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Summary

Extensive long-range linkage disequilibrium within the MHC region,
commonly termed as conserved extended haplotypes (CEHSs), are known to
occur at relatively high frequency in the general populations. CEHs have been
of long interest not just because of their unique genomic traits but also
because they are reported to be associated with several diseases. However
due to the inherent heterogeneity of the MHC region and the limitation of the
technologies, thus far, the handful of studies on the genomic structure of
MHC CEHs have been restricted to the European population. This lack of
comparative MHC CEH sequence information in other ethnic groups hampers

the efforts to elucidate the structure and genomic organization of CEHSs.

In this study, the recombination patterns across the MHC region in
three independent populations were examined. This analysis revealed
population-specific recombination sites and these sites are seldom shared
among populations, underlining the importance of recombination on haplotype
diversity. Furthermore, from the SNPs analysis, | also uncovered two HLA
haplotypes in the Singaporean Chinese population (A*33:03-B*58:01-
DR*03:01 and A*02:07-B*46:01-DR*09:01) with no or minimal recombination

across the MHC region, suggesting CEH properties in these haplotypes.

To have an in-depth genomic architecture on above two Singapore
Chinese HLA haplotypes, multiple HLA homozygous B-LCLs were selected
and subjected to whole genome sequencing. The analysis of this data
revealed two significant findings. Firstly, extensive sequence conservation
spanning a region of at least 3Mb of the MHC genomic region was found
among the individuals carrying identical HLA haplotype. In addition, the intra-
haplotypic variations within these CEHs were found to be exceptionally low
comprising of approximate 0.008% of the MHC region. Novel single

Xii



nucleotide variation (SNV) not reported in other databases were found in
77/293 (26%) of A*33:03-B*58:01-DR*03:01 CEH and 50/238 (21%) of the
A*02:07-B*46:01-DR*09:01 CEH. More importantly, SNVs found within the
A*02:07-B*46:01-DR*09:01 CEH were associated with the expression of
ZFP57, a transcription factor involved in DNA methylation maintenance;
suggesting functional role in some of these polymorphic sites. The second
major finding is that extreme sequence conservation extending up to 160kb at
the HLA-DR region was found between the A*33:03-B*58:01-DR*03:01
haplotype and the European A1-B8-DR3 haplotype; implying individuals
carrying these two haplotypes shared a common ancestor.

Next, the MHC transcription landscape of the Singaporean Chinese
CEHs was also elucidated through RNA-sequencing. Interestingly,
differences in gene expression between haplotypes affecting 26 genes were
observed; this implies the influence of underlying MHC haplotypic structure on
the transcription activity in the MHC region. Collectively, a comprehensive
sequence and transcription description representative of the A*33:03-
B*58:01-DR*03:01 and A*02:07-B*46:01-DR*09:01 haplotype was provided
and | had showed that haplotype-specific sequence variations mediate the
level of gene expression in the MHC. The availability of these alternate Asian
MHC sequences would complement the eight European MHC haplotype
sequenced by the MHC Haplotype Project and provides a framework to study

the MHC diversity and disease association studies.
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Chapter 1.

Introduction



1.1 Overview of the MHC

The human major histocompatibility complex (MHC) was first identified
more than 50 years ago by Jean Dausset, Jon van Rood and Rose Payne [1]
and because the MHC molecules were first detected on the surface of the
human leukocytes, the human MHC was later also known as the human
leukocyte antigen (HLA) complex. In the beginning, it was studied due to its
role on the donor-patient compatibility following tissue graft and organ
transplantation [2, 3], it was later realized that the MHC is critical in adaptive

and innate immunity.

Decades of research has progressively established a remarkable genomic
region on chromosome position 6p21.3 comprising of the HLA genes and the
associative genes. This region is the most gene-dense region in the human
genome holding more than 240 annotated genes, of which more than 60 have
known or potential immune-related function [4, 5]. Furthermore, the extreme
genetic variation within this region has a pivotal role in the disease
susceptibility and indeed this four mega-base region has been reported to be
associated with more than 100 diseases, including cancers, autoimmune
diseases, infectious disease susceptibilities, neurodegenerative,
cardiovascular, and metabolic disorders [6, 7]. In addition, the MHC region
possesses unique genomic features offering an excellent model to study
demographic events as well as to assess hypotheses pertaining to the
dynamics of evolution [8, 9]. For these reasons, the MHC genomic
architecture, diversity, gene expression and genetic interaction pathways
have been studied intensively as frameworks for understanding the broader

human genome.



1.2 MHC Gene Map and Organization

The human MHC region of approximate 4.6 Mb on the short arm of
chromosome 6 (chr6:29.50 — 33.10Mb) is broadly categorized into three
major gene clusters — classical HLA class |, class Il and class Il (Figure 1.1)
[4]. The HLA class | gene cluster spanning about 1.9Mb with a total of 26
coding and pseudogene loci; comprises of the classical class | genes (HLA-A,
-B and -C), the non-classical class | genes (HLA-F, -G and -E) and the class |
resembling genes (MICA and MICB). The HLA class Il gene cluster of
approximate 0.9Mb in length with a total of 24 coding and 15 pseudogene
loci; comprises of the classical class Il genes (HLA-DP, -DQ and -DR) and
the non-classical class Il genes (HLA-DM and —DO). Each of these class i
genes are expressed as hetero-dimers consisting of the a and  chain. The
class Il region with a relatively short physical length of 0.7Mb, harbors more
genes than the other two clusters and is the most gene-dense region in the
human genome. Although this region does not encode any of the HLA genes,
it holds several sub-gene clusters that are crucial to the immune system such
as those involved in inflammation and immune regulation (Figure 1.2). There
are also other major gene clusters that border the MHC region and
collectively are known as the extended MHC region covering 7.6Mb [4].
These gene clusters include the histone cluster (chr6:25.72 — 27.81Mb), the
zinc finger cluster (chr6:28.04 — 28.56Mb), the olfactory receptor cluster
(chr6:29.00 — 29.56Mb) and the extended class Il sub-region containing the

transporter genes (chr6: 33.13 — 33.38Mb).
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Figure 1.1  The human MHC region expressed genes. This region is
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[l (red) and HLA class Il (green). This figure is adapted and modified from

Trowsdale [7].
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gene based on their functions. This figure is adapted from Traherne [10].



1.3 MHC Diversity

1.3.1 HLA Molecules Diversity

Extreme sequence polymorphism is the hallmark of the HLA class | and
class Il genes. Since their initial discovery, hundreds of different variants of
the genes or alleles has emerged and as of 2013, there are 9946 distinct HLA
class | and class Il alleles and amazingly new alleles are still being identified
yearly, demonstrating the extreme variation found in these loci. With 3086
alleles, the HLA-B gene is the most polymorphic gene in the human genome
followed by the HLA-A gene with 2432 alleles (Figure 1.3) [11]. For HLA
class | genes, the majority of the nucleotide differences are located in the
exon 2 and 3; and in exon 2 of the HLA class Il genes with the exception of
HLA-DRA gene. These exons are responsible for the coding of the antigenic
peptides binding domain, hence non-synonymous nucleotide changes leading
to amino acid modification in this domain alter the HLA molecule antigenic
peptides binding capability [12]. Most of the HLA genes nucleotide variations
are found in the exonic region as described above; this is in contradictory to
other functional genes in the human genome where most variants are located
in the introns [13]. In addition, these variations are effect of germline

mutations rather than somatic mutations.
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Figure 1.3 Number of alleles identified for class I, class Il and non-HLA
genes as of October 2013. Data was extracted from IMGT/HLA database
(http://ww.ebi.ac.uk/ipd/imgt/nomenclature/).



http://ww.ebi.ac.uk/ipd/imgt/nomenclature/

The ever-increasing number of new HLA alleles being discovered
necessitates a standardized nomenclature for the naming of the alleles. The
WHO Nomenclature Committee for Factors of the HLA system established a
standard HLA allele specification where each HLA allele is denoted by its
gene name and an asterisk; this is followed by a distinct identification of four
sets of numbers delimited by colons. The first set of nhumber defines the
allotype; alleles that differ by nucleotide changes that alter the amino acid in
the encoded protein are discriminated by the second set of numbers while
alleles differ by synonymous nucleotide changes in the coding region are
differentiated by the third set of numbers. The last set of numbers defined the

changes in the non-coding region.

1.3.2 Genetic Variation across the MHC Region

Besides the need to characterize of the HLA gene variation, information
on the sequence variability in the MHC region as a whole is equally important;
and in particular is relevant in the context of MHC disease association as well
as the genealogical relationship between individuals or ethnic groups. This
endeavor was first taken upon by the MHC Haplotype Project which aims to
define the common sequence differences within the MHC region for MHC
disease susceptibility studies [14-16]. Using bacterial artificial chromosome
cloning (BACs) and shotgun sequencing, these studies sequenced eight
common MHC haplotypes of European ancestry established from HLA-
homozygous consanguineous B-lymphoblastoid cell lines and in the process
characterized more than 37,000 single nucleotide variants and 7,000 short
insertions/deletions. This extensive catalogue of variations enabled the
establishment of linkage disequilibrium maps that facilitated the localization of

susceptibility loci pertaining to multiple sclerosis and type | diabetes [17, 18].

8



Subsequently, independent groups employed a variety of approaches such as
targeted amplicons-based methods and a combination of targeted sequence
enrichment and next-generation sequencing to interrogate the distribution of
variation across the MHC region [19-21]. Despite these impressive efforts, the
MHC sequences described to date are mostly reflective of the European
population; thus more efforts are still needed to acquire an adequately sized

reference MHC sequences for other ethnic groups.

1.3.3 MHC Hyper-variable Regions

Several genomic regions within the MHC have undergone repeated
segmental duplications resulting in structural copy number variation; most
notably the HLA-DR region and in the class Ill region that holds the
complement component C4 gene. The HLA-DR hyper-variable region
contains a variable number of functional and pseudo HLA-DRB genes that
result in different alternative arrangements of the HLA-DRB genes
(haplogroups) [22]. To date, five such haplogroups have been identified; each
possessing a specific arrangement of the HLA-DRB genes (Figure 1.4). The
boundaries of all the haplogroups are characterized by the HLA-DRA gene at
the telomeric end and the HLA-DRB1 gene at the centromeric end and all the
haplogroups possess the HLA-DRB9 pesudogene located adjacent to HLA-

DRA.
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Figure 1.4 Five major HLA-DR haplogroups structure. Green boxes
denote functional genes and blue boxes denote pseudogenes. This figure is
adapted and modified from Marsh et al [23].
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Additional HLA-DR genes are positioned between the HLA-DRB9 and HLA-
DRB1; the arrangement, the number and the type of HLA-DRB genes in this
segment are dependent on the haplogroups. Interestingly, through in-vitro
and in-vivo studies, differential transcripts expression was observed between
haplogroups in resting peripheral B cells and within the same haplogroup the
different DRB genes had equivalent transcripts abundance [24, 25].
However, the functional effect of having additional or lesser HLA-DRB

gene(s) remains unclear.

The other region with sophisticated segmental duplication is in the class
Il region is called the RCCX module, named for its gene content, comprises
of the serine/threonine Kinase 19 (RP1), the complement component (C4),
the cytochrome P450 (CYP21) and the tenascin X (TNX) gene map to the
chromosome in a chronological manner. Within the module, different
variants of these genes can be presented; RP1 or RP2 (pseudogene), C4A or
C4B, CYP21A or CYP21A1P (pseudogene) and TXNA (pseudogene) or
TNXB [26]. The C4A and C4B can also exist in either long (C4L) or short
(C4S) version which is differed by the presence or absence of the HERV-K
endogenous retrovirus in the intron 9. Intriguingly, added to the complexity, a
single chromosome can hold one to four copies of the RCCX module (Figure
1.5) [26]. Population studies had revealed high frequency of heterozgosity in
the RCCX module configuration [27] and this can drive unequal crossovers
during meiosis resulting in the acquisition of deleterious mutations [28-30]. In
fact, there is a strong association of the RCCX copy number variation with
human systemic lupus erythematosus (SLE) where low RCCX copy number

was linked to increase in SLE risk [31].
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1.4 Haplotypes, Linkage Disequilibrium and Recombination

High linkage disequilibrium (LD) is a distinctive feature of the MHC region.
Indeed, inheritance of non-random association of HLA alleles at numerous
loci was observed within the MHC [33, 34] and this leads to the concept of
“polymorphic frozen blocks” where combination of identical block sequences
are shared among individuals in populations commonly termed as haplotypes
[35]. Strong LD is noted between HLA-A and HLA-B; HLA-B and HLA-C as
well as HLA-DRB1 and HLA-DQB1 evidenced by the extremely low
recombination rates between these loci [36]. In addition, there exists long
conserved sequences across multiple HLA alleles spanning over several
mega-bases that are observed at relatively high frequency within populations
and is referred as “Conserved Extended Haplotypes” (CEH) or “Ancestral
Haplotypes” [37]. These CEHs appear to account for 33% of the total
European MHC haplotypes and majority of the population possess at least
one of these CEHs or their recombinants [37-39]. Despite the proposal of
numerous theories, the mechanism behind the CEHs formation and age of
their divergence from a common ancestor remain ambiguous [10, 13].
Interestingly, many of these CEHs are reported to be associated to multiple
complex diseases. This is best exemplified by the A1-B8-DR3 CEH found in
the Northern European population which is remarkably associated with
several diseases such as for type 1 diabetes, systemic lupus erythematosus,

rheumatoid arthritis and IgA deficiency and various other diseases [40-42].
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Recombination within the MHC region plays an important role in
maintaining the haplotype diversity in populations where the reshuffling of
genomic segments leads to the generation of new haplotypes [43-45]. In the
earlier years, the analysis of recombination activity in the human was
restricted to pedigree studies [46]. Later, with the maturation of the sperm
typing technique, enables screening of thousands of single sperms and this
approach generated a high resolution MHC recombination map that
definitively identified six recombination sites within the MHC [45, 47, 48].
However, due to the technical difficulties, such studies are limited in scale and
are only male-specific. The advent of high density SNP genotyping assay
allows the characterization of LD patterns which can be used to infer
recombination events across the MHC region. Systematic analysis of the SNP
genotype data from the European population revealed non uniform
recombination and LD patterns across the MHC where regions of high LD are
flanked by spikes in recombination activities [49-51]. In addition, these studies
are able to confirm the recombination sites derived from the sperm typing
experiments as well as detect novel recombination sites. A subsequent study
went on to characterize the LD patterns in multiple populations and
demonstrated that the MHC haplotypic structure is dependent on the
underlying HLA allelic combinations [52]. On the whole, the current
knowledge of MHC recombination pattern is derived from the LD structure
analysis of admixed-population data and did not account for the background
HLA allelic; hence recombination site in particular those specific to a single
ethnic or population group could have been missed out. The availability of a
comprehensive population-specific recombination and LD map can facilitate
the mapping and localization of genetic segment associated with diseases in

the MHC [53, 54].
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1.5 Immune Function

The MHC molecules are essential components for the human immune
surveillance. Both the MHC Class | and Class Il molecules interact with
antigenic peptides and present the peptides on the cell surface to CD8+ and
CD4+ T cells respectively to initiate immune responses. The MHC class |
molecules are expressed in all nucleated cells and present intracellular
peptides of length 8-15 amino acids that are processed by proteasomes [55]
(Figure 1.6). Furthermore, the presented MHC class | molecule-peptides
complexes serve as ligands for the inhibitory killer cell immunologobulin-like
receptors (KIRs) on natural killers (NK) cells and KIRs interactions with the
MHC class | complexes inhibit the activation of NK cells. Reduction in the
MHC class | expression in malfunction cells such as viral infected and tumor
cells result in NK cells activation and elimination of the malfunction cells [56].
Unlike the MHC class | molecules which are expressed in most cells, the
MHC class Il molecules are predominantly expressed in professional antigen-
presenting cells such as the dendritic cells and marcophages. MHC class II
molecules bind to antigenic peptides generated from extracellular proteins
processed by the endocytic pathway [55]. Cross-presentation is also possible
where peptides derived from the endocytic pathway bind to the MHC class |
molecules and are presented to CD8+ T cells [57]. It is well established that
the MHC molecules can bind to a large repertoires of antigenic peptides

within its peptide-binding groove [58].

15



MHC class 1

molecules
HLA-A HLA-B,
HLA-C .
Virus
Immune regulation l
NEKEILT, FKBPL éa
Immunoregulatory TAP <
functions m
* Peptide-
. l?eptld-e loading
Inflammation Golgi antigen complex
ABCF1, AIF1, IER3, LSTI, i
LTA, LT8 NCR3, TNF ER

* = >

> -~

-
Proteins requiring

chaperone
Stress response
[ HSPATA, HSPAIB HSPATL, ] % tn;‘zqn:t.g:m:::o
MICA, MICE l . P

Hsp70
Complement system . 0 ity .
C2,BF,C4A,C48 Classical pathway Bacteria
triggered by Ag-Ab complex Parasites

Leukocyte maturation

LYSGSB, LYSGSC, LYEGED,
LYSGEE, LYSGEC, DDANH2

AGER, BTNL2

Im:‘:zmlﬁ;lln i

-

MHC class 11
molecules
HLA-DR, HLA-DQ,
HLA-DP

TAP1, TAF2Z PSMBS,
HLA-DM, TAPBP

r_Al"rtl:ml"l promslng]

e

Figure 1.6 Immune functions of genes within the MHC region. MHC class
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Extreme polymorphism in these molecules especially in the peptide-binding
groove ensure the broadest range of antigenic peptides to be recognized and
hence protection against a variety of pathogens. It is interesting to note that
the MHC alleles have overlapping peptide-binding specificities and this
peptide-binding promiscuity is observed in alleles within each HLA gene as

well as across alleles from different HLA genes [59-61].

Besides the MHC molecules, the MHC region also harbors many genes
with important immune functions (Figure 1.6). Most notably is the set of genes
that encode proteins involved in the antigen processing pathway. The TAP1
and TAP2 genes located in the class Il region encode the transporter protein
responsible for the delivery of the peptides into the endoplasmic reticurlum
(ER) where the peptides are loaded on the MHC class | molecules and the
TAPBP encodes the tapasin protein which is a dedicated MHC class |
molecules chaperone involved in the peptide loading process in the ER [62].
In additional, the PSMB9 and PSMB8 encode the components of the
proteasomes responsible for the fragmentation of cytosolic and nuclear
proteins into short length peptides. It appears that the clustering of these
genes related by their functions facilitated the gene expression and genetic
exchange between the linkage genes [10]. Another important set of genes is
the stress response genes MICA and MICB. These highly polymorphic genes
encode molecules that serve as ligands for NKG2D which is an activating
receptor expressed in NK cells [63]. In events of stress, infection or during
tumorgenesis, MICA/B are over expressed on the surface of many cell types
and the binding of these molecules to NKG2D activate the NK cells leading to
the cytoxic response to the MICA/B expressing cells [64]. There is also a

cluster of genes in the class Il region that are involved in inflammation in
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particular the tumor necrosis factor (TNF) encoding gene. TNF is a
proinflammatory cytokine involves in cellular and inflammatory reaction and it
was reported that polymorphism in the TNF regulatory region influence the
amount of TNF production which could affect inflammatory responses [65,

66).

1.6 Maintenance of Genetic Diversity in the MHC

The mechanisms that drive and maintain the extreme genetic polymorphism
at the MHC loci have been an interesting field of study on its own especially in
evolutionary biology. Due to the MHC’'s importance role in pathogen
resistance, it has been long suggested that pathogen mediated balancing
selection is the driving factor behind the maintenance of MHC diversity [67,
68]. Three main mechanisms of pathogen mediated balancing selection,
supported by strong theoretical evidence, have been hypothesized;
heterozygote advantage through over-dominance model [67], negative

frequency-dependence [69] and fluctuating selection [70].

The heterozygote advantage through over-dominance states that
individuals who are heterozygous at the MHC loci have a boarder range of
recognized non-self antigenic peptides and as the result has a greater fithess
against pathogens than individuals who are homozyguous at the MHC loci.
Hence to improve pathogen resistance, MHC diversity is maintained in the
population [71]. Evidence through empirical means has demonstrated that
optimize rather than maximize amount of MHC diversity provides the greatest
fitness advantage [72, 73]. It was put forward that having overly high amount
of MHC diversity might result in the restriction of T-cell variation because of

the removal of T-cells that response to MHC molecule self-peptide complex
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[74]. The second likely MHC diversity driving mechanism is called the
negative frequency-dependence whereby pathogens undergo selection to
evade the recognition of the most common MHC alleles in the population and
hence these common alleles are selected against and decrease in frequency
in the population; while the frequency of novel alleles that provide improved
resistance to the pathogen increases [75]. As the old alleles become rare, the
pathogens resistance against them is diminished and causes their frequency
to rise again. This recurring co-evolutionary competition results in the
frequency fluctuation of the pathogens and the MHC alleles; in the process
sustaining the MHC diversity in the populations [69]. The third proposed
mechanism is the fluctuating selection whereby the existence of different
pathogen strains in different populations results in the selection of different
subsets of MHC alleles across different time and/or space [70]. As opposed to
the negative frequency-dependence, selection imposed by fluctuating
selection is directional rather than cyclical and pathogen evolution is
independent of the MHC selection [9]. Determining which mechanism as the
dominant factor is difficult; it is more likely that these mechanisms operate in
conjunction with each another in the maintenance of the MHC diversity [76].
Besides pathogen mediated balancing selection, HLA intra-locus and inter-
locus gene conversion via homologous recombination of short DNA fragment
can contribute to the generation of the MHC diversity especially in the
peptide-binding groove [77]. For instance, the HLA-B*46:01 allele is product
of the inter-locus gene conversion of HLA-B*15:01 and HLA-C*01:02 allele
[78]. Some of these newly generated alleles will establish in the population

through genetic drift and selection.

The above models discussed are all established to understand the

evolutionary processes that give rise to the observed polymorphisms in a
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single MHC locus and hence these models are unable to provide satisfactory
explanation for HLA haplotype (multiple genes) diversity and the LD that
creates this genetic fixation. To account for these, an alternate theory named
associative balancing complex is proposed [79]. This theory states that
deleterious nucleotide changes are accumulated in large genetic segments
fixed by high LD (haploblocks) via the Muller’s ratchet mechanism. Due to the
high gene density in these segments, the deleterious nucleotide changes are
often expressed as heterozygotes; as result purifying selection is ineffective in
clearing these deleterious nucleotide changes and recombination is
suppressed. Thus, the deleterious nucleotide changes are fixed into the

haploblocks and propagate through generations.

1.7 Disease Associations in the MHC

The MHC region is linked to many diseases including infectious,
inflammation-related and autoimmune conditions. In fact, no other region in
the human genome is associated with more diseases than the MHC region
[40]. Many of the early disease associations in the MHC were identified
through hypothesis-based candidate gene approach by studying the HLA
genes [80]. The tight association of genes in the MHC region allows the HLA
genes to be used as the focal point to detect disease association; however
isolating the causative genes are challenging. The availability of high-
throughput single nucleotide polymorphisms (SNPs) enables the
implementation of unbiased and hypothesis-free large-scale genome-wide
association studies (GWAS). These GWAS studies detected the association
of common genetic variants within the MHC region with a range of diseases

and; to date, more than 100 MHC linked diseases have been identified and

20



replicated in independent works (Figure 1.7). It is noted a number of these
diseases such multiple sclerosis [81], nasopharyngeal carcinoma [82] and
rheumatoid arthritis [83] are implicated by multiple genetic variants across the
MHC region, suggesting multiple MHC genes may contribute to the disease
condition. This multiple gene effects on diseases is not surprising given that
genes within the MHC region are functionally involved in the similar pathway

or system.

The prominent role of the MHC region in disease is without doubt;
however establishing a direct genetic link between a MHC gene and a
disease is problematic and is often confounded by at least three factors: the
effects of multiple genes, high gene density and the extreme LD in the MHC
region [12]. As the result, these prevent the unambiguous detection of
disease causative variants in the MHC region The inability to identify disease-
causing variants hampers the efforts to understand how these variants or
genes within the MHC region influence the underlying mechanism that leads

to the disease progression and development.
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1.7.1 Infectious Diseases

Given that host response against viral infection depends heavily on HLA-
restricted T-cell response, it is not surprising that most infectious diseases are
associated with the HLA loci. Indeed, it was found that resistance to viral
infection is linked to the HLA loci polymorphisms; most notably in HIV
whereby escape variants of HIV-1 generates peptides that avoid T-cell
recognition [85, 86]. For instance, the association of HLA-B*35 subtypes are
linked to rapid HIV disease development and it appears that HLA-B*35-
restricted HIV -1 variants evade CD8+ T cell recognition by affecting peptide
binding as well as T-cell receptor interaction with the HLA complex [87]. Other
than the influence the HLA loci polymorphism on viral infection, a variant at
the 3’ end of HLA-C was found to be associated to low HIV-1 viral load. It was
revealed that the change of nucleotide at this position allows the binding of a
mMiRNA and causes the down-regulation of HLA-C expression [88].
Heterogeneity at the HLA loci can also influence the clearing of viral infection
and mortality. Individuals who are heterozygous at the HLA alleles have
advantage over those who are HLA homozygous in the outcome of infection
which in principal HLA heterozygosity increases the viral peptide repertoire
pool and response to infection [89, 90]. In hepatitis B viral infection,
heterogeneity across the HLA class Il loci was demonstrated to have more

favorable disease outcome [91].

1.7.2 Autoimmune Diseases

The MHC region is the major genetic risk contributor to most if not all
autoimmune diseases [92-94]. GWAS studies have consistently revealed the

associations of genetic variants within the MHC region in particular the HLA
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loci with autoimmune diseases and often these associations present the
highest statistical signal and have considerably greater effect sizes than other
part of the human genome. Despite the abundance of genetic studies linking
the MHC region to autoimmune diseases, the underlying mechanism behind
the MHC association still remains ambiguous. It has been long proposed that
the interaction of T cell receptor with a self-peptide MHC complex could
trigger an autoimmune response; although there is little or no evidence to

prove the identity of these self-peptides [7].

Recently, large-scale studies with adequate statistical power revealed
multiple independent associations within the MHC region in 7 prominent
autoimmune diseases [95, 96]. These studies demonstrated that disease
associations were not just restricted to the HLA class | and class Il genes; but
also possible independent contributions from non-HLA genes (Figure 1.8).
For example, in systemic lupus erythematosus, in addition to the HLA genes,
associations were found in TNF, C4 and Notch4 genes. Furthermore, these
studies were able to show the primary HLA alleles driving the association;
HLA-DRB1*15:01/HLA-DRB1*03:01 in systemic lupus erythematosus and
HLA-B*44:02/HLA-DRB1*15:01 in multiple sclerosis. Despite these
progresses, the dissection of individual genes contribution for psoriasis
remains elusive. Psoriasis was associated with a genomic segment
containing HLA-C and it was reported that both the HLA-C*06:02 and the
nearby C6orfl0 were linked to the disease susceptibility [97, 98]. However
due to the high gene density and LD in this region, the actual contribution of

each loci remains unclear.
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Figure 1.8 Location of loci linked to 7 autoimmune diseases across the
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1.7.3 Other Conditions

Besides infectious and autoimmune diseases, other conditions such as
cancers and drug-induced allergy conditions are implicated by genetic
elements within the MHC region. Tumors development and progression are
often linked to aberrations in genes involved antigen processing and
presentation pathway [99]. It has been described that tumors in colorectal
carcinoma, melamoma and cervical carcinoma alter the surface expression of
HLA class | molecules to evade T-cells recognition [100-102]. In addition,
defects in TAP either at the transcript or protein level resulting to the
disruption of antigen processing pathway is found in several tumors [100,

103, 104].

Interestingly, several drug-induced acute reactions are associated with
specific HLA alleles. Notably is the association of HLA-B*57:01 with sensitivity
induced by abacavir as well as HLA-B*15:02 with Stevens-Johnson syndrome
induced by carbamazepine [105, 106]. Recent developments have provided
insights on the underlying mechanism that leads to the observed association.
It was found that the abacavir drug molecule bound non-covalently into the
peptide—binding groove of the HLA-B*57:01 molecule and changed its peptide
binding specificity. This caused the binding of a novel set of self-peptides in
the presence of abacavir to HLA-B*57:01 and the resulting to T cell reactivity
[107]. Similarity, the binding of carbamazepine to HLA-B*15:02 altered its

peptide repertoire and initiated T cell responses [108].
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1.8 Epistasis

The interrelated functions of the genes within the MHC region have
brought about extensive active epistasis and this genetic interaction between
multiple genes plays a significant role in shaping the patterns of LD. The
knowledge of epistatic interaction between multiple genes is an important
component for successful disease association studies. The DRB region,
involving specific alleles of two genes in complete LD — HLA-DRB1*15:01 and
HLA-DRB5*01:01, is reported to be a major candidate for multiple sclerosis
susceptibility [109]. A subsequent study, demonstrated the presence of
functional epistasis that lead to the complete LD observed between these
alleles [110]. More importantly, this study showed the HLA-DRB5*01:01
mediates the T-cell response initiated by the HLA-DRB1*15:01 and this
epistatic interaction was linked to the less severe form of multiple sclerosis.
Certain HLA allelic combinations, in particular the HLA class Il region, are
found at far higher frequency than the others in populations reflecting
persistent selective pressure and such preferential allelic combination could
be the effects of epistatic mechanism [111]. Interestingly, some of these
haplotypes are associated to disease susceptibility such as the predisposition
of the HLA-DRB1*04:01-DQA1*03:01-DQB1*03:02 haplotype to type 1

diabetes and the HLA-B*57:01-C*06 to host control of HIV [112, 113].

Besides the epistatic interaction between genes located within the MHC
region; increasing there has been evidence for interaction of the HLA genes
with genes outside of the region. Most notably is the association of HLA class
| with the polymorphic KIR genes located on chromosome 19q13.4 whereby
these genes encode activating and inhibitory receptors expressed on the NK
cells. Similar to the HLA loci, the diversity seen in the KIR genes is being

maintained through pathogen mediated selection and specific HLA-KIR

27



combinations with NK activation properties are reported to confer resistance
to infectious diseases [114]. For instance, the NK cells activations through the
interactions of KIR3DL1 subtypes with HLA-B Bw4 alleles inhibit the HIV
progression [115]. However, activating KIR-HLA pairings could also result in
susceptibility to autoimmune diseases. Of prominence is the association of
psoriasis with the HLA-C*06 alleles and KIR2DS1/KIR2DS2 [116, 117].
Overall, different KIR-HLA combinations give rise to variation in NK cells/T-
cells activation or inhibition; resulting in resistance and vulnerability against
infection and autoimmunity. This KIR-HLA class | specificity is a classical
example for genetic epistasis whereby the presence of genes encoding the

specific alleles are essential for functional responses.

1.9 Epigenetics

To date, most of the MHC disease association studies are central on the
differences in the nucleotide sequences; but in most cases how these
sequence differences are mechanistically correlated to the disease is
unresolved. The study of epigenetic in the MHC region could provide
meaningful explanation to these associations given its importance to the
regulation of gene expression. Indeed, it is now well-established that HLA
class | and class Il genes are regulated by epigenetic events [118]. With the
exception of HLA-G, the HLA class | genes are regulated by a number of
conserved promoter elements — enhancer A, interferon-stimulated response
element (ISRE) and the SXY-module (Figure 1.9). Transcription factor
nuclear-factor (NF)-kB binds to the enhancer A and interferon regulatory
factor (IRF) family members binds to the ISRE; thus HLA locus specific

sequence variation in the promoter region would induce differential activation
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level among the HLA loci [119, 120]. The highly conserved SXY-module
interacts with multiple transcription factors comprises of regulatory factor X
(RFX), cyclic-AMP response element binding protein (CREB) and nuclear
factor-Y (NF-Y) forming an enhanceosome that drive the genes transcription
[121]. HLA-G, unlike other HLA class I loci, does not depend on the ISRE site
for transcription regulation; instead it is regulated by CREB-1 and the
transcription factor binding site is located further upstream (Figure 1.9) [122].
Under normal conditions, the expression of HLA-G is suppressed in most cell
types other than trophoblast cells through chromatin remodeling via the
transcription repressor Ras-responsive binding protein — 1(RREB-1) [123].
HLA-G expression is consistently found in tumor cells and thus it has been
hypothesized that the expression HLA-G is a potential mechanism for the
tumors to evade immunosurveillance [124, 125]. For the HLA class Il genes,
other than the presence of the SXY-module, their promoter region does not
contain the enhancer A and ISRE (Figure 1.9). In fact, the transcription of
HLA class Il genes is controlled by the master activator class Il transactivator
(CIITA) [126]. In addition, the regulation of the class Il genes is also
associated with increase active histones modification and chromatin
remodeling [127]. Other than the transcriptional regulation through cris-acting
elements, it was found that the transcriptional insulator factor (CTCF) was
involved in the class Il expression through long-range chromatin interactions

[128].
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genes. With the exception of HLA-G, all genes shared the SXY-module in the
gene promoter region and interact with the enchanceosome complex to
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1.10 Genomic Modulators of Genes within MHC Region

GWAS has successfully identified an abundance of new disease
associated genomic loci in the MHC region that previously are undetectable
using the traditional genomic approaches. However, in most cases, the exact
location of the functional disease causative variants and how these
polymorphisms affect gene expression leading to the observed disease
phenotype remain unknown [129]. In addition, a number of these GWAS
identified loci are found in the non-coding region and hence suggesting
possible role in regulation of gene expression. Expression guantitative-trait
mapping (eQTL) is one powerful tool to study the impact of sequence
polymorphisms on transcription regulation. Indeed, many eQTL studies have
showed strong associations in the MHC region [130-132]. More significantly,
a recent study has demonstrated a HIV-1 control linked SNP located 35kb
upstream of HLA-C is associated with differential HLA-C expression and it is
later revealed that another variant linked to this SNP located at the HLA-C
3'UTR mediates the binding of a microRNA resulting to variation in HLA-C
expression [88, 133]. However, caution needs to be taken when analyzing
eQTL associations in the MHC region. This is because conventional
expression microarray is unable to fully account for the extreme
polymorphism in MHC region and hence this may result in spurious eQTL
associations. Nevertheless, these imply the effect of individual variations in

the MHC in the mediation of the immune-related processes and responses.
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1.11 Objectives of Thesis

Several decades of research on the MHC region has outlined its genomic
landscape providing extensive understanding to its gene organization, the
linkage disequilibrium and haplotype structure. Indeed, important knowledge
is gained in terms of its roles in the immune system, the nature and
consequences of the extreme genetic polymorphisms in the region and its
implication to numerous diseases. Despite the progress made, there is still a
lack of understanding in (1) the biological and evolutionary mechanism driving
the extreme genetic polymorphisms in the region, (2) the location of genetic
variation with functional significance and (3) the underlying mechanism
behind the numerous disease associations. The availability of MHC sequence
information, in particular the structure and genomic organization of CEHs, is

an essential resource to provide insights on above mention issues.

1.11.1 Key Objectives

1. Evaluate recombination profiles of HLA haplotypes from three distinct
population groups and identify population-specific recombination sites.

2. Determine the presence of conserved extended haplotypes (CEHS) in
the Singaporean Chinese population.

3. Establish an Asian reference MHC haplotype sequences.

4. Examine multiple MHC CEH sequences with identical haplotype
profile to explore the scope of intra-haplotypic conservation and

variation.

5. Determine the functional significance of intra-haplotypic variation.

6. Determine the effect of haplotype sequence variations on the

transcription activity within the MHC region.
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Chapter 2:

Materials and Methods
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2.1 Subjects and HLA Sequence-based Typing

Peripheral blood mononuclear cells (PBMCs) were obtained with prior
consent from 247 healthy Singaporean Chinese blood donors. Of these 211
are unrelated individuals while 36 are from comprising members of family
trios. The genomic DNA of this collection was kindly prepared and extracted
by a previous post graduate student, Chia Jer-Ming. Subsequently, B-
lymphoblastoid cell lines (B-LCLs) were established from whole blood
obtained from subjects who are HLA homozygous and the B-LCLs were
prepared through in-vitro Epstein-Barr virus infection of the B-lymphocytes.
The establishment of BLCLs were kindly performed and provided by WHO
Immunology Center, National University of Singapore, Singapore. The two
European B-LCLs - COX and QBL were purchased from the Research Cell

Bank, Fred Hutchinson Research Centre, Seattle, WA.

The HLA allelic type at HLA-A, -B, -C and -DRB1 loci of these
Singaporean Chinese subjects were obtained from Yu et al [134]. This study
used a sequence-based approach to interrogate the HLA allelic type. Briefly,
the hyper-variable exons 2 and 3 of the HLA-A, -B, -C genes were examined
by PCR amplification using specific primers, followed by direct DNA
sequencing of the PCR products in the opposite directions. HLA-DRB1 was
sequenced and typed as previously described [135]. Purified PCR products
were sequenced using the ABI BigDye Terminator v3.1 chemistry run on an
ABI Prism 3100 Genetic Analyser (Applied Biosystems, USA). Excess dye
terminators were removed by purification using an ethanol/EDTA/sodium

acetate precipitation protocol.
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2.2 HLA Homozygous Cell Lines Culture and Treatment

Under sterile conditions, frozen B58AL, B58SC, B58CF, B46BM, B46ZS,
B46CM, COX and QBL B-LCLs were thawed in 37°C water bath and re-
suspended in 11ml of Roswell Park Memorial Institute medium supplemented
with 10% Fetal Bovine Serum (RPMI/10%-FBS). Subsequently, centrifugation
was performed at 800rpm for 5min and the resultant cell pellets were re-
suspended in 8ml RPMI/10%-FBS and moved into 25ml culture flasks. The
cell cultures were then maintained at 37°C in a humidified incubator with 5%
carbon dioxide in atmospheric air. When the cell confluency reached 85-
100%, the cell medium was changed and 2/3 of the cells were transferred to
75ml culture flask and maintained at 37°C in humidified incubator with 5%
carbon dioxide in atmospheric air. This process would be repeated till the

number of cells required for experiments were attained.

At the 5" passage, for each B-LCL, the cells were collected and counted
at approximate 1 X 10° cells per ml. The cells of each B-LCL were then
seeded in 6-wells plate and stimulated with 200nm phorbol 12-myristate 13
acetate (PMA, Sigma) and 125nM ionomycin; equivalent amount of dimethyl
sulfoxide (DMSO, Sigma) were added to unstimulated cell cultures to act as
controls. Following, the cells were incubated for six hours in humidified
incubator with 5% carbon dioxide in atmospheric air. After six hours, the
culture were collected and pelleted down by centrifugation at 1000 rpm for
5min, 4°C. 1.5ml of supernatant was then transferred to 2ml eppendorf tubes
and stored at -80°C for the ELISA experiment while the remaining
supernatant was discarded. Cell pellets were then re-suspended in 500ul of
phosphate buffered saline (PBS); transferred to 1.5ml eppendorf tubes and
centrifuged at 1000 rpm for 5min, 4°C. The supernatant was removed and the

resultant cell pellets were stored in -80°C for subsequent RNA extraction.
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2.3 DNA and RNA Extraction

Genomic DNA was isolated from the cell pellets of B58AL, B58SC,
B58CF, B46BM, B46ZS and B46CM BLCLs using the QIAGEN® DNeasy
Blood and Tissue Kit; following the manufacturer’'s protocol. Extracted

DNA was elute in 200ul of 20mM Tris-Cl/0.5mM EDTA (AE buffer) and stored

at -20°C.

For the purpose of whole genome sequencing, high DNA quality and
accurate quantification are important to achieve favorable sequencing results.
To ensure these, gel electrophoresis run on a 0.8% agarose gel was
performed to detect DNA degradation. The gel electrophoresis showed
relatively tight band for the DNA of every cell line indicating that there was no
or little degradation (Figure 2.1). The DNA quantification was performed using
the Picogreen assay. Briefly, the quantification assay first requires the
establishment of a 6-points DNA standard curve with concentration range
from 0 to 10ng/ul of A-DNA (Invitrogen, USA). DNA standards were generated
from the 10X serial dilution of the 10ng/ul of A-DNA working solution with the
10mM Tris-Cl/AImM EDTA (TE buffer) and 10ul of the DNA standards was

pipetted into a 96-well full skirted black plate.
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B58AL B58SC B46BM B46ZS B58CF B46CM

Figure 2.1 Gel electrophoresis with 20ng of DNA per lane on 0.8%
agarose gel. The result indicates no or little DNA degradation.
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Next, 100ul of 1X Picogreen (Invitrogen, USA) was then pipetted into
each well and incubated at room temperature for 5 mins followed by
centrifugation at 1000rpm for 30sec. Flurorescene output emitted from the
interaction between the double-stranded DNA and Picogreen was measured
using the Tecan Genios fluorescence reader (Tecan, Switzerland) and the
fluorescence readings for the DNA standards were used to construct a
standard curve. Lastly, using the same protocol, the concentration of the DNA
samples were inferred by comparing their fluorescence readings against the
standard curve. Overall, we were able to obtained at least 15ug of DNA for all

the samples.

Total RNA was extracted and purified using the RNeasy Mini Kit (Qiagen,
Germany); following the manufacturer's protocol. During the purification,
additional steps for DNA digestion using the On-column DNase digestion kit
(Qiagen, Germany) were included to ensure high quality RNA. The quality
and quantity of the purified RNA were determined using the ND-1000
Nanodrop spectrophotometer (Thermo Fisher Scientific, USA) and we were
able to obtained at least 15ug of good quality total RNA for each sample to be

used for RNA-sequencing.

24 Enzyme-linked Immunosorbent Assay (ELISA) Experiment

The amount of TNF-alpha and IL6 in the supernatant collected after six
hours of PMA and ionomycin stimulated were determined by using the human
TNF-alpha and IL6 Quantikine ELISA kits (R&D Systems). Briefly, samples
were (200ul for TNF-alpha; 100ul for IL6) loaded in triplicates into the plate
coated with mouse monoclonal antibody against the proteins together with the
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assay diluent (buffered protein base with preservatives) provided, incubated
for 2 hours and 1 hours at room temperature respectively and followed by the
addition of the respective protein conjugate for additional 2 hour incubation at
room temperature. The ELISA reaction was then detected by the additional of
200ul of substrate solution (lyophilized NADPH with stabilizers) per well and
incubated for 30min at room temperature in dark followed by the addition of
50ul stop solution (2N sulfuric acid). The absorbance level was measured at

450nm using the Infinite® 200 PRO plate reader (Tecan, Switzerland).

The pates were washed five times with the washing buffer (1X buffered
surfactant) after each step. The standard curve was established by an 8-
points serial dilution of 1X calibrator diluent to be used as a reference for

guantification.

25 RT-gPCR for ZFP57 Expression Quantification

cDNA was generated using Maxima® First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific) as per manufacturer’s instruction using lug of total
RNA as template. The reaction mixture comprised of 4ul of 5X reaction mix
(reaction buffer, dNTPs, oligo dTs and random hexamer primers), 2ul of
maxima enzyme mix (reverse transcriptase and RNase inhibitor), 1ug of total
RNA and top up with nuclease-free water to 20ul. This was then incubated for
10min at 25°C and followed by 15 mins at 50°C and at 85°C for 5 mins to
terminate the reaction. The resultant cDNA was diluted 10 times with

RNase/Dnase free water and stored at -20°C for subsequent use.

gPCR by KAPA SYBR® FAST Roche LightCycler® 480 2X qPCR Master
Mix (Kapa Biosystems, Woburn, MA) was performed with triplicates for each
of the two biological replicates on the Roche LightCycler® 480 System
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(Roche Applied Science). The reaction mixture consisted of 5ul Sybr green,
0.5ul of combined forward and reverse primer (2ng), 2ul of cDNA and 2.5ul of
nuclease-free water. The gPCR cycling conditions were set at 95°C for 10
mins, 45 cycles of [95°C for 10 secs; 60°C for 10 seconds; 72°C for 10
seconds] and followed by 95°C for 60 seconds. Ct values calculation using
the second derivative maximum method and melting curve analysis were
carried out with gene-specific primer pairs. The ZFP57 expression was
normalized to Hypoxanthine Phosphoribosyltransferase 1 (HPRT1) and
determined using the ACt method. Primer pair sequences for the respective

genes are showed in Table 2.1.

Table 2.1 Primer sequences for ZFP57 and HPRT1 gene.

Gene Forward Primer Reverse Primer
ZFP57 TGAGGATGTGGCAGTGAATTT GTGTTTGGGAGATGGACAAAC

HPRT1 GTAATGACCAGTCAACAGGGGAC CCAGCAAGCTTGCGACCTTGACCA
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2.6 Elucidation of RCCX Copy Number Variations (CNV) in the Cell

Lines

The assay used to determine the RCCX modular duplication in each cell
line was based on and developed from a modified version of the real-time
PCR assay as previously described in Wu et al [136]. This modified version
used SYBR Green chemistry instead of Tagman chemistry to measure the
level of MRNA. Primers specific for C4A, C4B, long C4 (C4L), short C4 (C4S)
were designed to resolve the RCCX modular duplication (Table 2.2). The
difference between C4L and C4S is the insertion of the endogenous retrovirus
HERV-K segment between exon 9 and exon 10. As such the amplicons for
C4L and CA4S shared a common forward primer, and their reverse primers
were designed to differentiate between the long and short C4 gene (Figure
2.2). In addition, the copy number of the TNXA gene, which equals to the
number of RCCX modules minus 2, was also interrogated. The assignment
for the number of copies of each targeted gene involved two calibration steps.
The first calibration step was a quantitative real-time PCR endogenous
control using the RP1 gene, which is positioned upstream of the RCCX
module and always present as 1 copy per chromosome. Quantified levels of
target genes were compared to levels of RP1 in order to obtain relative copy
numbers of target genes. However, in this approach, there is an intrinsic
underestimation of the targeted gene copy number. To correct for this
underestimation, a second calibration step was performed. A calibrated plot
created from 13 reference human cell lines (COX, QBL, MOU, PGF, SSTO,
DBB, WT51, MADURA, CB6B, WT8, DAUDI, MANIKA and HOM) with known
RCCX modular number was used to unambiguously assign the targeted gene

copy number (Table 2.3).
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The genomic DNAs of these reference cell lines were purchased from the

Research Cell Bank, Fred Hutchinson Research Centre, Seattle, WA. For

each sample, the number of copies of (C4A + C4B)/2, (C4L + C4S)/2, and

(TNXA + 2)/2 were the same, acting as an internal validation.

Table 2.2

Primer sequences to determine the copy numbers of the C4A,

C4B, C4 long, C4 short, TNXA and RP1 genes.

Gene  Forward Primer Reverse Primer

C4A  CCTTTGTGTTGAAGGTCCTGAGTT TCCTGTCTAACACTGGACAGGGGT
C4B  TGCAGGAGACATCTAACTGGCTTCT CATGCTCCTATGTATCACTGGAGAGA
c4aL TTGCTCGTTCTGCTCATTCCTT GTTGAGGCTGGTCCCCAACA

C4S  TTGCTCGTTCTGCTCATTCCTT GGCGCAGGCTGCTGTATT

TNXA TCCTGCAGTCATCTTTGTCTTCAG GAGCTGCAGATGGGATACCTTTAA
RP1  GACCAAATGACACAGACCTTTGG GACTTTGGTTGGTTCCACAAGTC

42



Exon 1 Exon 9 Exon 10 Exon 41

| | HERV-K | |
CAL I ——————— I
Exon 9 .
—=> L
Exon1 Exon9 Exon 10 Exon 41

| | | |
crs M IHHHHICHIEIE - i

.4

’ Exon 9 Exon 10 N

- <«

Figure 2.2  Verification of the copy numbers of C4L and C4S genes. An
insertion of the endogenous retrovirus HERV-K segment is found in C4L but
not C4S. To differentiate the two genes, the reverse primer for the CA4L
amplicon targets the 5’ sequence specific to HERV-K (red) while the reverse
primer for the C4S amplicon targets the upstream sequence of exon 10
specific to C4S gene (blue).
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Table 2.3

establish the calibration plot.

Cell line

RCCX Structure

C4A

C4B

C4L

C4S

TNXA

COX
QBL
MOU

Monomodular

PGF
SSTO
DBB
WT51
MADURA

Bimodular

CB6B

Quadrimodular

WTS8
DAUDI
MANIKA
HOM

Heterozygous
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P W kFk O|IN|AP O DN O OC|IOON
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RCCX modular structure in 13 reference human cell lines to
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2.7 SNP Genotyping and Selection

SNPs interrogation of MHC region in the Singapore Chinese (CHSG)
population was performed on the lllumina GoldenGate MHC Panel platform
(lumina, USA). This platform was designed examine the genotype of 2360
SNPs residing in the MHC genomic region from chr6:28.97 — 33.88Mb. The
SNP coordinates were mapped to the Human Reference Sequence Assembly
36.1 (NCBI 36.1). Genotyping results were filtered using the following criteria:
SNP loci deviating from Hardy Weinberg equilibrium using a Fisher's exact
test at a significance level of 0.001; SNPs loci with a call rate of less than
95% and SNP loci with a minor allele frequency of less than 5% were
discarded. In addition, for familial data, SNP genotypes that were discordant
with the parental structure in more than one family were discarded. After the

guality control checks, 1877 SNP loci were left for further analysis.

Genomic DNA of the six samples (B58AL, B58SC, B58CF, B46ZS,
B46BM and B46CM) was subjected to genome-wide SNP genotyping using
the lllumina Human 1M-Duo BeadChip Kit (lllumina, USA). The genotype
profiles of 1,169,675 SNPs across the entire human genome were
interrogated. The SNPs coordinates were mapped to the Human Reference
Sequence Assembly 37.2 (NCBI build 37.2), and all samples had overall call
rates of more than 95%. SNP loci that were not called in any of the samples
or that deviated from Hardy Weinberg equilibrium at a significance level of

0.001 were not included in the downstream analysis.
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Genotype data consisting of 30 European (CEU) trios and 30 Yoruban (YRI)
trios were obtained from the HapMap phase Il collection [137]. SNPs
genotype data within the MHC region interrogated by the Illumina GoldenGate
assay were selected and subjected to the screening procedure as described
above. A total of 1360 common SNPs loci found across the CEU, YRI and

CHSG populations were chosen for further downstream analysis.

2.8 Haplotype Inference

Haplotype inference was carried out using a Bayesian-based approach
implemented in PHASE 2.1 [138, 139]. This approach computes the posterior
distribution of unknown haplotypes based on the observed SNPs genotype to
estimates the expected haplotype structures found in the sample population
(prior information). This prior information is estimated using the coalescent-
based model where recent haplotypes are derived from the ancestor
haplotypes through recombination and mutation; as these events are
relatively rare over short genetic distances, new haplotypes will resemblance
to one of the observed haplotypes in the population [140]. Haplotypes for
each individual is then inferred by selecting the most probable haplotype from
the posterior distribution. Among the population-based haplotype inference
algorithm, PHASE 2.1 is considered as the benchmark for haplotype phasing
[141] and hence was selected. To ensure maximum accuracy, several factors
that influence phasing accuracy [142] were taken into consideration. Rare
SNP loci which are computationally difficult to resolve, would not be
considered and in addition, the phasing procedure for each population group
was performed independently to preserve the ethnic relatedness. For the

Singapore Chinese population, the haplotype inference was performed in 2
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stages. First stage involved the phasing of 12 family trios to attain 48 distinct
phase unambiguous haplotypes. Second, this set would serve as “known
haplotypes” to aid the haplotype inference for the 211 unrelated individuals.
Each of the HLA alleles was represented by unique digit and the haplotype
information was resolved together with the SNPs. The HapMap populations
HLA-A, -B and —C typing were attained from [143] and phased together with

the selected SNPs.

2.9 Extended Haplotype Homozygosity (EHH) and Recombination

Analysis

EHH analysis was performed to assess the level of LD decay across a
sample of haplotypes tagged with their respective HLA alleles. Essentially,
EHH calculated at a position x is defined as the probability that 2
chromosomes, carrying an allele (or haplotype) of interest at an anchor locus,
have identical SNPs sequence from defined core locus to the position x [144].
In the context of this project, this core locus is described by the HLA allele of

the haplotype.
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The EHH of a selected core locus t is computed as the following:

e, = 2=1(3) /(C;)

c is the number of haplotypes of a particular HLA allele
e is the number of total number of haplotypes

s is the number of haplotypes with a uniqgue SNPs sequence

A constant EHH value indicates the transmission of a haplotype without
recombination. Hence, probable recombination sites were scored when either
EHH decay is observed in 2 or more HLA haplotypes across the SNPs
interval or when at least 10% of a single HLA haplotype diverged from the

core haplotype.

The historical recombination rates for HLA chromosomal SNPs
haplotypes were estimated using the program LDHat [145]. LDHat
implements a coalescent-based approach that accounts for the patterns of
genetic variation and observed linkage disequilibrium to infer recombination.
The estimate was performed with a block penalty of 5 and 10,000,000
iterations. LDHat presents the population-scaled recombination rates p,
hence to obtain the per-generation recombination rates r (cM/Mb), the

following equation was applied.

_p
r="/an,

N, is the effective population size and was set at 10,000 [146-148]
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2.10 Runs Of Homozygosity (ROH) and Identity-By-Descent (IDB)

Analysis

The genomic region in chromosome 6 from 25MB to 35MB covering the
extended MHC region was selected and screened for Runs Of Homozygosity
(ROH) segment analysis. The ROH analysis was implemented by an
algorithm in the PLINK package [149] with the following parameters - sliding
window size : 50kb, minimum length for ROH segment : 1000kb, number of
heterozygotes genotype call allowed in a window : 3 and maximum distance
between adjacent SNPs in order to be considered in a segment : 50kb. The
genotype data of B58AL, B58SC, B58CF, B46ZS, B46BM and B46CM
assayed from lllumina Human 1M-Duo BeadChip were used for ROH
analysis. In total, 10215 SNPs markers were found within the genomic region

of interest and were used for the ROH analysis.

Similarly genotype information of the six cell lines from the lllumina
Human 1M-Duo BeadChip was used for the Identity-By-Descent (IBD)
analysis. 96,387 independent SNPs not in linkage disequilibrium with one
another were randomly selected from the genome-wide SNPs data and were
used to test for IBD among the samples. The PLINK package was used to
estimate the following IBD parameters in each sample pair: probability of
genetic markers sharing 0 allele (IBD=0), probability of genetic markers
sharing 1 allele (IBD=1) and probability of genetic markers sharing 2 alleles
(IBD=2). Therefore, high values of IBD=1 and IBD=2 would denotes high
degree of relatedness between 2 individuals while high value of IBD=0

denotes otherwise.

49



2.11 Genome Sequencing

The genomic DNA extracted from B58AL, B58SC, B58CF, B46BM,
B46ZS and B46CM BLCLs was subjected to whole genome sequencing using
the next generation technology implemented by Complete Genomics
(Mountain View, CA, USA). The sequencing was performed using Complete
Genomics (CG) proprietary sequencing instruments and technology [150].
Briefly, the CG sequencing technology called DNA nanoball sequencing
involves the searing of the isolated DNA into approximately 500bp genomic
fragments; the insertion of four synthetic adaptor sequences into each
fragment followed by the circulation of the fragments to generate 70-base
reads (35-base pair-end reads). Each of these circular reads is then amplified
into a head to tail concatemer resulting in a long single-strand DNA. This
single-stranded DNA are folded in a nanoball and captured by a microarray
sequencing flow cell. The sequencing assay called combinatorial probe-
anchor ligation (cPAL) chemistry is carried out where independent non-
iterative sequencing reactions interrogate the nucleotide profiles of the DNA
through the ligation of fluorescent probes to the DNA. There are several
advantages of the CG technologies over approaches that employed
sequencing by hybridization method. Firstly is the ability to interrogate simple
repeats. Secondly, the independent non-iterative sequencing reaction
minimizes the accumulation of sequencing errors and provides superior fault
tolerance. Lastly, the cPAL approach enable massive parallel base reading in
a single cycle and therefore reduces the consumption of reagents and

sequencing time.
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The CG proprietary bioinformatics pipeline was used to map and assemble
the genome [151] and the reads were aligned to the Human Reference
Sequence Assembly 37.2 (NCBI build 37.2). Using a combination of Bayesian
and de Brujin graphed-based approaches, the CG assembler is able to
annotate SNPs, short insertion/deletions and block substitutions. The variants
called were annotated against a variety of public databases - NCBI gene
annotation Build 37.2, dbSNP build 137, catalogue of somatic mutations in
cancer v6l (COSMIC) and miRBase version 19 and Data of Genomic

Variants version 9 (DGV).

2.12 MHC Haplotype Variation Classification and Comparison

For intra-haplotype comparisons, only nucleotides at positions with high
guality score metric generated from the CG assembly protocols were
considered for comparison; nucleotide at positions with low confidence score
were considered as an ambiguous call and would not be used for
comparison. Consensus sequence for each of the two Asian MHC haplotypes
was established by evaluating the samples sequences. For each haplotype,
the 3 genomes available were each divided into two haploid chromosomes,
and the 6 resulting haploid chromosomes were then compared. If 2 or more
chromosomes had ambiguous or low confidence calls at a position, it was no-
called (N) in the consensus sequence. A variant was called if two or more

haploid chromosomes showed an alternate nucleotide call.
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To compare the two Asian haplotypes against the eight European MHC
haplotypes sequenced by the MHC Haplotype Project, BED files of the eight
European MHC haplotypes [14-16] were downloaded

from http://www.ucl.ac.uk/cancer/medical-genomics/mhc/#HaplotypeData and

the coordinates of these BED files were aligned to the Human Reference
Sequence Assembly 37.2 (NCBI build 37.2). Genetic variants found between
the MHC haplotypes were annotated using the annovar software [152].
Construction of the consensus sequences as well as the intra and inter-

haplotype comparisons were performed using in-house generated R-scripts.

2.13 Assessment of Sequencing Accuracy

To assess the discordant in the nucleotide calls generated from the CG
platform and the SNPs genotyping platform, a total of 48 nucleotide positions
were selected for PCR re-sequencing. Primer pairs to assess the variant of
interest were designed using NCBI Primer-BLAST and checked against
Human Reference Sequence Assembly 37.2 (NCBI build 37.2). Only primer
pair's sequences matching to the sequence of the samples were selected.
This cross-checking of primer sequences with the sample genomes was
performed using in-house written R-scripts. The sequences of these primer
pairs and the location of the variants can be found in Table 2.4. The PCR
reactions were carried out in volume of 20ul reaction mixture comprising of
2ul of 10X buffer (100mM Tris-HCI and 500mM KCI), 2.4ul of 25mM MgCl,,
1ul of 2.5mM dNTPs, 0.2ul of Hi Fidelity Tag DNA polymerase (Roche
Applied Science, Germany), 3ul of 2ug forward primer, 3ul of 2ug reverse

primer, 3.4ul of nuclease-free water and 5ul of 20ng DNA template.
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Table 2.4

Re-sequencing experiments to assess mismatches between

SNP genotyping and CG sequencing platform in cell lines carrying A33-B58-

DR3 and A2-B46-DR9. Ta: annealing temperature.

A33-B58-DR3
Position
Forward Primer Reverse Primer Examined Length Ta
STOASIGMTONC  ANTCICTCICTOOTA aaranare 722 oo
'(I;(ié(i#ﬁCTGGCGGG '(I;(é'l_}?r'_ll'_TGCTGGCTCA 29.819.909 490 60
CTOMCTONNTOMG — (GASIGSANTTOR  namous 719 oo
CACAACCACOORGA — TOTICCTOCTIOTET siimosie o1 oo
CHICATAISCTACH, — COTCTOAONCES i 114 o0
CTCTTONCORCTET — COACTAeTIoM  aamers 107 oo
CMTOCTIALOST  CONTTAAAA  srgmmam 507 oo
TASSOTCTCTATCT — CTAMICOCAOASS 31gmsmn 70 oo
CTTTAICASACCTS — SCTACTCOMORT 32130037 om0 59
[CASATIONTTITTC — GATTACASCTION  sa0s05i9 500 59
A2-B46-DR9
Position

Forward Primer Reverse Primer Examined Length Ta
éi'cl';:g_ﬁ\rTGTAGACAGCT _(?_?él?éAGGGGAATGTG 29.801,958 420 58
COSSTITTTONTE TCICTCTON  msnssos 7 oo
CTTTCAGTTCTCTTCTGT éggﬁTﬁggﬁig TTAG 30,704,985 697 60
GTCTCCA

,CA:,SE;GGGGATGGCTAG ggg[}(?&GGGAATCT 31,079,236 538 59
TICAACAG o CAGGATGGGA . 31082304 563 50
_C;_%I’;Xé‘gGAGACCTGCA EEJQ_EAFSSSACACTG 32130937 660 59
TCASKTIOMTITTTCCT CATTACACETTOAS  ygmnsas o0 59
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The PCR reactions were performed on Applied Biosystems® GeneAmp® PCR
System 9700 machine (Applied Biosystem, USA). The following cycling
conditions were used: 94°C for 2 mins, [94°C for 30 seconds, annealing
temperature (T,) for 30 seconds, 72°C for x seconds (dependent on the
length of template)] for 25 cycles, and 72°C for 20 mins. The quality and
integrity of the PCR product was verified by 1% agarose gel electrophoresis.
The PCR products were then purified using the QIAquick gel extraction kit
(Qiagen, Germany) according to the manufacture’s protocol and the purified

PCR templates were sequenced using their respective primers.

Primer sequences AGCAGTCACAAGTCACAGGG and
CAGCCCATCGCATGCTCAAT were used to interrogate the missense
mutation (chr6:29,913,037, HLA-A exon 7) found in the cell lines carrying
A33-B58-DR3 was selected. TA-cloning was then performed to verify the
missense mutation using pGEM®-T Easy Vector Systems (Promega,
Fitchburg, WI) following manufacturer’s instructions. Briefly, 3ul of purified
PCR product were ligated with 1ul of pGEM®-T Easy Vector in a reaction
mixture comprising of 5ul of 2X ligation buffer and 1ul of T4 DNA ligase and
this reaction mixture was incubated for 1 hr at room temperature. Next,
transformation was performed using the JM109 High Efficiency Competent
Cells where 1ul of the ligated products were added into 50ul of JM109 and
the mixture was incubated on ice for 20 mins; followed by heat shock for 45
sec at 42°C and immediate incubation for 2 mins on ice. The recovery of the
cells was performed by the addition of 950 ul of S.O.C medium (Invitrogen)
and the reaction mixture was incubated in thermo-mixer shaking at 1400rom
for 1 hr at 37°C. 100ul from the reaction mixture was plate on
LB/ampicillin/IPTG/ X-Gal plate and the plate was incubated overnight at

37°C. Thereafter white colonies were selected, inoculated in 3ml of LB with
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100ug/ml of ampicillin and incubated with shaking overnight at 37°C. Plasmid
DNA was extracted using QIAprep® Miniprep Kit (Qiagen, Germany) and
isolated plasmids were sequenced with the T7 promoter and SP6 promoter

primers.

2.14 Phylogenetic Analysis and Estimation of Haplotype Divergence

The SNP sequences of the Asian and European haplotypes spanning
across the extended MHC region (chr6: 29.65-33.0Mb) were comprise of
18,781 common SNPs annotated in dbSNP build 137. SNP positions with
heterozygous call in the Asian haplotypes were denoted as missing data.
Phylogenetic trees were constructed based on the maximum likelihood
statistical method and the Kimura 2-parameter substitution model was used to
calculate the likelihood on a given tree. To evaluate the reliability of branching
points, bootstrap test of phylogeny was performed (n=500). The tree building

process was implemented in MEGAS [153].

Nucleotide diversity metric (1) was used to measure the level genetic

variation between the MHC sequences computed by the following equation.
m=2 Z{I:l Z};% XinT[ij

n is the number of sequences
X is the frequency of the ith and jth sequences

1Ty is the number of nucleotide differences per nucleotide site between ith and

jth sequences
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The age of the Asian haplotypes was determined by the following equation.

_ Ny
t= /nLu

t is the length of time since the haplotype sequences shared a common

ancestor

N is the number of nucleotide differences between the haplotype sequences
y is the number of years per generation and was set at 20 years

n is the number of haplotype sequences

L is the length of the sequences

u is the mutation rate per nucleotide per year and was set at 1.1X107® [154]

2.15 RNA-seq Preparation and Analysis

Total RNA of at least 15ug isolated from BS8AL, B58SC, B46BM, B46ZS,
COX and QBL cell lines were subjected to RNA-seq. Prior to the library
construction step, cytoplasmic rRNA were removed from the RNA samples
using the human Ribo-Zero™ rRNA Removal Kits (Epicentre, USA). For each
RNA sample, total RNA libraries of 75bp pair-end reads with DNA fragments
size range 120-225bp were prepared using the TruSeq RNA kit (lllumina,
USA). A total of 12 libraries were prepared including libraries for the sample
biological replicates. Sequencing was carried out on the lllumina HiSeq 2000
machine with two libraries pooled together per sequencing lane, resulting in
approximately 79 million reads per library. The library preparation and

sequencing were performed by the Duke-NUS Genome Biology Facility.
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Quiality control (QC) was performed on the raw sequence data to remove low-
qguality reads. Here, only reads with reads with 70% of the base positions
meet the Phred score cuff-off of 20 were retained for the further downstream
processes. This filtering was conducted using the NGS QC Toolkit [155] and
the sequence biasness was assessed using the FastQC software

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc).

The QC reads from each library were mapped independently using
TopHat2 v2.0.7 [156] against the human reference transcriptome (NCBI gene
annotation Build 37.2) and the human reference genome (NCBI Build 37.2
reference sequence) using the default settings. The transcripts annotation
GFF file and sequence indexes information were downloaded from lllumina’s

iGenomes project (ftp://ussd-ftp.illumina.com). The TopHat2 alignment

algorithm involves a three-step process. First the reads are mapped against
the known transcriptome. The remaining unmapped reads are then mapped
against the genome; reads that are spanned within a single exon are treated
as mapped reads while multi-exon spanning reads are treated as unmapped
reads. Together with previously aligned reads with low scores, the third step
will split the unmapped reads into non-overlapping 25bp segments and

mapped against the genome to identify the most probable splicing sites.
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To estimate the relative abundance of the transcripts, the approach
implemented in the Cufflinks suite (version 2.1.1) software was used [157].
RNA-seq enables quantitative measure on the abundances of RNA
transcripts in the form of the number of reads mapped to the targeted
transcripts. However, because of the inherent technical biases introduced in
the library preparation step and the variation in the number of reads
generated between different sequencing runs as well as due to the difference
in the length of the RNA transcripts, normalization procedure is essential to
attain meaningful interpretation from the analysis. To account for these
issues, Cufflinks uses fragments per kilo base of transcript per million
mapped reads (FPKM) that normalized the read counts by the length of the
transcripts and the total number of mapped reads in the sample. Cufflinks
were performed with the NCBI gene annotation Build 37.2 to output FPKM
values for known annotated genes. For differential expression analysis, we
used Cuffdiff in the Cufflinks suite to perform the estimation. In Cuffdiff, genes
variance across replicates is modeled as a non-linear function of mean counts
using a combination of normal and negative binomial distributions and T-test
is used to derive the P-values for differential expression. To correct for
multiple  hypothesis testing, Benjamini-Hochberg adjustment was

implemented.
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2.16 Databases and Tools

Allele Frequency Net Database (AFND)

The AFND [158] was used to search and extract the HLA allele and HLA
haplotype frequencies in worldwide populations.

(http://www.allelefrequencies.net/)

The International Immunogenetics Information System® HLA

(IMGT/HLA)

The HLA allele sequences used in this study was extracted from the

IMGT/HLA [11] (http://www.ebi.ac.uk/ipd/imgt/hla/, Release 3.13.1).

UCSC Genome Browser

The ENCODE histone modification data was assessed through the UCSC

Genome Browser (http://genome.ucsc.edu/). In addition, the Table Browser

tool in the genome browser was used to retrieve the Human genome
reference sequence and annotation data in the MHC region as well as to
extract the SNPs information residing in the eight alternate MHC reference

sequences.

International HapMap Project

The genotype data of the European population (CEU) and Nigeria
Yoruba population (YRI) were obtained from the HapMap database
(release 24). The data was QC and all the SNP alleles were all referred

to the positive strand before analysis.

Gene Expression Omnibus (GEO)
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The expression profiles of the BLCLs from the Centre d'Etude du
Polymorphisme Humain (CEPH) collection under the accession number of

GSE29158 were extracted from the GEO database.

R Project for Statistical Computing

The R programming environment was used to perform data processing and

graphics plotting. R packages were also used for basic statistical analysis.

NGS tools

The Integrative Genomics Viewer (IGV) [159] was used to view and check on
the RNA-seq reads mapping results. The SAMtools - version 0.1.18
(http://samtools.sourceforge.net/) and Picard

(http://picard.sourceforge.net/index.shtml) were used to manipulate and

process the NGS data files.
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Chapter 3:

Recombination in the Major

Histocompatibility Complex Haplotypes
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3.1 Introduction

Recombination has a significant role in the generation of high haplotype
diversity found within the human MHC region. The occurrence of these
recombination events enables the assortment of DNA blocks within the MHC
region [10] and in the process creating diverse combinations of MHC
haplotype across populations. Typically, recombination sites are localized to
within a 1 — 2kb genomic segment that is flanked by regions with low
recombination [160] and are found at multiple points along the chromosomes
in a non-random manner. These would lead to the breakdown of linkage
disequilibrium (LD) defining the discrete haplotype blocks [161].

As compared to other parts of the genome, the identification of
recombination sites within the MHC region is proven to be particularly difficult.
Previously, the laboratories of Mary Carrington and Alec Jeffreys employed
single-sperm genotyping approach to detect the frequency and distribution of
recombination within the MHC region and these studies were able to definitely
identify six MHC-residing recombination sites [47, 48]. However, this
approach is experimentally laborious and the resolution of the identified
recombination sites (average 73.2kb segment per site) is poor. The
availability of high-throughput single nucleotide polymorphism (SNP)
genotyping assay has provided an alternate method to infer local
recombination rates through in silico modeling using population genotype
SNPs information. This approach is best exemplified by the undertaking of the
International HapMap Project where 3.1 million SNPs information extracted
from individuals of European, African and Asian ancestries was used to
characterize the patterns of LD in the human genome and provide means to
estimate recombination rates [160]. However, this approach of using admixed
population data to infer recombination sites is not comprehensive enough
when applied to the MHC region. This is because the intense genomic
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rearrangement in the MHC region, not found in other parts of the human
genome, is driven by the underlying HLA allelic gene combinations which are
uniquely found in distinct population groups complicates the mapping of
recombination sites in the human MHC region [162, 163]. Population-distinct
HLA allelic gene combinations maintained by natural selection and other
evolutionary forces may result in recombination breakpoints specific to each
population. Hence, the exclusion of HLA allelic typing information in the
recombination sites inference process could possibly conceal the presence of
population-specific recombination sites.

In this chapter, we devised a method to detect the location and the
frequency of recombination sites within the MHC region. This approach relied
on the LD genetic map generated using both the HLA allelic information and
the SNPs haplotype phase information from an Asian cohort comprising of
Singapore Chinese (CHSG) to infer MHC-residing recombination sites. Using
this approach, we also examined the recombination profiles in individuals of
European and African ancestries, and hence offered a comprehensive MHC

recombination map across populations.
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3.2 Results

3.2.1 Linkage Disequilibrium Structure within MHC Region

The inference of recombination sites would require the generation of
population LD structure. To perform this, individuals HLA allelic typing and
the MHC region SNPs genotype information are essential. The HLA
information of 247 CHSG individuals (211 unrelated and 36 comprising
members of family trios) were obtained from Yu et al [134] and they were
typed for four HLA loci at HLA-A, -B, -C and —DRB1 using sequence-based
typing method. DNA of the same cohort was then subjected to lllumina
GoldenGate MHC Panel to interrogate the SNPs genotype status covering
4.9Mb (28,970,148 - 33,882,048) of the extended MHC region. By
incorporating both the HLA allelic and SNPs genotyped data, SNPs
haplotypes phase with their corresponding HLA allelic gene combination were
derived using PHASE 2.1 [138]. The resulting 470 chromosomes were
categorized according to their HLA alleles and haplotypes. The most frequent
HLA haplotypes found in the CHSG population were A*02:07-C*01:02-
B*46:01 (12.8%), C*01:02-B*46:01-DRB1*09:01 (9.6%), A*33:03-C*03:02-
B*58:01 (9.0%), C*03:02-B*58:01-DRB1*03:01 (7.7%), A*02:03-C*07:02-
B*38:02 (4.3%), A*11.01-C*07:02-B*40:01 (4.0%), C*08:01-B*15:02-
DRB1*12:02 (3.6%) (Table 3.1). SNPs haplotypes pooled according to their
HLA alleles with frequency > 5% were then subjected to extended haplotype
homozygosity (EHH) at three separate 1 mega-base genomic segments
(chré: 29.5 — 30.5 Mb, chr6: 31.0 — 32.0 Mb and chr6: 32.2 — 33.2Mb)
covering the HLA genes loci. EHH is the measure of LD decay at varying
locations from a defined locus [144] and hence provides an overview on the

LD structure of the region of interest.
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Table 3.1 Common HLA haplotype frequency in CHSG (A) 3-locus HLA-
A-C-B (B) 3-locus HLA-C-B-DRB1 (C) 4-locus HLA-A-C-B-DRB1

A HLA-A-C-B
Haplotype Counts Sr%?fr(\éz)d
A*02:01-C*07:02-B*40:01 7 1.49
A*02:01-C*15:02-B*40:01 8 1.70
A*02:03-C*07:02-B*38:02 20 4.26
A*02:07-C*01:02-B*46:01 60 12.77
A*11:01-C*03:04-B*13:01 15 3.19
A*11:01-C*08:01-B*15:02 16 3.40
A*11:01-C*07:02-B*40:01 19 4.04
A*11:01-C*01:02-B*46:01 10 2.13
A*11:02-C*12:02-B*27:04 7 1.49
A*24:02-C*03:04-B*40:01 7 1.49
A*24:02-C*07:02-B*40:01 8 1.70
A*33:03-C*03:02-B*58:01 42 8.94

B HLA-C-B-DRB1

Observed

Haplotype Counts Freq. (%)
C*03:04-B*13:01-DRB1*15:01 12 2.55
C*03:04-B*13:01-DRB1*16:02 7 1.49
C*08:01-B*15:02-DRB1*12:02 17 3.62
C*07:02-B*40:01-DRB1*09:01 15 3.19
C*01:02-B*46:01-DRB1*08:03 13 2.77
C*01:02-B*46:01-DRB1*09:01 45 9.57
C*03:02-B*58:01-DRB1*03:01 36 7.66

C HLA-A-C-B-DRB1
Haplotype Counts I(:)rk;?r(\éz;j
A*02:03-C*07:02-B*38:02-DRB1*16:02 7 1.49
A*02:07-C*01:02-B*46:01-DRB1*08:03 8 1.70
A*02:07-C*01:02-B*46:01-DRB1*09:01 36 7.87
A*11:01-C*03:04-B*13:01-DRB1*15:01 7 1.49
A*11:01-C*08:01-B*15:02-DRB1*12:02 12 2.55
A*11:01-C*07:02-B*40:01-DRB1*09:01 7 1.49
A*33:03-C*03:02-B*58:01-DRB1*03:01 31 7.02
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In this study, the core locus for the three respective genomic segments was
defined at the HLA-A, HLA-B and HLA-DRB1. Generally, the EHH value of a
HLA haplotype recorded a drop, at incremental distance away from the
defined core HLA locus, whenever there is decay in LD. Unchanged EHH
values over long genomic distance imply regions of high LD and sequence
conservation.

Region of high LD with EHH >= 0.9 were observed in extended regions
proximate to the HLA-A, HLA-B and HLA-DRB1 genes (Figure 3.1). At the
chr6: 29.5 — 30.5 Mb chromosomal segment, a 190kb (position 29,838,709 —
30,027,753) region of extensive LD encompassing HLA-A, HLA-H and HLA-G
was observed (Figure 3.1A). Haplotypes telomeric of HLA-A were generally
well conserved while at the centromeric end, two distinct patterns emerged.
Although HLA-A*02:07 and A*33:03 haplotypes stretched a further 200kb or
more before breaking up, haplotypes carrying A*02:01, A*24:02, A*11:01
alleles broke right after HLA-A. For the chr6: 31.0 — 32.0 Mb chromosomal
segment (Figure 3.1B), high LD was observed for at least 213kb (position
31,325,794 - 31,538,700) in all the common HLA-C-B haplotypes. This region
of strong LD extended past HLA-C towards the telomeric end, and stretched
over the MICA gene at the centromeric end. Of note, the centromeric
boundary whereby all HLA-C-B haplotypes break corresponded to a HapMap
inferred recombination region at position 31.54 Mb. The region of strong
homozygosity at the chr6: 32.2 — 33.2Mb segment stretched for at least
181kb and was flanked by 2 recombination sites derived from the sperm
typing assay (Figure 3.1C) [47]. The sperm typing recombination site at the
telomeric end spans over a 105.15kb region enveloping several EHH drops.
The most significant EHH drop was found at the 32,447,054 to 32,448,850

interval in all of the seven major HLA-DRB1 haplotypes.
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Figure 3.1 Extended haplotype homozygosity (EHH) plots of SNP
haplotypes for common HLA alleles. Plots covering 1Mb region with the
classical HLA loci/haplotypes used as anchor positions: (A) HLA-A, (B) HLA-
C-B and (C) HLA-DRBL1 respectively. Positions of recombination sites and
their relative sizes are mapped onto the plots as follows: six recombination
segments identified by sperm recombinants (highlighted in pink columns) and
HapMap-inferred hotspots that coincide with EHH drops (highlighted in purple
columns).
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At the centromeric end, 5/7 HLA-DRB1 haplotypes registered EHH drops at
the same location that coincided with the sperm typing derived recombination

interval (position 32,447,054 - 32,448,850).

3.2.2 MHC-residing Recombination Sites within the CHSG Population

LD breakages denoted by decay of EHH values along the chromosome is
indicative of probable occurrence of recombination events. The EHH plots of
the three genomic segments were marked by distinct step-wise drops
occurring at non-random discreet interval (Figure 3.1), suggesting the
presence of recombination sites. Putative recombination sites are recorded
only either when two or more HLA haplotypes independently register drop in
EHH value across the same SNPs interval or when at least 10% of the
chromosomes carrying a unique HLA allelic haplotype diverge from the core
pool. In addition, in silico recombination rates estimation using LDhat [145]
was performed based on the pooled 470 chromosomes.

A total of 69 recombination sites were characterized across the three
genomic segments based on the above criteria (Figure 3.2 and Table 3.2). In
contrast, the approach using the sperm typing assay and the HapMap study
were only able to detect six and 29 recombination sites across the extended
MHC region respectively. All the six sperm typing sites overlapped with EHH
drops and as the sperm typing approach had poor resolution ranging in size
from 35.4kb to 116.3kb; it was not uncommon to see several EHH drops

within each sperm typing derived recombination region.
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Figure 3.2 Recombination regions identified by SNPs interval displaying
EHH decay. Plots illustrate the number of unique HLA allelic haplotypes
independently registered drop in EHH (red) and the recombination rates
(blue) across (A) HLA-A, (B) HLA-C-B and (C) HLA-DRB1. Recombination
segments identified by sperm recombinants are indicated by the pink colored
bars and the HapMap-inferred recombination sites are indicated by the blue
colored bars.
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Table 3.2
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List of the recombination sites identified through the EHH
approach. 69 recombination sites were identified and among them, 37 were
not found in any of the previous studies.

From rsID To rsID Size Marker
29591947 rs1592410 29594887 rs9257890 2.94 LOC100507362
29622209 1s398616 29624221 rs3094576 2.01 UBD 3
29630691 rs2534791 29634919 1s362536 4.23 UBD Intronic
29637733 rs1233405 29641274 rs388234 3.54 UBD 5’
29648840 1s362509 29651625 1s362525 2.79 GABBR1 3’
29677934 rs3025643 29679588 rs10946999 1.65 GABBR1 Exon
29769435 rs7772169 29772431 rs3131886 3 MOG 3
29791787 rs1632962 29792613 rs2517911 0.83 HLA-F
29803481 rs1628578 29804097 rs3817826 0.62 HLA-F-AS1
29830494 rs9391630 29838709 rs1737069 8.22 IFITM4P
29946621 rs2844821 30007656 rs2524005 61.04 HLA-H-HCG4B
30027753 rs7747114 30032404 rs3893538 4.65 HLA-A
30038598 1s7739434 30040979 rs3873283 2.38 HCG9 &'
30154225 rs2394734 30155944 rs7382061 1.72 GABRA3
30179089 rs2240070 30184609 rs2240068 5.52 TRIM31 Exon
30184734 rs2074483 30186994 rs2284163 2.26 TRIM31 Intronic
30228099 rs2285797 30235302 rs9261535 7.2 TRIM10
30329421 rs2516723 30334283 rs4526237 4.86 HLA-L
30427909 rs6905389 30429340 rs984802 1.43 RPP21
30471924 rs3130113 30476614 rs3130118 4.69 HLA-E
31032003 rs12212418 31033964 rs11753326 1.96 DPCR1
31063660 rs1634731 31063908 rs2517416 0.25 MucC21
31101937 rs2523897 31105671 rs9262549 3.73 MUC22
31110595 rs4248154 31120975 rs3131927 10.38 MUC22 3
31188411 rs2233969 31189722 rs3823402 1.31 Cé6orfl5
31199971 rs3094204 31205162 rs3130558 5.19 PSORSI1CL Intron
31213289 rs1265100 31214247 rs3130573 0.96 PSORS1C1 Exon
31245144 rs3130503 31247469 rs879882 2.33 POU5SF1
31248720 rs1265158 31251561 rs3131018 2.84 PSORS1C3
31314185 rs3130685 31325794 rs2894189 11.61 HLA-C
31435639 rs1811197 31437994 rs2523567 2.36 HLA-B
31538700 rs3099840 31538778 rs2596473 0.08 HCP5 5’
31543970 1s2523676 31544768 1s2523674 0.8 HCP5 3
31551302 rs12660382 31556133 rs2523651 4.83 HCG26
31557757 1s2523647 31559192 rs2516507 1.44 HCG26 3'
31561619 rs2516500 31567721 rs2516415 6.1 MICB 5’
31569068 rs3130922 31571470 rs2516408 24 MICB
31676448 rs2857595 31680935 rs2844479 4.49 NCR3
31683255 rs9348876 31686751 1s2844477 3.5 AIF1 5'
31701455 rs2260000 31703466 rs2736171 2.01 PRRC2A
31783744 rs2242653 31786709 rs805287 2.97 LY6G6F
31837338 rs707938 31838993 rs707937 1.66 MSH5
32253685 rs2269423 32255674 rs3130349 1.99 RNF5
32290737 1s206015 32292323 rs404860 1.59 NOTCH4 Intron
32297819 rs715299 32299317 rs3830041 1.5 NOTCH4 Intron
32311515 rs3130299 32315371 1s416352 3.86 NOTCH4 5
32447054 rs2050190 32447818 rs6913309 0.76 C60rf10 Intron
32473558 rs3129954 32474399 rs4248166 0.84 BTNL2 Intron
32489714 rs7759742 32489917 rs743862 0.2 BTNL2 5’
32497626 rs3135363 32503546 rs2187818 5.92 HLA-DRA 5’
32516713 rs3129878 32518115 rs3129883 1.4 HLA-DRA Intron
32529776 rs10947279 32536263 rs6903608 6.49 HLA-DRA 3’
32717405 rs9272723 32734064 rs7744001 16.66 HLA-DQA1
32766693 rs2858330 32767136 rs5002702 0.44 HLA-DQB1
32789623 rs3916766 32791669 rs6935940 2.05 HLA-DQA2 5’
32793528 rs3916765 32795336 rs3104401 1.81 HLA-DQA2 3
32820225 rs9276431 32821245 rs2239800 1.02 HLA-DQA2 Exon
32835883 rs1023449 32839688 rs2071550 3.81 HLA-DQB2 Exon
32844122 rs9296044 32847866 rs1383265 3.74 HLA-DQB2 5’
32887974 rs5009557 32888702 rs11244 0.73 HLA-DOB
32905515 1s241439 32906773 1s241433 1.26 TAP2 Intron
32912195 rs3819714 32913448 rs2071465 1.25 TAP2 Exon
32965779 1s241414 32970718 1s241407 4.94 LOC100294145
33007463 rs3132131 33008629 rs154972 1.17 HLA-DMB 3'
33010561 rs10751 33011878 rs151719 1.32 HLA-DMB
33013724 rs194675 33019792 rs2395296 6.07 HLA-DMB 5'
33072674 rs206765 33075719 rs12216336 3.05 BRD2 3'
33077435 1s172274 33078428 1s206762 0.99 HLA-DOA 3'
33080668 rs592625 33082379 rs2581 1.71 HLA-DOA
33129170 1s7743563 33132251 15435549 3.08 HLA-DPAL 3'

t indicates intervals that reside within sperm typing segments and * indicates
intervals that overlapped with the HapMap recombination sites. Each recombination
site was mapped to the Human Reference Sequence Assembly 36.1 (NCBI 36.1) and
assigned to a marker that is in the closest proximity to the site.
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For example, the sperm typing derived recombination segment chr6: 32,
063,170 — 32,511,466 harbored five independent recombination sites. Of the
29 HapMap inferred recombination sites, 24 of them corresponded to the
EHH drops and 37 of the EHH-derived recombination sites were not found in
any of the previous studies. In addition, the examination of unambiguous HLA
allelic SNPs haplotypes derived from trios data showed that the positions of
LD breakage along these chromosomes coincide with the EHH-derived
recombination sites (Figure 3.3). This high correlation of the EHH-derived
recombination sites with the sperm typing, HapMap data and the positions LD
breakage along haplotypes derived from the trios data illustrates the validity
of the EHH mapping approach.

Peaks of recombination rates were located at SNPs intervals where
multiple haplotypes independently displayed EHH drop. For instance, a
recombination rate peak of 4cM/Mb was located at chr6: 30,027,753 —
30,032,404 and A*02:01, A*02:07, A*11:01 and A*24:02 haplotypes all
exhibited EHH drop at this genomic interval. EHH-derived recombination sites
were also found in regions with low recombination rates. These recombination
sites were specific to a unique HLA haplotype and as such the number of
chromosomes was not significant enough to result in elevated recombination
rate which was estimated from population-pooled chromosomes. This
highlights the importance of accounting for the HLA genes allelic information
to enhance sensitivity and specificity in the inference of recombination sites
across the MHC region. Furthermore, the HLA gene allelic EHH approach
was able to produce excellent recombination map resolution, with 28/69
(41%) mapped to <2kb in size and another 29/69 (42%) falling between 2 to

5kb.
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the SNPs haplotypes is disrupted.
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Figure 3.4 EHH plots of SNP haplotypes for common HLA-A haplotypes.
(A) CHSG, (B) CEU and (C) YRI. Dots in the panels above each plot indicate
the SNPs interval where haplotypes break, with each color denoting a specific
HLA-A haplotype. Positions of recombination sites and their relative sizes are
mapped onto the plots as follows: recombination segments identified by
sperm recombinants (highlighted in pink columns) and HapMap-inferred sites
that coincide with EHH drops (highlighted in purple columns).
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Figure 3.5 EHH plots of SNP haplotypes for common HLA-C-B

haplotypes. (A) CHSG, (B) CEU and (C) YRI. Dots in the panels above each
plot indicate the SNPs interval where haplotypes break, with each color
denoting a specific HLA-C-B haplotype. Positions of recombination sites and
their relative sizes are mapped onto the plots as follows: recombination
segments identified by sperm recombinants (highlighted in pink columns) and
HapMap-inferred sites that coincide with EHH drops (highlighted in purple

columns).
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3.2.3 Population-specific Recombination Sites within MHC Region

To date, the knowledge of MHC recombination map variation across
populations is limited and not well studied. The EHH approach integrated with
the HLA gene allelic information offers an opportunity to perform comparative
study of the recombination profiles between different population groups. Here,
in addition to the CHSG population, we applied this approach to two HapMap
populations, the Europeans (CEU) and the Nigeria Yorubans (YRI). The SNP
genotype data of these populations were extracted from the HapMap
depository while the HLA-A, -B and -C allelic typings were obtained from
Erlich et al [143]. To enable comparison across the three populations, 1360
SNPs loci whose genotypes were known in the three populations were
selected and subjected to the EHH analysis. As HLA-DRB1 gene allelic
information is not available for the HapMap populations, EHH analysis was
only performed at the two genomic segments covering the HLA class | genes.
Similar to the observation in the CHSG population, maintenance of LD
proximate to the HLA genes were observed in the CEU as well as the YRI
population and the range of high LD region at the HLA genes varied
according to the underlying HLA allelic background (Figure 3.4 and 3.5).

Collectively, there were 37 probable recombination sites detected in the
CHSG, 30 in the CEU and 38 in the YRI (Figure 3.6). We were also able to
recover >90% of the CHSG recombination sites identified in the previous
section, albeit at larger segment interval. Interestingly, >50% of the identified
sites in each population (CHSG — 56.8%, CEU — 50.0% and YRI — 63.2%)
were uniquely population-specific. Only <16% of the sites were shared among
the three populations and all of these sites fell within the segments
determined by the sperm typing experiment or the in silico modeling approach

(Table 3.3).
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Table 3.3 Number of common and population-specific recombination
sites identified in the CHSG, CEU and YRI across HLA-A and —B region. Only
a small proportion of recombination sites are shared among populations.

CHSG- CEU- YRI- CHSG CHSG CEU&
Region specific specific specific & CEU & YRI YRI All
HLA-A 9 10 9 5 3 1 1
HLA-B 12 5 15 1 2 3 4

In addition, recombination sites distinct to a specific population were noted to
be in close proximity to other recombination sites unique to another
population resulting in a boarder genomic segment where recombination
activities are likely to occur across populations. This was especially evident in
regions downstream of HLA-B. For instance, population-specific
recombination sites detected in the three populations were within a 31kb
segment (chr6: 31,089,987 — 31,120,975) downstream of MUC22 gene. This
observation is in agreement with the previous studies where elevated
recombination activities are likely to occur within a cluster flanked by regions

of low recombination [48].
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The differences in recombination sites among populations reflect the variation
of haplotype pool in each population. Of note, for example, A*02:01 haplotype
can be found in both CHSG and CEU populations; however there is a
difference in the distribution of recombination sites in A*02:01 haplotype carry
by these 2 populations. This suggests that the differences observed in the
distribution of recombination sites might not entirely due to the difference in
haplotype data from each population. Hence, the consideration of HLA
haplotypic variation within and across populations is important to improve the

resolution of the MHC recombination map.

3.2.4 Absence of Recombination in Common Asian HLA Haplotypes
Conserved extended haplotype (CEH) is defined as a genomic segment
with distinctive long-range sequence conservation coupled with suppression
of recombination events [37, 38]. The presence of CEHs have been reported
among a humber of common HLA haplotypes in European (A1-C7-B8-DR3)
[164] and Japanese populations (A24-C12-B52-DR15 and A33-C14-B44-
DR13) [165]. In our studied population, a number of four locus HLA
haplotypes are found at relatively high frequency (>1%); notably the A*33:03-
C*03:02-B*58:01-DRB1*03:01  (A33-B58-DR3) and A*02:07-C*01:02-
B*46:01-DRB1*09:01 (A2-B46-DR9) haplotypes (Table 3.1). Next, we aim to
investigate whether the common HLA haplotypes in the CHSG population
would display the characteristic of CEHs. Using the phase chromosomes
comprising of 1877 SNP markers, the major allele frequency (MAF) of the
SNP markers was computed for each of the common CHSG HLA haplotypes.
Contiguous SNP loci with MAF value of 1 indicates extensive conservation

and therefore implies the presence of CEH.
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Figure 3.7 Major allele frequencies of SNP markers across the MHC

region for common four-locus CHSG HLA haplotype. The plots were derived
from 1877 SNP loci. Of the common Singapore Chinese HLA haplotypes,
A33-B58-DR3 and A2-B46-DR9 displayed extensive SNPs sequence
conservation across the MHC region.
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The MAF analysis revealed an extended region of SNPs invariant between
HLA-F and HLA-DQB1 covering at least 3Mb for both A33-B58-DR3 and A2-
B46-DR9 HLA haplotypes; suggesting the absence of recombination events
across the extended MHC region (Figure 3.7). In contrast, for the other four
common HLA haplotypes, SNPs invariant was restricted only at regions
adjacent to HLA loci and the intervening regions were characterized by the
decay of LD. This data suggests that high frequency HLA haplotypes
observed in a population does not necessarily imply the extended
conservation of high LD and recombination suppression at the genomic level

across the MHC region.

To generate further evidence for presence of CEH in A33-B58-DR3 and
A2-B46-DR9, DNA purified from six lymphoblastoid cell lines (B58AL, B58SC
and B58CF HLA homozygous for A33-B58-DR3; B46BM, B46ZS and B46CM
HLA homozygous for A2-B46-DR9) was analyzed by Illumina Human 1M-Duo
BeadChip SNP array. After SNPs quality filtering, 10215 SNP markers were
found in the genomic segment of chr6:25.0 — 35.0Mb; of which 7509 SNPs
fell within the extended MHC region (28.5Mb to 33.5Mb). These SNP markers
were then subjected to Runs Of Homozygosity (ROH) analysis, implemented
to screen for the SNPs’ genotype homozygosity profile in each cell line.
Regions of conservation were identified for each cell line based on levels of
homozygosity within the genome. Homozygosity and intra-haplotype
conservation were found not only at the HLA loci, but also across the
extended MHC region (Figure 3.8A). For A33-B58-DR3, at least 99.5% of
SNPs were found to be homozygous across 4.66 Mb region (Table 3.3) and
the genotype calls of these homozygous SNPs were consistent in all the three

A33-B58-DR3 cell lines.
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Figure 3.8 Conserved extended haplotype in A33-B58-DR3 and A2-B46-
DR9 across MHC region. (A) SNPs alignment of six HLA homozygous
individuals carrying specific haplotype. This homozygous individuals SNPs
alignment includes the genotype status of each SNP (green vertical bars
indicate a homozygous SNP call and dark green vertical bars indicate a
heterozygous SNP call) and the SNP allelic call with reference to its position
(green = adenine, red = cytosine, orange = guanine, and blue = thymine).
10125 SNP markers are involved in the alignment (B) Identity-by-descent
analysis. Pairwise IBD plots (IBD=1 vs IBD=0 and IBD=2 vs IBD=0) of a
reference individual with the other respective individuals. Blue circle indicates
pairwise analysis of individuals carrying A33-B58-DR3 while the red circle
indicates pairwise analysis of individuals carrying A2-B46-DR9.
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Table 3.4

Range of conserved extended region for the six cell lines
derived from ROH analysis of the SNPs information. Htz: heterozygous; Hmz:

homozygous.
No.of % of
Length No. of htz hmz
Cellline Start End (Mb) SNPs SNPs SNPs
B58AL 26,922,906 33,853,071 6.93 8660 26 99.7
B58SC 26,922,906 33,820,059 6.90 8637 26 99.7
B58CF 28,310,997 32,973,794 4.66 6997 35 99.5
B46BM 29,350,854 32,903,900 3.57 6238 25 99.6
B46zS 29,577,617 33,910,884 4.33 6975 21 99.7
B46CM 29,728,209 32,739,888 3.01 5283 16 99.7
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Likewise for A2-B46-DR9, the conservation region is slightly shorter at
3.01Mb with 99.6% of the encompassing SNPs genotyped as homozygous
(Table 3.4) and again the genotype calls of the homozygous SNPs were
consistent in all the three A2-B46-DR9 cell lines. To verify that the extended
segment of conservation observed within the MHC region is not merely due to
undetected familial relatedness among these individuals, an identity-by-
descent (IBD) analysis was performed using the whole-genome SNPs
information of the six individuals. All the pairwise IBD analysis between every
possible individual clustered at the bottom right quadrant (Figure 3.8B)
indicating no strong evidence for relatedness among the individuals.
Therefore, the SNP sequence conservation observed within the MHC region
among individuals carrying similar HLA haplotypes is not due to familial
relationship. These analyses reveal that for both the A33-B58-DR3 and A2-
B46-DR9 HLA haplotypes, the linkage of the HLA alleles is not restricted only
to the HLA loci, but rather that mega-bases of genomic segment are inherited

together in linkage disequilibrium with minimal recombination.
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3.3 Conclusion

In this chapter, a single population cohort Singapore Chinese and their
corresponding HLA type were used as a mean to partition the haplotypes.
This is a great improvement over the sperm typing method which also
recognizes the advantage of a haploid genome as a “cleaner” read-out. In
addition, this method also counts females (which sperm typing lacks), thus
providing a more balanced assessment of the study population. The single
haplotype information was able to reveal unambiguously, positions along the
MHC genome where recombination events had occurred, leading to breakage
of SNP linkage disequilibrium and the results can thus be visualized as EHH
plots. From the 470 chromosomes studied, we were able to identify 69
recombination sites of which 37 recombination sites were novel. By applying
the above approach to 2 other populations, European and African, we were
able to show that each population has its own unique signature of
recombination sites within the MHC. This has not been empirically defined till
now and even more interesting is that the population-specific recombination
sites are seldom shared (or seen) among the 3 populations studied;
highlighting the role of recombination in generating haplotype diversity.
Through this study, for the first time, we revealed two HLA haplotypes in the
Singaporean Chinese population (A2-B46-DR9 and A33-B58-DR3) with little

or no recombination activity for at least 3Mb across the MHC region.

84



Chapter 4.

Intra-haplotypic Variation in MHC
Conserved Extended Haplotype
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4.1 Introduction

Typically, the linkage disequilibrium (LD) breakdown becomes evident
over certain regions along the MHC with the extent and arrangements
markedly defined by the HLA alleles. However, in the previous chapter, we
revealed extensive LD lacking any recombination events covering a region of
at least 4.66 Mb in individuals carrying A33-B58-DR3 and 3.01Mb in A2-B46-
DR9. CEHs draw great interests not just because of their unique genomic
traits but also because common conserved extended haplotypes (CEHS) are
known to be associated with numerous diseases [35, 166]. For instance, the
A1-B8-DR3-DQ2 haplotype alone is a risk factor for type 1 diabetes, systemic
lupus erythematosus, rheumatoid arthritis and IgA deficiency and various
other diseases [40-42]. Of note, studies have consistently demonstrated the
association of A33-C3-B58-DR3 and A2-C1-B46-DR9 common HLA
haplotypes with nasopharyngeal carcinoma [167, 168], myasthenia gravis
[169] and type 1 diabetes [170]. Despite the strength of the risk associations,
genetic dissections of the exact disease-causing variants and genes have
been difficult. Firstly, due to the long and extensive LD on these CEHSs, it is
often difficult to distinguish between disease-causing variants and other
benign variants in linkage within the same haplotype, causing difficulty in
identifying the genes or variations responsible for causing disease. Secondly,
the extent of intra-haplotypic variation within the conserved region of the
CEHs, which might separate disease-affected haplotype carriers from
unaffected haplotype carriers, is not well-established. Previous attempts to
decipher the difference between type-1A diabetic A1-B8-DR3-DQ2
haplotypes and non-type-1A diabetic A1-B8-DR3-DQ?2 yielded uninformative
results, despite the high resolution of the common SNPs (MAF>=5%)

genotyping platform [164]. Such attempts may be futile because they did not
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include intra-haplotypic variants that might be rare at the population level.
Indeed, studies have shown that functional variants whose frequency were
too low to be detected by genome-wide association exhibit significant disease
susceptibility effects [171, 172]. Thus, further efforts are needed to
characterize both the extent of LD and the extent of intra-haplotypic variation

within CEHs.

Attempts to quantify the level of polymorphism within MHC haplotypes
haven been carried out on eight European MHC haplotypes using bacterial
artificial chromosome cloning (BACs) and shotgun sequencing [14, 15].
Among these cells, only the MHC haplotype of PGF (A3-B7-DR15-DQ6), and
COX (A1-B8-DR3-DQ2), were sequenced completely and the MHC reference
sequence of PGF was incorporated into the mosaic NCBI Build 37.2
reference sequence [16]. Each of these haplotypes was assembled into a
haploid sequence from a single consanguineous cell line using BAC derived
sequences; however, as the parental origin of each BAC sequence was
uncertain and with only one representative from a particular HLA haplotype,
there is no information on intra-haplotypic variation, hence the characteristic
features of these haplotypes cannot be determined. Smith and colleagues
went a step further, using PCR primer pairs, covering the MHC region, to
perform partial re-sequencing for 19 independent A1-B8-DR3-DQ2
chromosomes and in the process identified only 11 single-nucleotide variants
(SNVs) between HLA-A and HLA-DQ gene [21]. Unfortunately, in this study
only 15% of the conserved region was sequenced, and it was thus unable to
definitively explore the scope of variation in the CEHs. Subsequent studies
employed target region and next generation re-sequencing approaches to
interrogate variations residing within the MHC region [19, 20] but cell lines

were either HLA heterozygous or did not exhibit CEH characteristics in the
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MHC genomic region and as a result, haplotype sequence assignment was
problematic. The sequences of the eight common European MHC haplotypes
and the variations characterized from the analysis of these sequences were
often used as a framework and resource for MHC disease susceptibility
studies. Though useful, given the immense diversity of the MHC region, these
are not sufficient to provide a complete description of the region in particularly

for individuals from other ethnic backgrounds.

In this study, we report the characterization of two Asian CEHs, A*33:03-
C*03:02-B*58:01-DRB1*03:01  (A33-B58-DR3) and A*02:07-C*01:02-
B*46:01-DRB1*09:01 (A2-B46-DR9) which are present in relatively high
frequencies of about 7% and 6% respectively in the Singapore Chinese
population who are predominantly descended from Southern China [173, 174]
. In contrast to earlier studies which examined only one representative of a
particular MHC haplotype, we compared 3 unrelated individuals for each CEH
and subjected them to whole genome sequencing. The data will provide an
in-depth, nucleotide-resolution view of these prominent Asian CEHs, and
assess intra-haplotypic conservation and variation in the extended MHC

region.
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4.2 Results

4.2.1 Fine-scale Mapping of A33-B58-DR3 and A2-B46-DR9 CEHSs using

Deep-sequencing

The use of high density SNP typing at 1 SNP per 665 bp as described in
the previous chapter demonstrated that conserved extended haplotypes of
HLA identical independent individuals appeared to be indistinguishable. It is
as yet not known if this conservation is maintained at the nucleotide level. To
do so, six HLA homozygous cell lines B58AL, B58SC, B58CF, B46BM,
B46ZS and B46CM were subjected to whole-genome sequencing (WGS)
using the Complete Genomics (CG) platform. Raw reads were processed by
the Complete Genomics Standard Sequencing Pipeline 2.0, and assembled
according to the Genome Reference Consortium Human genome build 37
(GRCh37) [150]. For each sequenced genome, the mean coverage per base
pairs was at least 37.13 times covering no less than 94.18% of the extended
MHC region (28.5Mb to 33.5Mb) (Table 4.1). Nearly half of the uncovered
base pairs were within the 32,435,000 — 32,660,000 segment encompassing
the HLA-DRB, HLA-DQA1, HLA-DQB1, pseudogenes and 43.66% - 60.42%
of this 225kb region was not covered (Figure 4.1). This low rate of sequence
calling is likely due to the highly polymorphic nature of the HLA-DRB region
where multiple insertions and deletions of large genomic sequence result in
haplotype-specific rearrangements of the HLA-DRB genes and its
pesudogenes, making the alignment of this segment particularly difficult.
Hence, the HLA-DRB region, together with another region between
31,210,000-31,235,000 where low coverage was observed due the repetitive

sequence, were excluded from comparative analysis.
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Table 4.1 CG sequencing coverage and performance. The mean
coverage is at least 37.13 per cell line, resulting in high confidence calls for at
least 94% of the MHC region for each of the cell line.

Mean % bp % bp % bp % of MHC
Celllines Coverage Coverage Coverage Coverage region

per bp >5X >20X >40X covered
B58AL 44.67 98.14 91.09 61.40 95.31
B58SC 43.69 98.10 90.57 59.44 95.15
B58CF 39.06 97.96 88.14 49.10 94.66
B46BM 43.54 98.13 90.31 58.93 95.03
B46ZS 44.30 98.11 90.88 60.94 95.06
B46CM  37.13 97.86 86.64 44.20 94.18
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Figure 4.1 No-call and coverage profile for each cell line across the MHC
region. The average GC corrected coverage and the no-call counts were
binned into non-overlapping 20kb windows. Low coverage and high no-call
rate were predominantly located at the HLA-DR region.
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To assess the quality of data generated from the CG platform, genotypes
calls between 25Mb to 35Mb from the Illumina Human 1M-Duo BeadChip
SNP array were compared with the deep sequencing data. The results
showed a high concordance rate of 99.5% for A33-B58-DR3 and 99.6% for
A2-B46-DR9 between SNPs genotyping and the CG data (Table 4.2). 48 call
sites among the discordant data were randomly selected for validation by
PCR re-sequencing. Of these, 45/48 were found to be consistent with the CG
data, while only 3/48 agreed with the SNP genotyping array data (Table 4.3),
indicating that the CG sequencing platform in general delivers higher call

accuracy than the SNP genotyping platform.

Next, the range of genomic conservation in each sample was assessed
using homozygosity levels in the deep sequencing data. Nucleotides within
the 25Mb -35Mb region of chromosome 6 were binned into windows of 5kb,
and the numbers of homozygous and heterozygous reference single
nucleotide variants (SNV) calls within each bin were examined. Stretches of
homozygosity were defined to be regions with no more than four consecutive
windows having the zygosity SNVs ratio (number of homozygous SNVs
against total number of SNV in a given window) of less than 0.95. The
resulting conservation region in each genome coincided with the region
determined using the SNPs genotyping platform (Table 4.4) and regions
outside the conserved segments have comparably much higher number of
heterozygous reference SNVs (Figure 4.2). Within the conserved segment

boundaries,
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Table 4.2 SNP genotype call differences between Illumina Human 1M-
Duo BeadChip and CG sequencing. Hmz indicates homozygous genotype
call and htz indicates heterozygous genotype call.

Positions Differences Differences Differences Differences %

Cell line Compared hmz/hmz  hmz/htz htz/hmz Total Match
B58AL 9916 15 1 23 39 99.6
B58SC 9876 14 4 26 44 99.6
B58CF 9880 12 8 27 47 99.5
B46BM 9908 11 8 14 33 99.7
B46ZS 9903 13 3 14 30 99.7
B46CM 9904 12 10 13 35 99.6
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Table 4.3 Re-sequencing experiments to assess mismatches between
SNP genotyping and CG sequencing platform in samples carrying A33-B58-
DR3 and A2-B46-DR9 haplotype. 45/48 of the positions assessed were in
agreement with the CG data.

A33-B58-DR3

BS8AL B58SC B58CF

SNP SNP SNP
Position rsID Ref Array CG PCR Array CG PCR Array CG  PCR

29,796,376 rs12722477 C C/IC A/A ?/?7 CIC AIA AA CIC AA AA
29,819,909 rs2508053 C C/T C/C C/C C/T C/IC C/IC C/IT Cc/IC CIC
30,383,046 GA005234 C C/G C/IC C/IC C/G C/IC cC/Ic C/G cCc/IC CcCIC
30,418,354 rs34111681 G T/T GIG G/IG TIT GIG GIG TIT GIG GIG
31,170,514 rs9263870 A A/G GIG G/IG AIG GIG GIG AIG GIG GIG
31,321,327 rs9266095 A AIG AIA AA AG AA AA TIT GIG ?0?
31,639,979 rs9267532 C C/IT TIT T cTooTT TT O CT 7T TIT
31,655,438 rs10573 G AG AIA AA AG AA AA AG AA AA
31,697,558 rs707916 G A/IG A/A ??7 AIG AA 21?7 AIG AA  AA
32,130,937 rs10680 T CIC TIT T C/Cc T/T TT CIC TIT ?1?

33,036,549 rs17509489 T G/IG T/T ??7 GG TT TIT GIG TIT ??

A2-B46-DR9

B46BM B46ZS B46CM

SNP SNP SNP
Position rsID Ref Array CG PCR Array CG PCR Array CG  PCR

29,801,958 rs2743944 T T/IC TIT T/IC TIC T T/IC TIC TIT TIC
29,913,509 rs1062405 T C/IC T/T T C/IC TIT TT CIC TIT TIT
29,942,191 rs2232236 T G/G del/del del/del G/G delldel ?/? G/G delldel del/del
30,704,985 rs28380598 T C/IC T/T T C/IC TIT TT CIC TIT TIT
31,079,236 rs1265055 G A/G A/A AIA AIG AIA AA AIG AA A/A
31,082,304 rs3130554 T G/IT T/T T GIT TT T GIT TT TIT
32,130,937 rs10680 T C/IC TT T C/IC TIT TT CIC TIT ?2/?

33,036,549 rs17509489 T G/G C/T C/T GIG TIT TIT GIG TIT TIT
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Figure 4.2  Zygosity profile of variants derived from deep sequencing. The
region chr6: 25Mb — 35Mb was binned into non-overlapping windows of 20kb.
The number of homozygous (hmz) and heterozygous (htz) variants with
respect to the NCBI Build 37.2 reference sequence was calculated in each
bin. For each of the six individuals, the upper panel plot represents the
homozygous variants counts while the lower panel plot represents the
heterozygous variants counts across the region of interest.
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Table 4.4

derived from CG data.

Length No. of htz
Cell line Start End (Mb) variants
B58AL 26,630,000 33,830,000 7.48 595
B58SC 26,350,000 33,810,000 7.46 578
B58CF 28,350,000 32,950,000 4.60 455
B46BM 29,367,500 32,917,500 3.55 221
B46ZS 29,630,000 33,890,000 4.26 146
B46CM 29,550,000 32,650,000 3.10 167

Range of conserved extended region for the six cell lines
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CG data showed at least 99.99% homozygosity in all samples, with the A33-
B58-DR3 haplotypes samples having on average 8.33 heterozygous calls per
100kb, while the A2-B46-DR9 haplotypes samples having on average 4.89
heterozygous calls per 100kb. Large numbers of homozygous reference
variant calls were observed within or proximate to the HLA genes, highlighting
the difference in the HLA allelic combination between the reference genome
and our samples. Despite the extensive number homozygous reference
variants, small pockets of heterozygous variants randomly spread across the
conserved MHC region were observed. Of interest, spike of heterozygosity
centromeric of the HLA-A gene was detected in the A33-B58-DR3 samples
even though high density SNP profiling have indicated high level of
homozygosity in this genomic region. This characteristic has not been
observed in the previous studies of CEH as the high density SNPs

geneotyping platform is not able to provide the necessary resolution.

4.2.2 Intra-haplotypic Conservation and Variation

The use of three HLA homozygous diploid samples of each Asian CEH
offered the opportunity to characterize the extent of intra-haplotypic variation
and conservation. Using the CG platform, the three diploid samples of each
haplotype yielded 6 haploid sequences, which were compared to each other
at each nucleotide position across the length of the sample with the shortest
range of homozygosity. The range compared for A33-B58-DR3 was
chr6:28,350,000-32,950,000, and the range compared for A2-B46-DR9 was
chr6:29,630,000-32,650,000. Nucleotide positions having ambiguous or low
confidence score in two or more haploid would be regarded as no-called (“N”)

in the consensus sequence. Accounting for the gaps within the region, we
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were able to establish 4,135945 bp of phase-discrete sequence
representative of the A33-B58-DR3 haplotype and 2,720,646 bp of phase-
discrete sequence representative of the A2-B46-DR9 haplotype. Next, the
number of positions with SNVs and insertions/deletions (indels) between the
six sequences were computed, and plotted against chromosome position
(Figure 4.3). Within the conserved region, the degree of intra-haplotype
variation was found be exceptionally low; 293 SNVs and 52 indels were
identified in the A33-B58-DR3 haplotype, while 238 SNVs and 51 indels were
observed in A2-B46-DR9 haplotype. A closer inspection revealed that
majority of the intra-haplotypic variations in each MHC haplotype was
localized to a single region. For example, spikes of variation localized to a
120kb region covering the ZFP57 and HLA-F gene (chr6:29,600,360 —
29,721,396) were found in the A2-B46-DR9 haplotype but not in A33-B58-
DR3 haplotype (Figure 4.4A) and these variations make up >70% (171/238)
of the total A2-B46-DR9 intra-haplotyic SNVs. Similarly, elevated number of
A33-B58-DR3 intra-haplotypic variations accounting for 90% (262/293) of
SNVs were observed at a 240kb region covering the HLA-A gene (chr6:
29,733,502 — 29,971,973) while the number of intra-haplotypic variation in the
A2-B46-BR9 in this region was distinctly lesser (Figure 4.4B). The estimated
nucleotide diversity value (1r) between the A33-B58-DR3 haploid sequences
and A2-B46-DR9 haploid sequences was 7.08 X 10° and 8.75 X 10°
respectively. In comparison, these values are 38- to 48-fold lower than the
nucleotide diversity found between PGF and COX (3.4 X 107 [15], the two
common MHC haplotype found in the European population and at least 5-fold
lower than the nucleotide diversity between any two haplotypes across the
human genome [175, 176]; indicative of extreme low nucleotide diversity in

the A33-B58-DR3 and A2-B46-DR9 MHC haplotypes.
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Figure 4.3 Distribution of intra-haplotypic variations across the MHC
region. Each data point on the plot represents the number of SNV counts
(red) and the number of indel counts (blue) in a non-overlapping 5kb window.
The number of variations for each haplotype was derived from the
comparisons of six haploid chromosomes at every possible nucleotide
position across the MHC region. The pink bars indicated regions where the
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not compared.
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Outside the boundaries of conserved region, the number of variations

between the haploid sequences was significantly increased.

Using NCBI RefSeq Build 37.2 gene annotation, intra-haplotypic
variations were grouped into functional categories (Table 4.5) with the
majority of the variants (~80%) resided in the non-coding region, while less
than 1.5% of all variants were located in the exonic region (Figure 4.5).
Coding region variants showed equal proportion of missense and
synonymous mutations (Table 4.6). Surprisingly, missense mutations were
found in A33-B58-DR3 haplotype samples, on exon 7 of HLA-A and exon 1 of
HLA-B. To validate these variants, the HLA-A exon 7 (position 29,913,037)
missense variant was cloned and re-sequenced. The results confirmed its
presence in all three samples of A33-B58-DR3 (Figure 4.6, Figure 4.7 and
Figure 4.8) and within this 479 bp cloned fragment, 13 heterozygous and 15
homozygous variants were in agreement with the CG data (Table 4.7). Using
in-silico tools to predict the possible functional effect of these missense
mutations [177, 178], it was found that the induced amino acid substitutions
would have minimal effect on the protein function (Table 4.6). In total, 77
novel SNV variants were identified within the A33-B58-DR3 samples, and 50
novel SNV variants within the A2-B46-DR9 samples that were not annotated
in dbSNP build 132, the 1000 Genome Project and the International HapMap
Project (Table 4.8 and Table 4.9). The discovery of these novel SNPs

provides a potentially powerful set of markers in disease-association studies.
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Figure 4.5 Functional annotation of variants for each haplotype based on
NCBI gene annotation Build 37.2. It was noted majority of the variants were
found in the non-coding region while only less than 1.5% were found in the

exonic region for both haplotypes.
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4.2.3 Intra-haplotypic Variations in A2-B46-DR9 Influence the
Expression of ZFP57

Although the intra-haplotypic variants appear to be highly homologous,
single nucleotide differences may exert functional consequences. To illustrate
this mechanism, SNP rs29228 (chr6: 29,623,739) has been found to exert a
cis-acting effect on the expression level of the Zinc Finger Protein 57 homolog
(ZFP57) [179], located 16.43kb centromeric to rs29228. It was reported that
carriers of the “AA” but not the “GG” genotype of rs29228 would support
expression of ZFP57. Such locus where genetic variation is associated with
the gene expression variation is commonly known as expression gquantitative
trait loci (eQTL) SNP [129]. A more recent study revealed four additional
eQTL SNPs (chr6:29,644,502 — rs375984, chr6:29,647,628 — rs416568,
chr6:29,648,398 — rs365052 and chr6:29,648,564 — rs2747431), located in
the ZFP57 introns and promoter region, were associated with the expression
of ZFP57 [180]. Interestingly, these SNP positions are intra-haplotypic
variants in A2-B46-DR9 but not for A33-B58-DR3 haplotype. To learn whether
the difference in nucleotide at these positions would affect the expression of
ZFP57, reverse transcription quantitative PCR was performed to evaluate the
ZFP57 mRNA levels in B58AL, B58SC, B58CF, B46BM, B46ZS, B46CM as
well as the two European cell line COX and QBL. Noticeably, the COX,
B46BM and B46CM cell line possess the “A” allele at chr6: 29,623,739, “T”
allele at chr6: 29,644,502, “A” allele at chr6:29,647,628, “C" allele at
chr6:29,648,398 and “T” allele at chr6:29,648,564 exhibited evidence of
ZFP57 expression while B46ZS, possessing the alternate allele at these

positions, have no ZFP57 expression (Figure 4.9).
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Association of A2-B46-DR9

intra-haplotypic variants with

ZFP57 expression. RT-gPCR was performed to determine the mRNA level of
ZFP57 in two biological replicates of COX, QBL, B46BM, B46ZS, B46CM,
B58AL, B58SC and B58CF cell lines. Experiments were carried out in
triplicates for each of the biological replicate. Triangle symbol indicates
guantitative expression derived from biological replicate 1 while square
symbol indicates quantitative expression derived from biological replicate 2.
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Similarly, no ZFP57 expression was observed in the A33-B58-DR3 and QBL
cell lines that possess the alternate alleles. This result highlights the
possibility that intra haplotypic variants would have an effect on the
expression of genes within the MHC region among individuals carrying
identical MHC CEHs.

The presence of eQTL SNPs associated with ZFP57 indicates possible
regulatory role for polymorphic sites in the genomic region proximate to these
eQTL SNPs. To identify putative regulatory variants to ZFP57, we examined
the intra-haplotype sequence variations in the A2-B46-DR9 cell lines in the
90kb genomic region (chr6:29,600,000 — 29,690,000) encompassing the
ZFP57 gene. A total of 202 A2-B46-DR9 intra-haplotypic SNVs were found
within the genomic segment of interest and the majority of these variants
were localised centromeric of the ZFP57 (Figure 4.10). Interestingly, the
nucleotide call of the 170 variants in the B46ZS cell line matched with the
three cell lines carrying the A33-B58-DR3 haplotypes, suggesting these sites
as potential regulatory variant candidates. Next, we determined the epigenetic
landscape of this 90kb genomic region using the histone modifications data in
BLCL obtained from the ENCODE project [181]. Sequences bearing
H3K27ac, H3K4Mel, H3K4Me3 marks and DNase | hypersensitivity sites are
reported to indicate the presence of enhancers and transcriptional activities
[182-184]. Our analysis of the histone marks showed two elevated peaks of
histone modification overlapped with a cluster of 25 intra-haplotypic variants
at the intron 1 or promoter region of ZFP57 (chr6: 29,645,000 — 29,650,000)
(Figure 4.10). This provides suggestive evidence that polymorphic sites in

this segment could have regulatory function.
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Figure 4.10 Mapping of putative regulatory variants for ZFP57. Epigenetic
landscape in the 90kb genomic region. Histone modifications data from the
ENCODE project based on the profiling of B-LCL (GM12878) were accessed
through the UCSC Genome Browser (http://genome.ucsc.edu/). The lower
panel represents the intron 1 or promoter region of ZFP57. Through in-silico
analysis, 10 polymorphic sites in this region were identified to interact with
transcription factors.
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In-silico transcription factors binding sites prediction using Physbinder [185]
revealed 10/25 of the polymorphic sites were potential binding sequence for
transcription factors such as GATAL, GATA2, IRF3, NFYA, ETS1 and BRCA1
(Figure 4.10) and sites with no predicted transcription factors binding were
mostly located at the region between the two histone modification peaks.
These highlight that the 10 sites of intra-haplotypic variant have potential

binding affinity to transcription factors.

4.2.4 Inter-haplotype Evaluation Reveals Non-random Genetic

Variation across MHC Region

Next, the A33-B58-DR3 and A2-B46-DR9 CEH were compared against
eight haplotypes of European origin: PGF, COX, QBL, APD, DBB, MANN,
MCF and SSTO [14] to examine the degree of sequence variation or
similarity. The derived consensus haploid sequences for the A33-B58-DR3
and A2-B46-DR9 haplotypes were aligned pairwise with each of the eight
European MHC haploid data. For each pairwise comparison, sequence gaps
and positions of no-calls in either haplotype compared were excluded, we
observed distinct regions of increased variation at chromosomal regions
around HLA-A (29.6-30.0Mb) and HLA-C — HLA-B (31.25-31.5Mb) (Figure
4.11). Since the various haplotypes compared have different HLA-A, -B and -
C alleles, divergence detected at these loci are expected. In addition, even
though the HLA loci alone are less than 12kb in length and the peaks of

variation can stretch to more than 200kb in length.
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Figure 4.11 Pairwise inter-haplotypic variations across MHC region. A33-
B58-DR3 and A2-B46-DR9 haplotype sequence were compared with each of
the eight common European-descent MHC haplotype (PGF, COX, QBL, DBB,
SSTO, MCF, MANN, APD). The variation counts were binned into non-
overlapping 5kb windows. The red bars indicate gaps in the sequence of the
European MHC haplotypes. Elevated sequence variation between haplotypes
are localized to regions proximate to the HLA genes.
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It has been reported that the flanking regions of the HLA genes extending up
to thousands of kilobases can still be strongly linked with the associated HLA
alleles [163, 174], and thus explains the extended increased in variation
surrounding the HLA genes between haplotypes. We also performed
functional characterization of the variants between haplotypes specifically the
comparison of the 2 Asian CEH haplotypes with PGF and COX.
Unsurprisingly, the number of inter-haplotype variation was significantly
higher than the number of intra-haplotype variation (Table 4.6). Likewise,
there was an elevated percentage (~2.2%) of inter-haplotype variation
occurred in the gene coding region. The estimated m between the Asian
haplotypes was 2.70 X 10° and between the Asian and the European
haplotypes the 1 values range from 2.11 X107° to 2.55 X 10°. These values
indicate that the MHC region sequence differences between the Asian
haplotypes are not significantly greater or lesser than between Asian and
European.

To examine the patterns of inter-haplotype variation, we binned the 28.35-
32.95Mb into windows of length 5kb, and a frequency histogram of the
number of variations for each window was plotted (Figure 4.12A).The
distribution observed was skewed left, with most windows had relatively low
amounts of variation, albeit a few windows had extremely large amounts of
variation. There is no window that had less than 1 variant, indicating that
there is no large region of complete conservation across haplotypes within the
extended MHC region. Figure 4.12B shows the range of the number of
variations for each 10-percentile block. The top 10% of windows with the most
number of variants have between 28-109 variants each, which are 5-20 times
the MHC region-wide average of 5.39, implying that variation between the
haplotypes across the MHC region is generally constant except in regions
surrounding the HLA genes. Next, we identified regions of length >30kb with
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all windows containing below 3 variants or above 15 variants (Table 4.10) to
mark out regions of low and high variation respectively.

Surprisingly, a cluster of low-variation regions was observed surrounding
the RCCX region, which included the C2 and RAGE loci. This may indicate
conservation of these essential components of the innate immune system.
The regions containing the highest amounts of variation were, as expected,
the class | and class Il loci and their neighboring regions. The amount of
variation in these regions is remarkable, with on average 8 times the amount

of variation compared to the MHC region-wide average.
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Table 4.10

Regions of

low and high variation between the

sequenced MHC haplotypes

Regions with variations below genome average

Mean
Length variant

Start End (kb) /5kb Genes
28,350,000 28,415,000 65 0.61 ZSCAN12, ZSCAN23
28,430,000 28,495,000 65 1.96 GPX6

Downstream SCANDS3, Upstream
28,560,000 28,670,000 110 0.78 LOC401242
29,545,000 29,630,000 85 1.47 SNORD32B, OR2H2, GABBR1

PPP1R10, MRPS18B, ATAT1,
30,545,000 30,680,000 135 1.49 C60rf136, DHX16, PPP1R18, NRM

DDAH2, CLIC1, MSH5, SAPCD1,
31,690,000 31,805,000 115 1.66 VWA7, VARS, LSM2, HSPALL,

HSPA1A, HSPA1B
31,845,000 31,895,000 50 1.90 EHMT2, C2, ZBTB12

C2, CFB, NELFE, SKIV2L, DOM3Z,
31,905,000 31,965,000 60 1.39 STK19, C4A. C4B

CYP21A2, TNXB, ATF6B, FKBPL,
31,980,000 32,160,000 180 1.84 PRRT1, LOC100507547, PPT2,

EGFLS8, AGPAT1, RNF5, AGER,PBX2
32,855,000 32,895,000 40 1.35 LOC100294145
Regions with extreme variation

Mean
Length variant

Start End (kb) /5kb Genes
29,665,000 29,715,000 50 16.16  HLA-F
29,730,000 29,805,000 75 26.54 HCG4, LOC554223, HLA-G
29,820,000 29,975,000 155 36.93  HLA-H, HCG4B, HLA-A, HCG9
31,005,000 31,105,000 100 19.59 HCG22, C6orfl5, PSORS1C1, CDSN
31,155,000 31,360,000 205 45.62 HCG27, HLA-C, HLA-B
31,375,000 31,415,000 40 22.38 MICA
32,190,000 32,220,000 30 18.97  Downstream NOTCH4
32,665,000 32,775,000 110 37.40 HLA-DQA2, HLA-DQB2
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Figure 4.12 Distribution of inter-haplotypic variation. (A) Frequency
histogram of the number of variations for each 5kb window. (B) Cumulative
distribution for the number of variations per 5kb bin.
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The RCCX region within chr6:31,939,646-32,077,151 is a common multi-
allelic copy number variation locus. The number of modules and type of C4
complement genes within the RCCX region vary between individuals and the
gene dosage of C4A and C4B have been associated with various disorders.
For instance, lower levels of C4A have been associated with susceptibility for
systemic lupus erythematosis [186], while lower levels of C4B have been
associated with increased rates of acute myocardial infection and stroke
[187]. To identify the number and type of RCCX modules associated with
each of our haplotypes, we interrogated the RCCX region of each sample
using a SYBR Green real-time PCR assay with primers specific for C4A, C4B,
C4L, C4S, TNXA, and RP1. The total number of modules can be determined

by three separate counts: (C4A + C4B)/2, (CAL + C4S)/2, and (TNXA + 2)/2.

In all samples, these counts gave a consistent total number of modules,
thus showing internal validation of results. The A33-B58-DR3 haplotype was
found to be monomodular, with one copy of C4A which was long. The A2-
B46-DR9 haplotype was found to be bimodular, with 1 copy of C4A and 1
copy of C4B, one of which was long, and the other short (Table 4.11). We
also report that APD, whose RCCX modular configuration is previously not

determined, has 1 copy of C4A and 1 copy of C4B, both of which are long.
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Table 4.11 RCCX modular structure in the 6 Singaporean Chinese cell
lines and the APD cell line (European origin). The number of modules in each
cell line was determined by the following counts: (C4A + C4B)/2 or (C4L +
C4S)/2 or (TNXA + 2)/2. These 3 independent counts served as an internal
verification for the number of RCCX modules carried by each cell line.

RCCX Structure  Sample C4A C4B C4L C4S TNXA

B58SC 2 0 2 0 0

Monomodular B58AL 2 0 2 0 0

B58CF 2 0 2 0 0

B46BM 2 2 2 2 2

] B46ZS 2 2 2 2 2
Bimodular

B46CM 2 2 2 2 2

APD 2 2 4 0 2
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4.2.5 Conservation of HLA-DR Region between Asian and European

Haplotypes

The availability of the Asian MHC haplotype sequences together with the
sequences of the eight European haplotypes offers an excellent opportunity
to study the MHC haplotypic relationship and provides insights into their
recent evolutionary history. To do this, phylogenetic trees were derived from
the SNP sequences of the MHC haplotypes and a total of four phylogenetic
trees were built; representing the extended MHC region (29.65-33.0Mb),
HLA-A region (27.0-30.2Mb), HLA-B region (31.1-31.6Mb) and HLA-DRB1
region (32.3-32.8Mb) (Figure 4.13A-D). The analysis showed that the trees
were typically split into two main branches and the branching was not
determined by the population ethnicity. In fact, the two Asian haplotypes
were never found to form sister nodes with each other; instead, each
Asian haplotype could be consistently found associating under the
same clade with specific European haplotypes. For instance, the A33-
B58-DR3 haplotype cell lines were found to be more closely related with the
COX and QBL European haplotype at the HLA-DRB1 region than with the A2-
B46-DR9 haplotype. This close relation of the Asian A33-B58-DR3 haplotype
with COX and QBL is likely because these haplotypes carry the same HLA-
DRB1*03:01 allele; the phylogenetic tree at the HLA-A and HLA-B region did
not show such close association between the haplotypes. Likewise, the A2-
B46-DR9 haplotype is more closely related to the DBB and MCF European
haplotypes and this association is due to common possession of the HLA-A2
subtype allele. These analyses imply that the MHC haplotypic association is
defined by the underlying HLA allelic typing rather than the population

differences.
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Figure 4.13 Phylogenetic relationships between Asian MHC haplotypes
and European MHC haplotypes. Maximum likelihood (ML) tree derived from
SNP sequence of the MHC haplotypes covering the (A) chr6:29.65 —
33.00Mb segment (18,781 SNPs), (B) chr6:29.70 — 30.20Mb segment (5,111
SNPs), (C) chr6:31.10 — 31.60Mb segment (3,617 SNPs) and (D) chr6:29.70
— 30.20Mb segment (5,237 SNPs). The bootstrap value for each branch is
indicated at the branching point. Generally most branches were able to
achieve bootstrap values of >75 suggesting the reliability of the phylogenetic
tree.
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The COX and QBL cell lines were previously reported to have almost
identical genomic sequences covering the HLA-DRB1, -DQA1 and DQB1
genes [15], and the phylogenetic analysis has demonstrated the close
relationship between these haplotypes with the Asian A33-B58-DR3. To
investigate the sequence relationship between the Asian and European
genomes, we extracted 4441 consecutive SNPs derived from CG sequencing
for the three cell lines carrying HLA-DRB1*03:01 allele; and compared with
the COX and QBL nucleotide profiles. Given that the sequence length and
genes composition are not entirely similar between the Human Reference
Sequence Assembly 37.2 and the European haplotypes at the HLA-DR
region, for this analysis, the COX sequence and genes annotation was used
as reference. The selected 4441 SNPs spanned over 402,427bp of the COX
sequence, encompassing the HLA-DRA, -DRB1, -DQB1, -DQA2, -DQB2 and
-DOB genes. From the comparison, indeed, a 160kb segment enclosing the
HLA-DR genes of the A33-B58-DR3 haplotype was almost identical to COX
and QBL (Figure 4.14). Of the 1508 SNPs that fall within this 160kb segment,
1506 SNPs have nucleotide profiles that matched with COX and QBL,
illustrating a remarkable conservation at the HLA-DR region among these
haplotypes. The immediate centromeric end of this segment corresponds to a
recombination hotspot providing strong evidence for haplotype break-up.
Interestingly, the conservation region range between A33-B58-DR3 cell lines
and QBL was even longer, extending up to almost 300kb. A smaller genomic
segment of 58kb containing the HLA-DOB was detected to be almost identical
to COX but not QBL. Again, this 58kb segment is flanked by recombination
hotspots at both its telomeric and centromeric ends. These extreme
conservations between the Asian and European haplotypes point to a shared

recent common ancestor at the HLA-DR region.
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Figure 4.14 A33-B58-DR3 SNPs comparison with COX and QBL in

the

HLA-DRB region. COX sequence assembly and gene annotation
(HSCHR6_MHC_COX_CTG1) was used as the reference for the comparison.
The 4441 SNPs of B58AL, B58SC and B58CF, spanning over 402,427bp of
the COX sequence, were included in this comparison. Dark blue bars
indicate shared segment found in all samples while the light blue columns

indicate shared segment found >2 samples but not in all samples.
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4.3 Conclusion

In this study, with the use of HLA homozygous cell lines, we
demonstrated extensive sequence conservation in two common MHC
haplotypes of Asian ancestry - A33-B58-DR3 and A2-B46-DR9 by high
throughput genome sequencing. We also for the first time described the
extent of intra-haplotypic variation within the conserved boundaries of the
MHC CEHs and revealed haplotype-specific novel variations. More
significantly, we demonstrated that intra-haplotypic sequence variation in the
cell lines carrying A2-B46-DR9 haplotype are associated with the expression
of ZFP57; suggesting possible functional role in some of these polymorphic
sites. Another major finding is that extreme sequence conservation extending
up to 160kb at the HLA-DR region was found between the Asian A33-B58-
DR3 haplotype and the European haplotypes (COX:A1-B8-DR3; QBL:A26-
B18-DR3); implying individuals carrying these haplotypes shared a common
ancestor. Overall, this approach has allowed us to assemble at least 90%
phase-resolved MHC sequence representative of the A33-B58-DR3 and A2-
B46-DR9 haplotype. The availability of these alternate Asian MHC sequences
would complement the eight European MHC haplotype sequenced by the
MHC Haplotype Project and provides a framework to study the MHC diversity

and variations.
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Chapter 5:

Transcriptome Landscape in MHC

Conserved Extended Haplotypes
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5.1 Introduction

Gene expression profile plays an important role in defining the phenotypic
status in complex diseases. Description on gene transcripts, transcripts
variability and isoform structure can provide insights on how differential gene
expression leads to functional alteration that define phenotypic status. The
MHC genomic region of approximate 4Mb has been associated with more
than 100 diseases, including cancers, autoimmune diseases, infectious
disease susceptibilities, neurodegenerative, cardiovascular, and metabolic
disorders [6, 7]. Furthermore, many of these genetic associations are
implicated by specific HLA haplotype marked by extensive LD most notably
found in the common CEHs [13]. The ability to study the MHC transcription
profile at haplotypic resolution can yield better understanding of the effects of
HLA haplotypic differences on gene expression.

Currently, transcriptome characterization for the human MHC at
haplotypic resolution has proven to be complicated. Firstly, the probes in the
standard commercial expression microarray are annotated to the human
genome reference sequence, thus are unable to account for the population
MHC sequence and haplotype variation. The consequence of this is that
individuals with different HLA haplotypic background and sequence profile
from the reference sequence may not display expression of certain genes
because the probes are unable to anneal to their unique gene sequences
[188, 189]. This could distort the evaluation of gene expression and lead to
erroneous conclusions. Secondly, majority of the individuals carry two distinct
HLA haplotypes; hence in such circumstances, it is difficult to ascertain the
haplotypic origin of a particular RNA transcript and complicates the analysis
for association between HLA haplotypes and gene expression. To overcome
these limitations, Vandiedonck and colleagues [179] used a hybrid microarray
that includes alternate allele probes to account for known variation in gene

129



sequences. These alternate allele probes were designed based on the
annotated sequence variation (SNPs) and known segmental duplication in the
MHC region. The customized MHC array was then applied to the PGF, COX
and QBL MHC-homozygous LCLs of European-descent and the analysis
revealed extensive haplotype-related transcriptional differences. Despite the
impressive efforts to account for the sequence diversity in the MHC region,
the customized MHC array could not have comprehensively covered all
possible MHC variation across populations and is limited in revealing novel
transcripts and splicing isoforms. More importantly, in the study, each MHC
haplotype was represented by a single cell line; hence there is a possibility
that the observed transcriptional differences might be attributed to the
inherent cell lines variation but not the haplotypic variation.

In this chapter, we adopted the RNA-seq approach to interrogate the
MHC transcription landscape of Asian CEH (A33-B58-DR3 and A2-B46-DR9)
using multiple HLA homozygous LCLs for each of the haplotypes. The RNA-
seq approach can allow us to annotate and quantification of all expressed
transcripts at high level of sensitivity and accuracy [190, 191], accounting for
the limitations in microarray-based methods. Here, we aim to assess MHC
haplotype-related expression difference in the Asian CEHs as well as to
perform a comparative transcriptomic analysis of the Asian and European

CEHs.
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5.2 Results

5.2.1 RNA-seq Experimental Design

RNA-seq datasets were generated from purified total RNA isolated from
six selected B-LCLs — COX, QBL, B58AL, B58SC, B46BM and B46ZS. Prior
to the isolation of RNAs, the cell lines were cultured independently in
duplicates to five passages. The cell lines were then stimulated with 200nm
PMA and 125nM ionomycin for six hours and harvested at approximate 1 X
10° cells per ml; the supernatant was then used for the ELISA experiement.
DMSO were added to unstimulated cell cultures to act as controls. To ensure,
all the cell lines were sufficiently stimulated and the replicates displayed
similar profiles, ELISA was performed to quantify the levels of TNF-alpha and
IL6 proteins in both unstimulated and stimulated cultures. TNF-alpha and IL6
were previously reported to be up-regulated in B-LCLs [192, 193] and hence
were selected for the ELISA experiments. The ELISA experiments showed a
clear increase in production of TNF-alpha and IL6 in stimulated samples
when compared to the control samples; with an exception for B46ZS cell line
where there was no or minimal production of IL6 in both stimulated and
unstimulated culture (Figure 5.1). In addition, consistent proliferation patterns
of TNF-alpha and IL6 were observed in both replicates across all the cell lines.
Total RNA were then extracted from the cell pellets collected after stimulation
and cytoplasmic ribosomal RNA were removed from the DNase-treated total
RNA. The resulting RNA was then used to prepare RNA-seq libraries
consisting individually-barcoded RNA fragments and these fragments were

then sequenced using the lllumina Hi-Seq 2000 sequencing machine.
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Figure 5.1 PMA and ionomycin stimulation determined by ELISA.
Stimulation was performed for six hours and the supernatant was then used
for the ELISA. DMSO was added in amount equal to the PMA and ionomycin
into unstimulated cell cultures to act as controls. The ELISA was performed in
triplicate for each B-LCL.
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5.2.2 RNA-seq Data Processing, Reads Filtering and Mapping Results

We had outlined a systematic approach consisting of six phases to

effectively handle and accurately infer biological implications from the large

amount data generated by sequencing of the entire human transcriptome

(Figure 5.2). The RNA-seq analysis in this study would follow closely to the

workflow of this strategy.

Raws FASTQ Transcriptome
RNA-seq reads mapping
— Reads
W Alignment Genome
with Tophatz * Mapping Postal Reads Differential
Quality l > Spliced [ > ﬂ?SI,_a ignment| > quantification |, expression
control mapping ering | with Cufflinks | " | with Cufiif
Figure 5.2 Schematic for RNA-seq workflow
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For each sample, we obtained 78,890,079 + 7,103,330 (mean * standard
deviation) 75bp paired-end reads from the RNA-sequencing (Table 5.1).
Because of the inherent nature of the NGS platforms, there exists a sizeable
number of sequencing errors and sequence biases in the raw reads [194].
Therefore, it is essential to perform quality control to filter out reads of low
guality to avoid spurious reads alignment resulting in erroneous downstream
analysis. Here, only reads with 70% of the base positions meet the Phred
score cuff-off of 20 were retained for the downstream analysis. Phred score is
an indication for the quality of the reads; a base position with a Phred score of
20 implies that there is a 1 out of 100 chances that this position is called
incorrectly [195, 196]. Indeed, the quality of the sequenced reads improved
after the quality control filtering; the percentage of sequence reads across all
base positions having a Phred score range of 31-40 significantly increased by
more than 10% while positions with Phred score of range 1-10 reduced to
less than 5% after filtering (Figure 5.3) and more than 85% of the original raw
reads were retained for further analysis (Table 5.1). In terms of the per base
sequence content of the reads, equal A, T, C and G nucleotide compositions
were observed at read positions greater than 10 and there was a distinctive
nucleotide composition variation in the first nine positions of the reads across
all sequenced samples (Figure 5.4). This distinct nucleotide composition
variation is due to the use of the random hexamer primers during the
synthesis of the double-stranded complementary DNA in the library
preparation step [197] and this bias will be corrected and account for at the

transcripts abundance quantification step.
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Figure 5.3 Paired-end reads base positions score before and after quality
control filtering (Replicate 1). Red indicates base positions score before
quality control while blue indicates score after quality control. “|” indicates
percentage of reads with a Phred score range of 31-40 and “” indicates
percentage of reads with a Phred score range of 1-10.
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Figure 5.4

sequenced reads (Replicate 1). Green indicates composition of “A” nucleotide,

red indicates composition of

“T" nucleotide, blue indicates composition of “C”

nucleotide and black indicates compaosition of “G” nucleotide
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Figure 5.4
sequenced reads (Replicate 2). Green indicates composition of “A” nucleotide,

red indicates composition of “T” nucleotide, blue indicates composition of “C”

nucleotide and black indicates compaosition of “G” nucleotide
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Table 5.1

Quiality of raw reads and mapping metrics.

Replicate 1
% of Uniquely- % uniquely-

Cell Reads reads mapped mapped
line Raw reads QC reads mapped mapped reads reads
B58AL 80,362,945 69,588,080 57,790,683 83.05 45,42,9741 78.61
B58SC 75,778,660 65,124,362 55,602,319 85.38 41,975,361 75.49
B46BM 67,751,606 57,936,456 48,472,507 83.66 36,299,920 74.89
B46ZS 73,156,838 63,331,245 53,152,992 83.93 42,867,424 80.65

COX 68,449,949 59,742,216 48,925,551 81.89 37,521,696 76.69

QBL 86,358,133 74,445,714 63,410,379 85.18 48,752,536 76.88
Replicate 2

% of Uniquely- % uniquely-

Cell Reads reads mapped mapped
line Raw reads QC reads mapped mapped reads reads
B58AL 77,249,247 66,485,079 53,928,117 81.11 41,934,497 77.76
B58SC 86,174,592 74,038,168 59,540,848  80.42 48,681,488 81.76
B46BM 81,895,555 70,639,184 57,584,590 81.52 44,872,233 77.92
B46ZS 91,114,107 77,958,277 63,170,151  81.03 50,268,589 79.58

COX 81,075,411 70,199,584 58,532,731  83.38 43,702,252 74.66

QBL 77,313,902 66,249,897 53,906,838  81.37 41,783,599 77.51
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The QC reads were then mapped to the human reference transcriptome
(NCBI gene annotation Build 37.2) as well as to the human reference
genome (NCBI Build 37.2 reference sequence) using Tophat2 [156]. To
ensure accurate and high quality reads alignment, post-alignment filtering
was performed to remove reads that were not mapped in proper pairs —
paired-end reads that were incorrectly oriented with respect to each other and
to filter aligned reads with template length that were deviate significantly from
the expected template length. On a whole, at least 80% of the input reads
were aligned to the human genome across all cell lines and their replicates, of
which at least 74% were uniquely mapped to a single location of the genome.

Direct evaluation of the gene expression level from the mapped reads is
difficult due to the variation in the number of reads generated from each
independent sequencing runs and also the sequence biases introduced
during the library preparation step. To account for these differences,
normalization procedures are required in order to accurately quantify genes
expression level. Here, we used the fragments per kilobase of exon per
million mapped reads (FPKM) implemented in Cufflinks [157] to normalize
and quantitate the relative gene expression from the assembled reads with
the NCBI gene annotation Build 37.2 . Subsequently, genes expression (log2-
transformed FPKM values) between the two biological replicates of each cell
line were compared and evaluated using the square of pearson’s correlation
coefficient metric (R?. High level of concordance in the genes log2-
transformed FPKM values between the replicates (R? = 0.96) were observed
across all the cell lines (Figure 5.5); indicating excellent reproducibility and

minimal experimental errors during sample preparation.
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Figure 5.5 Gene expression comparison between cell line replicates. The
expression of 25549 NCBI annotated loci in the entire genome was
considered. High correlation in the genome-wide expression profiles between
the replicates was observed for all the cell lines.
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5.2.3 Landscape of Transcription in the MHC Region

The availability of this RNA-seq dataset allowed us to comprehensively
analyze the transcription landscape of the MHC region in the BLCLs. There
are 177 genes and pseudogenes annotated in the NCBI gene annotation
Build 37.2 across the chr6:29.0 — 33.0Mb region and the calculated FPKM
values of these 177 annotated genes were examined. The distribution of the
FPKM values was skewed to the left (Figure 5.6A) and the median FPKM
values range from 1.60 to 2.06 across all the six cell lines with more than 85%
of the annotated genes having FPKM value less than 50. P-values (>0.05)
derived from Kolmogorov-Smirnov test indicated there was no difference in
the FPKM distribution across the cell lines. In addition, the FPKM distribution
agrees with the RNA-seq dataset derived from the 20 unrelated individuals
BLCLs in Centre d'Etude du Polymorphisme Humain (CEPH) collection [198]
showing the reliability of our dataset. The slight aberration in the gene counts
across FPKM bins observed between the two datasets are likely due to
inherent cell lines divergence as well as the variation in the handling and
treatment of the cell lines. Next we will like to determine whether a gene is
expressed; evaluation of genes with FPKM value greater than zero will
comprise of genes with FPKM values very close to zero and these are likely
background noise due the erroneous mapping which cannot be completely
eradicated. Hence, we set a FPKM value cutoff of 0.01 which is the 5"
percentile of the genome-wide genes FPKM values across all the cell lines in
our subsequent analysis. Based on the FPKM value, the level of gene
expressions were categorized into no expression (FPKM<=0.01), low
expression (0.01<FPKM<=5), medium expression (5<FPKM<=50) and high
expression (FPKM>50). The number of genes expressed within the MHC
region in each cell line agreed well with every other cell lines and the
proportion of low, medium and high expression genes were also consistent
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across all the cell lines (Figure 5.6B). Likewise, the proportion on the different
levels of gene expression in the CEPH dataset is comparable to the MHC
haplotype cell lines.

The expression landscape across the MHC region (chr6: 29.0 — 33.0 Mb)
was explored by examining the gene expression profiles within 100kb bin
windows and the level of gene expression in each 100kb bin did not varied
much across different cell lines (Figure 5.6C). Half of the non-expressing
genes were found at the olfactory cluster (chr6:29.0- 29.60 Mb) which harbor
numerous olfactory receptor genes while high level of transcription activities
were observed at the Class Il region. A closer look at the gene expression
profiles based on the functional role revealed that genes coding for proteins
involved in the antigen processing and presentation were highly expressed as
compared to those involved in the stress response and regulation (Table 5.2).
Indeed, the HLA-A, HLA-B and HLA-DRA were one of the most highly
expressed genes in the MHC region. These suggest genes that are related by

their functional role are expressed at similar levels.
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Table 5.2

Gene expression (FPKM) categorized by their functional role.

Function

Genes B58AL B58SC B46BM B46ZS COX BL

Antigen
presentation

HLA-A
HLA-E
HLA-C
HLA-B
HLA-DRA
HLA-DRB1
HLA-DQA1
HLA-DQB1
HLA-DOB
HLA-DMB
HLA-DMA

Antigen
processing

TAP2
PSMB8
PSMB9
TAP1

Inflammation

NFKBIL1
LTA

TNF
LTB
LST1
NCR3
AlF1

Stress
response

HSPAILL
HSPA1A
HSPA1B
MICA
MICB

Regulatory
receptors

AGER
NOTCH4

Red = high expression (FPKM>50); blue = medium expression
(5<FPKM<=50); green = low expression (0.01<FPKM<=5)
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Subsequently, the alternative splicing activities in the MHC region were
assessed. Of the 177 genes analyzed in the region, 51 genes were
expressed with two or more isoforms and the relative abundance of each of
the alternatively spliced gene transcripts were examined. The transcript with
the highest FPKM value was regarded as the major isoform while all other
isoforms were regarded as minor isoform and the proportion of the major
isoform FPKM value to the aggregated FPKM value of all expressing
transcripts of each gene was calculated across all the cell lines (Figure 5.7).
From this analysis, it was noted that the isoforms were not expressed at
equivalent level and in fact all the 51 genes had one dominant expressing
isoform with the exception of TAP2 where both of its isoforms were evenly
expressed. In addition, there were 15 genes (constituting approximate 30% of
the genes with multiple isoforms) where one or more cell lines do not share a

common dominant expressing isoform.
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indicates the number of known isoforms annotated in NCBI gene annotation

Figure 5.7
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5.2.4 MHC Haplotype-specific Gene Expression

The access of multiple HLA homozygous cell lines carrying identical MHC
haplotype that displayed CEHs characteristics has offered a unique
opportunity to investigate on haplotype-specific expression. In the previous
chapter, we have showed that independent cell lines carrying identical MHC
CEHs display high sequence invariant in the MHC region. Therefore it would
be of interest to examine whether this sequence similarity would correspond
to similar gene expression profiles among multiple cell lines carrying identical
MHC haplotype (B58AL and B5SC — A33-B58-DR3; B46BM and B46ZS — A2-
B46-DR9). To do this, principal component analysis (PCA) was applied to the
expression data of the 177 MHC region genes represented by their FPKM
values. The PCA results showed haplotype-specific clustering while surprising
the QBL cell line had highly similar expression profile with the cell lines
carrying A2-B46-DR9 haplotype (Figure 5.8). This data suggests that cell
lines carrying identical Asian MHC CEH have probable correlation in their
gene expression profile at the MHC region. Next, quantitative differences in
gene expression levels between the MHC haplotypes were assessed by the
grouping cell lines with identical MHC CEHs. Pairwise fold-change
comparison of every possible MHC haplotype combinations was performed to
provide a regional view of the transcription differences between the MHC
haplotypes (Figure 5.9). Heighten transcriptional variation between
haplotypes were found to be localized to regions proximate to the HLA genes
as well as the genes cluster involved in inflammation, highlighting the

influence of haplotype on the expression of immune related genes.
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top haplotype than in bottom haplotype while red indicates otherwise.
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Table 5.3

Variation of gene expression between MHC haplotypes.

Log2(Fold Change)

A33-B58-  A33-B58-  A33-B58-  A2-B46- A2-B46- Al-B8-

DR3 DR3 DR3 DR9 DR9 DR3

VS VS VS VS VS VS

A1-B8- A26-B18-  A2-B46- A26-B18-  Al-B8- A26-B18-
Gene DR3 DR3 DR9 DR3 DR3 DR3
UBD 0.02 ™ 1.70™ -0.80" 2.50 " 0.83" 1.68 ™
GABBR1 -2.61 " 1.50M -1.47 M 297N _1.14™ 411"
ZFP57 -9.84 ™ 0.00% -7.93" 7.93™ -1.91" 9.84 ™
HLA-H 1.00 ™ 2.23™ 1.43 ™ 0.80 M 0.26 ™ 0.54 N
HLA-A 0.21 ™ 0.65 " -0.13 ' 0.78 ™ 0.34 ™ 0.44 N
HLA-L 0.7 1,10 2.211 7 -1.00™ -1.36™ 0.35 M
DDR1 0.59 M 0.52 N 1.44 ™ -0.92 * -0.85 M _p0.07 ™
DPCR1 -0.37 ' 0.06 M 1.59 ™ -1.54 " -1.96 ™ 0.42 N
HCG22 -0.26 S _0.73 M 1.47 ™ -2.19 ™ -1.73 ™ -0.46 '
POUSF1 -1.89 * 0.98 ™ -1.60 * 2.59 ™ -0.28 s 2.87 ™
PSORS1C3 1.79 s 1.79 N _4.32 ™ 6.10 ™ 6.10 ™ 0.00 s
HLA-C -1.29 ™ 1.15™ 0.42 ™ 0.73 " -1.72 2.45 ™
HLA-B 0.05 M 0.82 ™ 0.64 ™ 0.17 ™ -0.59 0.70 ~
MICA -0.82 N _o.51 M -1.14 ™ 0.63 M 0.32 ™ 0.30 M
TNF -0.73 ™ -0.22 % _-0.03 ™ -_0.19% _0.70 * 0.51 M
LTB -0.92 % _1.90 ™ -0.74™ -1.16 " -0.18 ™ _0.98 M
AlF1 2.09 ™ -0.37 ™ 0.59 M _0.95 1.51 N _2.46 ™
HSPA1A 1.25 ™ 0.38 M 0.62 N _-0.24 " 0.63 ™ -_p0.87 s
C6orf48 -0.16 s 0.21 M 1.15 ™ -0.93 ™ -1.31 ™ 0.38 M
NEU1 0.25 M 0.36 M 0.64 ™ -0.27 % -0.39 s 0.11 ™
HLA-DRB5 8.33™ 6.68"% 251" 4.18% 582" -1.64 "
HLA-DRB1 0.90 ™ 0.65 " 2.59 ™ -1.95 ™ -1.70 ™ -0.25 M
HLA-DQA1L 1.67 ™ 1.83 ™ 3.40 ™ -1.57 " -1.73 ™ 0.16 '™
HLA-DQA2 0.88 ™ 0.90™ -0.96 ™ 1.87 ™ 1.84 ™ 0.03 "™
HLA-DQB2 0.66 ™ 0.74 ™ 1.31 ™ -0.57 ™ -0.65™ 0.09 ™
HLA-DOA 0.24 M _0.12 ™ 0.93 ™ -1.06 " -0.69 " _-0.36 M

Genes showing significant differentially expressed in one or more haplotype-
pairs comparison after Benjamini-Hochberg adjustment. “NS” denotes not
significant haplotype-pair; “**" denotes haplotype-pair with adjusted P-value
<0.05; “*” denotes haplotype-pair with adjusted P-value <0.1. COX cell line
carries the A1-B8-DR3 haplotype while QBL cell line carries the A26-B18-
DR3 haplotype.
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To detect differentially expressed genes, the method implemented in
Cuffdiff 2 was employed [157]. Overall, 26 genes were significantly
differentially expressed (adjusted P-value<0.05) in at least one pair of
haplotype comparison (Table 5.3). A number of these genes that are related
to the antigen presentation (HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1,
HLA-DQA2, HLA-DQB?2) as well as the inflammatory genes (TNF, LTB, AIF1).
As the variation in the gene expression levels could be due to individual cell
line differences rather than haplotype-specific differences, we selected 12
genes that were found to be significantly differentially expressed in three or
more haplotype-pairs comparison and inspect on the expression levels of
these genes in each of the six individual cell lines. Indeed, with the exception
of ZFP57, equivalent expression levels were observed in cell lines sharing
identical MHC haplotype for the 11 selected genes (Figure 5.10). These
provide strong evidence for the influence of haplotypic sequence variation on

transcription activity in the MHC region.
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5.2.5 ZFP57 Expression

The RNA-seq data allows us to verify the expression of ZFP57 as well as
assesses the possible isoforms expressed in the cell lines. Indeed, the RNA-
seq data correlates with the RT-gPCR experimental results where expression
of ZFP57 was found in the B46BM and COX cell lines (Figure 5.10). Next, we
also examined the possible expressing isoforms by plotting the sashimi plots
which displayed the raw reads coverage mapped to the exons and splicing
junctions (Figure 5.11). Currently there are two known ZFP57 isoforms which
is differed by the extension of the 5° UTR. From the RNA-seq reads, it
appears both isoforms are expressed in the cell lines. In addition, there is
indication for the expression of a third shorter novel isoform which lack of the
first exon of the previous isoforms. However this observation could be an
artifact resulted from erroneous reads mapping and therefore more
guantitative analysis and verification by experimental approaches are needed

to confirm the presence of this putative isoform.
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Figure 5.11 Sashimi plots for RNA-Seq analysis of ZFP57 expression. Raw
read densities mapped along the exons and splicing junctions of ZFP57 in
B46BM and COX cell lines. Spicing junctions are represented by the
connecting lines and the number below each line indicates the number of
reads spanning across each splicing junction. Below the sashimi plots are the
known ZFP57 isoforms from the NCBI gene annotation Build 37.2 and
ensembl genes annotation as well as the putative isoform derived from the
RNA-Seq mapping.
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5.3 Conclusion

In this chapter, using RNA-seq technology on multiple HLA homozygous
LCLs sharing identical HLA haplotype, we provided a comprehensive
description on the transcriptional landscape in the MHC region (chr6:29.0 —
33.0Mb) for four common HLA haplotype (two with Asian ancestry — A33-
B358-DR3 and A2-B46-DR9; two with European ancestry — A1-B8-DR3 and
A26-B18-DR3). We observed elevated expression of the HLA class | / class |l
genes and genes related by their functions were expressed at equivalent
levels. In addition, differences in gene expression as well as in alternate
splicing events were influenced by the underlying MHC haplotypic structure.
The transcription activities of 26 genes were found to be affected by the MHC
haplotype diversity. This implies that underlying MHC haplotypic structure

might have an effect on the transcription activity in the MHC region.
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Chapter 6:

Discussion
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6.1 Significance of the MHC Recombination Analysis in this Study

Current in silico approaches using of population genetics data is relatively
successful in estimating the location of recombination sites on a genome-wide
basis [199] which are showed to have good correlation with predigree-derived
recombination maps and with known recombination sites. Most of these
approaches are based on a population genetic model that does not account
for natural selection, random mutation, human migration and variation of the
effective population size [200]. Though it has proved to be robust with
reasonable departure from those conditions, cautious has to be exercised
when applying the model to infer recombination sites in the human MHC
region given that this region is subjected to strong selection forces. The
human MHC region is unique as it is characterized by diverse HLA haplotypic
variation and structure. In silico approaches that used pooled global
population data is unable to effectively account for the contribution of HLA
allelic haplotypes towards recombination. The admixture of diverse HLA
haplotypes complicates the inference process and obscures potential
recombination sites. To address the problem, in this work, EHH plots using
phased HLA haplotypes derived from CHSG were employed to identify MHC-
residing recombination sites. This method was demonstrated to be an
effective tool at locating recombination sites in the extended MHC region. The
69 putative recombination sites identified in this study correlate well with
recombination segments determined by sperm typing [47] as well as with the
majority of HapMap predicted sites [160]. We also uncovered an additional 37
sites that are not found in any of the previous studies. A review of recent
reports [201, 202] based on European pedigree information, ascertains that
our approach is far more sensitive at locating recombination events (69 sites
vs 5 sites) within MHC and provides superior resolution (average 4.27kb vs
100kb intervals).
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Earlier studies from Walsh et al [50] and Ahmad et al [203] have
characterized the LD patterns of the Caucasian population. Though these
studies highlighted the extent of LD within the MHC region, the resultant LD
maps were limited in scope due to the relative small amount of polymorphic
markers used to derive them and could not be used to infer recombination
sites. A more recent study created a comprehensive haplotype map by
investigating the LD between the SNPs and the HLA alleles across the
extended MHC region (7.5Mb) in four populations [163]. This study effectively
demonstrated that the extent of LD along the chromosome is dependent on
the underlying HLA allelic haplotype and provided a panoramic view of the
MHC genomic architecture. In comparison, our study provides a more detail
and precise description on the variation of LD structure and breakages in
distinctive HLA haplotypes localized to the HLA class | and class Il gene
regions where the LD breakpoints are interpreted as probable recombination

sites.

6.2 Population-specific Recombination

The International HapMap Project reported over 33,000 genome-wide
recombination sites derived from a pooled population comprising of CEU, YRI
and an Asian population (Han Chinese, CHB and Japanese, JPT) [137, 204].
These HapMap recombination sites were classified only when two out of the
three populations showed signal of recombination events, and hence,
HapMap inferred recombination sites are commonly found across
populations, not population-specific. Indeed, there is no extensive study to
examine recombination variation across populations within MHC region. In
the study by de Bakker et al [52], the recombination rates were separately

estimated from individuals of a distinct population and coalesced the rates
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from four different populations into a single estimate for the MHC region, but
did not delved further to evaluate the differences in recombination rates
between populations. A subsequent study did a recombination rates
correlation analysis on the LD-maps generated from three populations and
found population recombination variation at the whole genome level [205].
However this study did not investigate on how the differences of the HLA
haplotypes pool in each distinct population influence and affect the
recombination variation in the MHC region. To provide a clearer insight into
the population-specific recombination profile and the effect of underlying HLA
haplotype on recombination variations, we applied the EHH approach coupled
with the HLA information of the CHSG, CEU and YRI population. Our study
shows low number of recombination sites overlap in multiple populations; in
fact, > 50% of the identified recombination sites is specific to a single
population. Recombination activities bring about the breakdown of LD and
have a direct effect on the genome haplotype diversity [44]. The findings of
vast number of unique recombination sites in a distinct population suggest
that these population-specific sites could have a major role in the
diversification of haplotypes in the MHC region. In contrast, in other parts of
the human genome, the sites of LD decay are generally common across
populations; resulting in extensive haplotype sharing among different
populations [148, 161]. Given that the genomic region of the MHC can be
influenced by a variety of evolutionary mechanisms such as genetic drift,
demography and natural selection, the distribution of population
recombination sites in the MHC region may not be a good refection on the
recombination distribution elsewhere in the human genome.

Balancing selection through pathogen mediated selection are proposed to
explain for the immense number of HLA alleles and haplotypes [206]. These
selection forces favor new assortment of HLA allelic combinations across
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populations and lead to an increase in population frequency of these HLA
combinations [15]. These mechanisms result in the occurrence of a given
allele in two or more different HLA haplotype backgrounds. In this study, the
A*02:01 allele is independently found in different HLA haplotype background
in multiple populations and their recombination profiles varies across
populations; indicating the combinatorial effects of underlying HLA haplotype
and population background on recombination. On the whole, our data shows
the significant role of HLA haplotypes on the patterns and occurrence of
recombination events in the MHC region; and the discovery of unique

recombination sites are possible only through single population analysis.

6.3 Evolutionary Conserved Recombination Sites

Previous section highlighted the differences of recombination sites between
population groups; however, few sites are observed to be shared between
populations (Table 3.3) and these are also of interest as this means that they
are evolutionarily highly conserved and could therefore be of great
importance. Though explanation for the mechanism behind the occurrence of
these conserved recombination sites is not well-defined, one can study the
recombination pathways to derive possible hypotheses. Initiation of
recombination at a particular site starts when histone methyltransferase such
as PR domain-containing 9 (Prdm9), locally acts and opens up the chromatin.
This allows the topoisomerase sporulation-specific 11 (SPO11) to introduce
double-strand breaks (DSBs) on the chromatid and the DSBs are then
repaired through the process of homologous recombination resulting in cross-
over or gene conversion events [207]. Therefore it could be possible that the

local chromatin state at the conserved recombination sites is highly favorable
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for the recruitment of recombination-initiation machinery. Another probable
hypothesis can be derived from the need to balance the two divergent
mechanisms during meiosis where recombination is essential for proper
chromosome separation but it also has to be controlled to minimize the
breakage of important gene clusters and to maintain genome stability [44].
The occurrence of conserved recombination sites could suggest
recombination activities at these genomic sites are conducive for the proper
repair of DSBs; as such, would not disrupt the favorable linkage of gene

clusters and would have little or no deleterious effect on the genome stability.

6.4 Sequencing MHC CEHs and Intra-haplotypic Variations

In this study, the presence of Singaporean Chinese CEHs in A33-B58-
DR3 and A2-B46-DR9 HLA haplotypes were identified through SNP
genotyping as well as deep sequencing of the MHC region (28.5 to 33.5 Mb).
We have assembled at least 90% of the MHC sequence representative of the
A33-B58-DR3 and A2-B46-DR9 haplotypes; and discovered that the
sequences of these haplotypes are largely conserved from HLA-F to HLA-
DQAZ2 loci covering at least 3Mb of the MHC genomic region, proving the
CEH nature of these haplotypes. The assembly of these common Singapore
Chinese MHC sequences could act as an important framework for future
disease studies on populations enriched with these haplotypes, which include

Asian populations from Southern China and Taiwan [173, 174, 208].

Genome-wide association studies have identified more than 100 diseases
that are implicated by the variants or genes within the MHC region [7]. Often,
such genetic associations are not due to single specific variants, but by the

underlying MHC haplotype structure marked by extensive LD [13]. These
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issues have complicated the identification of disease-causing variants or
genes within the MHC region, especially in common CEHs, where extreme
LD is often found. By deep sequencing of multiple individuals homozygous for
the same haplotype, we were able to circumvent the assignment of haplotype
chromosome and perform intra-haplotypic CEH comparison at the nucleotide
level to determine the extent of variation within the conserved boundaries of
each CEH. In total, more than 200 haplotype-specific SNVs were uncovered
residing in each haplotype, up to a third of which are not annotated in any
public archives for genetic polymorphism. In contrast, the use of the common
SNP genotyping platform to interrogate the CEHs was unable to reveal the
polymorphisms embedded within the conserved region. The ability to reveal
variants that is enriched at the haplotype level but not at the population level
allows fine discrimination within members containing the same CEH. This
may allow us to better predict case-control status among individuals sharing
the same risk-associated CEH, and also to define risk-associated variants

that may be enhanced within a particular CEH.

The intra-haplotypic variations revealed in our study suggests that the
pattern of variations in each CEH is unique. For example, a hyper-variable
region was observed around the HLA-A region on the A33-B58-DR3 but not
on A2-B46-DR9. Given that each MHC CEH has a distinct underlying HLA
background and evolutionary history, and has been subjected to different
environmental influences, such non-homogeneous variation distribution may
be expected. The increase in variation around HLA-A in A33-B58-DR3
despite the apparent lack of recombination in this haplotype hints at the
presence of non-random mutation in the region. The existence of non-random
mutation rates across the genome has been recognized in organisms as

diverse as bacteria and humans relatively recently, and there are still many
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unknowns regarding the biochemical mechanisms behind such phenomena
[209-211]. It is tempting to speculate that specific genetic characteristics of
HLA-A may increase its mutation rate, contributing to the increased global
diversity observed at the locus in a manner independent but complementary
to balancing selection. In fact, the occurrence of these intra-haplotypic
variants where 99% of the A33-B58-DR3 and 23% of the A2-B46-DR9
variants exist in the heterozygote form can be well explained by an alternate
model on MHC evolution called Associative Balancing Complex (ABC) [79].
This model states that recessive detrimental mutations are built up by the
Muller's ratchet effect and are sheltered by the surrounding MHC genes
through LD. Moreover, these mutations exist in the heterozygote forms and
as such natural selection is not effective to select against these mutations.
This leads to negative epistasis and the reduction of recombination events in
the MHC. The ABC evolution model therefore accounts for the high number of
heterozygous intra-haplotypic variants in the MHC CEHs and may provide a

valid explanation for why numerous diseases are associated to MHC CEHs.

The identified intra- and inter-haplotypic variants in this work may be
helpful in offering important clinical links to diseases. MHC-resident variants
within the CEHs, apart from the HLA genes, have independent associations
with diseases, even in autoimmune-related disorders such as systemic lupus
erythematosus, Behcet's disease, graft-versus-host disease and rheumatoid
arthritis [212-216]. These variants may exert cis-regulatory effects on the
nearby genes and affect the expression of the target genes commonly known
as cis-expression quantitative trait loci (cis-eQTLs). Recent studies have
suggested that the MHC region is a prominent area for such cis-eQTL
associations [133, 217, 218], and in our study, we also show that one of the

A2-B46-DR9 intra-haplotypic variant regulates the expression of the ZFP57
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gene. The presence of such cis-eQTLs provides a possible mechanistic
theory for the outstanding number of MHC disease associations yet to be
explained, particularly the contribution of non-coding variants to disease
phenotypes. In this work, up to 99% of the intra-haplotypic variations are
located within the non-coding region; these variants can be incorporated into

a reference panel to infer the effects of non-coding variants on diseases.

The numerous associations of MHC CEHs with various diseases sighal a
need to dissect CEHSs to identify the true disease-causing variants among the
large pool of benign variants in LD within the haplotype. Hence, it is essential
to characterize the extent of variation within the MHC CEHs. The advent of
next-generation sequencing technology offers an attractive option to assess
such haplotypic variation. However, the short reads generated by NGS
platforms are not well suited to accurately map the MHC region given its
extreme sequence and structural variations. More importantly, it is difficult to
resolve the phase of the haplotype from the short reads mapping. As seen in
this study, the use of HLA homozygous cell lines avoids the need for phasing
and improves the accuracy of the reads mapping. Third generation
sequencing technologies with the ability to sequence reads of length greater
than 1000bp [219, 220] have the potential to both phase and accurately map
complex region such within the MHC and will eventually allow large scale

haplotype comparative analysis.
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6.5 Origin and Age of Conserved Extended Haplotype (CEH)

The MHC CEHs can span over several megabases contain numerous
genes that are fundamental for human immune functions. The mechanism
behind the maintenance of such extensive LD in this important and highly
variable region of the human genome is unclear. There are two plausible
explanations for the generation of MHC CEHs. The first is that these long
sweeps of conserved sequence haplotypes may have been driven to high
frequency by positive selection over a relatively short period of time and have
yet to be disrupted by recombination events [10, 144]. A single gene or a
combination of genes within the conserved stretch would be adequate to drive
the haplotype expansion in the population. Another possibility is that given the
almost non-existent of recombination events on haplotypes carrying a specific
HLA allelic combination, these extensive conserved segments are exposed to
allele-specific recombination suppression preventing haplotype breakdown
[203]. The age of the A1-B8-DR3 haplotype has been estimated to be about
23,500 years [21]. The relative young age of the A1-B8-DR3 suggests that
the extensive LD observed between the HLA alleles is more likely due to
recent expansion and that recombination forces have yet to act on this
haplotype. Assuming that the human mutation rate per nucleotide per
generation is 1.1X10°® [154] and a given generation is 20 years, the age of the
Asian A33-B58-DR3 and A2-B46-DR9 works out to be about 21,460 and
26,500 years respectively. These values are compatible with the age of the
A1-B8-DR3 haplotype lending support to the theory that these MHC CEHs
are likely to be resulted from recent expansion. In addition, it has been
suggested that the expansion of the CEHs is possibly because of a single
HLA allele under strong positive selection rather than epistatic selection of a

specific HLA allelic combination [10]. This study reports the occurrence of
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sequence similarity at the HLA-DRB region between two common CEHs
(A33-B58-DR3 and A1-B8-DR3) which belong to different ethnic backgrounds
but were both driven to high frequency in their respective populations. It is
conceivable that this ancestral DR3 segment was introduced into different
MHC haplotype background whereby the selection for this segment drove the

expansion of these MHC haplotypes.

Where is the origin of this DR3 ancestral segment? Given that the A33-
B58-DR3 and A1-B8-DR haplotypes are found in populations that are
geographically distant to each other, it is unlikely that the DR3 segment is
derived from either of the two haplotypes. It is more likely that this segment
could originate from another population group and diverge into the European
and Chinese population. The study of the human migration pattern might able
to provide insight to this hypothesis. Based on the Out of Africa theory,
human first migrated out of Africa into Middle Asia then spread to South Asia
by 50,000 years ago, and from South Asia human slowly spread to China,
South East Asia and then finally reached Europe by 40,000 years ago [221,
222]. Literature search on the MHC haplotype distribution has revealed an
enrichment of DR3 in the modern South Asian population (A24-B8-DR3 -
4.8% & A26-B8-DR3 - 6.2%) [170], hence it is plausible that the DR3 segment
could origin from the South Asian population and then independently expands
in the European and Chinese population through human migration. To
validate this model, further work has to be conducted to ensure DR3
sequence similarity can be found between the South Asian DR3 and the
Chinese/European DR3 segment and preferably supported by the age of the

South Asian MHC haplotypes.
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6.6 Influence of Haplotype-defined Nucleotide Sequence Variation on
MHC Gene Regulation

There are many instances where the underlying HLA haplotype rather
than genotype of a specific locus plays a significant role in disease
susceptibility [13, 223, 224]. In this thesis, we have unambiguously identified
haplotype-specific sequence variations. Though the knowledge of these
variations is important for the explanation of the occurrence of the disease, it
could not have revealed the functional mechanisms that lead to disease
progression. Therefore, the ability to map the transcriptomic landscape of the
MHC region at haplotypic resolution is an important step in understanding the
molecular basis for a number of MHC associations to diseases. In this study,
the MHC transcriptome profiles of multiple HLA homozygous B-LCLs with
identical Singaporean Chinese HLA haplotype were examined using RNA-seq.
This approach not only averts the confounding effect in the evaluation of
diploid genome but will also account for transcription variability between cell
lines. Overall, our study has revealed that the expressions of 26 genes are
attributed to haplotypic effects. In comparison, the report by Vandiedonck et
al [179] which was based on the analysis of three common European MHC
haplotypes identified 96 genes whose expression levels are associated to
haplotypic differences. There are two likely reasons for this discrepancy. The
first is the difference in the MHC haplotypes used in context between the two
studies. Secondly, in the work by Vandiedonck et al, each MHC haplotype
was represented by only a single cell line; hence some of the transcription
differences reported could be due to individual cell lines variations rather than
haplotype-related transcriptional differences. In contrast, our analysis involved
two independent cell lines carrying identical MHC haplotype and we showed
that haplotype-identical cell lines have equivalent expression in 25 out 26

genes. This provides strong evidence that the differential gene expression
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observed is indeed due to haplotypic effects and dismisses the notion of
individual cell lines variations. Nevertheless, 15/26 differentially expressed
genes identified in this thesis overlapped with the genes listed in
Vandiedonck’s work. This suggests the MHC transcriptional landscape is
likely to vary in a context-specific manner; dependent on the relevant
haplotype of interest, the cell types and conditions applied. Together, the
identification of genes whose expression levels are implicated by haplotypic
differences allow us to shortlist candidate genes to consider for diseases

linked to the haplotype in context.

Haplotype-related transcriptional differences signify the possible effect of
haplotype-defined nucleotide sequence variations on MHC gene regulation.
Haplotype-specific sequence variations in cis—acting regulatory promoter
elements or even distal trans-acting regulatory elements could affect DNA
methylation or chromatin accessibility and hence are critical to the regulation
of gene expression. Indeed, sequence variations in the enhancer and the
interferon-stimulated response element in the MHC class | promoter bring
about differential promoter activation among various MHC class | loci [120,
225]. Currently, much of the MHC epigenetic studies are directed at the
regulation of transcription initiation. The complex interplay between cris-
/trans- regulatory elements and the epigenetic mechanisms that modulate the
expression of MHC class | and class Il genes are well established [118, 226,
227]. However, the effect of sequence diversity, in particular sequence
variants defined by the MHC haplotypic structure, on epigenetic modifications
is not well understood. Haplotype-specific sequence diversity can influence
the entire transcription as well as translation process and also defines the
packing of the chromatin that coordinates gene expression at local and global

level. Hence, the establishment and mapping chromatin modification at
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haplotypic resolution could well provide the mechanistic explanation on how
transcription is modulated by underlying sequence variation. The ability to
connect MHC sequence variation, chromatin modification and the subsequent
transcription process has enormous potential to provide insight into the

functional basis for many complex diseases linked to the MHC region.

6.7 Future Directions

In this thesis, we found that certain individuals showed expression of
ZFP57, a Kruppel-associated box (KRAB) containing zinc-finger protein, in
the B-LCLs; dependent on the nucleotide sequence configuration at multiple
positions proximate to the gene. These positions signify possible regulatory
sites for the transcription of ZFP57; therefore further work is required to
ascertain which of these site(s) truly regulate the expression of the gene.
Approach such as cloning the genomic segments bearing these sites into an
expression vector and transfect them into a non-expressing ZFP57
mammalian cell can be used to identify the possible regulatory region. This
identification of ZFP57 regulatory region(s) can facilitate the finding of the
transcription factors or other co-factors that may involve in the modulation of
the ZFP57 transcription. In embryonic stem (ES) cells, signal transducer and
activator of transcription 3 (STAT3) and octamer-binding transcription factor -

3/4 (Oct-3/4) are the transcription activators for ZFP57 [228], it would be of

interest to examine whether the same transcription factors or other novel

factors are utilized to regulate the transcription ZFP57 in adult cell lines.

To date, ZFP57 is involved in the maintenance of DNA methylation
whereby ZFP57 acts as an anchor for the binding of KAP1 and the
recruitment of other epigenetic regulators at imprinting control regions in the

ES cells [229]. However, functional significance of the expression of ZFP57
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and its role in the adult cells is not known. The KRAB-ZNF family genes have
various functions such as cell-cycle regulation [230], specification of meiotic
recombination hotspots [231] and more importantly some of the KRAB-ZNF
genes exhibit tumor suppression properties [230]. In addition, ZFP57’'s co-
factor KAP1 is found to be associated with tumor developments in several
studies [232-234]. Hence further work is needed to investigate on the role of

ZFP57 in epigenetic regulation in the context of cancers or infection.

The A2-B46-DR9 and A33-B58-DR3 HLA haplotypes are implicated in
multiple diseases. Most notably, several studies have reported the
association of these haplotypes with nasopharyngeal carcinoma [235-237]
and a recent GWAS study has identified 3 new susceptibility loci with
extremely strong statistical significance within the MHC region [82]; but the
exact location of the disease causative variant/element is yet to be
determined. The findings of A2-B46-DR9 and A33-B58-DR3 haplotype-
specific sequence variations in this study, in particular the novel variants not
reported in any prior studies, offer an excellent opportunity to revisit these
association studies. These haplotype-specific variations might be able to
distinguish disease-affected haplotype carriers from unaffected haplotype
carriers and eventually facilitate the mapping of the disease causative

variant/element.

Increasingly in recent years, it is apparent that a significant fraction of the
human genome expresses non-coding RNAs (ncRNAs) and some these
NncRNAs are crucial for normal development and physiology [238]. Hence, it is
not surprising that many of them are implicated in numerous diseases. Many
studies have showed that the dysregulation of these ncRNAs contribute to the

development and progression of many human conditions particularly in
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cancers [239-241]. It would be of interested to investigate the presence of
ncRNAs in the MHC region and more significantly to examine whether the
underlying haplotype structure would influence the expression of ncRNAs.
Through de novo analysis, the RNA-seq data used in this study can be
employed to inspect the expression of the ncRNAs in the Singaporean
Chinese HLA haplotype and provides insights for the above mentioned

guestions.
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