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Abstract

While motion segmentation has been an active research

area, the model selection aspect has often been neglected.

Due to the difficulty of simultaneously estimating the num-

ber of motion and segmenting the trajectories, the number

of motion is often assumed known.

In this thesis, we present a model selection mechanism

based on finding the minimal basis subspace representa-

tion. This model selection mechanism is the enabler for

our proposed general motion segmentation work that is ca-

pable of strong competitive performance for both rigid and

non-rigid motion. The good performance can be attributed

to the explicit modeling of overlapping subspaces by iden-

tifying the shared bases, which is also key to ensuring the

recovery of a global shape in non-rigid structure from mo-

tion.

We first apply our general motion segmentation work to

rigid motion segmentation by evaluating both the model

selection and segmentation performance against the state-

of-the-art rigid motion segmentation algorithms, using the

standard Hopkins 155 and extended Hopkins 380 dataset.



These evaluations show that our work offers the best per-

formance.

Based on this general motion segmentation work, we de-

velop a new subspace segmentation approach to non-rigid

structure from motion. This new subspace segmentation

approach decomposes a complex non-rigid motion into sub-

groups of relatively simpler motion, which can be more

easily reconstructed. Even without the benefit of ground

truth, our approach compares favorably with the state-of-

the-art works.
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Chapter 1

Introduction

The segmentation topic is usually associated with object segmenta-

tion. Consider the beach scene in figure 1.1. Object segmentation

is the task of separating the image into different groups based on

properties such as edges and saliency. Figure 1.2 is one of the many

possible outcomes of segmentation. Object segmentation is difficult

due to noise such as the disruption of edges and change of intensity

along the edges. For example, the beach in figure 1.1 has been broken

up into two segments due to the presence of the tree.
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Figure 1.1: An image to be segmented

Figure 1.2: Image after segmentation

Motion segmentation is fundamentally different from object seg-

2



mentation. As the name suggests, the task of motion segmentation

is to group rigid objects according to their motion over video frames,

based on the tracked features in each frame. Figure 1.3 shows one

frame of a checkerboard sequence, which consists of 26 video frames

of 538 tracked points overlayed on the original image. There are

three motions shown in the figure, marked in red, green and blue.

The only relevant information in motion segmentation are the (x, y)

coordinates of the tracked feature points over the entire video frames.

The (x, y) image coordinates of the tracked feature points are stacked

to form the data matrix, which is the only input to motion segmenta-

tion. The image color intensity plays no part in motion segmentation.

3



Figure 1.3: A 3 motion checkerboard sequence with tracked points

4



Figure 1.4: The same checkerboard sequence showing only the tracked points

Since motion segmentation relies solely on the (x, y) image coor-

dinates of the tracked feature points, they need to be tracked reliably

over the video frames. [1] is one of the commonly used feature track-

ers that is based on spatial intensity information. SIFT[2] is a more

sophisticated feature tracker that uses a more elaborate set of feature

vectors that are invariant to uniform scaling and rotation. There are

many other feature trackers such as MSER and SURF. However, all

these trackers face the same problem of wrong matching of the fea-

tures or completely losing the features in some of the frames. The

resultant data matrix will therefore likely contain missing entries or

large outliers.
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The clear motion grouping in figure 1.3 may convey the impres-

sion that motion segmentation is an easy problem that is readily

solvable. Figure 1.4 gives a more accurate picture of the challenge of

motion segmentation. Without the benefit of the underlying image

and relying on the (x, y) image coordinates alone, motion segmen-

tation looks much more daunting. With just the (x, y) image coor-

dinates, not only is it hard to cluster the tracked feature points, it

is even more challenging to find out how many motion there are in

the scene. If we further take into account the tracking error present

in the data matrix, the motion segmentation problem becomes a lot

more formidable.

1.1 Contribution

In this thesis, we present a new, general motion segmentation frame-

work that solves both the model selection and clustering problem.

Unlike the present methods, our model selection works universally

across both the rigid and the non-rigid domain, with the same set of

model parameters. Our work achieves the best model selection and

misclassification rates for rigid body motion segmentation.

For non-rigid structure from motion, we propose a new subspace

segmentation approach based on our work. Our work is the only

work that decomposes the nonrigid motions into their constituent

parts automatically, and yet allows reconstruction of a global 3D

shape. This allows us to handle greater deformation that might

not be representable by a linear subspace. Compared to the local

piecewise approaches[3][4][5], our work handles the different types of

6



non-rigid motion uniformly, without the need for prior information

on the type of motion. For reconstruction, those non-rigid structure

from motion (NRSFM) works based on shape basis (or related) rep-

resentation e.g. [6][7][8][9], typically assume the availability of ground

truth to achieve the optimum result. We demonstrate that we are

able to achieve comparable performance without the ground truth.

There are other works such as [3] that use the same motion seg-

mentation algorithms for both rigid and non-rigid motion. The dif-

ference between our work and theirs is that while [3] works well for

non-rigid motion, the model selection performance is poor for rigid

body motion segmentation. In contrast, our work performs strongly

for both rigid and non-rigid motion.

Our work is also more general and less restrictive in the sense that

both the articulated and deformation type of non-rigid motion are

handled uniformly. This is in contrast to [3], which handles mainly

articulated motions with rigid components.

1.2 Model selection difficulties

There has been a steady progress in motion segmentation ever since

the seminal single body rigid structure from motion factorization

work [10] allows various extensions to multi-body rigid motion seg-

mentation. Due to the difficulty of motion segmentation, the over-

whelming majority of works assume known number of motion. These

motion segmentation works avoided model selection for a good rea-

son. Model selection is inherently a difficult problem that needs the

incorporation of prior knowledge. The challenge is often in the in-

7



corporation of this prior knowledge.

For the motion segmentation problem, overlapping motions re-

mains a largely ignored issue. Almost all the motion segmentation

works assume independent motions. This is a strong and restrictive

assumption that may not hold in many of the data sequences. Over-

lapping motions are likely to be prevalent in articulated motions and

more generally non-rigid motions.

Even for rigid motions, overlapping motions are also common. An

intuitive example is the set of traffic sequences, where the cars are

constrained to move along the same road, thereby sharing the same

translation . Another example is the camera induced motion, which

will impart the same motion to all the moving bodies.

The use of the independent subspace assumption is understand-

able because it simplifies the mathematical treatment and allows the

use of spectral clustering as an effective segmentation tool. In many

of the motion segmentation works, clustering is based on the pairwise

subspace affinity between the trajectories. The overlapping motion

will cause trajectories from the overlapping subspaces to have signif-

icant affinity. The use of spectral clustering ensures that the affinity

between trajectories from overlapping subspaces can be treated as

noise so that segmentation will be successful.

Although the use of spectral clustering for segmentation works

well by regarding the overlap as noise, the situation is more serious for

model selection. In spectral clustering, the number of motion is given

by the number of zero eigenvalues of the Laplacian. Model selection

in the spectral domain typically works by identifying the gap between

8



the zero and non-zero eigenvalues. The better performing methods,

such as [11] and [12], are based on this principle.

The common problem these methods face is the diminishing of

this eigengap due to the overlapping motion. [11] compensates for

this increased ambiguity by the use of a more robust fitting function.

[13] introduced a model complexity penalty to incrementally merge

the over-segmented components. The idea of model complexity has

been around for a while(see [14][15]), but it has only been introduced

to motion segmentation recently.

Instead of treating the overlapping motion as noise and fixing this

assumption a posteriori, our work models the overlapping motion

upfront and make explicit the overlap. In this thesis, we show that

such an approach not only gives better results, but also provides the

explicit overlapping information that is desirable for NRSFM.

1.3 Minimal basis representation

At the heart of our new method is the idea of minimal basis rep-

resentation. It is this minimal basis representation that allows the

modeling of overlapping subspaces. This parsimonious principle is

motivated by the fact that most of the real life motion sequences we

deal with consist of overlapping motion. In view of the overlapping

motion, the minimal basis representation is therefore seeking to find

the smallest set of basis that is able to explain these overlapping

subspaces. Finding the minimal basis representation is a challenging

task. With the recent advances in compressive sensing and graphical

model, we are able to leverage on these tools to find such minimal

9



basis representation.

1.4 Organization

Following this introduction chapter, we lay the foundation for our

work in chapter 2. In chapter 3, we present the full treatment of

our proposed new work in the context of rigid body motion segmen-

tation, with detailed description of experiment setup, comparisons,

results and analysis. In chapter 4, we outline how the same model

selection mechanism can be applied to non-rigid structure from mo-

tion. Detailed experiment setup, comparisons, results and analysis

are also included in this chapter. We end the thesis in chapter 5 with

conclusions and some suggestions on future works.
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Chapter 2

Foundation

In this chapter, we lay the foundation for our main work with the

introduction of various topics that our work is built upon. We start

off by reviewing two important mathematical techniques at the heart

of our work - convex optimization and factor graphs.

Convex optimization and in fact, optimization in general, now

plays a central role in many computer vision problems. In our work,

convex optimization is important in finding the minimal basis repre-

sentation solution efficiently and accurately. Compared to the ubiq-

uitous convex optimization, the factor graph formulation of graph

model is only used sporadically in computer vision. For our work,

we rely on factor graphs for model selection.

These two sections are not meant as an exhaustive guide or math-

ematically rigorous proofs to solving convex optimization problems

and message passing in factor graphs. Instead, we hope to provide

some background and intuition on these techniques, so that the main

thrust of our work in the latter sections can be better understood.

In the last section, we first do a quick review of orthographic
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and affine camera models. We demonstrate through the commonly

used affine camera model how the camera models lead naturally to

the factorization framework. One particular form of factorization

that is highly relevant to our work is the self-expressive representa-

tion idea presented in Sparse subspace clustering(SSC)[16] and Low

Rank Representation(LRR)[11], which are important state-of-the-

art motion segmentation works. Besides their strong performance in

misclassification rates, they are accompanied by elegant theoretical

results guaranteeing the correctness of their solution.

2.1 Convex optimization

Ever since the pioneering influential work of [17], the use of convex

proxy for finding an approximate solution to NP-hard combinatorial

problems in the field of compressive sensing has seen tremendous

growth and applications. From this initial work, subsequent works

such as [18] and [19] have profound impact on many computer vi-

sion problems. The use of convex proxies means that many of these

problems can be solved efficiently and accurately. More importantly,

these compressive sensing works provide the theoretical framework

establishing when the solution to the convex proxies coincides with

the original problem. Many computer vision problems deemed too

difficult in the past can now be solved with good approximations

using the convex proxies. The motion segmentation problem is one

of the beneficiaries of this progress in compressive sensing.

Our minimal basis formulation requires the use of row sparsity

penalty. Even though the use of convex proxies makes such formula-

12



tion more tractable, we still require an efficient algorithm for solving

the resultant optimization program. Although there are fast and effi-

cient off-the-shelf solvers such as CVX[20], the size of our data matrix

and matrix norm formulation render these solvers unfit for use. For

example, CVX is able to handle matrix sizes 30 × 90 comfortably

whereas our data matrix is typically of the order 60 × 300. Such

big matrices will grind CVX to a halt. One of the reasons for CVX’s

performance issue with large data matrices is due to the second order

optimization method used. While second order optimization meth-

ods are able to solve optimization problems accurately, scalability

does become an issue.

Our search for an efficient algorithm for solving our optimiza-

tion problem of interest leads us to the Augmented Lagrange Multi-

plier(ALM) method. ALM is a first order method in the sense that

it is gradient descent based, unlike the second order method where

the Hessian needs to be computed.

In the following explanation on ALM, we will make use of the

convex proxy formulation in our work (2.1) as a concrete illustration.

min
C,E
‖C‖2,1 + γ ‖E‖1,2 (2.1)

s.t. Ŵ = ŴC + E

where Ŵ is a given data matrix, C is the coefficient matrix that de-

scribes how each trajectory expresses itself in terms of other trajecto-

ries, E is the column sparse outlier matrix. The detailed formulation

will be given in chapter 3.
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2.1.1 Augmented Lagrange multipliers(ALM)

ALM was proposed as far back as 1969 by [21] and [22], known

as ”method of multipliers”. Our insight into ALM is based mainly

on [23]. Since our formulation involves only equality constraint, we

will explain ALM with equality constraints in mind. ALM with

inequality constraints are more difficult. Since we do not deal with

inequality constraints, ALM with inequality constraints will not be

covered here.

The idea behind ALM is to move the equality constraints into the

Lagrangian as quadratic penalties and then gradually increase the

weight of these quadratic penalties so that the equality constraints

are enforced upon convergence. Note that turning the constraints

into quadratic penalties in the objective function would have been

a more intuitive approach. The penalized objective function for our

case is

fρ(C,E) = ‖C‖2,1 + γ ‖E‖1,2 +
ρ

2

∥∥∥ŴC + E − Ŵ
∥∥∥2

(2.2)

The idea behind the quadratic penalty approach is that as ρ→∞,

the quadratic penalty becomes binding and becomes the original hard

constraint. The important difference, as explained in [23], is that for

the Lagrangian’s case, the quadratic penalty weight ρ does not need

to be increased to infinity for convergence to happen and is therefore

numerically more stable.

As shown in [24], the optimum primary variables and dual La-

grangian multipliers form a saddle point so ALM looks to minimize

14



the primary variables and maximize the dual Lagrange multipliers.

Based on this augmented Lagrangian, ALM alternates between solv-

ing the primary variables as an unconstrained optimization problem

and updating the Lagrange multipliers in each iteration until con-

vergence.
For our problem of interest, the augmented Lagrangian is given

by

L(C,E, λ) = ‖C‖2,1 + γ ‖E‖1,2 + 〈λ, ŴC + E − Ŵ 〉+
ρ

2

∥∥∥ŴC + E − Ŵ
∥∥∥2 (2.3)

where (C,E) are the primary variables, ‖.‖2,1 is the row sparsity

penalty, ‖C‖1,2 is the column sparsity penalty, λ is the Lagrange

multiplier, Ŵ is the known data matrix and ρ is the quadratic penalty

weight that is increased successively with iterations.

At the kth iteration, the primary variables (C,E) are updated by

minimizing L over (C,E), with λk kept constant

(Ck+1, Ek+1) = arg min
C,E

L(C,E) (2.4)

After solving for (Ck+1, Ek+1), the Lagrange multiplier is updated

based on the optimality condition(KKT condition) as

λk+1 = λk + ρk(ŴCk+1 + Ek+1 − Ŵ ) (2.5)

The bulk of the work in ALM is in solving the unconstrained

optimization problem in (2.4). The different variants of ALM lies

in how (2.4) is solved and the multipliers are updated in (2.5). We

follow [25] in describing the variants of ALM.
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2.1.2 Closed form solutions

The popularity of ALM is in part due to the availability of closed

form solutions for many of the convex penalties in (2.4). Closed

form solutions can be obtained for (2.4) by introducing an auxiliary

variable J

min
C,E,J

‖J‖2,1 + γ ‖E‖1,2 (2.6)

s.t. Ŵ = ŴC + E

C = J

The slight complication is due to the presence of the ŴC term.

The introduction of an auxiliary variable will remove this complica-

tion. The price we have to pay for introducing this auxiliary variable

will become apparent in the inexact ALM section 2.1.4. With this

auxiliary variable, the augmented Lagrangian becomes

L(C,E, J, λ) = ‖J‖2,1 + γ ‖E‖1,2

+ 〈λ1, ŴC + E − Ŵ 〉+
ρ

2

∥∥∥ŴC + E − Ŵ
∥∥∥2

+ 〈λ2, C − J〉+
ρ

2
‖C − J‖2 (2.7)

The primary variables update step in ALM thus becomes

(Ck+1, Ek+1, Jk+1) = arg min
C,E,J

L(C,E, J) (2.8)

For J , we can transform (2.7) into the following by ”completing
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the square” and optimize only over J , keeping the rest constant

min
J

1

2
‖J −M‖2

F + ‖J‖2,1 (2.9)

where M results from ”completing the square”. The reason why

we want to rewrite to the form in (2.9) is because a closed form

solution will then exist. The closed form solution is the well-known

soft thresholding operator. The minimum is given by applying the

soft thresholding operator row-wise. Row Ji is updated as,

J̄i =


(

1− 1
‖Mi‖2

)
Ji if ‖Mi‖2 > 1

0 otherwise
(2.10)

When minimizing over E, (2.7) is similarly transformed into

min
E

1

2
‖E −D‖2

F + γ ‖E‖1,2 (2.11)

where D results from completing the square, the minimum is given

by applying the soft thresholding operator column-wise. Column Ei

is updated as,

Ei =


(

1− γ
‖Di‖2

)
Ei if ‖Di‖2 > γ

0 otherwise
(2.12)

Since C does not involve any non-smooth terms, it can be differ-

entiated and solved in a straightforward manner.
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2.1.3 Exact ALM

The exact ALM carries out the unconstrained minimization (2.8) by

alternating between minimizing J , E and C using the closed form

solutions until convergence. This convergence requirement usually

takes many iterations, thus causing considerable slow down. The

Lagrange multipliers are only updated upon convergence of these

primary variables.

2.1.4 Inexact ALM

The inexact ALM is much faster compared to the exact version.

Inexact ALM is solved using the alternating direction method of

multipliers (ADMM) method, proposed by [26] and[27]. The main

difference from exact ALM is that we no longer require convergence

of the primary variables before updating the Lagrange multipliers.

ADMM simply updates the primary variables once in the uncon-

strained minimization step (2.8) and then immediately updates the

Lagrange multipliers.

When there are only two variables, convergence for ADMM can

be proven if the following two assumptions hold

1. The objective functions are closed, proper and convex

2. The (un-augmented) Lagrangian has a saddle point

For our case, with the introduction of the third auxiliary variable,

convergence is no longer a given. In this thesis, we have experimented

and compared inexact ALM with exact ALM and APG. Inexact ALM
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is the clear winner in terms of speed without sacrificing accuracy or

running into convergence issue.

2.1.5 Accelerated Proximal Gradient

Instead of the alternating minimization strategy in exact ALM, Ac-

celerated Proximal Gradient(APG) is a fast and powerful first order

unconstrained minimization method that can be used. In both exact

and inexact ALM, an auxiliary variable J needs to be introduced to

handle the compounded C variable in the term ρ
2

∥∥∥ŴC + E − Ŵ
∥∥∥2

in (2.3), where C is pre-multiplied by Ŵ . The close form solution

only applies only for the simple form of C described in section 2.1.2.

APG is a majorization-minimization(MM) method that simpli-

fies the compounded variables by expressing these variables in terms

of the proximal gradients. MM methods works on the principle of

replacing a difficult objective function with a simpler, majorizing

function. At each iteration, this majorizing function is estimated

and minimized until convergence. [28] has a good intuitive explana-

tion on the majorization idea.

The APG method was proposed in [29] for solving unconstrained

minimization problems involving vectors. [30] extended APG to work

with matrices. In both these works, the smooth part of the objective

function is majorized by a quadratic function. As long as a function

is Lipschitz continuous, we can always find a Lipschitz constant so

that the function is upper-bounded by a quadratic function. We will

illustrate this idea with (2.3). First define the smooth part of the

augmented Lagrangian as
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f(C,E) = 〈λ, ŴC + E − Ŵ 〉+
ρ

2

∥∥∥ŴC + E − Ŵ
∥∥∥2

(2.13)

Since f(C,E) in (2.13) is a quadratic function, we can do a Taylor

expansion about the current estimate (Ck, Ek) up to the quadratic

terms. If the Lipschitz constants are available, then f(C,E) can be

upper-bounded without involving the Hessian

f(C,E) ≤ f(Ck, Ek) + 〈∇Cf, C − Ck〉+ 〈∇Ef, E − Ek〉

+
LC
2

∥∥C − Ck
∥∥2

F
+
LE
2

∥∥E − Ek
∥∥2

F
(2.14)

where ∇Cf is the gradient with respect to C, ∇Ef is the gradient

with respect to E, LC and LE are the Lipschitz constants for C and

E respectively.

With this majorization, the previously compounded C is now re-

placed by the simple form, so that the known closed form solution

can be applied. By completing the square, (2.4) can be minimized

independently as

min
C

1

2

∥∥C −Gk
∥∥2

F
+ ‖C‖2,1 (2.15)

min
E

1

2

∥∥E −Hk
∥∥2

F
+ ‖E‖1,2 (2.16)

where Gk and Hk are the proximal gradients that comes from com-

20



pleting the square.

The Lipschitz constants can be estimated by applying the Lip-

schitz condition. We will show how the Lipschitz constant can be

estimated in appendix 1.

2.2 Factor graphs

Due to the key role of factor graph in the model selection part of our

work, we explain the important aspects of factor graph that are most

relevant to our work. This short factor graph tour is based mainly

on [31] and [32].

The idea behind factor graph is best explained by the use of a toy

example. Consider a probability distribution function defined by the

bipartite graph shown in figure 2.1(taken from [32])

f(x1, x2, x3) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3) (2.17)

Unlike the usual graph, a bipartite graph consists of two distinct

kind of nodes, variable and factor(function) nodes. A variable node

can only have an edge to a function node and vice versa, a function

node can only have an edge to a variable node. Any undirected or

directed graph can be readily converted to a factor graph. Note that

the relationship between an undirected/directed graph to a factor

graph is one to many i.e. there are multiple factor graph representa-

tions given a undirected/directed graph.

The factor graph reflects the underlying adjacency graph struc-

ture in figure 2.1. Our toy example function f is a product of local
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functions fa, fb, fc and fd. These local functions are functions of

a subset of the variables. The factor graph is therefore a bipartite

graph that can be decomposed into individual ’factor’.

x1 x2 x3

fa fb fc fd

Figure 2.1: Factor graph toy example

2.2.1 Inference

Given a factor graph, we are often interested in making an inference

i.e. maximizing the joint probability distribution function represent-

ing the factor graph. In our toy example, we are interested in

(x∗1, x
∗
2, x
∗
3) = arg max

x1,x2,x3
f(x1, x2, x3) (2.18)

For our toy example, this maximization of the joint distribution

can be expressed as
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f(x∗1, x
∗
2, x
∗
3) = max

x1
max
x2

max
x3

f(x1, x2, x3) (2.19)

= max
x1

max
x2

max
x3

fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

(2.20)

The key step for this joint distribution maximization is the ex-

changing of the max and product operators

f(x∗1, x
∗
2, x
∗
3) = max

x1
max
x2

fa(x1, x2)fb(x1, x2) max
x3

fc(x2, x3)fd(x3)

(2.21)

[31]and [32] show that the evaluation of (2.21) can be achieved

using the max-product algorithm. The max-product algorithm in-

volves finding the max of the product of the messages(described in

subsection 2.2.2) arriving at each node, and then sending this mes-

sage to the parent node. This message passing is repeated for each

and every node(both variable and function).

Due to the numerical instability arising from the products of small

probabilities, it is often more convenient to work with the logarithm

of the joint distribution, giving rise to the max-sum algorithm.

2.2.2 Message passing

At the heart of inferencing a factor graph is the concept of message

passing. In this section, we explain in more detail the idea of message

passing. Message passing can be best understood as the marginal of

a node. The usual marginal of a node x is obtained by summing the
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joint distribution over all other variables except x. Since we work

with the max operator when inferencing a factor graph, the marginal

is instead derived by taking the max over all other variables except

x, instead of the sum.

There are two type of messages, one from a factor node to a

variable node and the other from a variable node to factor node. We

first consider the message from a factor node to the variable node

x shown in figure 2.2. The tree structure of the graph allows the

factors in the joint distribution to be partitioned into groups, with

each of the neighboring factor nodes of x forming a group. We first

consider the subgroup colored in cyan in figure 2.2. Let Fs(x,Xs)

represent the product of all the factors in the group associated with

fs, where Xs are the set of all variables in the subtree connected to

x via fs.

Since the factors in Fs(x,Xs) is also described by a factor (sub)graph,

Fs(x,Xs) can be written as the joint probability

Fs(x,Xs) = fs(x,Xs) Π
m∈ne(fs)\x

µxm→fs(x) (2.22)

where ne(fs)\x denotes the neighbors of x excluding x and µxm is

the message arriving at the function node fs.

We regard the marginal of Fs(x,Xs) as the message sent from fs
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to variable node x, with the marginal given by

µfs→x(x) = max
Xs

Fs(x,Xs) (2.23)

= max
Xs

fs(x,Xs) Π
xm∈ne(fs)\x

µxm→fs(x) (2.24)

Due to practical numerical consideration outlined in the section

above, message passing is usually performed in the logarithm do-

main. The switch to the logarithm domain can be effected by taking

the logarithm of fs and changing all products to summations. The

message from fs to x in the logarithm domain thus becomes

µfs→x(x) = max
Xs

ln fs(x,Xs) +
∑

xm∈ne(fs)\x

µxm→fs(x)

 (2.25)

The message from a variable node xm to a factor node fs, as

illustrated in figure 2.3, is simpler since it involves only one variable

node. The message can be derived similarly as above

µxm→fs(xm) =
∑

fl∈ne(xm)\fs

µfl→xm(xm) (2.26)

The max operation is therefore trivial and can be simplified to

just a sum of the messages from other factor nodes.

(2.25) and (2.26) are the final message updates that are used in

the implementation.
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xfs

µfs→x(x)
F

s
(x
,X

s
)

Figure 2.2: Message from function node to variable node

2.2.3 Convergence

The message updates (2.25) and (2.26) are repeated until conver-

gence. However, there is no guarantee that all the messages will

converge when there are loops in the graph. Although there is so

far no theoretical guarantee, works such as [33] and [34] use damped

update as a practical way to deal with this convergence issue. After

computing the message update for the current iteration k, the next

iteration k + 1 message update is set to a weighted combination of

the previous and current message value

µk+1
fs→x(x)← λµkfs→x(x) + (1− λ)µk+1

fs→x(x) (2.27)

µk+1
xm→fs(xm)← λµkxm→fs(xm) + (1− λ)µk+1

xm→fs(xm) (2.28)

where 0 ≤ λ < 1 is the damping factor. [33] and [34] both use a

fairly large damping factor of λ = 0.9.
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xm

fl

fL

fs

Fl(xm, Xml)

Figure 2.3: Message from variable node to function node

2.3 Factorization and self-expressive representa-

tion

2.3.1 Camera model

2.3.1.1 Orthographic camera model

Due to the ubiquitous assumption of the orthographic camera model

in NRSFM, we first give a brief description of this orthographic cam-

era model based on [35]. The orthographic camera model is the sim-

plest camera model that takes a 3D point in homogeneous coordinate

(X,Y,Z,1) to image point (X,Y,1), simply dropping the Z coordinate.

The model can be represented by the homogeneous projection matrix
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P =


1 0 0 0

0 1 0 0

0 0 0 1

 (2.29)

For the case of the camera under going rotation given by the

matrix R ∈ R3×3 and translation t ∈ R3, then the orthographic

projection is given by

P =


r1 t1

r2 t2

0 1

 (2.30)

where r1, r2 are the first two rows of the rotation matrix R and t1, t2

are the first two components of the translation t. We can understand

the orthographic camera model as the camera undergoing a rigid

transformation only on the XY plane with the Z-axis of the camera

and the 3D world coordinate reference frame being approximately

aligned.

2.3.1.2 Affine camera model

Due to the use of the affine camera model in many of the motion

segmentation works, we take a more detailed look at the affine camera

model formulation and its extension to multiple rigid-body motions.

We will show how the affine camera model leads to the factorization

of the data matrix into the motion and structure components.

After the most faithful perspective camera model, the affine cam-
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era is the next best camera model, generalizing orthographic, weak

perspective and paraperspective camera models. The affine camera

model can be described by the projection

[
x

y

]
= K


1 0 0 0

0 1 0 0

0 0 0 1


[
R t

0 1

]
X

Y

Z

1

 (2.31)

where [x y]T is the projected image point, R3×3 3 K is the intrin-

sic camera matrix, R3×3 3 R is the rotation matrix, R3 3 t is the

translation vector and [X Y Z 1]T is the 3D point in homogeneous

coordinates.

If we let

M = K


1 0 0 0

0 1 0 0

0 0 0 1


[
R t

0 1

]
(2.32)

then the affine projection model can be written as

[
x

y

]
= M


X

Y

Z

1

 (2.33)
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Now we look more closely at this motion matrix M . Let

A =


1 0 0 0

0 1 0 0

0 0 0 1


[
R t

0 1

]
(2.34)

=

[
R1 t1

R2 t2

]
(2.35)

where R1 and R2 are the first two rows of the rotation matrix while

t1 and t2 are the first two components of the translation vector.

Subsequent pre-multiplication of A by the intrinsic camera matrix

K results in rows of M being a linear combination of the rows of A.

Due to this linear combination, the pairwise row orthogonal property

of the rotation matrix no longer holds.

2.3.2 Factorization

We first consider factorization for a single rigid body and illustrate

the factorization framework using the affine camera model covered

in section 2.3.1.2. The given data matrix W ∈ R2F×N is formed by

stacking pairs of rows of the (x, y) coordinates of N tracked image

points over F frames:
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W =



x11 x12 . . . x1N

y11 y12 . . . y1N
...

... . . . ...

xF1 xF2 . . . xFN

yF1 yF2 . . . yFN


(2.36)

Based on the affine projection model, the data matrix can now be

factorized as

W = MS (2.37)

where M ∈ R2F×4 is now the motion matrix over F frames, compris-

ing of individual frame motion matrices

M =


M1
...

MF

 (2.38)

S ∈ R4×N is the structure matrix in homogeneous coordinates and

thus have the form

S =


X1 . . . XN

Y1 . . . YN

Z1 . . . ZN

1 . . . 1

 (2.39)

This factorization is not unique, since given any invertible Q ∈
R4×4, W = (MQ)(Q−1S) is also a valid factorization.
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For the case of multiple rigid bodies, we first consider the tracked

feature points ordered by motion. We will deal with the more general

case of unordered points by introducing permutation matrix. The

data matrix is now given by

W = [W1, . . . ,Wm] (2.40)

where m is the number of motion. The factorization of W is now

written as

W = MS (2.41)

= [M1, . . . ,Mm]


S1

S2

. . .

Sm

 (2.42)

where Mi ∈ R2F×4m is the motion matrix for the ith motion, Si ∈
R4m×N being the homogeneous 3D coordinates of the tracked feature

points corresponding to the ith and N is the total number of tracked

feature points.

For the case of unordered points, we introduce the permutation

matrix Π ∈ RN×N , that swaps the columns of W . The unordered

data matrix that we observe is therefore

W = [W1, . . . ,Wm]Π (2.43)

= MSΠ (2.44)
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2.3.3 Self expressive representation

We discuss SSC[16][36] and LRR[11][37] in greater detail because our

proposed work is highly related to these works. Both SSC and LRR

make use of the self-expressive property of the data matrix, in the

sense that each trajectory can be represented as a linear combination

of other trajectories from the same subspace.

2.3.3.1 Sparse subspace clustering

SSC regularizes the linear combination weight(or coefficient) with a

sparsity penalty, thus ensuring that each trajectory uses a small num-

ber of neighbors in the same subspace for representation. Assuming

the presence of Gaussian noise, SSC is formulated as

min
Ci

‖Ci‖1 + γ
∥∥∥ŴCi − Ŵi

∥∥∥
2
, i = 1 . . . N (2.45)

where Ci is column i of the coefficient matrix C ∈ RN×N and Wi

is the ith column of the data matrix W . In the absence of noise,

theorem 1 in [16] shows that this resultant coefficient matrix C is

block diagonal, making it ideal for spectral clustering.

In [36], this sparse representation idea is written in matrix formu-

lation

min
C
‖C‖1 +

λ

2
‖E‖2

F (2.46)

s.t. Ŵ = ŴC + E

diag(C) = 0

where E is the error matrix modeling noise in the data. In (2.46),
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the error penalty is given in terms of the Frobenius norm, which

corresponds to a Gaussian noise model. For sparse noise, the error

penalty can be changed to `1 norm.

The affine camera model can be incorporated by constraining each

column of C to sum up to 1, resulting in

min
C
‖C‖1 +

λ

2
‖E‖2

F (2.47)

s.t. Ŵ = ŴC + E

diag(C) = 0

eTC = eT (2.48)

where e is a vector of all one’s and (2.48) imposes the affine constraint

by requiring each column of C to sum up to 1.

Based on the representation matrix C, a symmetric affinity matrix

for spectral clustering is defined as

A = |C|+ |CT | (2.49)
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Figure 2.4: SSC representation matrix of the truck1 sequence

[38] further improves on the segmentation result in SSC by im-

posing spatial distance penalty. This penalty is realized through the

weights matrix H in the `1 norm, resulting in

min
C
‖H � C‖1 + λ ‖E‖F (2.50)

s.t. Ŵ = ŴC + E

diag(C) = 0

where� is the Hadamard product or the element-wise matrix product.H

is designed so that trajectories that are spatially close are given less

penalty.
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2.3.3.2 Low rank representation

LRR chooses to impose low rank penalty on the coefficient matrix C

and model errors as column sparse outliers

min
C
‖C‖∗ + γ ‖E‖2,1 (2.51)

s.t. Ŵ = ŴC + E

The affine constraint can be introduced in a similar manner like

SSC. In the absence of noise, theorem 3.1 in [11] also proves that

C is block diagonal. While [11] uses the same affinity matrix in

(2.49), [37] obtains a better segmentation performance by defining

the affinity matrix as

Figure 2.5: LRR representation matrix of the truck1 sequence
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A = (UUT )p (2.52)

where U is the column space of C obtained through SVD and p

is an even number exponent so that any pairwise affinity value is

positive. In [37], p is set to 2 but using the code provided in [39], the

best segmentation performance as given in [37] is achieved by setting

p = 4.

Figure 2.4 and 2.5 show how the different penalty influence the

structure of the representation matrix C. For SSC, C is indeed block

diagonal. Notably, each block contains sparse number of points due

to the `1 penalty. In contrast, LRR generates a block diagonal C but

each block is dense.

For model selection, LRR pursues the same strategy as ORK in

counting the number of zero or near zero eigenvalues of the normal-

ized Laplacian matrix constructed from the affinity matrix (2.52).

LRR circumvents the difficulty ORK faces in determining zero eigen-

values with a more elaborate approach, mapping the eigenvalues of

the normalized Laplacian σ to a soft thresholding operator

fτ(σ) =

{
1 if σ ≥ τ

log2(1 + σ2

τ2 ) otherwise
(2.53)

where τ is a chosen constant. [37] proposed that the number of

motion can then be estimated as
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N − int

(
N∑
i=1

fτ(σi)

)
(2.54)

where int(.) performs a rounding of the input to the nearest integer.

For the state-of-the-art performance reported in [37], the im-

plementation given in [39] chooses τ in a more elaborate, data-

dependent manner, rather than just setting it as a constant as stated

in [37]. Note that algorithm 1 summarizing how τ is set is not given

in [37] but found in the code given in [39].

Algorithm 1 Determining τ for LRR model selection

Input: Given singular values of the normalized Laplacian matrix σ1, . . . σN
1. Find {σ̂}, the subset of σ in the range [max(0.036, σN−2), 0.09] i.e.
max(0.036, σN−2) ≤ σ̂ ≤ 0.09
if the set {σ̂} has only one element then
τ ← 0.08

else
Find the index kmax corresponding to the maximum eigen gap gmax = (σ̂k −
σ̂k+1)/(σ̂k−1 − σ̂k+1), ∀ σ̂k ∈ {σ̂}
τ ← (σ̂kmax+1 + σ̂kmax)/2

end if
Output: τ

The model selection algorithm proposed in LRR is different from

our model selection mechanism in section 3.4. The main goal of

algorithm 1 is to find the largest eigen gap in a robust manner. There

is no increased penalty for higher number of motion or increased

model complexity. The model complexity cost in section 3.4.2 will

ensure higher cost with increased model complexity.
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Chapter 3

MB-FLoSS for rigid motion

segmentation

3.1 Introduction

In contrast to the current motion segmentation paradigm that as-

sumes independence between the motion subspaces, we approach the

motion segmentation problem by seeking the parsimonious basis set

that can represent the data. Our proposed method, Minimal Basis

Facility Location for Subspace Segmentation(MB-FLoSS), solves for

this parsimonious basis representation.

Our MB-FLoSS formulation explicitly looks for the overlap be-

tween subspaces in order to achieve a minimal basis representation.

This parsimonious basis set is important for the performance of our

model selection scheme because the sharing of basis results in savings

of model complexity cost. We propose the use of affinity propagation

based method to determine the number of motion. The key lies in

the incorporation of a global cost model into the factor graph, serv-

ing the role of model complexity. The introduction of this global cost
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model requires additional message update in the factor graph. We

derive an efficient update for the new messages associated with this

global cost model.

An important step in the use of affinity propagation is the sub-

space hypotheses generation. We use the row-sparse convex proxy

solution as an initialization strategy. We further encourage the se-

lection of subspace hypotheses with shared basis by integrating a

discount scheme that lowers the factor graph facility cost based on

shared basis. We verified the model selection and classification per-

formance of our proposed method on both the original Hopkins 155

dataset and the more balanced Hopkins 380 dataset.

We motivate our work by examining the use of spectral clustering

[40][41][42] in motion segmentation. Spectral clustering has proven

to be an effective and robust clustering method in the motion seg-

mentation literature. Sparse Subspace Clustering(SSC)[16], Low

Rank Representation(LRR)[37] and Linear Subspace Spectral Clus-

tering(LSC) [43] use spectral clustering for motion segmentation to

achieve excellent results. These methods assume known number of

motion when using spectral clustering. Recently, Ordered Resid-

ual Kernel(ORK)[12] and LRR extend the use of spectral clustering

for model selection, based on the number of zero singular values in

the normalized Laplacian. In the presence of noise, this is challeng-

ing because the singular values of the Laplacian are seldom zero.

In fact, the gap between the supposed zero singular values and the

non-zero singular values is often ill-defined. LRR came up with a ro-

bust thresholding operator in response to this difficulty and achieved
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state-of-the-art performance at 78.06%1 for the Hopkins 155 dataset,

clearly with much room for improvement. This difficulty is better

understood when we look at the limitations of spectral clustering

below.

The appeal of spectral clustering lies in the use of local pair-

wise affinity information to derive global eigenvector information for

clustering. Even though the construction of the affinity matrix may

involve global information, the final affinity matrix only contain local

pairwise similarity measure. For example, the nuclear norm regular-

ization that LRR uses is global in nature, but the final self represen-

tation matrix describes pairwise trajectory affinity.

In [44], the fundamental limits of spectral clustering are analyzed.

The two issues raised are highly relevant in the motion segmentation

context. The first concern questions if the local affinity information is

sufficient for global clustering. It turns out that local information is

insufficient when the data consists of clusters at different scales. The

second concern calls into question the use of the first k eigenvectors

to find k clusters when confronted with multi-scale and multi-density

clusters.

Although these limitations were discussed in the context of classi-

fication, they carry over to model selection as well. Recall that model

selection in spectral clustering is based on identifying the number of

zero singular values. When the complication of multi-scale, multi-

density and noise set in, the number of zero singular values is differ-

ent when the Laplacian is examined at different scale. The difficulty

of model selection using spectral clustering can thus be understood
1The figure of 77.56% reported in [37] is based on 156 sequences
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as ambiguity brought about by multi-scale and multi-density data

clusters.

In motion segmentation, multi-scale and multi-density data clus-

ters are very real issues that affect the performance of spectral clus-

tering based methods. Compared to the foreground motion, the

background motion tends to contain feature points that span a larger

extent of their subspace(due to the greater range of depth and (x, y)

location of these points). This leads to multi-scale and multi-density

data clusters.

In view of the limitations of spectral clustering, we adopt an al-

ternative paradigm for model selection and segmentation based on

global trajectory-subspace distance information. Instead of reducing

it to local trajectory-trajectory affinity representation, we generate

a set of subspace hypotheses and compute the distance between the

trajectories and the subspace hypothesis. With this measure of affin-

ity to subspace hypotheses, model selection is based on the affinity

propagation(AP)[34] framework with a judiciously chosen global cost

function.

Clearly, there are several motion segmentation works[45][12][13]

that are based on trajectory-subspace distance information, but not

many of them develop their work for model selection. Kernel Opti-

mization(KO) [13] is a notable exception in that it achieves a good

model selection performance. However, KO’s random subspace hy-

potheses generation strategy is different from our work. The subse-

quent treatment of these subspace hypotheses is also different from

our approach. KO merges these subspace hypotheses in a greedy
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manner, choosing the pair with the lowest kernel-target alignment at

each step.

In section 3.3, we demonstrate how a minimal basis subspace hy-

potheses set can be generated by requiring the representation matrix

to be jointly row sparse. Due to the convex relaxation artefact, the

number of subspace hypotheses is far greater than the true number

of subspaces. In section 3.4, we show how to incorporate a general

model complexity term into the AP framework naturally and effi-

ciently. This model complexity term is important in ensuring that

the the right number of subspaces from the hypotheses set are chosen

for representation. Although the subspace hypotheses set contains

many overlapping subspaces, we still need to ensure the selection

of those overlapping subspaces by introducing the facility cost dis-

count scheme. We describe this discount scheme in the same sec-

tion. In section 3.5, we verify our proposed work on the original

and augmented Hopkins dataset, demonstrating a model selection

performance significantly better than the state-of-the-art.

Our contribution is three fold. Our first contribution is in the for-

mulation and realization of the minimal basis approach to model se-

lection. Our method is significantly different from the current motion

segmentation paradigm that uses spectral clustering. We demon-

strate unequivocally the model selection strength of our proposed

method.

The second contribution is the recognition, handling and lever-

aging of possible subspace dependencies. Whereas almost all the

current better performing algorithms use subspace independence as
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a starting point, treating the overlap as noise, our proposed work

properly accounts for subspace dependencies by offering facility cost

discount for shared basis. The use of these shared basis subspace for

representation has important application in areas such as articulated

motion and non-rigid structure from motion.

Lastly, we show how the introduction of a global facility cost func-

tion to the AP framework enables model selection with good perfor-

mance while maintaining efficiency.

3.2 Previous works

3.2.1 Motion segmentation

Majority of the motion segmentation focuses on the classification

aspect and assume known number of motion. Without assuming

known number of motion, simultaneous estimation of the number

of motion and the subsequent classification proves too difficult a

problem for early researchers. In this section, we look at the body of

important motion segmentation works that assume known number

of motion.

The various state-of-the-arts motion segmentation algorithms have

their roots in the factorization approach proposed by Kanade[10] for

solving the rigid SfM problem. Costeira[46] extended the factoriza-

tion method to multiple rigid-body segmentation by introducing the

shape interaction matrix(SIM) Q, which is proven to have the block

diagonal property. Segmentation is based on swapping pairs of rows

and columns until Q becomes block diagonal.
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Similar to our work, ORK makes use of the orthogonal distance

residue of each trajectory to a set of randomly generated subspace

hypotheses but differs from our work by converting this distance

residue into pairwise affinities. For each trajectory, the residue is

sorted in ascending order. The ordered residue kernel between a

pair of trajectories is the number of hypothesis overlap in this sorted

residue order. These pairwise affinities allow spectral clustering to

be used for segmentation.

Generalized Principal Component Analysis(GPCA) is an algebra-

geometric method that is supposedly able to segment an unknown

number of subspaces of unknown and varying dimensions. GPCA

represents the union of subspaces of varying dimension as a set of

homogeneous polynomials. These polynomials are differentiated to

obtain the basis and dimension of each subspace, thus defining each

subspace. Each trajectory is then assigned to the closest subspace

in terms of the orthogonal point to subspace distance.

LSA[47] is one of the few segmentation works that takes into ac-

count dependent and degenerate motions. Prior to LSA, [48] proved

that the data matrix consisting of two overlapping motion will be

linearly dependent. The idea behind LSA is for each trajectory to

first project the data matrix onto a lower dimension through PCA,

and sample the nearest neighbors to estimate its local subspace. The

distance between two subspaces is measured by the principal angles.

The sum of the square of the principal angles distance is converted

to an affinity matrix via the radial basis function. For dependent

motion, the trajectories near the intersection constitute the main
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source of misclassification. In this case, LSA counts on the data dis-

tribution of the trajectories near the intersection of the dependent

motions to have more neighbors from the same subspace, otherwise

this trajectory will be classified wrongly. In the case of degener-

ate motion, even though the locally constructed subspace may not

span the entire underlying subspace, it will be closer to other locally

constructed subspaces from the same motion group.

Linear subspace spectral clustering(LSC)[43] is notable for pro-

viding one of the best performances amongst the surveyed methods.

The idea in LSC is to seek the best ambient dimension for projecting

the data matrix. In LSA, the PCA step simply projects the data

matrix onto the upper bound ambient dimension 4m. The affinity

matrix in LSC is constructed from the cosine of the angles between

pairs of trajectories. For the best optimal dimension, LSC proposes

the relative eigen gap(in ambient dimension D)

rD =
λm − λm+1

λm−1 − λm
(3.1)

This intuition is that the best choice of D is the one that leads

to the best estimation of the number of motion via rD. Since the

number of motion is assumed known, the largest eigen gap will offer

the best embedding for segmenting the trajectories. LSC proposes

to look for the best ambient dimension in the range m + 1 to 4m.

The second factor in the improved performance is the use of the

separating exponent α to accentuate the affinity matrix. If Aij is the

affinity between trajectory i and j based on the cosine of the angles
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between this trajectory pair, then the accentuated affinity is A2α
ij .

[49] constructs a velocity profile from the data matrix. A non-

negative matrix factorization of this velocity profile gives the affinity

matrix between trajectories, which then serve as the input for spec-

tral clustering.

[16] makes use of the self-expressive property of the data matrix to

represent each trajectory as a linear combination of other trajectories

from the same subspace. The use of the `1 penalty ensures that each

trajectory uses only few other trajectories from the same subspace

for representation. With the assumption of independent subspace,

[16] proves that the `1 penalty will result in a block diagonal repre-

sentation matrix, making it ideal for spectral clustering. [36] relaxes

the independent subspace assumption and shows that SSC can suc-

ceed as long as the overlap is not too excessive. SSC offers strong

competitive misclassification rate and is one of the state-of-the-art

algorithm.

[38] further improves on the segmentation result in SSC by impos-

ing spatial distance penalty. This penalty is realized by introducing

a weighting matrix in the `1 norm, so that trajectories that are spa-

tially far apart will be penalized more.

[50] raised an important connectivity issue in the SSC generated

representation matrix. This connectivity issue is important since

spectral clustering depends on connectivity of trajectories from the

same subspace. The important result is that for subspace of di-

mension greater than 3, the SSC generated representation matrix

can no longer guarantee block connectivity of trajectories from the
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same subspace. This is highly relevant because motion segmentation

is based on the affine camera model, which results in subspaces of

dimension 4.

Instead of the `1 penalty, [11] imposes a low rank penalty on the

representation matrix. This low rank penalty will also result in a

block diagonal representation matrix. LRR is also one of the bet-

ter performing motion segmentation algorithms. There are various

improvements and variants of LRR. [51] proves that the representa-

tion matrix is positive semi-definite. [52] shows that in the absence

of noise, the representation matrix is in fact the shape interaction

matrix from [46].

[53] is one of the rare works that works with the perspective cam-

era model for motion segmentation. The idea is to alternate between

motion segmentation assuming known projective depth and estimat-

ing the projective depths from the motion segmentation of the tra-

jectories. The projective depths can be solved by [54] and the various

extensions such as [55].

3.2.2 Model selection

Kanatani’s work [56] is a rare early work that focuses on the model

selection aspect of motion segmentation. The idea in [56] is the

use of geometric AIC and geometric MDL to balance the singular

value truncation residue against a model complexity cost that is a

quadratic function of rank r.

ORK derives the Laplacian matrix from the affinity matrix con-

structed from the pairwise ordered residue kernel and estimates the
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number of motion from the number of zero or negligible Laplacian

eigenvalues. However, finding a threshold to determine negligible

eigenvalues that works across all the data sequences is difficult, re-

sulting in the uncompetitive model selection performance of ORK.

GPCA and LSA propose model selection based on the effective

rank detection of the data matrix Ŵ inspired by [57]. The effective

rank r̄ is estimated as

r̄ = arg min
r

λ2
r+1∑r
k=1 λ

2
k

+ κr (3.2)

where λk is the kth singular value of the data matrix and κ reflects the

noise level in the data - the larger the data noise, the higher is the κ

value. For GPCA, the data matrix is the embedded data matrix con-

structed by embedding the data matrix Ŵ using the Veronese map.

For LSA, the data matrix is just Ŵ . This effective rank detection

method assumes that the non-zero singular values of the data ma-

trix can be easily distinguished from the zero singular values. Due to

noise, degenerate and/or dependent motion, the singular value tends

to exhibit a continuous smooth spectrum, making it hard to tell the

true rank. It is therefore not surprising this method performs poorly.

KO improves the ORK model selection performance by merging

a set of over-segmented clusters in a greedy manner and searches for

the number of clusters with the largest kernel-target alignment value.

KO first over-clusters the data using ORK with a suitably chosen

threshold for identifying the zero valued eigenvalues. For a pair of

clusters, the discriminative power of multiple kernel learning(MKL)

gives an indication of how likely this pair of clusters comes from
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the same motion. The kernel-target alignment measure captures the

level of discrimination quantitatively. A low kernel-target alignment

value means that the cluster pair are difficult to discriminate and

therefore likely to be from the same motion. At each step, the av-

erage kernel-target alignment is computed and then the cluster pair

with the lowest kernel-target alignment value are chosen for merging.

After merging all the clusters, the number of motion is determined

as the number of clusters where the maximum average kernel-target

alignment occurs.

LRR provides the state-of-the-art model selection performance

based on a robust way of finding the largest eigen gap. The detail of

the model selection algorithm is provided in section 2.3.3.2.

3.2.3 Affinity propagation

Affinity propagation(AP) provides an interesting comparison with

spectral clustering. In affinity propagation [34][58], the goal is to look

for representative data points called exemplars and cluster the rest

of the data points based on similarity to the exemplars. The number

of clusters is not specified in AP. Instead, the number of clusters is

controlled by the preference value assigned to each data point. The

preference value can be regarded as the importance of a data in terms

of becoming an exemplar. If a data point has a high preference value,

then it has a better chance of becoming an exemplar. As an illus-

tration, suppose the preference value is common across all the data

points. If this common preference value is large, a larger number of

clusters will emerge. Vice versa, a smaller common preference value
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will result in a smaller number of clusters. The affinity propaga-

tion clustering method has been applied to image categorization[59]

and extended to motion segmentation in FLoSS(Facility Location

for Subspace Segmentation)[45] and UFLP(Uncapacitated Facility

Location Problem)[33]).

In FLoSS and UFLP, motion segmentation is formulated as an

instance of the facility location(FL) problem. FL is known to be

NP hard and hence difficult to solve. An approximate solution for

FL can be found by performing maximum-a-posteri(MAP) inference

in a probabilistic graphical model. In FLoSS, inference is based on

the max-product belief propagation(MPBP) algorithm that involves

local message passing. MPBP is known to converge to the MAP val-

ues of the variables on cycle-free graph. In addition to MPBP, UFLP

proposed a linear programming(LP) relaxation based message pass-

ing algorithm, known as max-product linear programming(MPLP).

The solution from MPLP can be augmented with a greedy algo-

rithm that constructs a solution whose cost is at most three times

the optimal for metric UFLP instances, where the customer-facility

distance measure satisfies the triangle inequality, thus providing a

performance guarantee.

On a related note, [60] formulated two-view motion segmentation

as a facility location problem and solve it as a LP problem by relaxing

the original facility location problem. Interestingly, the formulation

in [60] contains many ideas similar to our work. The data-fitting

term in the objective function of [60] measures how well two points

comes from the same motion described by the candidate fundamental
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matrices. For our case, the data-fitting term measures the residue

of how well a point is described by the subspace hypotheses. More

interestingly, [60] incorporates model complexity into the objective

function. More specifically, [60] models the model complexity cost

as a linear penalty. Just like FLoSS, [60] generates candidate funda-

mental matrices via random sampling.

[58] expands the scope of FL by considering Capacitated Facility

Location(CFL). Each facility now has an upper bound on the number

of customers it can be assigned to. The increased complexity in the

consistency function now poses a potential combinatorial challenge.

[58] shows that tractability can be assured by sorting the messages

and consider only the top messages related to the facility capacity.

The additional message update due to the global cost function in our

work is made tractable and efficient by using similar techniques.

Even though both FLoSS/UFLP and our work are based on AP

for solving the motion segmentation problem, there are important

differences distinguishing the two works. FLoSS/UFLP solves the

classification problem assuming known number of motion. Its per-

formance has not been demonstrated on the model selection problem

even though, paradoxically, the framework seems to be proposed with

this problem in mind. Our proposed work capitalizes on this inherent

capability of AP for model selection with the use of a more elabo-

rate facility cost model. Furthermore, our quest for a minimal basis

representation drives a more specific subspace hypotheses generation

strategy. In FLoSS/UFLP, the subspace hypotheses are generated

by random sampling.
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[61] analyzed graphical models with high order potentials(HOP),

which entails higher order interactions among the discrete variables.

A particularly relevant example is the cardinality potential, whose

function value is dependent on the number of variables in the subset

turned on. The facility cost function we propose in section 3.4.2 is

an instantiation of the cardinality function.

3.3 Hypothesis generation with minimal basis sub-

space representation

3.3.1 Formulation

Our subspace hypotheses generation strategy is based on finding the

minimal basis subspace representation for the data matrix. Such par-

simonious representation looks for basis common to the overlapping

subspaces, thereby reducing the number of basis needed to explain

the subspaces. This emphasis on shared basis leads naturally to the

joint sparsity formulation (3.3).

As in SSC and LRR, we use the data matrix itself as the dictio-

nary, and propose the following formulation:

min
C,E
‖C‖2,0 + γ ‖E‖0,2 (3.3)

s.t. Ŵ = ŴC + E

where Ŵ ∈ R2F×N is the data matrix constructed from the tracked

feature trajectories, E ∈ R2F×N is the column-sparse error matrix, F

is the number of frames, N is the number of tracked feature points,
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C ∈ RN×N is the representation matrix, ‖.‖2,0 counts the number of

non-zero rows and ‖.‖0,2 counts the number of non-zero columns.

3.3.2 Convex relaxation

Due to the combinatorial nature and therefore NP-hard nature of

(3.3), we minimize the convex surrogate and model data noise as

column sparse outliers, resulting in:

min
C,E
‖C‖2,1 + γ ‖E‖1,2 (3.4)

s.t. Ŵ = ŴC + E

where ‖C‖2,1 =
∑2F

i=1

√∑N
j=1([C]ij)2 and ‖E‖1,2 =

∑N
j=1

√∑2F
i=1([E]ij)2. (3.4) is

a constrained convex program that can be solved efficiently by the

Augmented Lagrange Multiplier(ALM) method[23]. We solve (3.4)

using the Alternating Direction Multiplier Method(ADMM) imple-

mentation of the inexact ALM method, as in [37].

Note that our primary motivation for the joint sparsity formula-

tion is to seek the minimal basis representation, whereas in [36], the

joint sparsity regularization was introduced to ensure connectivity in

the similarity graph generated by encouraging data points from the

same subspace to use common representative points from the same

subspace. It plays a secondary role so as not to alter the dominance

of the `1 penalty in the objective function.
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3.3.3 Over segmentation

While we have made the sharing of the basis evident(see figure 3.1),

the relaxation artefact(and noise in the data) means that we cannot

make use of this result directly to extricate the number of motions

and their dependencies. As can be seen from figure 3.1, the represen-

tation matrix contains various artefacts due to the convex relaxation.

While the overall two subspace structure is discernible, over segmen-

tation is revealed in the gaps in the rows and the resultant extra

rows, making the true number of motion hard to tell. There are in

fact 40 subspace hypotheses generated from this convex solution.

Figure 3.1: Representation matrix of the truck1 sequence

This over-segmentation phenomenon can be explained by the mag-

nitude dependence of the ‖.‖2,1 penalty. [62] offers an excellent

insight and explanation of this magnitude dependence problem in

terms of ‖.‖1 in SSC. This magnitude dependence of the convex
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proxy can be understood by considering the case when the support

has large magnitude. For the counting norm ‖.‖0, the magnitude

is irrelevant; only the support cardinality matters. For the convex

proxy ‖.‖1, support entries with large coefficients will result in large

‖.‖1 value, imposing an unfair penalty. The magnitude dependence

of the ‖.‖1 function means that trajectories from the same subspace

that are nearly orthogonal will be broken up into two groups, since

the large coefficients for self-expression will incur large norm penalty.

This explanation also applies for the ‖.‖2,1 penalty. While some of

the numerical methods like reweighted `1[63] might slightly relief the

artefact problems, they do not remove the problems.

Despite the preceding comments, we have now at our disposal

much more information. Each column of the coefficient matrix pro-

poses a subspace hypothesis and carries with it a notion of AP re-

sponsibility message update to this subspace hypothesis. Row wise,

the coefficient matrix indicates the importance of the subspace hy-

pothesis, in terms of the number of trajectory that generates the sub-

space hypothesis. This is reminiscent of the AP availability message

update from the facility. See [34] for more detail about the notion

of responsibility and availability. This close relationship lends the

joint sparse representation matrix well suited for subspace hypothe-

sis generation.

3.4 Model selection

Our proposed cost model, which we term as Minimal Basis(MB)-

FLoSS, is based on FloSS[45] but with important extensions. These
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extensions are the facility cost model outlined in section 3.4.2 which

encodes the “ecological” constraint that multiple motions are likely

to be dependent, and the discount scheme in section 3.4.4.2 which

ensures that facilities with overlapping basis have lower cost, trans-

lating to higher beliefs at these facilities.

Our MB-FloSS method uses the same FLoSS setup and message

passing. We thus follow the notations in [64] and [45] in deriving the

new message update required by our modified facility cost model.

3.4.1 FLoSS/UFLP

Due to the relevance of FLoSS/UFLP, we give a quick review here.
FLoSS/UFLP formulates the facility location problem in terms of
factor graph representation(fig. 3.2), consisting of variable nodes and
factor nodes. This graphical model results in the following objective
function:

F ({hij}) =
∑
ij

Sij(hij) +
∑
i

Ii(hi:) +
∑
j

fj(h:j) (3.5)

The variables nodes hij, i = 1, . . . , N, j = 1, . . . ,M , are binary vari-

ables that indicate if customer(trajectory) i uses(belongs) to facil-

ity(subspace) j, where N is the number of customers and M is the

number of facilities. The factor nodes evaluate potential functions

over the variable nodes they are connected to.

There are three factor potential functions in FLoSS/UFLP. Ii en-

forces the constraint that one customer chooses one and only one

facility. The notation hi: refers to the subset of binary variables con-

necting customer i to all the facilities from 1 to M. Similarly, the

notation h:j refers to the subset of binary variables connecting all
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Figure 3.2: FLoSS factor graph representation

the customers from 1 to N to facility j. Sij describes the distance

between customer i and facility j. fj describes the cost when facility

j is turned on. Upon convergence of the message update, the binary

variables {hij} are turned on if the sum of the messages arriving at

the variables are non-negative.

3.4.1.1 Local facility cost

Due to the key role of facility cost, we describe the FLoSS facility

cost model so as to provide a contrast to our proposed cost model.

In FLoSS, the subspace hypotheses are generated as random subsets

of two, three and four trajectories, thus taking into consideration

degenerate subspaces. The cost of a facility is set to be the sum of
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all pairwise distances between the trajectories forming the subspace.

This local cost primarily serves to balance the tendency towards the

higher dimensional subspace hypotheses, since higher dimensional

subspace hypotheses are able to fit the data better compared to the

lower dimensional subspace hypotheses.

Unfortunately, this local cost model does not capture the actual

nature of the problem very well, often resulting in the wrong number

of facilities being opened. In fact, in FLoSS/UFLP, the number of

motion is assumed to be known. Thus they can merge excess number

of facilities opened or increase the number of facilities opened by

iteratively scaling down the local cost across all facilities.

3.4.2 MB-FLoSS facility cost

To address the aforementioned shortcomings, the facility cost func-

tion we propose is a global function in the sense that it is a function

of the cardinality of the number of facilities opened. Given an upper

bound K on the number of motion, we propose a power law facility

cost model

C =

{
akp if k facilities are opened, for k = 1 to K

∞ otherwise
(3.6)

where C is the facility cost function and a, p are constants. Note

that C is a monotonic increasing function of the number of opened

facilities. We denote the cost of opening k facilities as Ck. This

power law cost model is motivated by the observation that in real

life scenes, the larger the number of motions, the more unlikely it
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is for all of them to be independent. In other words, it reflects not

only the cost of increasing complexity with more models, but also the

“surprise” of seeing all of them independent from one another. This

cost/surprise is only attenuated if there are dependencies between

the multiple motions, which will be taken care of by the discount

scheme in section 3.4.4.2.

With the global facility cost function (3.6), the factor graph rep-

resentation needs to be modified, as shown in figure 3.3. The facility

cost potential function is now connected to the binary variables {ej}.
The number of facilities turned on is indicated by the number of {ej}
nodes set to 1. The facility cost function C is therefore a function

of {ej}. This change will now necessitate message passing involving

{ej}, reflected in figure 3.4

3.4.3 Objective function

The one customer-one facility constraint remains:

Ii(hi:) =

{
0 if

∑
j hij = 1

−∞ otherwise
(3.7)

The consistency constraint that ensures that if a customer chooses

a facility, the facility gets turned on, also stays:

Ej(h:j, ej) =

{
0 if ej = maxi hij

−∞ otherwise
(3.8)
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Figure 3.3: MB-FLoSS factor graph representation. The nodes in the upper rect-
angular box are extensions to the original FLoSS

61



Ej 

C 

ej 

hij 

Sij 

Ii 

αij 

φj ξj 

ρij βij 

ηij 
sij 

ξj φj 

Figure 3.4: MB-FLoSS factor graph messages

62



The objective function to be maximized is now

F ({hij}, {ej}) =
∑
ij

Sij(hij) + C({ej}) +
∑
i

Ii(hi:) +
∑
j

Ej(h:j, ej)

(3.9)

3.4.4 Message passing

Since we are dealing with binary variables {hij} and {ej}, it ap-

pears that we need to send two-valued messages between nodes. As

pointed out in [58], we only need to propagate the difference between

the message values for its two possible settings. When the message

passing terminates, the estimated MAP settings for each binary vari-

able is recovered by summing all of its incoming messages. Each

binary variable is set to 1 if the sum of all the incoming messages is

non-negative, and 0 otherwise.

The message passing not involving {ej} remains the same as in

FLoSS. For more detail on those messages, please refer to [33][64][65][58].

The message update for φ plays an important role in our work and

is explained below. The message updates for ξ and α are covered in

appendix B.

3.4.4.1 Message update for φ

Recall that we only need to send the difference between the message

values corresponding to the two different settings ej = 0 or ej = 1.

We use the notation φj(0) as a short hand for φj(ej = 0) and similarly

φj(1) for φj(ej = 1). The message to be sent is then
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φj = φj(1)− φj(0) (3.10)

where

φj(1) = µC→ej(1)

= max
ek,k 6=j

−C(e1, .., ej = 1, .., eM) +
∑
k 6=j

ξk(ek)

 (3.11)

φj(0) = µC→ej(0)

= max
ek,k 6=j

−C(e1, .., ej = 0, .., eM) +
∑
k 6=j

ξk(ek)

 (3.12)

Here we follow the same notation as chapter 2 to denote the message

from the factor node C to the variable node ej as µC→ej .

For (3.11), since ej is set as 1, we are looking for the max over

one, two , . . . , K − 1 other ej’s being turned on. For (3.12), since

ej is kept fixed as 0, we are then looking for the max over one, two

, . . . , K other ej’s being turned on.

Even though (3.11) and (3.12) look combinatorial, the messages

can be simplified and updated efficiently. Leveraging on the insights

offered by [58], we observe that finding the max can be achieved by

evaluating the sorted set ξ̂ and the associated facility cost over the

K upper bound number of facilities, where ξ̂ is obtained by sorting
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{ξj = ξj(1) − ξj(0), j = 1, . . . ,M, j 6= k} in descending order. More

details can be found in appendix B.

For ease of notation, we introduce the cumulative sum operator:

Sij =

j∑
k=i

ξ̂k (3.13)

where ξ̂k is the kth element in the sorted set ξ̂. Denote the cost

difference between opening i and j number of facilities as

δij = Ci − Cj (3.14)

For the case of K = 4, which is the upper bound used in this

chapter, the message update for φj in (3.10) can be shown to be

φj =

max



−max [S11, S12 − δ21, S13 − δ31, S14 − δ41]

−max [δ21, S22, S23 − δ32, S24 − δ42]

−max [δ31 − S22, δ32, S33, S34 − δ43]

−max [δ41 − S23, δ42 − S33, δ43, δ43, S44]

(3.15)

The indexing in (3.15) gives a hint on how the message update

can be generalized for the number of motion upper bound K and is

included in appendix B for further reference.
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3.4.4.2 Facility cost discount scheme

To encourage the facilities to have shared basis, we modify the cost

function (3.6) to implement a discount scheme: the more the number

of shared basis, the greater the discount. This discounted C is used

to compute message update in (3.10) and (3.15), thus encouraging

facilities with shared basis to be chosen.

The degree of overlap in the basis is based on comparison with a

reference subspace set Sref , which contains the set of opened facilities

according to the current beliefs. This reference subspace is initialized

as facility j whose node {ej} has the largest belief. The candidate

set Scan from which further facilities will be drawn is initialized to be

the remaining members of the entire subspace hypothesis set S (the

belief bj at node ej is the sum of all the incoming messages, which is

ξj + φj).

The idea behind the discount scheme is to iteratively fill Sref with

K subspaces with the largest beliefs, after taking into account the fa-

cility cost discount due to overlapping subspace basis. At the ith iter-

ation, the discount is applied to the cost Ci computed from (3.6). The

belief for each subspace in Scan is re-computed with this discounted

cost. The subspace with the largest belief will then be removed from

Scan and added to Sref . After filling Sref with K subspace hypothe-

ses, the discounted φ values associated with those members in Sref
replace the corresponding φ message update computed using (3.15).

This facility cost discount scheme is summarized below:
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Algorithm 2 Facility cost discount scheme

Input: subspace hypothesis set S, upper bound on the number of motion K,

discount factor η

(1) Compute the belief at each ej by summing the incoming messages

(2) Initialize the reference subspace Sref as the subspace hypothesis whose ej

has the largest belief

(3) Initialize the candidate set Scan as the remaining members in S
for i=1 to K do

(4) Compute basis overlap degree d for each subspace ∈ Scan with the reference

subspace Sref

(5) For each subspace ∈ Scan, compute the discounted cost C′i = (1− ηd)× Ci

and use this discounted cost to compute φj based on (3.15)

(6) Find the subspace with the largest belief. Remove this subspace from Scan

and add it to Sref

end for

Output: Discounted φ message updates

3.4.4.3 Message update for ξ

The message ξj can be interpreted as the overall responsibility to the

facility j. For each facility j, let k be the index of the largest element

of the set {ρij, i = 1, . . . , N}. The update can then be shown to be

ξj = ρkj +
∑
i6=k

max(0, ρij) (3.16)

3.4.4.4 Message update for α

The other message update that is affected by the global facility func-

tion is α. The message update for α can be shown to be
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αij = min[0,
∑
i6=k

max(0, ρij) + φj] (3.17)

3.4.5 Subspace hypothesis generation and selection

We provide a different subspace hypothesis generation strategy from

FLoSS/UFLP. Our strategy is based on the solution to (3.4), C∗.

Each column i of C∗ represents the coefficients of other trajectories

required to represent this trajectory i. For the case of rigid motion

segmentation, since each trajectory comes from an affine subspace, it

needs at most four other trajectories for representation. We therefore

retain only the top four largest absolute value coefficients in each

column and form a subspace hypothesis using that column. The

number of subspace hypothesis M is therefore the number of unique

subspace hypothesis proposed by all the trajectories.

When the MB-FLoSS message update is completed, subspace hy-

pothesis j is chosen as a representation subspace if the belief ξj + φj

at facility j is non-negative.

3.5 Experiments

We evaluate the performance of our proposed method on the Hop-

kins 155 dataset [66] and the augmented Hopkins 380 dataset. The

Hopkins 155 database has established itself as the de facto standard

for motion segmentation. The Hopkins 155 dataset consists of 155

sequences of feature points labeled according to their motion. There

are 120 two motion sequences and 35 three motion sequences. The
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dataset consists of three categories: checkerboard, traffic and artic-

ulated.

For the Hopkins 155 dataset, we base on KO and state-of-the-art

LRR for comparison. For the augmented Hopkins 380 dataset, the

good performance and availability of Matlab code [39] makes LRR

the choice for comparison.

Model selection in LRR returns predicted number of motion in the

range of 1−4. For our facility cost model, we therefore set the upper

bound K as four. The facility cost model used for the experiments is

shown in figure 3.5, with the power law in (3.6) specified by a = 0.35

and p = 2.7. The discount factor η used in the facility cost discount

scheme(algorithm 1) is set to 0.05.
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Figure 3.5: Facility cost model used for the experiments

Since the number of motion is no longer known a priori, we need

to generalize the misclassification rate to take into account the wrong

number of motion group given by model selection. In [66], the mis-
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classification rate is given by the label permutation with the lowest

misclassification rate. For the generalized misclassification rate, the

label permutation process is naturally extended to account for the

case when the wrong number of motion group is given by model

selection. Any groups (either in the segmentation result or in the

ground truth) whose labels are not assigned after the label permuta-

tion process contribute to the misclassified elements. This general-

ized misclassification rate thus penalizes both model selection error

and error in classifying the trajectories according to their motion.

We find that using SSC for classification, based on the number of

motion given by the MB-FLoSS model selection gives the best overall

performance. This combination is compared against the state-of-the-

art LRR.

3.5.1 Augmented Hopkins 380

The need for augmenting the dataset arises from two considerations.

Firstly, the model selection algorithms should work for arbitrary

number of motion. In particular, for the Hopkins 155 dataset, the

model selection algorithms should be tested against not just two and

three motion but one motion as well. Secondly, the skewed distri-

bution of the number of two vs. three motion sequences distorts the

model selection rate, since focusing solely on two motion sequences

will lead to good model selection rate. This distortion due to the

uneven distribution is illustrated in [12] where [56] shows a better

model selection performance by estimating two motion most of the

time.
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In view of these considerations, we choose to augment the Hop-

kins 155 dataset with one motion sequences and additional three

motion sequences. The one motion sequences are derived from the

original two and three motion sequences by treating each motion

as a one motion sequence. For example, from the three motion se-

quence 1R2RC, we derive three sequences of one motion 1R2RC g1,

1R2RC g2, 1R2RC g3. The additional three motion sequences are

generated by concatenating the two motion traffic sequences with

the foreground one motion sequences derived from the two motion

traffic sequences. The summary of this augmented data in table 3.1

shows a more even distribution in terms of the number of sequence

for each number of motion.

No. of motion One Two Three

No. of sequence(original) 0 120 35

No. of sequence(augmented) 135 120 125

Table 3.1: Summary of the augmented Hopkins 155 dataset

3.5.2 Result

Table 3.2 shows the model selection result for the Hopkins 155 dataset.

Our work enjoys an advantage over LRR and outperforms KO deci-

sively. It is worthwhile noting that both LRR and KO show better

performance for 2 motion at the expense of 3 motion whereas our

proposed method handles both 2 and 3 motion more evenly.
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MB-FLoSS LRR KO

Overall 79.35%(123) 78.06%(121) 74.84%(116)

2 motion 81.67%(98) 84.17%(101) 82.50%(99)

3 motion 71.43%(25) 57.14%(20) 48.57%(17)

Table 3.2: No. of motion prediction rate for Hopkins 155. The number of sequences

predicted correctly is shown in parenthesis

For the augmented Hopkins 380 dataset, table 3.3 shows the ad-

vantage of our proposed work over LRR more decisively. Once again,

it is worth noting the more even performance of our proposed work

compared to LRR.

MB-FLoSS LRR

Overall 83.68%(318) 81.05%(308)

1 motion 87.41%(118) 85.93%(116)

2 motion 81.67%(98) 84.17%(101)

3 motion 81.60%(102) 72.80%(91)

Table 3.3: No. of motion prediction rate for the Hopkins 380

The tracked points and basis set chosen for the checkerboard se-

quence 2rt3rcr g12 are shown in figure 3.6 and 3.7.
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Figure 3.6: Ground truth for the checkerboard sequence 2rt3rcr g12
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Figure 3.7: Overlapping basis for the checkerboard sequence 2rt3rcr g12

For classification, table 3.4 shows that our proposed method com-
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pares favorably to the state-of-the-art LRR.

MB-FLoSS + SSC LRR

Hopkins 155 380 155 380

Overall 10.04% 8.36% 10.16% 8.98%

1 motion - 8.74% - 7.99%

2 motion 9.45% 9.45% 8.59% 8.59%

3 motion 12.07% 6.90% 15.51% 10.43%

Table 3.4: Generalized misclassification rate for the Hopkins 155 and 380

3.6 Conclusion

We formulated and realized the minimal basis approach to subspace

segmentation and demonstrated its model selection strength. The

success hinges on the use of an enhanced FLoSS framework, employ-

ing a convex relaxation formulation for subspace hypothesis gener-

ation, and a power-law facility cost with a simple discount scheme

that favors overlapping subspace. Despite the added complexity due

to the modified facility cost, we show how the message passing can

be made tractable and efficient.
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Chapter 4

Non-Rigid Structure From

Motion

4.1 Introduction

Structure from motion, or the recovery of 3D object structure from

video streams of 2D image data, is of fundamental importance in

computer vision. The reconstructed 3D shapes serve as input to

other applications such as augmented reality, object recognition and

computer graphics etc. In many of these applications, non-rigid mo-

tions are arguably more common than rigid motions. Almost all

animals and many mechanical objects (such as cranes, earthmovers)

change shape as they move.

Compared to rigid SFM, the ill-posed or under-constraint nature

of non-rigid SFM makes it a challenging problem. Besides the fact

that different deforming 3D shapes can share the same image pro-

jections, the inherent basis ambiguity presented in [67] is also an

important contributing factor. In our work, we propose a subspace

segmentation based approach to solving the non-rigid Structure From
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Motion(NRSFM) problem.

We first present the subspace segmentation approach in section

4.1.1 and then review the rich literature of NRSFM works in section

4.1.2 and 4.1.3, including both the shape basis and piecewise works.

Important works that do not fall into these two categories are covered

in section 4.1.4. The key ideas of MB-FLoSS applied to NRSFM is

explained in section 4.2. In section 4.3, we describe the details of

reconstruction based on MB-FLoSS segmentation. The experimental

details are covered in section 4.4.

4.1.1 Subspace segmentation approach

Our proposed method for NRSFM based on MB-FLoSS can be viewed

in the broader context of the subspace segmentation approach. The

idea in the subspace segmentation approach is to decompose a non-

rigid motion into constituent components based on the motion of

these components. These components are then reconstructed as in-

dividual 3D patches using state-of-the-art shape basis factorization

methods. Just like the piecewise approach covered in section 4.1.3,

these patches are stitched back together to form a global shape.

This subspace segmentation approach is different from the piece-

wise method in section 4.1.3 in that the constituent components re-

sulting from the subspace segmentation approach do not have to be

rigid or to follow say, a quadratic deformation model. The emphasis

in the subspace segmentation approach is on the motion coherence of

the components, where by motion coherence, we mean that the shape

deformation can be expressed as a linear combination of a small set
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of basis shapes.

Our proposed decomposition offers the following advantages. Just

like the piecewise approach e.g. [68][5][3], these constituent compo-

nents can be described by simpler models of lower complexity. How-

ever, our decomposition generates a much smaller number of com-

ponents and is thus much more parsimonious and natural. More

importantly, our decomposition method does not assume the under-

lying model of each component; the number of shape basis for each

component can be deduced from the decomposition automatically.

To the best of our knowledge, this is the first algorithm that can de-

compose a non-rigid motion into its coherent parts without the use

of a prior model.

4.1.2 Shape basis approach

The factorization approach to rigid Structure From Motion(SFM)

advocated by [10] has proven to be the foundation for subsequent

SFM works. There have been various extensions to the original rigid

SFM work. [46] took the first step into motion segmentation by ex-

tending the factorization method to multiple independently moving

rigid bodies. Bregler[69] first showed how the factorization approach

can be extended to NRSFM with the introduction of the shape basis

concept. This shape basis based factorization framework forms the

core of many of the subsequent non-rigid SFM works.

In [67], the inherent shape basis ambiguity was highlighted, with

the important result that the orthonormality constraints for recov-

ering the motion matrix is insufficient in removing the fundamental
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ambiguity between the shape bases and shape coefficients i.e. the

shape bases and the shape coefficients cannot be recovered uniquely.

This inherent ambiguity has a significant impact in shaping latter

NRSFM works. [67] proposed to resolve this ambiguity by imposing

additional basis constraints.

In [67] and many subsequent works, the orthogonality constraint

on the motion matrix is enforced using the Gram matrix formed

by triplet columns of the rectifying transformation matrix. Instead

of using the Gram matrix, [70] proposed to solve for the rectifying

transformation matrix directly, using all columns and not just triplets

of columns. Note that the main focus of [70] is to solve for the

orthogonal structure of the motion directly but does not address the

ambiguity issue.

In view of the ambiguity highlighted by [67], latter works elected

to add priors to resolve this ambiguity. In consideration of the fact

that simple linear subspace shape models are extremely sensitive to

noise, EM-PPCA[6] proposed that statistical priors should be used

to constrain the parameter space. More specifically, EM-PPCA in-

troduced priors as a Gaussian distribution on the shape coefficients.

[71] shows that if shape priors are known, then the shape basis fac-

torization can be made more reliable with the incorporation of this

shape prior through the generalized SVD[72].

Instead of imposing priors on the shape coefficients, the trajectory

basis(TB) work[73][7] proved the duality relationship between the

shape coefficients and the shape trajectory, and imposed smoothness

prior on the trajectory basis by expressing the trajectories in terms of
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the Discrete Cosine Transform(DCT) representation. This trajectory

basis idea is extended to the case of multiple cameras in [74]. The

Column Space Fitting work(CSF)[75][8] also imposed the smooth

shape trajectory prior through the DCT representation. CSF solves

for the motion matrix using TB and then solve for the DCT represen-

tation of the shape basis coefficients using the column space fitting

method based on the second order Levenberg-Marquardt method.

[76] introduces the use of kernel into CSF to handle non-linear rela-

tionships in the coefficients.

[77] caused a re-think in the shape basis factorization paradigm

by showing that ambiguity in orthonormality constraints as proved

in [67] does not affect the recovery of 3D structure. The sufficiency

of the orthonormality constraints in ensuring unique 3D reconstruc-

tion(up to a global rotation) means that the priors in [6][73][8] may

not be necessary. The simple prior free(SPF) method proposed a

shape basis factorization method with no priors, but with important

constraints on metric upgrading and structure recovery.

The metric projection method(MP)[78] alternates between solving

the motion matrix and the shape basis matrix. The motion matrix

is the rotation matrix scaled by the shape basis coefficients. When

solving for the motion matrix, MP imposes the metric constraint on

each frame of the motion matrix by a metric projection onto the

motion manifold i.e. ensuring that pairs of rows in each frame are

orthogonal in an integral manner rather than as a post processing

step. The metric projection is achieved by solving a convex relax-

ation of an unconstrained least-square problem, instead of the usual
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geodesic approach[79][80]. In [81], the metric projection problem is

formulated as a constrained bilinear optimization problem and solved

through the ALM method covered in section 2.1.1.

[82] proposed a coarse to fine model by adding deformation modes

or number of shape basis incrementally to achieve a low rank shape

model. Such coarse to fine model will allow the deformation modes to

be determined automatically. There is however no model selection

scheme proposed in this work and relies on cross validation as a

stopping criterion.

4.1.3 Piecewise approach

Instead of reconstruction at the global level, the piecewise approach

focuses on local patches reconstruction and piecing back these 3D

patches into a global shape. There are two broad categories of the

piecewise approach, one focusing on strongly deforming surfaces and

the other one addressing articulated motions.

While the shape basis factorization formulation works well on se-

quences where deformations are small deviations from a rigid prin-

cipal component, it no longer holds for strongly deforming objects,

such as the cloth sequence in [83] and the paper sequence in [84].

The reason is that the deformations are too complex to be explained

by a global linear model. The intricate deformations would require

a substantial increase in the number of shape basis used, resulting

in over-fitting.

The piecewise approach first divides the object into overlapping

patches and reconstruct each individual patch independently. Such
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local models are often easier to construct because they require fewer

parameters than the global ones. Since each local patch has fewer

points to fit to the model, they are easier to optimize and less prone to

over-fitting(a more complex model will require more points to fit).

Since the patches are reconstructed independently(up to a depth

ambiguity), they need to be stitched back together to form a global

shape.

[85] proposed to decompose a global non-rigid body into local

rigid patches consisting of triplets of points. The intuition is that

even very complex non-rigid motions can be approximated locally

by a rigid transformation involving three points. This local rigidity

assumption is valid when feature points are not too distant from each

other i.e. the feature points are dense. The triplet of points is the

lower bound required to determine if these three points’ motion is

rigid under orthographic camera model. Each of these triangle is

reconstructed independently by solving an orthographic 3-points-N-

view rigid SFM problem.

[68] proposed a local piecewise reconstruction method for strongly

deforming objects. It first constructs a mean shape of the object

and divides the surface manually into overlapping patches. This

overlapping patch property requires a point to have multiple label

assignment. Each patch is reconstructed by using a quadratic de-

formation model, which consists of three modes of deformation -

linear, quadratic and cross-terms. These three modes of deformation

are combined with the time varying coefficients to the reconstructed

shape in each frame. Since the patches are reconstructed indepen-
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dently in their own reference frame, they will be reconstructed at

different depths. These unconnected patches are misaligned only

along the depth direction. The overlapping points are used to align

the patches along the Z coordinate of the translation vector of these

patches and stitch all the patches together into one global shape.

Instead of defining the patches manually, a more principled divi-

sion of the strongly deforming object into local models is provided

in [4]. In [4], NRSFM is formulated as a labeling problem where the

number of labels and their assignment to the data points are com-

puted simultaneously. The objective function consists of a unary

term that penalizes fitting error of each point across multiple label

assignment. This multiple label assignment is driven by the need for

the patches to overlap so that the overlapping points can be used to

stitch the patches together to form a global shape, as in [68]. Hard

constraints involving interior points are imposed on the objective

function to ensure that overlap occurs. Interior points are points

such that the neighbors of the interior points must also belong to

the same model as the interior points, but the neighbors are not

necessarily interior points.

The unary fitting error term models the error from fitting the

points in each patch to the same quadratic deformation model in

[68]. To prevent too many patches from being formed(and there-

fore over-fitting), a minimum description length(MDL) cost is added

as a model complexity cost to the objective function. The use of

MDL as model complexity cost is common in vision problems, see

for example [86][87][88]. This constrained energy function is solved
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by an Expectation-Maximization(EM)[89] like approach, alternating

between finding a better assignment of points to the models and

fitting the models to the assigned points.

The key advantage of these local piecewise approaches is that

they avoid the limitation of having to make assumption about the

deformation obeying some global basis model. However, in overcom-

ing this limitation, they go to the other extreme of breaking up the

scenes into very minute patches. For many scenes and objects, even

though their deformations are not explainable globally by a linear

combination of basis, it can be explained by a small number of clus-

ters of deformations, each of which spans a low-dimensional linear

subspace (i.e. moves coherently). These regions or parts typically

involve a much larger spatial extent than those minute meshes used

in local piecewise approaches.

The key difference of our proposed method MB-FLoSS lies in that

it seeks this more natural partitioning of the deformations into the

much larger regions of coherently moving parts, and also automati-

cally determines the underlying linear subspaces. For instance, even

though [4] looks similar to our proposed MB-FLoSS in terms of the

decomposition of a global non-rigid body into overlapping patches

and the use of model complexity cost in the objective function, there

is a very fundamental difference between the two. [4] tends to divide

the object into numerous small patches so that the simple quadratic

deformation model holds. In contrast, MB-FLoSS decomposes the

global non-rigid body into much fewer sub-parts of coherent motion,

which roughly correspond to the elementary parts of many moving
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objects.

Articulated motion forms a specific subclass of non-rigid motions

but serves as a good approximation for human motion. The piece-

wise approach to articulated motion[90][3][5], involves segmenting

such articulated motion into rigid components and reconstructing

these rigid components using the well established rigid reconstruc-

tion method[10]. These works are able to model the overlap between

these rigid components that constitute the articulated motions so

that a global shape can be reconstructed.

MB-FLoSS is similar to these piecewise articulated motion works

in terms of the ability to generate overlapping sub-parts, so that these

sub-parts can be stitched back together to form a global shape. The

crucial difference that distinguishes MB-FLoSS from these works is

that the sub-parts generated by MB-FLoSS no longer need to be

rigid and is in fact non-rigid in general. This non-rigid modeling of

the sub-parts allows a wider range of human articulated motions to

be handled e.g. belly dancing where the torso is no longer a rigid

motion.

In [90], RANSAC[91] is used to segment articulated motions into

rigid components, removing outliers at the same time. The two types

of articulated motion arising from universal and hinge joints are de-

composed into the rigid constituents. Based on the relationship be-

tween these constituent components, the data matrix can be factor-

ized and leads to 3D reconstruction.

In [3], an articulated motion is first segmented into its constituent

rigid parts by the use of LSA[47] as a motion segmentation algorithm.
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The number of rigid components is determined by the effective rank

(3.2) of the data matrix. The dependence or overlap between any pair

of the segmented motion subspaces is measurable by their minimum

principal angles. From this pairwise overlapping relationship, the

type/structure of the articulated motion or the kinematic chain, can

be constructed.

[3] is very similar to our work in terms of the use of model se-

lection to determine the number of motion subspaces and the sub-

sequent segmentation into the constituent components according to

their motion. The important difference is that for MB-FLoSS and

more generally the subspace segmentation approach covered in sec-

tion 4.1.1, the components can be non-rigid. MB-FLoSS is a more

general framework in the sense that the same model selection algo-

rithm with exactly the same parameters are used for both the rigid

and non-rigid motion. In contrast, the model selection scheme for

[3] only works well for the articulated motions but does not perform

well for general rigid motion segmentation nor for general non-rigid

motions.

The idea in [5] is to decompose an articulated motion into over-

lapping constituent rigid segments. The overlapping points arise

naturally as points on the joints between segments. This problem

is formulated and solved identically to [4] but with different model

parameters and unary penalty. The fitting penalty now measures the

image reprojection error. The model parameters now consists of the

motion matrix and shape structure that arise from the rigid recon-

struction of the segments. Compared to [4], it seems that [5] is even
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more similar to MB-FLoSS. The important difference is that while

[5] works on atomic rigid segments, there is no such requirement for

MB-FLoSS. In MB-FLoSS, the emphasis is on components with sim-

pler, coherent motion, regardless of whether these components are

rigid or non-rigid.

It would seem that the underlying formulation of [4] is able to

handle NRSFM in general. For the case of highly deformable body,

[4] is applicable. For articulated motion in [5], the same formulation

is applied but with different model parameters and fitting penalty.

Under this formulation, the two types of non-rigid motion need to be

distinguished so that the right model parameters and fitting penalty

can be used. For the subspace segmentation approach, these two

types of non-rigid motions are handled in the same manner.

4.1.4 Other approaches

Besides the shape basis and piecewise approaches, there is a sprin-

kling of works that do not fall into these two categories. In [92],

there is a re-think on modeling the shape space with a linear sub-

space. Instead of the global linear subspace model, [92] assumes that

small temporal neighborhoods of shapes are well-modeled with a lin-

ear subspace. This assumption constrains the shapes to lie on a low

dimension manifold. The shape is solved using the Non-Isometric

Manifold Learning algorithm[93].

Like [92], [94] is also able to handle general large nonlinear de-

formation. In addition, the model graph formulation in [94] allows

larger consistent image clusters to be formed, so that it is able to
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handle occlusions due to large variation in viewpoints, as well as

making possible rigid 3D reconstruction based on the most general

perspective camera model.

Both [92] and [94] assume that multiple 3D models (what is termed

as rigid shape chain in [92]) can be recovered from subsets of the in-

put image set using rigid SfM techniques. This depends on our being

able to choose a subset of the input frames such that it contains only

frames that are projections of the same 3D shape but taken from

different viewpoints. This may not be true unless the input video is

long enough and the deformation motions are somewhat repetitive

in nature. Otherwise, without the ability to form these prototypical

3D shapes, the subsequent steps to model the non-rigidity in these

works will break down.

As opposed to forming clusters of rigid motions in the temporal

domain like in [92] and [94], our proposed work forms clusters of

coherent motions in the spatial domain. The advantage of our for-

mulation is that it is much more likely to handle a larger class of

naturally occurring non-rigid motions.

Another difference stemming from our spatial partitioning is that

there is no assumption of an image-wide shape basis; this assumption

is still required in [92] and [94] ([92] assumes that in some small

temporal neighborhood, the 3D shape lies on a linear subspace, while

[94] assumes that the 3D shape is a sparse linear combination of a

large number of basis shape)

Instead of imposing the rank constraint in the deformation space

like what the shape basis factorization works do, [95] chooses to im-
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pose the Procrustean normal distribution constraints on the motion

parameters. The idea in [95] is to treat NRSFM as an alignment

problem with additional constraints on the rotation matrices derived

from generalized Procrustes analysis(GPA). In GPA, alignment is

based on a global mean shape. It therefore depends on the objects

having a main component that can be considered as rigid, as this

component is crucial for the alignment step. For deforming mo-

tions(e.g. a bending motion), where there is a lack of such a rigid

component, such an approach will encounter difficulties

Unlike the majority of other NRSFM works that operate in batch

mode, [96] proposes an incremental approach that updates the mo-

tion and shape estimates sequentially as new video frames are ac-

quired. In [96], there is an explicit representation of a mean rigid

shape, upon which the non-rigid variations are built upon. As we

have seen previously, this assumption of a rigid component restricts

the type of non-rigid motion it can handle.

As a direct contrast to both [95] and [96], there is no such an

assumption of a mean global rigid component in our work.

4.1.5 Contribution

The current competitive NRSFM methods can be broadly divided

into the shape basis factorization approach and the piecewise ap-

proach. There are issues that need to be addressed in both these

approaches. For the shape basis factorization approach, the known

number of shape basis assumption is not a practical one and needs to

be addressed. For the piecewise approach, articulated motions and
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continuously deforming objects need different modeling parameters

and treatments. Such model specificity calls for a more holistic ap-

proach that handles these two types of non-rigid motion uniformly,

without having to know a priori the type of non-rigid motion.

Moreover, the shape basis approach(and other works such as [95]

and [96]) explains non-rigid motion as consisting of a rigid princi-

pal component, upon which a linear combination of shape basis is

built upon. While this assumption of a rigid principal component is

intuitive and arises naturally in the shape basis framework, it never-

theless places restriction on the type of non-rigid motion that can be

handled. Can this need for a rigid principal component be removed

so that the shape basis approach can handle a wider range of non-

rigid motion, but at the same time enjoy the good performance of

the shape basis approach?

Our main contribution is the introduction of MB-FLoSS as a

subspace segmentation approach to NRSFM. Our subspace segmen-

tation approach is different from the piecewise articulated motion

works [5] and [3], where each component has to be rigid. [3] con-

siders mainly articulated objects with the possibility of a non-rigid

part e.g. the human body consisting of limbs and torso modeled as

rigid segments while the facial motion of the head is non-rigid. Our

subspace segmentation approach is more general and less restrictive

in the sense that each component is in general non-rigid.

As far as we know, we are the first to propose a subspace segmen-

tation approach with non-rigid components. Our judicial choice of

SPF for reconstruction ensures that our approach enjoys the best of
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both worlds - reduced deformation complexity of the local piecewise

approach(thus ensuring the validity of the linear shape basis model)

and the parsimonious shape description as well as state-of-the-art

reconstruction results from the shape basis factorization methods.

A standout feature of our work is that the unifying framework pro-

vided by MB-FLoSS handles the different types of non-rigid motion

uniformly. MB-FLoSS does not differentiate between articulated mo-

tions from the continuously deforming type of motion such as face

and shark. In contrast, [4] and [5] need a priori knowledge of the

type of non-rigid motion in order to apply the correct model and

parameters.

It is important to emphasize that MB-FLoSS is the only viable

representative of the subspace segmentation approach. LRR has

strong competitive performance for both model selection and seg-

mentation that can in principle be applied to both rigid and non-

rigid motion. However, the independent subspace assumption in

LRR results in no overlap between the segmented subspaces. This

lack of overlap prevents LRR from being a full fledged reconstruction

method. The introduction section in [4] best describes this overlap

requirement: ”A fundamental requirement for piecewise reconstruc-

tion is the need for overlap between models to enforce global consis-

tency...”.

SSC’s strong robust performance in rigid motion segmentation

makes it an attractive candidate for the subspace segmentation ap-

proach. The main obstacle for SSC is the lack of an in-house model

selection algorithm. A straightforward, generic spectral eigen gap
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based model selection will not work well. This generic solution was

adopted in ORK, giving model selection results that are uncompet-

itive. Such scheme will face even greater challenges for the case of

non-rigid motion, since the subspaces are of varying dimension.

The first benefit of the subspace segmentation approach comes

from the enabling of the shape basis factorization method as a prac-

tical NRSFM method. The state-of-the-art shape basis factorization

methods all assume known number of shape basis to achieve the op-

timum reconstruction result. This is of course not practical because

a) there is no ground truth available in real reconstruction prob-

lems b) there is no need for reconstruction if the ground truth is

available. With the basis set of each subspace being made explicit

in MB-FLoSS, the number of shape basis for each subspace arises

naturally, allowing the number of shape basis to be inferred.

The subspace segmentation approach also has the additional ad-

vantage of circumventing the need for a rigid principle component,

a central tenet in the shape basis approach. This move away from

a rigid principle component is important because it expands the do-

main of non-rigid motion that can be handled by the shape basis

framework, and at the same time leveraging fully on the shape basis

framework.

The second benefit is related to the perceptual significance of the

components resulting from MB-FLoSS. The human body is compo-

sitional and made up of parts, and thus we should be able to tease

them apart and mentally recompose them at will. The local piece-

wise works such as [4] partitions at too small a scale for the patches
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to be intuitive. At the other extreme, the shape basis approach does

not even yield parts. There are of course circumstances where such

fine partitions are more natural, such as the description of the cloth

sequence[83] by [68][4].

The piecewise articulated motion works [5] and [3] decompose

an articulated motion into rigid subparts. However, the elementary

parts of a non-rigid motion are not always rigid. MB-FLoSS captures

this concept of non-rigid elementary parts much better than other

piecewise works.

The last benefit brought about by the MB-FLoSS framework

stems from the more nuanced treatment of model complexity, taking

into account overlap between subspaces.

4.2 MB-FLoSS

MB-FLoSS from chapter 3 is the key subspace segmentation algo-

rithm for decomposing a non-rigid motion into sub-groups of rela-

tively simpler motion. MB-FLoSS was applied to rigid body motion

segmentation, from determining the number of motion to segmenting

the trajectories according to the motion. In this chapter, we show

how MB-FLoSS can be applied to non-rigid motion.

MB-FLoSS serves two functions in non-rigid SFM. The first is

in determining the number of sub-groups and the number of shape

basis Ki for each sub-group i. This is made possible by the explicit

basis representation given by MB-FLoSS. Secondly, the eventual cho-

sen subspace representation allows each trajectory to be assigned to

its motion subspace. This segmentation thus defines each non-rigid
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motion sub-groups, allowing 3D reconstruction to be carried out for

each sub-group.

For NRSFM, a non-trivial adaptation is the basis definition in the

hypothesis generation step. In chapter 3, due to the rigid motion and

affine camera model assumption, each subspace is defined by at most

four trajectories. For non-rigid motion, the number of basis in each

subspace is no longer bounded by this constraint. We explain how

the number of basis in each subspace can be determined in section

4.2.2.

NRSFM based on the MB-FLoSS framework consists of the fol-

lowing steps

1. Hypothesis generation

2. Determine the basis set for each of the hypotheses

3. Model selection to determine the number of subspaces and basis

set for these representative subspaces

4. Assign the trajectories to the closest subspace thereby decom-

posing the global non-rigid motion into patches

5. Reconstruct 3D shapes of individual patches

6. Stitch the individual patches back together to form a global 3D

structure

We will explain each of the step in detail in the following sections.
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4.2.1 Number of shape basis

We will describe how the number of shape basis arise naturally from

the subspace segmentation approach. In chapter 2, the idea of self

expressive representation is examined in detail through the SSC and

LRR works. Self expressive representation can be thought of as the

factorization of the data matrix into the data matrix itself and the

representation or coefficient matrix in the presence of noise

Ŵ = ŴC + E (4.1)

where R2F×N 3 Ŵ is the data matrix, RN×N 3 C is the representa-

tion matrix and R2F×N 3 E is the error matrix. C will have different

properties based on the penalty imposed on C in the problem formu-

lation. For LRR, C will have low rank, say r, while C will have sparse

number of rows for MB-FLoSS. In either case, C can be decomposed

into two matrices of inner dimension r

C = C1C2 (4.2)

where RN×r 3 C1 and Rr×N 3 C2. With this decomposition, we can

then do the factorization

Ŵ = ŴC1C2 + E (4.3)

Ŵ ′ = C ′1C2 (4.4)

where R2F×r 3 C ′1 = ŴC1 and R2F×N 3 Ŵ ′ = Ŵ − E
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If we further constrain r to be multiples of 3(by rounding, for

example), say r = 3K where K is an integer, then (4.4) shows that

the data matrix(with the noise removed) can be factorized into two

matrices of inner dimension 3K.

As shown in (C.1), (C.2) and (C.3) in appendix C, the data matrix

can be factorized as

Ŵ = ΠB (4.5)

where Π ∈ R2F×3K is the motion matrix that contains the rotation

matrices scaled by the shape coefficients and B ∈ R3K×N is the shape

basis matrix.

By comparing (4.4) and (4.5), together with the constraint that r

is a multiple of 3, the number of shape basis can thus be identified

as K.

4.2.2 Hypothesis generation

As in chapter 3, we first solve the convex relaxation problem

min
C
‖C‖2,1 + γ ‖E‖1,2 (4.6)

s.t. ŴC = Ŵ

where Ŵ ∈ R2F×N is the data matrix constructed from the tracked

feature trajectories, F is the number of frames, N is the number

of tracked feature points, C ∈ RN×N is the representation matrix,

‖C‖2,1 =
∑2F

i=1

√∑N
j=1([C]ij)2 and ‖E‖1,2 =

∑N
j=1

√∑2F
i=1([E]ij)2.

Let the solution to (4.6) be C0. Each column i of C0 then gives
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the coefficients of other trajectories used for representing trajectory

i. Each column thus proposes a subspace hypothesis with the basis

defined by the non-zero coefficients.

Unlike the rigid motion case in chapter 3, where each trajectory

requires at most four other trajectories for representation, the num-

ber of basis for each subspace is not known a priori. Due to (4.6)

being a convex relaxation of the original problem, the support in each

column of C0 is often not clear cut. This convex relaxation artefact

is readily understood as the Robin Hood effect[97]. In figure 4.1, we

see the distinct row structure in the representation matrix C0, but

the artefact is readily noticeable.

Figure 4.1: Absolute values of the representation matrix C0 for the pickup se-

quence. The hotter the color i.e. the more red the color is, the larger the coefficient.

The ”blueness” indicates very small coefficient values
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In figure 4.2, the magnitude in one column of C0 shows a spread,

instead of a sharp, well-defined gap that differentiates the support

from the rest.
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Figure 4.2: Coefficient magnitude of a column of C0 for the pickup sequence

Recovering the true support in each column from the convex re-

laxation artefacts is in general a difficult task due to the spread of

values, with no discernable gap to define the support. The straight-

forward way to set a hard threshold to recover the support. This

hard threshold can be just a constant or a constant factor of the

largest coefficient. We found that setting a hard threshold generally

does not perform well because the threshold may not work across all

the sequences.

We propose the use of k-means to automatically extract the sup-

port. It is tempting to set k = 2 to use k-means to extract the

support but as seen in figure 4.2, even among the support set, the
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typically large gap between the top coefficient and the rest means

that the support with intermediate values will be wrongly omitted

from the support set. Instead, we set k = 3 so as to include coeffi-

cients with top and intermediate values as support. The min, median

and max of the coefficients are used as initializations to k-means. As

seen in figure 4.3, the support recovered is more reasonable.

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Trajectory

C
oe

ffi
ci

en
t M

ag
ni

tu
de

 

 

Non−support
Support
Support

Figure 4.3: The support identified by k-means in red and green, while the non-

supports are in blue

Algorithm 3 summarizes the subspace hypothesis generation step.

Note that once we determine the basis set for each hypothesis, the

basis set will give the dimensionality of the subspaces.
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Algorithm 3 Generate subspace hypothesis set

Input: representation matrix C0, number of tracked trajectories N

(1) Initialization: H← ∅
for i=1 to N do

(2) Apply k-means to column i of C0 with k = 3, giving the centroid set

{Clo,Cmid,Chi} and corresponding label {Llo,Lmid,Lhi}
(3) Construct column i support set Bi defined by all basis trajectories with

labels ∈ {Lmid,Lhi}
(4) H← H ∪ Bi

end for

Output: Subspace hypothesis set H

Note that the use of the row sparsity penalty in (4.6) encourages

basis sharing, and thus the typically non-independent motions found

among the different parts of a non-rigid motion would result in much

sharing of basis among different subspace hypothesis.

4.2.3 Model selection and segmentation

The model selection and segmentation step is the key step to divide

the trajectories of the full non-rigid motion into subparts according

to their motion. After generating the subspace hypothesis set and

the associated basis set, the same MB-FLoSS engine in chapter 3 is

now used to determine

1. The number of subspaces, corresponding to the number of sub-

parts from the decomposition of the full non-rigid motion

2. The basis sets of these representative subspaces

3. The clustering of the trajectories based on the motion subspace

they belong to
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Algorithm 4 describes the model selection and subspace segmen-

tation algorithm based on MB-FLoSS. In step 1, the number of sub-

spaces and the representative facility subspaces are established using

the MB-FLoSS model selection scheme described in section 3.4. The

chosen representative facility subspaces will capture and make ex-

plicit any overlap between the subspaces that is typically found in

non-rigid motions. Each trajectory is segmented by assigning it to

the closest representative facility subspace, measured by the closest

orthogonal trajectory-subspace distance.

Algorithm 4 Model selection and subspace segmentation

Input: data matrix Ŵ , subspace hypothesis set H, convex formulation weight

γ, facility cost model parameters {a, b}, number of nearest neighbors Knn

1. Use MB-FLoSS to compute

• nS, the number of facility subspaces

• {F1 . . .FnS
}, a subset of H that are chosen as representative facility sub-

spaces

• Segmented trajectories by assigning each trajectory to the nearest chosen

subspace facilities {F1 . . .FnS
}, in terms of orthogonal subspace distance

2. Re-classify the basis trajectories by choosing the majority label of the Knn

nearest non-basis neighbors

Output: T ∈ RN , trajectories classified with labels 1 to nS

Step 2 of algorithm 4 involves reclassifying the trajectories that

serve as bases. This is necessary because most of these trajectories

serve as bases for multiple subspaces and therefore should be zero

distance from these subspaces. The orthogonal trajectory to sub-

space distance criterion for classifying these trajectories is unreliable
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because any difference would be due to small numerical errors. We

resolve this ambiguity by giving these basis trajectories the majority

label of the Knn nearest neighbors. The nearest neighbor distance

is defined in terms of the max distance over the entire F frames.

Examples of the decomposition are shown in figure 4.11 and 4.13.

4.3 Reconstruction

With the decomposition of the non-rigid motion into patches, 3D

reconstruction is now performed locally at the patch level for all the

patches. There are important and subtle differences for local patch-

wise 3D reconstruction as compared to the more common global 3D

reconstruction. These differences need to be taken care off when

stitching the patches together.

For each patch i, the patch data matrix Wi is constructed by ex-

tracting those columns of the original data matrix Ŵ corresponding

to the trajectories belonging to the motion subspace. The trajecto-

ries belonging to a motion subspace is not just those trajectories with

the same label corresponding to the subspace but also the basis tra-

jectories defining the subspace. We therefore take the union of those

trajectories resulting from segmentation and the basis trajectories

and use these trajectories for reconstruction.

The subspace segmentation approach focuses only on decompos-

ing a global non-rigid body into its constituent components. A con-

crete algorithm is needed for reconstructing these components. Since

these components are non-rigid in general, we specifically need a

NRSFM algorithm for reconstruction. While any NRSFM algorithm
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can be used, our choice of SPF is not only due to its good perfor-

mance, but also the principle of parsimony - SPF does not impose

any priors when there is no need to. Each patch is therefore recon-

structed using the SPF method.

Each patch is first shifted to have zero-mean in each frame before

applying SPF. This shifting operation for the patches means that

the reconstructed 3D shapes for these patches are all centered at the

origin, which is clearly not right. We must therefore undo the shifting

operation so that these reconstructed 3D shapes are correctly placed.

Based on the recovered rotation matrices from SPF, We first rotate

the reconstructed 3D shape at time t back to the camera reference

frame at time t. In this camera reference frame, we can undo the

zero-mean shifting the data matrix previously underwent.

Another complication we have to deal with is that these recon-

structed 3D shape patches have their own frame of reference. This

is due to the inherent ambiguity of SFM in general, since any recon-

struction is only up to a global rotation. We resolve this ambiguity

by rotating all the 3D shape patches to a common reference frame,

say the first camera frame.

The last ambiguity we need to resolve is the misalignment in the Z

coordinate of the translation vectors of the patches. This ambiguity

arose due to the loss of depth information resulting from an ortho-

graphic projection. This situation is very similar to the one in [68].

We adopt the same strategy in [68] by using shared basis trajectories

between the patches to align the Z coordinate. Even though there is

no guarantee of at least one shared basis between any pair of patches,
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we find experimentally this is indeed the case. This is not surprising

given the non-rigid motion we are dealing with; a patch’s motion is

unlikely to be independently of all other patches. In fact, we find the

stronger condition that we can always find a patch that has at least

one shared basis with all other patches. This patch is the reference

patch against which the rest of the patches are aligned with. If there

are more than one shared basis, we use the average of the difference

between shared bases for alignment. Algorithm 51 gives the full 3D

reconstruction procedure discussed above.

1There is an additional rotStruct flag in the input that is concerned with whether it is
the camera or the object that moves, the latter of which would necessitate further processing.
Readers who are interested in the implementation details should refer to [98] or [99]
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Algorithm 5 3D shape recovery

Input: data matrix Ŵ , representative subspace facilities {F1 . . .FnS
}, seg-

mented trajectories T

for i=1 to nS do

(1) Define the indices Ii ← Ti ∪ Bi, where Ti are the trajectories with label i

and Bi are the bases that constitute representative subspace facility Fi

(2) Construct patch Wi by assembling columns of Ŵ corresponding to the

indices Ii

(3) Shift Wi so that it has zero mean

(4) Reconstruct 3D shape Ŝi for patch Wi using SPF

(5) Rotate Ŝi back to the individual camera coordinate system

(6) Undo the zero-mean shifting in the camera coordinate system

if rotStruct then

(7) Rotate Ŝi to a common camera coordinate system

else

(8) Stay in the camera coordinate system

end if

end for

(9) Select a reference patch and align other patches with this reference patch

Output: Reconstructed 3D shape. Note that there is a boolean rotStruct flag

that indicates if the camera is rotating or stationary. The reconstructed 3D

shape needs to be further processed if the camera is stationary. See [98] or [99]

for details.

4.4 Experiments

Unlike the rigid motion case where the Hopkins 155 dataset is the de

facto benchmark, NRSFM has yet to see a standard dataset of real(as

opposed to synthetic) sequences. We base the 3D reconstruction

quantitative comparison on the sequences gathered in the latest work

SPF. The SPF dataset consists of 8 sequences summarized in table
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4.1.

Sequence No. of frames No. of trajectories

Drink 1102 41

Pickup 357 41

Yoga 307 41

Stretch 370 41

Dance 264 75

Face 316 40

Shark 240 91

Walking 260 55

Table 4.1: Summary of the real dataset used for the experiments

The drink, pickup, yoga, stretch and dance sequences come origi-

nally from the CMU Mocap database[100] while the face, shark and

walking sequences come from [101]. Note that the shark sequence

that is used in SPF and CSF comes from [101] and is different from

the shark sequence in TB. The shark sequence result for TB reported

in SPF is generated by running TB on the shark sequence in SPF.

The drink, pickup, yoga, stretch, dance and walking sequences are

articulated motions while the face and shark sequences consist of

a single body with smoothly varying deformations. The yoga se-

quence shown in figure 4.4 is an example of articulated motion and

the shark sequence shown in figure 4.5 is an example of a single body

with smoothly varying deformations.
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Figure 4.4: Yoga data sequence
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Figure 4.5: Shark data sequence

We adopt the same comparison metrics as [9][8][7] to ensure a fair
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evaluation. In particular, the 3D reconstruction error e3D is scaled

by the average shape standard deviation

e3D =
1

σmeanNF

F∑
i=1

√√√√ N∑
j=1

(Sij − Ŝij)2 (4.7)

where Sij is the jth ground truth 3D point in the ith frame, Ŝij is

that of the recovered shape and

σmean =
1

F

F∑
i=1

σ(Si) (4.8)

where σ(Si) is the standard deviation of the 3D shape in frame i. In

the implementation, this normalization step is realized by scaling the

data matrix Ŵ before reconstruction and scaling the ground truth

before computing the 3D reconstruction error.

There is one important difference between our proposed method

in terms of shifting the 3D reconstructed shape to be zero-mean.

In [9][8][7], the data matrix Ŵ is zero-mean shifted before recon-

struction, so that the recovered shape is also zero-mean. For our

patch based approach, the zero-mean shifting of the data matrices of

the patches results in the various patches being zero-mean shifted.

However, even after shifting back as described in section 4.3, the re-

constructed global 3D shape is not zero-mean shifted. In computing

the final 3D reconstruction error, the reconstructed global 3D shape

needs to be zero-mean shifted.

Even though LRR was developed with rigid motion segmentation
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in mind, it should in principle not be restricted to just rigid mo-

tion. As we have seen in chapter 3, LRR offers strong rigid motion

segmentation performance in terms of both model selection and clus-

tering. Here we explain how LRR can be positioned as a subspace

segmentation approach to NRSFM.

LRR solves the low rank formulation to obtain a block diagonal

representation matrix where each block represents an independent

subspace. The number of subspace is given by the model selection

scheme outlined in algorithm 1. LRR’s model selection can be best

described as finding the largest eigen gap in a robust manner. There

is however, no increased penalty for higher number of motion or

increased model complexity. For MB-FLoSS, the model complexity

cost in section 3.4.2 will ensure higher cost with increased model

complexity. With this model complexity cost, MB-FLoSS tends to

give fewer number of subspaces compared to LRR. This is indeed

observed in the experiments.

From the discussion in section 2.3.3.2, LRR solves the low rank

formulation to obtain a block diagonal representation matrix where

each block represents an independent subspace. The number of sub-

space is given by the model selection scheme outlined in algorithm 1.

LRR’s model selection can be best described as finding the largest

eigen gap in a robust manner. There is however, no increased penalty

for higher number of motion or increased model complexity. For MB-

FLoSS, the model complexity cost described in section 3.4.2 will en-

sure higher cost with increased model complexity. With this model

complexity cost, MB-FLoSS tends to give fewer number of subspaces
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compared to LRR. This is indeed observed in the experiments.

We are interested in comparing how the different model selection

strategies employed by MB-FLoSS and LRR affect the reconstruction

accuracy. For LRR, the number of shape basis Ki for each subspace

i is estimated similar to step 2 in algorithm 3. The k-means step is

applied to the singular values of the data matrix Ŵi of each subspace

i. Since MB-FLoSS uses the same model selection and segmentation

parameters for both the rigid and non-rigid cases, we do likewise for

LRR for fairness consideration.

The different model selection strategies will result in different de-

composition of the non-rigid body into its constituent components,

both in terms of number of components and the points making up the

components. These differences will likely give different reconstruc-

tion results. Furthermore, it would be interesting to evaluate quan-

titatively how the violation of the independent subspace assumption

affects the reconstruction result, given the prevalent overlap and de-

pendency between the subspaces in non-rigid motion.

With LRR’s independent subspace assumption, there will be no

overlap between the patches. Since the Z translation ambiguities

cannot be resolved, individual patches cannot be stitched back to-

gether to form a reconstructed global shape. We therefore use the

mean patch error to evaluate quantitatively the reconstruction error.

For each patch i, the patch error ei3D is defined using (4.8). The

mean patch error is then the average of all the patch error
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epatch =

nS∑
i=1

ei3D (4.9)

where nS is the number of subspace(patch).

For both MB-FLoSS and LRR, each patch is reconstructed using

SPF, since there is no in-house 3D reconstruction step in either of

MB-FLoSS or LRR.

Clearly we should also compare with the classic state-of-the-art

NRSFM algorithms such as SPF, CSF and TB etc. Such compar-

ison is possible because MB-FLoSS is able to reconstruct a global

3D shape, as described in algorithm 5, instead of just disconnected

patches.

We have to bear in mind that these classic state-of-the-art NRSFM

algorithms have the benefit of the ground truth to determine the op-

timum number of shape basis K for the best reconstruction results.

Even though CSF claims that K can be determined by increasing K

until the orthonormality constraint of the rotation matrices holds to

a pre-defined threshold, the reported reconstruction results in CSF

are achieved using the ground truth. For completeness sake, we also

compare against EM-PPCA and MP.

4.4.1 Number of subspace and subspace dimension

In view of the different model selection schemes for MB-FLoSS and

LRR, we find it of interest to compare the number of subspaces

generated from the model selection step of MB-FLoSS and LRR.

Table 4.2 and figure 4.7 show the general trend that MB-FLoSS
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tends to generate fewer number of subspaces compared to LRR.

With the exception of the face and shark sequences, the number of

subspaces generated by LRR is significantly more than MB-FLoSS.

Why the exception for the two sequences? The face and shark se-

quences are the only two non articulated motion sequences. They

exhibit more of a continuously deforming type of motion that makes

it difficult for LRR to segment them into large number of indepen-

dent subspaces. For articulated motion sequences, it is easier to

regard the overlap between the subspaces as noise.

Sequence MB-FLoSS LRR

Drink 3 8

Pick-up 4 11

Yoga 3 8

Stretch 4 13

Dance 5 11

Face 3 2

Walking 5 7

Shark 1 1

Table 4.2: Number of subspaces for MB-FLoSS and LRR
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Figure 4.6: Number of subspace MB-FLoSS and LRR generate from model selec-

tion

Table 4.3 and figure 4.7 show that the average subspace dimension

of MB-FLoSS is higher than LRR. For MB-FLoSS, the smaller num-

ber of subspace means each subspace needs to be higher dimension

to suitably describe the motion corresponding to the subspace.

Sequence MB-FLoSS LRR

Drink 12.7 6.7
Pick-up 10.8 6.5

Yoga 8.3 5.6
Stretch 11.5 5.6
Dance 9.8 5.0
Face 7.0 10.0

Walking 5.6 4.4
Shark 8.0 6.0

Table 4.3: Average subspace dimension for MB-FLoSS and LRR
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Figure 4.7: Average subspace dimension for MB-FLoSS and LRR

4.4.2 Reconstruction results

4.4.2.1 Mean patch error comparison

Figure 4.8 and table 4.4 compare the mean patch 3D reconstruction

error between MB-FLoSS and LRR. Both MB-FLoSS and LRR use

SPF for individual patch 3D reconstruction. The global SPF 3D

reconstruction with assumed known number of shape basis is used

as a baseline. Obviously the mean patch error enjoys additional

degree of freedom and therefore potentially better performance when

compared to a global approach like SPF. After all, there is likely to

be additional error when the patches are stitched back together. But

since the patches cannot be stitched back together in LRR, plus the

fact that the comparison is between LRR and MB-FLoSS, the SPF

ground truth serves as a useful reference and the mean patch error

comparison is still meaningful.

114



Sequence SPF MB-FLoSS LRR

Drink 0.027 0.038 0.277

Pick-up 0.173 0.196 0.170

Yoga 0.115 0.278 0.342

Stretch 0.103 0.120 0.202

Dance 0.186 0.143 0.041

Face 0.030 0.058 0.034

Walking 0.130 0.097 0.031

Shark 0.243 0.243 1.473

Table 4.4: Comparison of mean patch 3D reconstruction error of MB-FLoSS

against LRR, with SPF as baseline
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Figure 4.8: Comparison of mean patch 3D reconstruction error for LRR and MB-

FLoSS, with SPF as the baseline

There are some interesting observations from these results. LRR

tends to be extreme in its performance. When LRR gets it right for

the dance and walking sequences, the mean patch error is spectacular
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- approximately 4 times improvement over the baseline SPF results.

On the other hand, when LRR gets its wrong for the shark and drink

sequences, the error is off the chart - roughly 7 times worse than the

baseline SPF.

MB-FLoSS tends to give a more constant performance when com-

pared with the baseline. While MB-FLoSS gives a better perfor-

mance for the dance and walking sequences compared to the SPF

baseline, the improvement is not as dramatic compared to LRR. On

the other end of the scale, MB-FLoSS’s worst performance for the

yoga sequence stands at roughly 3 times that of the baseline SPF.

Significantly, this yoga sequence is MB-FLoSS’s worst performance

across all the sequences, but yet still outperforms LRR for this par-

ticular sequence.

From this comparison, it is fair to say that MB-FLoSS has a more

consistently good performance and in general outperforms LRR. MB-

FLoSS’s better performance is not surprising, considering the fact

that MB-FLoSS explicitly handles the overlap between subspaces in

non-rigid motion.

For LRR, it seems that the model selection rule breaks down for

the continuously deforming type of non-rigid motion such as the

shark sequence, causing the number of shape basis to be estimated

wrongly. For the shark sequence, both MB-FLoSS and LRR gave 1

subspace. MB-FLoSS estimated the number of shape basis to be 3,

coinciding with the optimum number of shape basis for SPF. LRR

wrongly estimated the number of shape basis to be 2, resulting in

the bad reconstruction results.
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4.4.2.2 Global reconstruction error comparison

The global 3D reconstruction error result is summarized in table 4.5

and figure 4.9. As we can see in table 4.5 and figure 4.9, MB-FLoSS

has the same level of performance as the state-of-the-art SPF, TB

and CSF for the dance, walking, shark and face sequences. How-

ever, for the other four sequences, drink, pickup, yoga and stretch,

MB-FLoSS’s performance does not compare as well. This is not sur-

prising, considering the fact the additional step in stitching back the

various patches will probably introduce errors. In addition, without

the ground truth to choose the best number of shape basis, MB-

FLoSS is unlikely to match stride for stride the performance of the

state-of-the-art methods. To put things in perspective, without the

benefit of the ground truth to choose the optimal number of shape

basis, MB-FLoSS’s performance is rather commendable.

Note that the 3D reconstruction error for the SPF block matrix

method(BMM) using the Matlab code provided by the authors, as

reported in table 4.5, is different from the SPF BMM reported in [9].

After clarifying with the author, it turns out that the discrepancy

is due to the author modifying the Matlab code so that the sign

ambiguity in the SVD step is fixed. Although this fix ensures that the

code works across different Matlab version, it does however changes

the 3D reconstruction error. The performance comparison in table

4.5 is based on the implementation with the SVD sign ambiguity

fixed.
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Sequence EM-PPCA MP TB CSF SPF MB-FLoSS

Drink 0.339 0.460 0.025 0.022 0.027 0.173

Pick-up 0.582 0.433 0.237 0.230 0.173 0.403

Yoga 0.810 0.804 0.162 0.147 0.115 0.337

Stretch 1.111 0.855 0.109 0.071 0.103 0.304

Dance 0.984 0.264 0.296 0.271 0.186 0.277

Face 0.033 0.036 0.044 0.036 0.030 0.058

Walking 0.492 0.561 0.395 0.186 0.130 0.182

Shark 0.050 0.157 0.180 0.008 0.243 0.243

Table 4.5: Comparison of 3D reconstruction error of MB-FLoSS against various

other methods
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Figure 4.9: Comparison of MB-FLoSS global 3D reconstruction error against var-

ious other methods

4.4.3 Segmentation results

The segmentation of the trajectories brings up the interesting ques-

tion of how the trajectories are grouped. We illustrate the segmen-
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tation trend with the drink and dance sequences. Note that all the

segmentations shown come from after step 2 of algorithm 4 i.e. after

reclassifying the basis trajectories.

A frame of the drink sequence data matrix is shown in figure 4.10.

The drink sequence involves the subject drinking using the left arm.

The segmented drink sequence in figure 4.11 shows that the non-rigid

motion is divided into three logical groups - the left part of the body

in green, the right part of the body in blue and the lower torso in red.

The left part of the body in green is segmented because of the left

arm that executes the drinking motion. The lower torso is relatively

stationary over the frames. The right arm move little but enough

for the right arm to be segmented. Note that there is a wrongly

classified blue point on the left leg.
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Figure 4.10: The drink sequence
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Figure 4.11: Subspace segmentation of the drink sequence using MB-FLoSS. The

blue point on the left leg is due to misclassification
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A frame of the dance sequence is shown in figure 4.12. The seg-

mentation result in figure 4.13 shows the segmentation of the trajec-

tories. The dance sequence involves large movement of the four limbs

and small movement of the head. Since the four limbs are executing

complex motions, it is no surprise for each limb to be segmented as

a group. Even though there is movement of the head, the model

complexity cost ensures that the head and the torso are treated as a

single non-rigid body.
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Figure 4.12: The dance sequence
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Figure 4.13: Subspace segmentation of the dance sequence using MB-FLoSS
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We provide the dance sequence segmented by LRR in figure 4.14

for comparison. Note that even though the dance sequence was seg-

mented into 11 groups in table 4.2, 3 of the groups have 2 or less tra-

jectories. Since SPF requires at least 3 trajectories(corresponding

to 1 shape basis), the 3 groups cannot be reconstructed. These 3

groups are therefore merged to the nearest subspace. LRR segments

the non-rigid body into the head, torso, the limbs, with the left foot

being further segmented into 2 groups. This finer division can be

explained by the lack of a model complexity penalty in LRR’s model

selection mechanism. For example, while MB-FLoSS groups the head

and torso as one group, LRR separates them into two groups.
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Figure 4.14: Subspace segmentation of the dance sequence using LRR
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Both the segmentation by MB-FLoSS and LRR are reasonable

and natural at some level. But as we have highlighted in section

4.1.5, MB-FLoSS is more flexible in the sense that it allows for non-

rigid components and more importantly, allow the different parts to

be assembled together to achieve global consistency.

Since MB-FLoSS identifies the trajectory basis explicitly, we are

interested in which of the trajectories are chosen as basis and why

they are chosen as basis. We look at the torso and right arm segments

of the dance sequence in figure 4.15 for insights. Note that figure 4.13

and 4.15 come from a different frames. The torso is marked in red

and the right arm is marked in blue. The trajectory bases shared by

the two segments are colored in green.
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Figure 4.15: The bases shared by both the red and blue subspaces are colored in

green
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A natural and valid question is why is the torso trajectory serving

as a basis for the right arm? And vice versa, why are the two bases

on the right arm serving as bases for the torso? We can understand

why this is the case by considering the fact that segments of human

motion are inter-related and seldom independent. The head of the

torso is obviously connected to the right arm and there will be mo-

tion correlation between the two. It is therefore not surprising that

trajectories for one group serve as bases for the other group.

4.4.4 Multiple non-rigid body motion segmentation and

reconstruction

In this section, we aim to verify the difference between MB-FLoSS

and the shape basis approach in handling non-rigid motions without

a rigid principle component. We construct this sequence without

a rigid principle component by concatenating two vastly different

non-rigid motion into one sequence. We identify the pickup and

walking sequences as suitably different non-rigid motions that serve

the purpose of our experiment. This concatenated two non-rigid

body motion sequence is shown in figure 4.16.
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Figure 4.16: A two non-rigid body sequence obtained by concatenating the pickup

and walking sequences. The walking sequence is marked in circles while the pickup

sequence is marked in crosses

Our MB-FLoSS work handles such sequence as a multi-body non-

rigid motion sequence. Just like the single non-rigid body’s case,

the trajectories are first segmented into the individual subspaces.

We then iteratively merge pairs of subspaces by setting a threshold

based on the maximum image distance over the entire trajectory.

The intuition is that if this distance is small(below the threshold),

then the pair of subspaces are likely to be from the same non-rigid

motion. The threshold for this particular sequence is 0.5.

The result of the segmentation is shown in figure 4.17 which

showed that the pickup motion(in red) has been successfully sep-

arated from the walking motion (in green). The pickup sequence

is shown in red while the walking sequence is shown in green. Af-

ter segmenting the trajectories into the individual non-rigid motion,
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reconstruction can then be carried out for each non-rigid motion sep-

arately.

Figure 4.17: Segmentation of the concatenated pickup-walking sequence. The

pickup sequence is marked in red while the walking sequence is marked in green

In this concatenated sequence, each sequence has its own motion -

the camera is stationary in the walking sequence whereas the camera

is rotating for the pickup sequence. If we still want to hold on to the

shape basis assumption of a rigid principal component, even with

these two vastly different non-rigid motion in the same sequence,

the only possibility for the shape basis representation to handle this

sequence is for the number of shape basis K to be large enough to

treat the two different motions as a large deformation about a rigid

principal component.

We wish to verify experimentally if increasing K large enough

will yield good reconstruction results, thereby showing that the two
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different non-rigid motions can be regarded as one non-rigid motion

with large deformation about a rigid principal component. Note that

K can only go up to Kmax = bN3 c where N is the number of trajecto-

ries. For this concatenated sequence, there are 96 points and hence

Kmax = 32. We choose TB for reconstructing this concatenated se-

quence due to its good performance and quick run-time. This good

run-time performance is desirable since we have to vary K from 1 to

32 and find the K that offers the best reconstruction performance.

Table 4.6 shows that TB performs poorly in terms of reconstruc-

tion compared to MB-FLoSS. This result confirms that the two in-

dependent non-rigid motion cannot be approximated as a highly de-

forming non-rigid motion using the maximum number of shape basis.

3D reconstruction error

MB-FLoSS 0.391

TB 2.717(28)

Table 4.6: Multi non-rigid body reconstruction error. For TB, the number of shape

basis, shown in parenthesis, is obtained with the help of the ground truth

The reconstruction results for the individual non-rigid motion for

MB-FLoSS is shown in table 4.7. Note that the reconstruction error

for the pickup sequence in table 4.7 is different from table 4.5. The

reason is that the pickup sequence, that has 357 frames, needs to be

truncated to 260 frames so that it is the same length as the walking

sequence, that has 260 frames.

132



3D reconstruction error

pickup 0.671

walking 0.182

Table 4.7: The reconstruction error of the individual non-rigid motion after seg-

mentation

From table 4.6, we can infer that MB-FLoSS is able to handle

NRSFM without a rigid principal component while this lack of a

rigid principal component presents a boundary where the shape basis

approach breaks down.

4.5 Conclusion

In this work, we propose MB-FLoSS, a new subspace segmenta-

tion approach to NRSFM. We evaluated quantitatively the perfor-

mance of MB-FLoSS against the state-of-the-art NRSFM methods

and LRR, an alternative subspace segmentation based method that

has competitive performance in both model selection and segmenta-

tion.

Due to the independent subspace assumption in LRR, there are

no overlapping points between the subspaces. This means that LRR

is only able to reconstruct each 3D patch locally but is unable to

piece back these 3D patches to form a global shape. Nonetheless, we

are still able to evaluate MB-FLoSS against LRR based on the mean

patch error. We were able to establish that MB-FLoSS offers better

performance in terms of the mean patch error compared to LRR.

Since only MB-FLoSS is able to stitch back the patches to obtain a

global 3D reconstructed shape but not LRR, we compare MB-FLoSS
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against the state-of-the-arts methods where the number of shape

basis is assumed known. Without knowing the optimal number of

shape basis, MB-FLoSS offers good reconstruction performance close

to that of the baseline provided by the state-of-the-art methods. In

terms of segmentation, we show that the MB-FLoSS’s segmentation

makes good sense and corresponds closely to human intuition. We

are also able to gain insight into the shared basis between overlapping

subspaces.

We pushed the boundary of the shape basis representation works

by introducing a non-rigid motion sequence without a rigid principal

component. Not surprisingly, this lack of a rigid principal component

results in the shape basis representation works performing badly,

even with the luxury of using the largest number of shape basis

available. For the subspace segmentation approach, the subspaces

belonging to the same non-rigid motion can be identified easily. This

allows each non-rigid motion to be reconstructed independently, thus

achieving good performance.

In conclusion, our new proposed subspace segmentation approach

has been shown to provide strong, competitive NRSFM performance

when measured against the state-of-the-art shape basis methods, but

crucially, without the need for ground truth to determine the best

number of shape basis or strong assumption about the presence of a

rigid principle component.
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Chapter 5

Summary and future works

5.1 Summary

We first motivate our thesis by highlighting the often neglected model

selection aspect of motion segmentation. We explain the difficulty

of model selection due to the independent subspace assumption that

is inherent in the current methods. This independent subspace as-

sumption may not be valid for many of the rigid motion sequences

containing overlapping motion. For non-rigid motion, this assump-

tion is an even bigger problem, since overlapping subspace is a given

in non-rigid motion.

Instead of fixing the independent subspace assumption a poste-

riori, we chose to incorporate the presence of overlapping subspace

into our model through the minimal basis representation. Unfortu-

nately, this direct formulation of the minimal basis representation is

NP-hard.

We solve this problem in two stages. We first obtain an approx-

imate solution to the original problem using a convex proxy of the

original problem. The use of the convex proxy comes at the price
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of artefacts that prevents us from determining the basis decisively.

We then make an important and non-trivial extension of the FLoSS

framework to include a global model complexity cost model. This

global cost model favors overlapping subspaces and is instrumental

in MB-FLoSS’s good performance in model selection.

For rigid body motion segmentation, we extend the de facto Hop-

kins 155 to Hopkins 380, testing both MB-FLoSS and LRR exten-

sively. The experimental results show MB-FLoSS achieving a better

performance than LRR. This difference in performance is not sur-

prising, since many sequences in the Hopkins 380 data set contain

overlapping motion.

We show the universality of our model selection mechanism by

applying the same exact mechanism and parameters to NRSFM. This

model selection mechanism is at the heart of the our new proposed

subspace segmentation based approach to NRSFM. While NRSFM

is a well studied problem and has seen good performance from the

shape basis factorization methods, they all assume known number

of shape basis. Our new approach shows good 3D reconstruction

performance without knowing the optimum number of shape basis.

This new approach also has the additional advantage of not requiring

the presence of a rigid principal component, thereby expanding the

range of non-rigid motion that can be handled by the mainstream

NRSFM works.

In rigid motion segmentation, the overlapping subspace formula-

tion improves the model selection performance. For NRSFM, the

overlapping subspace formulation becomes indispensable. The over-
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lapping trajectory basis allows MB-FLoSS to stitch the patches back

into a reconstructed global 3D shape. For LRR, the lack of shared

points means that the individual reconstructed patches cannot be

stitched back together. Nevertheless, based on the mean patch error

metric, we show that MB-FLoSS compares favorably against LRR.

All in all, we have shown the successful application of the same

model selection mechanism in MB-FLoSS across both the rigid and

non-rigid domain.

5.2 Future works

The most immediate and urgent need for future motion segmentation

work is benchmark data set. The Hopkins data set has been around

for quite a while and seemingly outlive its usefulness. When there

are methods that can achieve sub 1% misclassification, any further

improvement is insignificant and doubts will arise if improvements

are due to over-fitting. In the new data set, we hope to see more var-

ied types of motion, scenes with strong perspective effects, presence

of missing data and outliers.

For NRSFM, the need for a benchmark data set is even more

apparent. Currently, NRSFM mostly rely on about 8-10 sequences

for experimental verification. A NRSFM’s equivalent of the Hopkins

data set containing more varied type of non-rigid motion will cer-

tainly help spur development, especially sequences with larger/nonlinear

deformations.

A more ambitious long term goal would be the handling of missing

entries and/or large outliers. While there have been exciting devel-
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opments in matrix completion with sparse outliers, it is much more

challenging for the motion segmentation’s case. Without knowing

the number of motion, filling in the missing entries in the data ma-

trix becomes a much more difficult task, especially when there are

large outliers.

On this note, we would like to conclude this thesis.
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Appendix A

Appendix: Lipschitz constant

derivation

We will show how the Lipschitz constant can be derived for C since

E can be done similarly. For any arbitrary C1, C2 ∈ domainf(C,E),

the Lipschitz condition for C is

∥∥∇Cf(C1, E
k)−∇Cf(C2, E

k)‖F ≤ LC‖C1 − C2

∥∥ (A.1)

First we obtain an expression for the gradient of f(.) with respect

to C

∇Cf(C) = λŴ + ρŴ T
(
ŴC + Ek − Ŵ

)
(A.2)
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Then the Lipschitz constant for C can be estimated as

∥∥∇Cf(C1, E
k)−∇Cf(C2, E

k)
∥∥
F

= ρ
∥∥∥Ŵ TŴ (C1 − C2))

∥∥∥
F

(A.3)

= ρ
∥∥∥Ŵ TŴ

∥∥∥
2
‖C1 − C2‖F (A.4)

= LC ‖C1 − C2‖F (A.5)

where
∥∥∥Ŵ TŴ

∥∥∥
2

denotes the operator norm of Ŵ TŴ i.e. the largest

singular value of Ŵ TŴ and LC = ρ
∥∥∥Ŵ TŴ

∥∥∥
2

is the estimated Lip-

schitz constant for C.
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Appendix B

Appendix: Message passing

derivation

Message update for φ

Following definition, the φ messages are written as:

φj(1) = µ−C→ej(1)

= max
ek,k 6=j

−C(e1, . . . , ej = 1, . . . , eM) +
∑
k 6=j

ξk(ek)

 (B.1)

φj(0) = µ−C→ej(0)

= max
ek,k 6=j

−C(e1, . . . , ej = 0, . . . , eM) +
∑
k 6=j

ξk(ek)

 (B.2)
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C(e1, . . . , ej, . . . , eM) is effectively a feasibility function that restricts

only one, two, or three facilities to be turned on. For (B.1), since

ej is set as 1, we are looking for all combinations of zero, one or

two other ej’s being turned on. For (B.2), ej is kept fixed as 0, we

are then looking for all combinations of one, two, or three ej’s being

turned on.

Even though (B.1) and (B.2) look combinatorial, the messages can

be simplified and updated efficiently. We first observe that finding

the max can be achieved by searching for the indices corresponding to

the largest one, two or three ξk = ξk(1)−ξk(0), for k = 1, . . . ,M, k 6=
j. We sort {ξk = ξk(1) − ξk(0), k = 1, . . . ,M, k 6= j} in descending

order. Let ξ̂ be the sorted {ξk = ξk(1)− ξk(0), k = 1, . . . ,M, k 6= j}
and the top three sorted entries be ξ̂1, ξ̂2, ξ̂3. Recall that the sorted set

ξ̂ and resultant top three indices exclude j and hence ξj 6∈ {ξ̂1, ξ̂2, ξ̂3}.
In addition, ξ̂ only has M − 1 number of entries, since index j was

omitted.
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For ease of notation, we define the cumulative sum operator Sij:

Sij({0, 1}) =

j∑
k=i

ξ̂k({0, 1}) (B.3)

e.g. S11({0, 1}) = ξ̂1({0, 1}) (B.4)

S12({0, 1}) =
2∑

k=1

ξ̂k({0, 1}) (B.5)

S13({0, 1}) =
3∑

k=1

ξ̂k({0, 1}) (B.6)

S23({0, 1}) =
3∑

k=2

ξ̂k({0, 1}) (B.7)

The omit cumulative sum operator S̃i, where the lower index i

indicates the indices from 1 to i that are omitted in the summation:

S̃i(0) =
M−1∑
k=i+1

ξ̂k(0) (B.8)

e.g. S̃0(0) =
M−1∑
k=1

ξ̂k(0) (B.9)

S̃1(0) =
M−1∑
k=2

ξ̂k(0) (B.10)

S̃2(0) =
M−1∑
k=3

ξ̂k(0) (B.11)

S̃3(0) =
M−1∑
k=4

ξ̂k(0) (B.12)
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In the derivations below, we will use the following identity fre-

quently:

S̃i(0)− S̃j(0) = S(i+1)j(0) (B.13)

The differential cost between cost Ci and cost Cj is defined as

δij = Ci − Cj (B.14)

For (B.1), since facility j is turned on, either one, two or three

other facilities are turned on:

φj(1) = max
ek,k 6=j

−C(e1, . . . , ej = 1, . . . , eM) +
∑
k 6=j

ξk(ek)

 (B.15)

= max

[
1 facility 2 facilities 3 facilities 4 facilities︷ ︸︸ ︷
−C1 + S̃0(0),

︷ ︸︸ ︷
−C2 + S11(1) + S̃1(0),

︷ ︸︸ ︷
−C3 + S12(1) + S̃2(0),

︷ ︸︸ ︷
−C4 + S13(1) + S̃3(0)

]
(B.16)

For (B.2), since facility j is turned off, either one, two or three

other facilities are turned on:

φj(0) = max
ek,k 6=j

−C(e1, . . . , ej = 0, . . . , eM) +
∑
k 6=j

ξk(ek)

 (B.17)

= max

[
1 facility 2 facilities 3 facilities 4 facilities︷ ︸︸ ︷

−C1 + S11(1) + S̃1(0),
︷ ︸︸ ︷
−C2 + S12(1) + S̃2(0),

︷ ︸︸ ︷
−C3 + S13(1) + S̃3(0),

︷ ︸︸ ︷
−C4 + S14(1) + S̃4(0)

]
(B.18)
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We change the order of evaluation in computing φj = φj(1)−φj(0)

by moving φ(0) into each term of φ(1).

Moving φj(0) into the first term of φj1:[
−C1 + S̃0(0)

]
− φj(0) (B.19)

= max


−S11(1) + S̃0(0)− S̃1(0)

(C2 − C1)− S12(1) + S̃0(0)− S̃2(0)

(C3 − C1)− S13(1) + S̃0(0)− S̃3(0)

(C4 − C1)− S14(1) + S̃0(0)− S̃4(0)

(B.20)

= max


−[S11(1)− S11(0)]

δ21 − [S12(1)− S12(0)]

δ31 − [S13(1)− S13(0)]

δ41 − [S14(1)− S14(0)]

(B.21)

= −max [S11, S12 − δ21, S13 − δ31, S14 − δ41] (B.22)
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Moving φj(0) into the second term of φj(1):[
−C2 + S11(1) + S̃1(0)

]
− φj(0) (B.23)

= max


−(C2 − C1)

S11(1)− S12(1) + S̃1(0)− S̃2(0)

(C3 − C2) + S11(1)− S13(1) + S̃1(0)− S̃3(0)

(C4 − C2) + S11(1)− S14(1) + S̃1(0)− S̃4(0)

(B.24)

= max


−δ21

−[S22(1)− S22(0)]

δ32 − [S23(1)− S23(0)]

δ42 − [S24(1)− S24(0)]

(B.25)

= −max [δ21, S22, S23 − δ32, S24 − δ42] (B.26)

Moving φj(0) into the third term of φj(1):[
−C3 + S12(1) + S̃2(0)

]
− φj(0) (B.27)

= max


−(C3 − C1) + S12(1)− S11(1) + S̃2(0)− S̃1(0)

−(C3 − C2)

S12(1)− S13(1) + S̃2(0)− S̃3(0)

(C4 − C3) + S12(1)− S14(1) + S̃2(0)− S̃4(0)

(B.28)

= max


−δ31 + [S22(1)− S22(0)]

−δ32

−[S33(1)− S33(0)]

δ43 − [S34(1)− S34(0)]

(B.29)

= −max [δ31 − S22, δ32, S33, S34 − δ43] (B.30)
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Moving φj(0) into the fourth term of φj(1):[
−C4 + S14(1) + S̃4(0)

]
− φj(0) (B.31)

= max


−(C4 − C1) + S13(1)− S11(1) + S̃3(0)− S̃1(0)

−(C4 − C2) + S13(1)− S12(1) + S̃3(0)− S̃2(0)

−(C4 − C3)

S13(1)− S14(1) + S̃3(0)− S̃4(0)

(B.32)

= max


−δ41 + [S23(1)− S23(0)]

−δ42 + [S33(1)− S33(0)]

−δ43

−[S44(1)− S44(0)]

(B.33)

= −max [δ41 − S23, δ42 − S33, δ43, S44] (B.34)

The φj message update can now be simplified as

φj = max



−max
[
ξ̂1, (ξ̂1 + ξ̂2)− δ21, (ξ̂1 + ξ̂2 + ξ̂3)− δ31, (ξ̂1 + ξ̂2 + ξ̂3 + ξ̂4)− δ41

]

−max
[
δ21, ξ̂2, (ξ̂2 + ξ̂3)− δ32, (ξ̂2 + ξ̂3 + ξ̂4)− δ42

]

−max
[
δ31 − ξ̂2, δ32, ξ̂3, (ξ̂3 + ξ̂4)− δ43

]

−max
[
δ41 − (ξ̂2 + ξ̂3), δ42 − ξ̂3, δ43, ξ̂4

]
(B.35)

The underlying pattern can be more easily discerned by discarding

147



the max symbols and presenting the various entries in a matrix:


S11 S12 − δ21 S13 − δ31 S14 − δ41

δ21 S22 S23 − δ32 S24 − δ42

δ31 − S22 δ32 S33 S34 − δ43

δ41 − S23 δ42 − S33 δ43 S44

 (B.36)

This pattern can be generalized to K facilities



S11 S12 − δ21 . . . . . . . . . . . . . . . S1K − δK1

δ21 S22 S23 − δ32 . . . . . . . . . . . . S2K − δK2

δ31 − S22 δ32 S33 S34 − δ43 . . . . . . . . . S3K − δK3

δ41 − S23 δ42 − S33 δ43 S44 . . . . . . . . . S4K − δK4

...
...

...
. . . . . . . . . . . . . . .

...
...

...
...

. . . . . . . . . . . .

...
...

...
...

...
. . . . . . . . .

δK1 − S2(K−1) δK2 − S3(K−1) . . . . . . . . . . . . δK(K−1) SKK


(B.37)

Message update for ξ

ξj(1) = µEj→ej(1)

= max
h:j

[
Ej(h:j, ej = 1) +

∑
i

ρij(hij)

]
(B.38)
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ξj(0) = µEj→ej(0)

= max
h:j

[
Ej(h:j, ej = 0) +

∑
i

ρij(hij)

]
(B.39)

=
∑
i

ρij(0), since facility j is not turned on (B.40)

ξj = ξj(1)− ξj(0) (B.41)

= max
h:j

[
Ej(h:j, ej = 1) +

∑
i

ρij(hij)

]
−
∑
i

ρij(0) (B.42)

= max
h:j

[
Ej(h:j, ej = 1) +

∑
i

ρij(hij)−
∑
i

ρij(0)

]
(B.43)

= ρkj +
∑
i6=k

max(0, ρij) (B.44)

since at least one facility must be turned on and k is the index of the

largest ρ value.

Since ej is turned on, one of the hij must be turned on as well,

otherwise the consistency constraint (3.7) is violated. The max oper-

ation is therefore taken over all combinations of hij, with at least one

of the hij’s set to 1. The one hij turned on can be readily identified

as the largest value in ρ, say ρk. The rest of the hij’s are turned on

only if the corresponding ρij values are non-negative
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For efficient Matlab implementation, ξj can be written as

ρkj +
∑
i6=k

max(0, ρij)

= ρkj −max(0, ρkj) +
∑
i

max(0, ρij) (B.45)

= min(0, ρkj) +
∑
i

max(0, ρij), (B.46)

using the relationship x−max(x, y) = min(0, x− y) (B.47)

Message update for α

The other message update that is affected by the global facility func-

tion and the subspace overlap bonus function is α.

αij(1) = max
hkj ,k 6=i

E(h1j, . . . , hij = 1, . . . , hNj, ej) +
∑
k 6=i

ρkj(hkj) + φj(ej)


(B.48)

=
∑
k 6=i

max
hkj

ρkj(hkj) + ωj(1) (B.49)
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αij(0) = max
hkj ,k 6=i

E(h1j, . . . , hij = 0, . . . , hNj, ej) +
∑
k 6=i

ρkj(hkj) + φj(ej)


(B.50)

= max

∑
k 6=i

max
hkj

ρkj(hkj) + φj(1),
∑
k 6=i

ρkj(0) + φj(0)


(B.51)

αij = αij(1)− αij(0) (B.52)

= min

0,
∑
k 6=i

max
hkj

ρkj(hkj) + φj(1)−
∑
k 6=i

ρkj(0)− φj(0)


(B.53)

= min

0,
∑
k 6=i

max(0, ρkj) + φj

 (B.54)
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Appendix C

Appendix: Simple prior free

method

In SPF, the data matrix is decomposed into a product of the motion

matrix and shape basis matrix

Ŵ =


R1S1

...

RFSF

 (C.1)

=


c11R1 . . . c1KR1

... . . . ...

cF1RF . . . cFKRF




B1
...

BK

 (C.2)

= ΠB (C.3)

Π ∈ R2F×3K is the motion matrix that contains the rotation matrices

scaled by the shape coefficients and B ∈ R3K×N is the shape basis.
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The idea behind the shape basis representation is that the 3D shape

in each frame can be expressed as a linear combination of the shape

basis. This can be expressed as

S(t) =
K∑
i=1

ci(t)Bi, t = 1, . . . , F (C.4)

where R3×3K 3 S(t) is the 3D shape in frame t, R3×N 3 Bi’s are the

shape bases, R 3 ci(t) is the coefficient associated with the ith shape

basis in frame t and K is the number of shape basis. The full 3D

shape representation in terms of the shape basis can be expressed as

S = (C ⊗ I3)B (C.5)

where RF×K 3 C is the shape coefficient matrix, ⊗ is the Kronecker

product, R3×3 3 I3 is the 3 × 3 identity matrix and B is the shape

basis matrix given in (C.3).

Note that each two consecutive rows of Π are the rows of the

same rotation matrix for the frame repeated K times, scaled by dif-

ferent shape basis coefficients. For example, the first two rows of Π

consist of R1 repeated K times but scaled by different shape basis

coefficients.

In SPF, the data matrix is first decomposed through SVD as Ŵ =

Π̂B̂. In the rectifying transform step, the orthogonality constraint is

written as
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Π̂2i−1QkΠ̂
T
2i−1 = Π̂2iQkΠ̂

T
2i (C.6)

Π̂2i−1QkΠ̂
T
2i = 0, i = 1 . . . F, k = 1 . . . K (C.7)

where R3K×3K 3 Qk = GkG
T
k and R3K×3 3 Gk is the kth column

triplet of G restoring the orthogonality constraint across all frames

Π̂Gk = cikRi, i = 1, . . . F, k = 1 . . . K (C.8)

Note that due to the structure of Π, only one such Gk column

triplet will be needed for the rectifying transformation, not the entire

G. SPF formulated the orthogonality constraint in terms of null

space representation

Aqk = 0 (C.9)

where R2F×9K2 3 A is constructed from Π̂ and R9K2 3 qk is derived by

vectorizing Qk. Based on this null space representation, SPF proves

the intersection theorem, that shows that Qk is positive definite and

at most rank 3. Previously, metric upgrading is achieved by solving

a system of homogeneous equations. With this intersection theorem,

metric upgrading is formulated as a rank minimization problem with

constraints. Using nuclear norm as the convex proxy, Qk is solved as

a convex optimization problem
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min
Qk

trace(Qk) (C.10)

s.t. Qk � 0 (C.11)

Aqk = 0

After solving for Qk, the rotation matrix of each frame Ri, i =

1 . . . F , can be recovered by scaling rows of Π̂2i−1:2iGk, i = 1 . . . F to

unit length.

The shape recovery part in SPF is more elaborate compared to

other methods. A key observation is that the shape structure ma-

trix S is at most rank 3K, where K is the number of shape basis.

Recovering S is similarly formulated as a rank minimization problem.

min
S

rank(S) (C.12)

s.t. Ŵ = RS

Aqk = 0

where

R =


R1

. . .

RF

 (C.13)

155



Using results from compressive sensing, S can be solved uniquely

by taking the pseudo-inverse of R

S = RT (RRT )−1Ŵ (C.14)

Further rank constraint can be imposed on S by re-arranging S

into

S# =


X11 . . . X1N Y11 . . . Y1N z11 . . . z1N

...
...

...
...

...
...

XF1 . . . XFN YF1 . . . YFN zF1 . . . zFN

 (C.15)

Since S# is at most rank K, we can further refine S by solving

the optimization problem

min
S#

rank(S#) (C.16)

s.t. Ŵ = RS

S# is a re-arrangement of S

Once again, SPF solves this NP-hard optimization problem by

using the well-known convex nuclear norm proxy.
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