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Abstract 
 

The tight focusing of cylindrical vector (CV) beams is widely used in 

real-world applications, such as particle manipulation, optical tweezers, and 

laser writing. As one of the most challenging topics in modern optics, the 

generation of a tight spot to achieve super-resolution imaging has been 

realized by focusing CV beams on the subwavelength scale. Generally, all the 

approaches reported in the literature manipulate the point spread function (PSF) 

to achieve a sharp PSF in the focal region. Interestingly, the exact opposite of 

super-resolution, i.e., suppressing the main lobe in the PSF until it has 

completely vanished and subsequently elevating the side lobe, remains an 

unexplored topic. For this inversely manipulated PSF, a point source at the 

object plane leads to a large-radius ring intensity, resulting in unresolved 

imaging at the imaging plane. This new scheme is defined in our concept as 

anti-resolution (AR). Contrary to the traditional PSF, which has been 

developed over the course of centuries, the concept of AR provides a new 

direction in manipulating the PSF and may lead to considerable discoveries in 
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physics.  

The aim of this thesis was to model, characterize, and realize such AR 

using a binary optical system through an investigation of the energy flux of the 

light, light-matter interaction, and phase modulation mechanism. The 

electromagnetic null field, corresponding to AR, was created by optimizing 

the parameters of a binary optical element (BOE). When there is no energy on 

the optical axis as the PSF is fully suppressed, AR can be realized. It was 

determined that the null field region has a remarkably large volume of 

smeared-out PSF. In addition, the light intensity inside this volume is 

thoroughly diminished. These extraordinary findings strongly suggest a 

possible application of AR in the recently highlighted field of cloaking. 

Therefore, another aim of this thesis was to realize an AR-based cloaking 

method. The experimental design, cloaking mechanism, and cloaking 

performance were simultaneously investigated. 

In conclusion, this study established a novel account of the manipulation 

of the optical beam and further employed this mechanism in macroscopic 

cloaking. As the mechanism is fully developed for the first time, other special 

manipulation techniques of vector beams can readily be further investigated 

based on this study. Meanwhile, this new concept of AR greatly enriches 

optical focusing and provides an unprecedented platform to focus light at the 

subwavelength scale. Moreover, this study provides a practical means of 

cloaking because several problems in previous cloaking methods, such as
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bandwidth, polarization and fabrication, are overcome.
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Chapter 1 
 
Introduction 
                                 

Light, a form of electromagnetic wave, is rigorously governed by Maxwell’s 

equations. Studies on the intrinsic properties of light, such as the frequency, 

amplitude，phase and polarization, have laid the foundation for modern optics. 

For example, the attempt to control the frequency of light led to the birth of 

non-linear optics [1] and laser physics [2]. The manipulation of the amplitude 

and phase of light facilitated the emergence of micro-optics and diffractive 

optics [3]. As one of the basic properties of light, polarization is of crucial 

importance in theoretical descriptions and practical applications [4, 5]. Many 

applications, such as advanced imaging systems, inspection and metrology, 

high-intensity data storage, optical communications and material science, have 

greatly benefited from this vectorial property.  
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1.1 Objectives and significance 

Until the early 1970s, researchers mainly focused on spatially homogeneous 

light polarization (shown in Figure 1.1a), whereby the polarization state does 

not depend on the location in the light cross section, such as for linear and 

circular polarizations [6]. Recently, cylindrical vector (CV) beams with 

spatially varying states of polarization (shown in Figure 1.1b) have been 

achieved in experiments [6, 7]. As a result, a large number of specific effects 

and phenomena have been observed and detected accordingly by tightly 

focusing these CV beams.  

 

Figure 1.1. Spatially homogeneous and inhomogeneous polarization beams. (a) 
Cross sections of a linearly and a circularly polarized beam. (b) Cross sections 
of a radially and an azimuthally polarized beam. 
 

Remarkably, simulations and experiments have confirmed that a tighter 

spot than that produced by spatially homogeneous polarizations can be 

achieved by focusing a radially polarized light beam (a type of CV beam) in a 
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high numerical (NA) aperture system. This discovery is of considerable 

importance to improve the lateral resolution of an optical system, and the 

principle behind this is the existence of a strong longitudinal field component 

in the adjacent region of the focus [8-11]. This crucial finding has aroused 

intensive concern within the academic community. Thus, much research effort 

has been dedicated to focusing the CV beams at the subwavelength scale to 

achieve super-resolution and to beat the diffraction limit [8, 9].  

In the seminal study by S. Quabis et al. [8], the Hertzian dipole model 

was introduced to investigate the focusing properties of CV beams in the focal 

region. The limit of the spot size of the focused beams was proposed for the 

first time. As a pioneering attempt, this study comprehensively reveals the 

reason why a tighter spot could be achieved by focusing a radially polarized 

beam instead of a linearly polarized beam. Moreover, the main reason that the 

shape of the focus was affected was identified. Nevertheless, the explanations 

for the limit of the spot size of the focused beams are a lack of specifications. 

In addition, the effects of the longitudinal electric field on the focal shape are 

merely qualitatively described. Following the study by S. Quabis et al., the 

focusing property of a generalized CV beam was investigated by Zhan et al. 

[12]. They theoretically confirmed the spatial separation between the 

transverse and longitudinal components in the vicinity of the focus. 

Additionally, a focus of a flattop shape was realized by employing a 

polarization rotator. This study is particularly meaningful to other studies and 
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directly leads to the breakthrough of the experimental realization of a tighter 

spot in the focal region.  

In addition to these theoretical discussions about high spatial resolution, 

the experimental verification of the longitudinal field in the focal region is an 

important step forward. In a novel experiment by L. Novotny et al. [13], the 

focal field distribution was probed by single molecules. It was found that the 

field strength ratio between longitudinal and transverse components is about 

two, which is in high agreement with the theoretical model. As a consequence, 

the existence of the longitudinal field was convincingly evidenced. Based on 

these substantial findings, R. Dorn et al. proposed a novel scheme of 

super-resolution by focusing a radially polarized beam with an annular 

aperture [9]. It was found that the spot size could be as small as 0.16λ2. This 

study has verified the prediction of the Hertzian dipole model, and it has a 

significant impact on improving the spatial resolution. Moreover, it paves the 

way for consequent studies, e.g., longitudinal optical needle for electron 

accelerator physics [14] and three-dimensional optical chain for particle 

delivery [15]. Such annular aperture can be replaced with a binary optical 

element (BOE) [16, 17]. In a recent work, an ultra-long optical needle has 

been realized by employing the electric dipole array radiation model, and the 

full-width at half maximum (FWHM) spot size in air is only 0.129λ2. However, 

the spot size limit predicted by Hertzian dipole model is not yet broken [17]. 

Following these fundamental studies in conventional optics, other 
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strategies have also been proposed to reduce the spot size, such as using 

superlenses [18] and hyperlenses [19]. Concurrently, significant effort 

concerning optical super-resolution has been devoted to the development of 

various optical microscopy techniques (e.g., stimulated emission depletion 

microscopy [20] and stochastic optical reconstruction microscopy [21]) based 

on molecular labeling, nonlinear optical saturation, luminescence, and the 

excitation/ de-excitation of fluorophores. 

It is well known that the point spread function (PSF) (Figure 1.2a) 

dictates the performance of an optical focusing system [22, 23], so a sharp 

PSF with a strong main lobe and a weak side lobe (Figure 1.2b) is highly 

desired for realizing high spatial resolution [24, 25]. From this point of view, 

all the studies mentioned above, no matter what type of scheme they have 

adopted, have one thing in common: their final target is to narrow down the 

PSF.  

One interesting question beyond the current focus is what new interesting 

phenomena and applications would exist if one pushes the limit toward the 

other extreme, i.e., suppressing and flattening the main lobe in the PSF until it 

has completely vanished, and increasing the sidelobe (Figure 1.2d), which is 

completely opposite of the technique of super-resolution in Figure 1.2b. For 

this inversely manipulated PSF, a point source at the object plane leads to a 

large-radius ring intensity, resulting in the dis-resolved imaging at the imaging 

plane. This new scheme is defined in our concept as anti-resolution (AR). In 
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contrast to the traditional PSF, which has been investigated for centuries, AR 

provides a new direction to manipulate the PSF and extends the concept of the 

PSF to a broader range. Moreover, this scheme indicates many considerable 

discoveries and applications in optics and physics. In view of the above 

reasons, the main aim of this thesis was to model, characterize, and realize 

such AR in a binary optical system (Figure 1.2e). The energy flux of the light, 

light-matter interaction, and phase modulation mechanism were investigated 

as specific objectives.  

The phenomenon of AR may have significant impact on the development 

of an effective methodology to manipulate optical beams, and will 

undoubtedly extend the practical applications of focusing optics. Because the 

mechanism of AR is comprehensively revealed, other novel phenomena of CV 

beams can be readily investigated following this study. Meanwhile, the new 

concept of AR-focusing optics may provide an alternative platform to focus 

light on subwavelength scale. 

In this study, AR only denotes the inverse manipulation of the PSF in 

contrast with that of the PSF for super-resolution (refer to Figures 1.2b and 

1.2d), and it has a relocated PSF with a ring-shaped intensity distribution. This 

implementation creates a macroscopic spatial region with a nearly perfect 

electromagnetic null field, where the energy flux of light approaches zero. The 

electromagnetic null field in the PSF spreads in the focal region, producing a 

uniform variation in the energy flux in the homogenous medium, resulting in a 
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large null-field region surrounded by visible light, which looks like a 

three-dimensional “optical capsule” (Figure 1.2f). Additionally, the AR 

phenomenon has a similar energy flex with the invisibility cloak, a device that 

can make an object invisible (Figure 1.3). 

  

Figure 1.2. Evolution from super-resolution to anti-resolution (AR) [Appendix 
B 1]. The PSF of a traditional optical imaging system has the form of Airy 
spot (a). The super-resolution in (b) is achieved by narrowing the PSF, 
enhancing the main lobe as well as suppressing the side lobe. If we just widen 
the PSF without any disposing of main lobe and side lobe in PSF, the 
fuzzy-resolution (c) leading to degradation in imaging can be obtained. One 
completely inverse case of (b) in manipulation of PSF is widening the PSF, 
suppressing the main lobe and enhancing the side lobe so that the PSF in the 
region D (>> λ) completely vanishes, which is the concept of AR (d). (e) The 
scheme for realizing visible light capsule based on AR with binary phase on. (f) 
The 3D optical capsule based on AR concept. Energy flows in the capsule 
whose outer and inner boundaries are shown by the black and red curves, 
respectively. 
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Figure 1.3. Invisibility cloak and AR phenomenon. (a) A two-dimentional 
cross section of the cloak. (b) A three-dimentional cross section of the cloak. 
(c) The AR phenomenon. (a) and (b) are reprinted from [26]. Reprinted with 
permission from AAAS.  
 

These extraordinary results strongly suggest a possible application of AR 

in the recently highlighted area of cloaking. Therefore, another aim of this 

thesis was to realize AR-based cloaking. The experimental design, cloaking 

mechanism, and cloaking preformace were therefore investigated. The 

AR-based cloaking is of considerable importance in realistic applications 

because the anisotropic materials and inhomogeneous structures, which are 

required by traditional cloaking methodologies, are not necessary for the 

proposed scheme. 

1.2 Thesis plan  

To achieve the phenomenon of AR and AR-based cloaking, we divide this 

study into three parts: the theoretical modeling, AR phenomenon realization 

and experimental verification. These three parts are interrelated and contribute 

to the final results in a logical manner. 

The main text of the thesis starts with a discussion of the background 

studies behind this research. Subsequently, the phenomenon of AR and its 
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concept are properly defined, followed by an emphasis on the objectives and 

the significance of this study.  

The mathematical foundations of the CV beam are derived in Chapter 2. 

The general expression for the CV beam, which includes the radial and 

azimuthal components, is discussed. To further investigate the electromagnetic 

field distribution in the focal region of an aplanatic imaging system, the Debye 

integral is employed and derived to provide an approximated description, 

resulting in the Richards-Wolf’s formula that is widely used in the high-NA 

imaging system. This chapter provides the theoretical basis for the novel 

phenomena of AR. 

Chapter 3 is used to introduce this new phenomenon, AR PSF, which is 

created using a BOE and a focusing lens (Figure 1.2e). In addition, we further 

investigate the physical properties of the AR PSF by varying the parameters of 

the BOE and the polarization of the incident light. It is found that the volume 

of the electromagnetic null field induced by the AR PSF is tunable. This 

demonstrates its great flexibility and universal properties for various imaging 

systems. Subsequently, an algorithm used for the design of BOE is proposed 

and employed to investigate the underlying physics of the AR phenomenon.  

Based on the results in Chapter 2 and Chapter 3, we apply the 

phenomenon of AR to optical cloaking in an imaging system in Chapter 4. In 

the simulation, we demonstrate the energy flow of the light and discuss the 

relation between the volume of the cloaked region and the lens NA. Next, two 
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well-designed experiments are implemented to verify the feasibility of the 

cloaking technique.  

Finally, a conclusion of this thesis is provided as a summary of this work. 

Based on personal knowledge in this field, some suggestions are also provided 

for further research by extending the reported results to other related fields. 

Through the work we have performed, the phenomenon of AR is 

theoretically and experimentally demonstrated. It is further shown that a null 

field with nearly zero-field intensity is surrounded by light and that this 

null-field area is up to eight orders of magnitude larger than λ2 in 

cross-sectional size. Based on this novel phenomenon, an optical cloak is 

proposed and experimentally demonstrated. This cloak functions very well 

using arbitrarily polarized beams in three dimensions, and is also frequency 

scalable over the whole electromagnetic spectrum. 
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Chapter 2 
 
Theoretical background for 
cylindrical vector beams 
                                         

2.1 Maxwell’s equations  

The laws of electricity and magnetism were discovered by James Clerk 

Maxwell (1831-1879) in 1873 [27-34]. They are given in differential form as 

,                      (2.1) 

 ,                     (2.2) 

,                        (2.3) 

,                         (2.4) 

where E is the electric field strength, D is the electric displacement, H is the 

magnetic field strength, B is the magnetic flux density, J is the electric current 

density, and ρ is the electric charge density. The constitutive relations for the 

electromagnetic field are 

t
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,                         (2.5) 

,                         (2.6) 

,                         (2.7) 

where ε is the permittivity, μ is the permeability and σ is the conductivity. 

To understand the wave properties of the electromagnetic field, we take 

the curl of Eqs. 2.1 and 2.2 and utilize the constitutive relations Eqs. 2.5, 2.6 

and 2.7; thus, we have 

,          (2.8) 

.       (2.9) 

Eqs. 2.8 and 2.9 can be further written as 

,               (2.10) 

.               (2.11) 

Using the vector identities  and , Eqs. 

2.10 and 2.11 become 

,               (2.12) 

.                  (2.13) 
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represents the circular frequency. Eqs. 2.12 and 2.13 can be further expressed 

as 

,                   (2.14) 

.                   (2.15) 

Eqs. 2.14 and 2.15 are vector wave equations for a time-harmonic field. To 

solve these equations analytically, vectorial wave functions are employed in 

the corresponding coordinate systems. In the next section, we will further 

utilize these two equations to express the CV beams.   

2.2 Mathematical foundation of CV beams 

Eqs. 2.14 and 2.15 indicate the vectorial properties of an electromagnetic field. 

Because visible light represents a specific type of electromagnetic field, 

optical phenomena obey these rules. CV beams that possess inhomogeneous 

polarization states have been generated in the past few decades and have 

attracted a substantial amount of attention. To fully establish the mathematical 

foundations for solving these CV beam problems, it is first convenient to 

consider the scalar wave equations [35]. We then rewrite Eq. 2.14 in the scalar 

Helmholtz equation form as 

,                    (2.16) 

where k = ω(με)1/2 = ω/c is the wave number in vacuum for the field and c is 

the speed of light. The solution to this equation represents Hermite-Gaussian 

2 2 0   E E

2 2 0   H H

2 2( ) 0k E  
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beams in rectangular coordinates (x, y, z) and Laguerre-Gaussian beams in 

cylindrical coordinates (r, ϕ, z) [5]. When the CV beams propagate in the z 

direction, the solution can be written in the following form: 

.            (2.17) 

Substituting Eq. 2.17 into Eq. 2.16 and referring to the identity

, we subsequently have the following 

differential equation  

.          (2.18) 

In practical applications, we usually take into account the slowly varying 

and paraxial approximations for the CV beam: ∂2g/∂z2 ≈ 0. Therefore, g(r, ϕ, z) 

is the solution of the following scalar wave equation: 

.             (2.19) 

For this differential equation, a solution in an elementary Gaussian form can 

be found and can be written as [35] 

 .        (2.20) 

Here, g(r, z) is independent of the azimuthal angle. In this expression,       
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range, and Ф(z) = tan−1(z/R) represents the Gouy phase shift. As noted by Hall 

[35], other solutions also satisfy Eq. 2.19 and can be observed as the 

higher-order form. When we substitute Eq. 2.20 into Eq. 2.17, the electric field 

E(r, ϕ, z, t) is obtained. 

The scalar Helmholtz equations above can well describe the properties of 

spatially homogenous polarized light, such as linearly and circularly polarized 

beams, along its propagation direction. However, once we focus on spatially 

inhomogeneous polarized light, the scalar Helmholtz equations are no longer 

suitable. To accurately describe the propagation properties of the CV beam, 

the vector Helmholtz equation should be employed. Eq. 2.10 can then be 

rewritten as 

.                   (2.21) 

The solution to Eq. 2.21 can be expressed in a similar form as Eq. 2.17, but 

with vectorial information, as follows 

,           (2.22) 

where the amplitude [5, 35-37] 

     , , , , , ,r rr z G r z G r z    G e e           (2.23) 

is a transverse vector component and er and eϕ are unit vectors in the r and ϕ 

directions, respectively. It should be noted that the component in the z 

direction is very small and can be neglected in practice; therefore, we only 
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need to take the er and eϕ components into account in most cases. Here, Gr and 

Gϕ are functions of z. In many fundamental works, it was proven that the 

expressions for Gr and Gϕ contain the elementary Gaussian mode part, as 

shown in Eq. 2.20. In fact, when the form of E(r, ϕ, z, t) is defined, the 

solutions will be fixed accordingly.  

Recently, a general solution for the CV beams was obtained by 

Chun-Fang Li [38, 39] using the angular spectrum method, in which every 

component of the electric field is written in a spectrum form after the vector 

Helmholtz Eq. 2.21 is introduced. Next, by making use of the orthogonal 

properties of the vectors, E(r, ϕ, z, t) is finally expressed as an integration. The 

final results of this expression show that there are other solutions (e.g., 

modified Bessel-Gaussian solutions) for the vector Helmholtz Eq. 2.21. Here, 

for simplicity, we mainly follow the traditional procedures to solve the vector 

equation and discuss the frequently applied cases, which have been verified by 

experiments. 

Taking the curl of Eq. 2.22, we obtain 

 .          (2.24) 

After this step, there is an ez component. Then, by taking the curl of Eq. 2.24 
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again, we have  

. (2.25) 

Substituting Eqs. 2.22 and 2.25 into Eq. 2.21, we obtain the following coupled 

equations for the r, ϕ and z directions. During this procedure, the slowly 

varying approximations and paraxial conditions (∂2Gr, ϕ /∂z2 ≈ 0, ∂Gr, ϕ /∂z << 

kGr, ϕ ) are considered, and we have 

,          (2.26) 
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,           (2.27) 

.                  (2.28) 

These equations are finally simplified by substituting Eq. 2.28 into Eqs. 2.26 

and 2.27 as follows: 

,     (2.29) 

2

2 2 2 2

1 1 1 2
2 0r

G G GG
r G ik

r r r r r r z
  

 
    

          
.     (2.30) 

These two equations are coupled differential equations for the Gr and Gϕ 

components.  

A convenient method to solve the above equations is to choose an 

appropriate solution form and substitute it into the equation. Here, the vector 

G(r, ϕ, z) in cylindrical coordinates can be expressed as [12, 37, 40]  

.  (2.31) 

The expression used here is a general form for CV beams. In [35], Hall 

demonstrated the general form of the solutions. By using Eq. 2.31, the 

calculation becomes simpler compared with Hall’s work because the relation 

between the er component and the eϕ component is fixed. It should be noted, 

some solutions are not involved during the simplification and the final results 

are part of the infinite set of solutions achieved by Hall.  

After inserting the Gr and Gϕ of Eq. 2.31 into Eqs. 2.29 and 2.30, we may 

 1
2 0r

rG GG
ik

r r r z
 



                

0r
r

GG
G r

r





  
 

2

2 2 2 2

1 1 1 2
2 0r r r

r

GG G G
r G ik

r r r r r r z


 
              

    0 0( , , ) ( , ) cos ( 1) sin ( 1)rr z Q r z n n          e eG



CHAPTER 2 THEORETICAL BACKGROUND FOR CYLINDRICAL VECTOR BEAMS                                       

19 
 

obtain the simplified form 

,             (2.32) 

which is a partial differential equation. As we have discussed above, the 

solutions to Eq. 2.32 should contain the elementary Gaussian part and can be 

expressed in a closed form as [5, 35-37] 

,     

(2.33) 

where Jn is the nth-order Bessel function of the first kind and β is a constant 

parameter for the beam scale. It should be noted that exp[-iФ(z)] is missing in 

[37, 40]. The electrical field for the CV beam is then 

. 

(2.34) 

This is a general form of the electric field for CV beams. Many interesting 

phenomena have emerged from this type of light. With the development of 

generation methodologies for CV beams, further insight into these beams will 

be obtained, which may significantly enrich focal optics. We can observe two 

special cases from Eq. 2.34; when n = 1 and ϕ0 = 0, Eq. 2.34 becomes  

,           (2.35) 
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which represents radially polarized light, and when n = 1 and ϕ0 = π/2, Eq. 

2.34 can be written as 

,           (2.36) 

whereby the CV beam is azimuthally polarized. These two types of polarized 

light will be further discussed in detail. 

2.3 Focusing properties of CV beams 

Due to the development of generation technologies, interesting phenomena of 

the focused CV beams have been theoretically characterized and realized in 

experiments. These focused beams are widely utilized due to their unique 

properties. Using radially polarized light as an example, a longitudinally 

polarized field is enhanced in a high-NA optical system. When this beam 

passes through the optical element, the longitudinal component of this beam is 

spatially separated from the transverse part due to the apodization effect, 

which enables control of the shape of the focus [5].  

To analyze the focusing properties of CV beams, a reliable mathematical 

foundation is necessary. As a basic tool, this foundation should be consistent 

with the experiment results. To achieve this goal, we derive expressions of the 

electromagnetic field in the focal region and discuss the conditions where they 

are applicable. 

 

( , , , ) ( , ) exp[ ( )]r z t Q r z i kz t    eE



CHAPTER 2 THEORETICAL BACKGROUND FOR CYLINDRICAL VECTOR BEAMS                                       

21 
 

2.3.1 Generalized representations for the focal field 

Airy first analyzed the focusing problem of a circle lens based on the wave 

theory of light [41]. Since then, substantial efforts have been made in this area, 

and significant results have been achieved. Fourier theory, which has been 

shown to be a powerful and effective tool in solving electromagnetism 

problems, was employed in most of the previous models [42]. By transforming 

a spatial problem into a spectrum problem, the field in the focal region is 

expressed in a more accessible form, which is easy to calculate.  

When applying this theory in an optical system, the electromagnetic field 

for the focal region can be described by a superposition of plane waves. For 

each plane wave, the wave vector is k, and its components kx, ky, and kz 

represent the spatial frequencies in the x, y and z directions in Cartesian 

coordinates, respectively. The relation between k, kx, ky and kz is given by kx
2
 + 

ky
2 + kz

2 =k2. The complex field E (x′, y′, z′) is then expressed in the Fourier 

form using the following procedures [24, 42, 43] (shown in Figure 2.1) 

.        (2.37) 

The field is then expressed as  

.      (2.38) 

Here, E (x′, y′, z′) is a known quantity. For an arbitrary point M, its electric 

field can be expressed by utilizing Eq. 2.38 as follows: 

( )( , , ) ( , , ) x yi k x k y

x yk k z x y z e dx dy
   


       E E

( )

2

1
( , , ) ( , , )

(2 )
x yi k x k y

x y x yx y z k k z e dk dk


  


     E E
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.     (2.39) 

The value of kz is (k2−kx
2−ky

2)1/2 when kx
2+ky

2 ≤ k2 and i(kx
2+ky

2−k2)1/2 when 

kx
2+ky

2 ≥ k2. 

Eq. 2.39 presents the electric field of an arbitrary point. We may further 

derive the Rayleigh-I and Rayleigh-II integrals based on this formula [42, 43].  

To address the focusing problems of CV beams, the geometrical theory of 

light is also considered, and this means that the spherical wave needs to 

converge to the focal point O to satisfy the actual situation. As Figure 2.2 

shows, after passing through the reference aperture, the incident CV beams 

form a specific distribution near the point O. When we calculate the electric 

field, it is hard to directly obtain the results based on Eq. 2.39. Usually, a 

semi-analytical plane-wave expansion method is utilized. 

We suppose that the field in the aperture D is given by [24, 42] 

,               (2.40) 

where R is the distance from a general point M to the focal point O. Here, the 

point M is in the aperture. The function EM (x′, y′) is an amplitude and phase 

function for the incident spherical wave. The electric field in the aperture can 

then be expressed as follows in the angular spectrum form by making use of 

Eq. 2.37: 

 ( , , ) ( , ) x y

ikR
i k x k y

x y M

D

e
E k k z E x y e dx dy

R


        .       (2.41) 
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Figure 2.1. The electrical field E (x′, y′, z′) and its Fourier form E (kx, ky, z′) are 
given in the reference plane z = z′.  

 

Figure 2.2. The schematic of focusing a CV beam. M is an arbitrary point in 
the aperture. All incident waves converge to the focus O after passing through 
the aperture.  
 

Eq. 2.41 can be further approximated in the following form, which was 

obtained by Debye in 1909 [44],  

,    (2.42) 

where (xo, yo, zo) is the position of the focal point O. According to the laws of 

geometrical optics, after passing the aperture, the incident CV beam forms a 

   
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light cone and a solid angle , as shown in Figure 2.2.  

Substituting Eq. 2.42 into Eq. 2.39, we obtain 

 .   (2.43) 

Eq. 2.43 is called the Debye integral [45]. This integral is an accurate 

approximation of the electromagnetic field in the focal region under the 

condition k(zo−z′)>>π/sin2(θ/2), where θ represents the half-focusing geometry 

aperture angle [45]. It can be further expressed in a vector form. In most cases, 

we have chosen the aperture plane as the reference plane, and z′ equals zero. 

Then, Eq. 2.43 is expressed in the following form that was first derived by E. 

Wolf [24]: 

,         (2.44) 

where    , / , /x y M o o x z o o y zk k x z k k y z k k  a Ε . 

Here, the electric field for the focal region is obtained. As a fundamental 

criterion, this result provided a substantial tool to the field of optics and 

directly led to a large number of discoveries; simultaneously, it promoted the 

development of microscopy. When we review the derivation procedure 

discussed above, it is worth noting that an important step is to obtain the 

relation between the aperture field distributions and the focal field, as in Eq. 


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2.42. In addition, a compromise solution that maintains simplicity and rigor 

has been adopted in the derivation. This procedure is more explicit than E. 

Wolf’s derivation and simultaneously maintains mathematical accuracy.  

2.3.2 Calculations for the focused CV beams  

When we analyze the focusing properties of the CV beams, the extended 

Richards-Wolf’s vector diffraction method developed by K. S. Youngworth 

and T. G. Brown is frequently used [5, 46]. The schematic structure for 

focusing the beam is shown in Figure 2.3. For a given CV beam, we assume a 

plane wavefront to illuminate the objective lens, and the incident field can be 

written in another form of Eq. 2.34 as [5] 

      0 0 0 0 1cos 1 sin 1inc l Q r n n              E e e ,   (2.45) 

where l0 is the amplitude of the incident CV light on the pupil plane and Q(r) 

is the normalized distribution amplitude function. The unit vectors e0 and e1 

applied for the incident CV beam can be expressed by the unit vectors of the 

reference coordinate shown in Figure 2.3 as 

，                  (2.46) 

.                       (2.47) 

Here, k is the unit vector along the z direction, and the incident CV beam 

propagates in that direction. After passing the objective lens, the distribution 

0 1 1cos sinx y  e e e

1 0 e e k
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on the incident surface is transformed into a spherical wavefront by the 

projection function p (θ) 

( )
r

p
f

 ,                      (2.48) 

where f is the focal length, as shown in Figure 2.3.  

 

Figure 2.3. A schematic for the focusing of a CV beam. e0, e1 and k are unit 
vectors of the incident CV beam, and e2, e3 and s are unit vectors for the 
focused CV beam. 
 

Based on the actual situation, all the light becomes concentrated in the 

focal region. Therefore, the spherical wavefront apodization function Q(θ) 

may be obtained under the requirement of energy conservation, as shown in 

Figure 2.4, and the relation is expressed as  

 

    

22 2
0

2
0

[ ( )]

[ ( )] 2 cos cos

l Q r r dr r

l Q f f f d f f



    

   

      
,   (2.49) 

where π [(r + dr)2 – r
2] is the annulus area for the incident wavefront plane, and 

the corresponding spherical area is 2π f{[f − fcos(θ + dθ)] − [f − fcosθ]}. 
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Figure 2.4. The incident CV beam is converted into a spherical wave after 
passing through the objective lens. The apodization function can be achieved 
under the requirement of energy conservation. Here, dr is the differential of 
the annulus area, while dθ is the differential of the corresponding spherical 
area. 
  

Expanding Eq. 2.49, the high-order part is extremely small and can thus 

be neglected. Finally, it is simplified as 

2 2 2
0 0[ ( )] 2 [ ( )] 2 sinl Q r rdr l Q f d     ,          (2.50) 

and we then have [5] 

   
( ) ( ) ( ) ( )

( ) ( ) ( ( ))
sin sin

p p p p
Q Q r Q fp

    
 
 

  .       (2.51) 

For a typical sine condition at the objective lens, the ray projection function is 

r/f = sinθ, that is, p(θ) = sinθ, and this is utilized in Richards-Wolf’s most cited 

study [25]. The apodization function is then simplified as 

( ) ( sin ) cosQ Q f   .                 (2.52) 

From Figure 2.4, we can also write out the relations between the unit vectors 
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of the focused beam and the reference unit vectors as 

,           (2.53) 

.                (2.54) 

Using these relations, the electric field for the focal region can be obtained. In 

the former section, we have obtained a general expression for the imaging 

plane. Applying Wolf’s formula (Eq. 2.44), and subsequently, we obtain 

 ,                 (2.55) 

where kdΩ=dkxdky/kz. When the aperture is limited to a circular focusing 

geometry, as shown in Figure 2.3, the field is found to be 

 ,          (2.56) 

where θmax is the maximal focusing angle of the objective lens, and the field 

strength factor a(θ,ϕ1) for the focusing CV beam is [5, 46] 

   1 0 0 2 0 3( , ) ( )[cos 1 sin 1 ]l fQ n n                 a e e .   (2.57) 

In addition, we use the vectors derived above to express the phase in the 

integration 

.              (2.58) 

Substituting Eqs. 2.57 and 2.58 into Eq. 2.56, the electric field in the focal 

region becomes  

2 1 1cos (cos sin ) sinx y z     e e e e
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,(2.59) 

where the constant A is given by A=πfl0/λ. We write Eq. 2.59 in cylindrical 

coordinates for convenience in further calculations and refer to the following 

identities: 

,                  (2.60) 

.                 (2.61) 

Thus, the electric field near the focal plane is 

cos sinr x y  e e e

sin cosx y    e e e
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For the er component, the coefficient is further simplified as 

. (2.63) 

Similarly, for the eϕ component and the ez component, the coefficients can also 

be further simplified as 
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       .           (2.65) 

Because all the components are explicitly expressed, we substitute Eqs. 2.63, 

2.64 and 2.65 into Eq. 2.52. Meanwhile, we utilize the following identities: 
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Finally, we obtain the electric field [5, 25, 37,46] 
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Here, we obtain the electric field in the focal region for the focused CV 

beams in cylindrical coordinates. The derivation improved the reported studies 

and generalized the Richards-Wolf’s vector diffraction method to arbitrary 

high-order situations. Because the general CV beam is chosen to be the 

incident illumination wave, this formula can be used to describe the focusing 

properties of different CV beams by setting the values of n. In the next chapter, 

based on this result, we will mainly focus on the situation of radially polarized 

light.  

2.4 Summary 

In this chapter, the foundations for the study of the CV beam are investigated 

in depth. During this procedure, a mathematical model of the focal field, 

which is in good agreement with the experimental results, is introduced when 

addressing the vector Helmholtz equations. Subsequently, a generalized 

expression of the CV beams is obtained. We have noticed that the radially 

polarized light and azimuthally polarized light are two special cases in the 

solution sets.  

The second task in this chapter is to build the field model in the focal 

region. We apply Fourier theory and transform the spatial problem into a 

frequency spectrum problem. Through the derivation, the Debye integral for 

the focal field is obtained to significantly simplify the problem, and it is 

further interpreted in E. Wolf’s form. Because the circular aperture is applied 
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in this thesis, we further simplify the focal problem by utilizing 

Richards-Wolf’s vector diffraction theory, and finally, a generalized expression 

for the CV beam is given. 
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Chapter 3 
 
Abnormal distributions in the focal 
field and anti-resolution 
_______________________________ 

3.1 Introduction 

As an important concept in diffraction theory, the point spread function (PSF) 

dictates the performance of an optical imaging system [23]. For a given PSF of 

a system, if the input pattern in the object space is O (ξ, η), where ξ and η 

denote the coordinates of the object plane, the output pattern I (x, y) in the 

image space can be expressed using the weighted integration of the object 

plane  

     
object plane

, , PSF ,I x y O x y d d        ,       (3.1) 

where PSF(x−ξ, y−η) is the response of the system.  

The theory behind the PSF was first proposed by Airy, and he gave the 

expression for a circular aperture based on the wave theory of light in 1835 
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[41]. Since then, many analyses have contributed to this area, and a large 

number of important results have been obtained. As examples, Rayleigh 

investigated the PSF for incoherent sources in 1879 [47, 48], Lommel further 

developed Airy’s theory using two functions in 1885 and 1886 [49], and Strehl 

analyzed the effect of third-order aberrations and introduced an important 

concept known as the Strehl definition to evaluate the quality of a system [50]. 

Among these studies, a breakthrough concerning PSFs in diffraction 

theory is the application of a series of new circular polynomials developed by 

Zernike and Nijboer. In Nijboer’s pioneering study [51], the case of an 

aberration, which is much smaller than the wavelength, was solved using a 

simple yet accurate solution. In addition, their methodology also provided a 

useful tool for evaluating the permitted aberration in an optical system.  

Today, high-NA imaging systems have been widely applied in science, 

technology and industry. In high-NA cases, the information of the focal field 

is detailed, and electromagnetic field components for the focal region should 

not be treated as independent components as those in low-NA systems. In 

addition, some properties of light in high-NA systems, such as polarization 

and amplitude, are different from those in low-NA systems. To build an 

accurate model for these high-NA systems, the vectorial properties of the light 

should be carefully considered. After Ignatowsky and Hopkins’s original and 

meaningful attempts in this area of study [52, 53], Richards and Wolf 

developed a rigorous vector diffraction methodology for studying the high-NA 
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situation, which has been widely used in optical system design and evaluation 

[24, 25]. In addition, this method has become part of the foundation of optical 

systems. 

In modern applications, such as high-density data storage, 

super-resolution imaging systems, and nano particle trapping and 

manipulation, the diffraction theory of the PSF agrees very well with the 

experiments. Due to the increasing demand for insights into phenomena at the 

microscopic scale and for investigations into the interactions between light and 

materials, a super-resolution system is therefore needed. We can see from Eq. 

3.1 that the imaging density distribution is uniquely determined by the 

system’s PSF. Here, the distribution curve of the PSF stands for the system 

imaging ability, and subsequently, an arbitrary resolution and field distribution 

may be ideally achieved by the specially manipulated PSF, as shown in Figure 

3.1. The PSF of a conventional imaging system, whose imaging resolution is 

usually limited by the diffraction limit ~λ/2NA, is represented in Figure 3.1b. 

To overcome the diffraction limit, many strategies, such as superlenses and 

hyperlenses, have been proposed to achieve super-resolution and utilized to 

narrow the PSF, as shown in Figure 3.1c [18, 19, 54-61]. Correspondingly, the 

concept of fuzzy resolution, which is generated by broadening the PSF and 

maintaining a constant value within the focal region, is also familiar to us in 

real applications (shown in Figure 3.1a). As the system response, fuzzy 

resolution is usually utilized in a radar system. For example, widening the PSF 
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in an interference system is equivalent to increasing the signal level at the 

radar’s working frequencies. Through this method, the information is 

encrypted, and the radar system cannot effectively obtain an accurate position 

of the object.   

 

Figure 3.1. Different PSFs for imaging systems: (a) fuzzy-resolution for an 
optical system is generally achieved by broadening the PSF of the 
conventional imaging system. (b) PSF of a conventional imaging system that 
has a diffraction limit ~λ/2NA. (c) Super-resolution for an optical system that 
is obtained by narrowing the conventional PSF. 
 

In addition to widening or narrowing the PSF to achieve the desired 

resolution, another interesting topic is the abnormal field distribution in the 

focal region. In contrast to super-resolution and fuzzy resolution, abnormal 

distributions mainly concern the density distribution along the 

beam-propagation direction. Due to the existence of the specific polarized 

electric field on the axis, some unexpected results have been obtained. For 

example, by utilizing the DOE with amplitude and phase modulation for 
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specific polarized CV beams, various phenomena, such as optical chains, have 

been realized [15].  

Among these abnormal distributions, non-diffraction longitudinally 

polarized light has attracted a significant amount of attention for its potential 

applications. To generate this non-diffraction light, the phase profile of a 

radially polarized beam is manipulated through binary optics or phase 

discontinuity technology so as to broaden the PSF in the propagation direction. 

A beam with a uniform distribution is then obtained in the vicinity of the 

focus. 

3.2 Focusing properties of a radially polarized 

Bessel-Gaussian beam 

3.2.1 Focusing a radially polarized Bessel-Gaussian beam 

Many experiments and numerical calculations have shown that when focusing 

a radially polarized CV beam in a high-NA optical system, a strong 

longitudinal electric component appears near the focal region. A large number 

of interesting applications, such as particle trapping and manipulation, 

second-harmonic generation, Raman spectroscopy, and high-resolution 

confocal fluorescence microscopy, may take advantage of this result.  

To comprehensively determine the properties of a focused CV beam 

(shown in Figure 2.3), we can follow Richards-Wolf’s vector diffraction 

theory and further investigate the mathematical model established in Chapter 2 
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using a specific case. To simplify our discussion, we limit the situation to a 

typical radially polarized Bessel–Gaussian beam in the following sections, and 

a schematic is shown in Figure 2.3. The corresponding electric fields in the 

focal region can be expressed as [46] 

,         (3.2) 

,        (3.3) 

where 

.            (3.4) 

Here, α=arcsin (NA), NA denotes the numerical apertures of the lenses, Jn (x) 

(n=0 or 1) is the n-th order Bessel function, β is the ratio of the pupil radius 

and the beam waist, A is a constant related to the focal length and the 

wavelength, and l (θ) =1 and f represent uniform illumination and focal length, 

respectively. Here, we chose a focusing lens with an NA equal to 0.95.  

Generally speaking, Richards-Wolf’s diffraction theory, in which the 

vertical properties of light are considered, is usually employed in a high-NA 

system (NA>0.6); however, it can also be used to represent the focal field in a 

low-NA system [40].  

To describe the intensity distributions in the vicinity of the focus, Eqs. 

3.2 and 3.3 will be calculated using proper methods. In most situations, these 

calculations are based on numerical integration and are performed by taking 
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samples in the relative integration interval; thus, this procedure requires 

considerable computation time. Some elements, such as binary optical 

elements, are applied in optical systems to achieve the desired distributions, 

and subsequently, the time for optimizing the element parameters will heavily 

depend on the calculation time for these two integrations. Therefore, 

calculations of Eqs. 3.2 and 3.3 are extremely important tasks. Recently, a 

much faster method was developed by extending the Zernike-Nijboer theory, 

and the electromagnetic field for the focal region can be expressed by a series 

instead of by integrations [62-68]. Compared with traditional methods, the 

extended Zernike-Nijboer method exhibits incredible speed and has the 

prospect of being applied in integrated optical systems. Taking all of this into 

consideration, Eqs. 3.2, 3.3 and 3.4 are still calculated through numerical 

integrations, and we mainly focus on the focal region due to the slowly 

varying and paraxial approximation conditions. 

The electric field distribution on the xy plane is shown in Figure 3.2. As 

observed in Figure 3.2a, the field of the focused CV beam is mainly 

concentrated in the r ≤ λ region, and there is almost no energy distribution 

beyond this region. The highest intensity region appears on the optical axis. 

Along with the increase in the radius, the intensity will gradually decrease 

until it is equal to the background intensity level. Figure 3.2b shows the field 

distribution on the z = 0.5λ plane. When propagating to this plane, the focused 

beam has a significant divergence. The field amplitude on the axis is equal to 
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73% of that in the z = 0 case.  

 

Figure 3.2. Electric-field distribution on the xy plane for a radially polarized 
Bessel-Gaussian beam. |E|2 is calculated and used to represent the total electric 
field. (a) Field distribution on the z = 0 plane. (b) Field distribution on the z = 

0.5λ plane. 

The electric field distribution along the beam propagation direction is 

shown in Figure 3.3. It can be observed that the intensity is high at a distance 

of λ from the focus (z = 0). Beyond this distance, the intensity sharply 

decreases and is equal to half of the maximum when z = 0.727λ. Figures 3.2 

and 3.3 imply that the field intensity for a focused radially polarized CV beam 

only exists in a small area and that little energy can spread beyond the distance 
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of one wavelength. In most applications, the working region is set within this 

effective distance. 

   

Figure 3.3. Electric-field distribution on the yz plane. The reference plane is 
arbitrarily selected and includes the optical axis.  
 

Figure 3.4 shows the electric field distribution of different components on   

the z = 0 plane. One can observe from the figure that when r = 0, |Ez|
2 = |E|2, 

which means that only the longitudinal component |Ez| exists on the axis. This 

relation can be directly found from Eqs. 3.2 and 3.3. When r increases, the 

longitudinal component |Ez| decreases, while the transverse component |Er| 

obviously increases. In a certain region (0.32λ < r < 0.79λ), the transverse 

component |Er| is the main part of the total intensity. This phenomenon implies 

that the longitudinal and transverse components dominate different parts of the 

focal region. This is because of the different apodization effects that these two 

components experience in a high-NA system. Therefore, they are spatially 

separated from each other. Interestingly, this result prompts meaningful 
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applications. For example, by enhancing the apodization effect and by 

eliminating one of the two components, a beam of high purity can be obtained.    

In [69], the integral  was employed to denote 

the electric field energy of the corresponding component in a certain region (0 

< r < r0) on the z = 0 plane. It does not contain the azimuthal part in the 

presentation because it is removed as a common factor. In fact, the integral is 

written in the origin form as  

.                 (3.5) 

In the calculations, we determine that the first zero position for the radial 

electric density is r0 = 1.055λ instead of 1.07λ [69]. By calculating Eq. 3.5, we 

obtain the longitudinal energy and the transverse energy in a certain region, 

and subsequently, the field proportions of the total field are obtained.  

Figure 3.5 shows the energy proportions of the electric field in the beam 

propagation direction. From the result, we find that the longitudinal energy is 

always lower than the transverse energy in the focal region, although it 

exhibits a higher intensity near the axis, as shown in Figure 3.4. The maximum 

proportion of longitudinal energy occurs at the z = 0 plane. However, only 45% 

of the total energy is from the longitudinal part. As the beam propagates, this 

proportion continues decreasing. When the focused beam propagates to the  

z = λ plane, the transverse component generates more than 60% of the total 

energy. The variation in this energy proportion reflects the strict governing of 
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Maxwell’s equations in the focal region. When the position leaves the focal 

plane (z = 0), the longitudinal component Ez starts to fade, as indicated in 

Figure 3.5. Meanwhile, the transverse component Er, which plays an important 

role in enabling the light to propagate, starts to emerge.  

 

Figure 3.4. Electric-field distributions of different components on the xy plane   
(z = 0). |Ez|

2 represents the longitudinally polarized field intensity, and |Er|
2 

represents the radially polarized field intensity. 

 

Figure 3.5. Electric field energy proportions in the propagation direction. |Ez| 
represents the longitudinal energy proportion in the total field, and |Er| 
represents the radially polarized field proportion in the total field. 
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3.2.2 Generation of non-diffraction light 

For a focused radially polarized CV beam, it has been shown that the energy 

mainly concentrates in a region one wavelength away from the focus. When 

passing through this area, the light rapidly diverges due to diffraction. 

Although most applications benefit from this focusing property, it limits the 

development of some important techniques. Therefore, one of the main 

objectives in focusing optics for a long time was to obtain a focus with a 

deeper depth. Ideally, it is desirable to have a non-diffraction polarized beam 

with a uniform intensity distribution along the propagation direction. This 

mysterious phenomenon was first theoretically predicted by Durnin in 1987 

[70, 71]. Since then, it has attracted a significant amount of attention for its 

potential applications [72-87]. 

It is known that the zeroth-order Bessel beam is diffraction free when it 

propagates in free space [70]. This beam has a field form of         

J0(k1r)exp(ik2z), where k1
2

 + k2
2
 = k

2, k is the wave number, and J0  is the 

zeroth-order Bessel function. When 0 < k1< k, J0(k1r)exp(ik2z) represents a 

non-diffraction beam. Experimentally, beams with finite power, such as 

Bessel-Gaussian beams and Laguerre-Gaussian beams, are employed to 

realize the near non-diffraction phenomenon.  

From the discussions in the previous section, we acknowledge that the 

working distance for a focused, radially polarized beam is far from meeting 

the diffraction-free requirement. To achieve a non-diffracting beam with a 
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longer depth of focus (DOF), one of the most frequently used methods is to 

add an additional diffraction optical element to the optical system. Based on 

the type of this element, it functions in a manner similar to a special phase or 

amplitude modulator, which polarizes the beam longitudinally while 

maintaining the intensity uniformly distributed within a certain distance.  

As observed in Figure 3.6, a BOE referred to in Chapter 1, which simply 

generates a phase change in the CV beam, is employed to realize the 

diffraction-free beam. A Bessel-Gaussian beam propagates through the BOE 

and the focusing lens from left to right. 

 

Figure 3.6. Schematic to realize a non-diffraction beam. A BOE is added to the 
optical system. 
 

Figure 3.7 presents the electric field distribution on the xy plane when 

adding a BOE to the system. As observed in Figure 3.7a, the radius for the 

full-width at half maximum (FWHM) area is 0.432 λ, which is equal to 63.5% 

of that in the case without the BOE, and the highest intensity area also appears 

on the optical axis. Some energies exhibit a non-continuous distribution in the 
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observing area; however, they are rather small when compared with those in 

the highest region. Figure 3.7b shows the field distribution on the z=0.5λ plane. 

When propagating to this plane, the focused CV beam has the same 

distribution as in Figure 3.7a. The intensity amplitude on the axis is equal to 

 of that when z = 0. When we select additional planes along the axis 

and investigate the field distributions, it is found that the field distributions at 

different planes have similar profiles as that in Figure 3.7, which implies that 

the focused CV beam can propagate without diffraction. 

 

Figure 3.7. Electric-field distributions on the xy plane for a radially polarized 
Bessel-Gaussian beam when a BOE is applied to the system. (a) Field 
distribution on the z = 0 plane. (b) Field distribution on the z = 0.5λ plane. 

99.7%
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When we observe the situation in the beam propagation direction, one 

impressive result is that the DOF is significantly extended. As observed from 

Figure 3.8, the intensity is uniformly distributed for a distance of 4λ, which is 

much longer than that previously achieved. Nevertheless, beyond the 

non-diffractive distance, the light diverges as well. Recently, a much longer 

DOF has been achieved using an electric dipole array optimization model, and 

the length for the uniform distribution was as long as 8λ [17]. 

To show the changes in the electric components when a BOE is added to 

the system, we could further draw the field distributions of different 

components on the z = 0 plane. It is observed in Figure 3.9 that when r = 0, 

|Ez|
2 = |E|2. Compared with the initial results, we find that only a longitudinal 

polarized field could exist on the axis regardless of a BOE being applied to the 

system. When 0 < r < 0.336 λ, the longitudinal component |Ez| becomes the 

main part of the total field. In this region, |Ez| rapidly decreases, whereas the 

transverse |Er| component slowly increases. It should be noted that the FWHM 

is reduced to 0.432λ, which, consequently, means that a higher resolution is 

achieved. 

Figures 3.10 and 3.11 show the field distributions of the longitudinal and 

radial components on five selected planes in the beam propagation direction, 

respectively. Ez dominates within the area close to the beam axis (r < 0.3λ), and 

it has almost the same profile in the diffraction-free region (r < 2λ). When the 

beam propagates to the r = 2λ plane, a small but clear divergence is observed. 
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Figure 3.11 shows that Er is almost smeared out within the central region 

around the beam axis. When it deviates more from the central axis, Er 

gradually increases. It has a similar distribution in the propagation direction as 

well. 

From Figure 3.10 and 3.11, it is evident that in the non-diffraction 

distance, the value of |Ez|/|Er| is nearly constant in a certain region close to the 

beam axis, and this indicates a fixed proportion of the total energy.  

 

Figure 3.8. Electric-field distributions on the yz plane for a radially polarized 
Bessel-Gaussian beam when a BOE is added to the system.  

 

Figure 3.9. Electric-field distributions of different components on the xy plane 
(z = 0) for a radially polarized Bessel-Gaussian beam when a BOE is added to 
the system.  



CHAPTER 3 ABNORMAL DISTRIBUTIONS IN THE FOCAL FIELD AND ANTI-RESOLUTION                              

50 
 

 

Figure 3.10. Longitudinal polarized field intensity on the transversal cut planes 
when a BOE is added to the system.  

 

Figure 3.11. Radial polarized field intensity on the transversal cut planes when 
a BOE is added to the system. 
 

To verify our predictions above, we draw Figure 3.12 to show the 

energy proportions of the electric field in the beam propagation direction. It 

is found that the energy from the longitudinal component is always higher 

than that from the transverse component in the non-diffraction region (0 < z < 

2λ), which is completely different from that in the case without the BOE. At 

the same time, the maximum proportion for |Ez| appears on the z = 0 plane, 

and approximately 80% of the total energy is longitudinally polarized. When 
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propagating to the z = 1.5λ plane, the focused CV beam still maintains a high 

beam purity, and 70% of the total energy is generated by the longitudinal 

component. Recently, it has been confirmed that a higher purity (86% of the 

total energy) can be achieved using a dipole optimization model [17]. 

This example explicitly showed that the field distribution of the focal 

region will change if a BOE is added to the system. This result attracts our 

attention and heralds the introduction of new phenomena that have never been 

explored before. 

 

Figure 3.12 Electric field energy proportions in the propagation direction. A 
BOE is added to the system.  

3.3 Anti-resolution 

3.3.1 PSF for AR 

In the past decade, numerous methods to magnify the evanescent waves and 

produce perfect images have been proposed and verified [18, 54-57]. However, 

these magnified evanescent waves quickly decay when they leave the 



CHAPTER 3 ABNORMAL DISTRIBUTIONS IN THE FOCAL FIELD AND ANTI-RESOLUTION                              

52 
 

superlens, making it very difficult to apply in practice. Thus, the ‘hyperlens’ 

was proposed to convert evanescent fields into propagation waves, which 

successfully pushes the perfect imaging boundary beyond the lens [19, 58-61].  

As we have discussed and shown above, the focus has thus been confined 

to realize super-resolution and perfect imaging through minimizing the span of 

the PSF in imaging systems for use in novel applications. However, no one 

seems to have raised the question of what new interesting phenomena and 

applications may exist if one pushes the limit toward the other extreme, as 

shown in Figure 3.13, i.e., suppressing and flattening the PSF of the optical 

system until it completely vanishes. This new scheme, defined as 

anti-resolution (AR), could create a macroscopic spatial region with a nearly 

perfect null-field region that light could simply bypass.  

 

Figure 3.13. Generation of AR. D: the dimension of the flattened regime. 
When D becomes extremely large and when the magnitude therein is 
completely smeared out, AR can be achieved. (a) PSF of a conventional 
imaging system. (b) Fuzzy-resolution PSF. (c) AR PSF. 
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3.3.2 Generation of AR PSF 

From the concept of AR, we know that the key tasks of realizing the AR 

phenomenon are to establish and investigate the right model; to study the 

vanished PSF, as shown in Figure 3.13c; and to characterize the performance 

of this phenomenon. From previous discussions, it is known that a 

surface-shape-based BOE can be applied to control the wavefront based on the 

requirements. Based on this knowledge, we apply a BOE to realize this 

phenomenon.  

Figure 3.14 presents a feasible physical setup for AR generation, which is 

composed of multi-silica rings (BOE) and a focusing lens. Here, a 0 – π phase 

mask is utilized, and the thickness of the concentric silica groove can be 

designed such that when the light passes through the groove, it will have an 

additional π-phase difference compared with the light passing through the 

neighboring air belts. A radially polarized CV beam is chosen as the incident 

beam. When passing through the diffraction phase mask, its wavefront 

changes, and a new wavefront is generated based on the surface shape of the 

BOE. The effects of the lens are focusing and bending, and all the light will 

concentrate on the focal region after passing through it.  

This problem can be further exhibited in a mathematical model using a 

functional form. For example, T(θ) = e
iϕ(θ) denotes the transmission function 

that characterizes the phase modulation mask, as shown in of Figure 3.14. A 

multi-belt silica groove is used as our phase modulation mask, with ϕ(θ) = 0 or  
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ϕ(θ) = π corresponding to different ranges of the angle , i.e.,  

       (3.6) 

Here, α=arcsin (NA), and NA denotes the numerical aperture of the focusing 

lens. The angles θi (i=1, 2, 3, 4) correspond to the individual radius ri = sinθi 

/NA (normalized by the radius R of the lens).  

It is shown in Figure 3.15 that each radius corresponds to a certain phase. 

When the light passes through different parts of the phase mask, a phase of −1 

or 1 will be added, and a new wavefront is yielded. The additional phase is not 

limited to π. If the groove depth is not an integral multiple of the wavelength, 

a fraction phase can be obtained.  

 

Figure 3.14 Physical configurations for realizing AR, where a Bessel-Gaussian 
beam propagates through the specially designed silica mask and focusing lens 
from left to right.  
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Figure 3.15 Field transmission functions for the mask. Here, the diffractive 
mask is treated as a pure phase element and changes the wavefront of only the 
incident radially polarized CV beam.  
 

When the radially polarized Bessel-Gaussian beam passes through this 

BOE and the focusing lens, the transmission function Eq. 3.6 should be added 

to Eqs. 3.2 and 3.3. The electric field in the focal region is expressed as  

,       (3.7) 

.      (3.8) 

By calculating these two quantities, we can obtain the field distribution at the 

focal region. To achieve the AR phenomenon (i.e., a flat, smeared-out PSF, as 

shown in Figure 3.13c), a three-dimensional electromagnetic null-field region 

(as shown in Figure 3.16) with the size of a few wavelengths in the transversal 

direction and in the longitudinal direction is needed.  

When we study the AR field distributions, |Er|
2 + |Ez|

2 = 0 must be 

satisfied in that region. By substituting all variables into Eqs. 3.7 and 3.8, the 

question can be transformed into a solution-finding problem. Unfortunately, 
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no closed-form expressions can be obtained using known mathematical 

methods.  

 

Figure 3.16 Electric-field distributions on the xy plane (z = 0) and yz plane for 
a radially polarized Bessel-Gaussian beam when a diffractive phase mask is 
added in the system. (a) Field distribution on the xy plane (z = 0). (b) Field 
distribution on the yz plane. 

 

To find suitable solutions, we return to the starting point and re-examine 

the physical model of the scheme. It is evident that the physical structure of 

the setup for this system is symmetric, which must lead to a field with a 

symmetric distribution. Furthermore, if the electric-field distribution is 

required to be zero, the distributions in the central region should fulfill this 

requirement first. This conclusion provides critical information regarding the 

electromagnetic null field. Because this is a continuous physical problem, if 

the electric-field distribution on the axis is forced to be zero, the intensity in 
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the region near the axis must also approach zero.  

Based on the analysis above, we can successfully transform the 

three-dimensional problem into a one-dimensional problem, making it much 

simpler than before. By forcing the intensity on the optical axis to zero while 

requiring that the PSF must vanish within a certain range, we can obtain the 

parameters for the phase-mask optics element.  

Because the optimization procedure is iterative, the parameters of the 

diffractive phase mask are not strictly defined. Here, we present some 

optimized results and describe the evolution of the AR phenomenon. Figures 

3.17, 3.18 and 3.19 present the AR field-intensity distributions with different 

binary phase masks. In Figure 3.17, the normalized parameters of the BOE are 

r1 = 0, r2 = 0.1163, r3 = 0.2691, r4 = 0.6022, r5 = 0.8892, and r6 = 1. The field 

distribution on the beam axis indicates that the electromagnetic null field 

exists only on the z = 0 plane. In this case, the area of the null field is rather 

small, and the situation is similar to that of the previous studies. When we 

investigate the field distribution from a three-dimensional perspective, the 

low-intensity area is found to be surrounded by a wall-like electric field. 

Additionally, as we adjust the parameters of the phase mask, the intensity 

distribution near the focal region varies. Thus, by resetting the parameters to r1 

= 0, r2 = 0.1163, r3 = 0.4469, r4 = 0.7176, r5 = 0.9264, and r6 = 1, we can achieve 

the field distribution depicted in Figure 3.18. It is evident from Figure 3.18b 

that the null-field area is much larger than before, and the distance between the 
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two focuses is enlarged from 3.7λ to nearly 4.5λ. However, there are still some 

non-zero regions on the intensity boundary that delimits the entire area. As the 

optimization progresses, many solutions that satisfy the specified requirements 

can be obtained. To make all of the energy move to the side wall, the 

parameters can be further optimized to r1 = 0, r2 = 0.1163, r3 = 0.5489, r4 = 

0.6022, r5 = 0.7901, and r6 = 1. In Figure 3.19, it is evident that the 

null-intensity field is increased to nearly 5 wavelengths in the z direction, 

whereas the intensity is still equal to zero (as shown in Figure 3.19a). The area 

of this null field is as large as 4λ2. During the optimization, we find that once 

the area of the null field reaches this size, no further significant improvement 

is obtained, meaning that the region of the AR effect has a finite volume. 

 

Figure 3.17. Electric-field distribution of the new optical bending scheme 
based on AR with a lens of NA=0.95. The parameters of the phase mask are r1 

= 0, r2 = 0.1163, r3 = 0.2691, r4 = 0.6022, r5 = 0.8892, and r6 = 1. (a) Field 
distribution on the xy plane (z = 0). (b) Field distribution on the yz plane. 
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Figure 3.18. Electric-field distribution of the new optical bending scheme 
based on AR with a lens of NA=0.95. The parameters of the phase mask are r1 

= 0, r2 = 0.1163, r3 = 0.4469, r4 = 0.7176, r5 = 0.9264, and r6 = 1. (a) Field 
distribution on the xy plane (z = 0). (b) Field distribution on the yz plane. 

 

Figure 3.19. Electric-field distribution of the new optical bending scheme 
based on AR with a lens of NA=0.95. The parameters of the phase mask are r1 

= 0, r2 = 0.1163, r3 = 0.5489, r4 = 0.6022, r5 = 0.7901, and r6 = 1. (a) Field 
distribution on the xy plane (z = 0). (b) Field distribution on the yz plane. 
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The new optical bending phenomenon is quite interesting. As is apparent 

from the images above, the field distribution can be separated into two parts. 

In addition to the null-field part, which is surrounded by a wall-like electric 

field, another clear feature of the intensity distribution is the high-intensity 

points. There are two focuses in a single system, and they have the same shape. 

This scheme, which bends the light trajectories without superluminal 

propagation [88] or metamaterials and without falling back on the classical 

Gouy effect [89], exhibits the features of self-imaging beams for the first time 

in a physical configuration. 

To illustrate this interesting property of the AR configuration, we present 

the field distributions on seven cut planes at specified locations from the 

left-most focus to the right-most focus in Figure 3.20. The self-imaging 

property is clearly demonstrated, and the envelope of the null field (its 

boundary) can be visualized from the varying ring sizes. Note that the electric 

field on the beam axis is longitudinally polarized only. At the two focusing 

points, the electric field on the beam axis (r = 0) is purely longitudinally 

polarized, as can be determined from Eqs. 3.7 and 3.8. 
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Figure 3.20. Electric-field distribution of the new optical bending scheme 
based on AR with a lens of NA=0.95 [Appendix B 1]. Seven cut planes at 
equal separation distances are depicted to demonstrate the individual 
transversal field intensities.  
 

In principle, this methodology is not limited by the state of polarization; 

therefore, azimuthally polarized incidence is examined in Figure 3.21 using 

the expressions of Eqs. 3.9-3.11. A null-field region is observed with 

approximately the same size as before, indicating that the AR effect is 

insensitive to the polarization. Similar results can also be achieved for other 

polarization states, such as linear polarization and circular polarization.  
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Figure 3.21. Electric-field distribution of the new optical bending scheme 
based on AR with a lens NA=0.95. An azimuthally polarized light is chosen as 
the incident wave. The parameters of the phase mask are r1 = 0, r2 = 0.1163, r3 

= 0.5489, r4 = 0.6022, r5 = 0.7901, and r6 = 1. (a) Field distribution on the xy 
plane (z = 0). (b) Field distribution on the yz plane. 

3.3.3 Design of the BOE to realize AR  

In the previous section, we demonstrated the tight focusing of the vector 

beams (i.e., radially and azimuthally polarized beams) using a high-NA lens. 

In a tightly focused CV beam, the electric field in the focal region exhibits a 

strong dependence of the incident vector beam on the polarization, e.g., Eqs. 

3.7 and 3.8 for a radially polarized beam and Eq. 3.9 for an azimuthally 

polarized beam. Therefore, it is not convenient to provide a general 

description of the BOE design. For simplicity, we consider a focusing lens of 

low NA as an example. In this case, the polarization effect in the focal region 

is not significant and can be neglected [Appendix B 1].  
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For incident beams with different polarizations, the electric field in the 

focal region can be described in a unified manner using a scalar focusing of 

the light with a low-NA lens, and the field in the focal region can be expressed 

as [90] 

,      (3.12) 

where f is the focal length, R is the radius of the focusing lens, u0(r) is the 

electric field incident on the focusing lens, and exp(-ikr2/f) is the equivalent 

phase factor of the low-NA lens, which is located at z = 0. It is implied that the 

electric field at the focal plane can be obtained by setting z =
 f in Eq. 3.12. 

From Eq. 3.12, by setting z = f and omitting the constant factor i2π/( λf )·exp[ ik 

( z + 0.5ρ2/f ) ], we find the following expression for the electric field at the 

focal plane: 
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where the incident beam is uniform and modulated by an N-belt binary phase 

such that u0(r)=exp[iφ(r)], with φ(r)=0 or φ(r)=π corresponding to different 

ranges of the radius r; sinθn=rn/f for the focusing lens satisfies the sine 

condition; θn is the focusing angle, where θ0=0 and the maximum angle is 

θN=sin-1(NA), as indicated by Eq. 3.6. Interestingly, Eq. 3.13 provides an 

analytical model for approximating the electric field in the focal region, and 

the time-consuming integral is not involved. Using Eq. 3.13, we can obtain an 

arbitrary intensity pattern by varying the unknown parameter θn (n=1, 2, …, 

N-1).   

A factor D was used to describe the dimension of the flattened regime in 

Figure 3.13. When D becomes extremely large and the magnitude therein is 

completely smeared out, then the AR PSF can be achieved. Here, the factor D 

is applied to quantitatively describe the AR imaging capability.  

The AR PSF has zero intensity at ρ=0 (suppressing the main-lobe 

intensity), an intensity approaching zero in the range 0 < ρ < D/2 (widening the 

main lobe) and the largest intensity in the side lobe (enhancing the side lobe). 

To achieve the goal of suppressing the main-lobe intensity in AR, the intensity 

can be set to zero at ρ = 0, leading to the equation 

.             (3.14) 

In Eq. 3.14, the N-1 unknown parameters θn (n=1, 2, …, N-1) represent 

the infinite number of solutions that can achieve the goal of suppressing the 
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main lobe, which implies the possibility of these solutions being reduced to 

only one solution if more constraints are imposed on Eq. 3.14, e.g., reserving 

N-2 zero-intensity locations in the region 0<ρ<D/2 to widen the main lobe (the 

secondary goal of AR). To achieve the third goal of enhancing the side lobe, 

no further measures are necessary because from the perspective of energy 

conservation, a high side lobe is the natural result of the near-zero intensity in 

the range 0≤ ρ < D/2. Therefore, it is physically feasible to construct an AR PSF. 

In fact, the zero intensity in the region 0≤ρ<D/2 that is shown in Figure 3.22 is 

primarily attributed to the local destructive interference caused by the 0-π 

phase modulation of the BOE.  

 

Figure 3.22. The radial (along ρ) pattern of the AR PSF [Appendix B 1]. The 
prescribed positions from 1 to M (M=N-1) in the range 0≤ρ<D/2 are indicated 
by the colored spots and located in the zero-intensity region of the intensity 
line (blue). 

 

For convenience of demonstration, we simplify Eq. 3.13 using certain 

characteristic functions and extend the optimization-free method [91] to the 

AR case: 
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By doing so, we obtain  
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without the constant f 2 that appears in Eq. 3.13. Based on the above discussion, 

in addition to the central position ρ=0, we still must prescribe N-2 

zero-intensity positions in the region 0<ρ<D/2; these are indicated by the 

points labeled from 2 to M in Figure 3.22. The prescribed zero-intensity 

positions are labeled with the index m (m=1, 2, …, M) to distinguish this 

notation from the belt label n; as a result, the prescribed zero-intensity 

positions are labeled as ρm (m=1, 2, …, M). According to Eq. 3.18, we have 

the following M equations for these M positions: 
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which can be simplified to 
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CB A ,                        (3.20) 

where C is an M×(N-1) matrix with elements Cmn = C(ρm,θn), B is an (N-1)×1 

matrix with elements Bn=B(θn), and A is an M×1 matrix with elements An = 

-A(ρm). Eq. 3.20 is a non-linear matrix equation because C and B are 

dependent on the unknown parameters θn. In Eq. 3.20, the number of unknown 

parameters and the number of equations are the same, and therefore, there is 

only one solution. For the special position ρ=[ρ1, ρ2, …, ρM], which depends 

on the customized requirement on the size of D illustrated in Figure 3.22, we 

can solve the non-linear equation represented by Eq. 3.20 to finalize the design 

of the binary phase element by fixing the angles θn(n=1, 2, …, N-1). Unlike a 

linear matrix equation, the non-linear matrix equation in Eq. 3.20 cannot be 

solved using the simple matrix-inversion technique, which is commonly used 

to solve linear matrix equations. In fact, a non-linear matrix equation generally 

has no analytical solution, but its numerical solution can be straightforwardly 

obtained using the well-developed Newton’s method, which is often applied in 

related engineering problems [92, 93]. In addition, specialized packages for 

solving non-linear matrix equations are also available in some commercial 

computing software, e.g., MATLAB and Mathematica. Therefore, the solution 

of Eq. 3.20 is not a troublesome issue. Sometimes, for one special position ρ 

(e.g., when ρm and ρm+1 are too close), the mathematical solution to Eq. 3.20 

that is provided by Newton’s method may not be a physical solution, in which 

case it must be rejected. For a solution to be physical, it must satisfy the 

following condition: 0<sinθn <sinθN.  
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Figure 3.23. The ring belts design and its scaling properties of optical capsule 
for the lens with different NA [Appendix B 1]. (a) Four sets of parameters that 
demonstrate the robust design of super-sized AR-based cloak by the 
optimization-free method. (b) The radial size (D) of null field in optical 
capsule generated by the lens with different NA (from 0.3 to 0.0025) and the 
four sets of binary-phase plates in (a). Their fitting curves for different cases 
are: D1=1.8600λ/NA for No.1 set of ring belt, D2=2.0117λ/NA for No.2, 
D3=2.2171λ/NA for No.3 and D4=2.4605λ/NA for No.4. All the four cases, the 
root-mean-square errors (RMSE) between the original data and fitting curves 
have an order of magnitude 10-14, indicating a perfect proportion of radial size 
D to 1/NA. (c) The axial size (d0) of null field in optical capsule generated by 
the lens with different NA (from 0.3 to 0.05) and four sets of binary-phase 
plates in (a). Their corresponding fitting curves are d01=5.7728λ/NA2, 
d02=5.8170λ/NA2, d03=5.8944λ/NA2 and d04=6.0762λ/NA2 with their fitting 
RMSEs at the order of magnitude 10-12, implying that the axial size d0 is 
proportional to 1/NA2. 
 

In Figure 3.23a, four sets of binary phase plates designed using Eq. 3.20 

to generate AR PSFs are shown. We chose the zero-intensity position at ρ=[0, 

22.5 µm, 45 µm, 67.5 µm, 90 µm] as No. 1, that at ρ=[0, 27.5 µm, 75 µm, 

82.5 µm, 110 µm] as No. 2, that at ρ=[0, 32.5 µm, 65 µm, 97.5 µm, 130 µm] 

as No. 3 and that at ρ=[0, 37.5 µm, 75 µm, 112.5 µm, 150 µm] as No. 4. The 
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NA of the focusing lens was fixed to 0.0075 for the design of these four sets of 

binary phase plates. The data are presented in Figure 3.23a.  

3.4 Generation of an electromagnetic null field 

based on the AR PSF 

In the previous section, we introduced the design of a binary phase element for 

realizing the AR PSF. Now, we will explain the physical mechanism of the 

generation of the electromagnetic null field when the AR PSF is achieved at 

the focal plane [Appendix B 1].  

First, we revisit the different focusing behaviors along the transverse and 

axial directions of a lens. Without loss of generality, we analyze the intensity 

at the focal plane z=f for the transverse direction and the on-axis intensity at 

r=0 for the axial direction. For uniform illumination without the imposition of 

any phase or amplitude modulation by binary elements, we can use Eq. 3.12 to 

find the intensities at z=f and r=0 in analytical form:   

,        (3.21) 

,    (3.22) 

where I(ρ,z=f ) and I(ρ=0,z) represent the intensity profiles at the focal plane 

and on the axis at ρ=0, respectively. From Eqs. 3.21 and 3.22, we can 
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determine the size (from the focal point to the first zero-intensity point) in 

both the radial and axial directions. For the radial size at the focal plane, the 

first zero-intensity point is located at kρR/f=3.8317, which implies a radial size 

of  

,                       (3.23) 

where NA≈R/f for a low-NA lens, as demonstrated by Figures 3.24a and 3.24b. 

For the axial size at ρ=0, the first zero-intensity point is located at 

R2k(1/z-1/f)=π, which implies an axial size (Figures 3.24a and 3.24c) of  

.                (3.24) 

From the radial and axial sizes given by Eqs. 3.23 and 3.24, it is apparent that 

the radial size is proportional to 1/NA, whereas the axial size is proportional to 

1/NA2. Because the NA of the lens is smaller than 1, the size of the spot in the 

radial direction is smaller than that in the axial direction, as shown in Figure 

3.24, which indicates that the focusing lens provides tighter confinement in the 

radial direction than in the axial direction. This is a very important and 

fundamental conclusion in the field of the optical focusing of lenses. Therefore, 

for a well-constructed AR PSF at the focal plane, based solely on this physical 

conclusion and without further investigation of the intensity distribution in the 

axial region, we can intuitively predict that the zero-intensity region in the 

axial direction for ρ=0 must be much larger than that in the radial direction.  
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Figure 3.24 The focusing properties of a lens [Appendix B 1]. (a) The intensity 
profile on the xz plane of the focusing field of a lens. (b) The radial intensity 
profile of the focused spot on the focal plane depicted in (a). (c) The axial 
intensity profile at ρ=0 as depicted in (a). (d) The intensity profile of the 
optical capsule in the focal region of a lens and a binary phase plate. D and d 
are the radial and axial sizes (from one hotspot to another), respectively, of the 
optical capsule. (e) The radial intensity profile of the optical capsule on the 
focal plane depicted in (d). (f) The axial intensity profile of the optical capsule 
at ρ=0 as depicted in (d).  
 

Because the above theoretical prediction describes the mechanism of the 

generation of the electromagnetic null field by means of the AR PSF, we 

confirmed the above prediction through analytical simulations based on Eq. 

3.12. In fact, the simulation results presented in Figures 3.23b and 3.23c 

confirm the prediction that the transversal (D) and axial sizes (d0) should be 

proportional to 1/NA and 1/NA2, respectively. Because NA<1, the axial size d0 

is always larger than the transversal size D. Although the simulations 

presented in Figure 3.23c already provide an unquestionable verification of the 
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existence of the axial null field, we can also find physical proof of its 

existence in the uniform variation of the energy flux of light in a homogenous 

medium. In the previous section, we demonstrated the generation of the AR 

PSF with the null-field region 0≤ρ<D on the focal plane. If we move the 

viewing position to an out-of-plane (z≠f) position, we can predict the existence 

of a null field at this out-of-plane position because of the uniform variation in 

the energy flux of light in air, as shown in Figure 3.24d. This null-field region 

will exist until the out-of-plane position is moved beyond one of the two ends 

of the null field. Because the axial confinement of the focusing lens is much 

weaker than the transversal confinement, as indicated by Eqs. 3.23 and 3.24, 

the null field extends farther in the axial direction than in the transversal 

direction. Therefore, an electromagnetic null field with widely separated 

boundaries in the axial direction and narrowly separated boundaries in the 

transversal direction is formed when an AR PSF is generated at the focal 

plane.  

3.5 Summary 

In this chapter, we focused primarily on the new phenomenon of AR in the 

focal region. First, to lay the theoretical foundation, the focusing properties of 

a radially polarized CV beam were discussed. Based on the Richards-Wolf’s 

vector diffraction theory, which was derived in Chapter 2, the field distribution 

was obtained. It was found that the energy is primarily concentrated in one 
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wavelength region near the focus. Although there is a strong longitudinal 

component, the beam purity is low, and less than 46% of the beam is oriented 

in the propagation direction.  

Subsequently, the abnormal distribution of a non-diffracted beam was 

investigated to confirm the influence of a BOE on the electric field. A uniform 

distribution with a length of 4λ was obtained. The beam purity is improved 

significantly in this case, and approximately 80% of the total energy near the 

axis is generated by the longitudinal field.  

Third, all these results were applied to the phenomenon of AR generation. 

A new optical system composed of a BOE and a focusing lens was designed. 

By comparing the physical model with the requirements for AR, the 

three-dimensional problem was transformed into a simpler one. After we 

obtained the parameters for the diffractive phase mask through optimization, 

we investigated the field distributions and demonstrated the creation of the 

desired profile, as predicted in the model. The same methodology is also valid 

for azimuthally polarized incident light.  

In order to design a BOE to realize the AR PSF, a generalized 

methodology referred to as an optimization-free method based on the physical 

concept was then proposed. The problem was quantitatively described in terms 

of an explicit mathematical model. By solving the non-linear matrix equation, 

through the well-developed Newton’s method, the parameters of the BOE can 

be obtained. 
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Finally, the physical reason for the generation of an electromagnetic null 

field was explained in low-NA systems. The simulation results suggested that 

the AR PSF can be realized in this case and that the volume of the 

three-dimensional electromagnetic null field is proportional to λ/NA3. 

As a new optical phenomenon, AR holds promise for a large number of 

important applications. It can be used for surveillance, as it can allow light to 

be bent around a macroscopic object, thereby permitting the detection of 

another object placed behind it. In addition, this novel technology also 

establishes a new approach to future applications in large-scale trapping, atom 

cooling and particle manipulation. 
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Chapter 4 
 
Macroscopic electromagnetic 
cloaking in an imaging system  
                                         

4.1 Introduction  

Since Pendry and Leonhardt individually established transformation optics 

theory [26, 94], a number of novel electromagnetic phenomena have been 

observed and have motivated many interesting applications [95, 96]. Among 

these, invisibility cloaking has attracted the most attention, as many significant 

applications can be conceived with it. Meanwhile, it broadens our minds to 

imagine a world in which objects can be made invisible in space [97-111]. The 

application of transformation optics theory for cloaking relies on the specific 

design of the electromagnetic parameters of materials or the application of 

metamaterial structures. By this means, all incoming waves are guided to 

propagate around a shell-like region without interacting with the object located 



CHAPTER 4 MACROSCOPIC ELECTROMAGNETIC CLOAKING IN AN IMAGING SYSTEM                                

76 
 

inside. This specially designed shell is called a free-space invisibility cloak 

and is illustrated in Figure 4.1. 

 

Figure 4.1 Schematic illustration of transformation-optics cloaking. The 
incident wave is bent and passes through the cloaking region without touching 
the object lying inside.  
 

Despite the large variety of cloaks that have been designed and analyzed 

theoretically, because the extreme requirements on the electric permittivity and 

magnetic permeability of the materials, the realization of a free-space cloak 

poses a considerable challenge to modern fabrication technologies. Meanwhile, 

the existing reduced cloak at microwave frequencies offers unsatisfactory 

performance. To overcome this difficulty, a fully dielectric carpet cloak, based 

on quasiconformal mapping, has been proposed by Li and Pendry (illustrated 

in Figure 4.2) [112]. In this cloaking mechanism, objects can be hidden under 

a ground plane covered by the cloaking metamaterial. In the design of such a 

ground-plane cloak, singular values do not exist in the material parameters, 

and exciting experimental results have been achieved at microwave, terahertz 

and optical frequencies [113-117]. Unfortunately, it has recently been found 

that a lateral shift in the scattered wave, which is comparable to the height of 
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the hidden object, can be produced by a quasiconformal-mapping-based carpet 

cloak, and this shift will certainly allow the object to be detected [118]. 

 

Figure 4.2 Schematic illustration of carpet cloaking. A wave is incident from 
the left and passes through the cloaking region without touching the object 
lying on the ground. 
  

To overcome the defects and limitations of the carpet cloak, such as 

situations in which the object it should be concealing is detectable and its 

complicated fabrication, a natural-crystal-based macroscopic cloak has 

recently been reported [119-122]. In contrast with all previous cloaking 

methods, which depend on sharp coordinate transformation, this macroscopic 

cloaking approach makes full use of the birefringent property of calcite. A 

linear homogeneous transformation can therefore satisfy the requirements. 

Although low-cost material is utilized, there are still some problems to be 

solved before this cloaking technology can be put into practice. Considering a 

recent study as an example (shown in Figure 4.3), the triangle of height H1 and 

half-width d stands for the cloaked region (Figure 4.3b); H2 represents the 

height of the natural crystal. According to transformation optics theory, the 

relation among H1, H2 and d is [119] 
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,            (4.1) 

where γ is the angle between the optical axis of the calcite and the y axis and 

where no and ne represent the refractive indices of ordinary and extraordinary 

light, respectively. Because of the small anisotropy of a natural crystal (for 

calcite, no-ne=1.66-1.49=0.17) and its limited size in nature (usually several 

centimeters), the size of the cloaked region is typically only a few millimeters.  

 

Figure 4.3. Schematic illustration of macroscopic invisibility cloaking at 
visible frequencies. This figure is reprinted from [119]. Reprinted with 
permission from Nature Publishing Group.  

 

Based on the discussion above, the key mechanism underlying all 

transformation-optics cloaking technology is the guiding of waves to a desired 

path while avoiding interactions between the waves. Most efforts thus far have 

focused on the question of how to acquire the specific materials and structures 

necessary to achieve this feat.  

As discussed in previous chapters, a low-intensity field distribution can 

be numerically and experimentally created for particle trapping and 

manipulation. When this type of field illuminates an object, then the scattering 

from the object, which is the basis for imaging in practical applications, will 
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be extremely weak and difficult to detect. This phenomenon of low-intensity 

fields provides the possibility of realizing the “light capsule” necessary for 

cloaking. However, in previous works, the null-field-distribution region of this 

phenomenon has generally been limited to a single point. Because an object 

placed in such a low-intensity region must have a finite volume, there will still 

be interactions between the object and the incident waves. Thus, the object 

will certainly be detected because of its influence upon the incident wave. 

In Chapter 3, we investigated the new phenomenon of AR in the focal 

region. Because the PSF of the optical system vanishes in a certain region, a 

large null-field region surrounded by visible light is therefore achieved. Any 

object placed in this region cannot be resolved. Here, we report a novel 

macroscopic electromagnetic cloaking method using an imaging system based 

on AR. This novel scheme overcomes the limitations of conventional 

transformation-optics-based cloaking and quasiconformal-mapping-based 

carpet cloaking, including narrow bandwidths, polarization restrictions, and 

metamaterial requirements. In AR-based cloaking, which consists of 

conventional BOEs and focusing lenses, a null-field region is created by 

precisely tailoring the interferences of a large number of beams diffracted 

from the BOEs.  
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4.2 Macroscopic electromagnetic cloaking design 

and its performance 

4.2.1 Macroscopic electromagnetic cloaking design  

Imaging theory has taught us that once an object is placed in the focal region 

of a system, it will be resolved and detected easily. Traditionally, the PSF of an 

optical system is narrowed to be as sharp as possible to enhance the imaging 

resolution. Once the distance between two points becomes sufficiently narrow 

to exceed the diffraction limit ~λ/2NA, these two points can no longer be 

distinguished. Nevertheless, it is still possible to be certain of the existence of 

the unresolvable object because of the influence it exerts on the optical 

environment. To hide an object in an optical system, it is necessary to achieve 

an electromagnetic null-field region instead of a sharp focus. In contrast to 

super-resolution, which makes an object highly resolvable, AR stably causes 

the object to become unresolvable when exposed to an extremely 

low-frequency electromagnetic field. As shown in Chapter 3, this specific 

electromagnetic field can be created by employing a BOE. In this manner, we 

can ensure that the light will pass through a certain area and produce the 

desired null field.  

Before explaining the theoretical mechanism of this macroscopic 

cloaking technology, we will first present the full structure of its physical 

realization [Appendix B 1] . A schematic diagram of the entire cloaking device 
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is presented in Figure 4.4. A radially polarized Bessel-Gaussian beam, which 

is used in the attempt to detect the object, propagates from left to right and 

passes through two pairs of specially designed diffractive phase masks and 

focusing lenses. For convenience, the parameters of the elements used here are 

those derived for generating AR in Chapter 3. The optical system consists of 

two types of elements, each of which will affect the cloak in a different 

manner. To generate Figure 4.4, we chose a focusing lens with NA=0.95. 

According to the simulation results and previous discussions, when we fix the 

lens parameters, the area of the null field will be restricted to a certain range.  

After passing through the first pair of specially designed phase-mask 

elements and focusing lens, the light propagates along the curve shown in 

Figure 4.4 and creates a perfect dark region where the field intensity 

approaches zero. This is the AR phenomenon achieved in Chapter 3. When we 

investigate the field distribution on the optical axis, we note that the intensity 

is zero over a certain distance, as shown in the inset of Figure 4.4. This 

specific field distribution and wave-propagation behavior ensure that there are 

no interactions between the light and the object. Moreover, we know that for 

effective electromagnetic cloaking, the incident wave and the output wave 

must both contain the same information, and it is therefore necessary to 

rebuild the wavefront to avoid any difference between them. When previous 

cloaking schemes are analyzed, it is apparent that their structures are 

symmetric with respect to the reference plane. Interestingly, the phenomenon 
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of AR itself is also symmetric, so an identical pair of a lens and a 

complementary phase mask is positioned symmetrically on the other side of 

the focal point to restore the phase front of the incident beam. It should be 

noted that this system has been confirmed to be suitable for a large variety of 

types of incident light, e.g., plane waves and Bessel-Gaussian beams. To 

explore the methodology, we first suppose that the field at the exit pupil of the 

focusing lens is a radially polarized CV beam.  

 

Figure 4.4 Physical configuration and field distribution of an AR-based 
cloaking system [Appendix B 1]. A Bessel-Gaussian beam propagates through 
two specially designed pairs of diffractive phase masks and focusing lenses 
from left to right. The inset shows the magnitude of the total electric field 
along the optical axis, in which a nearly perfect null region (the field 
amplitude is on the order of 10−5) is formed. Seven cut planes at equal 
separation distances are depicted to illustrate the individual transversal field 
intensities. 

4.2.2 Simulation results of AR-based cloaking  

To verify the design of the AR-based cloaking device, we place an object in 

the cloaking region and test its performance [Appendix B 1]. Using exactly the 
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same phase-modulation mask and focusing lens shown in Figure 4.4, we 

consider radially and azimuthally polarized incident light (Figures 4.5a and 

4.5b, respectively). In Figures 4.5a and 4.5b, the electric-field distributions are 

depicted; it is evident that the three-dimensional AR regions appear within an 

area of approximately the same size in each case. One important factor in the 

cloaking is the energy change that occurs when the object is introduced. 

  

Figure 4.5. Full-wave simulations of the energy-flux bifurcation and 
reformation in an AR-based cloaking system with NA=0.95 [Appendix B 1]. 
(a) The incident light is radially polarized. (b) The incident light is azimuthally 
polarized. A metallic sphere with a radius of one wavelength is placed in the 
center. 
 

Therefore, full-wave simulations of the Poynting vector field 
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are used to verify that the energy in the AR region is negligible when an object 

of one wavelength in radius is placed in the AR region (the size of the object 

was chosen in accordance with the size of the AR region). The bifurcation and 

reformation of the energy flux unambiguously demonstrate that the 

performance of the AR-based cloaking device is insensitive to the polarization 

state of the incident light. Hence, any complex polarization state that is a 

vector superposition of radial and azimuthal polarizations will yield a perfect 

AR effect and cloak the object within the null-field region.  

In principle, the volume of the nearly perfect null-field region that can be 

created is unlimited, and hence, macroscopic electromagnetic cloaking is 

possible. It was found in Chapter 3 that the size of the AR region (the null 

field) can be significantly enlarged by reducing the NA value of the focusing 

lens (~1/NA3) and that regardless of the NA value used, the AR region is 

consistently created and cloaking is consistently achieved in the imaging 

system. When the phase mask is held invariant and the lens in Figure 4.4 is 

replaced by one with a lower NA (e.g., NA=0.01 or NA=0.001), the axial and 

transversal null-field regions can be enlarged to approximately 4104 and 

4102, respectively, when NA=0.01 (as shown in Figure 4.6a) or to 4106 

and 4103, respectively, when NA=0.001 (as shown in Figure 4.6b). If the 

operating frequency is in the microwave (terahertz) range, a region of this size 

is meaningful in practice. Both cases illustrated in Figure 4.6 have proven to 

be robust for both radially and azimuthally polarized light, which is important 
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for handling incident light of arbitrary polarization status. 

 

Figure 4.6. Electric-field distributions in AR-based cloaking. A radially 
polarized Bessel-Gaussian beam is used as the incident wave. (a) The NA of 
the focusing lens is 0.01. (b) The NA of the focusing lens is 0.001. 

4.2.3 Mechanism of AR-based cloaking 

In modern optical systems, three major phenomena of light are typically 

utilized: reflection, refraction and diffraction. AR cloaking utilizes a field 

distribution based on the diffraction effect in the focal region. In addition to 

the specific intensity distributions, other properties, such as the polarization 

and phase of the focused beam, also have various manifestations in the focal 

region. Recently, the wavefront spacings of a focused linearly polarized beam 

and a radially polarized beam have been investigated by Foley and Visser, 

respectively [123, 124]. A significant difference between the two cases was 

observed, and the principle behind this difference is the Gouy phase shift, 
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which was discovered a century ago. Because the phenomenon of light 

bending and null-field formation based on AR are so attractive, it is necessary 

to reveal the underlying physics of the AR phenomenon. Here, we present 

Figures 4.7 and 4.8 to elucidate the fundamental mechanism driving the 

evolution of the null field in Figure 4.4, namely, the size variation of the blind 

spots along the propagation direction [Appendix B 1].  

As shown in Figures 4.7 and 4.8, the electric field on the beam axis (r = 0) 

is purely longitudinally polarized (Ez is the only electric-field component). 

Because this polarization is parallel to the direction of light propagation, at 

first glance, it seems to violate Maxwell’s equations governing the propagation 

of electromagnetic waves. Nevertheless, when the position deviates from the 

beam axis (r ≠ 0), a radial component Er begins to emerge, as indicated by 

Figure 4.4, which plays an important role in enabling the light to propagate, 

bend and reach the second focus.  

 

Figure 4.7. Electric-field distribution of the AR system on the xy plane (z=0) 
[Appendix B 1]. The longitudinally polarized field intensities on the first 4 
transversal cut planes are presented in Figure 4.4. The cut plane at z = 0λ 
corresponds to the middle plane between the first focus (z = -2.5λ) and the 
second focus (z = 2.5λ). 
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At z = -2.5λ (the first imaging plane), Ez clearly dominates within the 

region near the beam axis (r < 0.2λ), and the wave is therefore prohibited from 

propagating straight along the beam axis and instead must travel in a 

curvilinear trajectory. At z = 0λ (between the two imaging planes), Figure 4.8 

shows that Er (corresponding to the propagation) is nearly smeared out within 

the central region around the beam axis. At greater deviation from the center 

axis, Er gradually arises, and this component corresponds to both the 

propagation and the first colored ring in the cut plane at z = 0λ in Figure 4.4. 

 

Figure 4.8. Electric-field distribution of the AR system on the xy plane (z = 0) 
[Appendix B 1]. The radially polarized field intensities on the first 4 
transversal cut planes are presented in Figure 4.4. The cut plane at z = 0λ 
corresponds to the middle plane between the first focus (z = -2.5λ) and the 
second focus (z = 2.5λ). 

4.3 Experiments of AR-based cloaking 

To verify the simulation results and our model, we experimentally demonstrate 

this novel phenomenon of the bifurcation and reformation of light in free 

space, i.e., AR-based invisibility [Appendix B 1]. There are two results of 
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interest in such an experiment. As it is the basis of AR-based cloaking, an 

electromagnetic null-field distribution is the first goal. Once this phenomenon 

of AR is observed, the disturbance caused by placing an object in the null-field 

region should be the second factor on which to evaluate the cloaking 

performance.  

The experimental setup is depicted in Figure 4.9. A pupil comprising an 

opaque gold circular disk (150 µm in diameter) is placed at the center of the 

AR region to block the straight line of sight and to serve as the object to be 

cloaked. A spatial light modulator (SLM) is employed to represent the 

equivalent phase modulation exerted by the diffractive phase mask and 

focusing lens of Figure 4.4. The phase-modulation mask consists of a 

phase-type spatial light modulator (HOLOEYE LC2002) with a pixel pitch of 

32 µm for visible light. A small gap of approximately 8 µm in size exists 

between two neighboring pixels. When light that passes through this gap is 

focused by the lens, a spot will be generated at the focal plane of the focusing 

lens, regardless of the SLM phase.  

Because a low-NA lens is equivalent to a lens phase of exp[-iπr2/(fλ)] in 

Fourier optics, the low-NA lens in Figure 4.4 is replaced by an equivalent lens 

phase realized by the SLM. The experiment is conducted on an optical table of 

3 meters in length. Because of the limited length of the optical table, we 

choose a focusing lens with an NA equal to 0.0048 and linearly polarized 

incident light with a wavelength of 532 nm. The laser is expanded by a beam 
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expander comprising two lenses and one pinhole of 10 µm in diameter. After 

passing through a stop with a diameter of 19.2 mm, the light illuminates the 

SLM, which simultaneously produces the phase mask and the lens phase with 

f=2 m. A mirror is used to alter the optical path to account for the limitation of 

the table length. An object is placed behind the pupil, and the distance between 

the pupil and the object is 20 mm. A CCD camera (IDS UI-2240) with a 20× 

camera lens is used to record the field intensity. 

 

Figure 4.9. The experimental setup for the AR-based cloaking in the imaging 
system [Appendix B 1]. SLM adopts the phase profile from the theoretical 
calculation as shown herein. Three insets represent total phase profile (mask 
phase plus lens phase) implemented in SLM; the dimension of the opaque 
pupil as the object to be cloaked and the size of the letter beneath the object, 
respectively. (a) Schematic of the experiment. (b) When the mask phase and 
the lens phase are simultaneously adopted by SLM, light can bypass the 
opaque pupil and illuminate the object beneath. (c) When either mask or lens 
phase is adopted separately, the light is blocked by the opaque circular area. 
Almost no light can pass the pupil and a very dark "N" is captured by CCD. (d) 
Measured intensity on seven transversal planes, on both sides of the central 
plane (z=0). (e) The total phase profile of binary and lens is mimicked with 
SLM. 
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A gold plate with a letter ‘N’ etched through it is placed behind the pupil 

to confirm the reformation of the light bypassing the pupil. On the one hand, 

the imaging of the letter ‘N’ captured by the CCD camera in Figure 4.9a 

explicitly demonstrates that the light can bend and bypass a larger opaque 

pupil. On the other hand, when the phase mask is removed, the light is fully 

blocked by the opaque disk of the pupil, allowing only very limited light to 

reach the letter beneath the object. Consequently, a very dark “N” is captured 

by the CCD, as demonstrated in Figure 4.9b.  

Such light bending and the creation of the AR region is further verified 

by the evolution of the transversal field patterns along the light-propagation 

direction at seven evenly distributed cut-planes between the first imaging 

plane (where the light is first split) and the second imaging plane (where the 

light is reformed), as shown in Figure 4.9d. It can be seen that a perfect null 

region forms with dimensions of approximately 0.3 mm (~5.6102λ) in width 

and 40 mm (~7.5104λ) in length, in good agreement with the theoretical 

calculations. In the meantime, within such a macroscopic AR region, the fields 

are perfectly smeared out such that the introduction of the macroscopic pupil 

causes little perturbation of the light that might cause it to bend or reform, as 

seen from Figure 4.9b. As discussed above, the transversal and axial sizes of 

the AR region are proportional to 1/NA and 1/NA2, respectively. Therefore, 

the size of the AR region may be extremely large and may even reach a value 

of 1.61013λ2 for an NA of 0.0001. The results of this experiment using an 
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SLM are in good agreement with the theoretical predictions and provide 

strong motivation for the realization of an AR-based cloak in a compact 

system.  

 

Figure 4.10. Controlled experiment when the binary mask is replaced with a 
spatial light modulator [Appendix B 1]. Experimental setup and measurement 
results for the AR-based cloaking enclose the super-size darkness region in the 
imaging system. (a) Schematic of the experiment. Two insets represent the 
dimension of the opaque pupil and the size of the letter beneath the object, 
respectively. (b) When the mask phase and the lens phase are simultaneously 
adopted, light can bypass the opaque pupil and illuminate the object beneath. 
(c) When either mask or lens phase is adopted separately (i.e., lens or 0-π 
modulation mask is removed), the light is blocked by the opaque circular area 
(150µm in diameter). Almost no light could pass the pupil and a very dark "N" 
is captured by CCD. A video (provided as a supplemental multimedia file) 
shows the switching of the bright and the dark "N", corresponding to 
situations of the presence and absence of 0-π mask phase. (d) Measured 
intensity on seven transversal planes, on both sides of the central plane (z=0). 
(e) The fabricated binary mask.  
 

In an additional controlled experiment (shown in Figure 4.10), we use a 

binary phase mask fabricated on a quartz substrate. The wavelength of the 

incident light is 632.8 nm. The focusing lens has an NA of 0.0075 and a size 
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of 15 mm in diameter, which is the same as the stop size and the maximum 

diameter of the binary phase mask. The light passing through the groove has 

an additional phase difference of π compared with the light passing through 

the neighboring air belts. This additional π phase originates from their height 

difference of 692 nm, as the refractive index of quartz is 1.4507 at 632.8 nm. 

As seen from Figure 4.10b-4.10d, the same results are obtained here as in the 

previous experiment, in which the SLM serves as the BOE. Although this 

latter experimental setup requires time-consuming nanofabrication processes, 

it paves the way for practical cloaking in an imaging system and enables 

cloaking on the subwavelength scale. 

4.4 Summary 

Invisibility cloaking is currently being extensively studied for its potential uses 

in a broad variety of applications. Although the feasibility of this novel 

concept has been proven both in theory and in some experiments, there are 

still challenges to overcome before it will be suitable for practical applications. 

Existing cloaking schemes, such as carpet cloaking and birefringent cloaking, 

suffer from intrinsic limitations. In this chapter, we developed a novel scheme 

for electromagnetic cloaking by extending and employing the phenomenon of 

AR in an imaging system. The system is composed of two pairs of 

phase-modulation masks and focusing lenses. The effect of the first 

mask-and-lens pair is to form the AR field, and the light is then formed to 
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propagate along its original path after passing through the second pair. To 

verify our AR-based cloaking, two experiments were meticulously designed to 

investigate the field distribution and disturbance that could be achieved using 

this approach. From the results of these experiments, we determined that the 

bending of the light occurs on the macroscopic scale (three to six orders of 

magnitude larger than the wavelength), in dramatic contrast to the Airy beam 

that has recently been actively studied in plasmonics [125, 126]. Furthermore, 

there are no interactions between the probe light and the objects placed in the 

AR region. Although this method of cloaking is limited in terms of 

observation angles, it is free of a number of the constraints suffered by 

traditional invisibility cloaking, such as energy loss, narrow operation 

bandwidth, limited cloaking area, and polarization sensitivity.  
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Chapter 5 
 
Conclusions  
                                           

5.1 Conclusions 

This thesis explored a newly discovered field distribution of focused CV 

beams. Based on the distribution in the focal region, an appealing concept, i.e., 

AR, was proposed along with its specifications. It was found that this novel 

phenomenon could be achieved by widening the field distribution infinitely to 

ultimately invert the PSF. This approach is in sharp contrast to the 

conventional super-resolution PSF in optics, which scientists and engineers 

have striven for years to narrow yet further through technical means. This 

unconventional distribution in the focal region can be primarily attributed to 

the reconstruction of the CV-beam wavefront. It was also found that the 

disturbance that arises when an object is placed in a field with such an AR 

distribution is invisible. These findings are important for focal optics because 

they offer a new approach to manipulating the shape of the focal region on the 
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subwavelength scale. Moreover, they contribute to a novel technology for 

cloaking in an imaging system. 

The AR phenomenon was first identified in a tightly focused, radially 

polarized CV beam. To clearly demonstrate the realization of AR, Chapter 2 

was devoted to introducing the CV beam and its focusing properties in a 

mathematical fashion. An accurate model of a tightly focusing system was 

achieved by finding mathematical solutions for beams with cylindrical 

symmetry, expressing the field in the focal region in terms of the Debye 

integral, and finally, extending the Richards-Wolf’s vector diffraction theory to 

the general case. This field model is of crucial importance for focusing optics 

because it may assist in evaluating the performance of an optical system and 

guide its further improvement. Moreover, this model also provides an effective 

tool for investigating vortex and higher-order CV beams, which possess many 

peculiar properties. 

As the primary objective of this thesis, the behaviors and properties of 

AR were investigated and demonstrated based on the mathematical model 

developed in Chapter 2. By focusing a radially polarized CV beam using a 

high-NA lens and a specifically designed BOE, the phenomenon of AR was 

achieved. It was found that the AR PSF leads to a ring-shaped intensity 

distribution that possesses a null field located in the center of the focal plane 

and spreads toward both sides of the focal plane. To design a BOE to produce 

the AR PSF, a generalized methodology referred to as an optimization-free 
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method based on the physical concept was employed. The problem was then 

quantitatively described in terms of an explicit mathematical model. In 

contrast with previous studies, which have employed fully developed 

algorithms (ant-colony optimization, simulated annealing algorithms), this 

optimization-free method represents a significantly different approach to the 

design of BOEs. In addition, this method enables us to solve the problem in a 

customized manner, hence tremendously improving computational efficiency. 

Finally, the AR phenomenon was verified in low-NA systems. The simulation 

results suggested that the AR PSF can also be realized in this case and that the 

volume of the three-dimensional electromagnetic null field is proportional to 

λ/NA3. This finding implies the possibility of creating an extremely large null 

field, in principle, when NA is extremely small.  

Based on the phenomena and results above, an AR-based cloaking model 

was also constructed in this study. It was found that any incident probe light 

will not interact with an object placed within the null region and will, instead, 

simply travel around the object. To investigate the properties of such an 

AR-based cloak, the Poynting vector was considered. It was found that the 

cloaking performance is almost entirely unaffected by the incident polarization 

state. Hence, any complex polarization states consisting of vector 

superpositions of radial and azimuthal polarizations will yield perfectly 

identical AR-based cloaking performances. To verify our theoretical model 

and test the simulation results, two experiments were then designed and 
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performed. The measurement results were in good agreement with the 

theoretical predictions. This cloaking technology is of considerable 

importance for realistic applications because the anisotropic materials and 

inhomogeneous structures that are required by traditional cloaking methods 

are unnecessary in the proposed scheme. Additionally, this method is immune 

from the polarization state of the incident light.  

In summary, the major achievements reported in this thesis are as 

follows: 

1) The proposal of the novel AR concept.   

2) The design of a novel scheme based on AR for cloaking macroscopic 

objects under broadband illumination in a polarization-independent manner. 

5.2 Recommendations for future work 

In view of this interesting phenomenon of AR and its attractive applications, it 

is necessary to study its properties and further extend its usage. A direct 

extension of this work would be the application of AR in dark optical traps 

[127, 128]. As illustrated in Figure 5.1, if a particle is placed in a dark field 

within a background medium of a higher refractive index, the gradient force 

will be directed toward the lower-intensity region. This suggests that a field 

with an AR distribution can be used for trapping. Ideally, an electromagnetic 

field with a null central intensity distribution is desirable for this purpose. 

However, most previous efforts in this field have been based on low-intensity 
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fields instead of a null field, which we have clearly demonstrated in this thesis. 

Although the energy in the trapping center may be tiny, its influence is not 

negligible in comparison with the mass of the particle. The total field 

distributions have already been demonstrated in our discussions, and the light 

intensity in the central region can be further reduced by optimization for 

applications of atom cooling and particle manipulation. One benefit of the 

proposed optimization-free technique is that its contributions to the design of 

BOEs might be valuable for super-resolution imaging. Although the 

optimization-free method was proposed to achieve the AR PSF, with some 

modifications, it can also be used to design other distributions in the focal 

region, such as an optical needle and optical chain.   

 

Figure 5.1 Schematic diagram of a dark optical trap. Fg represents the gradient 
force exerted on the particle. When the refractive index of the medium is 
higher than that of the particle, the gradient force Fg will be directed toward 
the lower-intensity region. 

 

     It is worth noting that the proposed cloaking scheme is effective only in 

one direction. Therefore, efforts should be made to extend the scheme to two- 
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or three-directional cloaking by exploiting the symmetry of the entire system 

based on the configurations that have been developed thus far. Moreover, the 

experiments implemented in this thesis do not constitute a direct 

demonstration of macroscopic cloaking and hence much improvement is still 

required in future research to demonstrate this achievement in a canonical 

fashion. 
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Appendix A  
 
List of Abbreviations 
 

CV  cylindrical vetor 

PSF point spread function 

AR anti-resolution 

NA numerical aperture 

BOE binary optical element 

DOE diffraction optical element 

DOF depth of focus 

SLM spatial light modulator 
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