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Summary

Automatic Speech Recognition (ASR) has been one of the most popular research areas

in computer science. Many state-of-the-art ASR systems still use the Hidden Markov

Model (HMM) for acoustic modelling due to its efficient training and decoding. HMM

state output probability of an observation is assumed to be independent of the other

states and the surrounding observations. Since temporal correlation between observations

exists due to the nature of speech, this assumption is poorly made for speech signal.

Although the use of the dynamic parameters and the Gaussian mixture models (GMM) has

greatly improved the system performance, implicitly or explicitly modelling the trajectory

temporal correlation can potentially improve the ASR systems.

Firstly, an implicit trajectory model called Temporally Varying Weight Regression

(TVWR) is proposed in this thesis. Motivated by the success of discriminative training of

time-varying mean (fMPE) or variance (pMPE), TVWR aims of modelling the temporal

correlation information using the temporally varying GMM weights. In this framework,

the time-varying information is represented by the compact phone/state posterior features

predicted from the long span acoustic features. The GMM weights are then temporally

adjusted through a linear regression of the posterior features. Both maximum likelihood

and discriminative training criteria are formulated for parameter estimation.

Secondly, TVWR is investigated for cross-lingual speech recognition. By leveraging

on the well-trained foreign recognizers, high quality posteriors can be easily incorporated

into TVWR to boost the ASR performance on low-resource languages. In order to take

advantages of multiple foreign resources, multi-stream TVWR is also proposed, where

multiple sets of posterior features are used to incorporate richer (temporal and spatial)

context information. Furthermore, a separate decision tree based state-clustering for the

TVWR regression parameters is used to better utilize the more reliable posterior features.

Third, TVWR is investigated as an approach to combine the GMM and the deep

neural network (DNN). As reported by various research groups, DNN has been found

to consistently outperform GMM and has become the new state-of-the-art for speech

recognition. However, many advanced adaptation techniques have been developed for

GMM based systems, while it is difficult to devise effective adaptation methods for DNNs.

This thesis proposes a novel method of combining the DNN and the GMM using the

TVWR framework to take advantage of the superior performance of the DNNs and the

robust adaptability of the GMMs. In particular, posterior grouping and sparse regression

are proposed to address the issue of incorporating the high dimensional DNN posterior

features.

Finally, adaptation and adaptive training of TVWR are investigated for robust speech

recognition. In practice, many speech variabilities exist, which will lead to poor recog-

nition performance for mismatched conditions. TVWR has not been formulated to be
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robust against those speech variabilities, such as background noises, transmission chan-

nels, speakers, etc. The robustness of TVWR can be improved by applying the adaptation

and adaptive training techniques, which have been developed for the GMMs. Adaptation

aims to change the model parameters to match the test condition using limited supervi-

sion data from either the reference or hypothesis. Adaptive training estimates a canonical

acoustic model by removing speech variabilities, such that adaptation can be more effec-

tive. Both techniques are investigated for the TVWR systems using either the GMM or

the DNN-based posterior features. Benchmark tests on the Aurora 4 corpus for robust

speech recognition showed that TVWR obtained 21.3% relative improvements over the

DNN baseline system and also outperformed the best system in the current literature.

Keywords: Temporally Varying Weight Regression, Trajectory Modelling, Acoustic

Modelling, Discriminative Training, Large Vocabulary Continuous Speech Recognition,

State Clustering, Sparse Regression, Adaptation, Adaptive Training
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Chapter 1

Introduction to Speech Recognition

Speech is one of the most convenient communication approaches between humans and

machines. When the speech can be correctly recognized by the machine, it can offer many

conveniences for our daily life by avoiding tedious typing, for example, IBMs ViaVoice, a

desktop dictation system. After applying various natural language processing techniques

to analyze the semantic meaning of the recognized speech, many more useful applications

can be developed, such as speech translation, and automated call centers. In particular,

virtual personal assistant and its variants, such as iPhones Siri 1, Google Now 2, Bing

Search have become very popular recently in the mobile phones. These applications can

answer questions or execute commands by simply listening to the people.

The first technology behind these interesting applications is Automatic Speech Recog-

nition (ASR) system, which automatically converts a speech waveform to the word se-

quence or text. Although speech recognition has been studied since 1960s, it has not been

solved yet due to many practical challenges, such as speaker, environment, microphone

variabilities and so on. On the other hand, as speech varies in length, advanced classic

classifiers, such as Support Vector Machine (SVM) [1] and Neural Network (NN) [1] can-

not be directly applied for speech recognition. Hence, Hidden Markov Model (HMM) [2]

has become the most popular statistic acoustic model for the state-of-the-art ASR sys-

tems. Probability density function of the HMM state can be represented by a multivariate

Gaussian mixture model (GMM) [3]. A typical state-of-the-art context-dependent GMM-

HMM Large Vocabulary Continuous Speech Recognition (LVCSR) [4] system contains

tens of thousands of Gaussian components. Therefore, hundreds or thousands hours of

training data are needed for the robust estimation. Moreover, high system complexity

also increases the computing cost for both training and decoding. In practice, computer

clusters and cloud computing may be collaborated for providing recognition service for

mobile applications. In this chapter, a brief introduction of some essential components in

the ASR system will be presented.

1http://www.apple.com/ios/siri/
2http://www.google.com/landing/now/
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1.1 Statistical Speech Recognition

1.1 Statistical Speech Recognition

In this section, speech recognition based on statistical method will be briefly introduced

from the system overview to the mathematical problem definition.

1.1.1 System Overview

Figure.1.1 shows a typical example of the ASR system, which consists of several impor-

tant components. ASR system takes a raw waveform file as input, and produces a most

likely transcription or text hidden in this file. The raw waveform file has to be passed

into the feature extraction component first. The purpose is to remove as much nui-

sance information as possible and keep manipulable and discriminable parameterization.

Hence, feature extraction is a process of leveraging the feature dimension and resolution.

For decades, researchers have engineered many acoustic features, such as Mel Frequency

Cepstral Coefficients (MFCC) and Perceptual Linear Prediction Coefficients (PLP). For

example, MFCC includes the short time-frequency analysis, filter bank analysis and dis-

crete cosine transform [5]. These coefficients are also referred to as the static parameters,

while their derivatives are usually calculated as the dynamic parameters. Concatenation

of these static and dynamic parameters becomes the final acoustic feature. Many other

advanced techniques also exist for post-processing of these fundamental acoustic features,

such as Linear Discriminant Analysis (LDA) [6], Heteroscedastic LDA (HLDA) [7], Mul-

tiple Layer Perceptron (MLP) [8] and so on. More details about the feature extraction

will be given in the next chapter.

Feature 
Extraction

Lexicon 
Models

Language 
Models

Speech 
Recognition

Post 
Processing

Acoustic 
Models

This is an 
example.

Input waveform
Output Text

Figure 1.1: Architecture of a typical speech recognition system.

The speech recognition component includes three essential sub-components:

2



1.1 Statistical Speech Recognition

Acoustic Modelling

Acoustic model aims to discriminate different sound unit (such as phoneme, sylla-

ble or word) given the observation. Statistic acoustic model is usually employed

to learning their characteristics due to existing many speech variabilities. In addi-

tion, large amount of speech data with the correct transcription are also needed for

supervised training.

Language Modelling

Statistical language model is usually used to calculate the prior probability of a word

sequence. It has been widely used in many other areas, such as information retrieval,

part-of-speech tagging, etc. In speech recognition, it is primarily used to build the

searching network weighted by word transition probability. As the language model

complexity grows exponentially with respect to its dependency order, lower order

language model is usually applied for full decoding while higher order language

model is used for re-scoring.

Lexical Modelling

Lexical model is the connection between acoustic and language models. It is particu-

larly important when the acoustic model is based on the phoneme level, which is the

usual case. Lexical model builds the mapping between word and its pronunciation:

a phone sequence. If a word has multiple pronunciations, pronunciation probabili-

ties may be modelled for a better recognition. During recognition, vocabulary size is

always limited, which can lead to failure of recognition for those out-of-vocabulary

(OOV) words.

The post processing component is usually referred to as the system evaluation. In this

thesis, I will pay more specific attention on the recognition accuracy, which can be mea-

sured by the difference between the recognized hypothesis and the reference. Depending

on the purpose of evaluation, different error/distance metrics can be applied: Sentence

Error Rate (SER), Word Error Rate (WER), Phone Error Rate (PER). As an utterance

can be represented as a sequence of tokens (words or phones), Levenshtein distance has

been widely used to calculate WER and PER.

1.1.2 Problem Formulation

Due to the nature of speech recognition, it can be viewed as finding the hidden word se-

quence of an incoming speech utterance. Mathematically, this problem can be formulated

as searching a most likely word sequence given the speech utterance:

ŴN
1 = arg max

WN
1

P (WN
1 |OT

1 ,θ) (1.1)

3



1.1 Statistical Speech Recognition

where WN
1 is a N -words sequence, OT

1 is a T -frames observation sequence representing the

given utterance, θ are the underlying model parameters. One biggest challenge here is

that N is unknown during recognition. Assuming that the vocabulary size is V , the search

space would be V N . In other words, the ASR system may be infeasible if the recognition

algorithm is not carefully designed. Two categories of approaches may be applied to solve

this problem [1]:

Probabilistic Generative Model

This approach aims to model the class-conditional densities P (OT
1 |WN

1 ), as well as

the class priors P (WN
1 ), which can be then used to compute the posterior probabil-

ities p(WN
1 |OT

1 ) through the Bayes’ theorem. A typical example is Hidden Markov

Model (HMM) [9].

Probabilistic Discriminative Model

This approach directly computes the posterior probability of the class WN
1 with-

out modelling class-conditional densities. One example for speech recognition is

Conditional Random Field [10].

In the case of using the generative model, according to the Bayes’ theorem, the con-

ditional probability can be rewritten as:

ŴN
1 = arg max

WN
1

P (OT
1 |WN

1 ,θ
AM)P (WN

1 |θLM)

P (OT
1 |θ)

∝ arg max
WN

1

P (OT
1 |WN

1 ,θ
AM)P (WN

1 |θLM) (1.2)

where θAM and θLM are the acoustic model and language model parameters, respectively.

Since both N and the alignment between the observation and word sequence are unknown,

many famous probabilistic classifiers, such as SVM, NN cannot be applied directly. The

ability of modelling varying length of the speech makes the Hidden Markov Model (HMM)

as the most popular acoustic model. P (OT
1 |WN

1 ,θ
AM) is also called acoustic model score,

which depends on the underlying acoustic model. For instance, if the HMM is applied for

acoustic modelling, it will contain the state emission and transition probabilities.

Regarding the language model score, P (WN
1 |θLM), further factorization can be per-

formed such as:

P (WN
1 |θLM) = P (w1|θLM)

N∏
i=2

P (wi|Wi−1
1 ,θLM) (1.3)

where wi is the i-th word of the word sequence, while Wi−1
1 is a word sequence occurring

before word wi. In practice, it is difficult to compute P (wi|Wi−1
1 ,θLM) for each i, which

requires a lot of training examples and memories. Therefore, approximation is made to

obtain a more tractable language model such that

P (wi|Wi−1
1 ,θLM) ≈ P (wi|wi−1, wi−2, ...wi−n+1,θ

LM) (1.4)
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1.1 Statistical Speech Recognition

where n defines the order of dependence on its preceding words, a.k.a. n-gram language

model. The typical way to utilize the language model for speech recognition is to use

lower order language model to build a smaller search network, generate hypotheses, and

then use higher order language model to re-calculate the language model score.

So far, the discussion has assumed that the acoustic and language models are given.

Hence, the remaining problem is how to perform training and decoding. Training is to

search optimal parameters for θAM ,θLM such that the correct word sequence can have

the highest probability given the speech. Supervision based parameter training has to

be performed due to the nature of the speech recognition. In addition, training criteria

should be carefully chosen by leveraging the training efficiency and recognition accuracy.

Decoding is to search the most likely word sequence based on both acoustic and language

model scores. As the number of all possible word sequences could be numerically infinite,

decoding usually works together with various pruning strategies, such as the beam-search.

In summary, statistical speech recognition includes many essential components, and

each of them can have serious impact on the final system performance. To my best

knowledge, global optimal solution has not been found for each component yet, therefore

there are still many open research topics for each component. In this thesis, the focus

will be on acoustic modelling.

1.1.3 Research Problems

Speech recognition research has been going on since the 1960s, but it has not been com-

pletely solved yet. This is due to existing many speech related variations during the

speech recognition:

• temporal and spatial variations in speech signals (e.g. duration, trajectory)

• inter-speaker variations (e.g. gender, age, non-native speakers)

• intra-speaker variations (e.g. physical body condition)

• channel variations (e.g. microphone, background noise, bandwidths)

• difficulties in modelling syntax and semantics of languages (e.g. words with different

part-of-speech (POS) or meanings but with the same pronunciation)

• difficulties in modelling domain information (e.g. literature, finance, science, tele-

phone)

• limited resources for some languages (e.g. limited transcribed training data)
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1.2 Thesis Organization

In practice, it is difficult to estimate a speech recognition system to deal with all possible

variations. Many applications based on ASR technology work well only on some working

conditions. For example, Siri on the iPhone does not work well for non-native English

speakers or in a noisy environment. In this thesis, I will focus on dealing with part

of above research problems, such as trajectory modelling, speaker variations, channel

variations and limited resources issues.

1.2 Thesis Organization

In chapter 2, the most widely used acoustic model, Hidden Markov Models (HMM) will be

introduced. First, front-end signal processing for feature extraction is introduced. Next,

technical details about formulation, parameter estimation and decoding for GMM-HMM

system are discussed. Finally, limitations of HMM are discussed and various advanced

techniques are reviewed for solving these limitations, including trajectory modelling, dis-

criminative training, adaptation and adaptive training, deep neural network (DNN) and

cross-lingual speech recognition.

In chapter 3, temporally varying weight regression (TVWR) [11, 12] framework is

proposed as a new semi-parametric trajectory model for speech recognition. First, a formal

probabilistic formulation is given. Next, parameter estimations using both maximum

likelihood and discriminative training criteria are introduced. In addition, I-Smoothing

is also proposed as an interpolation of two training criteria for a better generalization.

Last, experiments are conducted to evaluate the performance based on different training

criteria and corpora.

In chapter 4, TVWR [13] is investigated for cross-lingual speech recognition. In partic-

ular, temporal and spatial context expansions are proposed to incorporate richer context

information for a better recognition accuracy. In addition, a second tree-based state

clustering is also proposed for the regression parameters. Experiments are conducted to

evaluate this method for cross-lingual speech recognition.

In chapter 5, TVWR is investigated as an approach to combine two state-of-the-arts:

GMM and DNN. The goal is to take advantage of the advanced adaptation techniques

from GMM and the superior recognition accuracy from DNN. In order to handle the

high system complexity of incorporating the high dimensional DNN posteriors, posterior

grouping and sparse regression are proposed. Experiments are conducted to evaluate

unsupervised speaker adaptation for TVWR using DNN posteriors.

In chapter 6, adaptation and adaptive training are studied for robust TVWR. Adapta-

tion and adaptive training have been widely used to improve the robustness of the speech

recognition system. Depending on the types of posteriors features, robust TVWR is inves-

tigated via two directions: GMM based posteriors, DNN based posteriors. If GMM based

posteriors are used, model compensation can be performed for both the acoustic model

and the posterior synthesizer. This approach is also investigated as an approximation of

6



1.2 Thesis Organization

noise adaptive training. On the other hand, as DNN has been found outperforming GMM

for various speech recognition tasks, using DNN posteriors can significantly boost the per-

formance of the TVWR system. Furthermore, joint adaptation and adaptive training of

TVWR using DNN based posteriors are investigated.

In chapter 7, the conclusion is drawn and some future works are discussed.

7



Chapter 2

Acoustic Modelling for Speech

Recognition

Hidden Markov Model (HMM) [2] has been widely used as acoustic model for automatic

speech recognition for decades. As HMM can subsume the speech data with varying

duration, it can be adopted as a generative model to synthesize speech. Due to its

probabilistic nature, HMM can also be used as a statistical classifier to perform the speech

recognition. After incorporating the Gaussian mixture model (GMM) [3] as the state

probability density function, efficient training and decoding algorithms can be derived for

GMM/HMM. In this chapter, the attention will be paid on a GMM/HMM recognition

system and the advanced state-of-the-art techniques. The important components contain

front-end signal processing and parameterization, system evaluation, Viterbi decoding and

parameter estimation. Popular state-of-the-art techniques will cover trajectory modelling,

discriminative training, adaptation and speaker adaptive training, deep neural networks,

cross-lingual speech recognition. Finally, limitations of the current GMM/HMM system

and some possible works to circumvent those issues will be discussed.

2.1 Front-end Signal Processing and Feature Extrac-

tion

Typically, speech is stored in the waveform file format. Speech recording contains a

analog-to-digital conversion (ADC): converting the analog voltage variations caused by

air pressure to digital sound. Two key concepts are happening in this process: sampling

and quantization, which also serve as the measure of sound quality. When people speak to

the microphone, the air pressure is recorded according to a fixed time interval. If a speech

waveform is sampled at 16000 times per second, it will have a sampling rate of 16 kHz (kilo

Hertz). Higher sampling rate can lead to a better sound quality, but also requires more

8



2.1 Front-end Signal Processing and Feature Extraction

storages. Quantization is used to convert the sampled continuous waveform amplitudes

to discrete values. Depending on how many bits will be used for the quantization, the

accuracy of such approximation will be different. In usual, 8 bits and 16 bits will be used

to represent a total of 256 and 65536 possible quantization levels respectively.
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Figure 2.1: An example of waveform with 8 kHz sampling rate.

As the speech waveform contains too much speech-unrelated information, spectral

analysis is usually applied, such as Discrete Fourier Transform (DFT) or fast Fourier

Transform (FFT). Modern speech parameterization usually employs block processing

as shown in Figure. 2.2, which assumes that a short block/frame of samples are quasi-

stationary. Frame size is a compromise between the accuracy of time-frequency analysis

(needs more samples) and the validness of quasi-stationary assumption (needs fewer sam-

ples). Frame shiftting is another factor during block processing, which is used to capture

the dynamics of speech. These two factors determine the final number of frames given a

speech utterance.

The purpose of block processing is to find a good representation of speech signal, which

can be then used to distinguish different speech patterns. As speech pattern is composed

of time and frequency, compromise between these two resolutions needs to be made. In

order to better understand this concept, spectrogram is introduced. Spectrogram is a

two-dimensional visual representation of the Short Time Fourier Transform (STFT) of a

time signal. As shown in Figure. 2.3, the spectrogram using 40 ms block size shows better

frequency resolution as more samples can be used to calculate more accurate frequencies.

However, when compared to the bottom figure using 10 ms block size, the middle one

clearly shows worse resolution in the time domain. Except that, there are still many

other techniques used during spectral analysis, such as windowing (used for smoothing

the edge of block processing), pre-emphasis. Pre-emphasis is used to improve the overall
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Window Duration

Frame Period

Block n

Block n+1
…etc

feature n feature n+1

Figure 2.2: An diagram of block processing waveform for feature extraction.

Figure 2.3: Spectrograms using different block size and the same 50% overlapping. Middle:

40 ms block size(better frequency resolution); Bottom: 10 ms block size(better time

resolution).
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2.1 Front-end Signal Processing and Feature Extraction

signal-to-noise ratio by adjusting the magnitude of a band of frequencies. In usual, the

magnitude of higher frequencies is increased with respect to that of lower frequencies.

The formulation of pre-emphasis may be given by sn = sn−αsn−1, where sn is the signal

at time n, and the pre-emphasis factor α is typically 0.97.

So far, only the raw signal processing and analysis are discussed. Theoretically, the

resultant spectral analysis may be used as the acoustic feature for speech processing.

However, such acoustic features contain too much redundant information, such as the

spectral magnitude by the Short Time Fourier Transform. Alternatively, the spectral

magnitude can be represented by filter bank coefficients. In typical, a series of triangular

filters are applied and each coefficient corresponding to one filter is the sum of the band

passed spectral magnitude. As each frequency is not completely separated, neighbour-

ing filters are defined with overlapping. A filter is usually defined as the percentage of

bandpass at a particular location or frequency. In other words, such filter bank coeffi-

cient is the weighted sum of band passed spectral magnitude. Now, one most widely used

acoustic feature for speech processing (including speech recognition, speaker and language

recognition), Mel Frequency Cepstral Coefficients (MFCC) will be introduced. First, the

conventional frequency is translated to Mel Frequency by applying a nonlinear mapping

below:

Mel(f) = 1127 log(1 +
f

700.0
) (2.1)

Mel scale is the perceptual scale of pitches judged by human listeners to be equal in

distance from one another. As shown in Figure. 2.4, a series of Mel filter banks are applied

to obtain the Mel filter bank coefficients. In typical, Mel filter bank width increases

together with the Mel frequency such that the lower Mel frequency can have a higher

resolution. Note that during performing Mel scale translation, the spectral magnitude is

still the same as before. In other words, this mapping function is only used for defining

the width or distribution of Mel filter banks. Such translation is expected to offer a

better discrimination for speech processing, however, it may not be necessary for other

purpose. After the Mel filter bank coefficients are ready, the logarithm operation is

performed to transform it to log Mel filter bank coefficients, which can be ready as the final

features for some applications. However, filter bank coefficients are strongly correlated

due to its overlapping, GMM using diagonal covariance matrix has difficulties to model its

distribution, while full covariance matrix will significantly increase the system complexity.

Alternatively, de-correlation can be performed by truncated Discrete Cosine Transform

(DCT ), which yields the famous MFCC features. The process to generate MFCC features

can be formulated as following equation:

cn =

√
2.0

Nfb

Nfb∑
k=1

log(mk) cos
πn(k − 0.5)

Nfb

n = 1, 2, . . . , Nmfcc (2.2)

where cn is the n-th MFCC coefficients, mk is the k-th Mel filter bank coefficient, Nfb and

Nmfcc are the number of filter bank and MFCC coefficients, respectively. In typical, Nfb
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Mel spectral coefficients before logarithm operation

Figure 2.4: Mel filter banks with increasing widths, and Mel spectral coefficients.

is larger than Nmfcc, which can be more than twice. In contrast, due to the dimension

reduction, this conversion may lose useful information.

Speech is composed of a sequence of correlated acoustic units. In other words, the

temporal correlation of successive frames contains rich information to distinguish different

acoustic units. One simple way to keep these attributes is to append dynamic parameters

to the static parameters produced by Eq-2.2. In some literatures, dynamic parameters

are also called differential parameters, as its calculation is one of differential calculation

varieties. For example, the first-order differential parameter in speech processing may be

given by

∆cn =

∑δ
i=1 i(cn+i − cn−i)

2
∑δ

i=1 i
2

(2.3)

where δ is the delta window, such as 2 in typical. Higher order dynamic parameters can

also be obtained by replacing cn to ∆cn in the right hand side of Eq-2.3. Note that this

approach of calculating dynamic parameters can be applied for various parameterization,

such as filter bank features, Perceptual Linear Prediction Coefficients (PLP). Typically,

up to 3rd or 4th differential parameters followed by subsequent feature projection may be

used for speech recognition.

Feature projection is one of effective ways to improve the classification performance,

which contains two concepts: feature de-correlation and dimension reduction. It may

12



2.1 Front-end Signal Processing and Feature Extraction

be realized by either supervision or un-supervision depending on the availability of data

label. The typical example of unsupervised approach is Principle Component Analysis

(PCA) [1]. GMM/HMM assumes that the feature element is decorrelated so that diagonal

covariance matrix may be applied for efficiency. Feature de-correlation via PCA can make

the projected feature more consistent with this assumption. The idea of PCA is to first

perform the feature de-correlation by Eigen-decomposition and second pick few directions

with largest variations or spreads. In later section, PCA will play an important role of

deriving famous tandem system [14].

When the label is known for each data, it is easy to define the objective of feature pro-

jection: maximizing the between-class separation and minimizing the within-class spread.

One famous example is Fisher’s Linear Discriminant, which is a more general formula-

tion of Linear Discriminant Analysis (LDA) [7] without assuming equal covariance matrix

between classes. Given a K-classes classification problem, whose k-th distribution is char-

acterized by {µk,Σk}, the projection vector w can be obtained by maximizing following

Fisher discriminant function:
δ2
between

δ2
within

=
wTΣbw

wTΣww
(2.4)

where δ2
between, δ2

within are the between-class and within-class variances of the projected

data respectively,

Σw =
K∑
k=1

Σk (2.5)

Σb =
1

K

K∑
k=1

(µk − µ)(µk − µ)T (2.6)

µ =
1

K

K∑
k=1

µk (2.7)

It can be shown that the vector w that maximize the above function satisfies the below

equation:

Σbw = λΣww (2.8)

or expressed as the standard eigenvalue problem:

Σ−1
w Σbw = λw (2.9)

Therefore, searching the optimum projection vector is translated to find the eigenvectors

of Σ−1
w Σb. Given K vectors (µk − µ), there are at most K − 1 independent vectors due

to the fact that µ is a linear combination of µk. In other words, the scatter matrix Σb is

at most of rank K − 1, and there will be a maximum of K − 1 projection vectors. The

final projection vectors can be chosen according to eigenvalues.
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2.2 Hidden Markov Model (HMM) for Acoustic modelling

Other than above post signal processing techniques, Heteroscedastic Linear Discrim-

inant Analysis (HLDA) [7] is one of the most widely used feature dimension reduction

techniques. Semi-tied Covariance (STC) [15] uses a square transformation matrix and

hence retains the same dimensionality, while HLDA aims to perform dimension reduc-

tion and feature de-correlation, i.e. throwing away dimension which are not useful for

classification (also named as the nuisance dimensions). Different from PCA, HLDA is

a supervised dimension reduction technique, whose transformation matrix is usually op-

timized by maximizing the likelihood of training data. In addition to providing better

supervised estimation than PCA, HLDA and STC can also estimate a transform for a

class of acoustic units instead of a global transformation applied for all.

So far, only simple linear transformation for post signal processing is discussed. There

are also many other nonlinear approaches in literatures, such as tandem features [14],

discriminatively trained features [16], neural network bottleneck features [17], and so on.

More details will be given if related topics are present in later sections. When the acoustic

features are ready, we want to discuss how to modulate these features to achieve a better

recognition performance.

2.2 Hidden Markov Model (HMM) for Acoustic mod-

elling

Acoustic model is a mathematical representation of an acoustic unit, such as word, syllable

or phoneme. As human speech is spontaneous and continuous, boundary information

between acoustic units is not present. On the other hand, speaking duration can vary

with speakers, contexts, or other conditions, which can lead to different lengths of speech

for the same text. In that case, classic classifiers like Support Vector Machine (SVM)

and Neural Network (NN) [1] cannot be applied directly, as both require a fixed length

of speech. In the next section, Hidden Markov Model will be introduced to solve these

problems.

2.2.1 HMM Formulation

The acoustic unit in speech recognition is typically a phone or syllable. As each phone

unit can have various duration due to its context, speaker or other environments, it

is impossible to build a acoustic model for each phone with different duration. In other

words, a candidate acoustic model should have the capability of subsuming varying length

of acoustic features. Hidden Markov Model (HMM) is a probabilistic graphical model,

whose state can consume varying length of observations such that it becomes a most

widely used acoustic model for speech recognition. In a Hidden Markov Model, the state

sequence corresponding to the visible observation sequence is unknown (or hidden). HMM
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2.2 Hidden Markov Model (HMM) for Acoustic modelling

is also known as a finite-state transducer, which can transduce a sequence of observations

to a sequence of states. If each phone unit is represented by an HMM, a series of HMMs

will be able to transduce the observation sequence to the phone sequence, which later can

be translated to the word sequence according to the dictionary. In typical, a phone unit

is modelled by a 5-states left-to-right HMM, such as shown in Figure. 2.5:

1 2 3 54

static parameters: 
c

dynamic parameters: 
1-order ∆c

dynamic parameters: 
2-order ∆2c

Observation 
ot=[c, ∆c, ∆2c]

P(ot|state=2) P(ot|state=3) P(ot|state=4)

States
a12 a23 a34 a45

a22 a33 a44Transition 
probabilities:

aij=P(state=j|state=i)

Emission 
probabilities

Figure 2.5: A left-to-right model topology of HMM for acoustic modelling

Although HMM can take both discrete feature and continuous feature, the latter one

is assumed to be the default in this thesis. As an example, Mel-Frequency Cepstral

Coefficients (MFCC) are used as the static parameters, and dynamic parameters can be

obtained as the derivative of those static parameters with respect to time [5], and the

concatenation of static and dynamic parameters forms the final feature or observation.

As a typical graphical model, HMM is composed of two elements:

node A node is used to represent the hidden state in HMM, which has two types for

acoustic modelling, emission states (i.e. 2, 3, 4) and non-emission states (i.e. 1, 5).

Emission states subsume observations with probabilities, while non-emission states

indicate the entry and exit of HMM. Non-emission states are useful for concatenating

multiple HMMs as a word. In the case of continuous observations, the state emission

probability is actually modelled as probability density function.
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2.2 Hidden Markov Model (HMM) for Acoustic modelling

arc A arc is used to indicate the possible connection between states. The connection is

usually weighted by transition probability in HMM. Typically, the state transition

probability is modelled as discrete probability.

These two elements define the topology and complexity of HMM. Higher order HMM [18,

19, 20] may lead to better modelling power, but it requires more training data and may

slow down both training and decoding. In a state-of-the-art ASR system, tens of thou-

sands of context dependent phones, i.e. triphone(e.g. a-b+c, where a and c are the left

and right context phone of central phone b) or quinphone(e.g. a%b-c+d), are usually

employed. In order to make the whole system tractable, two fundamental assumptions

are made for HMM used for acoustic modelling:

Instantaneous first-order transition: The probability of making a transition to the

next state is independent of other states, given the current state.

Conditional independence assumption: The probability of observing a observation

at current time is independent of other observations and states, given the current

state.

1 2 3 54

Figure 2.6: A piece-wise stationary process in conventional HMM

According to these two assumptions, a piece-wise stationary process will be retained,

as illustrated in Figure. 2.6. In Figure. 2.6, the solid line stands for the mean sequence of

one dimensional observation sequence, which is denoted by dashed line. The dotted lines

below and above the mean sequence describe the spread of the observation distribution,

i.e. the standard deviation. In the following discussion, the mean sequence is also referred
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1 2 3 54

Figure 2.7: A better trajectory representation of speech utterance

to as the trajectory of speech signal. The trajectory shown in Figure . 2.6 is also well

known as the piece-wise constant trajectory. This piece-wise constant trajectory is clearly

not a good representation of the speech. Instead of using one mean within the state,

Gaussian mixture model (GMM) can allow multiple means within the state for a better

resolution. This thesis pays more attention on how to solve the limitation caused by the

second assumption.

In order to simplify the subsequent discussion, every element of HMM for acoustic

modelling is formulated in a more mathematic fashion. First, basic notations for speech

processing are introduced:

• OT
1 = {ot : 1 ≤ t ≤ T}, a sequence of T observations

• QT+1
0 = {q0 = 1, qT+1 = S, qt = j : 1 ≤ j ≤ S}, a sequence of HMM states

• A = {aij : 1 ≤ i, j ≤ S}, a set of state transition probabilities

• B = {bj(ot) : 1 < j < S, 1 ≤ t ≤ T}, a set of state emission probabilities

where S is the total number HMM states, ot is the observation at t, qt is the state at

t, including both the entry, q0 and exit, qT+1 states. Now, the two HMM fundamental

assumptions can be expressed as:

Instantaneous first-order transition:P (qt+1|Q t−1
0 , qt) = P (qt+1|qt) (2.10)

Conditional independence assumption:P (ot|O t−1
1 ,Q t−1

0 , qt) = P (ot|qt) (2.11)
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where O t−1
1 = {o1,o2, . . . ,ot−1} and Q t−1

0 = {q0, q1, . . . , qt−1}. As can be seen, after

introducing these two assumptions, the system is significantly simplified. In other words,

the total number of parameters for acoustic modelling is greatly reduced.

So far, the fundamental elements of HMM have been introduced. In order to make

HMM applicable for speech recognition, the transition matrix A and emission probabilities

B have to be modelled. Transition matrix simply contains the discrete probabilities,

while emission probabilities of multivariate continuous observations may be modelled by

Gaussian mixture model. Before applying acoustic model for speech recognition, three

below questions have to be resolved:

• Evaluation: How well the model fits to the observations

• Decoding: How to discover the hidden state sequence (or transcription) that gener-

ats the observations

• Estimation: How to train the model parameters under certain criteria

In the subsequent sections, these three questions will be discussed in details.

2.2.2 HMM Evaluation: Forward Recursion

This task aims to calculate the probability of observations given the model and tran-

scription, i.e. P (OT
1 |Λ,WN

1 ), where Λ = {A,B} represents all the model parameters.

For convenient notations, the dependency on the transcription, WN
1 is ignored in the

following discussion.

Since the alignment between the state and observation sequence is unknown, the like-

lihood may be calculated using the marginalization:

P (OT
1 |Λ) =

∑
QT+1

0

P (OT
1 |QT

1 ,Λ)P (QT+1
0 |Λ) =

T∏
t=1

∑
i,j

P (ot|qt = j)P (qt = j|qt−1 = i)

(2.12)

However, it is very expensive to directly evaluate this equation due to existing too many

possible state sequences. Alternatively, a recursive algorithm has been developed for effi-

cient computing, which is forward recursion part of Forward-Backward algorithm.

Based on the HMM assumptions defined in Eq-2.10 and Eq-2.11, the forward probability
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can be simplified as

αj(t) = p(O t
1, qt = j|Λ) (2.13)

=
S−1∑
i=1

p(ot,O
t−1
1 , qt = j, qt−1 = i|Λ)

= p(ot|qt = j,Λ)
S−1∑
i=1

P (qt = j|qt−1 = i)p(O t−1
1 , qt−1 = i|Λ)

= bj(ot)
S−1∑
i=1

aijαi(t− 1) 1 ≤ t ≤ T, 1 < j < S (2.14)

where

αj(0) =

{
1 for j = 1
0 otherwise

(2.15)

The quantity αj(t) can be viewed as the partial probability of that the state is j at time

t given all possible partial state sequences before t. Thus, the likelihood given the entire

observation sequence, OT
1 , can be obtained as

p(OT
1 |Λ) = αS(T + 1) =

S−1∑
i=1

aiSαi(T ) (2.16)

Likelihood is a very important quantity, which can be not only used to express how the

model fits the observations, but also a guidance of the training process.

2.2.3 HMM Decoding: Viterbi Algorithm

The objective of speech recognition is to search the hidden word sequence of the input

speech utterance. Since the basic acoustic model unit is phone and each phone contains a

state sequence, searching the hidden state sequence is the first step of speech recognition.

Given an observation sequence, OT
1 , searching the most likely state sequence can be

formulated as following function:

Q̂T1 = arg max
QT

1

p(OT
1 ,Q

T
1 , q0 = 1, qT+1 = S|Λ) (2.17)

A well-known Viterbi algorithm, one kind of dynamic programming algorithms, can

be used to solve this problem efficiently. The main idea is to recursively search the best

partial state sequence, which can be formulated as following recursion:

vj(t) = max
Qt−1

1

p(O t
1,Q

t−1
1 , q0 = 1, qt = j|Λ)

= max
Qt−2

1 ,1≤i<S
p(O t

1,Q
t−2
1 , q0 = 1, qt−1 = i, qt = j|Λ)

= p(ot|qt = j) max
1≤i<S

p(qt = j|qt−1 = i) max
Qt−2

1

p(O t
1,Q

t−2
1 , q0 = 1, qt−1 = i|Λ)

= bj(ot) max
1≤i<S

aijvi(t− 1) (2.18)
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where

vj(0) =

{
1 for j = 1
0 otherwise

(2.19)

Here vj(t) denotes the likelihood of the best partial state sequence given the partial ob-

servations, O t
1. However, the decoding process cares more about the best states sequence

instead of the likelihood. Therefore, it is important to remember the best previous state

for current frame such that the best state sequence can be traced back at the end of

utterance. Specifically, a quantity is introduced to achieve this objective:

qmaxj (t) = arg max
1≤i<S

aijvi(t− 1) (2.20)

which denotes the state giving the best partial likelihood at time t. After this process goes

through all the observations, trace back is used to restore the best state sequence. The

Viterbi algorithm can be viewed as a full search decoding. That means the likelihood for

each possible state sequence is calculated, which can cost a lot of computing resources. In

practice, a decoding network is usually expanded based on the language model and lexicon

model such that those very unlikely partial state sequence can be ignored. At the same

time, the decoding result will be the final word sequence instead of intermediate state

sequence. On the other hand, beam search by using a beam width during incremental

decoding can also help to save the computing cost. This is achieved by ignoring those

paths whose likelihood is lower than the defined threshold.

2.2.4 HMM Estimation: Maximum Likelihood

As HMM is a parametric model, parameter estimation is one very important part for

acoustic modelling. HMM contains two groups of parameters: transition probabilities and

emission probabilities. Typically, transition probabilities are modelled as discrete proba-

bilities, while emission probabilities are modelled by Gaussian mixture models (GMM).

In this section, maximum likelihood criterion is introduced to estimate model parameters.

In practice, log-likelihood of the model given the observation is maximized as follows:

L(Λ|OT
1 ) = log p(OT

1 |Λ) = log
∑
QT+1

0

p(OT
1 ,Q

T+1
0 |Λ) (2.21)

Note that the dependency on the transcription or word sequence, WT
1 is ignored for con-

venient notations. Due to the summation operation within the logarithm function, it

becomes difficult to directly optimize such nonlinear function. Alternatively, an efficient

algorithm, called Baum-Welch algorithm(a.k.a Forward-backward algorithm), was

developed [21], which is also an example of Expectation-Maximisation (EM) algo-

rithms.

Instead of directly maximizing the log-likelihood function, an auxiliary function is

introduced such that increasing it can guarantee the increase of the original function. It
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is actually a strict lower bound function of likelihood function, and their relationship can

be formulated as following inequality:

L(Λ)− L(Λ̂) ≥ Q(Λ, Λ̂)− Q(Λ̂, Λ̂) (2.22)

where the auxiliary function is given as

Q(Λ, Λ̂) = EΛ̂[log p(OT
1 ,Q

T+1
0 |Λ]

=
∑
QT+1

0

p(QT+1
0 |OT

1 , Λ̂)
(

log p(QT+1
0 |aij) + log p(OT

1 |QT+1
0 ,Λobs)

)
(2.23)

Λ̂ represents the current model, which is used to estimate the posteriors of state se-

quence given the observation sequence, and Λobs contains all the parameters related to

the emission probabilities.

The next task is to calculate the posterior probability of state sequence given the ob-

servation sequence and model parameters, p(QT+1
0 |OT

1 , Λ̂). Based on the Bayes’ theorem,

the posterior calculation can be split into two parts:

p(QT+1
0 |OT

1 , Λ̂) =
p(QT+1

0 ,OT
1 |Λ̂)

p(OT
1 |Λ̂)

(2.24)

where the likelihood of the model p(OT
1 |Λ̂) can be calculated according to the forward

recursion. The remaining part is the joint probability of the state and observation se-

quence:

p(QT+1
0 ,OT

1 |Λ̂) =
S∑
j=1

p(Q t−1
0 , qt = j,QT+1

t+1 ,O
T
1 |Λ̂)

=
S∑
j=1

p(Q t−1
0 , qt = j,O t

1|Λ̂)p(QT+1
t+1 ,O

T
t+1|qt = j, Λ̂)

=
S∑
j=1

αj(t)βj(t) ∀t (2.25)

where αj(t) and βj(t) are the forward and backward probabilities, respectively. Sim-

ilar to the forward probabilities, αj(t), introduced previously for HMM evaluation, the

backward probabilities, βj(t) can also be calculated recursively:

βj(t) = p(QT+1
t+1 ,O

T
t+1|qt = j, Λ̂)

=
S−1∑
i=1

p(ot+1|qt+1 = i,Λ)p(qt+1 = i|qt = j)p(OT
t+2|qt = j,Λ)

=
S−1∑
i=1

bi(ot+1)ajiβi(t+ 1) 1 ≤ t ≤ T, 1 < j < S (2.26)
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where

βj(T ) = ajS (2.27)

βS(T + 1) = 1 (2.28)

Two optimizing problems can be defined to estimate the parameters of transition and

emission probabilities, respectively:

Transition probabilities:

When optimizing transition probabilities, the problem in equation (2.23) becomes

maximizing the following function:

Q(aij, âij) = Ktrans +
T∑
t=1

S∑
i=1

S∑
i=1

γij(t) log aij s.t.

S∑
j=1

aij = 1

where Ktrans is a constant subsuming terms independent of the transition probabil-

ities, and

γij(t) =
p(qt−1 = i, qt = j,OT

1 |Λ̂)

p(OT
1 |Λ̂)

(2.29)

=
αi(t− 1)âijbj(ot)βj(t)

αS(T + 1)
(2.30)

where âij is the current transition probability.

GMM observation probabilities:

When optimizing GMM observation probabilities, the problem in equation (2.23)

becomes maximizing the following function:

Q(Λobs, Λ̂
obs

) = Kobs+
T∑
t=1

S∑
j=1

M∑
m=1

γjm(t) log bjm(ot) s.t.
M∑
m=1

cjm = 1 ∀j (2.31)

where Kobs is a constant subsuming terms independent of the GMM observation

probabilities, and

bjm(ot) = cjmN(ot|µjm,Σjm) (2.32)

γjm(t) =
p(qt = j, gt = m,OT

1 |Λ̂)

p(OT
1 |Λ̂)

(2.33)

=
αj(t)βj(t)

αN(T + 1)
p(gt = m|qt = j, Λ̂) (2.34)

=
αj(t)βj(t)

αN(T + 1)

ĉjmN(ot|µ̂jm, Σ̂jm)∑M
m′=1 ĉjm′N(ot|µ̂jm′ , Σ̂jm′)

(2.35)

where gt is the component at t, µ̂, Σ̂ are the current Gaussian means and variance,

respectively.
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The above two constrained optimizing problems can be easily solved by the Lagrange

Multiplier method [22] because of the convexity, and a series of update formulae from

the closed form solution of the Lagrange function can be obtained

aij =

∑T
t=1 γij(t)∑T

t=1

∑S
j=1 γij(t)

(2.36)

cjm =

∑
t=1 γjm(t)∑T

t=1

∑M
m=1 γjm(t)

(2.37)

µjm =

∑T
t=1 γjm(t)ot
γjm(t)

(2.38)

Σjm =

∑T
t=1 γjm(t)(ot − µjm)(ot − µjm)T∑T

t=1 γjm(t)
(2.39)

2.2.5 HMM Limitations

So far, acoustic modelling using HMM has been introduced, including the formulation,

parameter estimation and Viterbi decoding. Although efficient procedures for parameter

estimation and recognition have been developed for HMM, there still exist limitations of

using HMM for acoustic modelling. As the mechanism of human speech production is un-

clear, using HMM as a generative model for speech is simply an approximation. Although

HMM assumptions have been widely used for speech recognition, these assumptions are

not valid for speech. Speech production is a highly complex human activity, and each

word/phone is highly correlated to form a valid and meaningful sentence. Therefore, the

observation sequence is highly correlated, which is not consistent with the HMM assump-

tions. These are the most fundamental limitations of HMM formulation. The usual way

to circumvent this problem is trajectory modelling.

Next, although maximum likelihood training approach is simple and efficient, the

training objective is not consistent with the recognition objective. In other words, max-

imum likelihood training does not take the word dependency into consideration. It also

does not consider the difference between confused words or phones by recognizer. Since

speech is not really produced by HMM, the recognition performance may be hurt. The

typical approach to solve this issue is discriminative training.

Third, one most challenging problem for speech recognition is the condition mismatch

between training and testing. This problem arises from the fact that there exists many

acoustic variations, such as speakers, microphones, channels, environments, etc. Although

the acoustic model is statistical, minor change of testing condition may still lead to fatal

failure. To solve this problem, adaptation and adaptive training is usually applied.

Fourth, although adaptation techniques can be applied for noise robustness, noise

variabilities have more unique challenging problem: speech signal can be corrupted or

buried by noises. Even if the training and testing conditions are the same, the recognition
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performance can still be very poor if Signal-Noise-Ratio (SNR) is high. Therefore, more

effective adaptation techniques needs to be specifically developed for noise robustness.

Fifth, conventional HMM uses GMM to model the state emission probability. Due to

the high computation expense, diagonal covariance matrix is used and the observation

variable is relatively low dimensional acoustic feature, such as MFCC with up to 2 dy-

namic parameters. Such emission probability computation has ignored the correlation of

both inter-frame and intra-frame correlation. Instead of using GMM, a new Deep Neural

Network (DNN) technique has been introduced to provide high quality recognition perfor-

mance. DNN can be viewed as a combination of trajectory modelling and discriminative

training, which has become the most widely used technique recently.

Finally, modern ASR systems require a lot of training data to achieve a robust parame-

ter estimation and wide variation coverage. In typical, data collection is an expensive task

in terms of time and money. For those languages with temporary interests, it is probably

not a good idea to collect hundreds or thousands hours of data for each language. Consid-

ering the similarity of phonemes from different languages, cross-lingual speech recognition

may be applied.

In next section, several important techniques related to my research interests will be

reviewed with details.

2.3 State-of-the-art Techniques

In previous section, efficient parameter estimation algorithm and Viterbi decoding algo-

rithm have been reviewed. However, conventional HMM system itself has a lot of limita-

tions, which hinders its applications for some circumstances. Although researchers have

invented many advanced technologies to solve various speech recognition problems, only

a few of them related to this thesis work will be reviewed in this section, including tra-

jectory modelling, discriminative training, adaptation and adaptive training, noise robust

speech recognition, Deep Neural Network (DNN) and cross-lingual speech recognition.

2.3.1 Trajectory Modelling

When trajectory is discussed in the speech domain, it is referred to as the shape of speech

signal with noise removed. In a statistical view, trajectory can be viewed as the mean

sequence of the speech signal or observation sequence. Trajectory demonstrates how the

speech varies with time and how these frames are correlated to produce a meaningful

speech utterance. Otherwise, if no correlation exists, the signal will become some random

noise. Conventional HMM treats speech as segments of stationary signals, represented

by the HMM states. The observations within each state are assumed to be independent

and identically distributed (i.i.d). Moreover, the observations from different states are

also assumed to be independent. These assumptions make the parameter estimation
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and decoding very simple and efficient. However, this leads to a poor trajectory model.

Since trajectory holds rich temporal context information of speech, it motivates many

researchers to work on trajectory modelling, either explicitly or implicitly.

2.3.1.1 Explicit Trajectory Modelling

Explicit trajectory modelling tries to model a smooth trajectory which fits the curve of

the speech signal as close as possible. One typical approach called parametric trajectory

model [23, 24] tried to model each speech segment as a curve rather than a constant

trajectory as Figure. 2.6. Low degree polynomials are used for modelling these trajectories.

Given a speech segment with length N , a 1-dimension feature can viewed as:

cn = µn + en n = 1, . . . , N, en ∼ N(0, σn) (2.40)

where cn is the feature sequence, µn is the mean sequence (a.k.a trajectory), and en is the

noise term which is assumed to be Gaussian distributed.

What the parametric trajectory model does is to model µn as a quadratic function of

time, i.e.

µn = b1 + b2n+ b3n
2 n = 1, . . . , N (2.41)

where b1, b2, b3 are the coefficients to learn. In order to do such explicit trajectory mod-

elling, segmentation has to be performed ahead. Therefore, parametric trajectory mod-

elling is also called segmental modelling. However, only small phone classification task

was reported in [23, 24]. Generally, segmental models suffer from the inefficient decoding

algorithm, and lead to slow progress in LVCSR task.

Recent trajectory modelling for speech recognition using the relationship between

static and dynamic features has been investigated. This relationship comes from the fact

that the dynamic features are a function of the static features, which is ignored by the

conventional ASR systems. Given a sequence of static features, {c1, c2, . . . , cT}, the first

two order differential features may be obtained using

∆ct =

∑δ
i=1 i(ct+i − ct−i)

2
∑δ

i=1 i
2

(2.42)

and

∆2ct =

∑δ
i=1 i(∆ct+i −∆ct−i)

2
∑δ

i=1 i
2

(2.43)

A recognition method that generates a speech trajectory using an HMM-based speech

synthesis method is proposed in [25, 26, 27]. These methods use the standard HMM to

generate top three candidates, the HMM-based speech synthesized trajectories are then
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generated, finally use the following equation to calculate the likelihood and reorder the

candidates.

P (C,∆C,∆2C, S|O,∆O,∆2O,Σ′,∆Σ′,∆2Σ′)

=
T∏
t=1

at,t+1

T∏
t=1

p(ct|ot,Σ′t)p(∆ct|∆ot,∆Σ′t)p(∆
2ct|∆2ot,∆

2Σ′t) (2.44)

where {C,∆C,∆2C} are the static and dynamic parameters, {O,∆O,∆2O} are the syn-

thesized trajectories used for taking place of the HMM mean sequence, {Σ′,∆Σ′,∆2Σ′} are

the recalculated variance for the synthesized trajectories, and S is the state sequence from

the Viterbi alignment. This work was tested for word recognition and showed promising

gain. Additionally, the re-scoring based technique showed efficient recognition since the

likelihood function can be calculated frame by frame.

However, the work in [25, 26, 27] is not a real trajectory model but take advantage of

the discriminative power of trajectories, which motivates the researchers to explore more

trajectory models based on such relations. One typical example is trajectory HMM: a

new kind of trajectory modelling based on HMM with the explicit relationship between

static and dynamic features [28, 29, 30, 31], which have been shown some promise gain for

phoneme recognition. Current implementation of trajectory HMM can only generate a

sub-optimal state sequence because of the intractable best state sequence. The likelihood

function of trajectory HMM is formulated as a joint probability of static parameters

c = [cT1 , c
T
2 , . . . , c

T
T ]T and a state sequence q given the current model Λ.

P (c,q|Λ) = p(c|q,Λ)p(q|Λ)

= N(c|c̄q,Pq)
T∏
t=1

at,t+1 (2.45)

where c̄q is the trajectory and Pq is the covariance matrix of this sentence. This likelihood

function (2.45) is more expensive than (2.44), since the covariance matrix Pq including all

the temporal (inter-frame) correlations is almost full and no frame by frame calculation

(2.44) can be applied. The state sequence of trajectory HMM during training is no longer

the same as the one from the conventional HMM used in [25]. However, for simplicity,

the state sequence for re-scoring during recognition can use the conventional HMM state

sequence as a approximation. Of course, the state sequence for re-scoring can also be

adjusted by the delayed decision Viterbi algorithm [31].

Although trajectory HMM have similar trajectory based re-scoring algorithm and

trajectory generation algorithm to approaches in [25, 26, 27], trajectory HMM tried to

implement a valid HMM probability model constrained by the relationship between static

and dynamic features. Trajectory HMM have exactly the same set of parameters as the

conventional HMM, but a different way to train those parameters. This is one difference

to work in [25, 26, 27], which still used the conventional HMM to calculate the trajectory.
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Another big difference is that trajectory HMM implemented a almost full covariance

matrix Pq, while very simple variance of (2.44) is defined.

In summary, in order to achieve the recognition task by smooth trajectory modelling,

e.g. parametric trajectory modelling, or trajectory HMM, the state sequence has to be

known firstly. In this case, only re-scoring scheme based algorithm can be applied, which

may prematurely prune away many hypotheses and is also not practically for LVCSR

applications.

2.3.1.2 Implicit Trajectory Modelling

Literature that aims to model a smooth trajectory have not delivered state-of-the-art

results. This is probably because a smoother trajectory does not necessarily correspond

to the better recognition accuracy. As the key of trajectory modelling is to utilize the rich

temporal context information to achieve a better recognition accuracy, various implicit

trajectory models have been proposed by using a state emission probability with higher

dependency. Explicit time correlation model [32] assumes that the state mean depends

on its previous state and previous observation:

µjt = µj + Σjtjt−1Σ
−1
jt−1jt−1

(ot−1 − µjt−1
) (2.46)

where µjt is the dynamic mean of state j at time t, µj is the static mean of state j and

Σjtjt−1 is the cross covariance matrix.

Instead of simply using single previous observation and state, more dependent observa-

tions were introduced by Vector Linear Prediction (VLP) [33]. In this approach, multiple

predictors, which is actually a set of affine transformations, are defined to model different

correlations from different surrounding observations:

µjt = µj +
P∑
p

Ap
j(ot+τp − µqt+τp ) (2.47)

where p is the index of predictors, τp is the offset associated with the pth predictor, which

can be positive or negative for succeeding or preceding observations, and µqt+τp is the

static mean of state at time t+ τp.

A more general higher order HMM [18, 19, 20] has also been proposed by adding

more dependent states such as p(ot|jt, jt−1 . . . jt−D) and p(jt|jt−1 . . . jt−D), where D is the

order of higher dependency. However, this approach has significantly increased the system

complexity and decreased the decoding speed. Furthermore, no state-of-the-art LVCSR

results have been reported using above approaches but simple digit/alphabet recognition

tasks were evaluated.

Previous examples have tried to add the higher dependency directly on the observation

or state. Another group of studies have introduced additional latent variables to build

the nonlinear connection between the temporal information and the state distribution.
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In [34], an additional hidden variable ht is defined to hold those observations that shares

the maximum mutual information with the current observation. In order to use more

Gaussian components, [34] defines another latent variable v to denote the class of ht, and

finally the state emission probability is formulated as follows:

p(ot|Λt) =
M∑
m=1

V∑
v=1

P (m|j, v)P (v|ht)N(ot;µjmvt,Σjmv) (2.48)

where

µjmvt = Ajmvht + bjmv (2.49)

Switching linear dynamical system (SLDS) [35] defines a different state space compared

to the previous HMM based models. In SLDS, except the conventional discrete state, a

hidden continuous state variable, vt, is also defined. Therefore, the underlying process

can be formulated as follows:

vt = Ajvt−1 + bj (2.50)

ot = Cjvt + dj (2.51)

where

bj ∼ N(bj;µjv,Σjv) (2.52)

dj ∼ N(dj;µjo,Σjo) (2.53)

After performing some linear algebra, the above transforms can be jointly applied to

calculate the dynamic mean at time t:

µjt = Cj(Ajvt−1 + µjv) + µjo (2.54)

With a complete review of above models, [36] formulated all these approaches using a

single semi-parametric trajectory model framework as follows:

µjmt = Atµjm + bt (2.55)

Pjmt = ZtPjmZT
t (2.56)

where At and Zt are time-varying linear transformations, and precision matrix, Pjm, is

the inverse of the covariance matrix, i.e. Pjm = Σ−1
jm. Particularly, two trajectory models:

fMPE [16] and pMPE[37], have been proposed and delivered state-of-the-art performance

for various large scale problems. Due to the success of those two models, this thesis will

pay more attention on implicit trajectory modelling.
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2.3.2 Discriminative Training

Since HMM is a typical parametric model, it is always important to get best parameter

estimation for the model. Depending on the property of objective functions, different local

or global optimal solutions may be obtained for the same model. In speech recognition,

the fundamental objective is that the correct sentence should have the highest probability

among all hypotheses, which can be expressed to maximize the following function:

F(Λ) =
R∑
r=1

P (sr|Or,Λ) (2.57)

=
R∑
r=1

P (Or|sr,Λ)P (sr|Λ)

P (Or|Λ)
(2.58)

=
R∑
r=1

P (Or|sr,Λ)P (sr|Λ)∑
u P (Or|u,Λ)P (u|Λ)

(2.59)

where sr is the r-th training utterance, u represents all possible hypotheses. Maximum

Likelihood estimation (MLE) [38] actually assumes that all the hypothesized sentences

and acoustic data are uniformly distributed. Mathematically, the objective function of

MLE is expressed as:

FML(Λ) =
R∑
r=1

logP (Or|sr,Λ) (2.60)

As only the correct hypothesis is considered during ML training, efficient training scheme

based on Expectation-Maximisation (EM) estimation [3] has been invented and widely

used. Alternatively, discriminative training may also be performed without the above as-

sumptions. For example, Maximum Mutual Information (MMI) [39] has been successfully

proposed for speech recognition:

FMMI(Λ) =
R∑
r=1

log
P (Or|sr,Λ)κP (sr|Λ)κ∑
u P (Or|u,Λ)κP (u|Λ)κ

(2.61)

=
R∑
r=1

log
P (Or|sr,Λ)κP (sr|Λ)κ

P (Or|Λ)κ
(2.62)

where κ is the probability scale to adjust the importance between language model and

acoustic model. Considering that the number of the hypotheses can be huge, a more

compact representation of hypotheses, lattice framework [40], has been widely used. Due

to the much complicated objective function, discriminative training criteria are much

harder to optimize than MLE. Two kinds of techniques are usually employed in practice:

1) gradient based update [41]; 2) the Extended Baum-Welch (EB) update [42, 43].
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Another popular training criterion for speech recognition is Minimum Phone Error

(MPE) [44] , which aims to minimize (maximize) the phone error rate (accuracy):

FMPE(λ) =
R∑
r=1

log
∑
s

P (Or|s,Λ)κP (s|Λ)κA(s, sr)∑
u P (Or|u,Λ)κP (u|Λ)κ

(2.63)

=
R∑
r=1

log
∑
s

P (s|Or,Λ)κA(s, sr) (2.64)

where A(s, sr) is a function to calculate the ”raw phone accuracy“ of hypothesis s given

the reference transcription sr. In practice, hypotheses, s are obtained by performing

recognition on the training utterance using a ML trained model and a simple language

model, such as unigram language model. The resultant hypotheses may be stored as

N-best list or in a lattice format, while the latter is usually preferred due to its compact

representation. The phone accuracy, A(s, sr) ideally equals the number of correct phones

minus the insertions of the hypothesis compared with the the reference. If the hypotheses

are stored in the lattice format, A(s, sr) can be calculated as the sum of the phone

accuracy, A(q), over all phone arcs, q of utterance s in the lattice, where:

A(q) =


1 if q is the correct phone

0 if q is a substitution/deletion

−1 if q is a insertion

(2.65)

As the full alignment of the hypothesis and reference phone sequence is required, ex-

act calculation of phone accuracy can be expensive. Therefore, an approximation was

introduced [44] such as:

A(q) = max
z

{
−1 + 2e(q, z) if q and z are the same phone

−1 + e(q, z) otherwise
(2.66)

where e(q, z) is the overlapping proportion of q in the duration of reference phone z. If

the alignment is perfect, i.e. e(q, z) = {0, 1}, A(s, sr) will equal to 1, 0 and -1 for a correct

phone, substitution/deletion and insertion, respectively.

In order to optimize above discriminative criteria, not only the likelihood of the cor-

rect reference should be maximized, but also the likelihood of the incorrect hypothesis

should be minimized. The latter requirement is not needed during ML training. It is

important to note that discriminative training usually needs more training data than ML

so that the decision boundary can be robustly defined. In practice, an interpolation of

ML, MMI and MPE is usually applied in order to obtain better generalization. This is

usually implemented by I-Smoothing technique. When MPE sufficient statistics are not

enough for updating the model, the update formulae may be downgraded to MMI or ML.

Typically, a smoothing constant needs to be defined to adjust the importance of different

objective functions.
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2.3.3 Speaker Adaptation and Adaptive Training

There are many acoustic factors which can cause variabilities in speech recognition, such

as speakers, microphones, environments, etc. Mathematically speaking, the acoustic vari-

abilities can cause the problem that the observation sequence (represented by a series of

acoustic features) can be very different for the same word sequence. The same speaker

can speak differently at different sessions due to his/her state of emotion, sore throat

and aging, which is also called intra-speaker variabilities. Different speaker has different

speaking styles such that the acoustic features would be different, which is referred to as

inter-speaker variabilities. The typical examples contains gender difference (males and

females with different fundamental frequencies), region difference (native and non-native

speakers). Besides the speaker variabilities, different recording process can also lead to

significant different acoustic features or acoustic patterns. Depending on the recording

environments (indoor vs. outdoor), the degree of reverberation can be different. As

recording devices and locations/distances can vary (such as close-talk microphone, far-

field microphone, mobile phone), the recording channel will be different. If noises exist

during recording, different signal-to-noise (SNR) ratio has to be considered, including the

noise level and types of noise. In this section, more attentions will be paid to the speaker

variabilities. Nevertheless, the techniques designed for speaker variabilities can also be

applied for other variabilities in most cases.

Due to existing acoustic variabilities, mismatch problem between training and testing

arises in natural. First, feature normalization can be applied to reduce the difference

caused by acoustic variations can be reduced. In order to normalize the speaker difference,

another feature normalization approach has been developed, i.e. Vocal Tract Length

Normalization (VTLN). As different speaker has different size of vocal tracts, VTLN can

change the center frequencies of the filter bank analysis by warping the frequency axis.

Typically, a warping factor between 0.8 and 1.2 is used to stretch/compress the frequency

scale so that the features from different speakers fall on a canonical frequency scale. The

actual warping factor can be determined by choosing the highest likelihood of supervised

transcription or recognized hypothesis. Since the improvement from feature normalization

is limited, it is interesting to consider this problem from the model perspective. There

are two typical speech recognition systems: speaker independent and dependent. Speaker

independent system is estimated by multi-style training using multi-style training data

(from various speakers, microphones, environments, etc.). As this system is designed

to cope with various acoustic variabilities, it is mainly used for the cases whose testing

speaker is unknown. If the testing speaker is known, speaker dependent system can be

trained using only the data collected from a specific speaker. This system aims to cope

with intra-speaker variabilities. Providing sufficient training data, speaker dependent

system can outperform speaker independent system, since it does not involve the inter-

speaker variabilities.
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2.3.3.1 Speaker Adaptation

In practice, it is expensive to collect hundreds of hours of training data to estimate a ro-

bust speaker dependent speech recognition system. On the other hand, it is much easier

to collect the same amount of training data from multiple speakers. Given limited speaker

dependent data, robust estimate of speaker dependent system becomes challenging. Var-

ious adaptation techniques have been developed to solve this problem [45, 46, 47, 48].

Adaptation aims to update the parameters of a speaker independent system using a

small amount of adaptation data such that the system performance can improve towards

a speaker dependent system. Depending on the availability of adaptation data, either

supervised or unsupervised adaptation can be performed. In case of unsupervised adap-

tation, recognition by speaker independent system has to be performed first to generate

the hypothesis as the supervised data. The performance of unsupervised adaption is

largely dependent on the recognition accuracy. If recognition performance is poor, the

unsupervised system may become worse. Considering the fact that the adaptation data

is limited, it is impossible to directly update all model parameters, which can lead to the

over-fitting issue. Two commonly used adaptation approaches are:

Parameter interpolation One simple way is to interpolate the HMM parameters

between speaker independent and dependent systems. When more adaptation data is

available, the weight on the speaker dependent system increases. Maximum a Posterior

(MAP) [45] is just an example of this approach. Alternatively, interpolation of gender

dependent systems has also been developed for speaker adaptation [49]. In general, an

objective function of MAP estimation may be given as:

ΛMAP = arg max
Λ

p(Λ|OT
1 ) = arg max

Λ
p(OT

1 |Λ)p(Λ) (2.67)

Hence, such adaptation process is also referred to as Bayesian adaptation. This proce-

dure tells the system to use the priors as the model parameters if no adaptation data is

observed. In other words, if limited adaptation data is given, a decent MAP estimate

may be obtained. Typically, the priors are obtained from the speaker independent model

parameters. In order to obtain a tractable optimal solution, conjugate priors are usually

used. For example, given the data variance σ2, in order to estimate MAP mean, assuming

that p(ot|µ, σ2) = N(ot|µ, σ2) and p(µ) = N(µ|µ0, σ
2
0), where µ0 and σ0 describe a Normal

prior distribution of mean, and considering

arg max
µ

p(µ|OT
1 , σ

2) = arg max
µ

p(OT
1 , µ|σ2) (2.68)
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then the problem becomes maximizing the following function:

log p(OT
1 , µ|σ2) =

T∑
t=1

log p(ot, µ|σ2) =
T∑
t=1

(2.69)

= K − 1

2

T∑
t=1

{
(ot − µ)2

σ2
+

(µ− µ0)2

σ2
0

}
(2.70)

= K ′ − 1

2

(σ2 + σ2
0)

σ2σ2
0

T∑
t=1

(
µ− σ2

0ot + σ2µ0

σ2 + σ2
0

)
(2.71)

Hence, differentiating this function with respect to µ and equating to zero can lead to the

optimal solution:

µMAP =
1

T

T∑
t=1

σ2
0ot + σ2µ0

σ2 + σ2
0

(2.72)

=
σ2

0

σ2 + σ2
0

µML +
σ2

σ2 + σ2
0

µ0 (2.73)

As can be seen, the MAP estimate is actually an interpolation of maximum likelihood

estimate and prior distribution. In practice, as the data variance is usually unknown

for speech recognition, the conjugate priors for MAP mean/variance estimates can be

normal-Wishart distribution. Hence, the mean update formula for state j and mixture

component m becomes

µMAP
jm =

Njm

Njm + τ
µML
jm +

τ

Njm + τ
µPriorjm (2.74)

where τ is a weighting of the a priori knowledge to the adaptation speech data and Njm

is the occupation of the adaptation data. If more adaptation data are available, more

weights will be placed on the maximum likelihood estimation; and vice versa.

Linear regression This approach assumes that the relationship between speaker de-

pendent and independent models is linear. As only regression parameters are updated,

the degree of freedom of optimization process can be effectively reduced to avoid the

over-training problem. The famous example is Maximum Likelihood Linear Regression

(MLLR) [48]. MLLR assumes that the relationship between speaker independent and

dependent feature is linear, i.e. y = Ax + b, where x and y are speaker independent and

dependent features respectively. The optimum A and b may be found by minimizing the

squared error. However, it is not straightforward to prepare the parallel training data.

Alternatively, maximum likelihood (ML) estimation can be applied:

L(ΛMLLR) = log p(OT
1 |ΛMLLR) =

T∑
1

log p(ot|ΛMLLR) (2.75)
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depending on the actual adaptation methods, different adaptation parameters can be

formulated:

MLLR for mean: µMLLR = Aµ+ b (2.76)

MLLR for variance : ΣMLLR = AΣAT (2.77)

Constrained MLLR (CMLLR) : (2.78)

µCMLLR = Aµ+ b and ΣCMLLR = AΣAT (2.79)

where CMLLR [46] uses the same MLLR transform, A for both mean and variances

adaptations. In case of speech recognition system with hundreds of thousands of Gaussian

components, it is not possible to estimate a separate transform for each component. In

practice, one transform is estimated for one regression class, i.e. a group of Gaussian

components. In an extreme case, one transform may be estimated and applied for all

components. Therefore, MLLR has more flexibilities of controlling the degree of freedom

for speaker dependent system. This is one advantage of MLLR compared to MAP if the

adaptation data is relatively small. MAP, however, usually requires more adaptation data

for an effective estimate, as it performs the estimate for each component independently.

Basically, MAP and MLLR families can be applied for general adaptation tasks. For

example, they can be used for both speaker and noise adaptations.

2.3.3.2 Speaker Adaptive Training

So far, adaptation techniques have been discussed to improve the recognition performance

using limited amount of adaptation data during the recognition stage. The same tech-

nique such as MLLR can also be used to normalize the effects of such as speaker during

training. In conventional, multi-style training uses training data from various speakers,

whose features lie in different acoustic space. MLLR can transform the features from

different speakers into a canonical space, so that a canonical acoustic model can be esti-

mated. This is well known as speaker adaptive training (SAT). During adaptive training,

MLLR parameters are estimated for each speaker in the training data. Then, the canon-

ical model parameters (Gaussian parameters and transition probabilities) are estimated

given the MLLR adapted statistics. This process is performed iteratively till the like-

lihood converges. This process also needs to be carried out during recognition: MLLR

needs to be iteratively revised till convergence.

Mathematically, the objective of adaptive training using MLLR can be expressed as

maximizing following function:

Q(Λ; Λ̂) =
K∑
k=1

∑
t,j,m

γkjm(t) logP (okt |ΛSAT
jm ,ΛMLLR

k ) (2.80)

where k is the speaker index, ΛSAT are the canonical acoustic model parameters, ΛMLLR
k

are the speaker k dependent regression parameters, Λ̂ are the current model parameters.
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Note that in order to apply the MLLR transform, a regression tree (or regression bases)

has to be built to look up the associated regression class (i.e. the actual transform) for

each component j,m. Hence, the speaker adaptive training algorithm can be described

in a more formal fashion:

1. Initialize the canonical acoustic model Λ̂SAT by multi-style training, the regression

parameters Λ̂MLLR
k with the identity transform and zero bias.

2. Estimate speaker dependent regression parameters ΛMLLR by maximizing auxiliary

function Q(ΛMLLR; Λ̂MLLR, Λ̂SAT ).

3. Estimate canonical acoustic model parameters ΛSAT by maximizing auxiliary func-

tion Q(ΛSAT ; Λ̂MLLR, Λ̂SAT )

4. If the likelihood does not converge, continue to step 2; otherwise, terminate.

During decoding, a similar process needs to be performed, except that the canonical

acoustic model parameters are unchanged. Depending on the tractability of the auxiliary

function, other adaptation approaches may also be borrowed for adaptive training.

2.3.4 Noise Robust Speech Recognition

Different from speaker variabilities, noise variabilities have more impact on the system

performance. Although Different speaker may have different speaking style, the acoustic

pattern will be still there and can be statistically learned with more training data. The

difficulty of noise variabilities is that the acoustic pattern may be corrupted or buried by

noises if SNR is high and non-stationary noises exist. In that case, even when the train-

ing and testing conditions are the same, the recognition performance can still be very

poor. Therefore, noise robust speech recognition has become one of the most challenging

recognition tasks. Techniques to deal with the noise corrupted speech contains two main

categories: features enhancement and model compensation. No clear evidence has been

found which one is superior to another. It heavily depends on the available computing

resources, i.e. whether it is a response time sensitive or accuracy demanding task. Gen-

erally speaking, feature enhancement is more efficient than model compensation, while

model compensation is potentially capable of handling more environments and achieving

better accuracy.

2.3.4.1 Feature Enhancement

The simplest approach for feature enhancement is cepstral mean/variance normalization.

Given an utterance represented by a 1-dimension cepstral feature sequence {c1, . . . , ct, . . . , cT},
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whose mean and variance are µ, σ, respectively, the enhanced feature can be given as:

Cepstral Mean Normalization (CMN): ĉt = ct − µ (2.81)

Cepstral Variance Normalization (CVN): ĉt =
ct√
σ

(2.82)

Cepstral Mean&Variance Normalization (CMVN): ĉt =
ct − µ√

σ
(2.83)

where CMN is actually also an alternative way of removing the channel difference. In

practice, if the incoming speech data is long, normalization may be performed per segment.

Homogenous segments can be detected by a Voice Activity Detector (VAD). The length

of segment is a compromise: longer segment yield better mean and variance, but system

has to wait longer till the end of the segment before normalization can be done. These

simple approaches are very effective and also show promising improvements over the

conventional acoustic features. Spectral noise subtraction was also proposed [50], however

the non-speech activity detection is required to estimate the additive noise.

Recently, people are more interested in estimating the clean speech by using minimum

mean square error estimation schemes (MMSE) [51, 52, 53, 54]. MMSE may be applied

with stereo data [51, 52] or noise model estimation [53, 54]. The idea behind MMSE is

that the estimated clean speech x given the noisy speech y is the mean of the conditional

distribution p(x|y):

x̂ = E[x|y] =

∫
x

p(x|y)x dx (2.84)

=
∑
k

∫
x

p(x, k|y)x dx (2.85)

=
∑
k

P (k|y)

∫
x

p(x|k,y)x dx (2.86)

=
∑
k

P (k|y)E[x|k,y] (2.87)

where k represents a front-end mixture model for the joint probability of {x,y} such as

p

([
x
y

])
=

K∑
k=1

P (k)N

([
x
y

]
;

[
µx,k
µy,k

]
,

[
Σxx,k Σxy,k

Σyx,k Σyy,k

])
(2.88)

Therefore,

E[x|k,y] = µx,k + Σxy,kΣ
−1
yy,k(y − µy,k) (2.89)

and the posterior can be obtained as

P (k|y) =
p(y|k)P (k)∑
k p(y|k)P (k)

(2.90)
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In some cases, fast estimation of clean speech can be obtained by using just single most

likely mixture:

x̂ = E[x|k̂,y], k̂ = arg max
k
P (k|y) (2.91)

Hence, the likelihood of noisy speech is approximated by passing the estimated clean

speech to the back-end clean recognizer:

p(y|m) ≈ N(x̂;µx,m,Σx,m) (2.92)

However, this approach has difficulties to get an accurate estimation of clean speech

when the Signal-Noise-Ratio (SNR) is very low where y ≈ n, n is the noise. [55, 56]

proposed an uncertainty decoding scheme by marginalizing over the clean speech to obtain

the likelihood such as

p(y|m) =

∫
p(y|x,m)p(x|m) dx ≈

∫
p(y|x)p(x|m) dx (2.93)

where

p(y|x) =
∑
k

P (k|x)p(y|x, k) (2.94)

However, the posterior P (k|x) is very difficult to calculate, since x is unknown. Approx-

imations are made in [55, 56].

2.3.4.2 Model Compensation

Similar to other speech related variations, general adaptation techniques may be directly

applied to handle the noisy environments, such as Maximum Likelihood Linear Regression

(MLLR) [48], Constrained MLLR [46], and Maximum a Posterior (MAP) [45]. However,

these approaches are highly subject to the amount of available adaptation data. In addi-

tion, MLLR or CMLLR transform is only linear, or piece-wise linear, while the impact of

noise on speech is highly nonlinear. In order to obtain a better estimation of noise con-

dition dependent models, various model compensation approaches were proposed, such

as Parallel Model Combination (PMC) [57], Vector Taylor Series (VTS) [58], and many

other derivatives Extended VTS [59], Data-driven PMC [60], Trajectory-based PMC [61].

All these model compensation approaches have one common requirement: noise model as

a representation of the noisy environment.

First, a typical model of the acoustical environment is introduced as in Figure. 2.8.

This model assumes the speech signal x[m] is corrupted by an additive noise n[m] and

channel distortion h[m]. Mathematically speaking, corrupted speech signal y[m] can be

written as a linear function of these quantities:

y[m] = x[m] ∗ h[m] + n[m] (2.95)
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h[m]x[m]

n[m]

y[m]

Figure 2.8: A typical model of the acoustical environment

where m indicates the signal sample index. After taking the square of the complex

variables from a Q-point Discrete Fourier Transform (DFT), the spectral magnitudes

relationship becomes

|Y (qi)|2 = |X(qi)|2|H(qi)|2 + |N(qi)|2 + 2Real {X(qi)H(qi)N(qi)} (2.96)

where X(qi), Y (qi), H(qi), N(qi) represent the frequency analysis of clean speech, noisy

speech, channel distortion and additive noise, respectively, operator Real{} extracts the

real component of the complex variable, i = 0, 1, . . . , Q. Since x[m] and n[m] are statisti-

cally independent, the last term, Real {X(qk)H(qk)N(qk)} is expected to be zero. How-

ever, it is not zero in practice [58], particular when computing the famous mel-cepstrum,

which requires a range of frequencies. Anyway, the spectrum relationship by applying M

(mel) filter banks is assumed to be:

|Y (fi)|2 = |X(fi)|2|H(fi)|2 + |N(fi)|2 (2.97)

where i = 0, 1, . . . ,M . Note that |Y (fi)|2 is the sum of ith-bandpassed spectral magni-

tudes from a range of frequencies, |Y (q.)|2.

After taking the logarithms in Eq-2.97 and some algebraic manipulation, the log-

spectrum relationship can be obtained as:

log |Y (fi)|2 = log |X(fi)|2 + log |H(fi)|2 (2.98)

+ log
(
1 + exp

{
log |N(fi)|2 − log |X(fi)|2 − log |H(fi)|2

})
(2.99)
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Then, the cepstrum features for each signal can be obtained by taking Discrete Cosine

Transform (DCT), such as

x = C
(
log(|X(f0)|2) log(|X(f1)|2) · · · log(|X(fM)|2)

)
(2.100)

y = C
(
log(|Y (f0)|2) log(|Y (f1)|2) · · · log(|Y (fM)|2)

)
(2.101)

h = C
(
log(|H(f0)|2) log(|H(f1)|2) · · · log(|H(fM)|2)

)
(2.102)

n = C
(
log(|N(f0)|2) log(|N(f1)|2) · · · log(|N(fM)|2)

)
(2.103)

Therefore, the cepstrum relationship can be given as

y = x + h + g (n− x− h) (2.104)

where g(z) is a nonlinear function, given as

g(z) = C log
(
1 + exp{C−1z}

)
(2.105)

where C−1 is the pseudo-inverse matrix of DCT matrix C, since C used in feature ex-

traction is not square. The function in Eq-2.104 plays a very important role in the most

popular VTS model compensation approach [58], since the noise corruption process is

directly expressed in terms of the widely used cepstrum features.

Now, we can discuss how the most popular VTS was proposed for model compensa-

tion. Although the noisy speech can be obtained according to Eq-2.104, statistics of noisy

speech, {µy,Σy} are difficult to calculate due to the nonlinearity of function g(z). There-

fore, Eq-2.104 may be approximated by first order Vector Taylor Series at {x0,h0,n0}:

ŷ ≈ x0 + h0 + g0 +
∂y

∂n

∣∣∣∣
n=n0

+
∂y

∂x

∣∣∣∣
x=x0

+
∂y

∂h

∣∣∣∣
h=h0

(2.106)

where

g0 = g (n0 − x0 − h0) (2.107)

∂y

∂x

∣∣∣∣
x=x0

=
∂y

∂h

∣∣∣∣
h=h0

= G = C Diag(
1

1 + exp{C−1(n0 − x0 − h0)}
)C−1 (2.108)

∂y

∂n

∣∣∣∣
n=n0

= F = I−G (2.109)

where the operator Diag(v) builds a diagonal matrix whose principle diagonal element is

given by vector v.

Now, we define {µx,Σx},{µn,Σn} and {µh,Σh} as the statistics of x,n,h respectively.

After setting the expansion point at {x0,h0,n0} = {µx,µh,µn}, we can have following

estimation of corrupted speech statistics:

ŷ ≈ µx + µh + g(µn − µx − µh) + G(x− µx) + G(h− µh) + G(n− µn) (2.110)

µy = E[ŷ] ≈ µx + µh + g(µn − µx − µh) (2.111)

Σy = E[(ŷ − µy)(ŷ − µy)T ] ≈ GΣxG
T + GΣhG

T + FΣnF
T (2.112)
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In practice, Σx,Σn,Σh are diagonal, however Σy is no longer diagonal. An assumption

forcing Σy to be diagonal is usually made for efficient decoding. In case of computing the

statistics of corrupted dynamic parameters, {∆µy,∆Σy} and {∆2µy,∆
2Σy}, continuous-

time approximation is proposed [62] Given the facts by continuous-time approximation:

∆xt = xt+2 − xt−2 (2.113)

∆x = 4
∂xt
∂t

(2.114)

we can have
∂y

∂t
≈ G

∂x

∂t
(2.115)

so that

µ∆y ≈ Gµ∆x (2.116)

Σ∆y ≈ GΣ∆xG
T + FΣ∆nF

T (2.117)

where h is assumed to be constant within the utterance such that ∆h = 0. Similarly, we

can obtain the approximation for the second order dynamic parameters’ statistics such

as:

µ∆2y ≈ Gµ∆2x (2.118)

Σ∆2y ≈ GΣ∆2xG
T + FΣ∆2nF

T (2.119)

Although VTS compensation itself looks quite elegant, there still remains one unsolved

problem: the noise model, {µn,Σn,µh,Σh} is unknown. This problem is to be introduced

and addressed in later chapter, and so is noise adaptive training (NAT) [63].

2.3.5 Deep Neural Network (DNN)

Recently, Deep Neural Network (DNN) [64, 65] has been successfully applied for LVCSR

tasks and shown dramatic performance improvements over GMM based HMM systems.

One main contribution is that pre-training scheme of Deep Belief Network (DBN) us-

ing modern GPU’s vector processing capability is introduced as initialization of DNN

such that the entire training context dependent (CD) DNN becomes tractable. Some

characteristics of DNN that are good for speech recognition can be found. First, DNN

can model the long-term contextual information via using long span of acoustic features

as input and multiple layers of non-linear processing. However, this is not possible for

GMM/HMM systems, as diagonal covariance matrix is assumed for robust estimation

and efficient decoding. Literature has also shown that DNN using single frame as input

performs worse than the simple GMM system [66]. On the other hand, DNN does not

assume the data distribution, which is not necessary for problems like classification. In

this section, the framework of CD-DNN/HMM will be briefly introduced, including the

Restricted Boltzmann Machine, Pre-training, fine-tuning and decoding.
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2.3.5.1 Restricted Boltzmann Machine (RBM)

Firstly, a brief introduction of Restricted Boltzmann Machine (RBM) [67] is given, which

serves as the fundamental component of DNN pre-training. RBM is an undirected graph-

ical model constructed from a layer of binary stochastic hidden units and a layer of

stochastic visible units, as shown in Figure. 2.9, and it is also a generative stochastic

model that can learn a probability distribution over its set of inputs. Note that RBM

only has connections between inter-layer units but no connections between intra-layer

units, otherwise it will become unrestricted Boltzmann machine. In RBM, an energy

Copy

Copy

Input

GRBM

RBM

RBM
DBN

DBN-DNN

Output

W1

W3

W1

W2

W3

W1'

W2'

W3'

W4=0

W2

Figure 2.9: A diagram of DBN pre-training process for DNN initialization, where square

box represents visible units while oval represents hidden units.

analogous to that of a Hopfield network is used:

E (v,h) = −bTv − cTh− vTWh (2.120)

where v and h are the binary vectors for visible and hidden units, respectively, b is the

visible unit bias, c is the hidden unit bias, W is the matrix of visible/hidden connection
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weights. Hence, the energy term can be used to define the probability of any visible/hidden

units such as

P (v,h) =
exp{−E (v,h)}

Z
(2.121)

where Z is the normalization term given as

Z =
∑
v,h

exp{−E (v,h)} (2.122)

After some mathematical derivations [65], we can obtain:

P (h|v) =
exp{−E(v,h)}∑
h̃ exp{−E(v, h̃)}

=
∏
i

P (hi|v) (2.123)

P (h = 1|v) = σ(c + vTW) (2.124)

P (v = 1|h) = σ(b + hTWT ) (2.125)

where 1 is a vector with all elements equating 1, σ(x) denotes the logistic sigmoid function

such as

σ(x) =
1

1 + exp{x}
(2.126)

In fact, Eq-2.125 can be viewed as a reconstruction process, which can be used to recon-

struct the most likely visible configuration given the hidden units. On the other hand,

Eq-2.124 is viewed as an inference process, which can be used to predict the best hidden

configuration given the visible units. Due to the same sigmoid activation function, the

connection weights of RBM can be then applied to initialize a feed-forward neural network

with sigmoid hidden units.

In order to estimate the model parameters, maximum likelihood estimation is applied.

Given the probability of a visible unit v:

P (v) =
∑

h

P (v,h) =

∑
h exp{−E (v,h)}∑

ν,h exp{−E (ν,h)}
(2.127)

then the log-likelihood can be obtained to estimate the connection weights such as:

L(Λ) = log

(∑
h

exp{−E (v,h)}

)
− log

(∑
ν,h

exp{−E (ν,h)}

)
(2.128)

where Λ are the model parameters. Typically, a quantity known as the free energy is

defined as:

F(v) = − log

(∑
h

exp{−E (v,h)}

)
(2.129)

Therefore, the log-likelihood function can be rewritten as:

L(Λ) = −F(v)− log

(∑
ν

exp{−F(ν)}

)
(2.130)

42



2.3 State-of-the-art Techniques

whose negative gradient has a very elegant form:

−∂L(Λ)

∂Λ
=
∂F(v)

∂Λ
−
∑
ν

p(ν)
∂F(ν)

∂Λ
(2.131)

=
∑

h

P (h|v)
∂E(v,h)

∂Λ
−
∑
ν,h

P (ν,h)
∂E(ν,h)

∂Λ
(2.132)

=

〈
∂E

∂Λ

〉
data

−
〈
∂E

∂Λ

〉
model

(2.133)

where 〈.〉data is the expectation over the distribution from the visible data, 〈.〉model is the

same expectation over the distribution from the reconstructed data by the current model.

Stochastic gradient descent method can be applied to minimize the negative log-likelihood

using following update direction:

wij(t+ 1) = wij(t)−∆wij(t+ 1) (2.134)

∆wij(t+ 1) = m∆wij(t)− α
∂L(Λ)

∂wij
(2.135)

where the gradient of negative log-likelihood function is given as:

− ∂L(Λ)

∂wij
= 〈vihj〉data − 〈vihj〉model (2.136)

α is the learning rate, m is the “momentum” factor to smooth the weight updates, t is the

update iteration, Therefore, maximizing the log-likelihood of the data is exactly the same

as minimizing the Kullback-Leibler divergence, KL(P 0||P∞Λ ), where P 0 is the distribution

of data, P∞Λ is the equilibrium distribution defined by the model. In practice, contrastive

divergence learning [68] is adopted by minimizing the following two KL divergence:

KL(P 0||P∞Λ )−KL(P n
Λ||P∞Λ ) (2.137)

where P n
Λ is the distribution after n step of Gibbs sampling for reconstruction. For a

greedy algorithm, n may be set as 1 such that the gradient can be given as:

−∂L(Λ)

∂wij
≈
{
〈vihj〉data − 〈vihj〉∞

}
−
{
〈vihj〉1 − 〈vihj〉∞

}
(2.138)

= 〈vihj〉data − 〈vihj〉1 (2.139)

This is also called one-step contrastive divergence approximation [65] or CD-1.

Gaussian-Bernoulli RBM (GRBM) Since the acoustic features are real-valued vec-

tors instead of binary vectors, Gaussian-Bernoulli RBM (GRBM) is introduced, whose

energy function is given as:

E (v,h) =
1

2
(v − b)T (v − b)− cTh− vTWh (2.140)
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where a diagonal covariance Gaussian noise model with a variance of 1 on each dimension

is implicitly assumed. After switching to GRBM, the conditional probabilities of hidden

units in Eq-2.124 keep the same, while the conditional probabilities of visible units are

revised as

P (v|h) = N(v; b + hTWT , I) (2.141)

where I is an identity matrix. In practice, when training a GRBM and creating a recon-

struction, the reconstructed visible units are simply set to be equal to their means rather

than sampled from the above posterior probability.

2.3.5.2 DBN Pre-training

In Figure. 2.9 [69], a diagram of DBN pre-training for DNN initialization is shown. Before

training RBM, the acoustic features have to be normalized to a canonical space, which

can be achieved by cepstral mean and variance normalization. The mean and variance

for normalization can be either global or per utterance. In case of normalization per

utterance, some other variations such as channel difference for different recording session

can also be normalized. Such normalization will also help keep the weight initialization

more effective. In previous section, the parameter learning process has been introduced for

one RBM with single visible and hidden layers. In order to pre-train a deep belief network

(DBN), a greedy algorithm has been designed [70]. Considering the diagram shown in

Figure. 2.9, first, given the real-value visible observations, v(1), W1 of GRBM is learned

by using contrastive divergence algorithm, i.e. CD-1. Then, posterior probabilities of

hidden states, p(h
(1)
i |v(1)) can be inferred using the current model, W1. Those posterior

probabilities can serve as the new visible units to train another RBM, W2. This inference

and estimation process will continue till the expected number of RBMs reaches. Once this

process completes, multiple RBMs will be stacked together to form a single generative

model, a deep belief network (DBN). At the same time, undirected connection of those

RBMs will be replaced by top-down directed connection. As the RBM is not a perfect

model of the original data, the stacked RBMs is just an approximation of DBN. Despite the

approximation, it provides a good initialization of DBN and also saves a lot of computing

time. Recent findings also show that the pre-training is less crucial as the training data

increases [71]. However, pre-training is still an effective approach for initializing deep

neural networks.

2.3.5.3 CD-DNN/HMM Fine-tuning and Decoding

After the deep neural network is initialized by DBN pre-training, supervised fine-tuning

has to be performed in order to predict the posterior of context dependent states or any

other classification label. First, an output layer with softmax activation function has to
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be appended to the top layer of DBN. Given the forward probabilities of top hidden layer,

h(K), the final layer output probability of label l can be formulated as:

p(l|h(K)) =
exp{bl +

∑
i h

(K)
i wil}∑

k exp{bk +
∑

i h
(K)
i wik}

(2.142)

where bl is the bias of label l, wil is the weight connecting the hidden unit i to output

label l. The supervision label for each time frame can be obtained by performing force

alignment of a well trained context dependent GMM/HMM system. Hence, the neural

network parameter may be optimized by minimizing the cross-entropy error function and

back-propagation algorithm [72]. In general, first order derivative of the error function

can be efficiently computed by back-propagation algorithm. However, gradient descent

approach tends to converge very slow on deep neural networks. It is observed that the

optimization may halt before making significant progress and the training data is under-

fitted by the model [73]. In the optimization community, second order approach is usually

applied for a better approximation of local curvature, such that the convergence speed can

be much faster [22]. The biggest challenge of using second order approach to optimize

the neural network weights is that the Hessian matrix is too huge to compute exactly

and store in memory. Typically, approximations are made for computing Hessian or its

inverse [1, 22]. Recently, a Hessian free approach has been proposed to optimize the deep

neural networks [73], which has proved that Hessian free approach without pre-training

can outperform the first order approach with pre-training. As the objective of computing

Hessian is actually to revise the parameter search direction by multiplying its inverse and

the gradient. If the resulting product can be effectively approximated, a lot of computing

time and memory can be saved.

In order to perform Viterbi decoding, the state emission probabilities should be pre-

pared. As DNN can only predict the state posterior probabilities, Bayes theorem can be

applied:

p(ot|j) =
p(j|ot)p(ot)

P (j)
∝ p(j|ot)

P (j)
(2.143)

where p(j|ot) is the context dependent state posterior, P (j) is the prior probability of state

j. Normalization by the prior probability P (j) may not improve the recognition accuracy,

but it is sometimes very important to solve the bias label problems, such as long silence

segments. Therefore, it is always preferable to do so for safety. State transition probabili-

ties of CD-GMM/HMM systems may continue being used for CD-DNN/HMM, which may

be further optimized using CD-DNN/HMM to do the forward-backward alignment. At

the same time, it is also possible to re-generate the training labels using CD-DNN/HMM

for a better alignment between the observation and its label.
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2.3.5.4 Discussion

CD-DNN/HMM has shown many great successes for various large vocabulary continuous

speech recognition (LVCSR) tasks [65, 69, 74], and it has also been widely used for many

commercial applications, such as Bing Voice Search, Google Voice Search. So far, the

biggest disadvantage of DNN compared to GMM for LVCSR tasks is that it is much

harder to make good use of large cluster machines to train them on massive data sets [69].

Besides, It also has some other limitations such that it will not always be the best solution

for all applications. First, both training and decoding CD-DNN/HMM system require a

modern GPU for fast matrix operation, and training CD-DNN/HMM can be significantly

slower than training an equivalent CD-GMM/HMM system using the same CPU. Due

to the strict hardware requirement, CD-DNN/HMM system may not be suitable for off-

line application on modern mobile devices or desktop without modern GPU. As a deep

nonlinear classifier, DNN uses single model to predict the posterior probabilities for all

states. If acoustic patterns of few partial states change, the whole DNN system has to

be retained, which is very expensive in terms of computing time. In contrast, each state

in a GMM/HMM system has its own statistics, such that fast re-estimation of partial

affected states becomes possible. Considering an extreme case that the acoustic space has

changed, if relationship can be built between the statistics before and after the change,

fast re-estimation of whole system can be achieved. To improve the adaptability of DNN,

front-end feature adaptation may be applied. However, only limited improvements have

been observed [75, 76]. Finally, since DNN is a discriminative model, it requires a lot

of training data to determine the correct boundaries and deeply understand the acoustic

data for LVCSR task. This requirement may limit its applications for those languages

with limited resources [77]. In summary, CD-DNN/HMM has become a new state-of-

the-art acoustic model for most large vocabulary speech recognition tasks. Improvement

space still exists for both CD-DNN/HMM and CD-GMM/HMM in those complicated

application contexts.

2.3.6 Cross-lingual Speech Recognition

In modern days, performance of continuous speech recognition has dramatically improved

and plenty of commercial services or applications based on speech recognition technology

have been used in our daily life, such as dictation system, speech translation and voice

search. In typical, a state-of-the-art speaker independent large vocabulary continuous

speech recognition (SI-LVCSR) system requires hundreds or thousands hours of tran-

scribed speech data. This requirement is not a problem for those languages with great

economic potentials, such as English, Chinese, French, etc. However, speech technologies

are not just for making money, but also have a lot of contributions for other purposes.

Considering that there exist about 7000 languages in the world, speech recognition for
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some rarely studied languages may be temporarily or occasionally needed for such as hu-

manitarian, economical or regional conflict reasons. Hence, a rapid development of an

ASR system with limited resources is needed. On the other hand, some languages are

extincting due to minority of speakers but may have some unknown potentials, which

can be better preserved with the help speech and language technologies. For convenience,

language with limited resources will be named as native (target) language, while others

as foreign (source) language.

Since most languages are relatively independent of each other, which means that each

language has its own grammar, syntax, phone-set, applications requiring language con-

vention are very challenging. Therefore, an usual ASR system is language dependent

to ensure that most language specific characteristics are properly learned and the best

performance can be obtained. However, there are also many commons among human

languages from the pronunciation aspects, which means one word in one language may

be approximately pronunciated by a phone sequence from another language. For exam-

ple, English word “ONE” can be pronunciated by a Chinese Character “WANG”. Such

similarity makes it possible to borrow the rich resources from other popular languages

to build the acoustic models for a new language. Typically, multi-lingual or cross-lingual

speech recognition systems are adopted. Multi-lingual speech recognition system is esti-

mated by pooling all interesting language data and using an universal phone set. It is

also called as a language independent speech recognition system, and examples includes

[78, 79, 80, 81, 82]. Thus, an ASR system for a new language with limited resources

can be built by simply employing a lexicon using universal phone set without any other

effort. One biggest advantage is that it also works when the resource of target language is

ZERO. Sometimes, language adaptation can also be applied to optimize a small amount

of language specific parameters if some language specific data are available. The biggest

disadvantage of multi-lingual system is that the performance may be poor since the sys-

tem tries to learn an universal pattern from many different languages. In addition, the

system complexity of multi-lingual system can be very high in order to model so many

language specific contexts, which may lead to inefficient decoding. Alternatively, cross-

lingual speech recognition is proposed, which will be discussed subsequently.

2.3.6.1 Cross-lingual Phone Mapping

One of cross-lingual speech recognition technologies is phone mapping [83, 84, 85, 86].

Mathematically speaking, the objective of cross-lingual speech recognition can be ex-

pressed as:

Ŷ = arg max
Y

P (O |Y )P (Y ) (2.144)

= arg max
Y

(∑
X

P (O |X )P (X |Y )

)
P (Y ) (2.145)
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where X ,Y are the phone sequences of source and target language, respectively. Instead

of evaluating the likelihood of target phone sequence, P (O |Y ) without target acoustic

models known, the objective becomes evaluating the likelihood of source phone sequence,

P (O |X ) with well trained acoustic models. Since P (Y ) can be simply obtained from

language models, the remaining task is to estimate P (X |Y ), which shows the posterior

probability of source phone sequence given the target sequence, a similarity metric between

two phone sequence. In practice, only the most likely source phone sequence is evaluated

for fast implementation, such as

X̂ = arg max
X

P (X |O) (2.146)

Ŷ ≈ arg max
Y

P (X̂ |Y )P (Y ) (2.147)

Therefore, the decoding process is decoupled into two stages: 1). the foreign phone

recognizer is used to obtain the most likely foreign phone sequence, X̂ ; 2). find the most

likely target phone sequence, Ŷ given the source phone sequence X̂ . The second step

is also know as Probabilistic Phone Mapping (PPM) [84]. Since only the intermediate

foreign phone sequence is used to decode the final target phone sequence, many details

of original observation sequence are lost. Therefore, the improvement of using PPM

approaches is limited. Although temporal and spatial context expansion are applied

to source phone sequence for a better representation of the observation sequence, it is

difficult to build a complete context dependent phone mapping given limited data, i.e.

both the source and target phone sequence are context dependent. Eventually, it will

affect the system performance in large vocabulary continuous speech recognition task.

Instead of using intermediate recognized foreign phone sequence, foreign phone posteriors

are used to predict the native phone posteriors [85], which is later used in a hybrid system

for decoding. Since only simple phone recognition task is evaluated [85], it is uncertain

whether it will work well for a LVCSR task using triphone-state posteriors with limited

resources.

2.3.6.2 Cross-lingual Tandem features

As mentioned in previous section, the biggest challenge is that it is difficult to learn a

context dependent phone mapping with limited resources. On the other hand, feature

transformation techniques do not have such issue if the target features are well discrim-

inatively trained, such as Multiple Layer Perceptron (MLP) features [8, 87], which have

been proved to be better than the traditional acoustic features in mono-lingual applica-

tion. Due to the acoustic similarity among human languages, MLP trained by sufficient

foreign speech data can also be able to generate discriminative features for native speech

data [88, 89, 90].

Figure. 2.10 shows a typical workflow to extract cross-lingual tandem features. Foreign

MLP is trained by sufficient training data and context expanded observations are used as

48



2.4 Summary

PCA

Copy

Foreign NN
Native 

Acoustic 
feature

Log 
Posterior 
feature

Tandem 
feature

GMM-HMM

Context 
expansion

Dimension 
reduction

Foreign 
Corpus

Figure 2.10: A typical workflow to extract cross-lingual tandem features

input for best performance. When foreign MLP is well trained, foreign posterior features

can be predicted given the native features as input. In order to obtain a more Gaussian-

like distribution [14], posterior features are transformed to be log-posteriors. After that,

Principle Component Analysis (PCA) is applied to reduce the feature dimension. Finally,

the conventional acoustic features and PCA projected features are concatenated to form

the tandem features. However, cross-lingual tandem features do not always outperform

the conventional acoustic features due to the language difference. For example, tandem

features from Spanish neural networks for Chinese recognition did not perform as well as

the simple baseline [90].

2.4 Summary

In this chapter, various topics related to acoustic modelling have been reviewed. First, the

typical feature extraction process and its post-processing have been introduced. Then,

the most widely used acoustic model, HMM together with GMM as state emission prob-

abilities has been discussed in details. Although HMM is not a valid generative model
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for speech, its effective training and decoding procedures make it become the most pop-

ular acoustic model. Nevertheless, GMM/HMM using maximum likelihood estimation

has its limitations such that it usually serves as the very initial baseline system. On

top of that, various state-of-the-art techniques have been proposed to improve this base-

line system. Trajectory model aims to model the temporal correlation of the speech by

adding history or future dependency on the state emission probabilities. Although the

motivation is strongly supported, only few approaches with more computing costs have

achieved significant LVCSR improvements over the conventional system. Discriminative

training aims to relax the assumption that HMM is a generative model of speech. Instead

of maximizing the likelihood of training data, parameters are estimated by minimizing

the recognition error during discriminative training. Since discriminative training does

not increase the system complexity but significantly improves the performance, it has be-

come the standard setup of a GMM-based state-of-the-art system. So far, an assumption

has been implicitly made that the training and testing conditions are similar or training

conditions should contain some examples of testing condition. Considering the speech

variabilities, this assumption is poorly made in practice. Adaptation and adaptive train-

ing have been introduced to solve this problem, including speaker and noise variabilities.

Next, DNN/HMM has been introduced as the new state-of-the-art system. DNN can be

viewed as an implicit combination of trajectory model and discriminative training, which

also proves that the importance of those two topics. Finally, cross-lingual speech recogni-

tion technology has been introduced to solve the problem of building an ASR system with

limited resources. In the next chapter, a new implicit trajectory model will be introduced

as the main topic of this thesis.
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Chapter 3

Temporally Varying Weight

Regression for Speech Recognition

Standard Hidden Markov Model (HMM) assumes that successive observations are inde-

pendent to one another given the state sequence. This leads to a poor trajectory model

for speech. Many explicit trajectory modelling techniques have been studied in the past to

improve trajectory modelling for HMM. However, these techniques do not yield promising

improvements over conventional HMM systems where differential parameters and Gaus-

sian Mixture Model have been used implicitly to circumvent the poor trajectory modelling

issue of HMM. Recently, semi-parametric trajectory modelling techniques based on tem-

porally varying model parameters such as fMPE [16] and pMPE [36] have been shown to

yield promising improvements over state-of-the-art systems on large vocabulary contin-

uous speech recognition tasks. These techniques use high dimensional posterior features

derived from a long span of acoustic features to model temporally varying attributes of

the speech signal. Bases corresponding to these posterior features are then discrimina-

tively estimated to yield temporally varying mean (fMPE) and precision matrix (pMPE)

parameters. Motivated by the success of fMPE and pMPE, Temporally Varying Weight

Regression (TVWR), a novel semi-parametric trajectory model whose Gaussian weights

varies with time, was proposed recently [11], however, its regression parameter was op-

timized with a weak lower bound by maximum likelihood criterion alone. In this thesis,

TVWR is formulated from a formal probabilistic derivation process such that a linear

regression function is naturally shown with sound constraints and necessary assumptions;

parameter estimation algorithms for both ML and MPE training are derived in the TVWR

framework. Part of the work has been published to the proceedings of ICASSP 2012 [11],

and the remaining work has been published to IEEE/ACM transactions on Audio, Speech

and Language Processing [12].
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3.1 Introduction

Hidden Markov Model (HMM) [2] is widely used as acoustic models for automatic speech

recognition because of its efficient training and decoding algorithm. However, such effi-

ciency is built on a series of assumptions made by the standard HMM system. The two

fundamental assumptions made by HMM are: 1) the first-order state transition prob-

ability only depends on the current state; 2) the current observation is independent of

other states and observations given the current state. Considering the strong correlation

between successive acoustic features within the speech utterance, these assumptions are

poorly made. To circumvent the poor trajectory modelling capability of HMM, dynamic

features are appended to the static acoustic features so that instantaneous trajectory in-

formation can be implicitly modelled. Furthermore, Gaussian Mixture Model (GMM) [3]

has also been used to allow multiple statistics to exist within the single HMM state so

that a better resolution can be achieved by dynamically switching different component.

Since these two techniques can be easily implemented and lead to significant performance

improvements, they already become the standard configuration of the state-of-the-art

HMM-based ASR system.

However, these approaches are quite limited in terms of trajectory modelling, because

statistics are still static within the state so that only a piecewise constant trajectory can

be retained, which can be very far from the true trajectory of the speech signal. This

motivates many research works on dynamic statistics modelling by introducing more com-

plicated probabilistic models to relax such limitation. Some typical works are switching

linear dynamical system (SLDS) [35], stochastic segment model (SSM) [91, 92], factor

analyzed HMM (FAHMM) [93], polynomial segment model [24], hidden trajectory model

(HTM) [94], buried Markov model (BMM) [95] and trajectory HMM [28, 29]. Some of

them have been be formulated as a trajectory model with time varying parameters, as

described in [36]. However, these techniques have shown little success for large vocabulary

continuous speech recognition (LVCSR) [4] using maximum likelihood training. So far,

discriminatively trained time varying means (fMPE [16], region dependent linear trans-

form (RDLT) [96]) or variances (pMPE [36]), which are referred to as semi-parametric

trajectory models in [36], have achieved promising improvements on LVCSR tasks. Unfor-

tunately, the requirement of explicitly evaluating the time-varying Jacobian term due to

the time-varying feature transformation in fMPE makes the likelihood function difficult to

optimize. Therefore, maximum likelihood training of fMPE is not efficient [97]. In [97], a

fMPE-like feature transformation is estimated using ML criterion for speaker adaptation,

however, the proposed method requires multiple passes over the adaptation data and is not

suitable for large scale training. On the other hand, Minimum Phone Error (MPE) [98]

training of these models can be achieved, since the Jacobian term does not appear in the

MPE criterion. The lack of ability to efficiently perform maximum likelihood training hin-

ders the use of fMPE estimated models for tasks such as unsupervised speaker adaptation,
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which generally do not work well with discriminative training techniques. Furthermore,

both fMPE and pMPE involve quite elaborate training procedures [16, 36].

GMM is widely used to represent the HMM state emission probability density function.

With sufficiently large number of Gaussian components, GMM are able to model com-

plicated distributions. Typically, high dimensional acoustic features are used in speech

recognition systems. Therefore, a large number of data samples are required to obtain

a good estimation of GMM parameters. Tied-mixture or semi-continuous models can be

built to achieve more compact systems. In a tied-mixture system, a pool of Gaussian

components are shared by multiple HMM states. State-dependent Gaussian component

weights are used to obtain distinct state distributions. Similarly, one may also consider

the Gaussian components within each HMM state as the bases for the GMM distribution

while the component weights vary with time. Literature GMM with input-dependent

mixing weights [99] does not carry the temporal context information but aims to fit the

input data locally. It is important to remember that the key of trajectory modelling is

to use richer temporal context information. In our recent work [11], Temporally Vary-

ing Weight Regression (TVWR) was proposed to adjust the GMM weights according to

the temporal context information, which is another example of semi-parametric trajectory

models: parametric components include the static weights and regression parameters, and

non-parametric components are supported by highly compact posterior features. How-

ever, previous work only implemented Maximum Likelihood estimation based on a weak

lower bound and an expensive constrained optimization solver [100]. In this section, the

recently proposed TVWR is re-formulated starting from a formal probabilistic derivation

such that a constrained linear regression is naturally given together with necessary as-

sumptions and sound constraints. In the parameter estimation part, the implications of

TVWR formulation and assumptions are explicitly discussed such that the revised auxil-

iary functions of ML and MPE training for both the standard HMM parameters and new

TVWR parameters can be formally derived and understood.

3.2 Temporally Varying Weight Regression

In order to avoid building a regression function for the time-varying weight empirically

like fMPE, which could potentially cause Jacobian issue due to existing time-varying

distribution, in this section, temporally varying weight regression (TVWR) is derived in

a probabilistic fashion. Conventionally, Gaussian Mixture Model (GMM) [3] is used to

model the state emission probability in HMM-based speech recognition systems. Local

contextual information can be easily modelled by the conventional HMM system using a

long span of acoustic features, which is named as L-HMM system for further discussion,
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3.2 Temporally Varying Weight Regression

such that the emission probability of an HMM state j can be expressed as:

p(ξt|j) =
M∑
m=1

P (m|j)︸ ︷︷ ︸
cjm

p(ξt|j,m)︸ ︷︷ ︸
N(ξt;µ

(ξt)
jm ,Σ

(ξt)
jm )

(3.1)

where ξt = {ot, τ t}, the context variable τ t is given as:

τ t = {ot−δ, . . . ,ot−1,ot+1, . . . ,ot+δ} (3.2)

δ is the context expansion size, e.g. 4. In practice, in order to really take advantage of such

long span feature for temporal correlation modelling, covariance matrix, Σ
(ξ)
jm should not

be assumed to be diagonal any more, which however has been usually made in conventional

HMM system. However, due to the high dimensionality of {τ t,ot} and limited training

data, training and decoding of such GMM for a LVCSR system may become intractable.

Therefore, instead of directly using above GMM to model such joint distribution, the

proposed TVWR model is formulated by factorizing the joint distribution in Eq-3.1 such

as:

p(ot, τ t|j) =
M∑
m=1

P (m|j)p(τ t|ot, j,m)︸ ︷︷ ︸
cjmt

p(ot|j,m)︸ ︷︷ ︸
N(ot;µjm,Σjm)

(3.3)

This leads to a GMM distribution with stationary regular sized Gaussian components,

p(ot|j,m) = N(ot;µjm,Σjm), which may keep assuming a diagonal covariance matrix for

efficient training and decoding or apply other advanced precision matrix models [15, 101],

but temporally varying component weights, cjmt, which are obtained by scaling the time-

invariant weights, cjm, with the conditional probability of τ t, i.e. p(τ t|ot, j,m). Directly

modelling such condition dependent distribution of τ t can be very difficult due to its

complex condition variables, i.e. a combination of discrete and continuous variables,
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3.2 Temporally Varying Weight Regression

therefore simplification is performed by following derivation:

p(τ t|ot, j,m) ≈ p(τ t|j,m) (3.4)

=
N∑
i=1

p(τ t, i|j,m) (3.5)

=
N∑
i=1

p(τ t|i, j,m)P (i|j,m) (3.6)

≈
N∑
i=1

p(τ t|i)P (i|j,m) (3.7)

=
N∑
i=1

p(i|τ t)p(τ t)
P (i)

P (i|j,m) (3.8)

= Kt

N∑
i=1

p(i|τ t)
P (i)︸ ︷︷ ︸
h̃ti

P (i|j,m)︸ ︷︷ ︸
wjmi

(3.9)

such that N � dimension of τ t, where three assumptions are made:

1. P (τ t|ot, j,m) is difficult to model because of the conditional dependency on the

continuous high dimensional variable, ot. Therefore, it is assumed to be independent

of the current observation given the state/component {j,m}, as in Eq-3.4. As the

correlation of successive observations within the long span context variable, τ t can

be modelled in the later stage, the detriment of missing the central observation, ot
for each time t should be minimal.

2. Instead of modelling the expensive distribution for each component, p(τ t|i, j,m),

the dependency on {j,m} is dropped so that a global model, p(τ t|i), can be used to

represent the distribution of the contextual information, which leads to the second

assumption shown in Eq-3.7. When τ t is partitioned via the phone/state, the de-

pendency on {j,m} may be carried by the latent variable. In that case, there may

be no need of explicit dependency on {j,m}.

Kt is a component independent normalization term which could be ignored as it will

not change the relative component likelihood. Therefore, Kt need not be explicitly com-

puted during both training and testing. A discrete latent variable, i, is introduced to

“partition” the continuous space of τ t into N discrete regions so that p(τ t|j,m) can be

modelled indirectly via these discrete regions to reduce the model complexity. Specifically,

the global model, p(τ t|i), is used to establish the probabilistic partitioning relationship

between τ t and i. Component specific weights, P (i|j,m), are then estimated to obtain

the probabilistic association between i and {j,m}.
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The wjmi is the discrete probability of i given the component, which is also referred to

as the regression parameter for the time-varying weight in the thesis. The final posterior

feature p(i|τ t) or hti represents the probability of τ t belonging to the latent variable i,

while p̃(i|τ t) or h̃ti is the prior normalized posterior feature. The introduction of such a

latent variable and the necessary assumptions yields a compact distribution representation

for τ t. The choice of N is a trade-off between the system complexity and performance.

Typically, N is set to be a small number to yield a compact model. If the latent variables

are associated with the monophones or its states, then a separate probabilistic classifier,

such as NN or SVM, can be trained to provide the posterior of latent variables. One

advantage of using NN is that the long term temporal correlation of successive observations

can be discriminatively learned in a highly nonlinear fashion, which however cannot be

modelled by the conventional GMM.

Based on these assumptions, the resulting time-varying weight is given by:

c̃jmt = P (m|j)p̃(τ t|ot, j,m) (3.10)

where

p̃(τ t|ot, j,m) = Kt

N∑
i=1

p̃(i|τ t)P (i|j,m) and p̃(i|τ t) =
p(i|τ t)
P (i)

(3.11)

The following constraints are needed to ensure that the resulting joint probability, p(ot, τ t|j),
is a valid probability distribution:

M∑
m=1

cjm = 1, ∀j and cjm ≥ 0, ∀j,m (3.12)

N∑
i=1

wjmi = 1, ∀j,m and wjmi ≥ 0, ∀j,m, i (3.13)

The full derivation can be found in the Appendix.A.2. Based on the simplifications in

Eq-3.4,3.7, it turns out that it is not necessary to constrain the time-varying weights,

c̃jmt to sum to one for every time frame, t. Therefore, unlike the traditional mixture

component weight, c̃jmt does not need to have the sum-to-one property.

3.3 Parameter Estimation

In this section, parameter estimation for the time varying weights will be described.

The implications of the fundamental assumptions will be explicitly discussed in deriving

the auxiliary function and sufficient statistics for both Maximum Likelihood (ML) and

Minimum Phone Error (MPE) criteria.
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3.3 Parameter Estimation

3.3.1 Maximum Likelihood Training

The maximum likelihood estimation of the TVWR parameters can be achieved by maxi-

mizing the following log likelihood function:

LML(Λ) = log p(OT
1 |Λ) = log

∑
QT

1

p(OT
1 ,Q

T
1 |Λ) (3.14)

where OT
1 and QT

1 are the observation and state sequence respectively, Λ is the model

parameters. After applying the Baum-Welch algorithm [2], the auxiliary function can be

obtained as the strict lower bound of function in Eq.3.14:

QML(Λ, Λ̂) =
∑
t,j

γML
j (t) log p(ξt|j) (3.15)

where γML
j (t) is the state j posterior probability at time t given the current model pa-

rameter Λ̂ and the whole utterance.

Given the assumption in Eq-3.4, in order to optimize the component dependent pa-

rameters, the auxiliary functions becomes:

QML =
∑
t,j,m

γML
jm (t) log {cjmp(ot, τ t|j,m)} (3.16)

=
∑
t,j,m

γML
jm (t) log {cjmp(τ t|j,m)p(τ t|ot, j,m)} (3.17)

≈
∑
t,j,m

γML
jm (t) {log cjm + log p(ot|j,m) + log p(τ t|j,m)} (3.18)

where the revised component’s ML occupancy in TVWR is:

γML
jm (t) = γML

j (t)
ĉjmp(ξt|j,m, Λ̂)∑M
m=1 ĉjmp(ξt|j,m, Λ̂)

= γML
j (t)

c̃jmt(Λ̂)N(ot; µ̂jm, Σ̂jm)∑M
m=1 c̃jmt(Λ̂)N(ot; µ̂jm, Σ̂jm)

(3.19)

ĉjm, c̃jmt(Λ̂), µ̂jm, Σ̂jm are given by the current TVWR parameters. Hence, the standard

GMM parameters can be updated using the standard formula except using the above

revised component occupancy.

Given the assumption in Eq-3.7, in order to optimize the global model related param-

eters, the auxiliary function becomes:

QML =
∑
t,j,m,i

γML
jmi (t) log {wjmip(τ t|i, j,m)} (3.20)

≈
∑
t,j,m,i

γML
jmi (t) {logwjmi + log p(τ t|i)} (3.21)
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3.3 Parameter Estimation

where the new latent variable’s ML occupancy1 in TVWR is:

γML
jmi (t) = γML

jm (t)
ŵjmip(τ t|i, Λ̂)∑N
i=1 ŵjmip(τ t|i, Λ̂)

≈ γML
jm (t)

ŵjmih̃ti∑N
i=1 ŵjmih̃ti

(3.22)

In case of using neural networks to predict the posterior feature, the global model can

be assumed to be trained independently. However, if GMM is applied for the global

model, we can estimate the global model similarly to the standard GMM parameters.

Anyway, when the global model is assumed to be trained independently for convenience,

the auxiliary function to be optimized w.r.t. wjmi for a particular component m is:

Q
(m)
ML =

N∑
i=1

βML
jmi logwjmi, where βML

jmi =
T∑
t=1

γML
jmi (t) (3.23)

subject to constraint given by Eq-3.13. Lagrange function can be introduced to solve this

constrained optimization problem such as:

L =
N∑
i=1

βML
jmi logwjmi + λ(

N∑
i=1

wjmi − 1) (3.24)

In order to obtain the optimal solution, following equation system needs to be solved:

∂L

∂wjmi
=
βML
jmi

wjmi
+ λ = 0 (3.25)

∂L

∂λ
=
∑
i

wjmi − 1 = 0 (3.26)

Finally, the update formula for the regression parameter can be obtained as:

wjmi =
βML
jmi∑N

i=1 β
ML
jmi

(3.27)

According to this update formula, two facts can be obtained: 1) if one uninformative

posterior is shown, i.e. p(i|τ t) = P (i), ∀i, the regression value becomes component

independent
∑N

i=1 h̃tiwjmi = 1; 2) if the posterior feature is time-invariant, i.e. p̃(i|τ t) =

h̃i, ∀i, t (h̃i = hi/P (i) is not necessary to be 1), the estimated regression parameter

becomes component independent, i.e. wjmi = h̃i/
∑
h̃i,∀j,m. Both facts can keep the

relative component likelihood of TVWR the same as the standard HMM model, which

implies TVWR is able to unlearn the uninformative contextual knowledge.

1Note that the lower bound of the original TVWR [11] is strict at the first iteration because of the

same occupancy, where wjmi is initialized to be uniform, but not necessarily at the subsequent iterative

training.
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3.3 Parameter Estimation

3.3.2 Discriminative Training

Although various discriminative training criteria have been proposed for past few years [44],

in this section, only the most popular Minimum Phone Error (MPE) [98] is elaborated for

estimating TVWR parameters. The MPE criterion, which measures the expected phone

accuracy of all possible sentences s for each training sentence r, is given by:

FMPE(Λ) =
R∑
r=1

∑
s

p(Or|s,Λ)κP (s)κ∑
u p(Or|u,Λ)κP (u)κ

A(s, sr) (3.28)

where Or is sentence r specific observation sequence, A(s, sr) returns a “raw phone accu-

racy” of hypothesized sentence s given its reference sr and κ is the posterior probability

scaling factor. Instead of directly optimizing this objective function, which is very difficult,

given assumption Eq-3.4, a weak-sense auxiliary function is derived as:

QMPE =
∑
t,j,m

γMPE
jm (t) log {cjmp(ot, τ t|j,m)} (3.29)

=
∑
t,j,m

γMPE
jm (t) log {cjmp(ot|j,m)p(τ t|ot, j,m)} (3.30)

≈
∑
t,j,m

γMPE
jm (t) {log cjm + log p(ot|j,m) + log p(τ t|j,m)} (3.31)

where the revised component’s MPE “occupancy” in TVWR is:

γMPE
jm (t) =

R∑
r=1

Qr∑
q3t

γMPE
q γML

qjm(t) (3.32)

q 3 t is the phone arc containing the frame t, Qr is the set of arcs in the training sentence r,

γMPE
q is the scaled differential of the MPE objective function w.r.t. the arc log likelihood:

γMPE
q =

1

κ

∂FMPE

∂ log p(Or|q)
(3.33)

= γML
q (c(q)− cravg) (3.34)

where γML
q is the likelihood of the arc q as derived from a forward-backward likelihood

computation over the arcs, c(q) is the average accuracy A(s : q ∈ s, sr) of sentences passing

through the arc q, and cravg is the average A(s, sr) of all the sentences in the recognition

lattice for the r-th training utterance (Note that the average is obtained by the sentence

likelihood based weighted sum), and

γML
qjm(t) = γML

qj (t)
ĉjmp(ξt|j,m, Λ̂)∑M
m=1 ĉjmp(ξt|j,m, Λ̂)

≈ γML
qj (t)

c̃jmt(Λ̂)N(ot; µ̂jm, Σ̂jm)∑M
m=1 c̃jmt(Λ̂)N(ot; µ̂jm, Σ̂jm)

(3.35)
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where γML
qj (t) is the state occupancy given the current model and arc q. Thus, the standard

MPE training of the Gaussian parameters can be performed independently of wjmi.

Given the assumption in Eq-3.7, in order to estimate the regression parameters of the

global model, the auxiliary function to be optimized becomes:

QMPE =
∑
t,j,m,i

γMPE
jmi (t) log {wjmip(τ t|i, j,m)} (3.36)

≈
∑
t,j,m,i

γMPE
jmi (t) {logwjmi + log p(τ t|i)} (3.37)

where the new latent variable’s MPE “occupancy” in TVWR is:

γMPE
jmi (t) = γMPE

jm (t)
ŵjmip(τ t|i, Λ̂)∑N
i=1 ŵjmip(τ t|i, Λ̂)

= γMPE
jm (t)

ŵjmih̃ti∑N
i=1 ŵjmih̃ti

(3.38)

After dropping terms independent of wjmi, the auxiliary function can be expressed in

terms of the numerator and denominator statistics as follows:

QMPE =
∑
t,j,m,i

(
γnumjmi (t)− γdenjmi(t)

)
logwjmi (3.39)

where γnumjmi (t) and γdenjmi(t) are the MPE “occupancy counts” for the numerator and de-

nominator models, respectively.

However, since optimizing the above function could cause zero weight update [44], the

revised auxiliary function for a particular component m is given as follows:

Q
(m)
MPE =

N∑
i=1

βnumjmi logwjmi −
βdenjmi

C

(
wjmi

worigjmi

)C

(3.40)

where the sufficient statistics are given by:

βnumjmi =
T∑
t=1

γnumjmi (t) and βdenjmi =
T∑
t=1

γdenjmi(t) (3.41)

worigjmi is the current parameter, and C > 0 is a smoothing constant for controlling the

learning speed. After this, the same algorithm for updating GMM weights proposed in

[44] can be employed to solve the above constrained optimization problem. Particularly, if

C = 1, Lagrange multiplier can be applied for a faster implementation (see Appendix.A.3).
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3.3.3 I-Smoothing

Typically, the regression parameters are first estimated using maximum likelihood crite-

rion before performing discriminative training. In some cases, due to insufficient training

data, I-Smoothing [98] is used to ensure robust discriminative estimation of the parame-

ters. The same I-Smoothing technique used for the standard weight update can also be

extended to the regression parameters of TVWR. The auxiliary function given in Eq-3.40

for discriminative training of wjmi can be interpolated with the ML auxiliary function

such as

Q̂
(m)
MPE =

N∑
i=1

βnumjmi logwjmi −
βdenjmi

C

(
wjmi

worigjmi

)C

+ τR
N∑
i=1

βML
jmi∑N

i=1 β
ML
jmi

logwjmi (3.42)

=
N∑
i=1

β̂numjmi logwjmi −
βdenjmi

C

(
wjmi

worigjmi

)C

(3.43)

where the revised occupancy is given as

β̂numjmi = βnumjmi + τR
βML
jmi∑N

i=1 β
ML
jmi

(3.44)

τR is the smoothing constant to control the learning rate of wjmi. In general, I-Smoothing

can improve the generalization of the parameters, which may lead to a better performance.

3.4 Comparison to fMPE

It is interesting to note that fMPE [16] can also be recast as a similar time-varying weight

structure given in Eq-3.3. Given the formulation of fMPE:

yt = ot + Mht (3.45)

where ht is the high dimensional posterior feature vector 1, whose dimension can be hun-

dreds of thousands, and M is the projection matrix to learn. The state output probability

in fMPE is presented as:

p(yt|j) =
M∑
m=1

cjmN(yt;µ
(y)
jm ,Σ

(y)
jm)

=
M∑
m=1

cjmtN(ot;µ
(y)
jm ,Σ

(y)
jm) (3.46)

1Note that ht is dependent on both ot and τ t in fMPE. However, in TVWR, ht is derived from τ t

only.
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where

cjmt = cjm exp
{

hTt MTΣ
(y)−1
jm

(
µ

(y)
jm − ot −

1

2
Mht

)}
(3.47)

Since it is impractical to estimate such high dimensional projection matrix using Newton’s

method, a steepest gradient descent method is applied such as:

Mij = Mij + αij
∂FMPE

∂Mij

(3.48)

where Mij is the row-i and column-j element of matrix M, αij is the learning rate. Typ-

ically, the learning rate of gradient method has to be defined to satisfy the Wolfe Condi-

tions [22], however, it is very expensive to evaluate the objective function for each learning

rate, which requires a go-through of the whole training data. In practice, fMPE [16] uses

an approximated approach by separating the gradient based on its sign for each frame

such as:

αij =
σi

E(pij + nij)
(3.49)

where σi is the standard deviation of i-th feature dimension, E is the constant to control

the learning rate for the matrix, which has to be manually adjusted by several trials,

positive and negative gradients are accumulated as part of sufficient statistics during

training, respectively:

pij =
T∑
t=1

max(
∂FMPE

∂Mij

, 0) (3.50)

nij =
T∑
t=1

max(−∂FMPE

∂Mij

, 0) (3.51)

Although these two state output probabilities given in Eq-3.3 and Eq-3.46 have sim-

ilar parametric structure, the physical meanings of the fundamental parameter are very

different:

1. In the TVWR formulation, time-varying attributes are incorporated as an indepen-

dent factor such that the Gaussian components are unaffected by the time-varying

formulation. On the other hand, fMPE formulation leads to a time-varying Jacobian

in the likelihood function. Therefore, TVWR parameters can be easily estimated

using both the ML and MPE criteria. However, fMPE parameters cannot be effi-

ciently estimated using the ML objective function because sufficient statistics cannot

be accumulated due to the time-varying Jacobian term. The work in [97] attempts

to apply ML estimation to fMPE-like model to perform speaker adaptation, which

can be tractable as the amount of adaptation data is usually small. This is not an

issue with fMPE itself because the time-varying Jacobian terms cancel out in the

MPE objective function.
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2. The Gaussian means/variances in these two methods are estimated differently:

fMPE is based on the nonlinear transformed features while TVWR is based on the

original features. There are several advantages in keeping the Gaussian means/variances

in the original feature space. A) The Gaussian means/variances and its weights are

independent such that the changes in the regression parameters (and hence the time-

varying weights) do not affect the Gaussian means and variances. Therefore, there

is no need to go through 3 passes over the data to accumulate the sufficient statistics

like fMPE. B) It is possible to apply model-based noise compensation techniques,

such as VTS [58] and PMC [57]. This is not possible for fMPE since it is hard

to derive representations for the noise impact on the speech parameterized by non-

linear transformed features [102]. Therefore, only feature enhancement technique,

such as Stereo-based Stochastic Mapping (SSM) [103], can be applied to improve

the noise robustness of fMPE. However, stereo training data is not always available

in practice.

Although some uninformative posterior, i.e. the one with hti = P (i), could produce zero

gradient at those time-frames during training because of the indirect differential of fMPE,

the parameter update formula of fMPE is based on the overall gradient such that zero

gradient information is buried during decoding. In an extreme case, if all the posterior

features during decoding are uninformative, which are not during training, TVWR can

still perform as good as the standard system while fMPE will become totally messed up.

This inconsistency between training and decoding in fMPE would lead to much more

degradation than TVWR if the deployment environment is different from the training

environment.

3.5 Experimental Results

In this section, the experimental results are conducted for speaker independent Large Vo-

cabulary Continuous Speech Recognition (LVCSR) on Wall Street Journal corpus (SI284

WSJ0+WSJ1), which contains about 81 hours of training speech data (37k utterances and

284 speakers). The 20k open vocabulary recognition task (NIST Nov’92 WSJ0) with 333

utterances is used as test set for evaluation. All the acoustic models used in this work are

based on decision tree state-clustered triphone systems with 5769 distinct states. Each tri-

phone unit is modelled by a 3-state left-to-right HMM. These acoustic models are trained

on 39 dimensional MFCC features, including 12 static coefficients, energy and the first

two differentials. All the reported recognition results are based on a bigram full decoding

followed by a trigram lattice-rescoring using HTK [5].

The posterior feature, p(i|τ t) used in TVWR is synthesized by a 3-layer feedforward

neural network 1: the hidden layer consists of 1000 neurons with sigmoid activation func-

1Using ICSI quicknet software package, http://www.icsi.berkeley.edu/speech/qn.htm
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tion; the input to the neural network is a sequence of MFCC features spanning a window

of 8 frames. The neural network was trained using frame-based cross-entropy criterion to

predict 120 monophone states with softmax activated output units. The first 30k utter-

ances of this corpus are used for training and the rest are used for cross validation. In

this report, monophone-state posterior features will be used to regress the time-varying

weight for TVWR system. The posterior feature used in fMPE is 5769 tied-state posterior,

which is obtained for each frame from a well estimated HMM system with one mixture

per state. Gaussian clustering and minimum posterior threshold, i.e. 0.01 in this report,

were used for efficient calculation. Acoustic context expansion based on the approach

presented in [16, 36] was applied to provide richer temporal information. Eventually, the

final posterior feature used in fMPE is with context expansion window (±3) and spanning

19 frames window. Preliminary results showed that higher dimension of posterior feature

caused over training issue in this specific task.

TVWR system is initialized with wjmi = 1
N

if it starts from a standard HMM sys-

tem, which is mathematically equivalent to the corresponding HMM system with static

weights only. In this experiment, the prior probability was also assumed as P (i) = 1
N

for convenience. In case of MPE training of TVWR systems, it is possible to obtain the

initial model using either an ML-trained HMM or ML-trained TVWR system.

3.5.1 ML Training of TVWR

In case of ML training, ML-trained HMM systems with various number of components

were obtained as the baseline by 8 iteration estimations. After that, ML-trained TVWR

systems were obtained by another 4 iteration estimations with all the model parameters

updated. As a reference, L-HMM systems using the long span features, i.e. 39 × 9

dimensional features, were estimated based on the alignment of 7th iteration of respective

HMM systems for efficient training; TVWR0 systems with only regression parameters

updated were also estimated for a better comparison. As the time varying normalization

term Kt is not explicitly evaluated, the true likelihood during ML training of TVWR

is not presenting. Therefore, only the recognition results shown in Table. 3.1 are to be

discussed.

L-HMM systems with dramatically more parameters are without over-training issue

and performs slightly better than the HMM baseline system, which tells that many Gaus-

sian parameters of L-HMM are redundant if only with diagonal covariance matrix. When

compared to the HMM baseline system, TVWR shows consistently significant 1 improve-

ments but various amount for different system complexity. Since GMM is one example

of implicit trajectory models, which can offer a better resolution by switching differ-

ent components within the state, the improvement by TVWR decreased as expected.

However, GMM is a considerably weak trajectory model as it is estimated based on the

1Statistical significance were computed at p ≤ 0.05 using NIST SCTK Scoring Tookit.
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HMM assumptions. Explicitly modelling the dependency of successive observations us-

ing neural networks gives more accurate information for the speech recognition. On the

other hand, TVWR0 achieved consistent improvement over the baseline system but is

marginally inferior to TVWR. These tell that the Gaussian parameters in TVWR are

indeed the statistics for describing the distribution of the original features and TVWR is

able to improve the forward-backward alignment accuracy of the standard HMM system,

respectively. When a very large number of components are applied, i.e. 64 mixtures

per state, both HMM and TVWR systems become suffering from the over-training issue.

However, the fact that TVWR is able to improve the over-trained HMM system tells that

re-adjusting GMM weights is not just to build a non-stationary distribution but also to

correct the probability from a over-trained model.

#Gaussian WER(%)

per state HMM L-HMM TVWR0 TVWR

2 14.83 14.12 12.58 12.09

4 12.33 12.16 11.32 11.06

8 10.70 10.88 10.07 9.96

16 10.38 10.30 9.71 9.60

32 9.82 9.73 9.39 9.39

64 10.67 9.76 9.75 9.73

Table 3.1: Comparison of 20k task performance for ML trained HMM and TVWR systems.

3.5.2 MPE Training of TVWR

All the experiments of discriminative training under MPE criterion are conducted based

on systems with 16 Gaussian components per state 1 I-Smoothing using ML as the prior

is applied to all the Gaussian parameters and regression parameters. The smoothing

constants are chosen to improve training stability. The training lattices were generated

using a unigram language model trained by a large number of text files from the corpus,

excluding the acoustic training sentences. Before moving on to discuss the performance

of MPE trained TVWR, several related systems are described in Table. 3.2. The initial

models for these system are given. For systems with MPE training, τ I , τW and τR are also

given for I-smoothing Gaussian parameters, GMM static weights and TVWR regression

parameters, respectively.

1Note that MPE baseline system with 32 mixtures per state has difficulty to achieve significant gain

over the ML-trained HMM system due to the insufficient training data for discriminative training.
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System Starting point I-Smoothing

MPE HMM.ML τ I = 100, τW = 10

fMPE HMM.ML -

fMPE+MPE fMPE τ I = 100, τW = 10

TVWR.MPE0 TVWR.ML τW = 10, τR = 0

TVWR.MPE1 HMM.ML τ I = 100, τW = 10, τR = 10

TVWR.MPE2 TVWR.ML τ I = 100, τW = 10, τR = 0

Table 3.2: Different discriminatively trained system configuration descriptions.
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Figure 3.1: Comparison of MPE criterion for each discriminatively trained systems.

Next, the improvements of MPE criteria with training iterations for various systems

are plotted in Figure. 3.1. There are several important information that can be observed

from this figure:

• Discriminative training achieved consistent improvements in terms of MPE criterion

with increasing training iterations for all the systems

• Previously, it was shown that TVWR outperformed the ML-trained HMM system

for ML training. Therefore, systems using TVWR.ML as the starting point have a

better initial MPE objective function value.

• After discriminative training of all parameters, all systems eventually outperformed

the baseline MPE system in terms of the MPE criterion.

• For fMPE and TVWR.MPE0, the standard Gaussian parameters were not esti-

mated using MPE. The final MPE scores for these systems were significantly lower
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than the other systems. Nevertheless, TVWR.MPE0 achieved consistently higher

MPE scores compared to fMPE. Note that the comparison of these two systems

indicates the ability to model the time varying attributes: fMPE models them using

time varying mean while TVWR.MPE0 models the time varying Gaussian weights.

Note that the ability to estimate TVWR parameters using the ML criterion gives

TVWR.MPE0 a better head start.

• Usually, better MPE score is a good sign of better test performance, so this figure

already shows some potential capabilities of discriminatively trained TVWR.
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Figure 3.2: Comparison of 20k task for various discriminatively trained systems.

The recognition results of 20k tasks for different discriminatively trained systems are

reported in Figure. 3.2. When Gaussian parameters are estimated by maximum likelihood,

fMPE shows comparable performance to the MPE-trained HMM system and significantly

better than the ML-trained HMM system, which tells that trajectory modelling is an

important factor for a more accurate acoustic model. Similar to fMPE, TVWR.MPE0

with ML trained Gaussian parameters, however, shows 0.6% absolute further improvement

over fMPE. These results show that the discriminative training algorithm of TVWR is

well implemented and indeed able to obtain a promising improvement over the ML trained

TVWR system. It is also interesting to note that TVWR.MPE0 can show a comparable

performance to fMPE+MPE, which shows discriminatively estimated TVWR regression

parameters can be very powerful. On the other hand, the gain of discriminative training

TVWR parameters without updating Gaussian parameters could benefit noise robust

speech recognition if model compensation approaches are applied.
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After all the model parameters are discriminatively estimated, TVWR.MPE2 shows

0.9% absolute improvement over the MPE-trained HMM system; it is also marginally

better performance than fMPE+MPE, which would be expected as both of them used

the similar posterior features to model the same non-stationary attributes of the speech.

On the other hand, considering the much simpler formulation and training procedures,

TVWR can a better alternative of fMPE for temporal correlation modelling in practice.

When comparing different starting points, TVWR.MPE2 shows much better performance

than TVWR.MPE1, which suggests the discriminative training of TVWR following its

ML training could significantly improve the robustness and performance of the final model

without I-Smoothing. Lastly, the behavior of discriminative updating Gaussian param-

eters is slightly different for fMPE and TVWR: TVWR.MPE2 only slightly better than

TVWR.MPE0, while fMPE+MPE is much better than fMPE. Such difference tells that

most gains of TVWR are from the regression parameter, while fMPE heavily depends on

the Gaussian parameters.

3.5.3 I-Smoothing for TVWR

In order to find out the effect of I-Smoothing for TVWR parameters, TVWR.MPE1

systems with the same τ I = 100 but various τR are iteratively evaluated based on the 20k

test task, as shown in Figure. 3.3. When no smoothing is applied (τR = 0), the system

achieves the lowest WER at the first iteration, but fluctuates iteratively and gives worst

results in the end. After applying I-smoothing, the learning rate is reduced but a more

consistent WER reduction can be achieved. Eventually, after 4 iterations, both τR = 10

and τR = 20 lead to a much better performance. These results show that I-Smoothing is

a very important factor for discriminative training of TVWR parameters to improve its

generalization, particularly in case of starting from a standard HMM system.
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Figure 3.3: Iterative evaluation of TVWR.MPE1 with different I-Smoothing constant τR.
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3.5.4 Noisy Speech Recognition

In order to investigate the feasibility of TVWR on more challenging data, noisy speech

recognition on Aurora 4 [104] is evaluated. In this task, only the multi-condition training

data with 14 hours of speech data with 16k sampling rate are used, including 6 noises

artificially corrupted data at 15 dB average SNR and various microphones. MFCC features

contains 12 static cepstral coefficients, zero-th coefficient and first two derivatives. For

a better performance, cepstral mean and variance normalization (CMVN) is applied for

feature enhancement. The baseline is a decision tree state-clustered triphone system with

3226 states and 16 mixtures per state. The fMPE baseline is estimated based on the tied-

state posterior feature with a ±3 context expansion window. The same monophone-state

posterior feature predicted from neural networks with the same configuration as the first

experiment is used for TVWR system. Evaluation data includes 14 test sets with 330

utterances per set for 5k closed vocabulary recognition task (NIST Nov’92 WSJ0), which

are partitioned into four sets: set A is clean, set B is corrupted by 6 types of noise, set

C has channel distortion, and set D has both channel distortion and 6 additive noises.

The average SNR in the noise corrupted test sets is 10 dB. The results in Table. 3.3

are obtained using a bigram full decoding followed by a trigram rescoring. Note that

all TVWR systems will update both HMM parameters and regression parameters. I-

smoothing constants used here are τ I = 50, τW = 10, τR = 10.

System A B C D Average

ML 8.41 13.07 14.83 26.62 18.67

TVWR.ML 6.65 11.70 13.71 26.09 17.65

MPE 7.10 11.79 13.45 26.01 17.67

fMPE+MPE (S1) 6.15 11.19 12.48 25.32 16.98

TVWR.MPE (S2) 5.75 10.88 12.55 25.12 16.74

CNC (S1+S2) 5.94 10.49 11.92 24.08 16.09

Table 3.3: Aurora 4 recognition results for various multi-condition trained systems.

Our ML-trained HMM baseline achieved an average WER performance of 18.67%

using trigram (23.03% using bigram). The bigram result is comparable to the 21.4%

performance reported in [105], which used the ETSI advanced front-end (AFE) [106].

When ML training is performed, TVWR.ML shows promising improvements on the test

set A, B and C over the baseline system, but relatively small gain for the speech with both

channel distortion and additive noise. Since half of the training data is without channel

distortion and the other half with channel distortion from many different microphones,

TVWR system may have difficulties learning the speech pattern from all microphones due

to the limited training data. After MPE training, MPE-trained HMM system gave similar
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performance compared to TVWR.ML. Furthermore, both fMPE+MPE and TVWR.MPE

outperforms the MPE system. Again, we observe larger gains on set A, B and C. Overall,

TVWR gave a consistent absolute WER reduction of about 1% using both ML and MPE

training.

Despite the similar performance of fMPE+MPE (S1) and TVWR.MPE (S2), the Con-

fusion Network Combination (CNC) [107] of the two systems gave a further absolute WER

reduction of 0.65%. However, CNC does not yield further improvement on set A (clean),

which is possibly because fMPE and TVWR learned some similar time-varying informa-

tion due to clear pattern of clean speech. These results imply that these two systems are

considerably different in modelling more noisy speech data.

3.6 Summary

This chapter has introduced an implicit trajectory model using Temporally Varying

Weight Regression (TVWR) to learn the importance of Gaussian components under dif-

ferent acoustic contexts. This allows the temporally varying attributes of speech to be

better recognized. Instead of modelling the temporal correlations directly using a long

span of acoustic features, contextual information is implicitly incorporated into TVWR

using posterior features. As a result, TVWR is able to model non-stationary GMM dis-

tributions whose temporally varying Gaussian component weights are obtained through

regression with the posterior features. Although TVWR is similar to fMPE in terms

of modeling time-varying model parameters using posteriors derived from a long span

of acoustic features, the underlying formulation and model parameterization are differ-

ent. Specifically, TVWR follows a proper probabilistic formulation that yields a much

simpler parameter estimation compared to fMPE. Moreover, both maximum likelihood

and discriminative training parameter estimation formulae can be derived. Experiments

were conducted on the Wall Street Journal (CSR-WSJ0+WSJ1) corpora for 20k open

vocabulary continuous speech recognition and the Aurora 4 corpus for 5k closed vocab-

ulary noisy speech recognition. Experimental results show that TVWR achieves better

performance compared to the standard HMM system for both maximum likelihood and

minimum phone error training. Moreover, the discriminatively trained TVWR models

also achieved comparable (or marginally better) performance compared to fMPE.
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Chapter 4

Multi-stream TVWR for

Cross-lingual Speech Recognition

Building a robust Automatic Speech Recognition (ASR) system with limited resources

is a very challenging task due to many speech variabilities in practice. Multilingual and

cross-lingual speech recognition techniques are commonly used for this task. This section

investigates Temporally Varying Weight Regression (TVWR) method for cross-lingual

speech recognition. TVWR uses posterior features to implicitly model the long-term

temporal structures in acoustic patterns. By leveraging on the well-trained foreign recog-

nizers, high quality monophone/state posteriors can be easily incorporated into TVWR

to boost the ASR performance on low-resource languages. Furthermore, multi-stream

TVWR is proposed, where multiple sets of posterior features are used to incorporate

richer (temporal and spatial) context information. Finally, a separate state-tying for the

TVWR regression parameters is used to better utilize the more reliable posterior features.

Experimental results are evaluated for English and Malay speech recognition with limited

resources. By using the Czech, Hungarian and Russian posterior features, TVWR was

found to consistently outperform the tandem systems trained on the same features. This

work has been published to the proceedings of ASRU workshop 2013 [13].

4.1 Introduction

Recently, multilingual and cross-lingual speech recognition has attracted many researchers

due to its challenges and practical applications. This task is particularly designed to build

an Automatic Speech Recognition (ASR) system with limited resources, particularly lim-

ited transcribed speech data. Although the number of tied triphone states can be reduced

to provide sufficient training data for each physical state, the performance could be dra-

matically decreased due to the poor modelling of acoustic contexts. When the accuracy

of the ASR system is low, it becomes difficult to utilize massive un-transcribed speech
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data. In order to improve the performance of an ASR system with limited resources,

researchers began to investigate borrowing the rich resources from other languages due to

the similar acoustic characteristics among human languages. For convenience, language

with limited resources will be named as native (target) language, while others as foreign

(source) language.

One popular approach is to train a multilingual ASR system [78, 80, 81, 82] by pooling

resources from all related languages. The ASR system for a target language can be

easily obtained by defining a new lexicon using the universal phone set. For a better

performance, language adaptation is also applied by optimizing small number of language

specific parameters. However, the complexity of the resulting multilingual system may be

very high in order to model all the different contexts and language specific patterns,

which can lead to inefficient decoding. Other researchers have interests in finding a

probabilistic phone mapping [83, 84, 85, 86, 108] between the source language and target

language. Thus, it may be applied to adapt the acoustic models before decoding [85,

86], or translate the foreign phone sequence after decoding [83, 84, 108]. The biggest

challenge of phone mapping is that it is difficult to robustly map context dependent

phone sets given very limited resources. Lastly, tandem features [88, 89, 90] based on

well-trained foreign-language neural networks phone recognizers have shown promising

results for cross-lingual speech recognition. However, not all tandem features from foreign

language can outperform the native acoustic features, e.g. tandem features from Spanish

neural networks for Chinese recognition does not perform as good as baseline [90].

Temporally Varying Weight Regression [11] was recently proposed to improve the

temporal correlation modelling for Hidden Markov Models (HMM). It extends the con-

ventional HMM by incorporating posterior features trained on long-span acoustic fea-

tures to model temporally-varying GMM weights. In this chapter, TVWR is applied to

cross-lingual speech recognition by leveraging on well-trained foreign monophone/state

recognizers to produce high quality posterior features. In addition, multi-stream TVWR

is proposed where multiple sets of posterior features are used to incorporate richer spatial

and temporal context information. Finally, a separate tree-based state-tying is applied

to the TVWR regression parameters to better exploit the more reliable foreign posterior

features.

4.2 Multi-stream TVWR

In the conventional TVWR setup, monophone/state is introduced to represent the la-

tent variable i such that the system complexity can keep relatively low. Since foreign

monophone/state posterior features are used, the performance improvement might be

limited by the language differences. In order to further improve the performance under

limited-resource condition, multi-stream TVWR is proposed to introduce richer context
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information to regress the time-varying weights. Specifically, i is now a context-rich latent

variable. Without losing generalization, i is defined as a structured variable:

i = {i1, i2, . . . ic . . . iC} (4.1)

N = N1 ×N2 · · ·Nc · · ·NC (4.2)

where i is now composed of C context-specific ”sub-variables” and Nc is the set of the c-th

sub-variable, ic. This can be viewed as employing multiple partition strategies such that

a much higher resolution of the acoustic space can be obtained for better discrimination.

However, even with C = 2 or 3, the resulting set N can be very large. Therefore, it is

difficult to estimate the joint posterior probability and there will be a lot of regression pa-

rameters to estimate. To circumvent this problem, the context-specific latent variables are

assumed to be independent such that the joint posterior probabilities, P (i1, . . . , iC |τt), and

the corresponding regression parameters, P (i1, . . . , iC |j,m), can be factorized as follows:

p(i1 . . . iC |τ t) ≈ p(i1|τ t) · · · p(iC |τ t) (4.3)

p(i1 . . . iC |j,m) ≈ p(i1|j,m) · · · p(iC |j,m) (4.4)

This assumption significantly reduces the system complexity and makes the TVWR for-

mulation tractable. This leads to a multi-stream TVWR where Eq.3.9 can be rewritten

as:

p̃(τ t|ot, j,m) ≈ Kt

C∏
c=1

∑
ic∈Nc

p̃(ic|τ t)p(ic|j,m) and p̃(ic|τ t) =
p(i|τ t)
P (ic)

(4.5)

This formulation can be illustrated by a system diagram in Figure.4.1, where the time-

varying weight is obtained by a product of multiple regressions. Note that multi-stream

TVWR is different from multi-stream HMM system. In multi-stream HMM system,

each state has multiple stream acoustic features and each stream is represented by a

GMM, while every state in multi-stream TVWR has only one stream acoustic feature

represented by a single GMM. In the following subsections, multi-stream TVWR will be

used to incorporate both temporal and spatial contexts.

4.2.1 Temporal Context Expansion

In continuous speech, the sound of a phone can be easily influenced by its preceding and

succeeding phones, a phenomenon called co-articulation, this correlation can be modelled

by introducing a cross word triphone/state. However, this important information is lost

when using monophone/state to represent the latent variable i in TVWR. Therefore, a

temporal context dependent latent variable i is introduced by setting C = 3 such that

i1, i2, i3 can be used to indicate left, middle and right monophone/state of current frame,

respectively. Since these “sub-variables” are from the same monophone/state set but
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Figure 4.1: A system diagram of multi-stream TVWR for cross lingual speech recognition.

with different position information, X1, X2, X3 are literally the same without considering

context position.

Instead of using three separate recognizers to produce three sets of posteriors, only

one recognizer is used to predict the middle monophone/state posterior probabilities.

The corresponding left and right posterior probabilities are derived from the sequence

of middle monophone/state posterior probabilities as follows: starting from the current

frame, search left and right until the identity of the monophone/state with the largest

posterior probability changes and use the corresponding posterior probabilities as the left

and right posteriors. As a results, the left posterior feature, p(i1|τ t) is given by p(i2|τ t−φ)

where:

arg max
i2

p(i2|τ t−φ) 6= arg max
i2

p(i2|τ t) (4.6)

arg max
i2

p(i2|τ t−k) = arg max
i2

p(i2|τ t) k ∈ [1, φ) (4.7)

At the same time, the right posterior feature, p(x3|τ t) can also be obtained in a similar

way. Since silence does not need context, its left and right posteriors are assumed to be

the same as the middle posteriors.
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4.2.2 Spatial Context Expansion

Alternatively, multiple monophone/state predictors from different foreign languages can

be applied to build a spatial context. In general, multiple foreign languages with more

differences can lead to a better discrimination, since they are more likely to be com-

plementary for each other. Spatial context can be more useful when each individual

foreign language does not provide a good prediction of monophone/state posterior fea-

tures. Therefore, C in Eq.4.5 will represent the total number of foreign languages to be

applied, while Nc is the monophone/state set for c-th language.

4.2.3 Parameter Estimation

After ignoring independent terms, the auxiliary function w.r.t. regression parameters can

be written as:

Q(Λ, Λ̂) =
∑
t,j,m

γjm(t) log
( C∏
c=1

∑
ic∈Nc

p(τ t|ic)P (ic|j,m)
)

≥
∑

t,j,m,c,ic

γjmic(t)
(

logP (ic|j,m) + log p(τ t|ic)
)

(4.8)

where the component occupancy is now given as:

γjm(t) = γj(t)
c̃jmt(Λ̂)p(ot|j,m)∑M
m=1 c̃jmt(Λ̂)p(ot|j,m)

(4.9)

γj(t) is the state occupancy at time t given the current model Λ̂, ĉjm(t) is the current

time-varying weight of multi-stream TVWR and

γjmic(t) = γjm(t)
P (ic|j,m, Λ̂)p(τ t|ic)∑
ic∈Nc p(ic|j,m, Λ̂)p(τ t|ic)

(4.10)

≈ γjm(t)
P (ic|j,m, Λ̂)p̃(ic|τ t)∑

ic∈Nc P (ic|j,m, Λ̂)p̃(ic|τ t)
(4.11)

The optimal estimation can be then obtained by using Lagrange multiplier such that:

P (ic|j,m) =

∑
t γjmic(t)∑

ic∈Nc
∑

t γjmic(t)
∀c ∈ C, ic ∈ Nc (4.12)

Note that this update formula is similar to applying the standard TVWR estimation

(by setting C = 1) to each stream independently, except that the component occupancy

is calculated using the multi-stream TVWR system when performing forward-backward

calculations in the E-step of the Baum-Welch training.

75



4.3 State Clustering for Regression Parameters

4.3 State Clustering for Regression Parameters

Complexity of a context dependent HMM system is usually controlled by using the deci-

sion tree state clustering technique [109]. When training a system with limited resources,

the number of distinct triphone state clusters is kept small to ensure robust estimation of

all the parameters associated with the tied states. However, this may limit the potential

of the TVWR system where the regression parameters cannot take full advantage of the

high quality posterior features. To alleviate this problem, a separate tree-based clustering

algorithm is applied to the TVWR regression parameters so that the model complexity

with respect to the regression parameters can be controlled independent of the regular

GMM parameters.

4.3.1 Tree-based State Clustering

Decision Tree-based state clustering [109] has been widely used to control the com-

plexity of a triphone system due to the limited training data and massive triphone

states/components. The number of clustered states needs to be carefully chosen to bal-

ance the phone disambiguation and model robustness due to limited data. As posterior

features have different characteristics to conventional acoustic features, the number of

clustered states or state clustering strategy for them can be very different. In order to

emphasize such difference, a separate state clustering approach is proposed to cluster the

states for regression parameters. With an additional decision tree for state clustering,

better disambiguation for phones may be achieved as illustrated in Figure.4.2.

Due to the limited training data, state clustering algorithm will be performed on the

system with only one mixture per state. The essence of the tree-based state clustering

algorithm is the derivation of the likelihood increase as a result of splitting a state cluster

into two. This allows the appropriate questions to be chosen for each node when construct-

ing the decision tree. The following state-clustering derivation for the TVWR regression

parameters is largely based on the framework given in [110]. The auxiliary function to be

maximized with respect to the TVWR regression parameters can be written as:

Q(Λ, Λ̂) =
∑
t

∑
j∈J

γj(t) log
(∑
i∈N

p(τ t|i)P (i|j)
)

(4.13)

≥
∑
t

∑
j∈J

∑
i∈N

γji(t)
(

logP (i|j) + log p(τ t|i)
)

(4.14)

=
∑
t

∑
j∈J

∑
i∈N

γji(t) logP (i|j) +K(J) (4.15)

where γj(t) is the state occupancy at time t given the current model Λ̂ and transcription,

J is a state cluster including all triphone states, γji(t) can be similarly obtained by setting
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Figure 4.2: A demonstration of disambiguating different phones with an additional deci-

sion tree.

m = 1 in Eq-3.22, and

K(J) =
∑
t

∑
j∈J

∑
i∈N

γji(t) log p(τ t|i) (4.16)

the optimal solution of P (i|j) can be similarly found by setting m = 1 in Eq-3.27. Assum-

ing that the alignment, γji(t) is unchanged during state clustering, the auxiliary likelihood

function for a state cluster S can be obtained as:

Q(S) =
∑
i∈N

∑
j∈S

βjP (i|j) logP (i|S) +K(S) (4.17)

where βj =
∑

t,i γji(t) is the state occupancy, and the regression parameter for cluster S

is given as

P (i|S) =

∑
j∈S βjP (i|j)∑

i∈N
∑

j∈S βjP (i|j)
(4.18)

the question is selected to maximize the following function:

∆Qq = Q(Sy(q)) +Q(Sn(q))−Q(S) (4.19)
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where S is the initial state cluster, Sy(q), Sn(q) are the split state clusters for “yes” and

“no” answers, respectively. Given the fact that

K(Sy(q)) +K(Sn(q))−K(S) = 0 (4.20)

the objective function, ∆Qq will only depend on the regression parameters of each cluster,

P (i|S), P (i|Sy(q)) and P (i|Sn(q)).

4.3.2 Implementation Details

After introducing a second state clustering strategy, the physical states are now defined

by two independent sets of parameters: one is associated to the Gaussian parameters

and another is to the regression parameters. Therefore, two physical states may share

the same Gaussian parameters, which however will be recognized as a single physical

state for caching the state emission probabilities in HTK toolkit. During training and

decoding of the conventional TVWR, if one logical state is found to be accessed before, the

cached state emission probability will be used directly. After introducing a second state

clustering, we have to check whether the state emission probability has been calculated

considering both static Gaussian emission probabilities and time-varying GMM weights.

Therefore, the caching strategy in the HTK toolkit has to be modified according to the new

definition of physical state after introducing a second state clustering for the regression

parameters. However, for convenience, we can simply change the state-level cache to the

component-level cache such that there is no need to verify whether two logical states are

connected to the same physical state.

4.4 Experimental Results

The experiments are conducted for two native (target) language recognition tasks: 1)

5k close vocabulary English speech recognition, 2) 22k open vocabulary Malay speech

recognition. The full English dataset (WSJ0) contains 7k+ utterances (15 hours) with 84

speakers for training, and 330 utterances with 8 speakers for testing, while the full Malay

dataset contains 35k+ utterances (74.5 hours) with 28 speakers for training, and 600

utterances with 6 speakers for testing. Both English and Malay corpora are reading speech

recorded in clean environments. 39-dimension MFCC features are used for both corpora,

including 13 static parameters and first two derivatives as dynamic parameters. A 3-state

left-to-right HMM is applied as the acoustic model for each triphone, and tree based

state clustering is applied to cluster triphone states. To perform the recognition, both

use full bigram decoding and trigram lattice rescoring, while four-gram lattice rescoring

is additionally employed for Malay recognition.
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For cross-lingual experiments, an 1.2 hours of English subset are extracted, including

500 utterances with 5 speakers. 6 hours of Malay subset are extracted, including 3k utter-

ances with 6 speakers. Three foreign (source) language resources are employed, including

Czech (CZ), Hungarian (HU) and Russian (RU). Specifically, three foreign phone recogniz-

ers [111] well trained by respective telephone speech data are employed. For clarification,

English, Malay, CZ, HU, RU have 40, 33, 45, 61, 52 monophones, respectively. In order to

use these three foreign phone recognizers, all speech waveform files were down-sampled to

8kHz, which are also used to extract acoustic features for consistency. In our experiments,

phone recognizers were used to generate respective monophone/state posterior features

instead of monophone/state sequence.

4.4.1 Baseline Mono-lingual Recognition

English HMM fullset baseline system is obtained with 3151 tied states and 16 mixtures

per state; Malay HMM fullset baseline is estimated with 5043 tied states and 16 mixture

per state. Due to limited data, English HMM subset baseline contains only 445 tied states

and 8 mixtures per state, while Malay HMM subset baseline contains 1178 tied states and

4 mixtures per state, which will be the default number of components for all subsequent

experiments if not mentioned explicitly. Performance degradation was observed by further

increasing the number of mixtures using Maximum Likelihood criterion. In order to

build a TVWR subset baseline, two neural networks are estimated to predict English and

Malay monophone posterior features. Both neural networks are obtained by training a

3-layer neural network using the subset and quicknet 1 with δ = 4 and 1000 hidden units.

TVWR subset baseline is estimated by starting from respective HMM subset baseline

and using respective monophone posterior features. As shown in Table. 4.1, dramatical

performance degradation was observed on both HMM and TVWR subset baseline systems.

Although TVWR obtained consistent improvements over respective HMM subset baseline,

its performance is still far from the HMM fullset baseline. These results clearly show that

the performance of both HMM and TVWR is sensitive to the amount of available training

data.

Target HMM full HMM sub TVWR sub

English 6.9 24.3 22.1

Malay 13.1 24.4 23.1

Table 4.1: WER(%) performance of HMM and TVWR fullset/subset baseline systems for

English and Malay speech recognition.

1ICSI quicknet software package, http://www.icsi.berkeley.edu/speech/qn.htm
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4.4.2 Tandem Cross-lingual Recognition

To obtain tandem features, three foreign phone recognizers were used to generate respec-

tive monophone-state posterior features for the English and Malay subset. Log posterior

features are then obtained for a more Gaussian-like distribution [14]. Principle Compo-

nent Analysis (PCA) was applied to obtain 13-dimension features, which was concatenated

to the original 39-dimension MFCC features. Tandem systems using 52-dimension fea-

tures were estimated using two-model re-estimation and 4 iteration ML estimation. The

best performance on English subset was found on the tandem systems with 8 mixtures

per state, while Malay subset was with 12 mixtures per state. As shown in Table. 4.2,

different tandem system performs slightly differently but generally obtained significantly

improvements over the HMM baseline. For English speech recognition, tandem systems

using single foreign phone recognizer achieved 7-9% absolute improvements, while Russian

language with best performance probably has more commons to the target English lan-

guage. However, for Malay speech recognition, the absolute improvements is only 4% by

using single foreign recognizer, while Hungarian seems more similar to the target Malay

language. After combining three tandem systems, further 2-3% absolute improvements

are observed for both English and Malay languages. These results show that tandem

features using foreign language phone recognizers can help improve the performance of

these two target languages with limited resources.

Target CZ HU RU CZ⊗HU⊗RU

English 16.7 16.3 15.4 14.1

Malay 20.4 19.9 20.1 17.2

Table 4.2: WER(%) performance of various tandem systems with limited resources for

target English and Malay speech recognition.

4.4.3 TVWR Cross-lingual Recognition

As shown in Table. 4.3, all TVWR systems using foreign posteriors outperformed both

HMM and TVWR subset baselines in Table. 4.1. When no context expansion is performed,

6-7% absolute improvements for English speech recognition over HMM subset baseline

are observed using single stream of posterior features, while 3-4% are observed for Malay

speech recognition. This tells that using a well trained foreign phone recognizer can

provide a better partition for the acoustic space for TVWR. However, when compared to

tandem systems in Table. 4.2, TVWR without context expansion is consistently inferior

to tandem systems. This may be because TVWR depends more on unreliable GMM by

MFCC features.
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Target: English w/o temporal w/ temporal

CZ 17.7 13.0

HU 17.8 11.9

RU 17.9 13.4

spatial context 12.1 9.8

Target: Malay w/o temporal w/ temporal

CZ 21.9 18.1

HU 20.8 17.7

RU 18.0 16.7

spatial context 16.2 14.5

Table 4.3: WER(%) performance of TVWR systems with or without context expansion

for target English and Malay speech recognition.

After applying temporal/spatial context expansion, multi-stream TVWR consistently

outperformed both conventional TVWR systems and tandem systems. When compared to

TVWR without context expansion, 4-6% absolute improvements over respective TVWR

using single foreign posteriors are observed for English language, while 3-4% absolute im-

provements are observed for Malay language. This shows that temporal context expansion

can significantly improve TVWR system performance without suffering over-fitting issue

despite introducing many regression parameters. When compared to the individual tan-

dem systems in Table. 4.2, 2-4% absolute improvements are shown for English, while 2-3%

absolute improvements for Malay. Particularly, TVWR using single HU for English and

single RU for Malay already shows better than multiple stream tandem systems. These

results show that multi-stream TVWR with temporal context expansion can learn more

information from single stream of posterior features. TVWR with spatial context expan-

sion by three languages performs similar to the best temporal context expansion based

TVWR, i.e. HU for English and RU for Malay, which shows spatial context expansion

may have a more robust acoustic partition, while temporal context expansion is more

sensitive to the difference between source and target languages. After combining both

temporal and spatial context, another 1-2% absolute improvements are observed, which

tells that temporal and spatial context are different and complementary.

Last, multi-stream TVWR with a second state clustering method is evaluated. In order

to obtain strong Gaussian bases for TVWR system, the number of tied states for GMM

parameters is reduced to about 330 for English (8 mix per state) and 900 for Malay (4

mix per state), while the number of tied states for TVWR parameters increased to about

1.2-1.3k for English and 3.0-3.4k for Malay. When combining both temporal and spatial

context, 1.9k and 4.8k tied states for TVWR parameters are used for English (8 mix per
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state) and Malay (8 mix per state), respectively. Recognition results for various TVWR

systems are reported in Table. 4.4. First, after introducing a second state clustering

method, consistent improvements are found for all TVWR systems. However, the amount

of improvements varies as foreign language. Generally speaking, foreign posteriors with

better performance in Table. 4.3 can gain more by introducing more tied states. Since the

rational of introducing more tied states for TVWR parameters is that posteriors are more

reliable than acoustic features, this method may not work well if foreign posteriors are

not reliable enough. Finally, combination of temporal and spatial context with more tied

states achieved very close performance to the HMM fullset baseline, i.e. 1-2% difference.

However, it is important to note that discriminative training is applied to obtain posterior

features for TVWR, which can definitely lead to a better HMM baseline.

Target
w/ temporal

spatial
temporal

CZ HU RU +spatial

English 11.7 11.3 12.6 10.6 8.7

Malay 18.0 16.9 15.6 14.9 13.9

Table 4.4: WER(%) performance of various multi-stream TVWR systems with a second

state clustering and limited resources for target English and Malay speech recognition.
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Figure 4.3: A summarized performance comparison of various systems using 1h English

training data.

In summary, various systems are compared in Figure. 4.3 and Figure. 4.4 for English

and Malay speech recognition, respectively. As can be seen, TVWR has shown consistent

improvements over the tandem systems for both English and Malay speech recognition.

It is worth noting that the gain of incorporating different foreign resources are different.
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Figure 4.4: A summarized performance comparison of various systems using 6h Malay

training data.

It tells that the common attributes of the native and foreign languages varies. For exam-

ple, Hungarian is closer to English while Russian is closer to Malay. If multiple foreign

resources are available, it is interesting to investigate and only use some of the most

similar/relevant foreign languages. However, if the system complexity is not a concern,

it might be preferable to incorporate all available resources for the best performance.

Consistent and significant improvements show that TVWR is an effective approach for

cross-lingual speech recognition.

4.5 Summary

In this section, proposed TVWR is investigated for cross-lingual speech recognition under

limited resources. First, various foreign monophone/state posterior features are employed

to replace the native unreliable features so that a better acoustic partition can be obtained.

Second, multi-stream TVWR is proposed by incorporating much richer temporal and

spatial context information for a better representation of the context variable. Third,

a separate state clustering algorithm for the TVWR regression parameters is proposed

to introduce more distinct triphone state with reliable regression parameters. Various

TVWR systems were evaluated for English and Malay speech recognition with limited

resources. TVWR systems using foreign monophone/state posterior features have shown

significant improvements over both HMM and tandem systems. Introducing multi-stream

TVWR and more tied states can obtain further improvement, which results in less than

2% inferior to respective English and Malay HMM fullset baselines.
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Chapter 5

TVWR: An approach to Combine

the GMM and the DNN

Recently, context-dependent Deep Neural Network (CD-DNN) has been found to signifi-

cantly outperform Gaussian Mixture Model (GMM) for various large vocabulary contin-

uous speech recognition tasks. DNN parameter estimation is primarily based on discrim-

inative criteria, which is much more sensitive to label errors than maximum likelihood

and therefore may be less reliable for unsupervised adaptation. Although various DNN

adaptation techniques have been proposed, they still have limitations. On the other hand,

many robust adaptation techniques that have been developed and proven to work well

for GMM/HMM systems cannot be easily applied to DNNs. This chapter proposes a

novel method of combining DNN and GMM using the Temporally Varying Weight Re-

gression framework to take advantage of the superior performance of the DNNs and the

robust adaptability of the GMMs. This section addresses the issue of incorporating the

high-dimensional CD-DNN posteriors into this framework without dramatically increas-

ing the system complexity. Experimental results on a broadcast news large vocabulary

transcription task show that the proposed GMM+DNN/HMM system achieved significant

performance gain over the baseline DNN/HMM system. With additional unsupervised

speaker adaptation, the best GMM+DNN/HMM system obtained about 20% relative im-

provements over the DNN/HMM baseline. This work has been accepted to be published

to the proceeding of ICASSP 2014 [112].

5.1 Introduction

For decades, GMM has been used as the representation of the HMM state emission prob-

ability due to its efficient training and decoding algorithms [113].In the conventional
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GMM/HMM system, the state emission probability is modelled as:

p(ot|j) =
M∑
m=1

cjmp(ot|j,m) (5.1)

where j is the HMM state, ot is the observation at time t, M is the number of Gaussian

components per state, cjm is the static component weight and p(ot|j,m) is a Gaussian

distribution. Due to the observation independence assumption and the use of diagonal

covariance matrices for the Gaussian components (for better efficiency), the inter-frame

and intra-frame correlations are poorly modelled by the GMM/HMM systems, which

limits its performance to some extent. Nevertheless, effective adaptation techniques,

such as the MLLR [48], have been developed to achieve reliable unsupervised speaker

adaptation.

DNN is a general purpose machine learning model that is capable of learning the

complex nonlinear function to map a long span of acoustic features into high quality

CD state posterior probabilities. The state emission probability in a DNN/HMM hybrid

system is given as:

p(ξt|j) ∝
p(j|ξt)
P (j)

, ξt = {ot−δ . . .ot . . .ot+δ} (5.2)

where P (j) and p(j|ξt) are the prior and posterior probability of state j respectively

and ξt is the long span acoustic features. Context-dependent Deep Neural Network (CD-

DNN) [64] has been reported to outperform various conventional Gaussian Mixture Models

(GMM) [113] based Hidden Markov Model (HMM) [9] systems by a large margin for

many large vocabulary continuous speech recognition (LVCSR) tasks [65, 69]. DNN uses

a long span of acoustic features as input so that both rich inter-frame and intra-frame

information can be modelled for better discrimination. The multiple layers of nonlinear

transformation allows the complex relationship between the acoustic features and the

context-dependent HMM states to be effectively learned. However, unlike the GMM

approach where each triphone state is represented by a GMM, a single DNN is used

to simultaneously predict the posterior probabilities of all the states. It is difficult to

interpret the DNN parameters in a meaningful manner. There is no clear and effective

way of adapting the DNN parameters. Moreover, the DNN parameters are typically

estimated discriminatively using the cross-entropy criterion which is more sensitive to label

errors. Instead of trying to interpret the acoustic meaning of DNN parameters, speaker

code [114, 115] may be discriminatively learned as an additional input for part of [114]

or all [115] DNN layers. Hence, the DNN weights corresponding to the speaker code can

provide additional speaker information for the succeeding DNN layer. However, as the

speaker code estimation is discriminative, supervised adaptation data is required, which

may not robust for unsupervised adaptation. By contrast, many advanced adaptation

techniques, such as Maximum Likelihood Linear Regression (MLLR) [48] and Maximum A
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Posteriori (MAP) [113], have been developed and shown to work well for the GMM/HMM

systems. In particular, these methods are based on the generative training paradigm,

which is more robust for unsupervised adaptation.

Many workarounds have been reported to take advantage of both the GMMs and

DNNs in the literatures. Some researchers suggested using the DNN to extract better dis-

criminative features, such as the tandem features [14, 17, 116, 117]. In order to develop

feasible tandem features for GMM training, the high dimensional CD-DNN posteriors

have to be projected to a lower dimension, which inevitably causes information loss.

Consistent performance degradation of the tandem systems using ML training has been

observed in various reports [17, 116]. Further, discriminative training and unsupervised

speaker adaptation have been successfully applied to the tandem systems, which achieved

superior performance compared to the hybrid SI DNN/HMM system [116]. Others have

also proposed to use the adapted acoustic features based on the fMLLR transformation

obtained from the GMM system [76]. However, adaptive training of DNN/HMM is ex-

pected to avoid inconsistent acoustic features between training and testing, which may

not be feasible if speaker information is not available during training. More recently, DNN

adaptation using I-vector [118] was also proposed. I-vector [119] has been widely used

for speaker verification or recognition. As it represents a speakers identity, it has been

proved to be useful to provide it as an additional input for DNN. However, as I-vector is

a relatively low dimensional representation of speaker, it is not scalable to the amount of

adaptation data during decoding. In addition, I-vector alone is just comparable to simple

fMLLR adaptation for DNN.

In this section, GMM+DNN/HMM is proposed as a novel system that combines

the GMM and DNN using the Temporally Varying Weight Regression (TVWR) frame-

work [11, 12]. Based on this framework, a regression model is trained to transform the

DNN posteriors into the time-varying scaling factors for the Gaussian weights. However,

directly incorporating the high-dimensional CD-DNN posterior features will lead to a sub-

stantial increase in the number of regression parameters. This section will present some

solutions to address this issue.

5.2 Combining GMM and DNN

As previously mentioned, the DNNs are able to predict high quality discriminative CD

posteriors while the GMMs can be reliably adapted in an unsupervised manner using

MLLR. Therefore, to get the best of both worlds, this section proposes combining the

GMMs and DNNs using the TVWR framework [11, 12]. According to this framework,
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the state output probability of the long span acoustic features is given as:

p(ξt|j) ∝
M∑
m=1

cjm

N∑
i=1

p(i|τ t)
P (i)

P (i|j,m)p(ot|j,m) (5.3)

∝
M∑
m=1

cjm

N∑
i=1

p̃(i|τ t)P (i|j,m)p(ot|j,m) (5.4)

where τ t = {ot−δ . . .ot−1,ot+1 . . .ot+δ} denotes the contexts of the current observation,

i is the latent variable to partition the acoustic space, p(i|τ t) is the posterior feature,

P (i|j,m) is the regression parameter. M and N correspond to the number of Gaussian

components and the number of latent variables, respectively. As the latent variable may

be associated to high dimensional context dependent phone states, its prior is explicitly

presented to be consistent with DNN decoding. For convenience, normalized posterior

feature is defined as: p̃(i|τ t) = p(i|τ t)/P (i). Hence, the auxiliary function of Maximum

Likelihood for updating regression parameters is revised as:

Q(Λ, Λ̂) =
∑
t,j,m,i

γjmi(t) logwjmi (5.5)

where the latent variable occupancy is re-written as:

γjmi(t) = γjm(t)
ŵjmip(τ t|i, Λ̂)∑N
i=1 ŵjmip(τ t|i, Λ̂)

≈ γjm(t)
ŵjmip̃(i|τ t)∑N
i=1 ŵjmip̃(i|τ t)

(5.6)

and the component occupancy is revised as:

γjm(t) = γj(t)
c̃jmt(Λ̂)N(ot; µ̂jm, Σ̂jm)∑M
m=1 c̃jmt(Λ̂)N(ot; µ̂jm, Σ̂jm)

(5.7)

= γj(t)

(∑N
i=1 ŵjmip̃(i|τ t)

)
ĉjmN(ot; µ̂jm, Σ̂jm)∑M

m=1

(∑N
i=1 ŵjmip̃(i|τ t)

)
ĉjmN(ot; µ̂jm, Σ̂jm)

(5.8)

Similarly modification for those occupancies in discriminative training needs to be made

in case of using normalized posterior features. As shown in Figure. 5.1, the long span

acoustic feature is decomposed into two parts. Firstly, the regular-sized observation ot
is modelled by the conventional Gaussian components, where MLLR adaptation can be

easily applied. Secondly, the latent variable i is associated with the clustered CD states

so that P (i|τ t) can be predicted using a DNN. However, directly incorporating the high-

dimensional CD-DNN posteriors (in the order of thousands) leads to a large number

of regression parameters, P (i|j,m). This will result in expensive computation for both

training and decoding and may cause over-fitting. In the next section, two solutions will

be presented to address this issue without compromising the model efficiency.
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Adaptation
MLLR

DNN

Gj1 Gj2 Gj.
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cj1 cj2 cj.

... ...

Gj.: Gaussian mixture

cj.: Static weight

Figure 5.1: A schematic diagram showing the state output probability function of the

proposed GMM+DNN/HMM system.

5.3 Regression of CD-DNN Posteriors

In order to maintain a reasonable number of regression parameters, the high-dimensional

CD posterior features have to be projected down to a lower dimension. In the following,

two solutions will be presented to achieve this. The first solution attempts to reduce the

number of regression weights via parameter tying. The latent variables, i, are clustered

into groups so that Eq-5.4 can be rewritten as:

p(ξt|j) ∝
M∑
m=1

cjm

G∑
g=1

p̃(g|τ t)P (g|j,m)p(ot|j,m) (5.9)

where P (g|j,m) is the regression weight for group g and the normalized posterior proba-

bility of g is given by:

p̃(g|τ t) =
p(g|τ t)
P (g)

=

∑
i∈g p(i|τ t)
P (g)

(5.10)

Therefore, tying the regression weights into groups is equivalent to projecting the posterior

probabilities according to Eq-5.10. In this work, the groupings are chosen to correspond

to the monophone states and the resulting group posteriors are simply the CI posteriors.

However, such projection operation may lose valuable context information such that we no

longer preserve the superior performance of the CD-DNN model. In order to incorporate
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richer context information without dramatically increasing the model complexity, multi-

stream TVWR [13] is used to integrate multiple sets of posterior features. The resulting

state probability is given as:

p(ξt|j) ∝
M∑
m=1

cjm

C∏
c=1

Nc∑
gc=1

p̃(gc|τ t)p(gc|j,m)p(ot|j,m)

where the CD posteriors are now factorized into C groupings and Nc is the number

of groups in the cth stream. In this work, we used three streams, one for the centre

monophone states (g2) and the other two for the left (g1) and right (g3) contexts. Although

multiple DNNs can be trained for each stream, temporal context expansion can be applied

to obtain the left and right context stream. Therefore, the posterior probabilities of the

left/right contexts are derived from the centre-phone state:

p(g1|τ t) = p(g2|τ t−∆l
) and p(g3|τ t) = p(g2|τ t+∆r)

where ∆l and ∆r are the smallest positive values such that the states corresponding to

the largest p(g2|τ t−∆l
) and p(g2|τ t+∆r) are different from state with largest p(g2|τ t).

The second CD posterior projection method adopts a sparse regression model where

only a smaller set of CD posteriors is used for each Gaussian component. Considering

that the TVWR formulation has the constraint
∑N

i=1 P (i|j,m) = 1, many of the regression

parameters could be very small, especially when N is large. Hence, there may be only a

small fraction of the parameters that actually contribute to the regression. The objective

is to perform the sparse regression using only the most important parameters:

p(ξt|j) ∝
M∑
m=1

cjm
∑
i∈Ij

p̃(i|τ t)P (i|j,m)p(ot|j,m) (5.11)

where Ij denotes the set of active latent variables for state j. Intuitively, Ij can be chosen

such that:

Ij = {i : P (i|j) > ν} (5.12)

where P (i|j) is computed as

P (i|j) =
1

|Tj|
∑
t∈Tj

p(i|τ t) (5.13)

Tj is the set of frames where j is the reference state and |.| denotes the cardinality. ν is

a threshold that can be adjusted to control the number of active posteriors, which may

be chosen as ν = 1/N . The regression parameters can then be initialized as P (i|j,m) =

P (i|j) if i ∈ Ij and zero otherwise.
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5.4 Experimental Results

The experiments were conducted on the Topic Detection and Tracking - Phase 3 (TDT3)

corpus for English broadcast news transcription. After pre-processing of the original data,

which includes removing non-speech segments, text normalization and audio segmenta-

tion, approximately 100 hours of data were retained for system training. The evaluation

task is a 58k open vocabulary broadcast news transcription task taken from the F0 por-

tion of the 1997 Hub-4E Benchmark Test. This testing set consists of about 3 hours of

speech and 49 speakers. The decoding language model was obtained by interpolating two

language models trained on the TDT3 transcriptions and the Gigaword English corpus,

respectively.

The acoustic features are the 39 dimensional PLP coefficients (12 static coefficients, an

energy term and the first two derivatives) with utterance-based cepstral mean and variance

normalization 1. The GMM/HMM baseline system is a decision tree state clustered

triphone system with 4451 tied states. Each triphone is modelled by a 3-state left-to-right

HMM and each state is modelled by a 20-component GMM. All the GMM parameters

were trained using the maximum likelihood criterion, while the DNN was based on cross-

entropy training criterion. For the DNN fine-tuning, 10 hours of the training data were

held out as the cross validation set and the rest were used for parameter estimation.

The input to the DNN is 15-frame context expanded PLP features with total dimension

585. The DNN has 5 hidden layers and each hidden layer has 2048 units with sigmoid

activation function. The output layer of the DNN corresponds to the 3052 tied states

of another GMM/HMM system. The recognition 2 was performed with a bigram full

decoding followed by a trigram lattice rescoring. To build the tandem system, principle

component analysis (PCA) was used to project the CI log posterior features into 13-

dimensional features, which were then appended to the 39-dimensional PLP features.

Finally, the GMM/HMM system was estimated using 52-dimensional tandem features

and maximum likelihood criterion. To perform the unsupervised adaptation, the speaker

independent system was first used to generate the hypotheses. Given the recognized

hypotheses, CMLLR adaptation using either a global transform or regression classes were

evaluated in this experiments. Particularly, 32 regression classes were generated and the

split threshold was set to 2000. The global CMLLR transform was also used to generate

the speaker dependent feature for adapting DNN. In this experiment, the threshold used

for sparse regression was 1/120 with CI posteriors, and 0.001 with CD posteriors.

Table. 5.1 shows the performance of various baseline systems with or without unsu-

pervised speaker adaptation. Without adaptation, the CD-DNN/HMM system obtained

3.2% absolute (or 20% relative) WER reduction over the ML trained GMM/HMM system,

1The results in [112] were based on cepstral mean normalized acoustic features.
2The results in [112] did not consider the prior probability of the states during decoding, which has

been fixed in this experiment.
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System
Adaptation

None MLLR class

GMM/HMM 16.0 14.8 14.6

Tandem 16.4 14.7 14.3

CD-DNN/HMM 12.8 12.1 -

Table 5.1: WER(%) of various baseline systems with or without unsupervised speaker

adaptation.

which is consistent with many other reports. Unfortunately, the tandem system degraded

compared to the baseline GMM/HMM system, which might be because the information

between the acoustic feature and the posterior features has a lot of inconsistency. After

performing unsupervised speaker adaptation using a global transform, absolute WER re-

ductions of 1.2% and 1.7% were obtained by the GMM/HMM and the tandem systems,

respectively. Further minor improvements can also be obtained by performing regression

class based adaptation. Eventually, the tandem system becomes marginally better than

the GMM/HMM system. When the speaker adapted feature was used for DNN decoding,

0.7% absolute improvement was obtained. This shows that fMLLR approach is quite an

effective approach for adapting DNN 1. Hence, we suggest using TVWR to perform the

combination in a more systematic fashion.

Posteriors
Context Regression w/ un-adapted DNN w/ adapted DNN

Expansion Parameters None MLLR class MLLR class

CI
No 10 12.9 11.9 11.9 12.0 11.8

Yes 30 11.9 11.5 11.3 11.0 10.8

CD
No 70 11.8 11.2 11.0 11.4 11.1

Yes 210 11.7 11.3 11.0 11.1 10.8

Table 5.2: Comparison of the number of regression parameters per Gaussian component

and the WER (%) performance of various GMM+DNN/HMM systems with or without

context expansion and unsupervised speaker adaptation.

Table. 5.2 shows the performance of the GMM+DNN/HMM systems with different

configurations. When using the CI posteriors without context expansion, the un-adapted

TVWR system gives 12.9% WER, which is 0.1% behind the CD-DNN/HMM system.

This is possible due to the information loss after posterior grouping. After perform-

ing context expansion, the GMM+DNN/HMM performance improved to 11.9%, which

1When comparing these results with the report [112], the degradation might be caused by another

fact that different feature space was used for GMM (PLP+CMN) and DNN (PLP+CMVN).

91



5.5 Summary

is 0.8% better than the CD-DNN/HMM baseline. When CD posteriors were used, the

GMM+DNN/HMM with or without context expansion has significantly outperformed

the CD-DNN/HMM baseline system. These results showed the effectiveness of perform-

ing sparse regression by selecting state-dependent active posteriors. When un-adapted

DNN posteriors were used, performing unsupervised speaker adaptation yields consistent

improvements of 0.2% – 1.1% for all the GMM+DNN/HMM systems. Regression class

based adaptation also helped to slightly improve the systems with context expansion.

However, the improvements are quite minor which might be because the adaptation data

for each speaker is not enough. Anyway, these results show that the GMM+DNN/HMM

systems are able to exploit the adaptability of the GMMs to obtain further improvements.

After speaker adapted DNN posteriors were used, we have not seen consistent improve-

ments for all systems. This might be because the adaptation techniques for GMM and

DNN are in the same family so that less complementary information can be obtained.

However, GMM+DNN/HMM with context-expanded adapted posteriors has shown con-

sistent improvements due to the expansion of better posteriors. The best performance

of 10.8% WER is obtained using the context expanded CD posteriors, which translates

to 10.7% relative improvement compared to the speaker adapted DNN/HMM system.

Although GMM+DNN/HMM using context expanded CD posteriors gives better per-

formance than that using CI posteriors, this superiority has not been carried into the

systems using adapted posterior features. This is probably because the rich information

from the DNN posteriors has somewhat de-weighted the importance of the GMMs. As a

result, there is less impact from applying MLLR adaptation to the GMMs.

Finally, we analyze the number of regression parameters per Gaussian component for

the various GMM+DNN/HMM systems. If the raw CD posteriors are directly used, there

will be 3052 regression weights per Gaussian component. By using different projection

methods, the number of regression weights can be reduced to about an order magnitude

smaller. It is worth noting that the preliminary results presented in this section have con-

sidered only the straightforward projection configurations. It may be possible to achieve

further performance gains by adjusting the regression model complexity (e.g. using group-

ings other than the CI groups or using a different threshold, ν, for the sparse regression).

It is also important to note that the threshold for sparse regression somehow controls the

weights of generative model and discriminative model. A good balance between these two

kinds of models may be achieved by tuning the threshold on a development set.

5.5 Summary

This chapter has proposed combining the GMM and DNN models using the Temporally

Varying Weight Regression (TVWR) framework to achieve a high quality and adaptable

state probability model for automatic speech recognition. The resulting GMM+DNN/HMM

system is different from the tandem systems in that the GMMs are trained directly on the
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cepstral acoustic features, rather than the DNN-derived tandem features. This chapter

has focused on addressing the issue of incorporating the high dimensional CD-DNN state

posteriors into the TVWR framework without dramatically increase the system complex-

ity. Specifically, projected CI state posteriors, sparse regression and context expansion

are introduced to mitigate the problem. Experimental results show that the proposed

GMM+DNN/HMM system outperform the baseline DNN/HMM system. In additional,

applying unsupervised speaker adaptation can further improve the performance of the

proposed system. Future work will consider applying speaker adaptive training and dis-

criminative training to the GMM+DNN/HMM system.
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Chapter 6

Adaptation and Adaptive Training

for Robust TVWR

In practice, speech data with the same transcription could have very different parameter

representation due to various acoustic factors, such as background noises, transmission

channels, speakers, etc. Hence, acoustic model trained on one condition may perform

poorly on another condition. In this chapter, this issue is named as the robust speech

recognition on mismatched conditions. In particular, noise and speaker will be the main

focus of this chapter. Commonly used techniques for robust speech recognition are adapta-

tion and adaptive training, including noise and speaker adaptation and adaptive training.

The essence of adaptive training is to estimate a canonical acoustic model to be inde-

pendent of various acoustic factors. In other words, speech irrelevant factors should be

removed as many as possible from the final acoustic model during training, which is typi-

cally cooperated with respective adaptation techniques. During decoding, corresponding

adaptation techniques can be applied to translate the canonical acoustic model to be con-

dition dependent using small amount of adaptation data. Depending on the availability

of correct transcription, adaptation can be either supervised or unsupervised. In order

to improve the robustness against various testing conditions, adaptation and adaptive

training for TVWR will be studied in this chapter. In details, robust TVWR with two

configurations will be considered: one is using GMM as front-end to produce posterior

features, another is using DNN as front-end. The advantage of using GMM as front-end

is that various model compensation/adaptation approaches have been developed. Hence,

compensating TVWR with GMM front-end is pretty straightforward except that the

Gaussian parameters are corresponding to the long span acoustic features. This work has

been published to the proceeding of Interspeech 2013 [120]. On the other hand, although

DNN has difficulties to be compensated for robust speech recognition, multi-style trained

DNN without adaptation has been found to outperform the GMM system with compensa-

tion. Therefore, it is interesting to take advantage of the best of two worlds using TVWR
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framework. This work will serve as the second part of this chapter.

6.1 Robust TVWR using GMM based Posteriors

In this section, the Temporally Varying Weight Regression (TVWR) is investigated in two

ways for noise robust speech recognition. Conventional model compensation approaches

assume that the noise data is independent and identically distributed (i.i.d). Hence, non-

stationary noise environments are poorly compensated using conventional model com-

pensation approaches in the standard Hidden Markov Model (HMM) framework. TVWR

maintains both the basic HMM structure and additional time-varying property, there-

fore, model compensation for TVWR can be performed to relax i.i.d. noise assumption.

Second, although Noise Adaptive Training (NAT) [63] has been proposed to optimize

the “pseudo-clean” HMM model for a better performance by maximizing the likelihood of

multi-style data, NAT heavily depends on the simplicity of Vector Taylor Series (VTS) [58]

formulation. Hence, other advanced compensation approaches, such as Trajectory-based

Parallel Model Combination (TPMC) [61], have difficulties benefiting from this powerful

training schema. This section will exploit the time-varying attribute of TVWR to approx-

imate NAT such that any compensation technique can be applied during noise adaptive

training. This work has been accepted to publish to proceeding of Interspeech 2013 [120].

6.1.1 Introduction

Noise robust speech recognition has been studied for many years but not solved yet due

to its unsatisfactory accuracy for various noise conditions. One of the most popular

approaches to solve this problem is to learn the impact of the noise on the corrupted

speech such that the underlying acoustic model can be adapted to various unknown noisy

environments. In order to apply the model compensation approaches such as [57, 58,

59, 60, 61], the noise model representing the noise evolution along with the time instance

is expected. However, this noise model is typically modelled as a single state evolution

process with single Gaussian model, which assumes that the noise feature is independent

and identically distributed. Although this assumption simplifies both the noise model

estimation process and the model adaptation formulae, it makes the non-stationary noise

poorly modelled. Many techniques [121, 122, 123, 124] have been introduced to tackle the

non-stationary noise problem, many of them have complicated formulations and require

iterative estimation process. None of above approaches have solved this problem from the

model compensation perspective: the adapted acoustic model works exactly the same as

the clean model does in the clean environment.

On the other hand, Noise Adaptive Training NAT [63] has been proposed to optimize

a ”pseudo-clean” canonical HMM model by maximizing the likelihood of multi-condition
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training data. Although promising improvements have been obtained by NAT, this pow-

erful training schema strictly depends on the formulation of VTS adaptation [58] in order

to derive tractable update formulae. This means that other advanced model compen-

sation approaches such as Data-driven Parallel Model Combination (DPMC) [60] and

Trajectory-based Parallel Model Combination (TPMC) [61] have difficulties in benefiting

from this training schema, since it is very difficult to evaluate the derivative of the cor-

rupted statistics with respect to clean statistics or noise statistics for the optimization

process.

In this section, above two issues will be solved based on the temporally varying weight

regression (TVWR) [11] framework. Since the temporal correlation of the speech is par-

tially modelled into the time-varying GMM weights, equivalent temporal correlation of

the noise feature will be required to be modelled for consistent compensation of TVWR

model such that non-stationary noise environment can be better characterized. First, we

will introduce how TVWR model can be adapted for handling the non-stationary noise

environment. Second, NAT is factorized with a time-varying factor together with the

conventionally compensated component output probability, the time-varying attribute of

TVWR is exploited to approximate such time-varying factor such that complex compen-

sation techniques, such as TPMC [61], can benefit from this powerful training schema.

6.1.2 Model Compensation for TVWR

In the following section, xt, yt, nt, ht are defined as the clean, noisy, noise cepstral feature

and channel distortion, respectively. In order to improve the noise robustness of TVWR,

its formulation in Eq-3.3 needs to be compensated properly. For a quick reference, TVWR

formulation in Eq-3.3 is re-written here:

p(ξt|j) =
M∑
m=1

P (m|j)p(τ t|ot, j,m)︸ ︷︷ ︸
cjmt

p(ot|j,m)︸ ︷︷ ︸
N(ot;µjm,Σjm)

(6.1)

where the conditional probability is factorized and approximated as:

p(τ t|ot, j,m) ≈ Kt

N∑
i=1

p̃(i|τ t)︸ ︷︷ ︸
h̃ti

P (i|j,m)︸ ︷︷ ︸
wjmi

(6.2)

If TVWR system is trained by maximum likelihood, Gaussian parameters in p(ot|j,m)

or Eq-6.1 represent the distribution of the speech data. Given a noise model representing

the acoustic condition, any conventional compensation approach [57, 58, 59, 60, 61] can

be applied to adapt these Gaussian parameters, which is referred to as back-end com-

pensation. On the other hand, posterior feature, p(i|τ t) in Eq-6.2 also depends on the

acoustic features, which is condition dependent. The condition dependent normalization

term contributes uninformative knowledge to discriminate different components or states,
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so that it can be ignored even in a mismatch condition. As with the standard model com-

pensation methods, P (i|j,m), P (m|j) are assumed to be unaffected by the channel and

noise distortion. Therefore, the remaining problem is to generate condition dependent

posterior feature, which is also referred to as front-end compensation.

6.1.2.1 Acoustic Model Compensation

Acoustic model compensation aims to obtain the noise condition dependent acoustic

model representing the statistics of noisy speech. First, the clean acoustic model is de-

fined as {µjm,Σjm} and noise-k model as {µkn,Σk
n,µ

k
h}. When the nonlinear function in

Eq-2.104 is expanded at point {µjm,0,µkn,0,µkh,0} and evaluated at point {µjm,µkn,µkh},
the noisy acoustic model can be obtained as:

µkjm ≈ µkjm,0 + Gk
jm(µjm − µjm,0) + Gk

jm(µkh − µkh,0) + Fk
jm(µkn − µkn,0) (6.3)

Σk
jm ≈ Gk

jmΣjmGT,k
jm + Fk

jmΣk
nF

T,k
jm (6.4)

where

µkjm,0 = µjm,0 + µkh,0 + g
(
µkn,0 − µjm,0 − µkh,0

)
(6.5)

Gk
jm = C Diag(

1

1 + exp{C−1(µkn,0 − µjm,0 − µkh,0)}
)C−1 (6.6)

Fk
jm = I−Gk

jm (6.7)

The advantage of forcing expansion point to be different from evaluation point is that

when the clean acoustic model and noise model are not known, we can set the expansion

point to be any possible value as the starting point and optimize the unknown evaluation

point iteratively. However, if both clean acoustic model and noise model are known, the

expansion point and evaluation point can be simply set to be the same, therefore the

noisy acoustic model can be obtained as:

µkjm ≈ µjm + µkh + C log
[
1 + exp{C−1(µkn − µjm − µkh)}

]
(6.8)

µk∆jm ≈ Gk
jmµ∆jm (6.9)

µk∆2jm ≈ Gk
jmµ∆2jm (6.10)

Σk
jm ≈ Gk

jmΣjmGT,k
jm + Fk

jmΣk
nF

T,k
jm (6.11)

Σk
∆jm ≈ Gk

jmΣ∆jmGT,k
jm + Fk

jmΣk
∆nF

T,k
jm (6.12)

Σk
∆2jm ≈ Gk

jmΣ∆2jmGT,k
jm + Fk

jmΣk
∆2nF

T,k
jm (6.13)

As can be seen, the back-end compensation for TVWR is exactly the same as conventional

model compensation for HMM system.
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6.1.2.2 Posterior Synthesizer Compensation

Next, noise compensated posterior features are needed to be generated for robust TVWR.

Before that, the respective long span of clean, noisy, noise and channel features are denoted

as:

χt = {xt−δ, . . . ,xt−1,xt+1, . . . ,xt+δ} (6.14)

ψt = {yt−δ, . . . ,yt−1,yt+1, . . . ,yt+δ} (6.15)

ηt = {nt−δ, . . . ,nt−1,nt+1, . . . ,nt+δ} (6.16)

ρt = {ht−δ, . . . ,ht−1,ht+1, . . . ,ht+δ} (6.17)

In the original TVWR [11] work, the posterior feature is generated using a neural

network for better accuracy. However, it is difficult to directly adapt the neural network

or any other discriminate models [125], as their parameters do not represent the statistics

of the features. To circumvent this problem, generative models using long span features

are introduced:

p(i|χt) =
N(χt;µi,Σi)P (i)∑N
i=1 N(χt;µi,Σi)P (i)

(6.18)

where {µi,Σi} represents the clean generative model for latent variable i. In order to

obtain the condition dependent posterior feature, model compensation for these clean

generative models can be performed. Given the long span noise model {µkη,Σk
η} for

condition k, the noisy speech model {µikψ ,Σik
ψ } for model i at condition k can be obtained

using extended VTS [59]:

µki ≈ µi + µkρ + Q log
[
1 + exp{Q−1(µkη − µi − µkρ)}

]
(6.19)

Σk
i ≈ JkiΣiJ

T,k
i + Lk

iΣ
k
ηL

T,k
i (6.20)

where the channel distortion is assumed to be stationary, hence Σk
ρ = 0, and

Q = I2δ ⊗C (6.21)

Jki = Q Diag

{
1

1 + exp{Q−1(µkη − µi − µkρ)}

}
Q−1 (6.22)

Lk
i = I− Jki (6.23)

I2δ is an identity matrix with dimension 2δ, C and C−1 are the DCT matrix and its pseudo-

inverse matrix, diag{.} denotes a diagonal matrix using the input vector element as its

diagonal element. Based on above equations, block-wise (a.k.a. frame-wise) covariance

matrix at index p and q can be re-written as:

Σk
i,pq = Jki,pΣi,pqJ

T,k
i,q + Lk

i,pΣ
k
η,pqL

T,k
ik,q (6.24)
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where Jki,p Jki,q indicates the diagonal block of Jki at index p and q respectively, and the

block index ranges: p, q ∈ [1, 2δ]. Conventional model compensation approaches in HMM

framework assume that:

Σk
η,pq = 0 if p 6= q (6.25)

Σk
η,pp = Σk

η,qq ∀p, q (6.26)

which is poorly made for non-stationary noise environment. In order to compensate

TVWR model, the correlation of successive noise data is explicitly modelled into Σk
η,pq and

compensated into the statistics Σk
i,pq of the corrupted speech, the i.i.d noise assumption

can be relaxed. Compared to the back-end compensation, front-end compensation will

compensate and maintain full covariance matrix in order to model both the intra-frame

and inter-frame correlation. Since full covariance matrix is applied, it is impossible to

cooperate the dynamic parameters due to its linear relationship to the static parameters.

6.1.3 NAT Approximation using TVWR

In the recently proposed noise adaptive training NAT [63] technique, both the “pseudo-

clean” speech and noise models are optimized to maximize the likelihood of the multi-

condition data given the condition adapted noisy speech models. The state emission

probability for condition k after NAT on HMM system can be expressed as:

p(ykt |j, k) =
M∑
m=1

cNATjm N(ykt ;µ
k,NAT
jm ,Σk,NAT

jm ) (6.27)

=
M∑
m=1

zNATkjmtN(ykt ;µ
k
jm,Σ

k
jm) (6.28)

where cNATjm , µk,NATjm , Σk,NAT
jm are NAT optimized weights and compensated speech model

for condition k, µkjm, Σk
jm are the conventionally compensated speech model without

NAT, zNATkjmt is the time-varying scaling factor to make the above equation hold. From

the perspective of Eq-6.28, the existence of non-constant zNATkjmt after NAT tells that the

conventional compensation does not yield maximum likelihood of the condition specific

noisy speeches. Since the auxiliary function of NAT is a highly nonlinear function of

the variance variable, the variance update requires gradient or Newton’s method, which

somehow complicates the optimization process [63].

Similarly, the state emission probability for TVWR after adaptation to condition k

can be expressed as:

p(ykt ,ψ
k
t |j, k) =

M∑
m=1

ckjmtN(ykt ;µ
k
jm,Σ

k
jm) (6.29)
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where ckjmt is the time-varying weight adapted to condition k, ψk
t is the long span noisy

context from condition k. When comparing Eq-6.28 with Eq-6.29, both NAT and TVWR

share some similar structure but differ in the underlying formulation and training process.

Since the superiority of NAT over the conventional compensation is the time-varying fac-

tor, zNATkjmt , noise adaptive training for ckjmt becomes an important step to approximate

NAT using TVWR formulation. After switching to this approximation, any model com-

pensation during noise adaptive training can be applied, as the speech (Gaussian param-

eter part) and noise models do not change iteratively. The EM auxiliary function of noise

adaptive training for TVWR parameters can be defined as:

Q =
∑
k,t,j,m

γkjm(t) log cNATkjmt (6.30)

where γkjm(t) is the component occupancy given the current TVWR model after adaptation

to condition k. Given approximations in Eq-3.4 and Eq-3.7, a new auxiliary function w.r.t.

wNATjmi , cNATjm can be derived based on EM algorithm:

Q =
∑
k,t,j,m

γkjm(t) log

(
cNATjm

∑
i

wNATjmi p(ψ
k
t |i, j,m, k)

)
≥

∑
k,t,j,m,i

γkjmi(t)
(
logwNATjmi + log p(ψk

t |i, k)
)

+
∑
k,t,j,m

γkjm(t) log cNATjm (6.31)

where

γkjmi(t) = γkjm(t)
ŵNATjmi p(ψ

k
t |i, j,m, k, λ̂)∑

i ŵ
NAT
jmi p(ψ

k
t |i, j,m, k, λ̂)

(6.32)

≈ γkjm(t)
ŵNATjmi p(ψ

k
t |i, k, λ̂)∑

i ŵ
NAT
jmi p(ψ

k
t |i, k, λ̂)

(6.33)

= γkjm(t)
ŵNATjmi h̃

k
ti∑

i ŵ
NAT
jmi h̃

k
ti

(6.34)

ŵNATjmi , λ̂ are the current TVWR model parameters, and p(ψk
t |i, k) is component inde-

pendent of wNATjmi and cNATjm . Closed form update formulae can be found using Lagrange

Multiplier method such that:

cNATjm =

∑
k,t γ

k
jm(t)∑

m,k,t γ
k
jm(t)

(6.35)

wNATjmi =

∑
k,t γ

k
jmi(t)∑

i,k,t γ
k
jmi(t)

(6.36)

In summary, the noise adaptive training approximation using TVWR can be described

as follows:
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1. Initialize TVWR with wjmi = 1/N from a clean or multi-condition standard HMM

system; estimate generative models for posterior features using the same training

data.

2. Estimate regular sized and long span noise models for each condition using the head

and tail frames of all related utterances.

3. Perform model compensation for TVWR.

4. Calculate γkjm(t) and γkjmi(t) to accumulate sufficient statistics given each condition

compensated TVWR system.

5. Update cNATjm and wNATjmi using Eq-6.35 and Eq-6.36.

6. If the auxiliary function in Eq-6.31 converged or maximum iteration reached, exit;

otherwise, increase iteration number and goto step 4.

As can be seen, there is no restriction about the model compensation approach during the

above training process. Since Gaussian parameters in the above training process are not

optimized to be “pseudo-clean”, the possible accuracy loss by using the initial Gaussian

parameters will be compensated by adaptive training regression parameters. Note that

the power of above training schema heavily benefits from the large number of regression

parameters, which is about half of that of Gaussian parameters. Compared to the com-

plicated update formulae of Gaussian parameters in the standard NAT formulation [63],

update formulae for TVWR regression parameters are much simpler and easier. Although

above training process assumes that the condition independent Gaussian parameters is

unchanged, these Gaussian parameters may be updated in step 5 just using the standard

HMM update formulae with a better forward-backward alignment. On the other hand, if

VTS compensation is applied, the “pseudo-clean” speech and regular sized noise model

parameters may also be updated just following the standard NAT procedure [63].

6.1.4 Experimental Results

In this section, experiments are conducted on the Aurora 4 [104] corpus, which contains

3 datasets: clean dataset, multi-condition dataset, multi-noise dataset. Each dataset

includes about 14 hours speech utterances, or 7138 utterances. Since only additive noise

is considered in this section, the multi-condition dataset with channel distortion will not be

used. In multi-noise training dataset, 6 noises are artificially added at 15 dB average SNR.

For evaluation, only the first 7 test sets from the same microphone as the training data

are used. For convenient presentation, Set-A and Set-B are introduced: Set-A contains

1 clean test set while Set-B contains 6 noisy test set with the same noises as multi-noise

training data but different 10 dB average SNR. Each test set has the same 330 utterances

for 5k closed vocabulary recognition task (NIST Nov’92 WSJ0).
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The clean baseline HMM system is a decision tree state-clustered triphone system

with 3226 distinct states and 16 components per state. The acoustic features are 39 di-

mensional MFCC [126], including 12 static coefficients, zero-th coefficient and the first

two derivatives. Given the clean baseline system, multi-noise HMM system was esti-

mated by one iteration of single pass retraining. Monophone posterior features, hti were

generated from multiple GMM models: each monophone has 8 full-covariance mixture

components, which may be estimated from the clean or multi-noise data. The context

expanded features used here include a sequence of MFCC features spanning a window of

8 static features, i.e. 13*8 dimensions. The model compensation approaches investigated

here include VTS [58] and Trajectory PMC (TPMC) [61], where TPMC has been shown

to be better than VTS. To perform the noise adaptive training, only multi-noise training

data are used. While the conventional NAT re-estimated both the “pseudo-clean” speech

and noise models using VTS, NAT approximation using TVWR (NA-TVWR starting

from multi-noise HMM) only updated the regression parameters and static weights(NA-

TVWR* updated condition independent Gaussian parameters using the standard HMM

update formulae). In the decoding, noise models are initially estimated by the head

and tail (20) observations from each condition. To evaluate model compensation on the

clean model, these initial noise models are always used without re-estimation for a fair

comparison to TPMC. When evaluating VTS-based NA-TVWR and NAT-HMM, these

noise models are re-estimated iteratively using multiple (2) iteration recognized hypothe-

ses. The recognition results below includes a bigram full decoding followed by a trigram

lattice-rescoring using HTK [5].

System Adaptation Set-A Set-B Avg

HMM - 6.4 51.0 44.7

TVWR - 5.8 56.5 49.3

HMM
VTS

7.8 18.2 16.7

TVWR 6.8 16.0 14.7

HMM
TPMC

6.9 14.8 13.6

TVWR 6.2 12.3 11.4

Table 6.1: WER(%) for different approaches using clean training data.

The recognition results of various approaches using different training data are shown

in Table. 6.1 and Table. 6.2, where the “Avg” column indicates the average performance

of all mentioned 7 test sets. When all systems are estimated using the clean data, both

the standard HMM and TVWR systems without compensation suffered from dramatical

performance degradation in the noisy test conditions. After performing model compen-

sation, all the systems significantly outperformed the baseline systems. Compared to the

standard HMM system using either VTS or TPMC, both adapted TVWR systems shows
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Training Adaptation Set-A Set-B Avg

Mult-HMM - 8.5 18.7 17.2

NAT-HMM VTS 7.3 16.0 14.8

NA-TVWR VTS 8.1 14.9 13.9

NA-TVWR TPMC 7.9 12.5 11.8

NA-TVWR* TPMC 7.2 11.8 11.1

Table 6.2: WER(%) for different approaches using multi-noise training data.

about 2% absolute average improvements. Since most testing speeches are corrupted

by non-stationary noise, modelling the temporal correlation of the noise feature makes

TVWR gain more than the standard HMM system. On the other hand, although more

accurate corrupted dynamic parameters (delta, delta-delta) were estimated by TPMC for

a better representation of the impact of non-stationary noise on the speech, TVWR can

still obtain significant improvement. This tells that some characteristics of non-stationary

noise corrupted speeches cannot be modelled well in the standard HMM framework.

When noise adaptive training on the multi-noise data was performed, NAT-HMM+VTS

obtained more than 2% absolute improvement over the multi-noise HMM. NAT-HMM+VTS

achieved better recognition accuracy on the clean test Set-A, probably because its “pseudo-

clean” speech model has been optimized while TVWR still use the multi-noise estimated

Gaussian parameters. However, our approximation approach, NA-TVWR+VTS achieved

0.9% absolute more average improvement over NAT-HMM+VTS. These results show

that adaptively trained time-varying weight is able to approximate some property of

NAT, while the additional gain from TVWR over NAT is probably due to the useful

temporal correlation of noise features. When NA-TVWR was performed with TPMC,

NA-TVWR+TPMC averagely outperformed other VTS-based systems. Although NA-

TVWR+TPMC still is not as good as NAT-HMM+VTS at test Set-A due to using the

multi-noise data estimated Gaussian parameters, NA-TVWR+TPMC performs quite well

averagely and comparable to TVWR+TPMC trained by the clean data. After the con-

dition independent Gaussian parameters were optimized just using the standard HMM

update formulae, NA-TVWR*+TPMC performed best and also slightly better than the

TPMC-based clean TVWR system. According to these results, any other compensation

approach can potentially perform quite well given the multi-condition data in the TVWR

framework.

6.1.5 Summary

In this section, proposed Temporally Varying Weight Regression (TVWR) model is in-

vestigated in two ways to perform noisy speech recognition. Firstly, model compensation
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for TVWR is proposed such that i.i.d. noise assumption can be relaxed, which can poten-

tially improve the accuracy in the non-stationary noise environment. Secondly, instead of

directly updating the model and noise parameters in the standard NAT procedure, the

time-varying attribute of TVWR is used to approximate the NAT algorithm such that any

compensation approach can benefit from the multi-condition data training. Experimental

results show that promising improvements can be obtained by performing model-based

compensation for TVWR. Besides, the proposed NAT approximation technique achieved

significant improvement over the traditional NAT using VTS compensation. This approx-

imation can benefit more complicated compensation technique, such as Trajectory-based

PMC, where efficient NAT algorithm cannot be derived.

6.2 Robust TVWR using DNN based Posteriors

Context-dependent Deep Neural Network has obtained consistent and significant improve-

ments over the Gaussian Mixture Model (GMM) based systems for various speech recog-

nition tasks. However, since DNN is discriminatively trained, it is more sensitive to label

errors and not reliable for unsupervised adaptation. On the other hand, DNN param-

eters do not have a clear and meaningful interpretation, therefore, it has been difficult

to develop effective adaptation techniques for the DNNs. Nevertheless, DNN without

any adaptation has already shown superior performance to the GMM system after it-

eratively joint noise/speaker adaptation and adaptive training. Recently, Temporally

Varying Weight Regression (TVWR) has been successfully applied to combine DNN and

GMM for robust unsupervised speaker adaptation. In this section, joint speaker/noise

adaptation and adaptive training of TVWR using DNN posteriors are investigated for

robust speech recognition.

6.2.1 Introduction

In practice, many speech variabilities exist due to the acoustic environments, reverbera-

tions, background noise, communication channels, speaker difference. Training an acoustic

model to be robust against these variabilities has been always important and challenging.

When the Gaussian Mixture Model (GMM) was a dominant observation distribution rep-

resentation of the Hidden Markov Model (HMM) stats, many techniques were developed

to make it robust to various acoustic conditions. Since the GMM is a generative model

whose parameters represent the statistics of the data, it is easier to manipulate the pa-

rameters to adapt to a specific condition. For example, Maximum a Posterior (MAP) [45]

and Maximum Likelihood Linear Regression (MLLR) [48] are commonly used for speaker

adaptation. On the other hand, Vector Taylor Series (VTS) is widely used to compen-

sate acoustic features or models for different noise conditions. All these methods modify
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6.2 Robust TVWR using DNN based Posteriors

the GMM parameters to better represent the data statistics in the respective acoustic

conditions.

The objective function of DNN optimization is nonlinear, non-convex, and has no

closed-form solution [1]. Hence, its weights are obtained by the typical line search method,

and it is usually implemented by the error back-propagation algorithm. Parameter in-

terpolation like MAP [45] does not work for the DNN weights. First, MAP estimation

is not tractable for DNN training as DNN is not a generative model. Second, assuming

that the objective function is to minimize the cross-entropy, as it is not convex, an inter-

polation of two local minimums may lead to a local maximum. On the other hand, linear

regression like MLLR [48] is equivalent to adding a linear activation layer before each

nonlinear (such as sigmoid) activation layer in DNN. As the number of linear regression

parameters can be million in a state-of-the-art DNN based speech recognition system,

robust estimation of those adaptation parameters is difficult for limited adaptation data.

Furthermore, it is also difficult to control the complexity of the linear regression according

to the amount of available adaptation data. Discriminatively learning a speaker code has

been proposed to fast adapt a DNN based system [114]. In this work, adapting NN with

speaker code serves as the speaker dependent transform. In order to achieve training two

separate NNs: adapting NN and original NN, adaptive training is required. This may

not work if training transcription does not contain speaker information. As speaker code

is learned discriminatively, unsupervised adaptation may not be robust. Different from

speaker variabilities, noise/channel has more serious impacts on the front-end parameter-

ization or back-end acoustic model. Therefore, speak code based approach may not work

for noise robustness.

Currently, the techniques that improve the noise robustness of the DNN-based acous-

tic models can be divided into two categories: multi-style training [127] and feature en-

gineering [51, 76, 128, 129, 130]. Multi-style training aims to use multi-style training

data, hopefully to learn as many speech variabilities as possible. Different from adaptive

training that aims to remove variabilities from the final model, multi-style training learns

those variabilities using a single model, which is very difficult. Eventually, the average

performance among various conditions can be greatly improved but it sometimes degrades

the performance on the clean environment. As multi-style training is pretty efficient for

both traing and decoding, it has been widely used for the applications with many working

conditions. On the other hand, feature engineering aims to either extract more robust

acoustic features against variabilities or remove variabilities to get normalized acoustic

features. If a DNN-based system is trained using the clean data, feature enhancement or

denoising techniques, such as feature-based VTS [53, 128, 129] can be performed to cope

with the noisy testing environment. If the stereo training data (a parallel clean and noisy

dataset) is available, SPLICE [52], MMSE [51] or DRADE (Deep Recurrent Denoising

Autoencoder) [130] can be applied to estimate the “clean” speech. In practice, it is much

more expensive to prepare the stereo training data than the multi-style training data.
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Recent work [127] has shown that the standard DNN system using filter-bank features

and multi-style training achieved comparable performance to a GMM-based system with

joint speaker and noise adaptive training [105]. Therefore, it is interesting to investigate

whether combining these two systems will further improve the performance. In our recent

work [112], Temporally Varying Weight Regression (TVWR) has been presented as an

approach to combine GMM and DNN for speaker adaptation. VTS has also been applied

to compensate TVWR using the GMM-based posterior features [120]. In this section,

joint speaker/noise adaptation and adaptive training will be studied for robust TVWR

using the DNN posteriors.

6.2.2 Noise Adaptation and Adaptive Training

In early sections of this chapter, TVWR has been formulated to approximate noise adap-

tive training such that various compensation approaches can benefit from the powerful

noise adaptive training. Assumption has been made that noise data is available during

training and decoding, and channel distortion is not considered. This is a practically

poor assumption considering that noise data is not always available and channel distor-

tion happens a lot. In order to circumvent this limitation, noise model (additive noise

and channel distortion) estimation in the TVWR framework becomes critically important.

On the other hand, model compensation approaches like VTS [58] assume the acoustic

model (or Gaussian parameters) to be a “clean” generative model. When “clean” training

data is not available, noise adaptive training (NAT) [63] has been proposed to estimate

a “pseudo-clean” generative model. As noise adaptive training contains noise model and

canonical acoustic model estimations, both models are estimated by maximizing the like-

lihood of multi-style training data (or the recognized hypothesis if estimating noise model

during decoding). Given the posterior features predicted by a multi-style trained DNN,

the “auxiliary” function for noise adaptive training in TVWR framework is given as:

Q =
∑
k,t,j,m

γkjm(t) log p(ykt |j,m, k) (6.37)

=
∑
k,t,j,m

γkjm(t)

(
−1

2
log |Σk

jm| −
1

2
(ykt − µkjm)TΣ−1,k

jm (ykt − µkjm)

)
+
∑
k,t,j,m

γkjm(t)

(
−1

2
log |Σk

∆jm| −
1

2
(∆ykt − µk∆jm)TΣ−1,k

∆jm(∆ykt − µk∆jm)

)
+
∑
k,t,j,m

γkjm(t)

(
−1

2
log |Σk

∆2jm| −
1

2
(∆2ykt − µk∆2jm)TΣ−1,k

∆2jm(∆2ykt − µk∆2jm)

)
(6.38)
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where k represents the utterance or condition id, γkjm(t) is the component occupancy given

the current adapted TVWR system using DNN based posterior features,

γkjm(t) = γkj (t)
c̃jmt(k, Λ̂)N(ykt ; µ̂

k
jm, Σ̂

k
jm)∑M

m=1 c̃jmt(k, Λ̂)N(ykt ; µ̂
k
jm, Σ̂

k
jm)

(6.39)

= γkj (t)

(∑
i∈Ij ŵjmip̃(i|χ

k
t )
)
ĉjmN(ykt ; µ̂

k
jm, Σ̂

k
jm)∑M

m=1

(∑
i∈Ij ŵjmip̃(i|χ

k
t )
)
ĉjmN(ykt ; µ̂

k
jm, Σ̂

k
jm)

(6.40)

p̃(i|χkt ) = p(i|χkt )/P (i) is the normalized posterior feature predicted by multi-style trained

DNN (Hence, DNN is independent of k), P (i) is the prior probability of label i (which

may be assumed to be uniform or estimated from training data in case of bias labels),

VTS expansion functions for hidden variable (noise model and acoustic model) estimation

are given as:

µkjm ≈ µkjm,0 + Gk
jm(µjm − µjm,0) + Gk

jm(µkh − µkh,0) + Fk
jm(µkn − µkn,0) (6.41)

µk∆jm ≈ µk∆jm,0 + Gk
jm(µ∆jm − µ∆jm,0) (6.42)

µk∆2jm ≈ µk∆2jm,0 + Gk
jm(µ∆2jm − µ∆2jm,0) (6.43)

Σk
jm ≈ Gk

jmΣjmGT,k
jm + Fk

jmΣk
nF

T,k
jm (6.44)

Σk
∆jm ≈ Gk

jmΣ∆jmGT,k
jm + Fk

jmΣk
∆nF

T,k
jm (6.45)

Σk
∆2jm ≈ Gk

jmΣ∆2jmGT,k
jm + Fk

jmΣk
∆2nF

T,k
jm (6.46)

compensated acoustic models based on the current parameters are given as:

µkjm,0 ≈ µjm,0 + µkh,0 + g
(
µkn,0 − µjm,0 − µkh,0

)
(6.47)

µk∆jm,0 ≈ Gk
jmµ∆jm,0 (6.48)

µk∆2jm,0 ≈ Gk
jmµ∆2jm,0 (6.49)

expansion Jacobian with respect to mean variables are given as:

Gk
jm = C Diag(

1

1 + exp{C−1(µkn,0 − µjm,0 − µkh,0)}
)C−1 (6.50)

Fk
jm = I−Gk

jm (6.51)

where the first/second additive and channel means of noise model are assumed to be zero,

such that µk∆h = µk∆2h = µk∆n = µk∆2n = 0, subscript 0 represents the expansion point,

which corresponds to the current model parameters (or initial model parameters if it is

at the first iteration). Depending on the available training data, current acoustic model

can be either clean or noisy.
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6.2.2.1 Noise Model Estimation

In order to apply model compensation such as VTS [58], additive noise model (usually rep-

resented by a single Gaussian component) and channel distortion (usually assumed to be

static) have to be prepared. If the channel distortion is assumed to be nonexistent, additive

noise model may be rapidly estimated from a short recording of the background noise.

Since there is no way to directly estimate channel distortion, estimation-maximization

(EM) algorithm can be applied to estimate those hidden variables. In this case, noise

model is estimated by maximizing the likelihood of the speech data given the transcrip-

tion or hypothesis. The initial noise model may be estimated using head and tail frames

of an utterance, e.g. 20 frames from each side, while channel mean is initialized to be zero,

channel variance is assumed to be zero. Different from VTS adaptation, which assumes

that the acoustic model should be clean, noise model estimation based on VTS formula-

tion does not have such assumption. In other words, if the current acoustic model is noisy,

the final estimate is no longer a “noise” model. Instead, this “noise” model just represents

a transformation that maximizes the likelihood of the hypothesis. When performing noise

model estimation, current acoustic model parameters are assumed to be fixed such that

µjm = µjm,0, Σjm = Σjm,0. Hence, the compensated cepstral mean becomes:

µkjm ≈ µkjm,0 + Gk
jm(µkh − µkh,0) + Fk

jm(µkn − µkn,0) (6.52)

Noise Mean Update In order to obtain the optimal estimation of additive noise mean

and channel distortion, the partial derivatives with respect to µkn and µkh are taken re-

spectively as:

∂Q

∂µkn
=
∑
t,j,m

γkjm(t)

(
∂µkjm
∂µkn

∣∣∣∣T
µn,0

Σ−1,k
jm (ykt − µkjm)

)
(6.53)

=
∑
t,j,m

γkjm(t)
(
FT,k
jmΣ−1,k

jm

(
ykt − µkjm,0 −Gk

jm(µkh − µkh,0)− Fk
jm(µkn − µkn,0)

))
(6.54)

and

∂Q

∂µkh
=
∑
t,j,m

γkjm(t)

(
∂µkjm
∂µkh

∣∣∣∣T
µh,0

Σ−1,k
jm (ykt − µkjm)

)
(6.55)

=
∑
t,j,m

γkjm(t)
(
GT,k
jmΣ−1,k

jm

(
ykt − µkjm,0 −Gk

jm(µkh − µkh,0)− Fk
jm(µkn − µkn,0)

))
(6.56)

After some algebra manipulations and setting above derivatives to zero, an equation

system can be obtained as:

Aµkh + Bµkn = g (6.57)

Dµkh + Kµkn = h (6.58)
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where

A =
∑
t,j,m

γkjm(t)FT,k
jmΣ−1,k

jm Gk
jm (6.59)

B =
∑
t,j,m

γkjm(t)FT,k
jmΣ−1,k

jm Fk
jm (6.60)

D =
∑
t,j,m

γkjm(t)GT,k
jmΣ−1,k

jm Gk
jm (6.61)

K =
∑
t,j,m

γkjm(t)GT,k
jmΣ−1,k

jm Fk
jm (6.62)

g =
∑
t,j,m

γkjm(t)FT,k
jmΣ−1,k

jm (ykt − µkjm,0 + Gk
jmµ

k
h,0 + Fk

jmµ
k
n,0) (6.63)

h =
∑
t,j,m

γkjm(t)GT,k
jmΣ−1,k

jm (ykt − µkjm,0 + Gk
jmµ

k
h,0 + Fk

jmµ
k
n,0) (6.64)

Note that A = KT . Solving above linear system can give the following closed form update

formulae used for parameter estimation:

µkh = (A−BK−1D)−1(g −BK−1h) (6.65)

µkn = (B−AD−1K)−1(g −AD−1h) (6.66)

= (K−DA−1B)−1(h−DA−1g) (6.67)

The original NAT [63] estimates µkh by setting µkn = µkn,0, which may yield a simpler

formula at the cost of slower convergence. In practice, an issue arises with above esti-

mation procedure. Auxiliary function of log-likelihood function is evaluated based on the

compensation function in Eq-6.8 (i.e. µkn = µkn,0), while “auxiliary” function for noise

model estimation uses the compensation function in Eq-6.52 (i.e. µkn 6= µkn,0). Hence,

increasing the “auxiliary” function for noise model estimation does not guarantee the

increase of final log-likelihood. Assuming that the forward-backward alignment is fixed,

the auxiliary function based on compensation function in Eq-6.8 can be quickly evaluated

for the new noise model estimate. The target is to ensure the following inequality:

Q(µkn,0 = φknew) ≥ Q(µkn,0 = φkinitial) (6.68)

Otherwise, we can back-off the update by interpolating the initial and update parameters

such as:

φknew = λφkupdate + (1− λ)φkinitial (6.69)

where the interpolation λ is iteratively reduced by a factor of 2 till the inequality in IEq-

6.68 holds. Since there is no need to go through the whole training data, this back-off

process is very fast.
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Noise Variance Update When updating noise variances, additive noise mean and

channel mean are assumed to be fixed, such that µkn = µkn,0, µkh = µkh,0. In addition,

all covariance matrices are assumed to be diagonal. In case of updating the variance of

D-dimension static parameters, the auxiliary function with respect to utterance k noise

parameters can be re-written as:

Q =
∑
t,j,m

−1

2
γkjm(t)

{
D∑
d=1

(
log σ2,k

jm,d +
(ykt,d − µkjm,d)2

σ2,k
jm,d

)}
(6.70)

where

σ2,k
jm,d =

D∑
i=1

g2
jmk,diσ

2
jm,i + f 2

jmk,diσ
2,k
n,i , d = 1, . . . , D (6.71)

gjmk,di and fjmk,di are the element located at row-d and column-i of Gk
jm and Fk

jm, re-

spectively. Instead of directly optimizing the target variable σ2,k
n,p, the logarithm of the

variance is estimated to ensure the positivity, therefore, an intermedia variable is defined

as:

σ̃2,k
n,p = log

(
σ2,k
n,p

)
(6.72)

After σ̃2,k
n,p is estimated, the original variable can be obtained by:

σ2,k
n,p = exp

(
σ̃2,k
n,p

)
(6.73)

In order to optimize the noise variance, Newton’s method is adopted, which needs up to

second order of derivatives with respect to σ̃2,k
n,p:

∂Q

∂σ̃2,k
n,p

= −1

2

∑
t,j,m

γkjm(t)

{∑
d

f 2,k
jm,dpσ

2,k
n,p

σ2,k
jm,d

(
1−

(ykt,d − µkjm,d)2

σ2,k
jm,d

)}
(6.74)

∂Q2

∂σ̃2,k
n,p∂σ̃2

nk,l

=
1

2

∑
t,j,m

γkjm(t)

{∑
d

f 2,k
jm,dpσ

2,k
n,pf

2,k
jm,dlσ

2,k
n,l

σ4
jmk,d

(
1− 2

(ykt,d − µkjm,d)2

σ2,k
jm,d

)

− δ(l − p)
∑
d

f 2,k
jm,dpσ

2,k
n,p

σ2,k
jm,d

(
1−

(ykt,d − µkjm,d)2

σ2,k
jm,d

)}
(6.75)

Therefore, the update formula can be given as:

Σ̃
k

n = Σ̃
k

n,0 − α

( ∂2Q

∂2Σ̃
k

n

)−1
∂Q

∂Σ̃
k

n


Σ̃
k
n=Σ̃

k
n,0

(6.76)

where α is learning rate, which is usually set to be 1. In case of updating the variance of

dynamic parameters, similar derivatives and update formulae can be obtained by simply

adding ∆ or ∆2 to ykt,d,µ
k
jm,d,σ

2,k
jm,d,σ

2,k
n,p, respectively. Note that it is important to make

sure that the inequality in IEq-6.68 holds. If this inequality does not hold, the learning

rate α may be reduced by a factor of 2.
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6.2.2.2 Canonical Model Estimation

When performing canonical acoustic model estimation, noise model parameters are as-

sumed to be fixed such that µkn = µkn,0 and µkh = µkh,0. Hence, the compensated cepstral

mean becomes:

µkjm ≈ µkjm,0 + Gk
jm(µjm − µjm,0) (6.77)

Canonical Mean Update In order to obtain the optimal estimation of ”pseudo-clean”

model mean, the partial derivative with respect to µjm is taken as:

∂Q

∂µjm
=
∑
k,t

γkjm(t)

(
∂µkjm
∂µjm

∣∣∣∣T
µjm,0

Σ−1,k
jm (ykt − µkjm)

)
(6.78)

=
∑
k,t

γkjm(t)
(
GT,k
jmΣ−1,k

jm

(
ykt − µkjm,0 −Gk

jm(µjm − µjm,0))
))

(6.79)

By letting this equation to zero, the update formula for model mean µjm can be obtained

as:

µjm = µjm,0 +

{∑
k,t

γkjm(t)GT,k
jmΣ−1,k

jm Gk
jm

}−1{∑
k,t

γkjm(t)GT,k
jmΣ−1,k

jm (ykt − µkjm,0)

}
(6.80)

In case of dynamic parameters estimation, the expansion function is revised as:

µk∆jm ≈ µ∆jmk,0 + Gk
jm(µ∆jm − µ∆jm,0) (6.81)

Note that µ∆h and µ∆n are assumed to be zero in practice for convenience. Therefore,

the update formulae for dynamic parameters can be similarly computed as:

µ∆jm = µ∆jm,0 +

{∑
k,t

γkjm(t)GT,k
jmΣ−1,k

∆jmGk
jm

}−1

×

{∑
k,t

γkjm(t)GT,k
jmΣ−1,k

∆jm(∆ykt − µ∆jmk,0)

}
(6.82)

and

µ∆2jm = µ∆2jm,0 +

{∑
k,t

γkjm(t)GT,k
jmΣ−1,k

∆2jmGk
jm

}−1

×

{∑
k,t

γkjm(t)GT,k
jmΣ−1,k

∆2jm(∆2ykt − µk∆2jm,0)

}
(6.83)
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Canonical Variance Update In case of updating the variance of D-dimension static

parameters, the auxiliary function with respect to ”pseudo-clean” acoustic model param-

eters can be re-written as:

Q =
∑
k,t

−1

2
γkjm(t)

{
D∑
d=1

(
log σ2,k

jm,d +
(ykt,d − µkjm,d)2

σ2,k
jm,d

)}
(6.84)

In order to optimize the acoustic model’s variance, Newton’s method is adopted, which

needs up to two order of derivatives with respect to σ̃2
jm,p:

∂Q

∂σ̃2
jm,p

= −1

2

∑
k,t

γkjm(t)

{∑
d

g2,k
jm,dpσ

2
jm,p

σ2,k
jm,d

(
1−

(ykt,d − µkjm,d)2

σ2,k
jm,d

)}
(6.85)

∂Q2

∂σ̃2
jm,p∂σ̃

2
jm,l

=
1

2

∑
t,j,m

γkjm(t)

{∑
d

g2,k
jm,dpσ

2
jm,pg

2,k
jm,dlσ

2
jm,l

σ4,k
jm,d

(
1− 2

(ykt,d − µkjm,d)2

σ2,k
jm,d

)

− δ(l − p)
∑
d

g2,k
jm,dpσ

2
jm,p

σ2,k
jm,d

(
1−

(ykt,d − µkjm,d)2

σ2,k
jm,d

)}
(6.86)

Therefore, the update formula can be given as:

Σ̃jm = Σ̃jm,0 − α

( ∂2Q

∂2Σ̃jm

)−1
∂Q

∂Σ̃jm


Σ̃jm=Σ̃jm,0

(6.87)

In case of updating the variance of dynamic parameters, similar derivatives and update

formulae can be obtained by simply adding ∆ or ∆2 to ykt,d,µ
k
jm,d,σ

2,k
jm,d,σ

2
jm,p, respectively.

6.2.3 Joint Adaptation and Adaptive Training

Different speaker has different speaking style such as female vs. male, native vs. non-

native, young vs. elder, etc. Various rapid adaptation technologies have been proposed to

improve the robustness against speaker variabilities. In this section, Maximum Likelihood

Linear Regression MEAN (MLLR MEAN) [48] will be used to exploit the joint adapta-

tion and adaptive training for speaker and noise. For convenience, noise compensation

will be performed and followed by speaker adaptation for the joint adaptation. It is also

assumed that one speaker may speak in multiple conditions and one condition only con-

tains one speaker as one utterance represents one condition in the following formulation.

Otherwise, MLLR estimation requires another first order Vector Taylor Series approxi-

mation [105] due to the nonlinear “g”-function in Eq-6.8. First, the “auxiliary” function

of joint adaptive training is written as:
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Q =
∑

s,k,t,j,m

γs,kjm(t) log p(ys,kt |j,m, k, s) (6.88)

=
∑

s,k,t,j,m

γs,kjm(t)

(
−1

2
log |Σk

jm| −
1

2
(ykt − µ

s,k
jm)TΣ−1,k

jm (ys,kt − µ
s,k
jm)

)
+

∑
s,k,t,j,m

γs,kjm(t)

(
−1

2
log |Σk

∆jm| −
1

2
(∆ys,kt − µ

s,k
∆jm)TΣ−1,k

∆jm(∆ys,kt − µ
s,k
∆jm)

)
+

∑
s,k,t,j,m

γs,kjm(t)

(
−1

2
log |Σk

∆2jm| −
1

2
(∆2ys,kt − µ

s,k
∆2jm)TΣ−1,k

∆2jm(∆2ys,kt − µ
s,k
∆2jm)

)
(6.89)

where s represents the speaker id, γs,kjm(t) is the component occupancy given the current

adapted TVWR system using DNN based posterior features,

γs,kjm(t) = γs,kj (t)
c̃jmt(s, k, Λ̂)N(ys,kt ; µ̂s,kjm, Σ̂

k
jm)∑M

m=1 c̃jmt(s, k, Λ̂)N(ys,kt ; µ̂s,kjm, Σ̂
k
jm)

(6.90)

= γs,kj (t)

(∑
i∈Ij ŵjmip̃(i|χ

s,k
t )
)
ĉjmN(ys,kt ; µ̂s,kjm, Σ̂

k
jm)∑M

m=1

(∑
i∈Ij ŵjmip̃(i|χ

s,k
t )
)
ĉjmN(ys,kt ; µ̂s,kjm, Σ̂

k
jm)

(6.91)

p̃(i|χs,kt ) = p(i|χs,kt )/P (i) is the normalized posterior feature predicted by multi-style

trained DNN, assuming that each speaker uses a global transform (it is easy to extend

it to be regression class based adaptation), joint adapted acoustic models are given as

(as noise compensation is performed separately for static and dynamic parameters, block

MLLR mean transformation is assumed for convenience):

µs,kjm ≈ Asµkjm + bs (6.92)

µs,k∆jm ≈ As
∆µ

k
∆jm + bs∆ (6.93)

µs,k∆2jm ≈ As
∆2µk∆2jm + bs∆2 (6.94)

where As, bs is the speaker dependent affine transform, VTS expansion functions are

given as:

µkjm ≈ µkjm,0 + Gk
jm(µjm − µjm,0) + Gk

jm(µkh − µkh,0) + Fk
jm(µkn − µkn,0) (6.95)

µk∆jm ≈ µk∆jm,0 + Gk
jm(µ∆jm − µ∆jm,0) (6.96)

µk∆2jm ≈ µk∆2jm,0 + Gk
jm(µ∆2jm − µ∆2jm,0) (6.97)

Σk
jm ≈ Gk

jmΣjmGT,k
jm + Fk

jmΣk
nF

T,k
jm (6.98)

Σk
∆jm ≈ Gk

jmΣ∆jmGT,k
jm + Fk

jmΣk
∆nF

T,k
jm (6.99)

Σk
∆2jm ≈ Gk

jmΣ∆2jmGT,k
jm + Fk

jmΣk
∆2nF

T,k
jm (6.100)
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6.2.3.1 Speaker Transform Estimation

As the transform for static parameters shares similar objective function to that for dy-

namic parameters, only the speaker transform for static parameters are discussed with

details. Given the auxiliary function to estimate the transform for a particular speaker:

Q =
∑
k,t,j,m

γs,kjm(t)

(
−1

2
log |Σk

jm| −
1

2
(ykt − µ

s,k
jm)TΣ−1,k

jm (ys,kt − µ
s,k
jm)

)
(6.101)

Assuming that the speaker adaption transform is a global MLLR mean, both acoustic

and noise models are given such that µkjm = µkjm,0, covariance matrices are diagonal, and

defining that

Ws = [As bs], ζs,kjm = [µT,s,kjm 1]T (6.102)

the auxiliary function can be re-written as:

Q = K − 1

2

D∑
d=1

(
ws
dG

s
dw

T,s
d − 2ws

dk
T,s
d

)
(6.103)

where ws
d is the dth row of Ws, K is a independent constant term,

Gs
d =

∑
k,j,m

σ−2,k
jm,dζ

s,k
jmζ

T,s,k
jm

∑
t

γs,kjm(t) (6.104)

ksd =
∑
k,t,j,m

γs,kjm(t)σ−2,k
jm,dy

k
t,dζ

T,s,k
jm (6.105)

Differentiating the auxiliary function with respect to ws
d and equating to zero can yield

the update formula:

ws
d = ksdG

−1,s
d (6.106)

It is straightforward to extend it to be based on regression class by adjusting the sufficient

statistics Gs
d, Gs

d to be per regression class.

6.2.3.2 Noise Model Estimation

Assuming that the speaker transform and canonical model are given, the expansion func-

tion becomes:

µs,kjm ≈ Asµkjm,0 + AsGk
jm(µkh − µkh,0) + AsFk

jm(µkn − µkn,0) + bs (6.107)

= µs,kjm,0 + Gs,k
jm(µh − µh,0) + Fs,k

jm(µkn − µkn,0) (6.108)

where the joint Jacobian is written as:

Gs,k
jm = AsGk

jm, Fs,k
jm = AsFk

jm, µs,kjm,0 = Asµkjm,0 + bs (6.109)
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In order to estimate the noise mean parameters, derivatives are taken such as:

∂Q

∂µkn
=
∑
t,j,m

γs,kjm(t)

(
∂µs,kjm
∂µkn

∣∣∣∣T
µn,0

Σ−1,k
jm (ys,kt − µ

s,k
jm)

)
(6.110)

=
∑
t,j,m

γkjm(t)
(
FT,s,k
jm Σ−1,k

jm

(
ys,kt − µ

s,k
jm,0 −Gs,k

jm(µkh − µkh,0)− Fs,k
jm(µkn − µkn,0)

))
(6.111)

and

∂Q

∂µkh
=
∑
t,j,m

γs,kjm(t)

(
∂µs,kjm
∂µkh

∣∣∣∣T
µn,0

Σ−1,k
jm (ys,kt − µ

s,k
jm)

)
(6.112)

=
∑
t,j,m

γkjm(t)
(
GT,s,k
jm Σ−1,k

jm

(
ys,kt − µ

s,k
jm,0 −Gs,k

jm(µkh − µkh,0)− Fs,k
jm(µkn − µkn,0)

))
(6.113)

After some algebra manipulations and setting above derivatives to zero, an equation

system can be obtained as:

Asµ
k
h + Bsµ

k
n = gs (6.114)

Dsµ
k
h + Ksµ

k
n = hs (6.115)

where

As =
∑
t,j,m

γkjm(t)FT,s,k
jm Σ−1,k

jm Gs,k
jm (6.116)

Bs =
∑
t,j,m

γkjm(t)FT,s,k
jm Σ−1,k

jm Fs,k
jm (6.117)

Ds =
∑
t,j,m

γkjm(t)GT,s,k
jm Σ−1,k

jm Gs,k
jm (6.118)

Ks =
∑
t,j,m

γkjm(t)GT,s,k
jm Σ−1,k

jm Fs,k
jm (6.119)

gs =
∑
t,j,m

γkjm(t)FT,s,k
jm Σ−1,k

jm (ykt − µ
s,k
jm,0 + Gs,k

jmµ
k
h,0 + Fs,k

jmµ
k
n,0) (6.120)

hs =
∑
t,j,m

γs,kjm(t)GT,s,k
jm Σ−1,k

jm (ykt − µ
s,k
jm,0 + Gk

jmµ
k
h,0 + Fs,k

jmµ
k
n,0) (6.121)

Note that As = KT
s . Solving above linear system can give the following closed form

update formulae used for parameter estimation:

µkh = (As −BsK
−1
s Ds)

−1(gs −BsK
−1
s hs) (6.122)

µkn = (Bs −AsD
−1
s Ks)

−1(gs −AsD
−1
s hs) (6.123)

= (Ks −DsA
−1
s Bs)

−1(hs −DsA
−1
s gs) (6.124)
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As variance parameters are not adapted to speaker, the derivatives for noise variance

update are almost the same as NAT in Eq-6.74 and Eq-6.75, except that µkjm,d is replaced

by µs,kjm,d.

6.2.3.3 Canonical Model Estimation

As mentioned earlier, joint adaptation is assumed to be performed for noise followed by

speaker such as

µs,kjm ≈ Asµkjm,0 + AsGk
jm(µjm − µjm,0) + bs (6.125)

= µs,kjm,0 + Gs,k
jm(µjm − µjm,0) (6.126)

In order to obtain the optimal estimation of ”pseudo-clean” model mean, the partial

derivative with respect to µjm is taken as:

∂Q

∂µjm
=
∑
s,k,t

γs,kjm(t)

(
∂µs,kjm
∂µjm

∣∣∣∣T
µjm,0

Σ−1,k
jm (ys,kt − µ

s,k
jm)

)
(6.127)

=
∑
s,k,t

γs,kjm(t)
(
GT,s,k
jm Σ−1,k

jm

(
ykt − µ

s,k
jm,0 −Gs,k

jm(µjm − µjm,0)
))

(6.128)

By letting this equation to zero, the update formula for model mean µjm can be obtained

as:

µjm = µjm,0 +

{∑
s,k,t

γs,kjm(t)GT,s,k
jm Σ−1,k

jm Gs,k
jm

}−1{∑
s,k,t

γs,kjm(t)GT,s,k
jm Σ−1,k

jm (ys,kt − µ
s,k
jm,0)

}
(6.129)

Therefore, the update formulae for dynamic parameters can be similarly computed as:

µ∆jm = µ∆jm,0 +

{∑
s,k,t

γs,kjm(t)GT,s,k
∆jmΣ−1,k

∆jmGs,k
∆jm

}−1

×

{∑
s,k,t

γs,kjm(t)GT,s,k
∆jmΣ−1,k

∆jm(∆ys,kt − µ
s,k
∆jm,0)

}
(6.130)

where the dynamic joint Jacobian is given as:

Gs,k
∆jm = As

∆Gk
jm, µs,kjm,0 = As

∆µ
k
∆jm,0 + bs∆ (6.131)

As no speaker adaptation is performed on the variance parameters, the derivatives for

canonical variance update are almost the same as NAT in Eq-6.85 and Eq-6.86, except

that µkjm,d is replaced by µs,kjm,d.
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Figure 6.1: A diagram of joint adaptive training for TVWR.

6.2.3.4 Training Algorithm

In this section, joint adaptive training algorithm is summarized in the Figure. 6.1:

1. Initialize the canonical model using speaker/noise independent model, use the head/tail

20 frames to initialize the noise model with zero channel mean, initialize the speaker

transform (MLLR mean) using identity matrix and zero bias, initialize the speaker

index as s = 0.

2. Load speaker transform (MLLR mean) for speaker s.

3. Load noise model for utterance k by speaker s.

4. Load the current canonical model to perform VTS noise compensation and then

(MLLR mean) speaker adaptation.

5. Perform forward-backward estimation, and accumulate sufficient statistics for noise,

speaker transform and canonical acoustic model estimation, respectively. Then,

update noise model and store it into the disk.
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6. If more utterances by speaker s are available, increase k by 1 and then goto step-3;

otherwise, update speaker transform and store it into the disk and goto step-7.

7. If there exist more speakers, increase s by 1 and then goto step-2; otherwise, update

canonical model and store it into the disk and goto step-8.

8. If the training likelihood converges, then terminate; otherwise, set s = 0 and goto

step-2.

Once the training is done, speaker transforms and noise models can be discarded dur-

ing recognition. In order to apply canonical model for recognition, speaker independent

model will be used to decode and generate hypotheses, which serves as the unsupervised

transcription to estimate the initial speakers transform and noise models. The canonical

model adapted by these initial speaker transform and noise models can generate the new

hypotheses, which will be used to update speaker transform and noise models. Iterative

recognition and estimation may be applied till the recognition converges.

6.2.4 Experimental Results

In this section, experiments were conducted on the Aurora4 corpus for evaluation of

robust TVWR using DNN based posteriors. Two training sets, clean and multi-style, are

available and 16kHz data were used in this experiment. Each training dataset comprises

7138 utterances from 84 speakers, or about 12 hours of speech. In the clean training

dataset, all data were recorded by a close-talking microphone. Half of multi-style training

data came from the same microphone, but the rest were recorded by a variety of different

microphones. The multi-style training data contains 6 different types of noise. The

noise was added at a randomly chosen SNR between 10 and 20 dB, averaged 15 dB.

For evaluation, 14 test sets (each with 330 utterances and 8 speakers) are available for

covering 14 test conditions, which can be further grouped into 4 sets, named as A, B, C,

D. A represents the clean test set; B contains 6 test sets and 6 types of noise, whose SNR

is randomly chosen between 5 and 15 dB, averaged 10 dB; C is also the clean test set but

recorded with a different microphone; D is similar to B, except that the recording devices

are different.

The baseline GMM systems consisted of context-dependent HMMs with 3187 senones

(or tied states) and 16 mixtures per state using maximum likelihood estimation. The

input features for noise adaptation and adaptive training are Mel Frequency Cepstral

Coefficients (MFCC), including 12 static parameters, zero-th coefficient, and first two

orders of dynamic parameters. Cepstral mean&variance normalization (CMVN) was also

used to perform two-model re-estimation for another baseline. The GMM baseline using

CMVN features was used to align the training data as the initial senone labels for DNN

training. The testing results were obtained by a bigram full decoding using HTK.
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The input features for DNN training are 24-dimensional log Mel filter-bank (FBANK)

features with two order dynamic parameters and context expansion with window size

11, i.e. 792 visible units. There were 6 hidden layers with sigmoid activation function

and 2048 hidden units for each layer. Output layer had 3187 units corresponding to

the context-dependent senones and used soft-max as activation function. Layer-by-layer

generative pre-training was performed to obtain an initialization of DNN. Cross-entropy

criterion was used for back propagation fine tuning. Back propagation was down using

stochastic gradient descent with 128 examples per mini-batch. The initial learning rate

was 0.015, which was reduced by a factor of 2 if cross validation performance was dropped.

Momentum was 0 and maximum training iteration was 25. 1206 multi-style development

utterances were extracted from the corpus. The trained DNN was then used to re-align

the training data, and the second DNN was trained with updated labels, which was the

final DNN for the following experiments. The DNN output log posterior features were

analyzed by Principle Component Analysis (PCA), and 13 dimensional features were

projected and appended to the original CMVN features. The result features were used to

train a tandem system.

One fMLLR [131] transform was used per speaker to train a GMM system, which was

also used for speaker adaptive training of another DNN system. Due to the limitation

of current formulation and implementation, only MLLR mean adaptation was used for

speaker adaptation and adaptive training in the TVWR framework. To perform unsu-

pervised speaker or noise adaptation, one full bigram decoding was performed first and

followed by an EM estimation of noise model or speaker transform. 0.001 was used as the

floor of building the confusion table for sparse regression of TVWR.

First, various baseline systems trained by multi-style data are reported in Table. 6.3

(compact version) and Table. 6.5 (full version). GMM baseline using MFCC performed

worst among all the systems. This tells that the conventional acoustic features are not ro-

bust against noisy environments. Cepstral mean&variance normalization (CMVN) signif-

icantly improved the recognition results on all test sets. It is also comparable to Advanced

feature enhancement (AFE) [105]. Hence, the initial DNN training label was obtained by

aligning CMVN features. DNN using filter-bank features achieved dramatical recognition

error reduction and performed best among all. Its performance is also comparable to the

report [127]. This DNN was then used to generate posterior features to train all following

TVWR and tandem systems. Tandem system significantly outperformed other GMM

based systems due to the additional information from DNN. As dimension reduction was

performed to build the tandem features, information loss makes it perform worse than the

DNN baseline. Different from Tandem system, TVWR uses the raw posterior features

but performs sparse regression. Finally, TVWR achieved better performance than other

GMM and combination systems. However, TVWR performed worse than DNN baseline.

Considering the poor performance of GMM baseline system using MFCC features, one

possible explanation is that GMM part of TVWR was giving incorrect likelihood and
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misleading the decision. In order to obtain better performance from TVWR, GMM sys-

tem should be more complementary to DNN system. One way to improve the TVWR

performance is to boost the performance of GMM part, such as discriminative training,

speaker and noise adaptation.

System
A B C D Avg

Model Feature

GMM MFCC 10.5 23.6 29.4 38.1 27.7

GMM CMVN 8.0 16.2 18.1 32.2 22.6

GMM [105] AFE 8.8 16.7 19.1 28.6 21.4

DNN FBANK 4.8 8.8 8.8 20.5 13.6

Tandem CMVN+PCA 6.4 12.4 13.0 28.0 18.7

TVWR MFCC 5.6 9.1 11.3 21.7 14.4

DNN [127] FBANK 5.6 8.8 8.9 20.0 13.4

Table 6.3: Compact recognition results (WER%) of various baseline systems without adap-

tation on Aurora4.

Second, various system performances based on adaptation and adaptive training are

shown in Table. 6.4 (compact version) and Table. 6.6 (full version). In order to apply

VTS noise compensation, acoustic features used in this experiment were MFCC. If no

DNN information was used, multi-style trained GMM can greatly benefit from adapta-

tion techniques and achieved significant improvements over the multi-style GMM baseline.

In addition, adaptive training also helped to improve the multi-style trained system per-

formance as speaker and noise variations can be removed during training so that a better

canonical model can be adapted for better recognition accuracy. With both speaker

(MLLR mean) and noise adaptations, GMM [105] obtained comparable performance to

DNN using FBANK. Adaptation and adaptive training also helped to improve Tandem

system performance, however, it is much worse than the DNN baseline system without

any adaptation. As explained earlier, TVWR uses full dimensional posterior features but

performs sparse regression, TVWR obtained better performance than Tandem system

without any adaptation. On the other hand, GMM parameters of TVWR were estimated

based on MFCC features, which is the assumption of VTS adaptation for noise compen-

sation. After either VTS or MLLR mean adaptation, TVWR obtained 1.8% absolute

improvements over the DNN baseline system. This tells that the GMM adaptation is

really powerful and provides rich complementary information to the DNN. If joint adap-

tation was performed, another 0.6% absolute improvements were obtained. After speaker

adaptive training (SAT), TVWR with speaker adaptation achieved 2.4% absolute gain

over DNN baseline and 1.2% absolute gain over speaker adaptive trained DNN. Joint
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adaptation further pushed the system performance to 10.9% WER. In the TVWR frame-

work, noise adaptive training seems not to help much compared to the simple multi-style

training in average. However, NAT helped to obtain better results on the test set A

(clean) and C (channel distortion), which should be expected as NAT is supposed to be

able to remove the noise variation. After joint adaptation and adaptive training, best

recognition results were observed among all TVWR systems.

Finally, when compared to the results on Aurora4 from literatures [127, 132, 133, 134],

all TVWR systems after either VTS and MLLR mean adaptation outperformed the best

system using multi-style training data from literatures. If only considering the noise

factor, TVWR still achieved 0.6% absolute improvements over NAT+Dropout based DNN

system. When only the speaker factor is considered, TVWR+SAT obtained 1.2% absolute

improvements over the DNN+SAT system. So far, all TVWR systems were based on the

posterior features from the baseline DNN system, i.e. 13.6% WER. In other words, with

the help of adaptation and adaptive training in the TVWR framework, 2.9% absolute

(or 20% relative) improvements can be obtained. It is interesting to note that TVWR is

particular helpful for channel distortion, which leads to much larger relative improvements

over the other systems on the test sets C(channel distortion) and D (channel distortion

+ additive noise). This largely benefits from the good environmental model and good

approximation via VTS [58], which however have not been studied well for the DNN

systems. It is also important to note that the best literature result [134] needs the stereo

training data (clean training data + multi-style training data) and 4 DNNs (for masking,

feature mapping, posterior average). The second best literature [133] also needs stereo

training data and 3 DNNs (for masking, posterior average). Our system, on the other

hand, only used multi-style training data and one un-adapted DNN. These results tell that

combination and adaptation via TVWR are really powerful for robust speech recognition.

6.2.5 Summary

In this section, joint speaker/noise adaptive training and adaptation has been proposed

for TVWR, a framework that combines the discriminative power of the DNN and the

adaptability of the GMM for robust automatic speech recognition. On top of the superior

performance of the DNN-based system, we were able to obtain further improvements on

the Aurora 4 test sets by applying either the speaker adaptive training or noise adaptive

training to the GMM parameters of the TVWR systems. Finally, the best overall word

error rate performance of 10.7% was obtained by applying joint adaptive training, which

was 21.3% relatively better than the DNN baseline system and also better than the best

report in the current literatures.
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System Adaptation
A B C D Avg

Model Training Noise Speaker

GMM

multi-style

VTS - 9.7 14.9 14.0 22.4 17.7

- MLLR 7.5 15.2 12.2 26.0 19.1

VTS MLLR 7.3 12.7 10.7 20.4 15.5

SAT
- MLLR 7.0 13.2 9.7 22.3 16.4

VTS MLLR 6.5 11.4 9.8 19.2 14.3

NAT
VTS - 8.5 13.7 11.4 21.3 16.4

VTS MLLR 6.6 11.9 8.9 19.5 14.6

Joint VTS MLLR 6.3 11.2 8.1 18.4 13.7

Joint [105] VTS MLLR 5.6 11.0 8.8 17.8 13.4

Tandem
multi-style - fMLLR 5.9 11.5 10.9 26.3 17.4

SAT - fMLLR 5.6 11.0 10.0 25.6 16.8

TVWR

multi-style

VTS - 5.6 8.3 8.3 16.8 11.8

- MLLR 5.0 8.1 7.3 17.4 11.8

VTS MLLR 5.0 7.8 7.7 16.1 11.2

SAT
- MLLR 5.0 7.8 6.7 16.5 11.2

VTS MLLR 5.1 7.6 7.0 15.9 10.9

NAT
VTS - 4.9 8.5 7.7 17.1 11.9

VTS MLLR 4.7 8.0 7.3 16.1 11.2

Joint VTS MLLR 4.4 7.5 7.1 15.6 10.7

DNN

NAT [127] VTS - 5.4 8.8 7.8 19.6 13.1

Dropout [127] - - 5.1 8.4 8.6 19.3 12.9

NAT+Dropout [127] VTS - 5.4 8.3 7.6 18.5 12.4

stereo [132] cFDLR - 5.1 8.5 8.4 17.6 12.1

stereo [133] LIN - 4.6 7.5 7.6 17.0 11.4

stereo [134] masking - 4.5 7.4 8.1 16.5 11.1

SAT - fMLLR 4.3 7.9 6.7 19.2 12.4

Table 6.4: Compact recognition results (WER%) of various systems on Aurora4 based on

adaptation and adaptive training.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, an implicit trajectory model using Temporally Varying Weight Regression

(TVWR) has been proposed to learn the importance of Gaussian components under dif-

ferent acoustic contexts. This allows the temporal varying attributes of speech to be

better recognized. Instead of modelling the temporal correlations directly using a long

span of acoustic features, contextual information is implicitly incorporated into TVWR

using posterior features. As a result, TVWR is able to model non-stationary GMM dis-

tributions whose temporally varying Gaussian component weights are obtained through

regression with the posterior features. Although TVWR is similar to fMPE in terms

of modeling time-varying model parameters using the posteriors derived from long span

acoustic features, the underlying formulation and model parameterization are different.

Specifically, TVWR follows a proper probabilistic formulation that yields a much sim-

pler parameter estimation compared to the fMPE. Moreover, both maximum likelihood

and discriminative training parameter estimation formulae can be derived. Experiments

were conducted on the Wall Street Journal (CSR-WSJ0+WSJ1) corpora for 20k open

vocabulary continuous speech recognition and the Aurora 4 corpus for the 5k closed vo-

cabulary noisy speech recognition. Experimental results show that TVWR achieves better

performance compared to the standard HMM system for both maximum likelihood and

minimum phone error training. Moreover, the discriminatively trained TVWR models

also achieved comparable (or marginally better) performance compared to fMPE.

After that, TVWR has been studied for cross-lingual speech recognition. Particularly,

multi-stream TVWR has been proposed to boost the recognition accuracy. Richer con-

text information can be obtained by introducing temporal and spatial context expansion.

Although more computing costs will be introduced, this may not be an issue if the recog-

nition performance is more important. This approach has been evaluated on the task of

building ASR with limited resources. Experiments show that multi-stream TVWR with
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7.2 Future Works

limited training data (1h English or 6h Malay) achieved the performance of only less than

2% inferior to the respective fullset English (15h) and Malay (74h) baseline systems.

Next, TVWR has been investigated as an approach of combining GMM and DNN to

achieve a high quality and adaptable state probability model for automatic speech recog-

nition. The resulting GMM+DNN/HMM system is different from the tandem systems

in that the GMMs are trained directly on the Cepstral acoustic features, rather than

the DNN-derived tandem features. Posterior grouping and sparse regression have been

developed to address the issue of incorporating the high dimensional CD-DNN posteriors

into TVWR without dramatically increasing the system complexity. Experiments shows

that the proposed system has significantly outperformed the DNN baseline system and

the speaker adapted DNN system.

Finally, adaptation and adaptive training of TVWR has been formulated for robust

speech recognition. When the posteriors for the weight regression are generated by a

GMM, noise model compensation can be applied to both the GMM front-end as well as

the GMM parameters of TVWR. TVWR has also been investigated as an approximation of

noise adaptive training. Experiments have shown that TVWR has obtained significantly

better performance than the conventional GMM systems after adaptation. On the other

hand, when the posteriors are generated by the DNN, speaker, noise, joint adaptation and

adaptive training have been developed for the TVWR system. In order to achieve better

performance, the DNN is trained using the multi-style training data. Experiments on

the Aurora 4 corpus have shown that the joint speaker and noise adapted TVWR system

(10.7% WER) outperformed the DNN baseline system (13.6% WER) by 21.3% (relative)

and also outperformed the best result (11.1% WER) [134] in the current literatures.

7.2 Future Works

In this section, several possible future works beyond the scope of this thesis are suggested,

which aim to improve the current system or incorporate with other techniques.

• Currently, TVWR for building the ASR system with limited resources only uses

the context-independent posteriors from the foreign shallow neural networks. One

possible further work is to use better context-dependent posteriors from the foreign

deep neural networks. Due to the superiority of the NN posteriors, (temporal and

spatial) context expansion and a separate state clustering can be used to implicitly

increase the importance of the posterior information. More flexible and explicit

weighting the contribution of the NN posteriors needs to be investigated. For ex-

ample, a global factor may be added to the log regressed value and tuned according

to a development set.
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7.2 Future Works

• Although subspace GMM [135] has been less popular due to the introduction of

the DNN, subspace GMM has more compact model parameterization and performs

better than the conventional GMM in general tasks. Subspace GMM uses sharable

projections and component specific vectors to estimate the statistics of the Gaussian

components, and uses soft-max regression function to obtain the static weights. In

other words, subspace GMM still has the basic GMM structure, therefore, it is

possible to add a time-varying factor to the static weight. A better GMM variant

may be more complementary to the DNN systems such that better performance

may be expected.

• So far, adaptation and adaptive training of TVWR are only formulated using Max-

imum Likelihood criterion, while discriminative training has been widely used to

build the state-of-the-art GMM-based system due to its superiority. This training

criterion can be used to perform speaker adaptive training [136, 137] and noise adap-

tive training [138]. These techniques may also be applied to the TVWR framework

to obtain a more robust system. On the other hand, only a global MLLR mean

transform was used for joint speaker and noise adaptation in this thesis. It is pos-

sible to use more transforms by regression classes and more powerful constrained

MLLR (CMLLR) [46]transforms.

• The deep learning algorithm has been applied to other neural network variants, such

as convolutional neural network (CNN) [139, 140, 141] and recurrent neural network

(RNN) [142]. In addition, dropout training [143], feature enhancement [127, 129,

132], sequential training [144, 145] and many other techniques have been developed

for improving the deep neural networks. It is interesting to explore combining

other neural networks and the GMM in the TVWR framework for robust speech

recognition. For example, this investigation can be used to verify that whether the

adapted GMM can be still complementary to the CNN or the CNN has the ability

to remove more speech variabilities.

• In the current TVWR framework, the posterior generator is assumed to be as an

independent external component. This assumption makes the framework is more

flexible to use any probabilistic classifier. However, recent progress suggests that

DNN is a superior acoustic model for speech recognition. It is interesting to embed

the DNN training into the TVWR framework so that GMM and DNN can bet-

ter contribute to each other during training. For example, if maximum likelihood

estimation is performed, the objective function for DNN training may become:

QML =
∑
t,j,m,i

γML
jmi (t) {log p(i|τ t)− log p(i)} (7.1)
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7.2 Future Works

, which is very similar to the cross-entropy function used for conventional DNN

training:

FCE = −
∑
t

∑
i

δ(i− it) log p(i|τ t) (7.2)

where δ() is a Dirac delta function, it is the label of latent variable at time t. The

main difference between these two functions are that the conventional DNN train-

ing uses hard labels while embedded training uses soft labels. One advantage of

embedded training is that there is need not to know what the latent variable really

is but to define the number of latent variables to focus on the training objective.

Similarly, embedded training may also be applied with discriminative training cri-

teria [144, 145].
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Appendix A

Appendix

A.1 Jacobian Issue

Given x ∈ Rn ∼ N(x;µx,Σx), in order to be a valid probability formula, the following

equation has to be satisfied ∫ +∞

−∞
N(x;µx,Σx) dx = 1. (A.1)

If a transformation is applied as y = f(x) where f(x) is any differentiable function, Since

the real variable is x rather than y, the cumulative probability over all the possible x

should be ONE. However, if the transformation is not just a simple global shifting, this

constraint will no longer be guaranteed, that is∫ +∞

−∞
N(y;µy,Σy) dx 6= 1. (A.2)

A similar equation to Eq-A.1 with respect to variable y can be written as∫ +∞

−∞
N(y;µy,Σy) dy = 1. (A.3)

There is a strong dependency between these two variables, which can be written in deriva-

tive form:

dy = f ′(x)dx (A.4)

Since dy is required to be positive for integral Eq-A.3, but not necessary for derivative

(A.4), Eq-A.3 can be rewritten as:∫ +∞

−∞
N(y;µy,Σy)|f ′(x)| dx = 1. (A.5)
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A.2 Constraint Derivation for TVWR

where the absolute differential |f ′(x)| is also called Jacobian, denoted as |Jx|, which can be

a determinant if the function f is a multivariate to multivariate mapping. If the Jacobian

|Jx| is a non-zero constant J independent of x, one interesting conclusion about these two

equations Eq-A.1 and Eq-A.5 can be drawn

N(y;µy,Σy) =
1

|J|
∗N(x;µx,Σx) (A.6)

This observation is quite nice since the probability of the transformed variables can be

calculated using the distribution of original space plus a Jacobian term |J| without ex-

plicitly calculating the distribution of the transformed variables. The reason why lin-

ear feature/model transformation is widely used for speech recognition is that the num-

ber of Jacobian is limited and can be pre-computed. However, the temporally varying

model/feature transformation approaches have a temporally varying Jacobian, i.e. Jx de-

pends on x, if the transformation has dependency on the feature itself. Since the Jacobian

needs a lot of computing resources, the requirement of too many evaluations of Jacobian

can make the problem intractable. On one hand, the time-varying Jacobian term from

the numerator and denominator in fMPE and pMPE objective function is canceled, so

fMPE and pMPE does not have Jacobian issue. On the other hand, in order to estimate

a time-varying feature transformation like fMPE using maximum likelihood estimation,

explicitly evaluation of time-varying Jacobian terms will make it intractable for large scale

problems.

A.2 Constraint Derivation for TVWR

This section provides the derivation of the constraints for the parameter cjm and wjmi in

Eq-3.12 and Eq-3.13, respectively. Since cjm is firstly introduced in Eq-3.1, cjm should be

constrained to make a valid probabilistic model for Eq-3.1 such that∫
τ t

∫
ot

p(τ t,ot|j) dτ tdot = 1, ∀j (A.7)

=⇒
∫
τ t

∫
ot

M∑
m=1

cjmp(τ t,ot|j,m) dτ tdot = 1, ∀j (A.8)

=⇒
M∑
m=1

cjm

∫
τ t

∫
ot

p(τ t,ot|j,m) dτ tdot = 1, ∀j (A.9)

Using the fact that the probability, cjm = P (m|j), is non-negative and∫
τ t

∫
ot

p(τ t,ot|j,m) dτ tdot = 1 (A.10)
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A.3 Solver for Discriminative Training of TVWR

leads to the constraints for cjm such that

M∑
m=1

cjm = 1, ∀j and cjm ≥ 0, ∀j,m (A.11)

Since p(τ t,ot|j,m) can be factorized into p(τ t|ot, j,m) and p(ot|j,m), the constraint

in Eq-A.10 can be satisfied provided that the following are satisfied:∫
ot

p(ot|j,m) dot = 1, ∀j,m (A.12)∫
τ t

p(τ t|ot, j,m) dτ t = 1, ∀j,m,ot (A.13)

Since p(ot|j,m) is modelled by a GMM, the constraint in Eq-A.12 is satisfied. On the

other hand, by applying the approximations in Eq-3.4,3.7,3.9, the constraint in Eq-A.13

is revised as: ∫
τ t

p̃(τ t|ot, j,m) dτ t = 1, ∀j,m,ot (A.14)

=⇒
∫
τ t

Kt

N∑
i=1

p̃(i|τ t)wjmi dτ t = 1, ∀j,m (A.15)

=⇒
N∑
i=1

wjmi

∫
τ t

p(τ t|i) dτ t = 1, ∀j,m (A.16)

Since
∫
τ t
p(τ t|i) dτ t = 1 for all i and the probability, wjmi = P (i|j,m), is non-negative,

the following constraints for wjmi are obtained:

N∑
i=1

wjmi = 1, ∀j,m and wjmi ≥ 0, ∀j,m, i (A.17)

Therefore, it is not necessary to constrain
∑M

m c̃jmt = 1 for all state j at each frame,

t in order to ensure that p(τ t,ot|j) is a valid probability density function based on the

simplifications. In other words, our instantaneous time-varying weights do not need to

obey the sum-to-one constraint.

A.3 Solver for Discriminative Training of TVWR

In case of C = 1 in Eq-3.40, which is actually the most widely used setup, a fast im-

plementation of searching the update solution can be found using Lagrange multiplier
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method. The original constrained optimization problem is re-expressed to maximize fol-

lowing function:

y =
N∑
i=1

ni log xi − d̂ixi (A.18)

where

d̂i =
di
x̂i
, ni ≥ 0, di ≥ 0, x̂i > 0, ∀i (A.19)

subject to
N∑
i=1

xi = 1, xi > 0 ∀i (A.20)

Then, Lagrange function can be obtained as

L =
N∑
i=1

ni log xi − d̂ixi + λ(
N∑
i=1

xi − 1) (A.21)

In order to get the optimal solution, following equation system needs to be solved:

∂L

∂xi
=
ni
xi
− d̂i + λ = 0 (A.22)

∂L

∂λ
=

N∑
i=1

xi = 1 (A.23)

whose solution, λ∗ is actually equivalent to the root of following function:

f(λ) =
N∑
i=1

ni

d̂i − λ
− 1 (A.24)

Given the fact that f ′(λ) > 0 and f(λ) ∈ (−∞,+∞), there exists one and only one root

of this function. Starting from f(λ0) < 0, the root can be quickly found using Newton’s

method:

λ0 = −
N∑
i=1

ni (A.25)

λk+1 = λk −
f(λk)

f ′(λk)
(A.26)

Note that if d̂i = 0 for all i, then λ∗ = λ0. Therefore, optimal solution of this problem

can be given as

x∗i =
ni

d̂i − λ∗
(A.27)
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A.4 Useful Matrix Derivatives

∂xTa

∂x
=
∂aTx

∂x
= a (A.28)

∂aTXb

∂X
= abT (A.29)

∂aTXTb

∂X
= baT (A.30)

∂aTXa

∂X
=
∂aTXTa

∂X
= aaT (A.31)

∂xTBx

∂x
= (B + BT )x (A.32)

∂aTX−1b

∂X
= −X−TabTX−T (A.33)

∂ log |X|
∂X

= X−T (A.34)

∂g(Y)

∂Xij

= Tr

[(
∂g(Y)

∂Y

)T
∂Y

∂Xij

]
(A.35)
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