Stochastic shortest path problem with deadline

We carry out the first experiment to make a comparative study on the validi-

ty of the lateness index as a performance measure. For a randomly generated

network, we solve a shortest path problem with deadline under uncertainty,

in which ND = {n} and NR = {1, n}. We investigate several classical se-

lection criteria to find optimal paths, and then use out-of-sample simulation

to compare the performances of these paths. We summarize four selection

criteria which appeared in the literature.

Minimize average travel time

For a network with uncertain travel time, the simplest way to find a path is

by minimizing the average travel time, which can be formulated as a deter-

ministic shortest path problem.

min
x∈XSP

µ′x,

where XSP is the feasible set for the shortest path problem defined in Problem

(3.2). This problem is polynomially solvable, but the optimal path does not

depend on the deadline.

Maximize arrival probability

The second selection criterion is to find a path that gives the largest proba-

bility to arrive on time, which is formulated as follows:

max
x∈XSP

P (c̃′x ≤ τ) .
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Since the problem is generally intractable (Khachiyan 1989), we adopt a

sampling average approximation method to solve it. Assuming the sample

size is K, then we solve

max
1

K

K∑
k=1

Ik

s.t. x′ck ≤M(1− Ik) + τ, k = 1, . . . , K,

Ik ∈ {0, 1}, k = 1, . . . , K,

x ∈ XSP ,

where M is a big number.

Maximize punctuality ratio

The third selection criterion is to maximize the punctuality ratio, which is

defined as

max
x∈XSP

τ − µ′x
σ (c̃′x)

where σ(·) represents the standard deviation. The idea is to find a path

that can give a shorter and less uncertain travel time. When the travel time

on each arc is independently normally distributed, maximizing the arrival

probability is in fact equivalent to maximizing the punctuality ratio, since

P (c̃′x ≤ τ) = P
(
c̃′x− µ′x
σ (c̃′x)

≤ τ − µ′x
σ (c̃′x)

)
= Φ

(
τ − µ′x
σ (c̃′x)

)
,

in which, Φ(·) is the cumulative distribution function of the standard normal

random variable N(0, 1). As this problem is not a convex problem, we use

the algorithm proposed by Nikolova et al. (2006) to solve it.
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Maximize budget of uncertainty

By introducing a parameter Γ, named budget of uncertainty, Bertsimas and

Sim (2004) successfully provide a new robust formulation to flexibly ad-

just the level of conservatism while withstanding the parameter uncertainty.

This formulation can also be applied readily to discrete optimization prob-

lem (Bertsimas and Sim 2003). Hence, the robust shortest path problem is

formulated as

min
x∈XSP

max
c̃∈WΓ

c̃′x

in which, WΓ =

{
µ+ s

∣∣∣∣∣0 ≤ s ≤ c− µ,∑
a∈A

sa
ca − µa

≤ Γ

}
, for all Γ ≥ 0.

Γ = 0 represents the nominal case. Given the deadline τ , we could transform

the problem to find a path that could return the maximal Γ while respecting

the deadline. The formulation is given as

Γ∗ = max Γ

s.t. max
c̃∈WΓ

c̃′x ≤ τ,

x ∈ XSP .

Following the calculation procedure suggested by Bertsimas and Sim (2003),

we first define 0 = c|A|+1 − µ|A|+1 ≤ c|A| − µ|A| ≤ . . . ≤ c1 − µ1 ≤ ∞, and the

above problem is equivalent to

Γ∗ = max Γ

s.t. min
l=1,...,|A|+1

{Γ(cl − µl) + Zl} ≤ τ,
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where Zl = minxxx∈XSP

(
µ′x+

∑l
j=1 ((cj − µj)− (cl − µl))xj

)
, for all l =

1, . . . , |A|+ 1. Calculating Zl is a classical shortest path problem, and

Γ∗ = max
l=1,...,|A|+1

τ − Zl
cl − µl

.

Since some selection criteria introduced above could not handle distribu-

tional ambiguity, to make a fair comparison, we assume that the probability

distribution of the uncertain travel time is perfectly known, and each follows

a two-point distribution. For each instance, we randomly generate a directed

network with 300 nodes, and with a number of arcs around 1,500 on a 1× 1

square, where node (0, 0) is the origin node, and node (1, 1) is the destina-

tion node. Using some screening procedure, we guarantee that there exists

at least one path going from the origin to the destination. The mean travel

time on each arc is given by the Euclidean distance between the two nodes,

and the corresponding upper and lower bounds are randomly generated. In

order to ensure the problem feasibility, we artificially set the deadline for the

destination node as τ = η min
xxx∈XSP

µ′x + (1 − η) min
xxx∈XSP

c′x. In this example,

η = 0.8. Of course, if the deadline is exogenous, we could check the feasi-

bility for this deadline by computing the shortest average travel time. We

calculate the optimal paths under the five selection criteria, and use out-of-

sample simulation to analyze the performances. Table 3.1 summarizes the

average performances among 50 instances. For notational clarity, we only

show the performance ratio, which is the original performance divided by

the performance of minimizing the lateness index. Therefore, all the perfor-

mance ratios for the lateness index model are one, and a ratio greater than
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one indicates a better performance for the lateness index model.

Selection
criteria

Performance measures

Mean LP1 STD2 EL3 CEL4 VaR VaR CPU
@95%5 @99% time

Minimize average
travel time

0.985 1.124 1.206 1.397 1.228 1.006 1.014 0.027

Maximize arrival
probability

1.006 1.549 1.116 1.873 1.202 1.017 1.021 926.14

Maximize punctu-
ality ratio

0.986 1.033 1.150 1.201 1.157 1.002 1.008 1.255

Maximize budget
of uncertainty

0.990 1.125 1.155 1.325 1.160 1.005 1.010 44.872

Minimize lateness
index

1 1 1 1 1 1 1 1

1 LP refers to lateness probability;
2 STD refers to standard deviation;
3 EL refers to expected lateness, EL= EP

(
(c̃′x∗ − τ)+

)
;

4 CEL refers to conditional expected lateness, CEL= EP
(

(c̃′x∗ − τ)+ |c̃′x∗ > τ
)

;
5 VaR@γ refers to value-at-risk, VaR@γ = inf{ν ∈ < |P(c̃′x∗ − ν) ≤ 1− γ }.

Tab. 3.1: Performances of various selection criteria for stochastic shortest path
problem with deadline.

In terms of the mean arrival time measure, we observe that the lateness

index model gives a larger mean than the other selection criteria, but it pro-

vides a path with significantly lower standard deviation, expected lateness

and conditional expected lateness. Hence, by slightly increasing the expected

travel time, the lateness index model can better mitigate the risk of tardiness.

In addition, since solving stochastic shortest path problem under the lateness

index only requires solving a small sequence of deterministic shortest path

problems, the CPU time is relatively short compared to the other methods,

except for the selection criterion of minimizing the average travel time. For

maximizing the arrival probability, since we use a sampling average approx-

imation, the calculation takes quite a long time even with a small sample

size (K = 80), and the performance is worse even in terms of the lateness



3. Routing Optimization with Deadlines under Uncertainty 104

probability.

By varying the coefficient η, we also alter the deadline at the destina-

tion node, and summarize the performance ratio of each selection criterion

in Figure 3.2. We exclude the selection criterion of maximizing the arrival
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Fig. 3.2: Performance comparison for stochastic shortest path problem when dead-
line varies.

probability, as a small sample size resulted in inconsistent solutions for com-

parison. Among the remaining four selection criteria, the lateness index

model outperforms the others, especially in terms of standard deviation. It

is worthwhile to point out that in terms of the lateness probability ratio and

expected lateness ratio, η is only used with values 0.1, 0.2, 0.3, since when η

is greater than 0.3, the lateness probability and expected lateness under late-

ness index solution are very close to 0. Similar conclusion could be derived

when the travel times are uniformly distributed.

Since the shortest path problem with deadline is a special case of our

more general routing problem, we could also test the algorithm RO of Sec-

tion 3.3 on it, though it is not necessarily polynomial time. We randomly
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generate 50 instances, and compare the statistics on CPU time of these two

algorithms for a network with 300 nodes and 1,500 arcs. Table 3.2 suggests

the calculation time of RO algorithm is longer than the bisection method,

but is still attractive. It provides an encouraging result for the employment

of RO algorithm in the general routing optimization problem.

Statistics
Bisection RO algorithm

CPU time (sec) CPU time (sec) Number of iterations
Average 0.396 1.211 3.32
Maximum 0.512 4.951 14
Minimum 0.165 0.356 1
Standard deviation 0.059 1.093 3.01

Tab. 3.2: Statistics of CPU time of two algorithms for stochastic shortest path
problem with deadline.

3.4.2 Solution procedure illustration

We next consider an example on a simple network with 5 nodes and 12

arcs shown in Figure 3.3, and provide a detailed description of the results

obtained using this new performance measure, as well as the computational

characteristics of our proposed solution methodologies. For simplicity, we

use the function ϕ(α) =
∑

i∈ND αi. The travel time information is specified

in Table 3.3. The travel time uncertainties along the arcs vary according

to the parameter β. Note that arc 6 is distinct from the rest. Our aim is to

find a path from node 1 to node 5, that visits each node exactly once, and

meets the specific deadline requirements τ3 = τ5 = 14.5. Correspondingly,

ND = {3, 5} and NR = N . In this simple network, if we ignore the deadline

constraints, all the feasible paths can be easily enumerated as in Table 3.4.

By substituting the uncertain travel times with their mean values, paths
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1"

2" 3"

4"

5"

Fig. 3.3: An illustrative example on a five-nodes network.

Index Arc Lower bound Mean Upper bound
1 (1, 2) 2(1− β) 2 2(1 + β)
2 (1, 3) 2(1− β) 2 2(1 + β)
3 (1, 4) 2(1− β) 2 2(1 + β)
4 (2, 3) 3(1− β) 3 3(1 + β)
5 (2, 4) 7(1− β) 7 7(1 + β)
6 (2, 5) 4(1 − 1.5β) 4 4(1 + 1.5β)
7 (3, 2) 2(1− β) 2 2(1 + β)
8 (3, 4) 2(1− β) 2 2(1 + β)
9 (3, 5) 1− β 1 1 + β
10 (4, 2) 6(1− β) 6 6(1 + β)
11 (4, 3) 4(1− β) 4 4(1 + β)
12 (4, 5) 7(1− β) 7 7(1 + β)

Tab. 3.3: Travel time information corresponding to Figure 3.3.

Index Path
1 1→ 2→ 3→ 4→ 5
2 1→ 2→ 4→ 3→ 5
3 1→ 3→ 2→ 4→ 5
4 1→ 3→ 4→ 2→ 5
5 1→ 4→ 2→ 3→ 5
6 1→ 4→ 3→ 2→ 5

Tab. 3.4: All feasible paths for the illustrative example without the deadline re-
quirements.

1, 2, 4, 5, and 6 are all feasible paths that could meet the deadline require-

ments. Instead, when the travel times take their worst values, we could see

that, if β = 0.1, both paths 5 and 6 would satisfy the deadline requirements.

If β = 0.2, only path 5 is feasible, and no path is feasible when β = 0.3, 0.4.
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The result indeed illustrates that the worst case approach may be overly con-

servative. With the lateness index, when β = 0.1, 0.2, the selection decisions

are the same as the worst-case method, and the associated objective value is

0. When β = 0.3, 0.4, the calculation procedure is listed in Table 3.5.

β Iteration
optimal solution

objective
value

optimal
alpha

summation of
optimal alpha

(path number) w∗ (α∗
2, α

∗
5) f(y∗)

0.3

0 5 (0, 0.448) 0.448
1 6 −1.024 (0, 0.710) 0.710
2 1 0.191 (0, 5.844) 5.844
3 2 0.360 (1.785, 6.209) 7.994
4 5 0.448 (0, 0.448) 0.448

0.4

0 5 (0.439, 1.137) 1.576
1 6 −5.650 (0, 1.551) 1.551
2 1 −0.459 (0, 10.464) 10.464
3 2 0.678 (3.397, 11.109) 14.506
4 6 1.551 (0, 1.551) 1.551

Tab. 3.5: Calculation procedure of lateness index model with different β.

Several interesting results can be observed from this computational s-

tudy. With the increase of β, travel time becomes more uncertain, and the

optimal path changes from path 5 to path 6. Observing that node 3 has the

same deadline as the destination node 5, intuitively, travelers may expect

that as long as node 3 could be reached before the destination node, the ac-

tual time of arrival would be inconsequential. However, the obtained result

is not so trivial. When β = 0.3, as shown in Table 3.6, even the worst-case

arrival time at node 3 through both path 5 and path 6 can meet the pre-

sumed deadline. Therefore, with the punctuality satisficing property of the

lateness index measure, the selection decision only depends on whether the

arrival time meets the deadline at node 5, and path 5 is calculated as optimal.

Similarly, when β = 0.4, the value of lateness index of path 6 only depends
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on the performance at node 5. Nonetheless, when travelling through path 5,

the lateness index should account for both node 3 and node 5. Accordingly,

path 6 becomes the optimal path.

β Node
Path 5 Path 6

Lower
Mean

Upper Lower
Mean

Upper
bound bound bound bound

0.3
3 7.7 11 14.3 4.2 6 7.8
5 8.4 12 15.6 7.8 12 16.2

0.4
3 6.6 11 15.4 3.6 6 8.4
5 7.2 12 16.8 6.4 12 17.6

Tab. 3.6: Arrival time comparison between paths 5 and 6.

3.4.3 General routing optimization problem

The formulation of the routing optimization problem implies that the com-

putation time greatly depends on the network structure, |N |, |A|, and the

properties of sets NR and ND. Additionally, the deadline setting will also

tremendously affect the size of the feasible set, and so, the number of itera-

tions. In this part, we mainly focus on the influence of the number of nodes

and arcs on the computation time and the number of iterations, and show

the results in Table 3.7 and Table 3.8 respectively. We randomly generate the

arcs for a network while ensuring the existence of a Hamiltonian path, and

the information of uncertain travel times includes means and supports. To

set reasonable deadlines, we first derive a feasible path that minimizes the

total average travel time. With this path, we calculate the corresponding

mean arrival time and worst-case arrival time for each node with a deadline

requirement, and set the deadline in between. For each case, we randomly

generate 20 instances, and present the average values.
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(|N |, |A|)
NR = N NR = N NR = ND

⋃
{1}

ND = N\{1} ND = {[n/2], n} ND = {[n/2], n}
Avg Max Min STD Avg Max Min STD Avg Max Min STD

(10, 30)
LDR 1.1 2.7 0.2 0.7 0.7 1.2 0.2 0.4 0.3 0.7 0.2 0.2
MCF 0.8 2.0 0.2 0.5 0.5 1.0 0.2 0.3 0.2 0.4 0.1 0.1

(10, 50)
LDR 36.4 123 1.5 35.3 13.3 44.4 1.0 13.1 1.6 7.6 0.3 1.7
MCF 6.06 17.7 0.7 5.6 1.9 5.5 0.3 1.4 0.4 1.2 0.2 0.3

(10, 70)
LDR 526 3477 9.20 797 214 1316 0.84 314 10.2 64.3 0.6 15.9
MCF 21.7 135 0.7 31.8 5.8 26.0 0.4 6.5 0.6 1.2 0.3 0.3

(20, 60)
LDR 13.5 43.8 1.2 12.2 4.2 11.1 1.1 3.1 10.4 59.3 0.8 17.9
MCF 8.6 28.6 1.2 7.6 3.0 8.1 1.2 1.9 1.6 6.8 0.4 1.7

(30, 90)
LDR 112 663 5.3 186 49.0 259 4.6 78.3 208 939 2.4 265
MCF 55.8 310 5.5 69.3 24.0 96.6 3.4 28.2 6.2 23.7 1.8 6.2

(40, 120)
LDR 1645 7405 31.9 2572 346 1694 18.1 500 4241 13712 8.7 4750
MCF 854 5002 21.3 1436 134 718 11.8 202 13.3 36.1 4.3 10.1

Tab. 3.7: CPU time (sec) on routing optimization problem with different settings.

(|N |, |A|)
NR = N NR = N NR = ND

⋃
{1}

ND = N\{1} ND = {[n/2], n} ND = {[n/2], n}
Avg Max Min STD Avg Max Min STD Avg Max Min STD

(10, 30) 4.4 10 1 2.5 3 6 1 1.7 1.5 5 1 1.0

(10, 50) 11.2 30 1 8.8 6.5 12 1 3.6 2.8 8 1 2.1

(10, 70) 10.9 47 1 12.1 6.1 18 1 5.1 2.8 8 1 1.9

(20, 60) 11.9 31 1 9.5 4.1 11 1 3.1 3.0 12 1 2.9

(30, 90) 17.1 43 2 11.5 7.9 27 1 7.4 2.6 9 1 2.0

(40, 120) 36.8 133 3 36.8 9.6 27 1 7.5 2 5 1 1.3

Tab. 3.8: Number of iterations on routing optimization problem with different set-
tings.

Table 3.7 demonstrates that the RO algorithm could solve moderate-size

problems within a reasonable time range, and the MCF formulation is more

appealing computationally. While setting the time limit as 7200 seconds,

with the MCF formulation, the RO algorithm can solve a network with 100

nodes, and 450 arcs for the case where NR = ND
⋃
{1},ND = {[n/2], n}.

Table 3.8 shows that on average, we only need a relatively small number of

iterations. If more efficient algorithms could be implemented for solving the

subproblem, the computation time could be remarkably improved.
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3.5 Extension: correlations between uncertain travel times

All the models introduced above are based on a stochastic independence as-

sumption between travel times on arcs. We now extend the model to the case

in which travel times are correlated. To model the correlation relationships,

instead of specifying the commonly used covariance matrix, we assume that

the travel time on each arc is an affine function of independently distributed

factors z̃1, . . . , z̃K , i.e.,

c̃a = c0
a +

K∑
k=1

ckaz̃k, ∀ a ∈ A,

in which the factor coefficients c0
a, c

1
a, . . . , c

K
a are known. These parameters

can be estimated from a linear regression technique. Correspondingly,

Cα (c̃′x) = Cα

(∑
a∈A

(
c0
a +

K∑
k=1

ckaz̃k

)
xa

)

= Cα

(
x′c0 +

K∑
k=1

x′ckz̃k

)

= x′c0 +
K∑
k=1

Cα
(
x′ckz̃k

)
.

To solve the shortest path problem with deadline under such uncertainty,

Problem (3.1) can be equivalently written as

min
x∈XSP

x′c0 +
K∑
k=1

Cα
(
x′ckz̃k

)
. (3.14)
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Different from our previous discussion on the stochastic shortest path prob-

lem when travel times are independently distributed, this case cannot be

polynomially solvable. For any fixed α ≥ 0, the problem reduces to a con-

vex integer optimization problem, in which Benders decomposition can be

adopted to solve the problem.

For the general routing problem, the only difference from the model

with stochastic independence assumption lies in the calculation of the func-

tion Cαi (c̃′si) and its subgradient. With the linear factor-based model and

distributional uncertainty set F, we have

Cαi
(
c̃′si
)
) = sup

P∈F
αi lnEP

(
exp

(
c̃′si

αi

))
=
(
si
)′
c0 +

K∑
k=1

Cα

((
si
)′
ckz̃k

)
.

Accordingly, we could calculate the subgradient function dfs(s), and then use

Algorithm RO to solve the general routing problem when the travel times

are correlated.

3.6 Conclusion

We study a vehicle routing problem with uncertain travel times. The aim is to

find an optimal routing policy to meet the deadline requirements imposed on

a subset of nodes in the network. We introduce a new performance measure

called lateness index to evaluate how the uncertain arrival times meet the

deadlines and propose an algorithm using Benders decomposition to solve

the general problem.

In this chapter, we only consider a special case where only one vehicle is
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available. The framework and performance measure could easily be extend-

ed to multiple capacitated vehicles, while also incorporating the uncertain

service time. Besides, the framework could also be applied in the uncertain

demand case. Since this chapter mainly focuses on the mathematics frame-

work, we do not go to detail to discuss them. Interested readers could refer

to Adulyasak and Jaillet (2014) for certain extensions. This is joint work

with Patrick Jaillet and Melvyn Sim.



4. MITIGATING DELAYS AND UNFAIRNESS IN

APPOINTMENT SYSTEMS

4.1 Introduction

In any service system, due to the uncertainty in service times, waiting times

or delays experienced by the participants are inevitable. However, long wait-

ing time that occurs in a scheduled appointment is an annoyance and leads

to poor quality of service. We focus our study in the healthcare industry

where the participants are patients and the physician. Decisions associat-

ed with the appointment systems include the sequencing of patients and the

scheduling of their appointment times, where these patients are distinguished

by their service time characteristics. The goal of this chapter is to design

an appointment system that mitigates the unpleasantness experienced by

the patients while waiting for the treatment and by the physician in having

to work overtime. The model is applicable in outpatient clinics to design

consultation slots and operating theatres to deliver an efficient and smooth

schedule.

The study of appointment systems stems from the pioneering work of

Bailey (1952). Before that, service providers typically allocate each patient
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a slot with the same fixed time length. Bailey (1952) designs an appoint-

ment scheduling rule which assigns two patients at the first slot, followed

by other patients’ arrivals evenly spaced. This minor change effectively re-

duces physician’s idle time by overcoming the problem of patients no-show

or lateness without compromising on the patients’ waiting time. Since then,

many researchers have started to explore the optimal appointment system

settings under various conditions. For comprehensive literature reviews, we

refer readers to Cayirli and Veral (2003) and Gupta and Denton (2008),

which highlight the current status and challenges in resolving appointment

problems.

Patrick and Aubin (2013) mention that patient access decisions gener-

ally involve two-stage planning. The first stage is advance scheduling, which

decides how many patients to assign within a fixed session, while the second

stage named appointment scheduling allocates time slot for each patient. In

this chapter, our appointment scheduling refers to the second stage, where

the information about patients who need appointment is known, and all

the decisions must be made prior to the commencement of a clinic session.

Though the appointment for outpatient services is generally made in a dy-

namic fashion, this model serves as a reference table with designed time slots

for different types of patients. When patients call in, service providers could

pull up patients’ archived information and schedule them into suitable slots.

Hence, all of the following analysis concentrates on the static case only. Now,

we begin with discussing several concerns related to appointment system de-

sign problems.

The first concern regards to characterizing patients’ experience of wait-
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ing, which is an integral aspect of service quality in a hospital environment.

One commonly used service quality measure for describing this preference

on uncertain waiting time is the expectation, which corresponds to the aver-

age delay experienced by the patient over potentially infinite number of visits

under the same identical conditions. However, the expected waiting time cri-

terion may not adequately distinguish patients’ attitudes towards uncertain

delays. From patients’ perspectives, the unpleasantness on waiting process

may not proportionally accord to the length of waiting time (see Camacho

et al. 2006), and certain waiting time is considered acceptable among patients

(see Cartwright and Windsor 1992; McCarthy et al. 2000). In the survey con-

ducted by Hill and Joonas (2006), 86% respondents consider 30 minutes or

less as an acceptable threshold. Huang (1994) empirically shows that, for

patients arriving on the appointment time, they appear reasonably satisfied

if they wait no more than an average of 37 minutes, and their patience may

steeply decline when the service delay exceeds this threshold. From service

providers’ perspectives, their key performance indicator lies on the percent-

age of patients seen within certain time threshold, instead of total expected

waiting time. For example, patients in UK can expect to be seen within

30 minutes of their given appointment time (National Health Service, UK).

The Ministry of Health Malaysia has proposed one of the key performance

indicators as “percentage of patients seen within 30 minutes of appointmen-

t time by the dental specialist in specialist clinics should not be less than

50%, provided the patient was not late” (Toh and Sern 2011). Following

these empirical results, we could use a reasonable unpleasantness tolerance

threshold to describe the patient’s satisfaction on waiting processes, and take
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the frequency of delays above this threshold as an alternative service quality

measure. Nonetheless, several non-negligible drawbacks have hampered the

wide application of this measure. One disadvantage lies in the intensity of

delay, for its inability to distinguish waiting processes with the same frequen-

cy of surpassing the patient’s tolerance threshold but with different length of

delay. Moreover, the computational intractability of this probability measure

also arises due to lack of convexity. Thus, we need to establish a new service

quality measure which could in some extent reflect people’s real attitudes

towards delay process, in particular, could account for both the frequency

and intensity of the delay over the threshold.

The optimization criterion for an appointment system involves multi-

ple participants including patients and physicians. Currently, majority of

studies take a weighted average of the combinations among patients’ waiting

time, the physician’s idle time and overtime as an optimization criterion,

and exploit different methods to solve. Three main streams are based on

queueing theory (see Wang 1993; Wang 1999; Green and Savin 2008; Hassin

and Mendel 2008), stochastic programming (see Robinson and Chen 2003;

Denton and Gupta 2003), and robust optimization (see Mittal and Stiller

2011; Kong et al. 2013; Mak et al. 2013) frameworks. However, as the de-

cisions are very sensitive to the prescribed weight for each participant, how

to provide an accurate interpretation and estimation of these weights is a

crucial issue (Mondschein and Weintraub 2003). Additionally, minimizing a

weighted combination of expectations of patients’ waiting time, physician’s

idle time and overtime fails to accommodate the fairness issue highlighted by

Cayirli and Veral (2003). In layman terms, fairness regards to distinguish-
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ing a strategy of keeping say 20 patients each waiting for 2 minutes and its

counterpart of keeping only one of them waiting for 40 minutes (Klassen and

Rohleder 1996). Cayirli and Veral (2003) have highlighted the phenomenon

that current appointment system is unfair to the patient at the last position,

as waiting time tends to progressively build up. The notion of “fairness” has

been widely studied in economics literatures (see Young 1995; Sen and Fos-

ter 1997) and industrial applications, especially resource allocation problems

(see Bertsimas et al. 2011 and references therein), but few papers focus on

the appointment scheduling problems except Cox et al. (1985), Yang et al.

(1998). For this reason, an effective appointment system should be able to

guarantee the uniformity of qualities across multiple participants.

To cope with the difficulties of eliciting the exact probability distribu-

tions for patients’ consultation times, robust optimization techniques have

also been applied in appointment problems (see Mittal and Stiller 2011; Kong

et al. 2013; Mak et al. 2013). In these papers, the optimization criteria are

based on a weighted sum of patients’ expected waiting times, physician’s idle

time and overtime. Mittal and Stiller (2011) consider the scheduling problem

where only the bound support of service time is provided. To minimize the

sum of waiting time cost and idle time cost, they present a global balancing

heuristic, and prove that it will deliver an optimal schedule under certain mild

condition. Kong et al. (2013) assume lower bound, mean, and covariance of

the service time are known, and formulate a robust min-max problem, which

could be solved by a semidefinite programming relaxation. Mak et al. (2013)

investigate the scheduling problem by assuming the knowledge of marginal

moments of uncertain service time, and derive a computationally tractable
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conic programming formulation.

In general, consultation times among different types of patients such as

new and repeated one are not necessarily homogenous. Since the physician

would be familiar with the medical history of repeated patients, their consul-

tation times tend to be shorter than new ones. By exploiting the information

of patients’ classification, appointment systems would inevitably rely on the

sequencing decisions on these various types of patients. Due to the diffi-

culty of the problems, few papers investigate the sequencing and scheduling

decisions simultaneously. Weiss (1990) is the first to examine this problem

and provides analytical results for a two patients case with general service

time distribution, however, the conclusions could not be simply extended

to multiple patients case. Wang (1999) addresses the problem with a spe-

cific assumption that patients’ service time follows exponential distribution

with different rates, and infers that the optimal service sequence is in the

descending order of service rates. Bosch and Dietz (2000, 2001) classify the

patients into different categories according to their service times that follow

different phase-type distributions. They approximately solve the schedul-

ing problem by shifting the appointment time to incrementally improve the

objective value for a given sequence, and then swap the sequence pairwise

until it terminates. Denton et al. (2007) jointly formulate the sequencing

and scheduling problem into a two-stage stochastic programming model, and

suggest an interchange heuristic with the sampling average approximation

technique. Gupta (2007) uses stochastic programming to model this prob-

lem and mainly highlights the complication of problem by investigating the

case with two patients only.
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To fully characterize all the above perspectives in appointment system

design, especially, to mitigate the delay and unfairness in the appointmen-

t system, this chapter first proposes a new service quality measure named

Delay Unpleasantness Measure (DUM) to demonstrate the dependency of in-

dividual participant’s attitude towards his/her delay process based on their

corresponding acceptable levels. The acceptable level is an exogenous fac-

tor, and varies according to patients’ demographic profiles. For example, the

tolerable threshold of elderly patients is much longer (Moschis and Bellinger

2003). Besides, as the consultation time for repeated patients is relatively

short, in certain cases, they may deserve a shortened waiting process, which

corresponds to a small threshold. We could use survey or interview meth-

ods to study patients’ thresholds based on different medical departments,

ages, frequency of visit etc. (see for instance McCarthy et al. 2000; Hill and

Joonas 2006). Unlike the probability measure, DUM collectively accounts for

the frequency and intensity of delay over a threshold. Secondly, we present

the concept of lexicographic min-max fairness to tackle the fairness concern

arising in appointment system design. We lexicographically minimize the

worst DUM, the second worst DUM, and so on. Thirdly, by assuming pa-

tients’ sequence is predetermined, we develop a scheduling model that can be

adapted in the robust setting. Different from the conventional distributional

uncertainty set, in which covariance matrix is used to capture the correlation

among uncertain service times, we propose mean absolute deviation of sum-

mation over service times as the information that could help retain linearity

of the model. Therefore, the optimal decisions are derived by solving a small

sequence of linear optimization problems. Fourthly, this model could be ex-
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tended to incorporate sequencing decisions when patients are heterogeneous.

The rest of the chapter is organized as follows. In Section 4.2, we show

how a participant’s behavior in delay process can be characterized by the

DUM. In Section 4.3, we introduce the concept of lexicographic min-max

fairness and propose the solution procedure under the DUM. In Section 4.4,

we propose a scheduling model for appointment systems by assuming pa-

tients’ sequence is fixed, and demonstrate how the resulting model can be

solved. In Section 4.5, we extend our model to solve both sequencing and

scheduling problems. In Section 4.6, we perform several computational s-

tudies with encouraging results on the DUM regarding the fairness concern.

Finally, in Section 4.7, we provide conclusions and managerial insights.

4.2 Delay Unpleasantness Measure

In this section, we will motivate and introduce a new service quality measure

to evaluate uncertain waiting time (service delay) of patients and overtime

(off-work delay) of physicians. We start with defining Delay Unpleasant-

ness Measure (DUM) for individual participant (patient or physician) in the

appointment system. We assume that each participant has his/her own toler-

ance threshold τ on waiting time, and the real uncertain delay is represented

by w̃. DUM takes into account of both the frequency and intensity of delay

over the threshold and is defined as follows.

Definition 4.1. Given an uncertain delay w̃ ∈ L and tolerance threshold

τ ∈ <+, the Delay Unpleasantness Measure is a function ρτ : L → [0, 1]
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defined as

ρτ (w̃) = inf{α ≥ 0 |ϕα (w̃) ≤ τ },

(or 1 if no such α exists), where

ϕα (w̃) = min
ν∈<

(
ν +

1

α
sup
P∈F
EP
(
(w̃ − ν)+)) , α ∈ (0, 1].

This definition is similar to Shortfall aspiration level criterion in Chen

and Sim (2009) and Definition 5 in Brown and Sim (2009) in the monetary

context. Function ϕα (w̃) is the worst-case Conditional Value-at-Risk (CVaR)

(see Zhu and Fukushima 2009 and Natarajan et al. 2010) when we only have

information that the true distribution P lies in a distributional uncertainty

set F. CVaR (Rockafellar and Uryasev 2000) is a measure with specific focus

on the tail distribution, and has become a major reference in the area of

financial mathematics with its endearing properties. It is also shown to be

the best convex conservative approximation of frequency of delay over the

threshold (Nemirovski and Shapiro 2006). In hospital settings, Dehlendorff

et al. (2010) use simulation models and suggest that CVaR is a reliable

measure for the waiting time. In definition 4.1, ϕα (w̃) denotes the worst-

case expected waiting time in the conditional distribution of its upper α

tail (Rockafellar 2007). Therefore, roughly speaking, DUM represents the

smallest upper 100α percentile, such that the worst-case average of α longest

delay is no more than patient’s tolerable threshold. Several properties of

DUM are listed in Proposition 4.1.
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Proposition 4.1. The DUM, ρτ has the following properties:

(a) Monotonicity: if w̃1 ≤ w̃2, then ρτ (w̃1) ≤ ρτ (w̃2);

(b) Threshold Satisficing: if w̃ ≤ τ , then ρτ (w̃) = 0;

(c) Tardiness Intolerance: if supP∈F EP (w̃) > τ , then ρτ (w̃) = 1;

(d) Upper bound of tardiness probability: ρτ (w̃) ≥ P (w̃ > τ) for all P ∈ F;

(e) If P (w̃ < τ) > 0 for all P ∈ F, then

ρτ (w̃) = inf
a>0

sup
P∈F
EP
(
(a(w̃ − τ) + 1)+) .

Proof. (a) Monotonicity: if w̃1 ≤ w̃2, we have for any α ∈ (0, 1], ϕα (w̃1) ≤

ϕα (w̃2) because of monotonicity property of ϕα (w̃) function. Therefore,

ρτ (w̃1) ≤ ρτ (w̃2).

(b) Threshold Satisficing: if w̃ ≤ τ , ρτ (w̃) ≤ ρτ (τ) = inf {α ≥ 0 |ϕα(τ) ≤ τ } =

0. With the bound that ρτ (w̃) ∈ [0, 1], we could immediately conclude

ρτ (w̃) = 0.

(c) Tardiness Intolerance: we first prove that ϕ1 (w̃) = supP∈F EP (w̃). Ac-

cording to the definition of ϕα (w̃), ϕ1 (w̃) ≤ 0 + supP∈F EP
(
(w̃ − 0)+) =

supP∈F EP (w̃). Moreover, since

ϕ1 (w̃) = min
ν∈<

{
sup
P∈F

(
ν + (w̃ − ν)+)} ≥ min

ν∈<

{
sup
P∈F
EP (ν + w̃ − ν)

}
= sup

P∈F
EP (w̃) ,

we have ϕ1 (w̃) = supP∈F EP (w̃). Therefore, supP∈F EP (w̃) > τ is equivalent
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to ϕ1 (w̃) > τ . According to monotonicity property of function ϕα (w̃), there

exists no α ≥ 0 satisfying ϕα (w̃) ≤ τ , which leads to ρτ (w̃) = 1.

(d) The proof can be referred to Theorem 3 in Brown and Sim (2009).

(e) Given P (w̃ > τ) > 0 for all P ∈ F, we could obtain for any ν ≥ 0,

ν +
1

α
sup
P∈F
EP
(
(w̃ − τ − ν)+) > 0. Hence,

ρτ (w̃) = inf {α ≥ 0 |ϕα (w̃) ≤ τ }

= inf

{
α ≥ 0

∣∣∣∣∃ν ∈ <, ν +
1

α
sup
P∈F
EP
(
(w̃ − τ − ν)+) ≤ 0

}
= inf

{
α ≥ 0

∣∣∣∣∃ν < 0,−ν ≥ 1

α
sup
P∈F
EP
(
(w̃ − τ − ν)+)}

= inf

{
α ≥ 0

∣∣∣∣∣∃a > 0,
1

a
≥ 1

α
sup
P∈F
EP

((
w̃ − τ +

1

a

)+
)}

= inf

{
α ≥ 0

∣∣∣∣α ≥ inf
a>0

sup
P∈F
EP
(
(a (w̃ − τ) + 1)+)}

= inf
a>0

sup
P∈F
EP
(
(a(w̃ − τ) + 1)+) .

Remark 4.1. Property (a) captures participant’s essential preference to a

shorter delay, i.e., if the waiting time w̃1 is state-wise greater than its coun-

terpart w̃2, then the former is not more preferred under the DUM. Property

(b) indicates participant’s desire to be served within the threshold and any

uncertain delay that always meets the deadline will be most preferred. In

contrast, Property (c) indicates the intolerance to any delay always exceeds

the threshold in expectation. Property (d) suggests a close relationship be-

tween the DUM and frequency of delay over a threshold. We could guarantee

that the frequency of delay over the threshold is less than the corresponding
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DUM. Property (e) demonstrates that the DUM can be written as a form of

an optimized expected utility, where the utility function is convex.

Next, we provide a simple illustration of the DUM. Given two options

A and B on delay, where

w̃A =

 10 minutes, with probability 0.89;

30 minutes, with probability 0.11.

w̃B =

 10 minutes, with probability 0.9;

60 minutes, with probability 0.1.

When the tolerance threshold τ = 29 minutes, the outcome of minimizing

frequency of delay over a threshold suggests option B is better than A with

P (w̃B > 29) = 0.1 < P (w̃A > 29) = 0.11, which indicates that this quality

measure only focuses on the violation probability without taking the delay

level into consideration. Instead, the use of the DUM can avoid these disad-

vantages with its outcome suggests that option A is more preferable than B

as ρ29 (w̃A) = 11
95
≤ 5

19
= ρ29 (w̃B).

4.3 Lexicographic Min-Max Fairness

The service quality of an appointment system depends on the participants’

experiences on delays and we can formulate this as a multiple criteria opti-

mization problem in which participants’ DUMs are minimized, i.e.,

min
w̃∈W
{ρτ (w̃)},
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where ρτ (w̃) = (ρτ1(w̃1), . . . , ρτN (w̃N)) and W represents the space of feasi-

ble waiting times experienced by the participants. Among the Pareto optimal

solutions, we would like to mitigate unfairness and avoid discriminating a sub-

set of participants in terms of their service experiences in the appointment

system. We adopt the lexicographic min-max fairness solution approach (see

Young 1995).

Definition 4.2. Let ρi(w̃) and ρi(ṽ), w̃, ṽ ∈ W be the ith largest elements of

ρτ (w̃) and ρτ (ṽ) respectively. We say ρτ (w̃) is lexicographically equivalent

to ρτ (ṽ), denoted by

ρτ (w̃) =lex ρτ (ṽ)

if and only if ρh(w̃) = ρh(ṽ) for all h ∈ [1;N ]. Moreover, ρτ (w̃) is lexico-

graphically less than ρτ (ṽ), denoted by

ρτ (w̃) ≺lex ρτ (ṽ)

if and only if there exists i∗ ∈ [1;N ] such that ρh(w̃) = ρh(ṽ) for h ∈ [1; i∗−1]

and ρi∗(w̃) < ρi∗(ṽ). Similarly, we denote by

ρτ (w̃) �lex ρτ (ṽ)

if either ρτ (w̃) =lex ρτ (ṽ) or ρτ (w̃) ≺lex ρτ (ṽ).

The lexicographic ordering shows that the participant with the worst
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value of DUM has the highest priority in preference ranking among solutions

in W . Subsequently, if these values among different solutions are the same,

then the next worst value will be used in deciding preference. We explore

some characteristics of lexicographic ordering of participants’ DUMs and link

them to issues of fairness in an appointment system.

Proposition 4.2. The following properties hold for w̃, ṽ ∈ W :

(a) Monotonicity: if w̃ ≤ ṽ, then

ρτ (w̃) �lex ρτ (ṽ).

(b) Threshold Satisficing: let S ⊂ [1;N ] and S̄ be the complement set.

Suppose ṽj = w̃j for all j ∈ S and ṽj ≤ w̃j ≤ τj for all j ∈ S̄, then

ρτ (w̃) =lex ρτ (ṽ).

(c) Discrimination Resistance: let

S1 = {i ∈ [1;N ] |ρτi(w̃i) = 1} and S2 = {i ∈ [1;N ] |ρτi(ṽi) = 1}.

Suppose |S1| < |S2| then

ρτ (w̃) ≺lex ρτ (ṽ).
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Proof. (a) Monotonicity: if w̃ ≤ ṽ, i.e., w̃n ≤ ṽn for all n ∈ [1;N ], with

the monotonicity property of ρτn (w̃n), we have for all n ∈ [1;N ], ρτn (w̃n) ≤

ρτn (ṽn). Therefore, ρτ (w̃) �lex ρτ (ṽ).

(b) Threshold Satisficing: Since w̃n = ṽn for all n ∈ S, we have ρτn (w̃n) =

ρτn (ṽn). For any j ∈ S̄, w̃j, ṽj ≤ τj, then according to Threshold Satisficing

of DUM, ρτj (w̃j) = ρτj (ṽj) = 0. Therefore, ρτ (w̃) =lex ρτ (ṽ).

(c) Discrimination Resistance: if |S1| < |S2|, we have ρi (w̃) = ρi (ṽ) for all

i ∈ [1; |S1|]. For i = |S1|+ 1 ≤ |S2|, we have ρi (w̃) < 1 = ρi (ṽ). Therefore,

ρτ (w̃) ≺lex ρτ (ṽ).

Remark 4.2. Monotonicity ensures consistency so that reduction in delays

for all participants will be favorably valued. Threshold Satisficing property

ensures that the participants whose delays are always within their thresh-

olds, then any improvement of their delays do not contribute to the lexico-

graphic ordering. A participant is discriminated if the appointment system

cannot guarantee his/her average waiting time below the threshold, which

corresponds to the DUM taking value of one. Hence, Discrimination Re-

sistance induces preferences for solutions that have fewer participants being

discriminated. This property is in accord with the hospital’s key performance

indicator, to keep the number of patients who experiences the worst waiting

process as small as possible. 1

1 In the context of earlier example provided by Klassen and Rohleder (1996), if each
patient’s tolerable threshold is 3 minutes, the number of patients whose DUMs equal to 1
is 20 to the strategy that keeps only one patient waiting for 40 minutes, while that to the
other strategy is 0.
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Since lexicographic order is complete, we can rank solutions and replace

the multiple criteria optimization by the following lexicographic minimization

problem

lex min
w̃∈W
{ρτ (w̃)},

where the optimal solution w̃∗ ∈ W satisfies

ρτ (w̃∗) �lex ρτ (ṽ), ∀ ṽ ∈ W .

Though this may not be a standard mathematical programming prob-

lem, we can obtain the optimal solution by solving a sequence of optimization

problems (see Isermann 1982 and Ogoryczak et al. 2005) as follows:

Algorithm: Lexicographic Minimization Procedure

1. Set h := 1,G0 := [1;N ],

α1 := min
w̃∈W

max
n∈G0

ρτn(w̃n),

I1 :=

{
j ∈ G0 : min

w̃∈W

{
ρτj(w̃j)

∣∣∣max
n∈G0

ρτn(w̃n) ≤ α1

}
= α1

}
.

2. Set Gh := Gh−1\Ih. If Gh = ∅, algorithm terminates and outputs solu-

tion. Otherwise, set h := h+ 1,

αh := min
w̃∈W

{
max
n∈Gh−1

ρτn(w̃n)
∣∣ max

n∈Ii
ρτn (w̃n) ≤ αi, i ∈ {1, ..., h− 1}

}
,

Ih :=


j ∈ Gh−1 :

min
w̃∈W

ρτj(ṽj)
∣∣∣∣∣∣∣

max
n∈Gh−1

ρτn(w̃n) ≤ αh,

max
n∈Ii

ρτn (w̃n) ≤ αi, i ∈ {1, ..., h− 1}

 = αh


.
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3. Go to Step 2.

In this algorithm, we minimize the maximum DUM among a set of

participants and elicit the subset of participants that attain the worst value.

Hence, the optimum solution, w̃∗ ∈ W satisfies

ρτn(w̃∗n) = αi, n ∈ Ii,

for all i ∈ [1;h]. Observe that the problem to derive αh is the same as

αh = min α

s.t. ρτn(w̃n) ≤ α, n ∈ Gh−1,

ρτn(w̃n) ≤ αi, n ∈ Ii, i ∈ [1;h− 1],

w̃ ∈ W .

According to the definition of ρτn(w̃n), we could equivalently solve

inf α

s.t. νn +
1

α
sup
P∈F
EP
(
(w̃n − νn)+) ≤ τn, n ∈ Gh−1,

νn +
1

αi
sup
P∈F
EP
(
(w̃n − νn)+) ≤ τn, n ∈ Ii, i ∈ [1;h− 1],

α ∈ (0, 1],

w̃ ∈ W .

(4.1)

Though the problem is nonlinear in α, we observe that 1
α

supP∈F EP
(
(w̃n − νn)+)

is monotonic in α and hence we could use binary search procedure to find

the optimal solution in which α is minimized. Similarly, we can determine
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Ii by performing a sequence of binary search procedures.

4.4 Appointment Schedule Design

We first consider an appointment scheduling problem with one physician

serving N patients under the following assumptions:

Assumptions

• Schedules have to be made before the commencement of the session.

• Patients may be heterogenous and are characterized by their service

time distributions and tolerance thresholds.

• The consultation sequence of patients is pre-determined.

• Patients arrive on time.2

• Physician will start his/her session promptly. Hence, the first patient

experiences no delay.

Model parameters and decision variables

• N : total number of patients to be scheduled;

• L: session length pre-determined for the consultation of N patients;

• τn: the tolerance threshold of delay for the patient at nth position,

n ∈ [1;N ];

2 According to data collection of Harper and Gamlin (2003) and Zhu et al. (2011),
majority of patients arrive earlier than they are expected. This assumption avoids the
complexity of modeling due to potential change in sequence.
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• τN+1: physician’s tolerance on his/her overtime;

• s̃n: consultation time of the nth patient;

• w̃n: waiting time of the nth patient, n ∈ [1;N ];

• w̃N+1: physician’s overtime;

• xn: decision variable, appointment time for the nth patient. For no-

tational simplicity, we let x1 = 0, xN+1 = L, and its vector notation

x = (x1, . . . , xN , xN+1)′.

We first specify the feasible set of waiting times, W as follows:

W =

w̃
∣∣∣∣∣∣∣∣∣∣
w̃1 = 0,

w̃n = max {xn−1 + w̃n−1 + s̃n−1 − xn, 0} , n ∈ [2;N + 1],

x ∈ X

 ,

where set X is defined as

X =

x
∣∣∣∣∣∣∣∣∣∣
x1 = 0,

xn−1 ≤ xn, n ∈ [2;N + 1],

xN+1 = L

 .

The first two constraints in the setW recursively calculate the delays experi-

enced by the patients and the physician, while the set X ensures sequencing

compliance. Accordingly as in Denton and Gupta (2003), we further simplify

the formulation by defining the difference between the real service time and
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scheduled interval as t̃n for the nth patient

t̃n = s̃n − (xn+1 − xn), n ∈ [1;N ]. (4.2)

It follows that the nth patient’s waiting time and physician’s overtime can

be represented by

w̃n = max

{
0, t̃n−1, . . . ,

n−1∑
k=1

t̃k

}
, n ∈ [2;N + 1]. (4.3)

Since the lexicographic minimization procedure requires solving a se-

quence of similar problems, we will focus on solving Problem (4.1) as a repre-

sentative instance. To derive the optimal scheduling decisions, we formulate

Problem (4.1) as

inf α

s.t. νn +
1

α
sup
P∈F
EP
(
(w̃n − νn)+) ≤ τn, n ∈ Gh−1,

νn +
1

αi
sup
P∈F
EP
(
(w̃n − νn)+) ≤ τn, n ∈ Ii, i ∈ [1;h− 1],

w̃n = max

{
0, t̃n−1, . . . ,

n−1∑
k=1

t̃k

}
, n ∈ [2;N + 1],

t̃n = s̃n − (xn+1 − xn), n ∈ [1;N ],

α ∈ (0, 1],

x ∈ X .

(4.4)

Since the first patient’s waiting time is zero, we have ρτ1(w̃1) = 0 for any

nonnegative threshold τ1. Therefore, we can define G0 = [2;N + 1].
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We first focus on the simplification of function supP∈F EP
(
(w̃n − νn)+),

which is complicated by the recursive property of uncertain waiting times.

In conjunction with Equations (4.2) and (4.3), we observe that

sup
P∈F
EP
(
(w̃n − νn)+)

= sup
P∈F
EP

(max

{
0, t̃n−1, . . . ,

n−1∑
k=1

t̃k

}
− νn

)+


= sup
P∈F
EP

(
max

{
0,−νn, t̃n−1 − νn, . . . ,

n−1∑
k=1

t̃k − νn

})

= sup
P∈F
EP

(
max

{
0,−νn, s̃n−1 − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(s̃k − (xk+1 − xk))− νn

})
.

The calculation of this function inevitably depends on the information we

possess about the uncertain service time s̃n, n ∈ [1;N ]. Next, we will classify

the information set we could have on s̃n and provide different reformulation

and solution techniques.

4.4.1 Stochastic optimization approach

For the case of known discrete distribution (i.e. F = {P}) in which there are

M sets of service times, {sm1 , . . . , smN}, each occurring with probability pm,

m ∈ [1;M ], we have

sup
P∈F
EP

(
max

{
0,−νn, s̃n−1 − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(s̃k − (xk+1 − xk))− νn

})

=
M∑
m=1

pm max

{
0,−νn, smn−1 − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(smk − (xk+1 − xk))− νn

}
.



4. Mitigating Delays and Unfairness in Appointment Systems 134

Therefore, by adding decision variables qmn, m ∈ [1;M ], n ∈ [2;N + 1],

Problem (4.4) is equivalent to

inf α

s.t. νn +
1

α

M∑
m=1

pmqmn ≤ τn, n ∈ Gh−1,

νn +
1

αi

M∑
m=1

pmqmn ≤ τn, n ∈ Ii, i ∈ [1;h− 1],

qmn + νn ≥ 0, n ∈ [2;N + 1],m ∈ [1;M ],

qmn + νn + xn − xl ≥
n−1∑
k=l

smk , l ∈ [1;n− 1], n ∈ [2;N + 1],m ∈ [1;M ],

qmn ≥ 0, n ∈ [2;N + 1],m ∈ [1;M ],

α ∈ (0, 1],

x ∈ X .

Whenever α is fixed, the feasible set is a polyhedron comprising O(MN)

decision variables and O(MN2) constraints. In practice, this approach is

amiable to empirical distributions where M is relatively small.

4.4.2 Distributionally robust optimization approach

We also propose a distributional robust optimization approach with the

goal of preserving linearity of the model. We assume the family of ser-

vice times distributions are characterized based on their bounded supports

P(s̃k ∈ [sk, sk]) = 1, means EP (s̃k) = µk, µk ∈ (sk, sk) and bounds of mean

absolute deviation EP (|s̃k − µk|) ≤ σk, σk > 0 for all k ∈ [1;N ]. Intuitive-

ly, the worst case probability distributions may result in highly correlated
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service times, which may not be realistic and lead to conservative solution-

s. To impose correlation, the conventional approach is to specify covariance

within the distributional uncertainty set, i.e. the descriptive statistics of

EP ((s̃r − µr)(s̃k − µk)) for all r, k ∈ [1;N ], r ≤ k. However, this will neces-

sarily lead to nonlinear optimization models, which are harder to solve (Kong

et al. 2013; Mak et al. 2013). To avoid nonlinearity, we propose a different

approach of capturing correlation. We note that the waiting time of a par-

ticipant may be influenced by the aggregation of uncertain service times of

earlier participants. Hence, in our distributional uncertainty set, we use the

descriptive statistics of EP
(∣∣∣∑k

m=r
s̃m−µm
σm

∣∣∣) for all r, k ∈ [1;N ] and r ≤ k.

Observe that

EP

(∣∣∣∣∣
k∑

m=r

s̃m − µm
σm

∣∣∣∣∣
)
≤

k∑
m=r

EP
(∣∣∣∣ s̃m − µmσm

∣∣∣∣) ≤ k − r + 1,

in which the first equality is achieved under perfect correlation. As a proxy

for modeling correlation, we impose the constraints,

EP

(∣∣∣∣∣
k∑

m=r

s̃m − µm
σm

∣∣∣∣∣
)
≤ εrk, r, k ∈ [1;N ], r ≤ k,

where εrk ∈ (0, k − r + 1]. Without loss of generality, we define εkk = 1 that

is equivalent to the information EP (|s̃k − µk|) ≤ σk. These constraints set

the bound for the dispersion of the total uncertain service times for k− r+ 1

consecutive patients, and enable us to specify less conservative uncertainty

set while keeping the model linear. Now, the distributional uncertainty set
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can be written as

F =

P
∣∣∣∣∣∣∣
EP (s̃k) = µk,P (s̃k ∈ [sk, sk]) = 1,EP

(∣∣∣∑k
m=r

s̃m−µm
σm

∣∣∣) ≤ εrk,

r, k ∈ [1;N ], r ≤ k

 .

For convenience, we let z̃k = (s̃k − µk)/σk, and define Fz as

Fz =

P
∣∣∣∣∣∣∣
EP (z̃k) = 0,P (z̃k ∈ [zk, zk]) = 1,EP

(∣∣∣∑k
m=r z̃m

∣∣∣) ≤ εrk,

r, k ∈ [1;N ], r ≤ k

 ,

and we have

sup
P∈F
EP

(
max

{
0,−νn, s̃n−1 − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(s̃k − (xk+1 − xk))− νn

})

= sup
P∈Fz

EP

max


0,−νn, σn−1z̃n−1 + µn−1 − (xn − xn−1)− νn, . . . ,
n−1∑
k=1

(σkz̃k + µk − (xk+1 − xk))− νn




Proposition 4.3. For a given x ∈ X and n ∈ [2;N + 1], the problem

ZP = sup
P∈F
EP

(
max

{
0,−νn, s̃n−1 − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(s̃k − (xk+1 − xk))− νn

})
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corresponds to the optimal value of the following linear optimization problem

ZD = inf f0 +
n−1∑
k=1

k∑
r=1

εrkgrk

s.t. f0 +
n−1∑
k=1

(
zku

0
k − zkv0

k

)
≥ 0,

f0 + νn +
n−1∑
k=1

(zku
n
k − zkvnk ) ≥ 0,

f0 + νn + xn − xl +
n−1∑
k=1

(
zku

l
k − zkvlk

)
≥

n−1∑
k=l

µk, l ∈ [1;n− 1],

ulk − vlk +
n−1∑
m=k

k∑
r=1

(
blrm − clrm

)
− fk = 0, k ∈ [1;n− 1], l = 0, n,

ulk − vlk +
n−1∑
m=k

k∑
r=1

(
blrm − clrm

)
− fk = 0, k, l ∈ [1;n− 1], k ≤ l − 1,

ulk − vlk +
n−1∑
m=k

k∑
r=1

(
blrm − clrm

)
− fk = −σk, k, l ∈ [1;n− 1], l ≤ k,

blrk + clrk − grk = 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

ulk, v
l
k, b

l
rk, c

l
rk, grk ≥ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n].

(4.5)

Proof. To justify our claim, we first notice that the calculation of function

ZP

= sup
P∈F
EP

(
max

{
0,−νn, s̃n−1 − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(s̃k − (xk+1 − xk))− νn

})
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can be equivalently written as an optimization problem as follows

ZP = sup EP

(
max

{
0,−νn, . . . ,

n−1∑
k=1

(σkz̃k + µk − (xk+1 − xk))− νn

})
s.t. EP (z̃k) = 0, k ∈ [1;n− 1],

EP

(∣∣∣∣∣
k∑

m=r

z̃m

∣∣∣∣∣
)
≤ εrk, r, k ∈ [1;n− 1], r ≤ k,

P {z̃k ∈ [zk, zk], k ∈ [1;n− 1]} = 1.

(4.6)

Its dual form can be written as

Z1 = min f0 +
n−1∑
k=1

k∑
r=1

εrkgrk

s.t. f0 +
n−1∑
k=1

fkzk +
n−1∑
k=1

k∑
r=1

grk

∣∣∣∣∣
k∑

m=r

z̃m

∣∣∣∣∣ ≥ 0,

∀ zk ∈ [zk, zk], k ∈ [1;n− 1],

f0 +
n−1∑
k=1

fkzk +
n−1∑
k=1

k∑
r=1

grk

∣∣∣∣∣
k∑

m=r

zm

∣∣∣∣∣ ≥ −νn,
∀ zk ∈ [zk, zk], k ∈ [1;n− 1],

f0 +
n−1∑
k=1

fkzk +
n−1∑
k=1

k∑
r=1

grk

∣∣∣∣∣
k∑

m=r

zm

∣∣∣∣∣ ≥
n−1∑
k=l

(σkzk + µk − (xk+1 − xk))− νn,

∀ zk ∈ [zk, zk], k, l ∈ [1;n− 1],

grk ≥ 0, r, k ∈ [1;n− 1], r ≤ k,

(4.7)

in which weak duality holds (see Isii 1963), and hence, ZP ≤ Z1. Observe

that each constraint in Problem (4.7) is the robust counterpart of a linear

optimization problem with bounded box uncertainty set. Hence, Problem

(4.7) is feasible and objective is finite, i.e., Z1 <∞. Moreover, the dual form
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of the linear optimization problem

min
l−1∑
k=1

fkzk +
n−1∑
k=l

(fk − σk)zk +
n−1∑
k=1

k∑
r=1

grk

∣∣∣∣∣
k∑

m=r

zm

∣∣∣∣∣
s.t. zk ≥ zk, k ∈ [1;n− 1],

zk ≤ zk, k ∈ [1;n− 1],

is equivalently written as

max
n−1∑
k=1

(zkuk − zkvk)

s.t. uk − vk +
n−1∑
m=k

k∑
r=1

(brm − crm) = fk, k ∈ [1; l − 1],

uk − vk +
n−1∑
m=k

k∑
r=1

(brm − crm) = fk − σk, k ∈ [l;n− 1],

brk + crk = grk, r, k ∈ [1;n− 1], r ≤ k,

uk, vk, brk, crk ≥ 0, r, k ∈ [1;n− 1], r ≤ k.

Combining all these analysis parts together, we could derive the optimization

problem (4.5) in the proposition, and ZP ≤ Z1 = ZD. To show that strong

duality holds for the primal problem (4.6) and the dual problem (4.5), we

cannot directly use the result of Isii (1963). To prove it, we derive the dual
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of Problem (4.5) as

Z2 = max −λnνn +
n−1∑
l=1

λl

(
−νn − xn + xl +

n−1∑
k=l

µk

)
+

n−1∑
l=1

n−1∑
k=l

κlkσk

s.t.
n∑
l=0

λl = 1,

n∑
l=0

κlk = 0, k ∈ [1;n− 1],

−κlk + λlzk ≤ 0, k ∈ [1;n− 1], l ∈ [0;n],

κlk − λlzk ≤ 0, k ∈ [1;n− 1], l ∈ [0;n],

−ηlrk +
k∑

m=r

κlm ≤ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

−ηlrk −
k∑

m=r

κlm ≤ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

n∑
l=0

ηlrk ≤ εrk, r, k ∈ [1;n− 1], r ≤ k,

λl ≥ 0, l ∈ [0;n].

(4.8)

Since strong duality holds in this linear optimization problem, we have ZD =

Z2 ∈ <. Since, µk ∈ (sk, sk), we have 0 ∈ (zk, zk) for all k ∈ [1;n−1]. There-

fore, solution λl = 1
n+1

, κlk = 0, ηlrk = εrk
n+2

, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n] is

strictly feasible. Since Problem (4.8) is a linear optimization problem with

finite objective and non-empty relative interior, there exists a sequence of

interior feasible solutions whose objectives asymptotically coverage to opti-
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mum. Hence, we have

Z2 = sup −λnνn +
n−1∑
l=1

λl

(
−νn − xn + xl +

n−1∑
k=l

µk

)
+

n−1∑
l=1

n−1∑
k=l

κlkσk

s.t.
n∑
l=0

λl = 1,

n∑
l=0

κlk = 0, k ∈ [1;n− 1],

−κlk + λlzk ≤ 0, k ∈ [1;n− 1], l ∈ [0;n],

κlk − λlzk ≤ 0, k ∈ [1;n− 1], l ∈ [0;n],

−ηlrk −
k∑

m=r

κlm ≤ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

−ηlrk +
k∑

m=r

κlm ≤ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

n∑
l=0

ηlrk ≤ εrk, r, k ∈ [1;n− 1], r ≤ k,

λl > 0, l ∈ [0;n].

Since λl > 0, by defining ζlk = κlk/λl, l ∈ [0;n], k ∈ [1;n − 1], the above
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problem is equivalent to

Z2 = sup −λnνn +
n−1∑
l=1

λl

(
−νn − xn + xl +

n−1∑
k=l

(µk + ζlkσk)

)
s.t.

n∑
l=0

λl = 1,

n∑
l=0

λlζlk = 0, k ∈ [1;n− 1],

−ζlk ≤ −zk, k ∈ [1;n− 1], l ∈ [0;n],

ζlk ≤ zk, k ∈ [1;n− 1], l ∈ [0;n],

−ηlrk −
k∑

m=r

ζlmλl ≤ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

−ηlrk +
k∑

m=r

ζlmλl ≤ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

n∑
l=0

ηlrk ≤ εrk, r, k ∈ [1;n− 1], r ≤ k,

λl > 0, l ∈ [0;n],

= sup −λnνn +
n−1∑
l=1

λl

(
−νn − xn + xl +

n−1∑
k=l

(µk + ζlkσk)

)
s.t.

n∑
l=0

λlζlk = 0, k ∈ [1;n− 1],

n∑
l=0

λl

∣∣∣∣∣
k∑

m=r

ζlm

∣∣∣∣∣ ≤ εrk, r, k ∈ [1;n− 1], r ≤ k,

n∑
l=0

λl = 1,

ζlk ∈ [zk, zk], k ∈ [1;n− 1], l ∈ [0;n],

λl > 0, l ∈ [0;n].

(4.9)

We observe that the feasible solution in Problem (4.9) can be translated

to z̃k being discrete distributed that takes values of ζlk with probability λl,
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l ∈ [0;n] for all k ∈ [1;n − 1]. Moreover, the objective of Problem (4.9)

satisfies

−λnνn +
n−1∑
l=1

λl

(
−νn − xn + xl +

n−1∑
k=l

(µk + ζlkσk)

)

≤
n∑
l=0

λl

(
max

{
0,−νn, . . . ,

n−1∑
k=1

(σkζlk + µk − (xk+1 − xk))− νn

})
.

Therefore, ZP ≤ Z1 = ZD = Z2 ≤ ZP and strong duality follows.
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Correspondingly, Problem (4.4) is equivalent to

inf α

s.t. νn +
1

α

(
fn0 +

n−1∑
k=1

k∑
r=1

εrkg
n
rk

)
≤ τn, n ∈ Gh−1,

νn +
1

αi

(
fn0 +

n−1∑
k=1

k∑
r=1

εrkg
n
rk

)
≤ τn, n ∈ Ii, i ∈ [1;h− 1],

fn0 +
n−1∑
k=1

(
zku

0n
k − zkv0n

k

)
≥ 0, n ∈ [2;N + 1],

fn0 + νn +
n−1∑
k=1

(zku
nn
k − zkvnnk ) ≥ 0, n ∈ [2;N + 1],

fn0 + νn + xn − xl +
n−1∑
k=1

(
zku

ln
k − zkvlnk

)
≥

n−1∑
k=l

µk,

l ∈ [1;n− 1], n ∈ [2;N + 1],

ulnk − vlnk +
n−1∑
m=k

k∑
r=1

(blnrm − clnrm)− fnk = 0,

k ∈ [1;n− 1], l = 0, n, n ∈ [2;N + 1],

ulnk − vlnk +
n−1∑
m=k

k∑
r=1

(blnrm − clnrm)− fnk = 0,

k, l ∈ [1;n− 1], k ≤ l − 1, n ∈ [2;N + 1],

ulnk − vlnk +
n−1∑
m=k

k∑
r=1

(blnrm − clnrm)− fnk = −σk,

k, l ∈ [1;n− 1], k ≥ l, n ∈ [2;N + 1],

blnrk + clnrk − gnrk = 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n], n ∈ [2;N + 1],

ulnk , v
ln
k , b

ln
rk, c

ln
rk, g

n
rk ≥ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n], n ∈ [2;N + 1],

α ∈ (0, 1],

x ∈ X .
(4.10)

Problem (4.10) is quite complicated at a first glance, however, for any α ∈
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(0, 1], we observe that the problem reduces to a linear feasibility problem

including O(N4) continuous decision variables and O(N4) constraints. When

α decreases to zero, ϕα (w̃) approaches the upper limit of w̃. We assume

that it is onus of the decision maker to select the threshold values so that

Problem (4.10) is feasible at α = 1. Otherwise, the delay thresholds are not

attainable in expectation and should be adjusted accordingly to reflect what

is realistically achievable in practice.

It is worthy pointing out that the above scheduling formulation preserves

linearity, and greatly reduces the computational complexity. Each approach

only requires solving a sequence of linear optimization problems.

4.5 Appointment Sequence and Schedule Design

We now generalize the scheduling model to incorporate the realistic situation

with sequencing decisions for heterogeneous patients. First, we clarify some

extra parameters and decision variables.

• J : number of patient types. Patients with the same type have same

mean µj, mean absolute deviation σj of the consultation time, and

same tolerance threshold;

• Nj: number of jth type patients, where
∑J

j=1Nj = N ;

• βj: the tolerance threshold of delay for jth type patients, j ∈ [1; J ];

• s̃nj: uncertain service time associated with the nth patient if he/she

belongs to jth type;
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• ynj: binary decision variable, if the jth type patient is scheduled in

the nth position, then ynj = 1, otherwise, ynj = 0. Its matrix form is

Y = (y1,y2, . . . ,yN)′ ∈ {0, 1}N×J .

Correspondingly, with the sequencing decisions, the patient at position

n ∈ [1;N ] has uncertain service time
∑J

j=1 s̃njynj and tolerance threshold

τn =
∑J

j=1 βjynj. We can formulate Problem (4.1) with both sequencing and

scheduling decisions as follows:

inf α

s.t. νn +
1

α
sup
P∈F
EP
(
(w̃n − νn)+

)
≤ τn, n ∈ Gh−1,

νn +
1

αi
sup
P∈F
EP
(
(w̃n − νn)+

)
≤ τn, n ∈ Ii, i ∈ [1;h− 1],

w̃n = max

{
0, t̃n−1, . . . ,

n−1∑
k=1

t̃k

}
, n ∈ [2;N + 1],

t̃n =
J∑
j=1

s̃njynj − (xn+1 − xn), n ∈ [1;N ],

α ∈ (0, 1],

(τ ,x,Y ) ∈ Y ,

(4.11)
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in which

Y =



(τ ,x,Y )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J∑
j=1

βjynj = τn, n ∈ [1;N ],

N∑
n=1

ynj = Nj, j ∈ [1; J ],

J∑
j=1

ynj = 1, n ∈ [1;N ],

ynj ∈ {0, 1}, n ∈ [1;N ], j ∈ [1; J ],

x ∈ X .



.

Set Y guarantees that each patient is assigned to a position, and each position

allotted to only one patient.

To solve this problem, we can implement similar procedures described in

Section 4.4. The difference lies in the calculation of function sup
P∈F
EP
(
(w̃i − νi)+),

which is equivalent to

sup
P∈F
EP

(
max

{
0,−νn, . . . ,

n−1∑
k=1

(
J∑
j=1

s̃kjykj − (xk+1 − xk)

)
− νn

})
(4.12)

For known discrete distribution case in which there are M sets of service

time,
(
smnj
)
n∈[1;N ],j∈[1;J ]

with probability pm,m ∈ [1;M ], Problem (4.12) can

be formulated as

M∑
m=1

pm max

{
0,−νn, . . . ,

n−1∑
k=1

(
J∑
j=1

smkjykj − (xk+1 − xk)

)
− νn

}
.

By adding decision variables qmn, n ∈ [2;N + 1],m ∈ [1;M ], Problem (4.11)
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is equivalent to

inf α

s.t. νn +
1

α

M∑
m=1

pmqmn ≤ τn, n ∈ Gh−1,

νn +
1

αi

M∑
m=1

pmqmn ≤ τn, n ∈ Ii, i ∈ [1;h− 1],

qmn + νn ≥ 0, n ∈ [2;N + 1],m ∈ [1;M ],

qmn + νn + xn − xl −
n−1∑
k=l

J∑
j=1

smkjykj ≥ 0, l ∈ [1;n− 1], n ∈ [2;N + 1],

m ∈ [1;M ],

qmn ≥ 0, n ∈ [2;N + 1],m ∈ [1;M ],

α ∈ (0, 1],

(τ ,x,Y ) ∈ Y .

Similarly, binary search algorithm is used for finding optimal solution. For

any fixed α ∈ (0, 1], the problem becomes a mixed-integer programming prob-

lem, including N × J binary decision variables, O(MN) continuous decision

variables, and O(MN2) constraints.

To obtain an amicably tractable robust optimization model, we assume

that the uncertain service times s̃1j, . . . , s̃Nj are respectively affinely depen-

dent on a set of factors, z̃1, . . . , z̃N for all patient types j ∈ [1; J ]. Moreover,

the centrality and dispersion of s̃nj are characterized by the patient type, i.e.,

s̃nj = z̃nσj + µj,
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for all n ∈ [1;N ] and j ∈ [1; J ]. Furthermore, the factors have the same

support and its distributional uncertainty set is given as follows:

Fz =

P
∣∣∣∣∣∣∣
EP (z̃k) = 0,P (z̃k ∈ [z, z]) = 1,EP

(∣∣∣∑k
m=i z̃m

∣∣∣) ≤ εrk,

r, k ∈ [1;N ], r ≤ k,

 .

With this linear formulation, Problem (4.12) is written as

sup
P∈Fz

EP

(
max

{
0,−νn,

J∑
j=1

(z̃n−1σj + µj) yn−1,j − (xn − xn−1)− νn, . . . ,

n−1∑
k=1

(
J∑
j=1

(z̃kσj + µj) ykj − (xk+1 − xk)

)
− νn

})
,

(4.13)

Proposition 4.4. For any fixed decisions (τ ,x,Y ) ∈ Y and n ∈ [2;N +

1], Problem (4.13) corresponds to the optimal value of the following linear
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optimization problem

min f0 +
n−1∑
k=1

k∑
r=1

εrkgrk

s.t. f0 +
n−1∑
k=1

(
zu0

k − zv0
k

)
≥ 0,

f0 + νn +
n−1∑
k=1

(zunk − zvnk ) ≥ 0,

f0 + νn + xn − xl −
n−1∑
k=l

J∑
j=1

µjykj +
n−1∑
k=1

(
zulk − zvlk

)
≥ 0, l ∈ [1;n− 1],

ulk − vlk +
n−1∑
m=k

k∑
r=1

(
blrm − clrm

)
− fk = 0, k ∈ [1;n− 1], l = 0, n,

ulk − vlk +
n−1∑
m=k

k∑
r=1

(
blrm − clrm

)
− fk = 0, k, l ∈ [1;n− 1], k ≤ l − 1,

ulk − vlk +
n−1∑
m=k

k∑
r=1

(
blrm − clrm

)
− fk +

J∑
j=1

σjykj = 0, k, l ∈ [1;n− 1], k ≥ l,

blrk + clrk − grk = 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n],

ulk, v
l
k, b

l
rk, c

l
rk, grk ≥ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n].

Proof. The proof is similar to that of Proposition 4.3.
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Henceforth, Problem (4.11) is equivalent to

inf α

s.t. νn +
1

α

(
fn0 +

n−1∑
k=1

k∑
r=1

εrkg
n
rk

)
≤ τn, n ∈ Gh−1,

νn +
1

αi

(
fn0 +

n−1∑
k=1

k∑
r=1

εrkg
n
rk

)
≤ τn, n ∈ Ii, i ∈ [1;h− 1],

fn0 +
n−1∑
k=1

(
zu0n

k − zv0n
k

)
≥ 0, n ∈ [2;N + 1],

fn0 + νn +
n−1∑
k=1

(zunnk − zvnnk ) ≥ 0, n ∈ [2;N + 1],

fn0 + νn + xn − xl −
n−1∑
k=l

J∑
j=1

µjykj +
n−1∑
k=1

(
zulnk − zvlnk

)
≥ 0,

l ∈ [1;n− 1], n ∈ [2;N + 1],

ulnk − vlnk +
n−1∑
m=k

k∑
r=1

(blnrm − clnrm)− fnk = 0,

k ∈ [1;n− 1], l = 0, n, n ∈ [2;N + 1],

ulnk − vlnk +
n−1∑
m=k

k∑
r=1

(blnrm − clnrm)− fnk = 0,

k, l ∈ [1;n− 1], k ≤ l − 1, n ∈ [2;N + 1],

ulnk − vlnk +
n−1∑
m=k

k∑
r=1

(blnrm − clnrm)− fnk +
J∑
j=1

σjykj = 0,

k, l ∈ [1;n− 1], k ≥ l, n ∈ [2;N + 1],

blnrk + clnrk − gnrk = 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n], n ∈ [2;N + 1],

ulnk , v
ln
k , b

ln
rk, c

ln
rk, g

n
rk ≥ 0, r, k ∈ [1;n− 1], r ≤ k, l ∈ [0;n], n ∈ [2;N + 1],

α ∈ (0, 1],

(τ ,x,Y ) ∈ Y .

Given α ∈ (0, 1], the sequencing and scheduling problem reduces to check the
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feasibility of a mixed-integer optimization problem with N×J binary decision

variables, O(N4) continuous decision variables, and O(N4) constraints.

4.6 Computational Study

In this section, we carry out three computational studies. In the first study,

we investigate the problem of scheduling homogeneous patients, and com-

pare performances under two strategies: (1) lexicographic minimization of

DUM (L-DUM) and (2) minimization of total expected delays (TED). The

second study explores the performance of appointment scheduling model un-

der distributional ambiguity. In the third study, we solve a sequencing and

scheduling problem for two patient types and provide some practical insights.

The program is coded in python and run on a Intel Core i7 PC with a 3.40

GHz CPU by calling CPLEX 12 as ILP solver.

4.6.1 Comparison of quality measures

We compare the performance of two appointment system models: the L-

DUM model and the TED model, which is formulated as follows:

min
N+1∑
n=2

EP (w̃n)

s.t. w̃n = max

{
0, t̃n−1, . . . ,

n−1∑
k=1

t̃k

}
, n ∈ [2;N + 1],

t̃n = s̃n − (xn+1 − xn), n ∈ [1;N ],

x ∈ X .
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We consider the case of scheduling seven homogeneous patients who have

the same delay thresholds. We assume patients’ consultation times are inde-

pendent and identically distributed with two-point distributions. Hence, we

have a number 28 = 256 of scenarios, which could allow us to enumerate all

possible realizations, and calculate the exact optimal scheduling decisions.

Later on, we will extend to other distributions. We first study in detail an

instance and analyze the performance by varying patients’ and physician’s

delay thresholds. Afterwards, we randomly generate 100 instances and in-

vestigate their average performances. For each instance, we (a) generate

the corresponding parameters for two-point distributions, (b) enumerate all

the possible realizations of service time combination, (c) solve the schedul-

ing problem by the L-DUM and the TED strategies, and (d) compute each

participant’s corresponding delay to summarize the performances.

In the first instance, two-point distribution is specified with realizations

1 and 4, and mean as 2. Total session length is 16. We obtain the scheduling

decisions with different thresholds in Table 4.1. We consider four performance

TED
L-DUM (τp, τd)1

(1.5, 1.5) (2, 2) (2.5, 2.5) (3, 3) (3.5, 3.5) (4, 4)
Patient 1 0 0 0 0 0 0 0
Patient 2 1 1 1 1 1 1 1
Patient 3 5 3.37 3.37 3.18 2.94 2.74 2.72
Patient 4 9 5.79 5.77 5.68 5.76 5.83 5.57
Patient 5 10 8.38 8.38 8.32 8.17 8.01 8.09
Patient 6 14 10.88 10.88 10.84 10.86 10.88 10.82
Patient 7 15 13.47 13.47 13.45 13.34 13.23 14.82
1 τp: patients’ delay threshold; τd: physician’s delay threshold.

Tab. 4.1: Patients’ optimal appointment time under two scheduling methods.

measures: expected delay, frequency of delay over the threshold, standard

deviation of delay, and expected delay over the threshold.
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Delay performance of the worst-off participants Total
Expected Frequency of Standard Expected expected

delay delay over deviation delay over delays
the threshold1 of delay the threshold2

L-DUM(1.5,1.5)3 1.24 56% 1.74 0.57 8.43
TED 2.40 61% 2.26 1.48 6.74
L-DUM(2,2) 1.25 33% 1.73 0.44 8.44
TED 2.40 61% 2.26 1.17 6.74
L-DUM(2.5,2.5) 1.34 33% 1.72 0.32 8.57
TED 2.40 61% 2.26 0.86 6.74
L-DUM(3,3) 1.48 26% 1.71 0.24 8.65
TED 2.40 17% 2.26 0.56 6.74
L-DUM(3.5,3.5) 1.59 11% 1.74 0.20 8.74
TED 2.40 17% 2.26 0.47 6.74
L-DUM(4,4) 1.60 11% 1.81 0.14 8.36
TED 2.40 17% 2.26 0.39 6.74
1 Frequency of delay over the threshold: P (w̃ > τ);
2 Expected delay over the threshold: EP

(
(w̃ − τ)+

)
;

3 L-DUM(τp, τd).

Tab. 4.2: Delay performance under two scheduling methods (two-point).

Table 4.2 summarizes the delay performance of the worst-off participants

(including all patients and the physician). Since the findings are similar, for

convenience and clarity, we report the numerical performance for the case

with patients’ and physician’s threshold taking the value of two. In terms of

total expected delays, we observe that the TED method performs better than

the L-DUM model. However, this performance comes at the price of sacri-

ficing the service levels of some participants. From the fairness perspective,

when we pay particular attention to the most discriminated participants, our

model makes a significant improvement over the TED model. The maximal

average delay reduces from 2.40 to 1.25, and the frequency of delay over the

threshold improves from 61% to 33%.

Thenceforth, we study the average performance of 100 randomly gen-

erated instances. The parameters determining the two-point distribution
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s̃ are specified as s = 3ϕ1, s = 3 + 5ϕ2, and P(s̃ = s) = 0.5ϕ3, where

ϕ1, ϕ2, ϕ3 are independently uniformly distributed, U(0, 1). The average ser-

vice time, µ is therefore determined. Total session length is L = 6µ + s.

The delay thresholds are set to three levels, namely, low, medium, and

high, where τd(low) = τp(low) = s, τd(medium) = τp(medium) = µ, and

τd(high) = τp(high) = s. For each instance, we calculate the delay perfor-

mance of the worst-off participants under the L-DUM model, and normalize

it by the corresponding performance in the TED model. We summarize the

average ratio in Table 4.3. The values less than one favor L-DUM model.

Threshold
level

Delay performance of the worst-off participants Total
Expected Frequency of Standard Expected expected

delay delay over deviation delay over delays
the threshold of delay the threshold

Low 0.6813 0.8162 0.8494 0.4794 1.3134
Medium 0.6352 0.6185 0.8464 0.2892 1.31

High 0.7753 0.1886 0.8676 0.0867 1.2956

Tab. 4.3: Average performance analysis of two scheduling methods among
100 instances.

We also test our model using the empirical consultation data collected

from the clinics in a local hospital in Singapore from March to May, 2012.

The historical data during March and April (802 samples) is considered as

the information to make scheduling decisions, while data in May (435 sam-

ples) is used for performance testing. The statistics of consultation time are

summarized in Table 4.4.

Statistics Average Maximum Minimum
Mean absolute

deviation
Standard
deviation

minutes 13.84 107 1 6.52 9.41

Tab. 4.4: Statistics of consultation time from empirical data.
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Our appointment design problem is to schedule ten patients within 150 min-

utes session length. The performance derived with similar procedures is listed

in Table 4.5, which also manifests our conclusions for two-point distributions.

Delay performance of the worst-off participants Total
Expected Frequency of Standard Expected expected

delay delay over deviation delay over delays
the threshold of delay the threshold

L-DUM(15,15) 13.37 37% 17.33 4.61 94.88
TED 24.12 63% 18.57 11.21 66.65

L-DUM(25,25) 14.45 16% 17.29 2.95 98.60
TED 24.12 35% 18.57 6.51 66.65

L-DUM(35,35) 15.07 9% 17.25 1.81 107.09
TED 24.12 19% 18.57 3.60 66.65

Tab. 4.5: Delay performance under two scheduling decisions (empirical data).

In general, compared with the TED method, the L-DUM model provides

a less discriminating solution that mitigates the unpleasantness of delays in

the appointment system.

4.6.2 Distributional ambiguity

In this experiment, we study the performance of the L-DUM model under dis-

tributional ambiguity. We schedule seven homogeneous patients and compare

the delay performance of the worst-off ones under three scheduling decisions.

The first two are derived by both stochastic optimization approach and dis-

tributionally robust optimization approach in the L-DUM model. Sampling

average approximation is employed for stochastic optimization approach, and

the information of bound support, mean, and mean absolute deviation for

robust optimization approach is calculated accordingly. The third scheduling
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decision is derived from the TED method by using sampling average approx-

imation scheme. Total session length is 7. We consider two types of distri-

butions: uniform distribution U(0, 2) and beta distribution 3 × Beta(2, 4).

Sample size for the L-DUM model and the TED model is 500 and 2000,

respectively. The delay performance is listed in Table 4.6 and 4.7.

Approach
Delay performance of the worst-off participants Total
Expected Frequency of Standard Expected expected

delay delay over deviation delay over delays
the threshold of delay the threshold

L-DUMs(1.2,1.2)1 0.90 35% 0.86 0.21 5.62
L-DUMr(1.2,1.2) 1.00 40% 0.89 0.24 6.15

TED 1.54 64% 0.82 0.52 3.46
L-DUMs(1.4,1.4) 0.99 29% 0.87 0.16 5.84
L-DUMr(1.4,1.4) 1.02 31% 0.89 0.19 6.26

TED 1.55 55% 0.83 0.41 3.46
L-DUMs(1.6,1.6) 0.95 21% 0.86 0.12 5.75
L-DUMr(1.6,1.6) 1.12 28% 0.91 0.17 6.53

TED 1.54 46% 0.83 0.30 3.46
1 L-DUMs represents stochastic optimization approach, and L-DUMr represents robust optimization ap-

proach.

Tab. 4.6: Delay performance under uniform distribution.

Approach
Delay performance of the worst-off participants Total
Expected Frequency of Standard Expected expected

delay delay over deviation delay over delays
the threshold of delay the threshold

L-DUMs(1.2,1.2) 0.89 28% 0.84 0.18 5.18
L-DUMr(1.2,1.2) 1.00 34% 0.86 0.21 5.79

TED 1.47 58% 0.80 0.45 3.18
L-DUMs(1.4,1.4) 0.93 20% 0.84 0.14 5.29
L-DUMr(1.4,1.4) 1.02 29% 0.86 0.16 5.89

TED 1.46 48% 0.79 0.34 3.18
L-DUMs(1.6,1.6) 0.83 16% 0.84 0.10 5.24
L-DUMr(1.6,1.6) 1.14 26% 0.88 0.14 6.20

TED 1.46 39% 0.79 0.26 3.18

Tab. 4.7: Delay performance under beta distribution.

We observe the performance between stochastic optimization approach
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and robust optimization approach in the L-DUM model is very close, and

much better than that of the TED method. With the distributional uncer-

tainty set we proposed, the L-DUM model provides a comparatively good

performance that is immunized against distributional ambiguity. It is par-

ticularly worth mentioning that the computation time for distributional ro-

bust optimization approach is relatively short. To solve each minimization

problem, stochastic optimization approach requires 44 seconds, while distri-

butional robust optimization approach only requires 8 seconds.

4.6.3 A sequencing and scheduling example

We also investigate the sequencing and scheduling problem with heteroge-

neous patients. By calculating the optimal solutions, we hope to deliver

some useful insights for managers to make decisions in a unified manner. For

simplicity, we only consider two patient types: new and repeated patients.

Their demographics are collected from real data and shown in Table 4.8, and

the information of mean absolute deviation is given as, for i < k, i, k ∈ [1;N ],

εik =


1.71, ∀ i = k − 1,

2.20, ∀ i = k − 2,

2.52, ∀ i = k − 3.

Type Nj µj σj [z, z]
New patient (j = 1) 1 18 7 [-2,12]
Repeated patient (j = 2) 3 13 6 [-2,12]

Tab. 4.8: Characterization of heterogeneous patients.
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Fig. 4.1: Sequencing and scheduling decisions with various tolerances.

The sequencing and scheduling decisions are illustrated in Figure 4.6.3.

For decades, researchers have debated whether to first schedule repeated pa-

tients (smallest variance), or new ones (largest variance). Our computational

study actually suggests such universal rule may not be optimal, and the de-

cisions may differ as participants’ tolerable thresholds vary. For instance,

as shown in the first graph of Figure 4.6.3, we generally observe that if the

physician’s tolerance threshold is low, his/her delay can better be mitigated

under L-DUM model if new patient, who may have longer and more uncer-

tain consultation times, is scheduled first. On the other hand, if patients’

waiting tolerance is low, for example, in Pediatrics clinic, the L-DUM method

will arrange the new patient to arrive at the last position, such that his/her

uncertain consultation time will not influence other patients’ waiting as they

are scheduled to arrive earlier. Our program could easily solve a 10 patients’
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sequencing and scheduling problem within seconds.

4.7 Conclusion

In this chapter, we study an appointment design problem in the healthcare

system. We propose a new quality measure named Delay Unpleasantness

Measure (DUM) to describe individual’s dissatisfaction attitude towards a

waiting process, and then lexicographically minimizes the worst DUM to mit-

igate the delay and unfairness in the appointment system. The contributions

stem from three key aspects:

Firstly, we develop the quality measure DUM to describe individual

participant’s behavior towards delay process. By taking each participant’s

tolerance threshold as an exogenous factor, DUM could not only provide an

upper bound for the frequency of delay over a threshold, but also account

for its intensity.

Secondly, we introduce lexicographic min-max concept to address the is-

sue of fairness in the appointment system. As far as we are aware, this is the

first analytical paper taking the fairness subject as the principle aim. Our

model allows the decision maker of the appointment system to adjust par-

ticipants’ thresholds based on their needs and in accordance to their service

times.

Thirdly, we provide formulation and solution techniques to encompass

different information of uncertain service times. When the distributional in-

formation is completely known or with historical data, stochastic optimiza-

tion approach is suggested for solving the problem. In our distributional
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uncertainty set, apart from support, and mean, we suggest using mean ab-

solute deviation as descriptive statistics, which could capture the correlation

and retain linearity of the nominal problem. The computational study sug-

gests that even if distributions are known, the robust formulations, which

are computationally more efficient, can be calibrated to provide competitive

solutions to the stochastic programming problem.



5. CONCLUSIONS AND FUTURE RESEARCH

The concept of risk and ambiguity has been extensively studied, however,

their applications in service systems are rather limited. Especially, how to

develop a tractable model that could describe the distributional ambiguity

while also capturing various people’s preferences for it is still a thorny issue.

In this thesis, we try to solve the above issue collectively, and study two

problems in the transportation system and one problem in the healthcare

system. Besides the directions of further research listed at the end of each

chapter, we could also explore several directions peripheral to the general

issue.

• Description on distributional ambiguity. As empirical data be-

come increasingly important in assisting decision-making, how to har-

ness these data into the model is an essential question. Probability

theory is a popular and classic approach to analyze the uncertainty em-

bedded in the data, but is not necessarily the only one. An alternative

is the robust optimization theory, which offers certain advantages over

probability theory. I believe that it can be valuable to future research

that involves empirical data. Additionally, while various methods can

be adopted to describe uncertainties within the robust optimization

framework, and various statistics could be estimated or derived from
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the empirical data, it is still unclear which one is better than the oth-

ers. I believe the distributional information that we could use for the

optimization model greatly depends on the problem structure. With

studies using empirical data, the advantages and disadvantages of dif-

ferent methods can be analyzed.

• Behavior issues in service systems. The main difference between

the service system and the manufacturing system is that service de-

livery is labor intensive and cannot be automated easily. Essentially,

the main difficulty to study and improve the delivery process in ser-

vice systems is human beings’ behavior issues and concerns, which is

interesting to observe but also challenging to analyze. The empirical

data could allow us to explore these behavior issues and then develop

more meaningful models. For example, in the Emergency Department

(ED) in hospitals, doctor’s service rate is not a constant, but is first

decreasing, then increasing, and then decreasing with the increase of

the number of patients in ED. We could analyze the reasons for this

behavior, we could also take this behavior in the optimization model.

Another example is the fairness issue. In the manufacturing system,

machines cannot complain about the unfairness, but human beings can

in the service system. Doctors’ workload must be balanced in staff

scheduling, while patients’ waiting times should also be adjusted in

scheduling appointments.
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Abdellaoui, Mohammed, Aurélien Baillon, Laetitia Placido, Peter P Wakker. 2011.
The rich domain of uncertainty: source functions and their experimental im-
plementation. The American Economic Review 101(2) 695–723.

Adulyasak, Yossiri, Patrick Jaillet. 2014. Models and algorithms for stochastic and
robust vehicle routing with deadlines .

Agra, Agostinho, Marielle Christiansen, Rosa Figueiredo, Lars Magnus Hvattum,
Michael Poss, Cristina Requejo. 2013. The robust vehicle routing problem
with time windows. Computers & Operations Research 40(3) 856–866.

Aumann, Robert J, Roberto Serrano. 2008. An economic index of riskiness. Journal
of Political Economy 116(5) 810–836.

Averbakh, Igor, Vasilij Lebedev. 2004. Interval data minmax regret network opti-
mization problems. Discrete Applied Mathematics 138(3) 289–301.

Bailey, NormanT J. 1952. A study of queues and appointment systems in hospital
outpatient departments with special reference to waiting times. Journal of the
Royal Statistical Society 14 185–199.

Bertsimas, Dimitris, Vivek F Farias, Nikolaos Trichakis. 2011. The price of fairness.
Operations research 59(1) 17–31.

Bertsimas, Dimitris, Melvyn Sim. 2003. Robust discrete optimization and network
flows. Mathematical programming 98(1-3) 49–71.

Bertsimas, Dimitris, Melvyn Sim. 2004. The price of robustness. Operations
Research 52(1) 35–53.

Bertsimas, Dimitris J. 1992. A vehicle routing problem with stochastic demand.
Operations Research 40(3) 574–585.

Bertsimas, Dimitris J, David Simchi-Levi. 1996. A new generation of vehicle rout-
ing research: robust algorithms, addressing uncertainty. Operations Research
44(2) 286–304.

Bosch, Peter M Vanden, Dennis C Dietz. 2000. Minimizing expected waiting in a
medical appointment system. IIE Transactions 32(9) 841–848.

Bosch, Peter M Vanden, Dennis C Dietz. 2001. Scheduling and sequencing arrivals
to an appointment system. Journal of Service Research 4(1) 15–25.



BIBLIOGRAPHY 165

Bossaerts, Peter, Paolo Ghirardato, Serena Guarnaschelli, William R Zame. 2010.
Ambiguity in asset markets: theory and experiment. Review of Financial
Studies 23(4) 1325–1359.

Brown, David B., Enrico De Giorgi, Melvyn Sim. 2012. Aspirational preferences
and their representation by risk measures. Management Science 58(11) 2095–
2113.

Brown, David B, Melvyn Sim. 2009. Satisficing measures for analysis of risky
positions. Management Science 55(1) 71–84.

Camacho, F, R Anderson, A Safrit, AS Jones, P Hoffmann. 2006. The relationship
between patient’s perceived waiting time and office-based practice satisfaction.
North Carolina Medical Journal 409–413.

Camerer, Colin, Martin Weber. 1992. Recent developments in modeling pref-
erences: Uncertainty and ambiguity. Journal of risk and uncertainty 5(4)
325–370.

Campbell, Ann M, Barrett W Thomas. 2008. Probabilistic traveling salesman
problem with deadlines. Transportation Science 42(1) 1–21.

Cartwright, A, J Windsor. 1992. Outpatients and their doctors. London: Depart-
ment of Health Institute for Social Studies in Medical Care .
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