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Summary 

Extensive long-range linkage disequilibrium within the MHC region, 

commonly termed as conserved extended haplotypes (CEHs), are known to 

occur at relatively high frequency in the general populations. CEHs have been 

of long interest not just because of their unique genomic traits but also 

because they are reported to be associated with several diseases. However 

due to the inherent heterogeneity of the MHC region and the limitation of the 

technologies, thus far, the handful of studies on the genomic structure of 

MHC CEHs have been restricted to the European population. This lack of 

comparative MHC CEH sequence information in other ethnic groups hampers 

the efforts to elucidate the structure and genomic organization of CEHs. 

In this study, the recombination patterns across the MHC region in 

three independent populations were examined. This analysis revealed 

population-specific recombination sites and these sites are seldom shared 

among populations, underlining the importance of recombination on haplotype 

diversity. Furthermore, from the SNPs analysis, I also uncovered two HLA 

haplotypes in the Singaporean Chinese population (A*33:03-B*58:01-

DR*03:01 and A*02:07-B*46:01-DR*09:01) with no or minimal recombination 

across the MHC region, suggesting CEH properties in these haplotypes. 

To have an in-depth genomic architecture on above two Singapore 

Chinese HLA haplotypes, multiple HLA homozygous B-LCLs were selected 

and subjected to whole genome sequencing.  The analysis of this data 

revealed two significant findings. Firstly, extensive sequence conservation 

spanning a region of at least 3Mb of the MHC genomic region was found 

among the individuals carrying identical HLA haplotype. In addition, the intra-

haplotypic variations within these CEHs were found to be exceptionally low 

comprising of approximate 0.008% of the MHC region. Novel single 

xii 
 



nucleotide variation (SNV) not reported in other databases were found in 

77/293 (26%) of A*33:03-B*58:01-DR*03:01 CEH and 50/238 (21%) of the 

A*02:07-B*46:01-DR*09:01 CEH. More importantly, SNVs found within the 

A*02:07-B*46:01-DR*09:01 CEH were associated with the expression of 

ZFP57, a transcription factor involved in DNA methylation maintenance; 

suggesting functional role in some of these polymorphic sites. The second 

major finding is that extreme sequence conservation extending up to 160kb at 

the HLA-DR region was found between the A*33:03-B*58:01-DR*03:01 

haplotype and the European A1-B8-DR3 haplotype; implying individuals 

carrying these two haplotypes shared a common ancestor. 

Next, the MHC transcription landscape of the Singaporean Chinese 

CEHs was also elucidated through RNA-sequencing. Interestingly, 

differences in gene expression between haplotypes affecting 26 genes were 

observed; this implies the influence of underlying MHC haplotypic structure on 

the transcription activity in the MHC region. Collectively, a comprehensive 

sequence and transcription description representative of the A*33:03-

B*58:01-DR*03:01 and A*02:07-B*46:01-DR*09:01 haplotype was provided 

and I had showed that haplotype-specific sequence variations mediate the 

level of gene expression in the MHC. The availability of these alternate Asian 

MHC sequences would complement the eight European MHC haplotype 

sequenced by the MHC Haplotype Project and provides a framework to study 

the MHC diversity and disease association studies. 
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1.1 Overview of the MHC 

The human major histocompatibility complex (MHC) was first identified 

more than 50 years ago by Jean Dausset, Jon van Rood and Rose Payne [1] 

and because the MHC molecules were first detected on the surface of the 

human leukocytes, the human MHC was later also known as the human 

leukocyte antigen (HLA) complex. In the beginning, it was studied due to its 

role on the donor-patient compatibility following tissue graft and organ 

transplantation [2, 3], it was later realized that the MHC is critical in adaptive 

and innate immunity.  

Decades of research has progressively established a remarkable genomic 

region on chromosome position 6p21.3 comprising of the HLA genes and the 

associative genes. This region is the most gene-dense region in the human 

genome holding more than 240 annotated genes, of which more than 60 have 

known or potential immune-related function [4, 5]. Furthermore, the extreme 

genetic variation within this region has a pivotal role in the disease 

susceptibility and indeed this four mega-base region has been reported to be 

associated with more than 100 diseases, including cancers, autoimmune 

diseases, infectious disease susceptibilities, neurodegenerative, 

cardiovascular, and metabolic disorders [6, 7]. In addition, the MHC region 

possesses unique genomic features offering an excellent model to study 

demographic events as well as to assess hypotheses pertaining to the 

dynamics of evolution [8, 9]. For these reasons, the MHC genomic 

architecture, diversity, gene expression and genetic interaction pathways 

have been studied intensively as frameworks for understanding the broader 

human genome. 
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1.2 MHC Gene Map and Organization 

The human MHC region of approximate 4.6 Mb on the short arm of 

chromosome 6 (chr6:29.50 – 33.10Mb) is broadly categorized into three 

major gene clusters – classical HLA class I, class II and class III (Figure 1.1) 

[4]. The HLA class I gene cluster spanning about 1.9Mb with a total of 26 

coding and pseudogene loci; comprises of the classical class I genes (HLA-A, 

-B and -C), the non-classical class I genes (HLA-F, -G and -E) and the class I 

resembling genes (MICA and MICB). The HLA class II gene cluster of 

approximate 0.9Mb in length with a total of 24 coding and 15 pseudogene 

loci;  comprises of the classical class II genes (HLA-DP, -DQ and -DR) and 

the non-classical class II genes (HLA-DM and –DO). Each of these class II 

genes are expressed as hetero-dimers consisting of the α and β chain. The 

class III region with a relatively short physical length of 0.7Mb, harbors more 

genes than the other two clusters and is the most gene-dense region in the 

human genome. Although this region does not encode any of the HLA genes, 

it holds several sub-gene clusters that are crucial to the immune system such 

as those involved in inflammation and immune regulation (Figure 1.2). There 

are also other major gene clusters that border the MHC region and 

collectively are known as the extended MHC region covering 7.6Mb [4]. 

These gene clusters include the histone cluster (chr6:25.72 – 27.81Mb), the 

zinc finger cluster (chr6:28.04 – 28.56Mb), the olfactory receptor cluster 

(chr6:29.00 – 29.56Mb) and the extended class II sub-region containing the 

transporter genes (chr6: 33.13 – 33.38Mb). 
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Figure 1.1 The human MHC region expressed genes. This region is 
divided into three major gene clusters: Classical HLA class I (blue), HLA class 
III (red) and HLA class II (green). This figure is adapted and modified from 
Trowsdale [7]. 
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Figure 1.2 A simplified gene map of MHC showing the immune related 
gene based on their functions. This figure is adapted from Traherne [10]. 
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1.3 MHC Diversity 

 

1.3.1 HLA Molecules Diversity 

Extreme sequence polymorphism is the hallmark of the HLA class I and 

class II genes. Since their initial discovery, hundreds of different variants of 

the genes or alleles has emerged and as of 2013, there are 9946 distinct HLA 

class I and class II alleles and amazingly new alleles are still being identified 

yearly, demonstrating the extreme variation found in these loci. With 3086 

alleles, the HLA-B gene is the most polymorphic gene in the human genome 

followed by the HLA-A gene with 2432 alleles (Figure 1.3) [11].  For HLA 

class I genes, the majority of the nucleotide differences are located in the 

exon 2 and 3; and in exon 2 of the HLA class II genes with the exception of 

HLA-DRA gene. These exons are responsible for the coding of the antigenic 

peptides binding domain, hence non-synonymous nucleotide changes leading 

to amino acid modification in this domain alter the HLA molecule antigenic 

peptides binding capability [12]. Most of the HLA genes nucleotide variations 

are found in the exonic region as described above; this is in contradictory to 

other functional genes in the human genome where most variants are located 

in the introns [13]. In addition, these variations are effect of germline 

mutations rather than somatic mutations.  
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Figure 1.3 Number of alleles identified for class I, class II and non-HLA 
genes as of October 2013. Data was extracted from IMGT/HLA database 
(http://ww.ebi.ac.uk/ipd/imgt/nomenclature/). 
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The ever-increasing number of new HLA alleles being discovered 

necessitates a standardized nomenclature for the naming of the alleles. The 

WHO Nomenclature Committee for Factors of the HLA system established a 

standard HLA allele specification where each HLA allele is denoted by its 

gene name and an asterisk; this is followed by a distinct identification of four 

sets of numbers delimited by colons. The first set of number defines the 

allotype; alleles that differ by nucleotide changes that alter the amino acid in 

the encoded protein are discriminated by the second set of numbers while 

alleles differ by synonymous nucleotide changes in the coding region are 

differentiated by the third set of numbers. The last set of numbers defined the 

changes in the non-coding region.  

 

1.3.2 Genetic Variation across the MHC Region 

Besides the need to characterize of the HLA gene variation, information 

on the sequence variability in the MHC region as a whole is equally important; 

and in particular is relevant in the context of MHC disease association as well 

as the genealogical relationship between individuals or ethnic groups. This 

endeavor was first taken upon by the MHC Haplotype Project which aims to 

define the common sequence differences within the MHC region for MHC 

disease susceptibility studies [14-16]. Using bacterial artificial chromosome 

cloning (BACs) and shotgun sequencing, these studies sequenced eight 

common MHC haplotypes of European ancestry established from HLA-

homozygous consanguineous B-lymphoblastoid cell lines and in the process 

characterized more than 37,000 single nucleotide variants and 7,000 short 

insertions/deletions. This extensive catalogue of variations enabled the 

establishment of linkage disequilibrium maps that facilitated the localization of 

susceptibility loci pertaining to multiple sclerosis and type I diabetes [17, 18]. 
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Subsequently, independent groups employed a variety of approaches such as 

targeted amplicons-based methods and a combination of targeted sequence 

enrichment and next-generation sequencing to interrogate the distribution of 

variation across the MHC region [19-21]. Despite these impressive efforts, the 

MHC sequences described to date are mostly reflective of the European 

population; thus more efforts are still needed to acquire an adequately sized 

reference MHC sequences for other ethnic groups. 

 

1.3.3 MHC Hyper-variable Regions 

Several genomic regions within the MHC have undergone repeated 

segmental duplications resulting in structural copy number variation; most 

notably the HLA-DR region and in the class III region that holds the 

complement component C4 gene. The HLA-DR hyper-variable region 

contains a variable number of functional and pseudo HLA-DRB genes that 

result in different alternative arrangements of the HLA-DRB genes 

(haplogroups) [22]. To date, five such haplogroups have been identified; each 

possessing a specific arrangement of the HLA-DRB genes (Figure 1.4). The 

boundaries of all the haplogroups are characterized by the HLA-DRA gene at 

the telomeric end and the HLA-DRB1 gene at the centromeric end and all the 

haplogroups possess the HLA-DRB9 pesudogene located adjacent to HLA-

DRA.  
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Figure 1.4 Five major HLA-DR haplogroups structure. Green boxes 
denote functional genes and blue boxes denote pseudogenes. This figure is 
adapted and modified from Marsh et al [23]. 
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Additional HLA-DR genes are positioned between the HLA-DRB9 and HLA-

DRB1; the arrangement, the number and the type of HLA-DRB genes in this 

segment are dependent on the haplogroups. Interestingly, through in-vitro 

and in-vivo studies, differential transcripts expression was observed between 

haplogroups in resting peripheral B cells and within the same haplogroup the 

different DRB genes had equivalent transcripts abundance [24, 25].  

However, the functional effect of having additional or lesser HLA-DRB 

gene(s) remains unclear. 

The other region with sophisticated segmental duplication is in the class 

III region is called the RCCX module, named for its gene content, comprises 

of the serine/threonine Kinase 19 (RP1), the complement component (C4), 

the cytochrome P450 (CYP21) and the tenascin X (TNX) gene map to the 

chromosome in a chronological manner.   Within the module, different 

variants of these genes can be presented; RP1 or RP2 (pseudogene), C4A or 

C4B, CYP21A or CYP21A1P (pseudogene) and TXNA (pseudogene) or 

TNXB [26]. The C4A and C4B can also exist in either long (C4L) or short 

(C4S) version which is differed by the presence or absence of the HERV-K 

endogenous retrovirus in the intron 9. Intriguingly, added to the complexity, a 

single chromosome can hold one to four copies of the RCCX module (Figure 

1.5) [26]. Population studies had revealed high frequency of heterozgosity in 

the RCCX module configuration [27] and this can drive unequal crossovers 

during meiosis resulting in the acquisition of deleterious mutations [28-30]. In 

fact, there is a strong association of the RCCX copy number variation with 

human systemic lupus erythematosus (SLE) where low RCCX copy number 

was linked to increase in SLE risk [31].     
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Figure 1.5 Organization of human RCCX modular variation. The C4 gene 
can either exist as C4A or C4B with either the presence (C4L) or absence 
(C4S) of the endogenous retrovirus HERV-K. Pseudogenes are presented in 
red. This figure is adapted from Sweeten et al [32]. 
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1.4 Haplotypes, Linkage Disequilibrium and Recombination 

High linkage disequilibrium (LD) is a distinctive feature of the MHC region. 

Indeed, inheritance of non-random association of HLA alleles at numerous 

loci was observed within the MHC [33, 34] and this leads to the concept of 

“polymorphic frozen blocks” where combination of identical block sequences 

are shared among individuals in populations commonly termed as haplotypes 

[35]. Strong LD is noted between HLA-A and HLA-B; HLA-B and HLA-C as 

well as HLA-DRB1 and HLA-DQB1 evidenced by the extremely low 

recombination rates between these loci [36].  In addition, there exists long 

conserved sequences across multiple HLA alleles spanning over several 

mega-bases that are observed at relatively high frequency within populations 

and is referred as “Conserved Extended Haplotypes” (CEH) or “Ancestral 

Haplotypes” [37]. These CEHs appear to account for 33% of the total 

European MHC haplotypes and majority of the population possess at least 

one of these CEHs or their recombinants [37-39].  Despite the proposal of 

numerous theories, the mechanism behind the CEHs formation and age of 

their divergence from a common ancestor remain ambiguous [10, 13]. 

Interestingly, many of these CEHs are reported to be associated to multiple 

complex diseases. This is best exemplified by the A1-B8-DR3 CEH found in 

the Northern European population which is remarkably associated with 

several diseases such as for type 1 diabetes, systemic lupus erythematosus, 

rheumatoid arthritis and IgA deficiency and various other diseases [40-42]. 
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Recombination within the MHC region plays an important role in 

maintaining the haplotype diversity in populations where the reshuffling of 

genomic segments leads to the generation of new haplotypes [43-45]. In the 

earlier years, the analysis of recombination activity in the human was 

restricted to pedigree studies [46]. Later, with the maturation of the sperm 

typing technique, enables screening of thousands of single sperms and this 

approach generated a high resolution MHC recombination map that 

definitively identified six recombination sites within the MHC [45, 47, 48]. 

However, due to the technical difficulties, such studies are limited in scale and 

are only male-specific. The advent of high density SNP genotyping assay 

allows the characterization of LD patterns which can be used to infer 

recombination events across the MHC region. Systematic analysis of the SNP 

genotype data from the European population revealed non uniform 

recombination and LD patterns across the MHC where regions of high LD are 

flanked by spikes in recombination activities [49-51]. In addition, these studies 

are able to confirm the recombination sites derived from the sperm typing 

experiments as well as detect novel recombination sites. A subsequent study 

went on to characterize the LD patterns in multiple populations and 

demonstrated that the MHC haplotypic structure is dependent on the 

underlying HLA allelic combinations [52]. On the whole, the current 

knowledge of MHC recombination pattern is derived from the LD structure 

analysis of admixed-population data and did not account for the background 

HLA allelic; hence recombination site in particular those specific to a single 

ethnic or population group could have been missed out. The availability of a 

comprehensive population-specific recombination and LD map can facilitate 

the mapping and localization of genetic segment associated with diseases in 

the MHC [53, 54]. 
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1.5 Immune Function 

The MHC molecules are essential components for the human immune 

surveillance. Both the MHC Class I and Class II molecules interact with 

antigenic peptides and present the peptides on the cell surface to CD8+ and 

CD4+ T cells respectively to initiate immune responses.  The MHC class I 

molecules are expressed in all nucleated cells and present intracellular 

peptides of length 8-15 amino acids that are processed by proteasomes [55] 

(Figure 1.6). Furthermore, the presented MHC class I molecule-peptides 

complexes serve as ligands for the inhibitory killer cell immunologobulin-like 

receptors (KIRs) on natural killers (NK) cells and KIRs interactions with the 

MHC class I complexes inhibit the activation of NK cells. Reduction in the 

MHC class I expression in malfunction cells such as viral infected and tumor 

cells result in NK cells activation and elimination of the malfunction cells [56].  

Unlike the MHC class I molecules which are expressed in most cells, the 

MHC class II molecules are predominantly expressed in professional antigen-

presenting cells such as the dendritic cells and marcophages.  MHC class II 

molecules bind to antigenic peptides generated from extracellular proteins 

processed by the endocytic pathway [55]. Cross-presentation is also possible 

where peptides derived from the endocytic pathway bind to the MHC class I 

molecules and are presented to CD8+ T cells [57]. It is well established that 

the MHC molecules can bind to a large repertoires of antigenic peptides 

within its peptide-binding groove [58].  
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Figure 1.6 Immune functions of genes within the MHC region. MHC class 
I and II genes as well as non-HLA genes such as TAP1, TAP2, PSMMB8/9, 
tapasin play key roles in the antigen progressing and presentation pathway. 
The MHC region also contains genes such the TNF and MICA/B that have 
crucial roles in the human immunity system. This figure is adapted from 
Trowsdale and Knight [12]. 
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Extreme polymorphism in these molecules especially in the peptide-binding 

groove ensure the broadest range of antigenic peptides to be recognized and 

hence protection against a variety of pathogens. It is interesting to note that 

the MHC alleles have overlapping peptide-binding specificities and this 

peptide-binding promiscuity is observed in alleles within each HLA gene as 

well as across alleles from different HLA genes [59-61]. 

Besides the MHC molecules, the MHC region also harbors many genes 

with important immune functions (Figure 1.6). Most notably is the set of genes 

that encode proteins involved in the antigen processing pathway. The TAP1 

and TAP2 genes located in the class II region encode the transporter protein 

responsible for the delivery of the peptides into the endoplasmic reticurlum 

(ER) where the peptides are loaded on the MHC class I molecules and the 

TAPBP encodes the tapasin protein which is a dedicated MHC class I 

molecules chaperone involved in the peptide loading process in the ER [62]. 

In additional, the PSMB9 and PSMB8 encode the components of the 

proteasomes responsible for the fragmentation of cytosolic and nuclear 

proteins into short length peptides. It appears that the clustering of these 

genes related by their functions facilitated the gene expression and genetic 

exchange between the linkage genes [10]. Another important set of genes is 

the stress response genes MICA and MICB. These highly polymorphic genes 

encode molecules that serve as ligands for NKG2D which is an activating 

receptor expressed in NK cells [63]. In events of stress, infection or during 

tumorgenesis, MICA/B are over expressed on the surface of many cell types 

and the binding of these molecules to NKG2D activate the NK cells leading to 

the cytoxic response to the MICA/B expressing cells [64]. There is also a 

cluster of genes in the class III region that are involved in inflammation in 
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particular the tumor necrosis factor (TNF) encoding gene. TNF is a 

proinflammatory cytokine involves in cellular and inflammatory reaction and it 

was reported that polymorphism in the TNF regulatory region influence the 

amount of TNF production which could affect inflammatory responses [65, 

66]. 

 

1.6 Maintenance of Genetic Diversity in the MHC 

The mechanisms that drive and maintain the extreme genetic polymorphism 

at the MHC loci have been an interesting field of study on its own especially in 

evolutionary biology. Due to the MHC’s importance role in pathogen 

resistance, it has been long suggested that pathogen mediated balancing 

selection is the driving factor behind the maintenance of MHC diversity [67, 

68]. Three main mechanisms of pathogen mediated balancing selection, 

supported by strong theoretical evidence, have been hypothesized; 

heterozygote advantage through over-dominance model [67], negative 

frequency-dependence [69] and fluctuating selection [70].  

The heterozygote advantage through over-dominance states that 

individuals who are heterozygous at the MHC loci have a boarder range of 

recognized non-self antigenic peptides and as the result has a greater fitness 

against pathogens than individuals who are homozyguous at the MHC loci. 

Hence to improve pathogen resistance, MHC diversity is maintained in the 

population [71]. Evidence through empirical means has demonstrated that 

optimize rather than maximize amount of MHC diversity provides the greatest 

fitness advantage [72, 73]. It was put forward that having overly high amount 

of MHC diversity might result in the restriction of T-cell variation because of 

the removal of T-cells that response to MHC molecule self-peptide complex 
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[74]. The second likely MHC diversity driving mechanism is called the 

negative frequency-dependence whereby pathogens undergo selection to 

evade the recognition of the most common MHC alleles in the population and 

hence these common alleles are selected against and decrease in frequency 

in the population; while the frequency of novel alleles that provide improved 

resistance to the pathogen increases [75]. As the old alleles become rare, the 

pathogens resistance against them is diminished and causes their frequency 

to rise again. This recurring co-evolutionary competition results in the 

frequency fluctuation of the pathogens and the MHC alleles; in the process 

sustaining the MHC diversity in the populations [69]. The third proposed 

mechanism is the fluctuating selection whereby the existence of different 

pathogen strains in different populations results in the selection of different 

subsets of MHC alleles across different time and/or space [70]. As opposed to 

the negative frequency-dependence, selection imposed by fluctuating 

selection is directional rather than cyclical and pathogen evolution is 

independent of the MHC selection [9].  Determining which mechanism as the 

dominant factor is difficult; it is more likely that these mechanisms operate in 

conjunction with each another in the maintenance of the MHC diversity [76]. 

Besides pathogen mediated balancing selection, HLA intra-locus and inter-

locus gene conversion via homologous recombination of short DNA fragment 

can contribute to the generation of the MHC diversity especially in the 

peptide-binding groove [77]. For instance, the HLA-B*46:01 allele is product 

of the inter-locus gene conversion of HLA-B*15:01 and HLA-C*01:02 allele 

[78]. Some of these newly generated alleles will establish in the population 

through genetic drift and selection.  

The above models discussed are all established to understand the 

evolutionary processes that give rise to the observed polymorphisms in a 
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single MHC locus and hence these models are unable to provide satisfactory 

explanation for HLA haplotype (multiple genes) diversity and the LD that 

creates this genetic fixation. To account for these, an alternate theory named 

associative balancing complex is proposed [79]. This theory states that 

deleterious nucleotide changes are accumulated in large genetic segments 

fixed by high LD (haploblocks) via the Muller’s ratchet mechanism. Due to the 

high gene density in these segments, the deleterious nucleotide changes are 

often expressed as heterozygotes; as result purifying selection is ineffective in 

clearing these deleterious nucleotide changes and recombination is 

suppressed. Thus, the deleterious nucleotide changes are fixed into the 

haploblocks and propagate through generations. 

 

1.7 Disease Associations in the MHC 

The MHC region is linked to many diseases including infectious, 

inflammation-related and autoimmune conditions. In fact, no other region in 

the human genome is associated with more diseases than the MHC region 

[40]. Many of the early disease associations in the MHC were identified 

through hypothesis-based candidate gene approach by studying the HLA 

genes [80]. The tight association of genes in the MHC region allows the HLA 

genes to be used as the focal point to detect disease association; however 

isolating the causative genes are challenging. The availability of high-

throughput single nucleotide polymorphisms (SNPs) enables the 

implementation of unbiased and hypothesis-free large-scale genome-wide 

association studies (GWAS). These GWAS studies detected the association 

of common genetic variants within the MHC region with a range of diseases 

and; to date, more than 100 MHC linked diseases have been identified and 
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replicated in independent works (Figure 1.7). It is noted a number of these 

diseases such multiple sclerosis [81], nasopharyngeal carcinoma [82] and 

rheumatoid arthritis [83] are implicated by multiple genetic variants across the 

MHC region, suggesting multiple MHC genes may contribute to the disease 

condition. This multiple gene effects on diseases is not surprising given that 

genes within the MHC region are functionally involved in the similar pathway 

or system.  

The prominent role of the MHC region in disease is without doubt; 

however establishing a direct genetic link between a MHC gene and a 

disease is problematic and is often confounded by at least three factors: the 

effects of multiple genes, high gene density and the extreme LD in the MHC 

region [12]. As the result, these prevent the unambiguous detection of 

disease causative variants in the MHC region The inability to identify disease-

causing variants hampers the efforts to understand how these variants or 

genes within the MHC region influence the underlying mechanism that leads 

to the disease progression and development. 
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Figure 1.7 Disease-associated SNPs in the MHC region identified through 
genome-wide association studies. Each blue circle denotes the position of the 
SNP and its corresponding P-value. The SNP-disease associations listed are 
limited to those with P-values < 1x10-5. The data was extracted from the 
NHGRI GWAS Catalog [84]. 
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1.7.1 Infectious Diseases 

Given that host response against viral infection depends heavily on HLA-

restricted T-cell response, it is not surprising that most infectious diseases are 

associated with the HLA loci. Indeed, it was found that resistance to viral 

infection is linked to the HLA loci polymorphisms; most notably in HIV 

whereby escape variants of HIV-1 generates peptides that avoid T-cell 

recognition [85, 86]. For instance, the association of HLA-B*35 subtypes are 

linked to rapid HIV disease development and it appears that HLA-B*35-

restricted HIV -1 variants evade CD8+ T cell recognition by affecting peptide 

binding as well as T-cell receptor interaction with the HLA complex [87]. Other 

than the influence the HLA loci polymorphism on viral infection, a variant at 

the 3’ end of HLA-C was found to be associated to low HIV-1 viral load. It was 

revealed that the change of nucleotide at this position allows the binding of a 

miRNA and causes the down-regulation of HLA-C expression [88]. 

Heterogeneity at the HLA loci can also influence the clearing of viral infection 

and mortality. Individuals who are heterozygous at the HLA alleles have 

advantage over those who are HLA homozygous in the outcome of infection 

which in principal HLA heterozygosity increases the viral peptide repertoire 

pool and response to infection [89, 90]. In hepatitis B viral infection, 

heterogeneity across the HLA class II loci was demonstrated to have more 

favorable disease outcome [91]. 

 

1.7.2 Autoimmune Diseases 

The MHC region is the major genetic risk contributor to most if not all 

autoimmune diseases [92-94]. GWAS studies have consistently revealed the 

associations of genetic variants within the MHC region in particular the HLA 
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loci with autoimmune diseases and often these associations present the 

highest statistical signal and have considerably greater effect sizes than other 

part of the human genome. Despite the abundance of genetic studies linking 

the MHC region to autoimmune diseases, the underlying mechanism behind 

the MHC association still remains ambiguous. It has been long proposed that 

the interaction of T cell receptor with a self-peptide MHC complex could 

trigger an autoimmune response; although there is little or no evidence to 

prove the identity of these self-peptides [7].  

Recently, large-scale studies with adequate statistical power revealed 

multiple independent associations within the MHC region in 7 prominent 

autoimmune diseases [95, 96]. These studies demonstrated that disease 

associations were not just restricted to the HLA class I and class II genes; but 

also possible independent contributions from non-HLA genes (Figure 1.8). 

For example, in systemic lupus erythematosus, in addition to the HLA genes, 

associations were found in TNF, C4 and Notch4 genes.  Furthermore, these 

studies were able to show the primary HLA alleles driving the association; 

HLA-DRB1*15:01/HLA-DRB1*03:01 in systemic lupus erythematosus and 

HLA-B*44:02/HLA-DRB1*15:01 in multiple sclerosis. Despite these 

progresses, the dissection of individual genes contribution for psoriasis 

remains elusive. Psoriasis was associated with a genomic segment 

containing HLA-C and it was reported that both the HLA-C*06:02 and the 

nearby C6orf10 were linked to the disease susceptibility [97, 98]. However 

due to the high gene density and LD in this region, the actual contribution of 

each loci remains unclear. 
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Figure 1.8 Location of loci linked to 7 autoimmune diseases across the 
MHC region. Primary signals associated with the disease are indicated in red 
while secondary signals are indicated as blue. Secondary signals are referred 
as independent association with P-value <0.001 that demonstrated pair-wise 
correlation <0.2 with the surrounding SNP loci after logistic regression 
analysis for the primary associations. This figure is adapted and modified 
from International MHC and Autoimmunity Genetics Network [96]. 
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1.7.3 Other Conditions 

Besides infectious and autoimmune diseases, other conditions such as 

cancers and drug-induced allergy conditions are implicated by genetic 

elements within the MHC region. Tumors development and progression are 

often linked to aberrations in genes involved antigen processing and 

presentation pathway [99]. It has been described that tumors in colorectal 

carcinoma, melamoma and cervical carcinoma alter the surface expression of 

HLA class I molecules to evade T-cells recognition [100-102]. In addition, 

defects in TAP either at the transcript or protein level resulting to the 

disruption of antigen processing pathway is found in several tumors [100, 

103, 104].   

Interestingly, several drug-induced acute reactions are associated with 

specific HLA alleles. Notably is the association of HLA-B*57:01 with sensitivity 

induced by abacavir as well as HLA-B*15:02 with Stevens-Johnson syndrome 

induced by carbamazepine [105, 106]. Recent developments have provided 

insights on the underlying mechanism that leads to the observed association. 

It was found that the abacavir drug molecule bound non-covalently into the 

peptide–binding groove of the HLA-B*57:01 molecule and changed its peptide 

binding specificity. This caused the binding of a novel set of self-peptides in 

the presence of abacavir to HLA-B*57:01 and the resulting to T cell reactivity 

[107]. Similarity, the binding of carbamazepine to HLA-B*15:02 altered its 

peptide repertoire and initiated T cell responses [108].   
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1.8 Epistasis 

The interrelated functions of the genes within the MHC region have 

brought about extensive active epistasis and this genetic interaction between 

multiple genes plays a significant role in shaping the patterns of LD. The 

knowledge of epistatic interaction between multiple genes is an important 

component for successful disease association studies. The DRB region, 

involving specific alleles of two genes in complete LD – HLA-DRB1*15:01 and 

HLA-DRB5*01:01, is reported to be a major candidate for multiple sclerosis 

susceptibility [109]. A subsequent study, demonstrated the presence of 

functional epistasis that lead to the complete LD observed between these 

alleles [110]. More importantly, this study showed the HLA-DRB5*01:01 

mediates the T-cell response initiated by the HLA-DRB1*15:01 and this 

epistatic interaction was linked to the less severe form of multiple sclerosis. 

Certain HLA allelic combinations, in particular the HLA class II region, are 

found at far higher frequency than the others in populations reflecting 

persistent selective pressure and such preferential allelic combination could 

be the effects of epistatic mechanism [111]. Interestingly, some of these 

haplotypes are associated to disease susceptibility such as the predisposition 

of the HLA-DRB1*04:01-DQA1*03:01-DQB1*03:02 haplotype to type 1 

diabetes and the HLA-B*57:01-C*06 to host control of HIV [112, 113].  

Besides the epistatic interaction between genes located within the MHC 

region; increasing there has been evidence for interaction of the HLA genes 

with genes outside of the region. Most notably is the association of HLA class 

I with the polymorphic KIR genes located on chromosome 19q13.4 whereby 

these genes encode activating and inhibitory receptors expressed on the NK 

cells.  Similar to the HLA loci, the diversity seen in the KIR genes is being 

maintained through pathogen mediated selection and specific HLA-KIR 
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combinations with NK activation properties are reported to confer resistance 

to infectious diseases [114]. For instance, the NK cells activations through the 

interactions of KIR3DL1 subtypes with HLA-B Bw4 alleles inhibit the HIV 

progression [115]. However, activating KIR-HLA pairings could also result in 

susceptibility to autoimmune diseases. Of prominence is the association of 

psoriasis with the HLA-C*06 alleles and KIR2DS1/KIR2DS2 [116, 117]. 

Overall, different KIR-HLA combinations give rise to variation in NK cells/T-

cells activation or inhibition; resulting in resistance and vulnerability against 

infection and autoimmunity. This KIR-HLA class I specificity is a classical 

example for genetic epistasis whereby the presence of genes encoding the 

specific alleles are essential for functional responses.   

 

1.9 Epigenetics 

To date, most of the MHC disease association studies are central on the 

differences in the nucleotide sequences; but in most cases how these 

sequence differences are mechanistically correlated to the disease is 

unresolved. The study of epigenetic in the MHC region could provide 

meaningful explanation to these associations given its importance to the 

regulation of gene expression. Indeed, it is now well-established that HLA 

class I and class II genes are regulated by epigenetic events [118].  With the 

exception of HLA-G, the HLA class I genes are regulated by a number of 

conserved promoter elements – enhancer A, interferon-stimulated response 

element (ISRE) and the SXY-module (Figure 1.9). Transcription factor 

nuclear-factor (NF)-kB binds to the enhancer A and interferon regulatory 

factor (IRF) family members binds to the ISRE; thus HLA locus specific 

sequence variation in the promoter region would induce differential activation 
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level among the HLA loci [119, 120]. The highly conserved SXY-module 

interacts with multiple transcription factors comprises of regulatory factor X 

(RFX), cyclic-AMP response element binding protein (CREB) and nuclear 

factor-Y (NF-Y) forming an enhanceosome that drive the genes transcription 

[121]. HLA-G, unlike other HLA class I loci, does not depend on the ISRE site 

for transcription regulation; instead it is regulated by CREB-1 and the 

transcription factor binding site is located further upstream (Figure 1.9) [122]. 

Under normal conditions, the expression of HLA-G is suppressed in most cell 

types other than trophoblast cells through chromatin remodeling via the 

transcription repressor Ras-responsive binding protein – 1(RREB-1) [123]. 

HLA-G expression is consistently found in tumor cells and thus it has been 

hypothesized that the expression HLA-G is a potential mechanism for the 

tumors to evade immunosurveillance [124, 125]. For the HLA class II genes, 

other than the presence of the SXY-module, their promoter region does not 

contain the enhancer A and ISRE (Figure 1.9). In fact, the transcription of 

HLA class II genes is controlled by the master activator class II transactivator 

(CIITA) [126]. In addition, the regulation of the class II genes is also 

associated with increase active histones modification and chromatin 

remodeling [127]. Other than the transcriptional regulation through cris-acting 

elements, it was found that the transcriptional insulator factor (CTCF) was 

involved in the class II expression through long-range chromatin interactions 

[128]. 
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Figure 1.9 An outline of the regulatory elements, transcription factors and 
epigenetic activities mediating the expression of HLA class I and class II 
genes. With the exception of HLA-G, all genes shared the SXY-module in the 
gene promoter region and interact with the enchanceosome complex to 
regulate the transcription of the genes. This figure is adapted from van den 
Elsen [118]. 
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1.10 Genomic Modulators of Genes within MHC Region 

GWAS has successfully identified an abundance of new disease 

associated genomic loci in the MHC region that previously are undetectable 

using the traditional genomic approaches. However, in most cases, the exact 

location of the functional disease causative variants and how these 

polymorphisms affect gene expression leading to the observed disease 

phenotype remain unknown [129]. In addition, a number of these GWAS 

identified loci are found in the non-coding region and hence suggesting 

possible role in regulation of gene expression. Expression quantitative-trait 

mapping (eQTL) is one powerful tool to study the impact of sequence 

polymorphisms on transcription regulation. Indeed, many eQTL studies have 

showed strong associations in the MHC region [130-132]. More significantly, 

a recent study has demonstrated a HIV-1 control linked SNP located 35kb 

upstream of HLA-C is associated with differential HLA-C expression and it is 

later revealed that another variant linked to this SNP located at the HLA-C 

3’UTR mediates the binding of a microRNA resulting to variation in HLA-C 

expression [88, 133]. However, caution needs to be taken when analyzing 

eQTL associations in the MHC region. This is because conventional 

expression microarray is unable to fully account for the extreme 

polymorphism in MHC region and hence this may result in spurious eQTL 

associations. Nevertheless, these imply the effect of individual variations in 

the MHC in the mediation of the immune-related processes and responses. 
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1.11 Objectives of Thesis 

Several decades of research on the MHC region has outlined its genomic 

landscape providing extensive understanding to its gene organization, the 

linkage disequilibrium and haplotype structure. Indeed, important knowledge 

is gained in terms of its roles in the immune system, the nature and 

consequences of the extreme genetic polymorphisms in the region and its 

implication to numerous diseases. Despite the progress made, there is still a 

lack of understanding in (1) the biological and evolutionary mechanism driving 

the extreme genetic polymorphisms in the region, (2) the location of genetic 

variation with functional significance and (3) the underlying mechanism 

behind the numerous disease associations. The availability of MHC sequence 

information, in particular the structure and genomic organization of CEHs, is 

an essential resource to provide insights on above mention issues. 

1.11.1 Key Objectives 

1. Evaluate recombination profiles of HLA haplotypes from three distinct 

population groups and identify population-specific recombination sites. 

2. Determine the presence of conserved extended haplotypes (CEHs) in 

the Singaporean Chinese population. 

3. Establish an Asian reference MHC haplotype sequences. 

4. Examine multiple MHC CEH sequences with identical haplotype 

profile to explore the scope of intra-haplotypic conservation and 

variation. 

5. Determine the functional significance of intra-haplotypic variation. 

6. Determine the effect of haplotype sequence variations on the 

transcription activity within the MHC region.   
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2.1 Subjects and HLA Sequence-based Typing 

Peripheral blood mononuclear cells (PBMCs) were obtained with prior 

consent from 247 healthy Singaporean Chinese blood donors. Of these 211 

are unrelated individuals while 36 are from comprising members of family 

trios. The genomic DNA of this collection was kindly prepared and extracted 

by a previous post graduate student, Chia Jer-Ming. Subsequently, B-

lymphoblastoid cell lines (B-LCLs) were established from whole blood 

obtained from subjects who are HLA homozygous and the B-LCLs were 

prepared through in-vitro Epstein-Barr virus infection of the B-lymphocytes. 

The establishment of BLCLs were kindly performed and provided by WHO 

Immunology Center, National University of Singapore, Singapore. The two 

European B-LCLs - COX and QBL were purchased from the Research Cell 

Bank, Fred Hutchinson Research Centre, Seattle, WA. 

The HLA allelic type at HLA-A, -B, -C and –DRB1 loci of these 

Singaporean Chinese subjects were obtained from Yu et al [134].  This study 

used a sequence-based approach to interrogate the HLA allelic type. Briefly, 

the hyper-variable exons 2 and 3 of the HLA-A, -B, -C genes were examined 

by PCR amplification using specific primers, followed by direct DNA 

sequencing of the PCR products in the opposite directions. HLA-DRB1 was 

sequenced and typed as previously described [135]. Purified PCR products 

were sequenced using the ABI BigDye Terminator v3.1 chemistry run on an 

ABI Prism 3100 Genetic Analyser (Applied Biosystems, USA). Excess dye 

terminators were removed by purification using an ethanol/EDTA/sodium 

acetate precipitation protocol.    
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2.2 HLA Homozygous Cell Lines Culture and Treatment 

Under sterile conditions, frozen B58AL, B58SC, B58CF, B46BM, B46ZS, 

B46CM, COX and QBL B-LCLs were thawed in 37°C water bath and re-

suspended in 11ml of Roswell Park Memorial Institute medium supplemented 

with 10% Fetal Bovine Serum (RPMI/10%-FBS). Subsequently, centrifugation 

was performed at 800rpm for 5min and the resultant cell pellets were re-

suspended in 8ml RPMI/10%-FBS and moved into 25ml culture flasks. The 

cell cultures were then maintained at 37°C in a humidified incubator with 5% 

carbon dioxide in atmospheric air. When the cell confluency reached 85-

100%, the cell medium was changed and 2/3 of the cells were transferred to 

75ml culture flask and maintained at 37°C in humidified incubator with 5% 

carbon dioxide in atmospheric air. This process would be repeated till the 

number of cells required for experiments were attained. 

At the 5th passage, for each B-LCL, the cells were collected and counted 

at approximate 1 X 106 cells per ml. The cells of each B-LCL were then 

seeded in 6-wells plate and stimulated with 200nm phorbol 12-myristate 13 

acetate (PMA, Sigma) and 125nM ionomycin; equivalent amount of dimethyl 

sulfoxide (DMSO, Sigma) were added to unstimulated cell cultures to act as 

controls. Following, the cells were incubated for six hours in humidified 

incubator with 5% carbon dioxide in atmospheric air. After six hours, the 

culture were collected and pelleted down by centrifugation at 1000 rpm for 

5min, 4°C. 1.5ml of supernatant was then transferred to 2ml eppendorf tubes 

and stored at -80°C for the ELISA experiment while the remaining 

supernatant was discarded. Cell pellets were then re-suspended in 500ul of 

phosphate buffered saline (PBS); transferred to 1.5ml eppendorf tubes and 

centrifuged at 1000 rpm for 5min, 4°C. The supernatant was removed and the 

resultant cell pellets were stored in -80°C for subsequent RNA extraction. 
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2.3 DNA and RNA Extraction 

Genomic DNA was isolated from the cell pellets of B58AL, B58SC, 

B58CF, B46BM, B46ZS and B46CM BLCLs using the QIAGEN® DNeasy 

Blood and Tissue Kit; following the manufacturer’s protocol. Extracted 

DNA was elute in 200ul of 10mM Tris-Cl/0.5mM EDTA (AE buffer) and stored 

at -20°C. 

For the purpose of whole genome sequencing, high DNA quality and 

accurate quantification are important to achieve favorable sequencing results. 

To ensure these, gel electrophoresis run on a 0.8% agarose gel was 

performed to detect DNA degradation. The gel electrophoresis showed 

relatively tight band for the DNA of every cell line indicating that there was no 

or little degradation (Figure 2.1). The DNA quantification was performed using 

the Picogreen assay. Briefly, the quantification assay first requires the 

establishment of a 6-points DNA standard curve with concentration range 

from 0 to 10ng/ul of λ-DNA (Invitrogen, USA). DNA standards were generated 

from the 10X serial dilution of the 10ng/ul of λ-DNA working solution with the 

10mM Tris-Cl/1mM EDTA (TE buffer) and 10ul of the DNA standards was 

pipetted into a 96-well full skirted black plate.  
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Figure 2.1 Gel electrophoresis with 20ng of DNA per lane on 0.8% 
agarose gel. The result indicates no or little DNA degradation. 
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Next, 100ul of 1X Picogreen (Invitrogen, USA) was then pipetted into 

each well and incubated at room temperature for 5 mins followed by 

centrifugation at 1000rpm for 30sec. Flurorescene output emitted from the 

interaction between the double-stranded DNA and Picogreen was measured 

using the Tecan Genios fluorescence reader (Tecan, Switzerland) and the 

fluorescence readings for the DNA standards were used to construct a 

standard curve. Lastly, using the same protocol, the concentration of the DNA 

samples were inferred by comparing their fluorescence readings against the 

standard curve. Overall, we were able to obtained at least 15ug of DNA for all 

the samples. 

Total RNA was extracted and purified using the RNeasy Mini Kit (Qiagen, 

Germany); following the manufacturer’s protocol. During the purification, 

additional steps for DNA digestion using the On-column DNase digestion kit 

(Qiagen, Germany) were included to ensure high quality RNA. The quality 

and quantity of the purified RNA were determined using the ND-1000 

Nanodrop spectrophotometer (Thermo Fisher Scientific, USA) and we were 

able to obtained at least 15ug of good quality total RNA for each sample to be 

used for RNA-sequencing. 

 

2.4 Enzyme-linked Immunosorbent Assay (ELISA) Experiment 

The amount of TNF-alpha and IL6 in the supernatant collected after six 

hours of PMA and ionomycin stimulated were determined by using the human 

TNF-alpha and IL6 Quantikine ELISA kits (R&D Systems). Briefly, samples 

were (200ul for TNF-alpha; 100ul for IL6) loaded in triplicates into the plate 

coated with mouse monoclonal antibody against the proteins together with the 
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assay diluent (buffered protein base with preservatives) provided, incubated 

for 2 hours and 1 hours at room temperature respectively and followed by the 

addition of the respective protein conjugate for additional 2 hour incubation at 

room temperature. The ELISA reaction was then detected by the additional of 

200ul of substrate solution (lyophilized NADPH with stabilizers) per well and 

incubated for 30min at room temperature in dark followed by the addition of 

50ul stop solution (2N sulfuric acid). The absorbance level was measured at 

450nm using the Infinite® 200 PRO plate reader (Tecan, Switzerland).  

The pates were washed five times with the washing buffer (1X buffered 

surfactant) after each step. The standard curve was established by an 8-

points serial dilution of 1X calibrator diluent to be used as a reference for 

quantification.    

 

2.5 RT-qPCR for ZFP57 Expression Quantification 

cDNA was generated using Maxima® First Strand cDNA Synthesis Kit 

(Thermo Fisher Scientific) as per manufacturer’s instruction using 1ug of total 

RNA as template. The reaction mixture comprised of 4ul of 5X reaction mix 

(reaction buffer, dNTPs, oligo dTs and random hexamer primers), 2ul of 

maxima enzyme mix (reverse transcriptase and RNase inhibitor), 1ug of total 

RNA and top up with nuclease-free water to 20ul. This was then incubated for 

10min at 25°C and followed by 15 mins at 50°C and at 85°C for 5 mins to 

terminate the reaction. The resultant cDNA was diluted 10 times with 

RNase/Dnase free water and stored at -20°C for subsequent use. 

qPCR by KAPA SYBR® FAST Roche LightCycler® 480 2X qPCR Master 

Mix  (Kapa Biosystems, Woburn, MA) was performed with triplicates for each 

of the two biological replicates on the Roche LightCycler® 480 System 
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(Roche Applied Science). The reaction mixture consisted of 5ul Sybr green, 

0.5ul of combined forward and reverse primer (2ng), 2ul of cDNA and 2.5ul of 

nuclease-free water. The qPCR cycling conditions were set at 95°C for 10 

mins, 45 cycles of [95°C for 10 secs; 60°C for 10 seconds; 72°C for 10 

seconds] and followed by 95°C for 60 seconds. Ct values calculation using 

the second derivative maximum method and melting curve analysis were 

carried out with gene-specific primer pairs. The ZFP57 expression was 

normalized to Hypoxanthine Phosphoribosyltransferase 1 (HPRT1) and 

determined using the ΔCt method.   Primer pair sequences for the respective 

genes are showed in Table 2.1. 

 

 

 

 

 

Table 2.1 Primer sequences for ZFP57 and HPRT1 gene. 

Gene Forward Primer Reverse Primer 

ZFP57 TGAGGATGTGGCAGTGAATTT GTGTTTGGGAGATGGACAAAC 

HPRT1 GTAATGACCAGTCAACAGGGGAC CCAGCAAGCTTGCGACCTTGACCA 
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2.6 Elucidation of RCCX Copy Number Variations (CNV) in the Cell 

Lines 

The assay used to determine the RCCX modular duplication in each cell 

line was based on and developed from a modified version of the real-time 

PCR assay as previously described in Wu et al [136]. This modified version 

used SYBR Green chemistry instead of Taqman chemistry to measure the 

level of mRNA. Primers specific for C4A, C4B, long C4 (C4L), short C4 (C4S) 

were designed to resolve the RCCX modular duplication (Table 2.2). The 

difference between C4L and C4S is the insertion of the endogenous retrovirus 

HERV-K segment between exon 9 and exon 10. As such the amplicons for 

C4L and C4S shared a common forward primer, and their reverse primers 

were designed to differentiate between the long and short C4 gene (Figure 

2.2). In addition, the copy number of the TNXA gene, which equals to the 

number of RCCX modules minus 2, was also interrogated. The assignment 

for the number of copies of each targeted gene involved two calibration steps. 

The first calibration step was a quantitative real-time PCR endogenous 

control using the RP1 gene, which is positioned upstream of the RCCX 

module and always present as 1 copy per chromosome.  Quantified levels of 

target genes were compared to levels of RP1 in order to obtain relative copy 

numbers of target genes. However, in this approach, there is an intrinsic 

underestimation of the targeted gene copy number. To correct for this 

underestimation, a second calibration step was performed. A calibrated plot 

created from 13 reference human cell lines (COX, QBL, MOU, PGF, SSTO, 

DBB, WT51, MADURA, CB6B, WT8, DAUDI, MANIKA and HOM) with known 

RCCX modular number was used to unambiguously assign the targeted gene 

copy number (Table 2.3).  
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The genomic DNAs of these reference cell lines were purchased from the 

Research Cell Bank, Fred Hutchinson Research Centre, Seattle, WA.  For 

each sample, the number of copies of (C4A + C4B)/2, (C4L + C4S)/2, and 

(TNXA + 2)/2 were the same, acting as an internal validation. 

 

 

 

 

 

 

Table 2.2  Primer sequences to determine the copy numbers of the C4A, 
C4B, C4 long, C4 short, TNXA and RP1 genes.  

Gene  Forward Primer Reverse Primer 

C4A CCTTTGTGTTGAAGGTCCTGAGTT TCCTGTCTAACACTGGACAGGGGT 

C4B TGCAGGAGACATCTAACTGGCTTCT CATGCTCCTATGTATCACTGGAGAGA 

C4L TTGCTCGTTCTGCTCATTCCTT GTTGAGGCTGGTCCCCAACA 

C4S TTGCTCGTTCTGCTCATTCCTT GGCGCAGGCTGCTGTATT 

TNXA TCCTGCAGTCATCTTTGTCTTCAG GAGCTGCAGATGGGATACCTTTAA 

RP1 GACCAAATGACACAGACCTTTGG GACTTTGGTTGGTTCCACAAGTC 
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Figure 2.2 Verification of the copy numbers of C4L and C4S genes. An 
insertion of the endogenous retrovirus HERV-K segment is found in C4L but 
not C4S. To differentiate the two genes, the reverse primer for the C4L 
amplicon targets the 5’ sequence specific to HERV-K (red) while the reverse 
primer for the C4S amplicon targets the upstream sequence of exon 10 
specific to C4S gene (blue).  
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Table 2.3 RCCX modular structure in 13 reference human cell lines to 
establish the calibration plot. 

Cell line  RCCX Structure C4A C4B C4L C4S TNXA 

COX 
Monomodular  

0 2 0 2 0 
QBL 2 0 2 0 0 
MOU 0 2 2 0 0 
PGF 

Bimodular  

2 2 4 0 2 
SSTO 2 2 4 0 2 
DBB 2 1 2 2 2 
WT51 4 0 4 0 2 
MADURA 2 2 0 4 2 
CB6B Quadrimodular  4 4 6 2 6 
WT8 

Heterozygous 

1 2 3 0 1 
DAUDI 2 1 2 1 1 
MANIKA 2 3 2 3 3 
HOM 3 2 4 1 3 
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2.7 SNP Genotyping and Selection 

SNPs interrogation of MHC region in the Singapore Chinese (CHSG) 

population was performed on the Illumina GoldenGate MHC Panel platform 

(Illumina, USA). This platform was designed examine the genotype of 2360 

SNPs residing in the MHC genomic region from chr6:28.97 – 33.88Mb. The 

SNP coordinates were mapped to the Human Reference Sequence Assembly 

36.1 (NCBI 36.1). Genotyping results were filtered using the following criteria: 

SNP loci deviating from Hardy Weinberg equilibrium using a Fisher’s exact 

test at a significance level of 0.001; SNPs loci with a call rate of less than 

95% and SNP loci with a minor allele frequency of less than 5% were 

discarded. In addition, for familial data, SNP genotypes that were discordant 

with the parental structure in more than one family were discarded. After the 

quality control checks, 1877 SNP loci were left for further analysis. 

Genomic DNA of the six samples (B58AL, B58SC, B58CF, B46ZS, 

B46BM and B46CM) was subjected to genome-wide SNP genotyping using 

the Illumina Human 1M-Duo BeadChip Kit (Illumina, USA). The genotype 

profiles of 1,169,675 SNPs across the entire human genome were 

interrogated. The SNPs coordinates were mapped to the Human Reference 

Sequence Assembly 37.2 (NCBI build 37.2), and all samples had overall call 

rates of more than 95%. SNP loci that were not called in any of the samples 

or that deviated from Hardy Weinberg equilibrium at a significance level of 

0.001 were not included in the downstream analysis.  
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Genotype data consisting of 30 European (CEU) trios and 30 Yoruban (YRI) 

trios were obtained from the HapMap phase II collection [137]. SNPs 

genotype data within the MHC region interrogated by the Illumina GoldenGate 

assay were selected and subjected to the screening procedure as described 

above. A total of 1360 common SNPs loci found across the CEU, YRI and 

CHSG populations were chosen for further downstream analysis.  

 

2.8 Haplotype Inference 

Haplotype inference was carried out using a Bayesian-based approach 

implemented in PHASE 2.1 [138, 139]. This approach computes the posterior 

distribution of unknown haplotypes based on the observed SNPs genotype to 

estimates the expected haplotype structures found in the sample population 

(prior information). This prior information is estimated using the coalescent-

based model where recent haplotypes are derived from the ancestor 

haplotypes through recombination and mutation; as these events are 

relatively rare over short genetic distances, new haplotypes will resemblance 

to one of the observed haplotypes in the population [140]. Haplotypes for 

each individual is then inferred by selecting the most probable haplotype from 

the posterior distribution. Among the population-based haplotype inference 

algorithm, PHASE 2.1 is considered as the benchmark for haplotype phasing 

[141] and hence was selected. To ensure maximum accuracy, several factors 

that influence phasing accuracy [142] were taken into consideration. Rare 

SNP loci which are computationally difficult to resolve, would not be 

considered and in addition, the phasing procedure for each population group 

was performed independently to preserve the ethnic relatedness. For the 

Singapore Chinese population, the haplotype inference was performed in 2 
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stages. First stage involved the phasing of 12 family trios to attain 48 distinct 

phase unambiguous haplotypes. Second, this set would serve as “known 

haplotypes” to aid the haplotype inference for the 211 unrelated individuals. 

Each of the HLA alleles was represented by unique digit and the haplotype 

information was resolved together with the SNPs. The HapMap populations 

HLA-A, -B and –C typing were attained from  [143] and phased together with 

the selected SNPs. 

 

2.9 Extended Haplotype Homozygosity (EHH) and Recombination 

Analysis 

EHH analysis was performed to assess the level of LD decay across a 

sample of haplotypes tagged with their respective HLA alleles. Essentially, 

EHH calculated at a position x is defined as the probability that 2 

chromosomes, carrying an allele (or haplotype) of interest at an anchor locus, 

have identical SNPs sequence from defined core locus to the position x [144].  

In the context of this project, this core locus is described by the HLA allele of 

the haplotype.     

 

 

 

 

 

 

 

47 
 



The EHH of a selected core locus t is computed as the following: 

𝐸𝐻𝐻𝑡 =
∑ �𝑒𝑡𝑖2 �
𝑆
𝑖=1

�𝑐𝑡2 �
�     

c is the number of haplotypes of a particular HLA allele 

e is the number of total number of haplotypes 

s is the number of haplotypes with a unique SNPs sequence 

 

A constant EHH value indicates the transmission of a haplotype without 

recombination. Hence, probable recombination sites were scored when either 

EHH decay is observed in 2 or more HLA haplotypes across the SNPs 

interval or when at least 10% of a single HLA haplotype diverged from the 

core haplotype. 

The historical recombination rates for HLA chromosomal SNPs 

haplotypes were estimated using the program LDHat [145]. LDHat 

implements a coalescent-based approach that accounts for the patterns of 

genetic variation and observed linkage disequilibrium to infer recombination. 

The estimate was performed with a block penalty of 5 and 10,000,000 

iterations. LDHat presents the population-scaled recombination rates ρ, 

hence to obtain the per-generation recombination rates r (cM/Mb), the 

following equation was applied. 

𝑟 = 𝜌
4𝑁𝑒�     

Ne is the effective population size and was set at 10,000 [146-148] 
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2.10 Runs Of Homozygosity (ROH) and Identity-By-Descent (IDB) 

Analysis 

The genomic region in chromosome 6 from 25MB to 35MB covering the 

extended MHC region was selected and screened for Runs Of Homozygosity 

(ROH) segment analysis. The ROH analysis was implemented by an 

algorithm in the PLINK package [149] with the following parameters - sliding 

window size : 50kb, minimum length for ROH segment : 1000kb, number of 

heterozygotes genotype call allowed in a window : 3 and maximum distance 

between adjacent SNPs in order to be considered in a segment : 50kb. The 

genotype data of B58AL, B58SC, B58CF, B46ZS, B46BM and B46CM 

assayed from Illumina Human 1M-Duo BeadChip were used for ROH 

analysis. In total, 10215 SNPs markers were found within the genomic region 

of interest and were used for the ROH analysis. 

Similarly genotype information of the six cell lines from the Illumina 

Human 1M-Duo BeadChip was used for the Identity-By-Descent (IBD) 

analysis. 96,387 independent SNPs not in linkage disequilibrium with one 

another were randomly selected from the genome-wide SNPs data and were 

used to test for IBD among the samples. The PLINK package was used to 

estimate the following IBD parameters in each sample pair: probability of 

genetic markers sharing 0 allele (IBD=0), probability of genetic markers 

sharing 1 allele (IBD=1) and probability of genetic markers sharing 2 alleles 

(IBD=2). Therefore, high values of IBD=1 and IBD=2 would denotes high 

degree of relatedness between 2 individuals while high value of IBD=0 

denotes otherwise. 
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2.11 Genome Sequencing 

The genomic DNA extracted from B58AL, B58SC, B58CF, B46BM, 

B46ZS and B46CM BLCLs was subjected to whole genome sequencing using 

the next generation technology implemented by Complete Genomics 

(Mountain View, CA, USA). The sequencing was performed using Complete 

Genomics (CG) proprietary sequencing instruments and technology [150]. 

Briefly, the CG sequencing technology called DNA nanoball sequencing 

involves the searing of the isolated DNA into approximately 500bp genomic 

fragments; the insertion of four synthetic adaptor sequences into each 

fragment followed by the circulation of the fragments to generate 70-base 

reads (35-base pair-end reads). Each of these circular reads is then amplified 

into a head to tail concatemer resulting in a long single-strand DNA. This 

single-stranded DNA are folded in a nanoball and captured by a microarray 

sequencing flow cell. The sequencing assay called combinatorial probe-

anchor ligation (cPAL) chemistry is carried out where independent non-

iterative sequencing reactions interrogate the nucleotide profiles of the DNA 

through the ligation of fluorescent probes to the DNA. There are several 

advantages of the CG technologies over approaches that employed 

sequencing by hybridization method. Firstly is the ability to interrogate simple 

repeats. Secondly, the independent non-iterative sequencing reaction 

minimizes the accumulation of sequencing errors and provides superior fault 

tolerance. Lastly, the cPAL approach enable massive parallel base reading in 

a single cycle and therefore reduces the consumption of reagents and 

sequencing time.  
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The CG proprietary bioinformatics pipeline was used to map and assemble 

the genome [151] and the reads were aligned to the Human Reference 

Sequence Assembly 37.2 (NCBI build 37.2). Using a combination of Bayesian 

and de Brujin graphed-based approaches, the CG assembler is able to 

annotate SNPs, short insertion/deletions and block substitutions. The variants 

called were annotated against a variety of public databases - NCBI gene 

annotation Build 37.2, dbSNP build 137, catalogue of somatic mutations in 

cancer v61 (COSMIC) and miRBase version 19 and Data of Genomic 

Variants version 9 (DGV). 

 

2.12 MHC Haplotype Variation Classification and Comparison 

For intra-haplotype comparisons, only nucleotides at positions with high 

quality score metric generated from the CG assembly protocols were 

considered for comparison; nucleotide at positions with low confidence score 

were considered as an ambiguous call and would not be used for 

comparison. Consensus sequence for each of the two Asian MHC haplotypes 

was established by evaluating the samples sequences. For each haplotype, 

the 3 genomes available were each divided into two haploid chromosomes, 

and the 6 resulting haploid chromosomes were then compared.  If 2 or more 

chromosomes had ambiguous or low confidence calls at a position, it was no-

called (N) in the consensus sequence.  A variant was called if two or more 

haploid chromosomes showed an alternate nucleotide call.  
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To compare the two Asian haplotypes against the eight European MHC 

haplotypes sequenced by the MHC Haplotype Project, BED files of the eight 

European MHC haplotypes [14-16] were downloaded 

from http://www.ucl.ac.uk/cancer/medical-genomics/mhc/#HaplotypeData and 

the coordinates of these BED files were aligned to the Human Reference 

Sequence Assembly 37.2 (NCBI build 37.2). Genetic variants found between 

the MHC haplotypes were annotated using the annovar software [152]. 

Construction of the consensus sequences as well as the intra and inter-

haplotype comparisons were performed using in-house generated R-scripts. 

 

2.13 Assessment of Sequencing Accuracy 

To assess the discordant in the nucleotide calls generated from the CG 

platform and the SNPs genotyping platform, a total of 48 nucleotide positions 

were selected for PCR re-sequencing. Primer pairs to assess the variant of 

interest were designed using NCBI Primer-BLAST and checked against 

Human Reference Sequence Assembly 37.2 (NCBI build 37.2). Only primer 

pair’s sequences matching to the sequence of the samples were selected. 

This cross-checking of primer sequences with the sample genomes was 

performed using in-house written R-scripts. The sequences of these primer 

pairs and the location of the variants can be found in Table 2.4. The PCR 

reactions were carried out in volume of 20ul reaction mixture comprising of 

2ul of 10X buffer (100mM Tris-HCl and 500mM KCl), 2.4ul of 25mM MgCl2, 

1ul of 2.5mM dNTPs, 0.2ul of Hi Fidelity Taq DNA polymerase (Roche 

Applied Science, Germany), 3ul of 2ug forward primer, 3ul of 2ug reverse 

primer, 3.4ul of nuclease-free water and 5ul of 20ng DNA template.  
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Table 2.4 Re-sequencing experiments to assess mismatches between 
SNP genotyping and CG sequencing platform in cell lines carrying A33-B58-
DR3 and A2-B46-DR9. Ta: annealing temperature. 

A33-B58-DR3 
    

Forward Primer Reverse Primer 
Position 
Examined Length Ta 

ACTGACAGAATGAAC 
CTGCAGAC  

AATCACTCTCTGGTA 
CAGGATCTGG  29,796,376 722 60 

TGAGAACTGGCGGG 
GAGATA  

TCTCTTGCTGGCTCA 
GCTTT  29,819,909 490 60 

CTGACTCATATCAAG 
GGCCAGAAA  

AGAGAGGAAAGTCA 
GGACACAATAC  30,383,046 719 60 

ATAAAAACAGGCTGC 
ATGTGGTAAA  

AGTTGAGGTTTTTCT 
GTTATGCCTG  30,418,354 776 60 

CAGAACCAGGGAGA 
TGAGACATAC  

TGTTCCTGCTTCTCT 
TTTCACTTTC  31,170,514 621 60 

GAACATATGCTACAA 
AAGGCCAGAG  

GGTGTGGAGAAGGC 
TGTGGG  31,321,327 774 60 

CTCTTGAAGGACTCT 
GGGTTAGAAG  

GCACCAGAGTTCAA 
GAGAGAAAATTA  31,639,979 707 60 

CAATGCTTATAGGGT 
ATCCCCAGTC  

GCAGTGTACACACA 
CAGATACTGAT  31,655,438 597 60 

TAGGGTCTCTAATCT 
CCAAAACACC  

CTAAAAGCCAGAGC 
TCCCAGTCC  31,697,558 739 60 

CCTTTATGAGACCTG 
CATTGAACC  

GGTACTCCAACACT 
GATCATAGGG  32,130,937 660 59 

TCAGATTGAATTTTTC 
CTCCCTTCC  

GATTACAGCTTCCA 
CAAGTTCCATT  33,036,549 560 59 

     A2-B46-DR9 
    

Forward Primer Reverse Primer 
Position 
Examined Length Ta 

AGTACATGTAGACAGCT 
CACAGT  

GCACAGGGAATGTG 
TTCTCG  29,801,958 420 58 

GGGGTTTCTTTGCATTG 
GATGTATT  

TTGTCTCTTGATACC 
ACAAGGAGAT  29,913,509 733 60 

ATAGAATTAGAAAGAGG 
CTGGGGTC  

GTGCTAATGAAAGTT 
GGGCCTTAG  29,942,191 708 59 

 
CTTTCAGTTCTCTTCTGT 
GTCTCCA  

AGTATATTAGGTTAG 
CGGGTGGTAG  30,704,985 697 60 

CCGTGGGGATGGCTAG 
AAAA  

CCCTGAGGGAATCT 
GGGGTA  31,079,236 538 59 

GATTCCAGACTTGGAGT 
TTCAACAG  

GAGTAAAGGACTGA 
GAGGATGGGA  31,082,304 563 59 

CCTTTATGAGACCTGCA 
TTGAACC  

GGTACTCCAACACTG 
ATCATAGGG  32,130,937 660 59 

TCAGATTGAATTTTTCCT 
CCCTTCC  

GATTACAGCTTCCAC 
AAGTTCCATT  33,036,549 560 59 
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The PCR reactions were performed on Applied Biosystems® GeneAmp® PCR 

System 9700 machine (Applied Biosystem, USA).  The following cycling 

conditions were used: 94°C for 2 mins, [94°C for 30 seconds, annealing 

temperature (Ta) for 30 seconds, 72°C for x seconds (dependent on the 

length of template)] for 25 cycles, and 72°C for 20 mins. The quality and 

integrity of the PCR product was verified by 1% agarose gel electrophoresis. 

The PCR products were then purified using the QIAquick gel extraction kit 

(Qiagen, Germany) according to the manufacture’s protocol and the purified 

PCR templates were sequenced using their respective primers. 

Primer sequences AGCAGTCACAAGTCACAGGG and 

CAGCCCATCGCATGCTCAAT were used to interrogate the missense 

mutation (chr6:29,913,037, HLA-A exon 7) found in the cell lines carrying 

A33-B58-DR3 was selected. TA-cloning was then performed to verify the 

missense mutation using pGEM®-T Easy Vector Systems (Promega, 

Fitchburg, WI) following manufacturer’s instructions. Briefly, 3ul of purified 

PCR product were ligated with 1ul of pGEM®-T Easy Vector in a reaction 

mixture comprising of 5ul of 2X ligation buffer and 1ul of T4 DNA ligase and 

this reaction mixture was incubated for 1 hr at room temperature. Next, 

transformation was performed using the JM109 High Efficiency Competent 

Cells where 1ul of the ligated products were added into 50ul of JM109 and 

the mixture was incubated on ice for 20 mins; followed by heat shock for 45 

sec at 42°C and immediate incubation for 2 mins on ice. The recovery of the 

cells was performed by the addition of 950 ul of S.O.C medium (Invitrogen) 

and the reaction mixture was incubated in thermo-mixer shaking at 1400rom 

for 1 hr at 37°C. 100ul from the reaction mixture was plate on 

LB/ampicillin/IPTG/ X-Gal plate and the plate was incubated overnight at 

37°C. Thereafter white colonies were selected, inoculated in 3ml of LB with 
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100ug/ml of ampicillin and incubated with shaking overnight at 37°C. Plasmid 

DNA was extracted using QIAprep® Miniprep Kit (Qiagen, Germany) and 

isolated plasmids were sequenced with the T7 promoter and SP6 promoter 

primers. 

 

2.14 Phylogenetic Analysis and Estimation of Haplotype Divergence 

The SNP sequences of the Asian and European haplotypes spanning 

across the extended MHC region (chr6: 29.65-33.0Mb) were comprise of 

18,781 common SNPs annotated in dbSNP build 137. SNP positions with 

heterozygous call in the Asian haplotypes were denoted as missing data. 

Phylogenetic trees were constructed based on the maximum likelihood 

statistical method and the Kimura 2-parameter substitution model was used to 

calculate the likelihood on a given tree. To evaluate the reliability of branching 

points, bootstrap test of phylogeny was performed (n=500). The tree building 

process was implemented in MEGA5 [153].  

 

Nucleotide diversity metric (π) was used to measure the level genetic 

variation between the MHC sequences computed by the following equation. 

π = 2∑ ∑ xixjπiji−1
j=1

n
i=1     

n is the number of sequences 

x is the frequency of the ith and jth sequences 

πij is the number of nucleotide differences per nucleotide site between ith and 

jth sequences 
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The age of the Asian haplotypes was determined by the following equation. 

𝑡 = 𝑁𝑦
𝑛𝐿𝑢�     

t is the length of time since the haplotype sequences shared a common 

ancestor 

N is the number of nucleotide differences between the haplotype sequences 

y is the number of years per generation and was set at 20 years 

n is the number of haplotype sequences  

L is the length of the sequences 

u is the mutation rate per nucleotide per year and was set at 1.1X10-8 [154] 

 

2.15 RNA-seq Preparation and Analysis 

Total RNA of at least 15ug isolated from B58AL, B58SC, B46BM, B46ZS, 

COX and QBL cell lines were subjected to RNA-seq. Prior to the library 

construction step, cytoplasmic rRNA were removed from the RNA samples 

using the human Ribo-ZeroTM rRNA Removal Kits (Epicentre, USA). For each 

RNA sample, total RNA libraries of 75bp pair-end reads with DNA fragments 

size range 120-225bp were prepared using the TruSeq RNA kit (Illumina, 

USA). A total of 12 libraries were prepared including libraries for the sample 

biological replicates. Sequencing was carried out on the Illumina HiSeq 2000 

machine with two libraries pooled together per sequencing lane, resulting in 

approximately 79 million reads per library. The library preparation and 

sequencing were performed by the Duke-NUS Genome Biology Facility.  
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Quality control (QC) was performed on the raw sequence data to remove low-

quality reads. Here, only reads with reads with 70% of the base positions 

meet the Phred score cuff-off of 20 were retained for the further downstream 

processes. This filtering was conducted using the NGS QC Toolkit [155] and 

the sequence biasness was assessed using the FastQC software 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). 

The QC reads from each library were mapped independently using 

TopHat2 v2.0.7 [156] against the human reference transcriptome (NCBI gene 

annotation Build 37.2) and the human reference genome (NCBI Build 37.2 

reference sequence) using the default settings. The transcripts annotation 

GFF file and sequence indexes information were downloaded from Illumina’s 

iGenomes project (ftp://ussd-ftp.illumina.com).  The TopHat2 alignment 

algorithm involves a three-step process. First the reads are mapped against 

the known transcriptome. The remaining unmapped reads are then mapped 

against the genome; reads that are spanned within a single exon are treated 

as mapped reads while multi-exon spanning reads are treated as unmapped 

reads. Together with previously aligned reads with low scores, the third step 

will split the unmapped reads into non-overlapping 25bp segments and 

mapped against the genome to identify the most probable splicing sites. 
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To estimate the relative abundance of the transcripts, the approach 

implemented in the Cufflinks suite (version 2.1.1) software was used [157]. 

RNA-seq enables quantitative measure on the abundances of RNA 

transcripts in the form of the number of reads mapped to the targeted 

transcripts. However, because of the inherent technical biases introduced in 

the library preparation step and the variation in the number of reads 

generated between different sequencing runs as well as due to the difference 

in the length of the RNA transcripts, normalization procedure is essential to 

attain meaningful interpretation from the analysis. To account for these 

issues, Cufflinks uses fragments per kilo base of transcript per million 

mapped reads (FPKM) that normalized the read counts by the length of the 

transcripts and the total number of mapped reads in the sample. Cufflinks 

were performed with the NCBI gene annotation Build 37.2 to output FPKM 

values for known annotated genes. For differential expression analysis, we 

used Cuffdiff in the Cufflinks suite to perform the estimation. In Cuffdiff, genes 

variance across replicates is modeled as a non-linear function of mean counts 

using a combination of normal and negative binomial distributions and T-test 

is used to derive the P-values for differential expression. To correct for 

multiple hypothesis testing, Benjamini-Hochberg adjustment was 

implemented.  
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2.16 Databases and Tools 

Allele Frequency Net Database (AFND) 

The AFND [158] was used to search and extract the HLA allele and HLA 

haplotype frequencies in worldwide populations. 

(http://www.allelefrequencies.net/)  

The International Immunogenetics Information System®  HLA 

(IMGT/HLA) 

The HLA allele sequences used in this study was extracted from the 

IMGT/HLA [11] (http://www.ebi.ac.uk/ipd/imgt/hla/, Release 3.13.1).  

UCSC Genome Browser 

The ENCODE histone modification data was assessed through the UCSC 

Genome Browser (http://genome.ucsc.edu/). In addition, the Table Browser 

tool in the genome browser was used to retrieve the Human genome 

reference sequence and annotation data in the MHC region as well as to 

extract the SNPs information residing in the eight alternate MHC reference 

sequences. 

International HapMap Project 

The genotype data of the European population (CEU) and Nigeria 

Yoruba population (YRI) were obtained from the HapMap database 

(release 24). The data was QC and all the SNP alleles were all referred 

to the positive strand before analysis.    

Gene Expression Omnibus (GEO) 
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The expression profiles of the BLCLs from the Centre d'Etude du 

Polymorphisme Humain (CEPH) collection under the accession number of 

GSE29158 were extracted from the GEO database. 

R Project for Statistical Computing 

The R programming environment was used to perform data processing and 

graphics plotting. R packages were also used for basic statistical analysis. 

NGS tools 

The Integrative Genomics Viewer (IGV) [159] was used to view and check on 

the RNA-seq reads mapping results. The SAMtools - version 0.1.18 

(http://samtools.sourceforge.net/) and Picard 

(http://picard.sourceforge.net/index.shtml) were used to manipulate and 

process the NGS data files. 
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3.1  Introduction 

Recombination has a significant role in the generation of high haplotype 

diversity found within the human MHC region. The occurrence of these 

recombination events enables the assortment of DNA blocks within the MHC 

region [10] and in the process creating diverse combinations of MHC 

haplotype across populations. Typically, recombination sites are localized to 

within a 1 – 2kb genomic segment that is flanked by regions with low 

recombination [160] and are found at multiple points along the chromosomes 

in a non-random manner. These would lead to the breakdown of linkage 

disequilibrium (LD) defining the discrete haplotype blocks [161].  

As compared to other parts of the genome, the identification of 

recombination sites within the MHC region is proven to be particularly difficult. 

Previously, the laboratories of Mary Carrington and Alec Jeffreys employed 

single-sperm genotyping approach to detect the frequency and distribution of 

recombination within the MHC region and these studies were able to definitely 

identify six MHC-residing recombination sites [47, 48]. However, this 

approach is experimentally laborious and the resolution of the identified 

recombination sites (average 73.2kb segment per site) is poor. The 

availability of high-throughput single nucleotide polymorphism (SNP) 

genotyping assay has provided an alternate method to infer local 

recombination rates through in silico modeling using population genotype 

SNPs information. This approach is best exemplified by the undertaking of the 

International HapMap Project where 3.1 million SNPs information extracted 

from individuals of European, African and Asian ancestries was used to 

characterize the patterns of LD in the human genome and provide means to 

estimate recombination rates [160]. However, this approach of using admixed 

population data to infer recombination sites is not comprehensive enough 

when applied to the MHC region. This is because the intense genomic 
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rearrangement in the MHC region, not found in other parts of the human 

genome, is driven by the underlying HLA allelic gene combinations which are 

uniquely found in distinct population groups complicates the mapping of 

recombination sites in the human MHC region [162, 163]. Population-distinct 

HLA allelic gene combinations maintained by natural selection and other 

evolutionary forces may result in recombination breakpoints specific to each 

population. Hence, the exclusion of HLA allelic typing information in the 

recombination sites inference process could possibly conceal the presence of 

population-specific recombination sites.    

In this chapter, we devised a method to detect the location and the 

frequency of recombination sites within the MHC region. This approach relied 

on the LD genetic map generated using both the HLA allelic information and 

the SNPs haplotype phase information from an Asian cohort comprising of 

Singapore Chinese (CHSG) to infer MHC-residing recombination sites. Using 

this approach, we also examined the recombination profiles in individuals of 

European and African ancestries, and hence offered a comprehensive MHC 

recombination map across populations. 
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3.2  Results 

 

3.2.1  Linkage Disequilibrium Structure within MHC Region 

The inference of recombination sites would require the generation of 

population LD structure.  To perform this, individuals HLA allelic typing and 

the MHC region SNPs genotype information are essential. The HLA 

information of 247 CHSG individuals (211 unrelated and 36 comprising 

members of family trios) were obtained from Yu et al [134] and they were 

typed for four HLA loci at HLA-A, -B, -C and –DRB1 using sequence-based 

typing method. DNA of the same cohort was then subjected to Illumina 

GoldenGate MHC Panel to interrogate the SNPs genotype status covering 

4.9Mb (28,970,148 - 33,882,048) of the extended MHC region. By 

incorporating both the HLA allelic and SNPs genotyped data, SNPs 

haplotypes phase with their corresponding HLA allelic gene combination were 

derived using PHASE 2.1 [138]. The resulting 470 chromosomes were 

categorized according to their HLA alleles and haplotypes. The most frequent 

HLA haplotypes found in the CHSG population were A*02:07-C*01:02-

B*46:01 (12.8%), C*01:02-B*46:01-DRB1*09:01 (9.6%), A*33:03-C*03:02-

B*58:01 (9.0%), C*03:02-B*58:01-DRB1*03:01 (7.7%), A*02:03-C*07:02-

B*38:02 (4.3%), A*11:01-C*07:02-B*40:01 (4.0%), C*08:01-B*15:02-

DRB1*12:02 (3.6%) (Table 3.1). SNPs haplotypes pooled according to their 

HLA alleles with frequency > 5% were then subjected to extended haplotype 

homozygosity (EHH) at three separate 1 mega-base genomic segments 

(chr6: 29.5 – 30.5 Mb, chr6: 31.0 – 32.0 Mb and chr6: 32.2 – 33.2Mb) 

covering the HLA genes loci. EHH is the measure of LD decay at varying 

locations from a defined locus [144] and hence provides an overview on the 

LD structure of the region of interest. 
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Table 3.1   Common HLA haplotype frequency in CHSG (A) 3-locus HLA-
A-C-B (B) 3-locus HLA-C-B-DRB1 (C) 4-locus HLA-A-C-B-DRB1 
 
A HLA-A-C-B 
 Haplotype  Counts Observed 

Freq. (%) 
 A*02:01-C*07:02-B*40:01 7 1.49 
 A*02:01-C*15:02-B*40:01 8 1.70 
 A*02:03-C*07:02-B*38:02 20 4.26 
 A*02:07-C*01:02-B*46:01 60 12.77 
 A*11:01-C*03:04-B*13:01 15 3.19 
 A*11:01-C*08:01-B*15:02 16 3.40 
 A*11:01-C*07:02-B*40:01 19 4.04 
 A*11:01-C*01:02-B*46:01 10 2.13 
 A*11:02-C*12:02-B*27:04 7 1.49 
 A*24:02-C*03:04-B*40:01 7 1.49 
 A*24:02-C*07:02-B*40:01 8 1.70 
 A*33:03-C*03:02-B*58:01 42 8.94 
 

B HLA-C-B-DRB1 

 Haplotype  Counts Observed 
Freq. (%) 

 C*03:04-B*13:01-DRB1*15:01 12 2.55 
 C*03:04-B*13:01-DRB1*16:02 7 1.49 
 C*08:01-B*15:02-DRB1*12:02 17 3.62 
 C*07:02-B*40:01-DRB1*09:01 15 3.19 
 C*01:02-B*46:01-DRB1*08:03 13 2.77 
 C*01:02-B*46:01-DRB1*09:01 45 9.57 
 C*03:02-B*58:01-DRB1*03:01 36 7.66 
 

C HLA-A-C-B-DRB1 
 Haplotype Counts Observed 

Freq. (%) 
 A*02:03-C*07:02-B*38:02-DRB1*16:02 7 1.49 
 A*02:07-C*01:02-B*46:01-DRB1*08:03 8 1.70 
 A*02:07-C*01:02-B*46:01-DRB1*09:01 36 7.87 
 A*11:01-C*03:04-B*13:01-DRB1*15:01 7 1.49 
 A*11:01-C*08:01-B*15:02-DRB1*12:02 12 2.55 
 A*11:01-C*07:02-B*40:01-DRB1*09:01 7 1.49 
 A*33:03-C*03:02-B*58:01-DRB1*03:01 31 7.02 
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In this study, the core locus for the three respective genomic segments was 

defined at the HLA-A, HLA-B and HLA-DRB1. Generally, the EHH value of a 

HLA haplotype recorded a drop, at incremental distance away from the 

defined core HLA locus, whenever there is decay in LD.  Unchanged EHH 

values over long genomic distance imply regions of high LD and sequence 

conservation. 

Region of high LD with EHH >= 0.9 were observed in extended regions 

proximate to the HLA-A, HLA-B and HLA-DRB1 genes (Figure 3.1). At the 

chr6: 29.5 – 30.5 Mb chromosomal segment, a 190kb (position 29,838,709 – 

30,027,753) region of extensive LD encompassing HLA-A, HLA-H and HLA-G 

was observed (Figure 3.1A). Haplotypes telomeric of HLA-A were generally 

well conserved while at the centromeric end, two distinct patterns emerged. 

Although HLA-A*02:07 and A*33:03 haplotypes stretched a further 200kb or 

more before breaking up, haplotypes carrying A*02:01, A*24:02, A*11:01 

alleles broke right after HLA-A. For the chr6: 31.0 – 32.0 Mb chromosomal 

segment (Figure 3.1B), high LD was observed for at least 213kb (position 

31,325,794 - 31,538,700) in all the common HLA-C-B haplotypes. This region 

of strong LD extended past HLA-C towards the telomeric end, and stretched 

over the MICA gene at the centromeric end. Of note, the centromeric 

boundary whereby all HLA-C-B haplotypes break corresponded to a HapMap 

inferred recombination region at position 31.54 Mb. The region of strong 

homozygosity at the chr6: 32.2 – 33.2Mb segment stretched for at least 

181kb and was flanked by 2 recombination sites derived from the sperm 

typing assay (Figure 3.1C) [47]. The sperm typing recombination site at the 

telomeric end spans over a 105.15kb region enveloping several EHH drops. 

The most significant EHH drop was found at the 32,447,054 to 32,448,850 

interval in all of the seven major HLA-DRB1 haplotypes.  
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Figure 3.1 Extended haplotype homozygosity (EHH) plots of SNP 
haplotypes for common HLA alleles. Plots covering 1Mb region with the 
classical HLA loci/haplotypes used as anchor positions: (A) HLA-A, (B) HLA-
C-B and (C) HLA-DRB1 respectively. Positions of recombination sites and 
their relative sizes are mapped onto the plots as follows: six recombination 
segments identified by sperm recombinants (highlighted in pink columns) and 
HapMap-inferred hotspots that coincide with EHH drops (highlighted in purple 
columns).  
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At the centromeric end, 5/7 HLA-DRB1 haplotypes registered EHH drops at 

the same location that coincided with the sperm typing derived recombination 

interval (position 32,447,054 - 32,448,850). 

 

3.2.2 MHC-residing Recombination Sites within the CHSG Population 

LD breakages denoted by decay of EHH values along the chromosome is 

indicative of probable occurrence of recombination events. The EHH plots of 

the three genomic segments were marked by distinct step-wise drops 

occurring at non-random discreet interval (Figure 3.1), suggesting the 

presence of recombination sites. Putative recombination sites are recorded 

only either when two or more HLA haplotypes independently register drop in 

EHH value across the same SNPs interval or when at least 10% of the 

chromosomes carrying a unique HLA allelic haplotype diverge from the core 

pool. In addition, in silico recombination rates estimation using LDhat [145] 

was performed based on the pooled 470 chromosomes.  

A total of 69 recombination sites were characterized across the three 

genomic segments based on the above criteria (Figure 3.2 and Table 3.2). In 

contrast, the approach using the sperm typing assay and the HapMap study 

were only able to detect six and 29 recombination sites across the extended 

MHC region respectively. All the six sperm typing sites overlapped with EHH 

drops and as the sperm typing approach had poor resolution ranging in size 

from 35.4kb to 116.3kb; it was not uncommon to see several EHH drops 

within each sperm typing derived recombination region. 
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Figure 3.2 Recombination regions identified by SNPs interval displaying 
EHH decay. Plots illustrate the number of unique HLA allelic haplotypes 
independently registered drop in EHH (red) and the recombination rates 
(blue) across (A) HLA-A, (B) HLA-C-B and (C) HLA-DRB1. Recombination 
segments identified by sperm recombinants are indicated by the pink colored 
bars and the HapMap-inferred recombination sites are indicated by the blue 
colored bars.  
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Table 3.2 List of the recombination sites identified through the EHH 
approach. 69 recombination sites were identified and among them, 37 were 
not found in any of the previous studies. 

 
From  rsID  To  rsID  Size Marker 

* 29591947 rs1592410 29594887 rs9257890 2.94 LOC100507362  

 29622209 rs398616 29624221 rs3094576 2.01 UBD 3’  

 29630691 rs2534791 29634919 rs362536 4.23 UBD Intronic  
* 29637733 rs1233405 29641274 rs388234 3.54 UBD 5’  

 29648840 rs362509 29651625 rs362525 2.79 GABBR1 3’  

 29677934 rs3025643 29679588 rs10946999 1.65 GABBR1 Exon  
† 29769435 rs7772169 29772431 rs3131886 3 MOG 3’  
† 29791787 rs1632962 29792613 rs2517911 0.83 HLA-F  

 29803481 rs1628578 29804097 rs3817826 0.62 HLA-F-AS1 

 29830494 rs9391630 29838709 rs1737069 8.22 IFITM4P  
† 29946621 rs2844821 30007656 rs2524005 61.04 HLA-H-HCG4B  

 30027753 rs7747114 30032404 rs3893538 4.65 HLA-A  

 30038598 rs7739434 30040979 rs3873283 2.38 HCG9 5' 

 30154225 rs2394734 30155944 rs7382061 1.72 GABRA3 
* 30179089 rs2240070 30184609 rs2240068 5.52 TRIM31 Exon  

 30184734 rs2074483 30186994 rs2284163 2.26 TRIM31 Intronic  

 30228099 rs2285797 30235302 rs9261535 7.2 TRIM10  
* 30329421 rs2516723 30334283 rs4526237 4.86 HLA-L  
* 30427909 rs6905389 30429340 rs984802 1.43 RPP21  
* 30471924 rs3130113 30476614 rs3130118 4.69 HLA-E  

 31032003 rs12212418 31033964 rs11753326 1.96 DPCR1  

 31063660 rs1634731 31063908 rs2517416 0.25 MUC21  
* 31101937 rs2523897 31105671 rs9262549 3.73 MUC22 
* 31110595 rs4248154 31120975 rs3131927 10.38 MUC22 3’  
* 31188411 rs2233969 31189722 rs3823402 1.31 C6orf15  

 31199971 rs3094204 31205162 rs3130558 5.19 PSORS1C1 Intron  
* 31213289 rs1265100 31214247 rs3130573 0.96 PSORS1C1 Exon  

 31245144 rs3130503 31247469 rs879882 2.33 POU5F1  

 31248720 rs1265158 31251561 rs3131018 2.84 PSORS1C3 

 31314185 rs3130685 31325794 rs2894189 11.61 HLA-C  

 31435639 rs1811197 31437994 rs2523567 2.36 HLA-B  
* 31538700 rs3099840 31538778 rs2596473 0.08 HCP5 5’  
* 31543970 rs2523676 31544768 rs2523674 0.8 HCP5 3’  

 31551302 rs12660382 31556133 rs2523651 4.83 HCG26  

 31557757 rs2523647 31559192 rs2516507 1.44 HCG26 3' 

 31561619 rs2516500 31567721 rs2516415 6.1 MICB 5’  

 31569068 rs3130922 31571470 rs2516408 2.4 MICB  
*†  31676448 rs2857595 31680935 rs2844479 4.49 NCR3  
*† 31683255 rs9348876 31686751 rs2844477 3.5 AIF1 5' 

 31701455 rs2260000 31703466 rs2736171 2.01 PRRC2A  
* 31783744 rs2242653 31786709 rs805287 2.97 LY6G6F  

 31837338 rs707938 31838993 rs707937 1.66 MSH5  

 32253685 rs2269423 32255674 rs3130349 1.99 RNF5 

 32290737 rs206015 32292323 rs404860 1.59 NOTCH4 Intron  
* 32297819 rs715299 32299317 rs3830041 1.5 NOTCH4 Intron  
* 32311515 rs3130299 32315371 rs416352 3.86 NOTCH4 5’  

*† 32447054 rs2050190 32447818 rs6913309 0.76 C6orf10 Intron  
† 32473558 rs3129954 32474399 rs4248166 0.84 BTNL2 Intron  
† 32489714 rs7759742 32489917 rs743862 0.2 BTNL2 5’  
† 32497626 rs3135363 32503546 rs2187818 5.92 HLA-DRA 5’  

 32516713 rs3129878 32518115 rs3129883 1.4 HLA-DRA Intron  

 32529776 rs10947279 32536263 rs6903608 6.49 HLA-DRA 3’  

 32717405 rs9272723 32734064 rs7744001 16.66 HLA-DQA1  

 32766693 rs2858330 32767136 rs5002702 0.44 HLA-DQB1  
*† 32789623 rs3916766 32791669 rs6935940 2.05 HLA-DQA2 5’  
† 32793528 rs3916765 32795336 rs3104401 1.81 HLA-DQA2 3’  

 32820225 rs9276431 32821245 rs2239800 1.02 HLA-DQA2 Exon  

 32835883 rs1023449 32839688 rs2071550 3.81 HLA-DQB2 Exon  
* 32844122 rs9296044 32847866 rs1383265 3.74 HLA-DQB2 5’  

 32887974 rs5009557 32888702 rs11244 0.73 HLA-DOB  
* 32905515 rs241439 32906773 rs241433 1.26 TAP2 Intron  
* 32912195 rs3819714 32913448 rs2071465 1.25 TAP2 Exon 

 32965779 rs241414 32970718 rs241407 4.94 LOC100294145 
* 33007463 rs3132131 33008629 rs154972 1.17 HLA-DMB 3' 

 33010561 rs10751 33011878 rs151719 1.32 HLA-DMB 

 33013724 rs194675 33019792 rs2395296 6.07 HLA-DMB 5' 
*† 33072674 rs206765 33075719 rs12216336 3.05 BRD2 3' 

 33077435 rs172274 33078428 rs206762 0.99 HLA-DOA 3' 

 33080668 rs592625 33082379 rs2581 1.71 HLA-DOA  
*† 33129170 rs7743563 33132251 rs435549 3.08 HLA-DPA1 3’  

† indicates intervals that reside within sperm typing segments and * indicates 
intervals that overlapped with the HapMap recombination sites. Each recombination 
site was mapped to the Human Reference Sequence Assembly 36.1 (NCBI 36.1) and 
assigned to a marker that is in the closest proximity to the site. 

70 
 



For example, the sperm typing derived recombination segment chr6: 32, 

063,170 – 32,511,466 harbored five independent recombination sites. Of the 

29 HapMap inferred recombination sites, 24 of them corresponded to the 

EHH drops and 37 of the EHH-derived recombination sites were not found in 

any of the previous studies. In addition, the examination of unambiguous HLA 

allelic SNPs haplotypes derived from trios data showed that the positions of 

LD breakage along these chromosomes coincide with the EHH-derived 

recombination sites (Figure 3.3). This high correlation of the EHH-derived 

recombination sites with the sperm typing, HapMap data and the positions LD 

breakage along haplotypes derived from the trios data illustrates the validity 

of the EHH mapping approach.  

Peaks of recombination rates were located at SNPs intervals where 

multiple haplotypes independently displayed EHH drop. For instance, a 

recombination rate peak of 4cM/Mb was located at chr6: 30,027,753 – 

30,032,404 and A*02:01, A*02:07, A*11:01 and A*24:02 haplotypes all 

exhibited EHH drop at this genomic interval. EHH-derived recombination sites 

were also found in regions with low recombination rates. These recombination 

sites were specific to a unique HLA haplotype and as such the number of 

chromosomes was not significant enough to result in elevated recombination 

rate which was estimated from population-pooled chromosomes. This 

highlights the importance of accounting for the HLA genes allelic information 

to enhance sensitivity and specificity in the inference of recombination sites 

across the MHC region. Furthermore, the HLA gene allelic EHH approach 

was able to produce excellent recombination map resolution, with 28/69 

(41%) mapped to <2kb in size and another 29/69 (42%) falling between 2 to 

5kb.  
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Figure 3.3 Recombination sites derived from trios data. (A) Recombination 
sites supported by trios derived A*11:01 SNPs haplotypes. (B) 
Recombination sites supported by trios derived C*07:02-B*40:01 SNPs 
haplotypes. The arrows point to the location of EHH decay where the LD of 
the SNPs haplotypes is disrupted.   
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Figure 3.4 EHH plots of SNP haplotypes for common HLA-A haplotypes. 
(A) CHSG, (B) CEU and (C) YRI. Dots in the panels above each plot indicate 
the SNPs interval where haplotypes break, with each color denoting a specific 
HLA-A haplotype. Positions of recombination sites and their relative sizes are 
mapped onto the plots as follows: recombination segments identified by 
sperm recombinants (highlighted in pink columns) and HapMap-inferred sites 
that coincide with EHH drops (highlighted in purple columns). 
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Figure 3.5 EHH plots of SNP haplotypes for common HLA-C-B 
haplotypes. (A) CHSG, (B) CEU and (C) YRI. Dots in the panels above each 
plot indicate the SNPs interval where haplotypes break, with each color 
denoting a specific HLA-C-B haplotype. Positions of recombination sites and 
their relative sizes are mapped onto the plots as follows: recombination 
segments identified by sperm recombinants (highlighted in pink columns) and 
HapMap-inferred sites that coincide with EHH drops (highlighted in purple 
columns). 
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3.2.3 Population-specific Recombination Sites within MHC Region 

To date, the knowledge of MHC recombination map variation across 

populations is limited and not well studied. The EHH approach integrated with 

the HLA gene allelic information offers an opportunity to perform comparative 

study of the recombination profiles between different population groups. Here, 

in addition to the CHSG population, we applied this approach to two HapMap 

populations, the Europeans (CEU) and the Nigeria Yorubans (YRI). The SNP 

genotype data of these populations were extracted from the HapMap 

depository while the HLA-A, -B and -C allelic typings were obtained from 

Erlich et al [143]. To enable comparison across the three populations, 1360 

SNPs loci whose genotypes were known in the three populations were 

selected and subjected to the EHH analysis. As HLA-DRB1 gene allelic 

information is not available for the HapMap populations, EHH analysis was 

only performed at the two genomic segments covering the HLA class I genes. 

Similar to the observation in the CHSG population, maintenance of LD 

proximate to the HLA genes were observed in the CEU as well as the YRI 

population and the range of high LD region at the HLA genes varied 

according to the underlying HLA allelic background (Figure 3.4 and 3.5).  

Collectively, there were 37 probable recombination sites detected in the 

CHSG, 30 in the CEU and 38 in the YRI (Figure 3.6). We were also able to 

recover >90% of the CHSG recombination sites identified in the previous 

section, albeit at larger segment interval. Interestingly, >50% of the identified 

sites in each population (CHSG – 56.8%, CEU – 50.0% and YRI – 63.2%) 

were uniquely population-specific. Only <16% of the sites were shared among 

the three populations and all of these sites fell within the segments 

determined by the sperm typing experiment or the in silico modeling approach 

(Table 3.3). 
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Figure 3.6 Recombination sites across the CHSG, CEU and YRI 
population. (A) HLA-A (B) HLA-C-B. The upper section of each panel displays 
the HLA haplotypes recombination sites interval across the 3 populations. 
The lower section of each panel displays plots that indicate the number of 
unique HLA allelic haplotypes independently registered EHH drop in the 
CHSG, CEU and YRI. 
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Table 3.3 Number of common and population-specific recombination 
sites identified in the CHSG, CEU and YRI across HLA-A and –B region. Only 
a small proportion of recombination sites are shared among populations. 

 
 

 

 

 

 

 

 

 

 

In addition, recombination sites distinct to a specific population were noted to 

be in close proximity to other recombination sites unique to another 

population resulting in a boarder genomic segment where recombination 

activities are likely to occur across populations. This was especially evident in 

regions downstream of HLA-B. For instance, population-specific 

recombination sites detected in the three populations were within a 31kb 

segment (chr6: 31,089,987 – 31,120,975) downstream of MUC22 gene. This 

observation is in agreement with the previous studies where elevated 

recombination activities are likely to occur within a cluster flanked by regions 

of low recombination [48].   

 

 

 

Region 
CHSG-
specific 

CEU-
specific 

YRI-
specific 

CHSG 
& CEU 

CHSG 
& YRI 

CEU& 
YRI All 

HLA-A 9 10 9 5 3 1 1 
HLA-B 12 5 15 1 2 3 4 
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The differences in recombination sites among populations reflect the variation 

of haplotype pool in each population. Of note, for example, A*02:01 haplotype 

can be found in both CHSG and CEU populations; however there is a 

difference in the distribution of recombination sites in A*02:01 haplotype carry 

by these 2 populations. This suggests that the differences observed in the 

distribution of recombination sites might not entirely due to the difference in 

haplotype data from each population. Hence, the consideration of HLA 

haplotypic variation within and across populations is important to improve the 

resolution of the MHC recombination map. 

 

3.2.4 Absence of Recombination in Common Asian HLA Haplotypes 

Conserved extended haplotype (CEH) is defined as a genomic segment 

with distinctive long-range sequence conservation coupled with suppression 

of recombination events [37, 38].  The presence of CEHs have been reported 

among a number of common HLA haplotypes in European (A1-C7-B8-DR3) 

[164] and Japanese populations (A24-C12-B52-DR15 and A33-C14-B44-

DR13) [165]. In our studied population, a number of four locus HLA 

haplotypes are found at relatively high frequency (>1%); notably the A*33:03-

C*03:02-B*58:01-DRB1*03:01 (A33-B58-DR3) and A*02:07-C*01:02-

B*46:01-DRB1*09:01 (A2-B46-DR9) haplotypes (Table 3.1). Next, we aim to 

investigate whether the common HLA haplotypes in the CHSG population 

would display the characteristic of CEHs. Using the phase chromosomes 

comprising of 1877 SNP markers, the major allele frequency (MAF) of the 

SNP markers was computed for each of the common CHSG HLA haplotypes. 

Contiguous SNP loci with MAF value of 1 indicates extensive conservation 

and therefore implies the presence of CEH.  
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Figure 3.7 Major allele frequencies of SNP markers across the MHC 
region for common four-locus CHSG HLA haplotype. The plots were derived 
from 1877 SNP loci. Of the common Singapore Chinese HLA haplotypes, 
A33-B58-DR3 and A2-B46-DR9 displayed extensive SNPs sequence 
conservation across the MHC region. 
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The MAF analysis revealed an extended region of SNPs invariant between 

HLA-F and HLA-DQB1 covering at least 3Mb for both A33-B58-DR3 and A2-

B46-DR9 HLA haplotypes; suggesting the absence of recombination events 

across the extended MHC region (Figure 3.7). In contrast, for the other four 

common HLA haplotypes, SNPs invariant was restricted only at regions 

adjacent to HLA loci and the intervening regions were characterized by the 

decay of LD. This data suggests that high frequency HLA haplotypes 

observed in a population does not necessarily imply the extended 

conservation of high LD and recombination suppression at the genomic level 

across the MHC region.  

To generate further evidence for presence of CEH in A33-B58-DR3 and 

A2-B46-DR9, DNA purified from six lymphoblastoid cell lines (B58AL, B58SC 

and B58CF HLA homozygous for A33-B58-DR3; B46BM, B46ZS and B46CM 

HLA homozygous for A2-B46-DR9) was analyzed by Illumina Human 1M-Duo 

BeadChip SNP array. After SNPs quality filtering, 10215 SNP markers were 

found in the genomic segment of chr6:25.0 – 35.0Mb; of which 7509 SNPs 

fell within the extended MHC region (28.5Mb to 33.5Mb). These SNP markers 

were then subjected to Runs Of Homozygosity (ROH) analysis, implemented 

to screen for the SNPs’ genotype homozygosity profile in each cell line. 

Regions of conservation were identified for each cell line based on levels of 

homozygosity within the genome. Homozygosity and intra-haplotype 

conservation were found not only at the HLA loci, but also across the 

extended MHC region (Figure 3.8A). For A33-B58-DR3, at least 99.5% of 

SNPs were found to be homozygous across 4.66 Mb region (Table 3.3) and 

the genotype calls of these homozygous SNPs were consistent in all the three 

A33-B58-DR3 cell lines.  
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Figure 3.8 Conserved extended haplotype in A33-B58-DR3 and A2-B46-
DR9 across MHC region. (A) SNPs alignment of six HLA homozygous 
individuals carrying specific haplotype. This homozygous individuals SNPs 
alignment includes the genotype status of each SNP (green vertical bars 
indicate a homozygous SNP call and dark green vertical bars indicate a 
heterozygous SNP call) and the SNP allelic call with reference to its position 
(green = adenine, red = cytosine, orange = guanine, and blue = thymine). 
10125 SNP markers are involved in the alignment (B) Identity-by-descent 
analysis. Pairwise IBD plots (IBD=1 vs IBD=0 and IBD=2 vs IBD=0) of a 
reference individual with the other respective individuals. Blue circle indicates 
pairwise analysis of individuals carrying A33-B58-DR3 while the red circle 
indicates pairwise analysis of individuals carrying A2-B46-DR9. 
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Table 3.4 Range of conserved extended region for the six cell lines 
derived from ROH analysis of the SNPs information. Htz: heterozygous; Hmz: 
homozygous.  

Cell line  Start  End  
Length 
(Mb)  

No. of 
SNPs  

No. of 
htz 

SNPs  

% of 
hmz 

SNPs  

B58AL  26,922,906  33,853,071  6.93  8660  26  99.7  

B58SC  26,922,906  33,820,059  6.90  8637  26  99.7  

B58CF  28,310,997  32,973,794  4.66  6997  35  99.5  

B46BM  29,350,854  32,903,900 3.57  6238  25  99.6  

B46ZS  29,577,617  33,910,884  4.33  6975  21  99.7  

B46CM  29,728,209  32,739,888  3.01  5283  16  99.7  
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Likewise for A2-B46-DR9, the conservation region is slightly shorter at 

3.01Mb with 99.6% of the encompassing SNPs genotyped as homozygous 

(Table 3.4) and again the genotype calls of the homozygous SNPs were 

consistent in all the three A2-B46-DR9 cell lines.  To verify that the extended 

segment of conservation observed within the MHC region is not merely due to 

undetected familial relatedness among these individuals, an identity-by-

descent (IBD) analysis was performed using the whole-genome SNPs 

information of the six individuals. All the pairwise IBD analysis between every 

possible individual clustered at the bottom right quadrant (Figure 3.8B) 

indicating no strong evidence for relatedness among the individuals. 

Therefore, the SNP sequence conservation observed within the MHC region 

among individuals carrying similar HLA haplotypes is not due to familial 

relationship. These analyses reveal that for both the A33-B58-DR3 and A2-

B46-DR9 HLA haplotypes, the linkage of the HLA alleles is not restricted only 

to the HLA loci, but rather that mega-bases of genomic segment are inherited 

together in linkage disequilibrium with minimal recombination.     
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3.3 Conclusion 

In this chapter, a single population cohort Singapore Chinese and their 

corresponding HLA type were used as a mean to partition the haplotypes. 

This is a great improvement over the sperm typing method which also 

recognizes the advantage of a haploid genome as a “cleaner” read-out. In 

addition, this method also counts females (which sperm typing lacks), thus 

providing a more balanced assessment of the study population. The single 

haplotype information was able to reveal unambiguously, positions along the 

MHC genome where recombination events had occurred, leading to breakage 

of SNP linkage disequilibrium and the results can thus be visualized as EHH 

plots. From the 470 chromosomes studied, we were able to identify 69 

recombination sites of which 37 recombination sites were novel. By applying 

the above approach to 2 other populations, European and African, we were 

able to show that each population has its own unique signature of 

recombination sites within the MHC. This has not been empirically defined till 

now and even more interesting is that the population-specific recombination 

sites are seldom shared (or seen) among the 3 populations studied; 

highlighting the role of recombination in generating haplotype diversity. 

Through this study, for the first time, we revealed two HLA haplotypes in the 

Singaporean Chinese population (A2-B46-DR9 and A33-B58-DR3) with little 

or no recombination activity for at least 3Mb across the MHC region.  
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Chapter 4: 

Intra-haplotypic Variation in MHC 
Conserved Extended Haplotype 
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4.1 Introduction 

Typically, the linkage disequilibrium (LD) breakdown becomes evident 

over certain regions along the MHC with the extent and arrangements 

markedly defined by the HLA alleles. However, in the previous chapter, we 

revealed extensive LD lacking any recombination events covering a region of 

at least 4.66 Mb in individuals carrying A33-B58-DR3 and 3.01Mb in A2-B46-

DR9. CEHs draw great interests not just because of their unique genomic 

traits but also because common conserved extended haplotypes (CEHs) are 

known to be associated with numerous diseases [35, 166]. For instance, the 

A1-B8-DR3-DQ2 haplotype alone is a risk factor for type 1 diabetes, systemic 

lupus erythematosus, rheumatoid arthritis and IgA deficiency and various 

other diseases [40-42]. Of note, studies have consistently demonstrated the 

association of A33-C3-B58-DR3 and A2-C1-B46-DR9 common HLA 

haplotypes with nasopharyngeal carcinoma [167, 168], myasthenia gravis 

[169] and type 1 diabetes [170]. Despite the strength of the risk associations, 

genetic dissections of the exact disease-causing variants and genes have 

been difficult. Firstly, due to the long and extensive LD on these CEHs, it is 

often difficult to distinguish between disease-causing variants and other 

benign variants in linkage within the same haplotype, causing difficulty in 

identifying the genes or variations responsible for causing disease. Secondly, 

the extent of intra-haplotypic variation within the conserved region of the 

CEHs, which might separate disease-affected haplotype carriers from 

unaffected haplotype carriers, is not well-established. Previous attempts to 

decipher the difference between type-1A diabetic A1-B8-DR3-DQ2 

haplotypes and non-type-1A diabetic A1-B8-DR3-DQ2 yielded uninformative 

results, despite the high resolution of the common SNPs (MAF>=5%) 

genotyping platform [164]. Such attempts may be futile because they did not 
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include intra-haplotypic variants that might be rare at the population level. 

Indeed, studies have shown that functional variants whose frequency were 

too low to be detected by genome-wide association exhibit significant disease 

susceptibility effects [171, 172]. Thus, further efforts are needed to 

characterize both the extent of LD and the extent of intra-haplotypic variation 

within CEHs. 

Attempts to quantify the level of polymorphism within MHC haplotypes 

haven been carried out on eight European MHC haplotypes using bacterial 

artificial chromosome cloning (BACs) and shotgun sequencing [14, 15]. 

Among these cells, only the MHC haplotype of PGF (A3-B7-DR15-DQ6), and 

COX (A1-B8-DR3-DQ2), were sequenced completely and the MHC reference 

sequence of PGF was incorporated into the mosaic NCBI Build 37.2 

reference sequence [16]. Each of these haplotypes was assembled into a 

haploid sequence from a single consanguineous cell line using BAC derived 

sequences; however, as the parental origin of each BAC sequence was 

uncertain and with only one representative from a particular HLA haplotype, 

there is no information on intra-haplotypic variation, hence the characteristic 

features of these haplotypes cannot be determined. Smith and colleagues 

went a step further, using PCR primer pairs, covering the MHC region, to 

perform partial re-sequencing for 19 independent A1-B8-DR3-DQ2 

chromosomes and in the process identified only 11 single-nucleotide variants 

(SNVs) between HLA-A and HLA-DQ gene [21].  Unfortunately, in this study 

only 15% of the conserved region was sequenced, and it was thus unable to 

definitively explore the scope of variation in the CEHs. Subsequent studies 

employed target region and next generation re-sequencing approaches to 

interrogate variations residing within the MHC region [19, 20] but cell lines 

were either HLA heterozygous or did not exhibit CEH characteristics in the 
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MHC genomic region and as a result, haplotype sequence assignment was 

problematic. The sequences of the eight common European MHC haplotypes 

and the variations characterized from the analysis of these sequences were 

often used as a framework and resource for MHC disease susceptibility 

studies. Though useful, given the immense diversity of the MHC region, these 

are not sufficient to provide a complete description of the region in particularly 

for individuals from other ethnic backgrounds. 

In this study, we report the characterization of two Asian CEHs, A*33:03-

C*03:02-B*58:01-DRB1*03:01 (A33-B58-DR3) and A*02:07-C*01:02-

B*46:01-DRB1*09:01 (A2-B46-DR9) which are present in relatively high 

frequencies of about 7% and 6% respectively in the Singapore Chinese 

population who are predominantly descended from Southern China [173, 174] 

. In contrast to earlier studies which examined only one representative of a 

particular MHC haplotype, we compared 3 unrelated individuals for each CEH 

and subjected them to whole genome sequencing. The data will provide an 

in-depth, nucleotide-resolution view of these prominent Asian CEHs, and 

assess intra-haplotypic conservation and variation in the extended MHC 

region. 
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4.2 Results 

4.2.1 Fine-scale Mapping of A33-B58-DR3 and A2-B46-DR9 CEHs using 

Deep-sequencing 

The use of high density SNP typing at 1 SNP per 665 bp as described in 

the previous chapter demonstrated that conserved extended haplotypes of 

HLA identical independent individuals appeared to be indistinguishable. It is 

as yet not known if this conservation is maintained at the nucleotide level. To 

do so, six HLA homozygous cell lines B58AL, B58SC, B58CF, B46BM, 

B46ZS and B46CM were subjected to whole-genome sequencing (WGS) 

using the Complete Genomics (CG) platform.  Raw reads were processed by 

the Complete Genomics Standard Sequencing Pipeline 2.0, and assembled 

according to the Genome Reference Consortium Human genome build 37 

(GRCh37) [150]. For each sequenced genome, the mean coverage per base 

pairs was at least 37.13 times covering no less than 94.18% of the extended 

MHC region (28.5Mb to 33.5Mb) (Table 4.1). Nearly half of the uncovered 

base pairs were within the 32,435,000 – 32,660,000 segment encompassing 

the HLA-DRB, HLA-DQA1, HLA-DQB1, pseudogenes and 43.66% - 60.42% 

of this 225kb region was not covered (Figure 4.1). This low rate of sequence 

calling is likely due to the highly polymorphic nature of the HLA-DRB region 

where multiple insertions and deletions of large genomic sequence result in 

haplotype-specific rearrangements of the HLA-DRB genes and its 

pesudogenes, making the alignment of this segment particularly difficult. 

Hence, the HLA-DRB region, together with another region between 

31,210,000-31,235,000 where low coverage was observed due the repetitive 

sequence, were excluded from comparative analysis. 
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Table 4.1 CG sequencing coverage and performance. The mean 
coverage is at least 37.13 per cell line, resulting in high confidence calls for at 
least 94% of the MHC region for each of the cell line. 

Cell lines 
Mean 
Coverage 
per bp  

% bp 
Coverage  
>5X 

% bp 
Coverage 
 >20X 

% bp 
Coverage 
 >40X 

% of MHC 
region 
covered  

B58AL 44.67 98.14 91.09 61.40 95.31 

B58SC 43.69 98.10 90.57 59.44 95.15 

B58CF 39.06 97.96 88.14 49.10 94.66 

B46BM 43.54 98.13 90.31 58.93 95.03 

B46ZS 44.30 98.11 90.88 60.94 95.06 

B46CM 37.13 97.86 86.64 44.20 94.18 
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Figure 4.1 No-call and coverage profile for each cell line across the MHC 
region. The average GC corrected coverage and the no-call counts were 
binned into non-overlapping 20kb windows. Low coverage and high no-call 
rate were predominantly located at the HLA-DR region. 
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To assess the quality of data generated from the CG platform, genotypes 

calls between 25Mb to 35Mb from the Illumina Human 1M-Duo BeadChip 

SNP array were compared with the deep sequencing data. The results 

showed a high concordance rate of 99.5% for A33-B58-DR3 and 99.6% for 

A2-B46-DR9 between SNPs genotyping and the CG data (Table 4.2). 48 call 

sites among the discordant data were randomly selected for validation by 

PCR re-sequencing.  Of these, 45/48 were found to be consistent with the CG 

data, while only 3/48 agreed with the SNP genotyping array data (Table 4.3), 

indicating that the CG sequencing platform in general delivers higher call 

accuracy than the SNP genotyping platform. 

Next, the range of genomic conservation in each sample was assessed 

using homozygosity levels in the deep sequencing data. Nucleotides within 

the 25Mb -35Mb region of chromosome 6 were binned into windows of 5kb, 

and the numbers of homozygous and heterozygous reference single 

nucleotide variants (SNV) calls within each bin were examined. Stretches of 

homozygosity were defined to be regions with no more than four consecutive 

windows having the zygosity SNVs ratio (number of homozygous SNVs 

against total number of SNV in a given window) of less than 0.95. The 

resulting conservation region in each genome coincided with the region 

determined using the SNPs genotyping platform (Table 4.4) and regions 

outside the conserved segments have comparably much higher number of 

heterozygous reference SNVs (Figure 4.2).  Within the conserved segment 

boundaries,  
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Table 4.2 SNP genotype call differences between Illumina Human 1M-
Duo BeadChip and CG sequencing. Hmz indicates homozygous genotype 
call and htz indicates heterozygous genotype call. 

Cell line  
Positions 
Compared  

Differences 
hmz/hmz  

Differences 
hmz/htz  

Differences 
htz/hmz  

Differences 
Total  

% 
Match  

B58AL  9916  15  1  23  39  99.6  
B58SC  9876  14  4  26  44  99.6  
B58CF  9880  12  8  27  47  99.5  
B46BM  9908  11  8  14  33  99.7  
B46ZS  9903  13  3  14  30  99.7  
B46CM  9904  12  10  13  35  99.6  
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Table 4.3 Re-sequencing experiments to assess mismatches between 
SNP genotyping and CG sequencing platform in samples carrying A33-B58-
DR3 and A2-B46-DR9 haplotype. 45/48 of the positions assessed were in 
agreement with the CG data. 

A33-B58-DR3 

Position rsID  Ref  

B58AL B58SC B58CF 

SNP 
Array CG PCR 

SNP 
Array CG PCR 

SNP 
Array CG PCR 

29,796,376 rs12722477 C C/C A/A ?/? C/C A/A A/A C/C A/A A/A 

29,819,909 rs2508053 C C/T C/C C/C C/T C/C C/C C/T C/C C/C 

30,383,046 GA005234 C C/G C/C C/C C/G C/C C/C C/G C/C C/C 

30,418,354 rs34111681 G T/T G/G G/G T/T G/G G/G T/T G/G G/G 

31,170,514 rs9263870 A A/G G/G G/G A/G G/G G/G A/G G/G G/G 

31,321,327 rs9266095 A A/G A/A A/A A/G A/A A/A T/T G/G ?/? 

31,639,979 rs9267532 C C/T T/T T/T C/T T/T T/T C/T T/T T/T 

31,655,438 rs10573 G A/G A/A A/A A/G A/A A/A A/G A/A A/A 

31,697,558 rs707916 G A/G A/A ?/? A/G A/A ?/? A/G A/A A/A 

32,130,937 rs10680 T C/C T/T T/T C/C T/T T/T C/C T/T ?/? 

33,036,549 rs17509489 T G/G T/T ?/? G/G T/T T/T G/G T/T ?/? 

            
A2-B46-DR9 

Position rsID  Ref 

B46BM B46ZS B46CM 

SNP 
Array CG PCR 

SNP 
Array CG PCR 

SNP 
Array CG PCR 

29,801,958 rs2743944 T T/C T/T T/C T/C T/T T/C T/C T/T T/C 

29,913,509 rs1062405 T C/C T/T T/T C/C T/T T/T C/C T/T T/T 

29,942,191 rs2232236 T G/G del/del del/del G/G del/del ?/? G/G del/del del/del 

30,704,985 rs28380598 T C/C T/T T/T C/C T/T T/T C/C T/T T/T 

31,079,236 rs1265055 G A/G A/A A/A A/G A/A A/A A/G A/A A/A 

31,082,304 rs3130554 T G/T T/T T/T G/T T/T T/T G/T T/T T/T 

32,130,937 rs10680 T C/C T/T T/T C/C T/T T/T C/C T/T ?/? 

33,036,549 rs17509489 T G/G C/T C/T G/G T/T T/T G/G T/T T/T 
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Figure 4.2 Zygosity profile of variants derived from deep sequencing. The 
region chr6: 25Mb – 35Mb was binned into non-overlapping windows of 20kb. 
The number of homozygous (hmz) and heterozygous (htz) variants with 
respect to the NCBI Build 37.2 reference sequence was calculated in each 
bin. For each of the six individuals, the upper panel plot represents the 
homozygous variants counts while the lower panel plot represents the 
heterozygous variants counts across the region of interest.  
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Table 4.4 Range of conserved extended region for the six cell lines 
derived from CG data. 

Cell line Start End 
Length 
(Mb) 

No. of htz 
variants  

B58AL  26,630,000 33,830,000 7.48 595 

B58SC  26,350,000 33,810,000 7.46 578 

B58CF  28,350,000 32,950,000 4.60 455 

B46BM  29,367,500 32,917,500 3.55 221 

B46ZS  29,630,000 33,890,000 4.26 146 

B46CM  29,550,000 32,650,000 3.10 167 
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CG data showed at least 99.99% homozygosity in all samples, with the A33-

B58-DR3 haplotypes samples having on average 8.33 heterozygous calls per 

100kb, while the A2-B46-DR9 haplotypes samples having on average 4.89 

heterozygous calls per 100kb. Large numbers of homozygous reference 

variant calls were observed within or proximate to the HLA genes, highlighting 

the difference in the HLA allelic combination between the reference genome 

and our samples. Despite the extensive number homozygous reference 

variants, small pockets of heterozygous variants randomly spread across the 

conserved MHC region were observed. Of interest, spike of heterozygosity 

centromeric of the HLA-A gene was detected in the A33-B58-DR3 samples 

even though high density SNP profiling have indicated high level of 

homozygosity in this genomic region. This characteristic has not been 

observed in the previous studies of CEH as the high density SNPs 

geneotyping platform is not able to provide the necessary resolution. 

 

4.2.2 Intra-haplotypic Conservation and Variation 

The use of three HLA homozygous diploid samples of each Asian CEH 

offered the opportunity to characterize the extent of intra-haplotypic variation 

and conservation. Using the CG platform, the three diploid samples of each 

haplotype yielded 6 haploid sequences, which were compared to each other 

at each nucleotide position across the length of the sample with the shortest 

range of homozygosity. The range compared for A33-B58-DR3 was 

chr6:28,350,000-32,950,000, and the range compared for A2-B46-DR9 was 

chr6:29,630,000-32,650,000. Nucleotide positions having ambiguous or low 

confidence score in two or more haploid would be regarded as no-called (“N”) 

in the consensus sequence. Accounting for the gaps within the region, we 
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were able to establish 4,135,945 bp of phase-discrete sequence 

representative of the A33-B58-DR3 haplotype and 2,720,646 bp of phase-

discrete sequence representative of the A2-B46-DR9 haplotype. Next, the 

number of positions with SNVs and insertions/deletions (indels) between the 

six sequences were computed, and plotted against chromosome position 

(Figure 4.3). Within the conserved region, the degree of intra-haplotype 

variation was found be exceptionally low; 293 SNVs and 52 indels were 

identified in the A33-B58-DR3 haplotype, while 238 SNVs and 51 indels were 

observed in A2-B46-DR9 haplotype. A closer inspection revealed that 

majority of the intra-haplotypic variations in each MHC haplotype was 

localized to a single region. For example, spikes of variation localized to a 

120kb region covering the ZFP57 and HLA-F gene (chr6:29,600,360 – 

29,721,396) were found in the A2-B46-DR9 haplotype but not in A33-B58-

DR3 haplotype (Figure 4.4A) and these variations make up >70% (171/238) 

of the total A2-B46-DR9 intra-haplotyic SNVs. Similarly, elevated number of 

A33-B58-DR3 intra-haplotypic variations accounting for 90% (262/293) of 

SNVs were observed at a 240kb region covering the HLA-A gene (chr6: 

29,733,502 – 29,971,973) while the number of intra-haplotypic variation in the 

A2-B46-BR9 in this region was distinctly lesser (Figure 4.4B). The estimated 

nucleotide diversity value (π) between the A33-B58-DR3 haploid sequences 

and A2-B46-DR9 haploid sequences was 7.08 X 10-5 and 8.75 X 10-5 

respectively. In comparison, these values are 38- to 48-fold lower than the 

nucleotide diversity found between PGF and COX (3.4 X 10-3) [15], the two 

common MHC haplotype found in the European population and at least 5-fold 

lower than the nucleotide diversity between any two haplotypes across the 

human genome [175, 176]; indicative of extreme low nucleotide diversity in 

the A33-B58-DR3 and A2-B46-DR9 MHC haplotypes. 
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Figure 4.3 Distribution of intra-haplotypic variations across the MHC 
region. Each data point on the plot represents the number of SNV counts 
(red) and the number of indel counts (blue) in a non-overlapping 5kb window. 
The number of variations for each haplotype was derived from the 
comparisons of six haploid chromosomes at every possible nucleotide 
position across the MHC region. The pink bars indicated regions where the 
sequences are ambiguous and nucleotide positions within these regions are 
not compared. 
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Figure 4.4 Spikes in Intra-haplotypic variations found in (A) A2-B46-DR9 
haplotype and (B) A33-B58-DR3 haplotype. The variation counts were binned 
into non-overlapping 2kb windows. Heighten intra-haplotypic variation 
genomic segments extended up to 120kb and 240kb were identified in the 
A2-B46-DR9 and A33-B58-DR3 haplotype respectively.  
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Outside the boundaries of conserved region, the number of variations 

between the haploid sequences was significantly increased. 

Using NCBI RefSeq Build 37.2 gene annotation, intra-haplotypic 

variations were grouped into functional categories (Table 4.5) with the 

majority of the variants (~80%) resided in the non-coding region, while less 

than 1.5% of all variants were located in the exonic region (Figure 4.5). 

Coding region variants showed equal proportion of missense and 

synonymous mutations (Table 4.6). Surprisingly, missense mutations were 

found in A33-B58-DR3 haplotype samples, on exon 7 of HLA-A and exon 1 of 

HLA–B. To validate these variants, the HLA-A exon 7 (position 29,913,037) 

missense variant was cloned and re-sequenced. The results confirmed its 

presence in all three samples of A33-B58-DR3 (Figure 4.6, Figure 4.7 and 

Figure 4.8) and within this 479 bp cloned fragment, 13 heterozygous and 15 

homozygous variants were in agreement with the CG data (Table 4.7). Using 

in-silico tools to predict the possible functional effect of these missense 

mutations [177, 178], it was found that the induced amino acid substitutions 

would have minimal effect on the protein function (Table 4.6). In total, 77 

novel SNV variants were identified within the A33-B58-DR3 samples, and 50 

novel SNV variants within the A2-B46-DR9 samples that were not annotated 

in dbSNP build 132, the 1000 Genome Project and the International HapMap 

Project (Table 4.8 and Table 4.9). The discovery of these novel SNPs 

provides a potentially powerful set of markers in disease-association studies. 
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Figure 4.5 Functional annotation of variants for each haplotype based on 
NCBI gene annotation Build 37.2. It was noted majority of the variants were 
found in the non-coding region while only less than 1.5% were found in the 
exonic region for both haplotypes.  
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4.2.3 Intra-haplotypic Variations in A2-B46-DR9 Influence the 

Expression of ZFP57 

Although the intra-haplotypic variants appear to be highly homologous, 

single nucleotide differences may exert functional consequences. To illustrate 

this mechanism, SNP rs29228 (chr6: 29,623,739) has been found to exert a 

cis-acting effect on the expression level of the Zinc Finger Protein 57 homolog 

(ZFP57) [179], located 16.43kb centromeric to rs29228. It was reported that 

carriers of the “AA” but not the “GG” genotype of rs29228 would support 

expression of ZFP57. Such locus where genetic variation is associated with 

the gene expression variation is commonly known as expression quantitative 

trait loci (eQTL) SNP [129]. A more recent study revealed four additional 

eQTL SNPs (chr6:29,644,502 – rs375984, chr6:29,647,628 – rs416568, 

chr6:29,648,398 – rs365052 and chr6:29,648,564 – rs2747431), located in 

the ZFP57 introns and promoter region, were associated with the expression 

of ZFP57 [180]. Interestingly, these SNP positions are intra-haplotypic 

variants in A2-B46-DR9 but not for A33-B58-DR3 haplotype. To learn whether 

the difference in nucleotide at these positions would affect the expression of 

ZFP57, reverse transcription quantitative PCR was performed to evaluate the 

ZFP57 mRNA levels in B58AL, B58SC, B58CF, B46BM, B46ZS, B46CM as 

well as the two European cell line COX and QBL. Noticeably, the COX, 

B46BM and B46CM cell line possess the “A” allele at chr6: 29,623,739, “T” 

allele at chr6: 29,644,502, “A” allele at chr6:29,647,628, “C” allele at 

chr6:29,648,398 and “T” allele at chr6:29,648,564 exhibited evidence of 

ZFP57 expression while B46ZS, possessing the alternate allele at these 

positions, have no ZFP57 expression (Figure 4.9). 
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Figure 4.9 Association of A2-B46-DR9 intra-haplotypic variants with 
ZFP57 expression. RT-qPCR was performed to determine the mRNA level of 
ZFP57 in two biological replicates of COX, QBL, B46BM, B46ZS, B46CM, 
B58AL, B58SC and B58CF cell lines. Experiments were carried out in 
triplicates for each of the biological replicate. Triangle symbol indicates 
quantitative expression derived from biological replicate 1 while square 
symbol indicates quantitative expression derived from biological replicate 2. 
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Similarly, no ZFP57 expression was observed in the A33-B58-DR3 and QBL 

cell lines that possess the alternate alleles. This result highlights the 

possibility that intra haplotypic variants would have an effect on the 

expression of genes within the MHC region among individuals carrying 

identical MHC CEHs. 

The presence of eQTL SNPs associated with ZFP57 indicates possible 

regulatory role for polymorphic sites in the genomic region proximate to these 

eQTL SNPs. To identify putative regulatory variants to ZFP57, we examined 

the intra-haplotype sequence variations in the A2-B46-DR9 cell lines in the 

90kb genomic region (chr6:29,600,000 – 29,690,000) encompassing the 

ZFP57 gene. A total of 202 A2-B46-DR9 intra-haplotypic SNVs were found 

within the genomic segment of interest and the majority of these variants 

were localised centromeric of the ZFP57 (Figure 4.10). Interestingly, the 

nucleotide call of the 170 variants in the B46ZS cell line matched with the 

three cell lines carrying the A33-B58-DR3 haplotypes, suggesting these sites 

as potential regulatory variant candidates. Next, we determined the epigenetic 

landscape of this 90kb genomic region using the histone modifications data in 

BLCL obtained from the ENCODE project [181]. Sequences bearing 

H3K27ac, H3K4Me1, H3K4Me3 marks and DNase I hypersensitivity sites are 

reported to indicate the presence of enhancers and transcriptional activities 

[182-184].  Our analysis of the histone marks showed two elevated peaks of 

histone modification overlapped with a cluster of 25 intra-haplotypic variants 

at the intron 1 or promoter region of ZFP57 (chr6: 29,645,000 – 29,650,000) 

(Figure 4.10).  This provides suggestive evidence that polymorphic sites in 

this segment could have regulatory function.  
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Figure 4.10 Mapping of putative regulatory variants for ZFP57. Epigenetic 
landscape in the 90kb genomic region. Histone modifications data from the 
ENCODE project based on the profiling of B-LCL (GM12878) were accessed 
through the UCSC Genome Browser (http://genome.ucsc.edu/). The lower 
panel represents the intron 1 or promoter region of ZFP57. Through in-silico 
analysis, 10 polymorphic sites in this region were identified to interact with 
transcription factors. 
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In-silico transcription factors binding sites prediction using Physbinder [185] 

revealed 10/25 of the polymorphic sites were potential binding sequence for 

transcription factors such as GATA1, GATA2, IRF3, NFYA, ETS1 and BRCA1 

(Figure 4.10) and sites with no predicted transcription factors binding were 

mostly located at the region between the two histone modification peaks. 

These highlight that the 10 sites of intra-haplotypic variant have potential 

binding affinity to transcription factors. 

 

4.2.4 Inter-haplotype Evaluation Reveals Non-random Genetic 

Variation across MHC Region 

Next, the A33-B58-DR3 and A2-B46-DR9 CEH were compared against 

eight haplotypes of European origin: PGF, COX, QBL, APD, DBB, MANN, 

MCF and SSTO [14] to examine the degree of sequence variation or 

similarity. The derived consensus haploid sequences for the A33-B58-DR3 

and A2-B46-DR9 haplotypes were aligned pairwise with each of the eight 

European MHC haploid data. For each pairwise comparison, sequence gaps 

and positions of no-calls in either haplotype compared were excluded, we 

observed distinct regions of increased variation at chromosomal regions 

around HLA-A (29.6-30.0Mb) and HLA-C – HLA-B (31.25-31.5Mb) (Figure 

4.11). Since the various haplotypes compared have different HLA-A, -B and -

C alleles, divergence detected at these loci are expected. In addition, even 

though the HLA loci alone are less than 12kb in length and the peaks of 

variation can stretch to more than 200kb in length.  
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Figure 4.11 Pairwise inter-haplotypic variations across MHC region. A33-
B58-DR3 and A2-B46-DR9 haplotype sequence were compared with each of 
the eight common European-descent MHC haplotype (PGF, COX, QBL, DBB, 
SSTO, MCF, MANN, APD). The variation counts were binned into non-
overlapping 5kb windows. The red bars indicate gaps in the sequence of the 
European MHC haplotypes. Elevated sequence variation between haplotypes 
are localized to regions proximate to the HLA genes. 
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It has been reported that the flanking regions of the HLA genes extending up 

to thousands of kilobases can still be strongly linked with the associated HLA 

alleles [163, 174], and thus explains the extended increased in variation 

surrounding the HLA genes between haplotypes. We also performed 

functional characterization of the variants between haplotypes specifically the 

comparison of the 2 Asian CEH haplotypes with PGF and COX. 

Unsurprisingly, the number of inter-haplotype variation was significantly 

higher than the number of intra-haplotype variation (Table 4.6). Likewise, 

there was an elevated percentage (~2.2%) of inter-haplotype variation 

occurred in the gene coding region. The estimated π between the Asian 

haplotypes was 2.70 X 10-3, and between the Asian and the European 

haplotypes the π values range from 2.11 X10-3 to 2.55 X 10-3. These values 

indicate that the MHC region sequence differences between the Asian 

haplotypes are not significantly greater or lesser than between Asian and 

European. 

To examine the patterns of inter-haplotype variation, we binned the 28.35-

32.95Mb into windows of length 5kb, and a frequency histogram of the 

number of variations for each window was plotted (Figure 4.12A).The 

distribution observed was skewed left, with most windows had relatively low 

amounts of variation, albeit a few windows had extremely large amounts of 

variation. There is no window that had less than 1 variant, indicating that 

there is no large region of complete conservation across haplotypes within the 

extended MHC region. Figure 4.12B shows the range of the number of 

variations for each 10-percentile block. The top 10% of windows with the most 

number of variants have between 28-109 variants each, which are 5-20 times 

the MHC region-wide average of 5.39, implying that variation between the 

haplotypes across the MHC region is generally constant except in regions 

surrounding the HLA genes. Next, we identified regions of length >30kb with 
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all windows containing below 3 variants or above 15 variants (Table 4.10) to 

mark out regions of low and high variation respectively.  

Surprisingly, a cluster of low-variation regions was observed surrounding 

the RCCX region, which included the C2 and RAGE loci.  This may indicate 

conservation of these essential components of the innate immune system.  

The regions containing the highest amounts of variation were, as expected, 

the class I and class II loci and their neighboring regions.  The amount of 

variation in these regions is remarkable, with on average 8 times the amount 

of variation compared to the MHC region-wide average.  
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Table 4.10 Regions of low and high variation between the 
sequenced MHC haplotypes 

Regions with variations below genome average  

Start End 
Length 
(kb) 

Mean 
variant 
/5kb  Genes 

28,350,000 28,415,000 65 0.61 ZSCAN12, ZSCAN23 

28,430,000 28,495,000 65 1.96 GPX6 

28,560,000 28,670,000 110 0.78 Downstream SCAND3, Upstream 
LOC401242 

29,545,000 29,630,000 85 1.47 SNORD32B, OR2H2, GABBR1 

30,545,000 30,680,000 135 1.49 PPP1R10, MRPS18B, ATAT1, 
C6orf136, DHX16, PPP1R18, NRM 

31,690,000 31,805,000 115 1.66 
DDAH2, CLIC1, MSH5, SAPCD1, 
VWA7, VARS, LSM2, HSPA1L, 
HSPA1A, HSPA1B 

31,845,000 31,895,000 50 1.90  EHMT2, C2, ZBTB12 

31,905,000 31,965,000 60 1.39 C2, CFB, NELFE, SKIV2L, DOM3Z, 
STK19, C4A, C4B 

31,980,000 32,160,000 180 1.84 
CYP21A2, TNXB, ATF6B, FKBPL, 
PRRT1, LOC100507547, PPT2, 
EGFL8, AGPAT1, RNF5, AGER,PBX2 

32,855,000 32,895,000 40 1.35 LOC100294145 

     

Regions with extreme variation  

Start End 
Length 
(kb) 

Mean 
variant 
/5kb  Genes 

29,665,000 29,715,000 50 16.16 HLA-F 

29,730,000 29,805,000 75 26.54 HCG4, LOC554223, HLA-G 

29,820,000 29,975,000 155 36.93 HLA-H, HCG4B, HLA-A, HCG9 

31,005,000 31,105,000 100 19.59 HCG22, C6orf15, PSORS1C1, CDSN 

31,155,000 31,360,000 205 45.62 HCG27, HLA-C, HLA-B 

31,375,000 31,415,000 40 22.38 MICA 

32,190,000 32,220,000 30 18.97 Downstream NOTCH4 

32,665,000 32,775,000 110 37.40  HLA-DQA2, HLA-DQB2 
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Figure 4.12 Distribution of inter-haplotypic variation. (A) Frequency 
histogram of the number of variations for each 5kb window. (B) Cumulative 
distribution for the number of variations per 5kb bin. 
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The RCCX region within chr6:31,939,646-32,077,151 is a common multi-

allelic copy number variation locus.  The number of modules and type of C4 

complement genes within the RCCX region vary between individuals and the 

gene dosage of C4A and C4B have been associated with various disorders.  

For instance, lower levels of C4A have been associated with susceptibility for 

systemic lupus erythematosis [186], while lower levels of C4B have been 

associated with increased rates of acute myocardial infection and stroke 

[187]. To identify the number and type of RCCX modules associated with 

each of our haplotypes, we interrogated the RCCX region of each sample 

using a SYBR Green real-time PCR assay with primers specific for C4A, C4B, 

C4L, C4S, TNXA, and RP1.  The total number of modules can be determined 

by three separate counts: (C4A + C4B)/2, (C4L + C4S)/2, and (TNXA + 2)/2.   

In all samples, these counts gave a consistent total number of modules, 

thus showing internal validation of results. The A33-B58-DR3 haplotype was 

found to be monomodular, with one copy of C4A which was long.  The A2-

B46-DR9 haplotype was found to be bimodular, with 1 copy of C4A and 1 

copy of C4B, one of which was long, and the other short (Table 4.11).  We 

also report that APD, whose RCCX modular configuration is previously not 

determined, has 1 copy of C4A and 1 copy of C4B, both of which are long. 
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Table 4.11 RCCX modular structure in the 6 Singaporean Chinese cell 
lines and the APD cell line (European origin). The number of modules in each 
cell line was determined by the following counts: (C4A + C4B)/2 or (C4L + 
C4S)/2 or (TNXA + 2)/2. These 3 independent counts served as an internal 
verification for the number of RCCX modules carried by each cell line. 

RCCX Structure Sample C4A C4B C4L C4S TNXA 

Monomodular  
B58SC 2 0 2 0 0 
B58AL 2 0 2 0 0 
B58CF 2 0 2 0 0 

Bimodular  

B46BM 2 2 2 2 2 
B46ZS 2 2 2 2 2 
B46CM 2 2 2 2 2 
APD 2 2 4 0 2 

 

 

 

 

 

 

 

122 
 



4.2.5 Conservation of HLA-DR Region between Asian and European 

Haplotypes 

The availability of the Asian MHC haplotype sequences together with the 

sequences of the eight European haplotypes offers an excellent opportunity 

to study the MHC haplotypic relationship and provides insights into their 

recent evolutionary history. To do this, phylogenetic trees were derived from 

the SNP sequences of the MHC haplotypes and a total of four phylogenetic 

trees were built; representing the extended MHC region (29.65-33.0Mb), 

HLA-A region (27.0-30.2Mb), HLA-B region (31.1-31.6Mb) and HLA-DRB1 

region (32.3-32.8Mb) (Figure 4.13A-D). The analysis showed that the trees 

were typically split into two main branches and the branching was not 

determined by the population ethnicity. In fact, the two Asian haplotypes 

were never found to form sister nodes with each other; instead, each 

Asian haplotype could be consistently found associating under the 

same clade with specific European haplotypes.  For instance, the A33-

B58-DR3 haplotype cell lines were found to be more closely related with the 

COX and QBL European haplotype at the HLA-DRB1 region than with the A2-

B46-DR9 haplotype. This close relation of the Asian A33-B58-DR3 haplotype 

with COX and QBL is likely because these haplotypes carry the same HLA-

DRB1*03:01 allele; the phylogenetic tree at the HLA-A and HLA-B region did 

not show such close association between the haplotypes. Likewise, the A2-

B46-DR9 haplotype is more closely related to the DBB and MCF European 

haplotypes and this association is due to common possession of the HLA-A2 

subtype allele. These analyses imply that the MHC haplotypic association is 

defined by the underlying HLA allelic typing rather than the population 

differences. 
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Figure 4.13 Phylogenetic relationships between Asian MHC haplotypes 
and European MHC haplotypes. Maximum likelihood (ML) tree derived from 
SNP sequence of the MHC haplotypes covering the (A) chr6:29.65 – 
33.00Mb segment (18,781 SNPs), (B) chr6:29.70 – 30.20Mb segment (5,111 
SNPs), (C) chr6:31.10 – 31.60Mb segment (3,617 SNPs) and (D) chr6:29.70 
– 30.20Mb segment (5,237 SNPs). The bootstrap value for each branch is 
indicated at the branching point. Generally most branches were able to 
achieve bootstrap values of >75 suggesting the reliability of the phylogenetic 
tree.   
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The COX and QBL cell lines were previously reported to have almost 

identical genomic sequences covering the HLA-DRB1, -DQA1 and DQB1 

genes [15], and the phylogenetic analysis has demonstrated the close 

relationship between these haplotypes with the Asian A33-B58-DR3. To 

investigate the sequence relationship between the Asian and European 

genomes, we extracted 4441 consecutive SNPs derived from CG sequencing 

for the three cell lines carrying HLA-DRB1*03:01 allele; and compared with 

the COX and QBL nucleotide profiles. Given that the sequence length and 

genes composition are not entirely similar between the Human Reference 

Sequence Assembly 37.2 and the European haplotypes at the HLA-DR 

region, for this analysis, the COX sequence and genes annotation was used 

as reference. The selected 4441 SNPs spanned over 402,427bp of the COX 

sequence, encompassing the HLA-DRA, -DRB1, -DQB1, -DQA2, -DQB2 and 

-DOB genes. From the comparison, indeed, a 160kb segment enclosing the 

HLA-DR genes of the A33-B58-DR3 haplotype was almost identical to COX 

and QBL (Figure 4.14). Of the 1508 SNPs that fall within this 160kb segment, 

1506 SNPs have nucleotide profiles that matched with COX and QBL, 

illustrating a remarkable conservation at the HLA-DR region among these 

haplotypes. The immediate centromeric end of this segment corresponds to a 

recombination hotspot providing strong evidence for haplotype break-up. 

Interestingly, the conservation region range between A33-B58-DR3 cell lines 

and QBL was even longer, extending up to almost 300kb. A smaller genomic 

segment of 58kb containing the HLA-DOB was detected to be almost identical 

to COX but not QBL. Again, this 58kb segment is flanked by recombination 

hotspots at both its telomeric and centromeric ends. These extreme 

conservations between the Asian and European haplotypes point to a shared 

recent common ancestor at the HLA-DR region. 
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Figure 4.14 A33-B58-DR3 SNPs comparison with COX and QBL in the 
HLA-DRB region. COX sequence assembly and gene annotation 
(HSCHR6_MHC_COX_CTG1) was used as the reference for the comparison. 
The 4441 SNPs of B58AL, B58SC and B58CF, spanning over 402,427bp of 
the COX sequence, were included in this comparison.  Dark blue bars 
indicate shared segment found in all samples while the light blue columns 
indicate shared segment found >2 samples but not in all samples. 
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4.3 Conclusion 
 

In this study, with the use of HLA homozygous cell lines, we 

demonstrated extensive sequence conservation in two common MHC 

haplotypes of Asian ancestry - A33-B58-DR3 and A2-B46-DR9 by high 

throughput genome sequencing. We also for the first time described the 

extent of intra-haplotypic variation within the conserved boundaries of the 

MHC CEHs and revealed haplotype-specific novel variations. More 

significantly, we demonstrated that intra-haplotypic sequence variation in the 

cell lines carrying A2-B46-DR9 haplotype are associated with the expression 

of ZFP57; suggesting possible functional role in some of these polymorphic 

sites. Another major finding is that extreme sequence conservation extending 

up to 160kb at the HLA-DR region was found between the Asian A33-B58-

DR3 haplotype and the European haplotypes (COX:A1-B8-DR3; QBL:A26-

B18-DR3); implying individuals carrying these haplotypes shared a common 

ancestor. Overall, this approach has allowed us to assemble at least 90% 

phase-resolved MHC sequence representative of the A33-B58-DR3 and A2-

B46-DR9 haplotype. The availability of these alternate Asian MHC sequences 

would complement the eight European MHC haplotype sequenced by the 

MHC Haplotype Project and provides a framework to study the MHC diversity 

and variations. 
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Chapter 5: 

Transcriptome Landscape in MHC 
Conserved Extended Haplotypes 
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5.1 Introduction 

Gene expression profile plays an important role in defining the phenotypic 

status in complex diseases. Description on gene transcripts, transcripts 

variability and isoform structure can provide insights on how differential gene 

expression leads to functional alteration that define phenotypic status. The 

MHC genomic region of approximate 4Mb has been associated with more 

than 100 diseases, including cancers, autoimmune diseases, infectious 

disease susceptibilities, neurodegenerative, cardiovascular, and metabolic 

disorders [6, 7]. Furthermore, many of these genetic associations are 

implicated by specific HLA haplotype marked by extensive LD most notably 

found in the common CEHs [13]. The ability to study the MHC transcription 

profile at haplotypic resolution can yield better understanding of the effects of 

HLA haplotypic differences on gene expression. 

Currently, transcriptome characterization for the human MHC at 

haplotypic resolution has proven to be complicated. Firstly, the probes in the 

standard commercial expression microarray are annotated to the human 

genome reference sequence, thus are unable to account for the population 

MHC sequence and haplotype variation. The consequence of this is that 

individuals with different HLA haplotypic background and sequence profile 

from the reference sequence may not display expression of certain genes 

because the probes are unable to anneal to their unique gene sequences 

[188, 189]. This could distort the evaluation of gene expression and lead to 

erroneous conclusions. Secondly, majority of the individuals carry two distinct 

HLA haplotypes; hence in such circumstances, it is difficult to ascertain the 

haplotypic origin of a particular RNA transcript and complicates the analysis 

for association between HLA haplotypes and gene expression. To overcome 

these limitations, Vandiedonck and colleagues [179] used a hybrid microarray 

that includes alternate allele probes to account for known variation in gene 
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sequences. These alternate allele probes were designed based on the 

annotated sequence variation (SNPs) and known segmental duplication in the 

MHC region. The customized MHC array was then applied to the PGF, COX 

and QBL MHC-homozygous LCLs of European-descent and the analysis 

revealed extensive haplotype-related transcriptional differences. Despite the 

impressive efforts to account for the sequence diversity in the MHC region, 

the customized MHC array could not have comprehensively covered all 

possible MHC variation across populations and is limited in revealing novel 

transcripts and splicing isoforms. More importantly, in the study, each MHC 

haplotype was represented by a single cell line; hence there is a possibility 

that the observed transcriptional differences might be attributed to the 

inherent cell lines variation but not the haplotypic variation. 

In this chapter, we adopted the RNA-seq approach to interrogate the 

MHC transcription landscape of Asian CEH (A33-B58-DR3 and A2-B46-DR9) 

using multiple HLA homozygous LCLs for each of the haplotypes. The RNA-

seq approach can allow us to annotate and quantification of all expressed 

transcripts at high level of sensitivity and accuracy [190, 191], accounting for 

the limitations in microarray-based methods. Here, we aim to assess MHC 

haplotype-related expression difference in the Asian CEHs as well as to 

perform a comparative transcriptomic analysis of the Asian and European 

CEHs.  
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5.2 Results 

 

5.2.1 RNA-seq Experimental Design 

RNA-seq datasets were generated from purified total RNA isolated from 

six selected B-LCLs – COX, QBL, B58AL, B58SC, B46BM and B46ZS. Prior 

to the isolation of RNAs, the cell lines were cultured independently in 

duplicates to five passages. The cell lines were then stimulated with 200nm 

PMA and 125nM ionomycin for six hours and harvested at approximate 1 X 

106 cells per ml; the supernatant was then used for the ELISA experiement. 

DMSO were added to unstimulated cell cultures to act as controls. To ensure, 

all the cell lines were sufficiently stimulated and the replicates displayed 

similar profiles, ELISA was performed to quantify the levels of TNF-alpha and 

IL6 proteins in both unstimulated and stimulated cultures. TNF-alpha and IL6 

were previously reported to be up-regulated in B-LCLs [192, 193] and hence 

were selected for the ELISA experiments. The ELISA experiments showed a 

clear increase in production of TNF-alpha and IL6 in stimulated samples 

when compared to the control samples; with an exception for B46ZS cell line 

where there was no or minimal production of IL6 in both stimulated and 

unstimulated culture (Figure 5.1). In addition, consistent proliferation patterns 

of TNF-alpha and IL6 were observed in both replicates across all the cell lines. 

Total RNA were then extracted from the cell pellets collected after stimulation 

and cytoplasmic ribosomal RNA were removed from the DNase-treated total 

RNA. The resulting RNA was then used to prepare RNA-seq libraries 

consisting individually-barcoded RNA fragments and these fragments were 

then sequenced using the Illumina Hi-Seq 2000 sequencing machine.   
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Figure 5.1 PMA and ionomycin stimulation determined by ELISA. 
Stimulation was performed for six hours and the supernatant was then used 
for the ELISA. DMSO was added in amount equal to the PMA and ionomycin 
into unstimulated cell cultures to act as controls. The ELISA was performed in 
triplicate for each B-LCL. 
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5.2.2 RNA-seq Data Processing, Reads Filtering and Mapping Results 

We had outlined a systematic approach consisting of six phases to 

effectively handle and accurately infer biological implications from the large 

amount data generated by sequencing of the entire human transcriptome 

(Figure 5.2). The RNA-seq analysis in this study would follow closely to the 

workflow of this strategy.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Schematic for RNA-seq workflow 
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For each sample, we obtained 78,890,079 ± 7,103,330 (mean ± standard 

deviation) 75bp paired-end reads from the RNA-sequencing (Table 5.1). 

Because of the inherent nature of the NGS platforms, there exists a sizeable 

number of sequencing errors and sequence biases in the raw reads [194]. 

Therefore, it is essential to perform quality control to filter out reads of low 

quality to avoid spurious reads alignment resulting in erroneous downstream 

analysis. Here, only reads with 70% of the base positions meet the Phred 

score cuff-off of 20 were retained for the downstream analysis. Phred score is 

an indication for the quality of the reads; a base position with a Phred score of 

20 implies that there is a 1 out of 100 chances that this position is called 

incorrectly [195, 196]. Indeed, the quality of the sequenced reads improved 

after the quality control filtering; the percentage of sequence reads across all 

base positions having a Phred score range of 31-40 significantly increased by 

more than 10% while positions with Phred score of range 1-10 reduced to 

less than 5% after filtering (Figure 5.3) and more than 85% of the original raw 

reads were retained for further analysis (Table 5.1). In terms of the per base 

sequence content of the reads, equal A, T, C and G nucleotide compositions 

were observed at read positions greater than 10 and there was a distinctive 

nucleotide composition variation in the first nine positions of the reads across 

all sequenced samples (Figure 5.4). This distinct nucleotide composition 

variation is due to the use of the random hexamer primers during the 

synthesis of the double-stranded complementary DNA in the library 

preparation step [197] and this bias will be corrected and account for at the 

transcripts abundance quantification step. 
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Figure 5.3 Paired-end reads base positions score before and after quality 
control filtering (Replicate 1). Red indicates base positions score before 
quality control while blue indicates score after quality control. “|” indicates 
percentage of reads with a Phred score range of 31-40 and “^” indicates 
percentage of reads with a Phred score range of 1-10. 
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Figure 5.3 Paired-end reads base positions score before and after quality 
control filtering (Replicate 2). Red indicates base positions score before 
quality control while blue indicates score after quality control. “|” indicates 
percentage of reads with a Phred score range of 31-40 and “^” indicates 
percentage of reads with a Phred score range of 1-10. 
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Figure 5.4 Nucleotide composition across all base positions in the 
sequenced reads (Replicate 1). Green indicates composition of “A” nucleotide, 
red indicates composition of “T” nucleotide, blue indicates composition of “C” 
nucleotide and black indicates composition of “G” nucleotide
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Figure 5.4 Nucleotide composition across all base positions in the 
sequenced reads (Replicate 2). Green indicates composition of “A” nucleotide, 
red indicates composition of “T” nucleotide, blue indicates composition of “C” 
nucleotide and black indicates composition of “G” nucleotide.
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Table 5.1 Quality of raw reads and mapping metrics. 

Replicate 1 

Cell 
line Raw reads QC reads 

Reads 
mapped 

% of 
reads 
mapped 

Uniquely-
mapped 
reads 

% uniquely-
mapped 
reads 

B58AL 80,362,945 69,588,080 57,790,683 83.05 45,42,9741 78.61 
B58SC 75,778,660 65,124,362 55,602,319 85.38 41,975,361 75.49 
B46BM 67,751,606 57,936,456 48,472,507 83.66 36,299,920 74.89 
B46ZS 73,156,838 63,331,245 53,152,992 83.93 42,867,424 80.65 
COX 68,449,949 59,742,216 48,925,551 81.89 37,521,696 76.69 
QBL 86,358,133 74,445,714 63,410,379 85.18 48,752,536 76.88 

     
 

 Replicate 2 

Cell 
line Raw reads QC reads 

Reads 
mapped 

% of 
reads 
mapped 

Uniquely-
mapped 
reads 

% uniquely-
mapped 
reads 

B58AL 77,249,247 66,485,079 53,928,117 81.11 41,934,497 77.76 
B58SC 86,174,592 74,038,168 59,540,848 80.42 48,681,488 81.76 
B46BM 81,895,555 70,639,184 57,584,590 81.52 44,872,233 77.92 
B46ZS 91,114,107 77,958,277 63,170,151 81.03 50,268,589 79.58 
COX 81,075,411 70,199,584 58,532,731 83.38 43,702,252 74.66 
QBL 77,313,902 66,249,897 53,906,838 81.37 41,783,599 77.51 
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The QC reads were then mapped to the human reference transcriptome 

(NCBI  gene annotation Build 37.2) as well as to the human reference 

genome (NCBI Build 37.2 reference sequence) using Tophat2 [156]. To 

ensure accurate and high quality reads alignment, post-alignment filtering 

was performed to remove reads that were not mapped in proper pairs – 

paired-end reads that were incorrectly oriented with respect to each other and 

to filter aligned reads with template length that were deviate significantly from 

the expected template length. On a whole, at least 80% of the input reads 

were aligned to the human genome across all cell lines and their replicates, of 

which at least 74% were uniquely mapped to a single location of the genome. 

Direct evaluation of the gene expression level from the mapped reads is 

difficult due to the variation in the number of reads generated from each 

independent sequencing runs and also the sequence biases introduced 

during the library preparation step. To account for these differences, 

normalization procedures are required in order to accurately quantify genes 

expression level. Here, we used the fragments per kilobase of exon per 

million mapped reads (FPKM) implemented in Cufflinks [157] to normalize 

and quantitate the relative gene expression from the assembled reads with 

the NCBI gene annotation Build 37.2 . Subsequently, genes expression (log2-

transformed FPKM values) between the two biological replicates of each cell 

line were compared and evaluated using the square of pearson’s correlation 

coefficient metric (R2). High level of concordance in the genes log2-

transformed FPKM values between the replicates (R2 = 0.96) were observed 

across all the cell lines (Figure 5.5); indicating excellent reproducibility and 

minimal experimental errors during sample preparation. 
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Figure 5.5 Gene expression comparison between cell line replicates. The 
expression of 25549 NCBI annotated loci in the entire genome was 
considered. High correlation in the genome-wide expression profiles between 
the replicates was observed for all the cell lines. 
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5.2.3 Landscape of Transcription in the MHC Region 

The availability of this RNA-seq dataset allowed us to comprehensively 

analyze the transcription landscape of the MHC region in the BLCLs. There 

are 177 genes and pseudogenes annotated in the NCBI gene annotation 

Build 37.2 across the chr6:29.0 – 33.0Mb region and the calculated FPKM 

values of these 177 annotated genes were examined. The distribution of the 

FPKM values was skewed to the left (Figure 5.6A) and the median FPKM 

values range from 1.60 to 2.06 across all the six cell lines with more than 85% 

of the annotated genes having FPKM value less than 50. P-values (>0.05) 

derived from Kolmogorov-Smirnov test indicated there was no difference in 

the FPKM distribution across the cell lines. In addition, the FPKM distribution 

agrees with the RNA-seq dataset derived from the 20 unrelated individuals 

BLCLs in Centre d'Etude du Polymorphisme Humain (CEPH) collection [198] 

showing the reliability of our dataset. The slight aberration in the gene counts 

across FPKM bins observed between the two datasets are likely due to 

inherent cell lines divergence as well as the variation in the handling and 

treatment of the cell lines. Next we will like to determine whether a gene is 

expressed; evaluation of genes with FPKM value greater than zero will 

comprise of genes with FPKM values very close to zero and these are likely 

background noise due the erroneous mapping which cannot be completely 

eradicated. Hence, we set a FPKM value cutoff of 0.01 which is the 5th 

percentile of the genome-wide genes FPKM values across all the cell lines in 

our subsequent analysis. Based on the FPKM value, the level of gene 

expressions were categorized into no expression (FPKM<=0.01), low 

expression (0.01<FPKM<=5), medium expression (5<FPKM<=50) and high 

expression (FPKM>50). The number of genes expressed within the MHC 

region in each cell line agreed well with every other cell lines and the 

proportion of low, medium and high expression genes were also consistent 

142 
 



across all the cell lines (Figure 5.6B). Likewise, the proportion on the different 

levels of gene expression in the CEPH dataset is comparable to the MHC 

haplotype cell lines.  

The expression landscape across the MHC region (chr6: 29.0 – 33.0 Mb) 

was explored by examining the gene expression profiles within 100kb bin 

windows and the level of gene expression in each 100kb bin did not varied 

much across different cell lines (Figure 5.6C). Half of the non-expressing 

genes were found at the olfactory cluster (chr6:29.0- 29.60 Mb) which harbor 

numerous olfactory receptor genes while high level of transcription activities 

were observed at the Class II region. A closer look at the gene expression 

profiles based on the functional role revealed that genes coding for proteins 

involved in the antigen processing and presentation were highly expressed as 

compared to those involved in the stress response and regulation (Table 5.2). 

Indeed, the HLA-A, HLA-B and HLA-DRA were one of the most highly 

expressed genes in the MHC region. These suggest genes that are related by 

their functional role are expressed at similar levels. 
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Figure 5.6 Gene expression profiles within MHC region (A) Distribution of 
FPKM values for genes within the MHC region – chr6:29.0-33.0Mb (B) 
Number of no (FPKM<=0.01), low (0.01<FPKM<=5), medium (5<FPKM<=50) 
and high (FPKM>50) expressing genes in each cell line. (C) Landscape of 
gene expression within 100kb bin windows. 
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Table 5.2 Gene expression (FPKM) categorized by their functional role.  

Function Genes B58AL B58SC B46BM B46ZS COX QBL 

Antigen 
presentation 

HLA-A 469.31 327.63 439.58 449.52 344.78 254.70 
HLA-E 355.44 275.48 317.32 277.10 319.50 256.64 
HLA-C 236.47 192.29 164.48 163.14 527.82 96.76 
HLA-B 945.18 793.61 541.92 591.96 839.96 494.92 
HLA-DRA 1030.4 1286.1 918.9 856.2 1063.9 1119.8 
HLA-DRB1 250.63 223.30 39.68 38.42 130.13 154.44 
HLA-DQA1 21.74 25.91 2.07 2.54 7.44 6.66 
HLA-DQB1 5.95 5.49 3.21 4.11 2.77 3.23 
HLA-DOB 6.80 6.76 6.04 3.05 7.98 8.94 
HLA-DMB 60.06 23.60 49.96 51.26 35.37 60.22 
HLA-DMA 68.79 39.26 60.19 43.38 64.09 59.76 

Antigen 
processing 

TAP2 55.99 48.14 46.44 53.04 47.72 43.79 
PSMB8 111.04 74.61 148.38 130.73 93.79 103.87 
PSMB9 60.03 40.63 65.45 58.893 43.79 44.32 
TAP1 114.37 128.18 123.79 165.36 114.48 98.66 

Inflammation 

NFKBIL1 8.63 8.20 8.71 6.31 8.03 7.99 
LTA 211.32 185.85 189.19 198.41 210.57 245.51 
TNF 51.71 59.74 51.52 64.80 94.25 66.10 
LTB 8.58 3.19 6.12 14.54 10.90 21.51 
LST1 2.69 3.79 0.83 1.24 1.13 3.78 
NCR3 2.35 1.71 1.62 1.93 2.39 1.86 
AIF1 1.98 13.56 3.13 7.59 2.05 11.29 

Stress 
response 

HSPA1L 1.39 1.90 1.60 1.16 0.87 1.44 
HSPA1A 10.13 17.26 10.46 7.82 5.88 10.76 
HSPA1B 11.61 16.69 13.34 14.24 8.29 8.27 
MICA 3.56 3.47 6.48 8.77 6.49 5.25 
MICB 10.60 8.12 8.78 9.07 7.70 6.70 

Regulatory 
receptors 

AGER 1.21 1.60 1.56 1.04 1.24 0.80 
NOTCH4 0.15 0.18 0.14 0.12 0.10 0.11 

Red = high expression (FPKM>50); blue = medium expression 
(5<FPKM<=50); green = low expression (0.01<FPKM<=5) 
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Subsequently, the alternative splicing activities in the MHC region were 

assessed. Of the 177 genes analyzed in the region, 51 genes were 

expressed with two or more isoforms and the relative abundance of each of 

the alternatively spliced gene transcripts were examined. The transcript with 

the highest FPKM value was regarded as the major isoform while all other 

isoforms were regarded as minor isoform and the proportion of the major 

isoform FPKM value to the aggregated FPKM value of all expressing 

transcripts of each gene was calculated across all the cell lines (Figure 5.7). 

From this analysis, it was noted that the isoforms were not expressed at 

equivalent level and in fact all the 51 genes had one dominant expressing 

isoform with the exception of TAP2 where both of its isoforms were evenly 

expressed. In addition, there were 15 genes (constituting approximate 30% of 

the genes with multiple isoforms) where one or more cell lines do not share a 

common dominant expressing isoform. 
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Figure 5.7 Major isoform proportion relative to all expressing isoforms of a 
gene across the six cell lines. Transcript with the highest FPKM value was 
considered as the major isoform. The “*” indicates that one or more cell lines 
do not shared identical major isoform for a particular gene. Bracket number 
indicates the number of known isoforms annotated in NCBI gene annotation 
Build 37.2. 
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5.2.4 MHC Haplotype-specific Gene Expression 

The access of multiple HLA homozygous cell lines carrying identical MHC 

haplotype that displayed CEHs characteristics has offered a unique 

opportunity to investigate on haplotype-specific expression. In the previous 

chapter, we have showed that independent cell lines carrying identical MHC 

CEHs display high sequence invariant in the MHC region. Therefore it would 

be of interest to examine whether this sequence similarity would correspond 

to similar gene expression profiles among multiple cell lines carrying identical 

MHC haplotype (B58AL and B5SC – A33-B58-DR3; B46BM and B46ZS – A2-

B46-DR9).  To do this, principal component analysis (PCA) was applied to the 

expression data of the 177 MHC region genes represented by their FPKM 

values. The PCA results showed haplotype-specific clustering while surprising 

the QBL cell line had highly similar expression profile with the cell lines 

carrying A2-B46-DR9 haplotype (Figure 5.8). This data suggests that cell 

lines carrying identical Asian MHC CEH have probable correlation in their 

gene expression profile at the MHC region. Next, quantitative differences in 

gene expression levels between the MHC haplotypes were assessed by the 

grouping cell lines with identical MHC CEHs. Pairwise fold-change 

comparison of every possible MHC haplotype combinations was performed to 

provide a regional view of the transcription differences between the MHC 

haplotypes (Figure 5.9). Heighten transcriptional variation between 

haplotypes were found to be localized to regions proximate to the HLA genes 

as well as the genes cluster involved in inflammation, highlighting the 

influence of haplotype on the expression of immune related genes. 
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Figure 5.8 PCA analysis based on the relative abundance (expression) of 
177 MHC region genes. Red indicates cell lines carrying A33-B58-DR3 MHC 
haplotype; blue indicates cell lines carrying A2-B46-DR9 MHC haplotype and 
green indicates cell lines of European origins.  
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Figure 5.9 Pairwise comparisons of A33-B58-DR3 vs A1-B8-DR3 (COX),  
A33-B58-DR3 vs A26-B18-DR3  (QBL), A33-B58-DR3 vs A2-B46-DR9, A2-
B46-DR9 vs A1-B8-DR3, A2-B46-DR9 vs A26-B18-DR3 and A1-B8-DR3 vs 
A26-B18-DR3. Fold change (FC) derived from the log2 ratio of gene FPKM 
values between two haplotypes. Blue circle indicates higher expression in the 
top haplotype than in bottom haplotype while red indicates otherwise. 
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Table 5.3 Variation of gene expression between MHC haplotypes. 

Gene 

Log2(Fold Change) 
A33-B58-
DR3 
vs 
A1-B8-
DR3 

A33-B58-
DR3 
vs 
A26-B18-
DR3 

A33-B58-
DR3 
vs 
A2-B46-
DR9 

A2-B46-
DR9 
vs 
A26-B18-
DR3 

A2-B46-
DR9 
vs 
A1-B8-
DR3 

A1-B8-
DR3 
vs 
A26-B18-
DR3 

UBD  0.02 NS  1.70 ** -0.80 *  2.50 **  0.83 *  1.68 ** 

GABBR1 -2.61 **  1.50 NS -1.47 NS  2.97 NS -1.14 NS  4.11 ** 

ZFP57 -9.84 **  0.00 NS -7.93 **  7.93 ** -1.91 **  9.84 ** 

HLA-H  1.00 **  2.23 **  1.43 **  0.80 NS  0.26 NS  0.54 NS 

HLA-A  0.21 NS  0.65 * -0.13 NS  0.78 **  0.34 NS  0.44 NS 

HLA-L  0.75 NS  1.10 **  2.11 ** -1.01 NS -1.36 **  0.35 NS 

DDR1  0.59 NS  0.52 NS  1.44 ** -0.92 * -0.85 NS -0.07 NS 

DPCR1 -0.37 NS  0.06 NS  1.59 ** -1.54 * -1.96 **  0.42 NS 

HCG22 -0.26 NS -0.73 NS  1.47 ** -2.19 ** -1.73 ** -0.46 NS 

POU5F1 -1.89 *  0.98 NS -1.60 *  2.59 ** -0.28 NS  2.87 ** 

PSORS1C3  1.79 NS  1.79 NS -4.32 NS  6.10 **  6.10 **  0.00 NS 

HLA-C -1.29 **  1.15 **  0.42 NS  0.73 ** -1.72 **  2.45 ** 

HLA-B  0.05 NS  0.82 **  0.64 **  0.17 NS -0.59 NS  0.70 * 

MICA -0.82 NS -0.51 NS -1.14 **  0.63 NS  0.32 NS  0.30 NS 

TNF -0.73 ** -0.22 NS -0.03 NS -0.19 NS -0.70 *  0.51 NS 

LTB -0.92 NS -1.90 ** -0.74 NS -1.16 ** -0.18 NS -0.98 NS 

AIF1  2.09 ** -0.37 NS  0.59 NS -0.95 NS  1.51 NS -2.46 ** 

HSPA1A  1.25 **  0.38 NS  0.62 NS -0.24 NS  0.63 NS -0.87 NS 

C6orf48 -0.16 NS  0.21 NS  1.15 ** -0.93 ** -1.31 **  0.38 NS 

NEU1  0.25 NS  0.36 NS  0.64 ** -0.27 NS -0.39 NS  0.11 NS 

HLA-DRB5  8.33 **  6.68 NS  2.51 **  4.18 NS  5.82 ** -1.64 NS 

HLA-DRB1  0.90 **  0.65 *  2.59 ** -1.95 ** -1.70 ** -0.25 NS 

HLA-DQA1  1.67 **  1.83 **  3.40 ** -1.57 ** -1.73 **  0.16 NS 

HLA-DQA2  0.88 NS  0.90 NS -0.96 **  1.87 **  1.84 **  0.03 NS 

HLA-DQB2  0.66 NS  0.74 NS  1.31 ** -0.57 NS -0.65 NS  0.09 NS 

HLA-DOA  0.24 NS -0.12 NS  0.93 ** -1.06 ** -0.69 NS -0.36 NS 

Genes showing significant differentially expressed in one or more haplotype-
pairs comparison after Benjamini-Hochberg adjustment. “NS” denotes not 
significant haplotype-pair; “**” denotes haplotype-pair with adjusted P-value 
<0.05; “*” denotes haplotype-pair with adjusted P-value <0.1. COX cell line 
carries the A1-B8-DR3 haplotype while QBL cell line carries the A26-B18-
DR3 haplotype.  
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To detect differentially expressed genes, the method implemented in 

Cuffdiff 2 was employed [157]. Overall, 26 genes were significantly 

differentially expressed (adjusted P-value<0.05) in at least one pair of 

haplotype comparison (Table 5.3). A number of these genes that are related 

to the antigen presentation (HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1, 

HLA-DQA2, HLA-DQB2) as well as the inflammatory genes (TNF, LTB, AIF1). 

As the variation in the gene expression levels could be due to individual cell 

line differences rather than haplotype-specific differences, we selected 12 

genes that were found to be significantly differentially expressed in three or 

more haplotype-pairs comparison and inspect on the expression levels of 

these genes in each of the six individual cell lines. Indeed, with the exception 

of ZFP57, equivalent expression levels were observed in cell lines sharing 

identical MHC haplotype for the 11 selected genes (Figure 5.10). These 

provide strong evidence for the influence of haplotypic sequence variation on 

transcription activity in the MHC region.  
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5.2.5 ZFP57 Expression 

The RNA-seq data allows us to verify the expression of ZFP57 as well as 

assesses the possible isoforms expressed in the cell lines. Indeed, the RNA-

seq data correlates with the RT-qPCR experimental results where expression 

of ZFP57 was found in the B46BM and COX cell lines (Figure 5.10). Next, we 

also examined the possible expressing isoforms by plotting the sashimi plots 

which displayed the raw reads coverage mapped to the exons and splicing 

junctions (Figure 5.11). Currently there are two known ZFP57 isoforms which 

is differed by the extension of the 5’ UTR. From the RNA-seq reads, it 

appears both isoforms are expressed in the cell lines. In addition, there is 

indication for the expression of a third shorter novel isoform which lack of the 

first exon of the previous isoforms. However this observation could be an 

artifact resulted from erroneous reads mapping and therefore more 

quantitative analysis and verification by experimental approaches are needed 

to confirm the presence of this putative isoform. 
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Figure 5.11 Sashimi plots for RNA-Seq analysis of ZFP57 expression. Raw 
read densities mapped along the exons and splicing junctions of ZFP57 in 
B46BM and COX cell lines. Spicing junctions are represented by the 
connecting lines and the number below each line indicates the number of 
reads spanning across each splicing junction. Below the sashimi plots are the 
known ZFP57 isoforms from the NCBI gene annotation Build 37.2 and 
ensembl genes annotation as well as the putative isoform derived from the 
RNA-Seq mapping. 
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5.3 Conclusion 

In this chapter, using RNA-seq technology on multiple HLA homozygous 

LCLs sharing identical HLA haplotype, we provided a comprehensive 

description on the transcriptional landscape in the MHC region (chr6:29.0 – 

33.0Mb) for four common HLA haplotype (two with Asian ancestry – A33-

B358-DR3 and A2-B46-DR9; two with European ancestry – A1-B8-DR3 and 

A26-B18-DR3). We observed elevated expression of the HLA class I / class II 

genes and genes related by their functions were expressed at equivalent 

levels. In addition, differences in gene expression as well as in alternate 

splicing events were influenced by the underlying MHC haplotypic structure. 

The transcription activities of 26 genes were found to be affected by the MHC 

haplotype diversity. This implies that underlying MHC haplotypic structure 

might have an effect on the transcription activity in the MHC region. 
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6.1 Significance of the MHC Recombination Analysis in this Study 

Current in silico approaches using of population genetics data is relatively 

successful in estimating the location of recombination sites on a genome-wide 

basis [199] which are showed to have good correlation with predigree-derived 

recombination maps and with known recombination sites. Most of these 

approaches are based on a population genetic model that does not account 

for natural selection, random mutation, human migration and variation of the 

effective population size [200]. Though it has proved to be robust with 

reasonable departure from those conditions, cautious has to be exercised 

when applying the model to infer recombination sites in the human MHC 

region given that this region is subjected to strong selection forces. The 

human MHC region is unique as it is characterized by diverse HLA haplotypic 

variation and structure. In silico approaches that used pooled global 

population data is unable to effectively account for the contribution of HLA 

allelic haplotypes towards recombination. The admixture of diverse HLA 

haplotypes complicates the inference process and obscures potential 

recombination sites.  To address the problem, in this work, EHH plots using 

phased HLA haplotypes derived from CHSG were employed to identify MHC-

residing recombination sites. This method was demonstrated to be an 

effective tool at locating recombination sites in the extended MHC region. The 

69 putative recombination sites identified in this study correlate well with 

recombination segments determined by sperm typing [47] as well as with the 

majority of HapMap predicted sites [160]. We also uncovered an additional 37 

sites that are not found in any of the previous studies. A review of recent 

reports [201, 202] based on European pedigree information, ascertains that 

our approach is far more sensitive at locating recombination events (69 sites 

vs 5 sites) within MHC and provides superior resolution (average 4.27kb vs 

100kb intervals).   
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Earlier studies from Walsh et al [50] and Ahmad et al [203] have 

characterized the LD patterns of the Caucasian population. Though these 

studies highlighted the extent of LD within the MHC region, the resultant LD 

maps were limited in scope due to the relative small amount of polymorphic 

markers used to derive them and could not be used to infer recombination 

sites. A more recent study created a comprehensive haplotype map by 

investigating the LD between the SNPs and the HLA alleles across the 

extended MHC region (7.5Mb) in four populations [163]. This study effectively 

demonstrated that the extent of LD along the chromosome is dependent on 

the underlying HLA allelic haplotype and provided a panoramic view of the 

MHC genomic architecture. In comparison, our study provides a more detail 

and precise description on the variation of LD structure and breakages in 

distinctive HLA haplotypes localized to the HLA class I and class II gene 

regions where the LD breakpoints are interpreted as probable recombination 

sites. 

 

6.2 Population-specific Recombination  

The International HapMap Project reported over 33,000 genome-wide 

recombination sites derived from a pooled population comprising of CEU, YRI 

and an Asian population (Han Chinese, CHB and Japanese, JPT) [137, 204]. 

These HapMap recombination sites were classified only when two out of the 

three populations showed signal of recombination events, and hence, 

HapMap inferred recombination sites are commonly found across 

populations, not population-specific. Indeed, there is no extensive study to 

examine recombination variation across populations within MHC region. In 

the study by de Bakker et al [52], the recombination rates were separately 

estimated from individuals of a distinct population and coalesced the rates 
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from four different populations into a single estimate for the MHC region, but 

did not delved further to evaluate the differences in recombination rates 

between populations. A subsequent study did a recombination rates 

correlation analysis on the LD-maps generated from three populations and 

found population recombination variation at the whole genome level [205]. 

However this study did not investigate on how the differences of the HLA 

haplotypes pool in each distinct population influence and affect the 

recombination variation in the MHC region. To provide a clearer insight into 

the population-specific recombination profile and the effect of underlying HLA 

haplotype on recombination variations, we applied the EHH approach coupled 

with the HLA information of the CHSG, CEU and YRI population. Our study 

shows low number of recombination sites overlap in multiple populations; in 

fact, > 50% of the identified recombination sites is specific to a single 

population. Recombination activities bring about the breakdown of LD and 

have a direct effect on the genome haplotype diversity [44]. The findings of 

vast number of unique recombination sites in a distinct population suggest 

that these population-specific sites could have a major role in the 

diversification of haplotypes in the MHC region. In contrast, in other parts of 

the human genome, the sites of LD decay are generally common across 

populations; resulting in extensive haplotype sharing among different 

populations [148, 161]. Given that the genomic region of the MHC can be 

influenced by a variety of evolutionary mechanisms such as genetic drift, 

demography and natural selection, the distribution of population 

recombination sites in the MHC region may not be a good refection on the 

recombination distribution elsewhere in the human genome. 

Balancing selection through pathogen mediated selection are proposed to 

explain for the immense number of HLA alleles and haplotypes [206]. These 

selection forces favor new assortment of HLA allelic combinations across 
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populations and lead to an increase in population frequency of these HLA 

combinations [15]. These mechanisms result in the occurrence of a given 

allele in two or more different HLA haplotype backgrounds. In this study, the 

A*02:01 allele is independently found in different HLA haplotype background 

in multiple populations and their recombination profiles varies across 

populations; indicating the combinatorial effects of underlying HLA haplotype 

and population background on recombination. On the whole, our data shows 

the significant role of HLA haplotypes on the patterns and occurrence of 

recombination events in the MHC region; and the discovery of unique 

recombination sites are possible only through single population analysis. 

  

6.3 Evolutionary Conserved Recombination Sites 

Previous section highlighted the differences of recombination sites between 

population groups; however, few sites are observed to be shared between 

populations (Table 3.3) and these are also of interest as this means that they 

are evolutionarily highly conserved and could therefore be of great 

importance. Though explanation for the mechanism behind the occurrence of 

these conserved recombination sites is not well-defined, one can study the 

recombination pathways to derive possible hypotheses. Initiation of 

recombination at a particular site starts when histone methyltransferase such 

as PR domain-containing 9 (Prdm9), locally acts and opens up the chromatin. 

This allows the topoisomerase sporulation-specific 11 (SPO11) to introduce 

double-strand breaks (DSBs) on the chromatid and the DSBs are then 

repaired through the process of homologous recombination resulting in cross-

over or gene conversion events [207]. Therefore it could be possible that the 

local chromatin state at the conserved recombination sites is highly favorable 
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for the recruitment of recombination-initiation machinery.  Another probable 

hypothesis can be derived from the need to balance the two divergent 

mechanisms during meiosis where recombination is essential for proper 

chromosome separation but it also has to be controlled to minimize the 

breakage of important gene clusters and to maintain genome stability [44]. 

The occurrence of conserved recombination sites could suggest 

recombination activities at these genomic sites are conducive for the proper 

repair of DSBs; as such, would not disrupt the favorable linkage of gene 

clusters and would have little or no deleterious effect on the genome stability. 

 

6.4 Sequencing MHC CEHs and Intra-haplotypic Variations  

In this study, the presence of Singaporean Chinese CEHs in A33-B58-

DR3 and A2-B46-DR9 HLA haplotypes were identified through SNP 

genotyping as well as deep sequencing of the MHC region (28.5 to 33.5 Mb). 

We have assembled at least 90% of the MHC sequence representative of the 

A33-B58-DR3 and A2-B46-DR9 haplotypes; and discovered that the 

sequences of these haplotypes are largely conserved from HLA-F to HLA-

DQA2 loci covering at least 3Mb of the MHC genomic region, proving the 

CEH nature of these haplotypes. The assembly of these common Singapore 

Chinese MHC sequences could act as an important framework for future 

disease studies on populations enriched with these haplotypes, which include 

Asian populations from Southern China and Taiwan [173, 174, 208]. 

Genome-wide association studies have identified more than 100 diseases 

that are implicated by the variants or genes within the MHC region [7]. Often, 

such genetic associations are not due to single specific variants, but by the 

underlying MHC haplotype structure marked by extensive LD [13]. These 
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issues have complicated the identification of disease-causing variants or 

genes within the MHC region, especially in common CEHs, where extreme 

LD is often found. By deep sequencing of multiple individuals homozygous for 

the same haplotype, we were able to circumvent the assignment of haplotype 

chromosome and perform intra-haplotypic CEH comparison at the nucleotide 

level to determine the extent of variation within the conserved boundaries of 

each CEH. In total, more than 200 haplotype-specific SNVs were uncovered 

residing in each haplotype, up to a third of which are not annotated in any 

public archives for genetic polymorphism. In contrast, the use of the common 

SNP genotyping platform to interrogate the CEHs was unable to reveal the 

polymorphisms embedded within the conserved region. The ability to reveal 

variants that is enriched at the haplotype level but not at the population level 

allows fine discrimination within members containing the same CEH. This 

may allow us to better predict case-control status among individuals sharing 

the same risk-associated CEH, and also to define risk-associated variants 

that may be enhanced within a particular CEH. 

The intra-haplotypic variations revealed in our study suggests that the 

pattern of variations in each CEH is unique. For example, a hyper-variable 

region was observed around the HLA-A region on the A33-B58-DR3 but not 

on A2-B46-DR9. Given that each MHC CEH has a distinct underlying HLA 

background and evolutionary history, and has been subjected to different 

environmental influences, such non-homogeneous variation distribution may 

be expected. The increase in variation around HLA-A in A33-B58-DR3 

despite the apparent lack of recombination in this haplotype hints at the 

presence of non-random mutation in the region. The existence of non-random 

mutation rates across the genome has been recognized in organisms as 

diverse as bacteria and humans relatively recently, and there are still many 
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unknowns regarding the biochemical mechanisms behind such phenomena 

[209-211]. It is tempting to speculate that specific genetic characteristics of 

HLA-A may increase its mutation rate, contributing to the increased global 

diversity observed at the locus in a manner independent but complementary 

to balancing selection. In fact, the occurrence of these intra-haplotypic 

variants where 99% of the A33-B58-DR3 and  23% of the A2-B46-DR9 

variants exist in the heterozygote form can be well explained by an alternate 

model on MHC evolution called Associative Balancing Complex (ABC) [79]. 

This model states that recessive detrimental mutations are built up by the 

Muller’s ratchet effect and are sheltered by the surrounding MHC genes 

through LD. Moreover, these mutations exist in the heterozygote forms and 

as such natural selection is not effective to select against these mutations. 

This leads to negative epistasis and the reduction of recombination events in 

the MHC. The ABC evolution model therefore accounts for the high number of 

heterozygous intra-haplotypic variants in the MHC CEHs and may provide a 

valid explanation for why numerous diseases are associated to MHC CEHs.  

The identified intra- and inter-haplotypic variants in this work may be 

helpful in offering important clinical links to diseases. MHC-resident variants 

within the CEHs, apart from the HLA genes, have independent associations 

with diseases, even in autoimmune-related disorders such as systemic lupus 

erythematosus, Behcet’s disease, graft-versus-host disease and rheumatoid 

arthritis [212-216].  These variants may exert cis-regulatory effects on the 

nearby genes and affect the expression of the target genes commonly known 

as cis-expression quantitative trait loci (cis-eQTLs). Recent studies have 

suggested that the MHC region is a prominent area for such cis-eQTL 

associations [133, 217, 218], and in our study, we also show that one of the 

A2-B46-DR9 intra-haplotypic variant regulates the expression of the ZFP57 
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gene. The presence of such cis-eQTLs provides a possible mechanistic 

theory for the outstanding number of MHC disease associations yet to be 

explained, particularly the contribution of non-coding variants to disease 

phenotypes. In this work, up to 99% of the intra-haplotypic variations are 

located within the non-coding region; these variants can be incorporated into 

a reference panel to infer the effects of non-coding variants on diseases. 

The numerous associations of MHC CEHs with various diseases signal a 

need to dissect CEHs to identify the true disease-causing variants among the 

large pool of benign variants in LD within the haplotype. Hence, it is essential 

to characterize the extent of variation within the MHC CEHs. The advent of 

next-generation sequencing technology offers an attractive option to assess 

such haplotypic variation. However, the short reads generated by NGS 

platforms are not well suited to accurately map the MHC region given its 

extreme sequence and structural variations. More importantly, it is difficult to 

resolve the phase of the haplotype from the short reads mapping. As seen in 

this study, the use of HLA homozygous cell lines avoids the need for phasing 

and improves the accuracy of the reads mapping. Third generation 

sequencing technologies with the ability to sequence reads of length greater 

than 1000bp [219, 220] have the potential to both phase and accurately map 

complex region such within the MHC and will eventually allow large scale 

haplotype comparative analysis. 
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6.5 Origin and Age of Conserved Extended Haplotype (CEH) 

The MHC CEHs can span over several megabases contain numerous 

genes that are fundamental for human immune functions. The mechanism 

behind the maintenance of such extensive LD in this important and highly 

variable region of the human genome is unclear.  There are two plausible 

explanations for the generation of MHC CEHs. The first is that these long 

sweeps of conserved sequence haplotypes may have been driven to high 

frequency by positive selection over a relatively short period of time and have 

yet to be disrupted by recombination events [10, 144]. A single gene or a 

combination of genes within the conserved stretch would be adequate to drive 

the haplotype expansion in the population. Another possibility is that given the 

almost non-existent of recombination events on haplotypes carrying a specific 

HLA allelic combination, these extensive conserved segments are exposed to 

allele-specific recombination suppression preventing haplotype breakdown 

[203]. The age of the A1-B8-DR3 haplotype has been estimated to be about 

23,500 years [21]. The relative young age of the A1-B8-DR3 suggests that 

the extensive LD observed between the HLA alleles is more likely due to 

recent expansion and that recombination forces have yet to act on this 

haplotype. Assuming that the human mutation rate per nucleotide per 

generation is 1.1X10-8 [154] and a given generation is 20 years, the age of the 

Asian A33-B58-DR3 and A2-B46-DR9 works out to be about 21,460 and 

26,500 years respectively. These values are compatible with the age of the 

A1-B8-DR3 haplotype lending support to the theory that these MHC CEHs 

are likely to be resulted from recent expansion. In addition, it has been 

suggested that the expansion of the CEHs is possibly because of a single 

HLA allele under strong positive selection rather than epistatic selection of a 

specific HLA allelic combination [10]. This study reports the occurrence of 
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sequence similarity at the HLA-DRB region between two common CEHs 

(A33-B58-DR3 and A1-B8-DR3) which belong to different ethnic backgrounds 

but were both driven to high frequency in their respective populations. It is 

conceivable that this ancestral DR3 segment was introduced into different 

MHC haplotype background whereby the selection for this segment drove the 

expansion of these MHC haplotypes.   

Where is the origin of this DR3 ancestral segment? Given that the A33-

B58-DR3 and A1-B8-DR haplotypes are found in populations that are 

geographically distant to each other, it is unlikely that the DR3 segment is 

derived from either of the two haplotypes. It is more likely that this segment 

could originate from another population group and diverge into the European 

and Chinese population. The study of the human migration pattern might able 

to provide insight to this hypothesis. Based on the Out of Africa theory, 

human first migrated out of Africa into Middle Asia then spread to South Asia 

by 50,000 years ago, and from South Asia human slowly spread to China, 

South East Asia and then finally reached Europe by 40,000 years ago [221, 

222]. Literature search on the MHC haplotype distribution has revealed an 

enrichment of DR3 in the modern South Asian population (A24-B8-DR3 - 

4.8% & A26-B8-DR3 - 6.2%) [170], hence it is plausible that the DR3 segment 

could origin from the South Asian population and then independently expands 

in the European and Chinese population through human migration. To 

validate this model, further work has to be conducted to ensure DR3 

sequence similarity can be found between the South Asian DR3 and the 

Chinese/European DR3 segment and preferably supported by the age of the 

South Asian MHC haplotypes.  
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6.6 Influence of Haplotype-defined Nucleotide Sequence Variation on 
MHC Gene Regulation 

There are many instances where the underlying HLA haplotype rather 

than genotype of a specific locus plays a significant role in disease 

susceptibility [13, 223, 224]. In this thesis, we have unambiguously identified 

haplotype-specific sequence variations. Though the knowledge of these 

variations is important for the explanation of the occurrence of the disease, it 

could not have revealed the functional mechanisms that lead to disease 

progression. Therefore, the ability to map the transcriptomic landscape of the 

MHC region at haplotypic resolution is an important step in understanding the 

molecular basis for a number of MHC associations to diseases.  In this study, 

the MHC transcriptome profiles of multiple HLA homozygous B-LCLs with 

identical Singaporean Chinese HLA haplotype were examined using RNA-seq. 

This approach not only averts the confounding effect in the evaluation of 

diploid genome but will also account for transcription variability between cell 

lines. Overall, our study has revealed that the expressions of 26 genes are 

attributed to haplotypic effects. In comparison, the report by Vandiedonck et 

al [179] which was based on the analysis of three common European MHC 

haplotypes identified 96 genes whose expression levels are associated to 

haplotypic differences. There are two likely reasons for this discrepancy. The 

first is the difference in the MHC haplotypes used in context between the two 

studies. Secondly, in the work by Vandiedonck et al, each MHC haplotype 

was represented by only a single cell line; hence some of the transcription 

differences reported could be due to individual cell lines variations rather than 

haplotype-related transcriptional differences. In contrast, our analysis involved 

two independent cell lines carrying identical MHC haplotype and we showed 

that haplotype-identical cell lines have equivalent expression in 25 out 26 

genes.  This provides strong evidence that the differential gene expression 
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observed is indeed due to haplotypic effects and dismisses the notion of 

individual cell lines variations. Nevertheless, 15/26 differentially expressed 

genes identified in this thesis overlapped with the genes listed in 

Vandiedonck’s work. This suggests the MHC transcriptional landscape is 

likely to vary in a context-specific manner; dependent on the relevant 

haplotype of interest, the cell types and conditions applied. Together, the 

identification of genes whose expression levels are implicated by haplotypic 

differences allow us to shortlist candidate genes to consider for diseases 

linked to the haplotype in context.    

Haplotype-related transcriptional differences signify the possible effect of 

haplotype-defined nucleotide sequence variations on MHC gene regulation. 

Haplotype-specific sequence variations in cis–acting regulatory promoter 

elements or even distal trans-acting regulatory elements could affect DNA 

methylation or chromatin accessibility and hence are critical to the regulation 

of gene expression. Indeed, sequence variations in the enhancer and the 

interferon-stimulated response element in the MHC class I promoter bring 

about differential promoter activation among various MHC class I loci [120, 

225]. Currently, much of the MHC epigenetic studies are directed at the 

regulation of transcription initiation. The complex interplay between cris-

/trans- regulatory elements and the epigenetic mechanisms that modulate the 

expression of MHC class I and class II genes are well established  [118, 226, 

227].  However, the effect of sequence diversity, in particular sequence 

variants defined by the MHC haplotypic structure, on epigenetic modifications 

is not well understood. Haplotype-specific sequence diversity can influence 

the entire transcription as well as translation process and also defines the 

packing of the chromatin that coordinates gene expression at local and global 

level. Hence, the establishment and mapping chromatin modification at 
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haplotypic resolution could well provide the mechanistic explanation on how 

transcription is modulated by underlying sequence variation. The ability to 

connect MHC sequence variation, chromatin modification and the subsequent 

transcription process has enormous potential to provide insight into the 

functional basis for many complex diseases linked to the MHC region.  

6.7 Future Directions 

In this thesis, we found that certain individuals showed expression of 

ZFP57, a Kruppel-associated box (KRAB) containing zinc-finger protein, in 

the B-LCLs; dependent on the nucleotide sequence configuration at multiple 

positions proximate to the gene. These positions signify possible regulatory 

sites for the transcription of ZFP57; therefore further work is required to 

ascertain which of these site(s) truly regulate the expression of the gene.  

Approach such as cloning the genomic segments bearing these sites into an 

expression vector and transfect them into a non-expressing ZFP57 

mammalian cell can be used to identify the possible regulatory region. This 

identification of ZFP57 regulatory region(s) can facilitate the finding of the 

transcription factors or other co-factors that may involve in the modulation of 

the ZFP57 transcription. In embryonic stem (ES) cells, signal transducer and 

activator of transcription 3 (STAT3) and octamer-binding transcription factor -

3/4 (Oct-3/4) are the transcription activators for ZFP57 [228], it would be of 

interest to examine whether the same transcription factors or other novel 

factors are utilized to regulate the transcription ZFP57 in adult cell lines.  

To date, ZFP57 is involved in the maintenance of DNA methylation 

whereby ZFP57 acts as an anchor for the binding of KAP1 and the 

recruitment of other epigenetic regulators at imprinting control regions in the 

ES cells [229]. However, functional significance of the expression of ZFP57 
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and its role in the adult cells is not known. The KRAB-ZNF family genes have 

various functions such as cell-cycle regulation [230], specification of meiotic 

recombination hotspots [231] and more importantly some of the KRAB-ZNF 

genes exhibit tumor suppression properties [230]. In addition, ZFP57’s co-

factor KAP1 is found to be associated with tumor developments in several 

studies [232-234]. Hence further work is needed to investigate on the role of 

ZFP57 in epigenetic regulation in the context of cancers or infection.  

The A2-B46-DR9 and A33-B58-DR3 HLA haplotypes are implicated in 

multiple diseases. Most notably, several studies have reported the 

association of these haplotypes with nasopharyngeal carcinoma [235-237] 

and a recent GWAS study has identified 3 new susceptibility loci with 

extremely strong statistical significance within the MHC region [82]; but the 

exact location of the disease causative variant/element is yet to be 

determined. The findings of A2-B46-DR9 and A33-B58-DR3 haplotype-

specific sequence variations in this study, in particular the novel variants not 

reported in any prior studies, offer an excellent opportunity to revisit these 

association studies. These haplotype-specific variations might be able to 

distinguish disease-affected haplotype carriers from unaffected haplotype 

carriers and eventually facilitate the mapping of the disease causative 

variant/element. 

 

Increasingly in recent years, it is apparent that a significant fraction of the 

human genome expresses non-coding RNAs (ncRNAs) and some these 

ncRNAs are crucial for normal development and physiology [238]. Hence, it is 

not surprising that many of them are implicated in numerous diseases. Many 

studies have showed that the dysregulation of these ncRNAs contribute to the 

development and progression of many human conditions particularly in 
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cancers [239-241]. It would be of interested to investigate the presence of 

ncRNAs in the MHC region and more significantly to examine whether the 

underlying haplotype structure would influence the expression of ncRNAs. 

Through de novo analysis, the RNA-seq data used in this study can be 

employed to inspect the expression of the ncRNAs in the Singaporean 

Chinese HLA haplotype and provides insights for the above mentioned 

questions. 
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