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Summary

Pooling is a cost-effective way to collect data. However, estimation is com-

plicated by the often intractable distributions of the observed pool averages.

In this thesis, we consider two applications involving pooled data. The first

is to use aggregate data collected from pools of individuals to estimate the

levels of individual exposure for various environmental biochemicals. We

propose a quasi empirical Bayes estimation approach based on a Gaussian

working likelihood which enables pooling of information across different de-

mographic groups. The new estimator out-performs an existing estimator

in simulation studies. We consider haplotype frequency estimation from

pooled genotype data in our second application. A quick collapsed data

estimator is proposed which does not lose much efficiency for rare genet-

ic variants. For more efficient estimates, we propose a way to construct a

data-based list of possible haplotypes to be used in conjunction with the

expectation maximization (EM) algorithm to make it more feasible compu-

tationally. For non-rare alleles, haplotype distributions cannot be estimated

well from pooled data, and a sensible strategy is to collect individual as

well as pooled genotype data. A calibration type estimator based on the

combined data is proposed which is more efficient than the estimator based

on individual data alone.
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Chapter 1

Introduction

Pooling of samples is a cost effective and often efficient way to collect data.

The pooling design allows a large number of individuals from the popu-

lation to be sampled at reduced analytical costs. Estimation is, however,

complicated by the fact that the individual values within each pool are

not observed but are only known up to their average. In this thesis, we

consider two applications involving pooled data, i.e. human biomonitoring

and statistical genetics.

This chapter is organized as follows. Section 1.1 introduces the back-

ground of human biomonitoring (section 1.1.1), reviews the existing meth-

ods (section 1.1.3) and highlights the focus of this topic (section 1.1.4);

Section 1.2 briefly describes the haplotype frequency estimation (section

1.2.1), reviews some existing methods (section 1.2.3) and highlights the

focus of this topic (section 1.2.4).
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Chapter 1. Introduction

1.1 Human Biomonitoring

1.1.1 Background

Human biomonitoring offers a way to better understand population expo-

sure to environmental chemicals by directly measuring the chemical com-

pounds or their metabolites in human specimens, such as blood and urine

(Sexton et al., 2004; Angerer et al., 2007). The early examples of biomon-

itoring could be traced back to the determination of lead in Kehoe et al.

(1933) or benzene metabolites in Yant et al. (1936), which were mainly

used to control the exposure to contaminants at the workplace. A more

recent example arose when blood and urine samples were taken from res-

cuers and examined for exposure to potentially toxic smoke from the rubble

after the World Trade Center collapse on 11 September 2001 (Erik, 2004).

Nowadays, more regular survey studies are conducted in various countries

or regions to determine a broad range of internal chemical concentrations

in general populations, like the National Health and Nutrition Examina-

tion Surveys (NHANES) in the U.S. and the German Environmental Survey

(GerES) in Germany. The data from biomonitoring are used to characterize

the concentration distributions of compounds among the general popula-

tion and to identify vulnerable groups with high exposure (Thornton et al.,

2002). Uncertainties in characterizing concentrations arise when exposure

measurements approach the limit of detection (LOD) or with insufficient

volume of material (Caudill, 2010; Caudill et al., 2007b). Despite continu-

ous improvement in analytical techniques, Caudill (2010) pointed out that

“the percentage of results below the LOD is not declining and may actu-

ally be increasing concurrently with decreasing exposure levels”. Another

2



1.1. Human Biomonitoring

problem in evaluating environmental exposures is the expense of measuring

some compounds as the cost generally increases with the accuracy of the

chemical assessment (Sexton et al., 2004). In the U.S., cost varies widely

from a few U.S. dollars for lead metals to thousands of U.S. dollars for diox-

ins and polychlorinated biphenyls (PCBs). When evaluating communities

or populations, the cost of biomonitoring can increase exponentially.

Pooling of samples can provide one possible solution to both problem-

s by yielding larger sample volumes and reducing the number of analytic

measurements to save cost (Bates et al., 2004, 2005; Caudill, 2011, 2012).

A weighted pooled sample design was first implemented in NHANES 2005-

06 (Caudill, 2012). The number of chemical measurements required was

reduced from 2201 to 228 and hence the study saved approximately $2.78

million at a cost of $1400 per testing. Estimation is, however, complicated

by the fact that the individual values within each pool are not observed

but are only known up to their average or weighted average. The distri-

bution of such averages is intractable when the individual measurements

are log-normally distributed, which is a common and realistic assumption

(Caudill, 2010). Furthermore, pooled samples may lose valuable informa-

tion on dispersion (Bignert et al., 1993) and lead to biased estimates of

central tendency (Caudill, 2011). Caudill et al. (2007a) proposed a method

to correct the bias of estimates obtained using pooled data from a log-

normal distribution. Caudill (2010) extended their method to characterize

the population distribution by using percentiles. More recently, Caudill

addressed estimation using information from an auxiliary source (Caudill,

2011) and extended the method to a weighted pooled sample design in a

special issue of Statistics in Medicine (Caudill, 2012). But Caudill’s esti-

3



Chapter 1. Introduction

mator is quite ad hoc, and its latest version (Caudill, 2012) relies on the

fitting of two straight lines with unexplained weights to perform some kind

of smoothing across demographic groups.

1.1.2 Notation

Suppose individual samples were grouped into ni pools of equal size K

in the ith demographic group, i = 1, · · · , d. Denote by Xijk the pollutant

concentration of individual k in the jth pool of the ith demographic group

with Yijk = logXijk ∼ N (µi, σ
2
i ) independently, where i = 1, · · · , d, j =

1, · · · , ni, k = 1, · · · , K. Assume the unweighed averageAij =
∑K

k=1Xijk/K

is recorded for the jth pool in the ith group. All the methods using un-

weighed average can be easily extended to unequal weights ωijk, Aij,ω =∑K
k=1 ωijkXijk. The mean αi and variance β2

i of Xijk is given by

αi = E [Xijk] = exp
(
µi + σ2

i /2
)
, (1.1)

β2
i = var [Xijk] = exp

(
2µi + σ2

i

) [
exp

(
σ2
i

)
− 1
]

= α2
i

[
exp

(
σ2
i

)
− 1
]
.

(1.2)

For the case of unweighed average, we can obtain the mean and variance

of Aij

E [Aij] = E [Xijk] = αi, (1.3)

var [Aij] = var [Xijk] /K = β2
i /K. (1.4)

1.1.3 Existing methods

In this section, we briefly review the existing methods.

• Caudill et al. (2007a) noticed that the measured value of a pooled

4



1.1. Human Biomonitoring

sample Aij was an estimate of exp (µi + σ2
i /2), based on Equations (1.1)

and (1.3), but there was a positive bias when estimating µi using logAij

alone. They proposed a way to correct this bias, which was equal to one-

half the variance of the logarithm of the individual samples constituting

the pool. The squared coefficient of variation (CV2
i ) of Aij is given by

CV2
i =

var [Aij]

E [Aij]
2 =

[
exp

(
σ2
i

)
− 1
]
/K. (1.5)

which could be used to calculate σ2
i after estimating CV2

i . The CV2
i can

be estimated as the ratio between sample variance and squared sample

mean of Aij for each demographic group. Due to the small number of pools

in some demographic groups, they estimated var [Aij] by using the range

based on var [Aij] = wK (Ai,max − Ai,min), where wK was the factor used

to convert an observed range for K samples to a variance estimate on

the basis of the distribution of the range of normally distributed samples

(Gosset, 1927), and Ai,max and Ai,min were the maximum and minimum

values in the ith demographic group respectively. Furthermore, they fit a

weighted least squares regression of CVi on the logarithm of the median in

the corresponding demographic group with weights n2
i . The fitted value ĈVi

was used to estimate σ2
i according to Equation (1.5). Then the estimate of

µi was given by the average of the bias-corrected values

µ̂i =

∑ni
j=1 logAij

ni
− σ̂2

i

2
=

∑ni
j=1 logAij

ni
−

log
(
KĈV

2

i + 1
)

2
.

However, there is a lack of explanation for the use of weighted least squares

and its choice of weights.

• Caudill (2010) extended their method (Caudill et al., 2007a) to char-

5



Chapter 1. Introduction

acterize the population distribution by using percentiles and also provided

formulas of calculating confidence limits around the percentile estimate.

The pth percentile for log-normal populations was given by

Pi,p = exp (µi + fpσ
∗
i ) (1.6)

where fp was the pth percentile of the standard normal distribution. Similar

method was used to estimate µ as described in Caudill et al. (2007a), ex-

cepting that in this paper he suggested using sample coefficient of variation

as a natural estimator instead (Caudill, 2010). He suggested several ways

to estimate σ∗i in the Equation 1.6. One of them was to simply compute

the sample standard deviation of the bias-corrected values logAij − σ̂2
i /2.

Two-sided 100(1− α)% confidence limits (LLP , ULP ) around a percentile

estimate was computed by using a noncentral t distribution that can be

obtained from Table 1 of Odeh and Owen (1980).

• Caudill (2011) investigated ways to further reduce the bias in the

estimation by augmenting variance information from other studies. Simi-

lar technique was applied as in Caudill et al. (2007a), by using a weighted

least squares regression of CVi on the logarithm of the median in the corre-

sponding demographic group with weights n2
i . Augmentation can be made

by taking into account the data from other studies or other groups. They

found the increase in number of pools may help reduce the bias using the

same number of individuals, while the increase in the number of samples

in each pool may not.

•More recently, Caudill (2012) extended his own methods to a weighted

pooled sample design in a special issue of Statistics in Medicine. For sim-

plicity of the presentation, only the case of unweighed average is reviewed

6



1.1. Human Biomonitoring

here. In this paper, he slightly changed the assumption of the distribution

of individual measurement to Yijk = logXijk ∼ N
(
µij, σ

2
ij

)
, with various

means and variances for each pool. The bias-corrected values changed to

logAij − σ̂2
ij/2, and hence the estimate of µi was given by the average of

the bias-corrected values

µ̂i =

∑ni
j=1

(
logAij − σ̂2

ij/2
)

ni

According to Equation 1.5, σ̂2
ij = log

(
KĈV

2

ij + 1
)

. ĈV
2

ij was estimated

as the ratio between σ̂Aij and Aij, where σ̂Aij was the estimated standard

deviation of Aij. In order to obtain σ̂Aij , he fit a weighted least squares

regression of logarithm of σ̂Ai on the logarithm of the median of Aij in

the corresponding demographic group with weights n2
i , and estimated σ̂Aij

from the weighted least squares model by the corresponding pool measured

value Aij.

Equation (1.6) was used to estimate the percentile. He estimated σ∗2i

as the total (i.e. within-pool and among-pool) variance associated with

logarithm of the unmeasured individual samples. The within-pool com-

ponent of the variance was calculated as σ2
i,within =

∑ni
j=1 σ̂

2
ij/ni and the

between-pool component as the sample variance of the bias-corrected val-

ues logAij − σ̂2
ij/2 in the demographic group. Furthermore, he fit another

weighted least squares regression of log (σ̂∗i ) on µ̂i with weights n2
i and

used the estimated σ̂∗∗i from the regression model as input to the percentile

estimate P̂i,p = exp (µ̂i + fpσ̂
∗∗
i ).

7



Chapter 1. Introduction

1.1.4 The focus of this topic

Caudill proposed a few ways to characterize the concentration distributions

of compounds based on pooled samples (Caudill, 2010, 2011, 2012). How-

ever, Caudill’s estimator is quite ad hoc, and its latest version (Caudill,

2012) relies on the fitting of two straight lines with unexplained weights to

perform some kind of smoothing across demographic groups.

In chapter 2, we propose to replace the intractable distribution of the

pool averages by a Gaussian likelihood. An empirical Bayes Gaussian like-

lihood approach, as well as its Bayesian analogue, are developed to pool

information from various demographic groups by a mixed effect formula-

tion. Also discussed are methods to estimate the underlying mean-variance

relationship, and to select a good model for the means.

1.2 Haplotype Frequency Estimation

1.2.1 Background

In statistical genetics, the haplotype distribution is the joint distribution

of the allele types at, say, L loci. We will focus on bi-allelic loci in this

study so that each haplotype vector is a vector of binary values, and the

haplotype distribution is a multivariate binary distribution. The impor-

tance of haplotypes is well documented (Morris and Kaplan, 2002; Clark,

2004; Schaid, 2004) and reinforced more recently by the works of Muers

(2010) and Tewhey et al. (2011). By incorporating linkage disequilibrium

information from multiple loci, haplotype-based inference can lead to more

powerful tests of genetic association than single-locus analyses. Haplotype

distributions are usually estimated from individual genotype data which is

8



1.2. Haplotype Frequency Estimation

the sum of the maternal and paternal haplotype vectors of an individual.

As reviewed by Niu (2004) and Marchini et al. (2006), statistical approach-

es to haplotype inference based on individual genotype data are effective

and cost-efficient. These include the expectation-maximization (EM) type

algorithms for finding maximum likelihood estimates (MLE) (Excoffier and

Slatkin, 1995), and the Bayesian PHASE algorithm (Stephens and Scheet,

2005). Since DNA pooling is a popular and cost-effective way of collect-

ing data in genetic association studies (Sham et al., 2002; Norton et al.,

2004; Meaburn et al., 2006; Homer et al., 2008; Macgregor et al., 2008), the

EM algorithm and its variants have been extended by various authors (Ito

et al., 2003; Kirkpatrick et al., 2007; Zhang et al., 2008; Kuk et al., 2009)

to handle pooled genotype data (i.e., the sum of all K = 2k haplotype

vectors of all k individuals in a pool), whereas Pirinen et al. (2008), Gas-

barra et al. (2011) and Pirinen (2009) have extended Bayesian algorithms

using Markov Chain Monte Carlo (MCMC) or reversible jump MCMC

schemes. Also from a Bayesian perspective, Iliadis et al. (2012) conduct

deterministic tree-based sampling instead of MCMC sampling, but their

algorithm is feasible for small pool sizes only, even though the block size

can be arbitrary. Despite the falling costs of genotyping, the popularity

of the pooling strategy has not waned, with Kim et al. (2010) and Liang

et al. (2012) advocating the use of pooling for next-generation sequencing

data. The importance of pooling increases with the recent surge of inter-

est in rare variant analysis based on re-sequencing data (Mardis, 2008) to

explain missing heritability (Eichler et al., 2010) and diseases that cannot

be explained by common variants. Roach et al. (2011) predict that “haplo-

types that include rare alleles . . . will play an increasingly important role in

9



Chapter 1. Introduction

understanding biology, health, and disease”. Perhaps more so than in the

analysis of common variants, pooling has an important role to play in the

analysis of rare variants. This is because the standard methods for testing

genetic association are underpowered for rare variants due to insufficient

sample size as only a small percentage of study subjects would carry a rare

mutation, and pooling is a way to increase the chance of observing a rare

mutation. By using a pooling design, we could include more individuals in

a study at the same genotyping cost. The study by Kuk et al. (2010) shows

that pooling does not lead to much loss of estimation efficiency relative to

no pooling when the alleles are rare.

1.2.2 Notation

Focusing on bi-allelic loci, the two possible alleles at each locus can be

represented by “1” (the minor or variant allele) and “0” (the major allele).

As a result, the alleles at selected loci of a chromosome can be represented

by a binary haplotype vector. Since human chromosomes come in pairs,

there are 2 haplotype vectors for each individual, one maternal, and one

paternal. Suppose we have n pools of k individuals each so that there are

K = 2k haplotypes within each pool. Denote by Yij = (Y1ij, · · · , YLij)′ the

jth haplotype in the ith pool, where i = 1, · · · , n, j = 1, · · · , K, and L is

the number of loci to be genotyped. Assuming Hardy-Weinberg equilibrium,

the nK haplotype vectors are independent and identically distributed with

probability function

f(y1, · · · , yL) = P (Y1ij = y1, · · · , YLij = yL)

10



1.2. Haplotype Frequency Estimation

for every L-tuple y = (y1, · · · , yL)′ belonging to the Cartesian product

Ω = {0, 1}L. With pooling, the observed data are the pool totals

Ti =
K∑
j=1

Yij =

(
K∑
j=1

Y1ij, · · · ,
K∑
j=1

YLij

)′
= (T1i, · · · , TLi)′ , i = 1, · · · , n.

The probability function p (t1, · · · , tL) of each pool total is given by the

K-fold convolution of the haplotype probability function f(y1, · · ·, yL) and

so the likelihood based on the observed pooled data is highly intractable

and not easy to maximize directly.

In Zhang et al. (2008) and Kuk et al. (2009), Gaussian approximation

was applied to the observed pooled genotype data Ti. Denote by the L-

tuple y(i) =
(
y

(i)
1 , · · · , y(i)

L

)′
the corresponding haplotype i with haplotype

frequency f (i). Let f =
(
f (1), · · · , f (r)

)′
be the vector containing frequencies

of all possible haplotypes, where r = 2L is the total number of haplotypes

for L loci, and ω = (ω1, · · · , ωL)′ be the vector of allele frequencies for allele

1’s and Σ0 be the variance-covariance matrix for the L loci. Multivariate

normal distribution was used to approximate the distribution of the pooled

genotype data guaranteed by the Central Limit Theorem

Ti = (T1i, · · · , TLi)′ |f ∼ N(µf ,Σf ), as K →∞ (1.7)

where µf = Kω, Σf = KΣ0.

1.2.3 Existing methods

In this section, we briefly review the existing EM-type algorithms to esti-

mate haplotype frequencies, which is the focus of this thesis.

• Standard EM algorithm. Excoffier and Slatkin (1995) were the first

11
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to apply standard EM algorithm for individual genotype data, and then Ito

et al. (2003) extended EM algorithm to deal with pooled genotype data in

the computer program LDPooled. If the individual haplotypes Yij, i =

1, · · · , n, j = 1, · · · , K, were actually observed, the complete data MLE of

f(y), y ∈ Ω, was given by the sample proportion of haplotype

f̂C(y) =
m(y)

nK
, (1.8)

where m(y) =
∑n

i=1

∑K
j=1 I (Yij = y) was the number of times y appears in

Yij. The E-step of the EM algorithm involved taking conditional expecta-

tion of m(y) given the observed data and current estimates f̂ (t)(y), y ∈ Ω,

to get

m̂(t)(y) = E [m(y)|T1 = t1, · · · , Tn = tn]

=
n∑
i=1

K∑
j=1

P (Yij = y|Ti = ti)

=
n∑
i=1

KP (Yi1 = y|Ti = ti) ,

where

P (Yi1 = y|Ti = ti) =
P (Yi1 = y, Ti = ti)

P (Ti = ti)
(1.9)

=

∑
y2∈Ω,··· ,yK∈Ω
y+y2+···+yK=ti

[
f̂ (t)(y)

∏K
j=2 f̂

(t)(yj)
]

∑
y1∈Ω,··· ,yK∈Ω
y1+···+yK=ti

[∏K
j=1 f̂

(t)(yj)
] .

Since the complete data multinomial likelihood belongs to the exponential

family, the M-step can be carried out analytically to yield the updating

12



1.2. Haplotype Frequency Estimation

formula

f̂ (t+1)(y) =
m̂(t)(y)

nK

which was just Equation (1.8) with m(y) replaced by the imputed value

m̂(t)(y).

Excoffier and Slatkin (1995) derived the approximate estimates of the

variance-covariance matrix for large samples by inverting the estimated

information matrix. However, they found this approach may not lead to the

desired results because the information matrix may be impossible to invert

for one of the following reasons: the number of possible haplotypes may be

extremely large; some haplotypes may have MLE equal or close to zero; a

particular estimated information matrix may be singular or nearly singular

even when all haplotypes have nonzero frequencies. In the case of individual

genotype data, their method was limited in practice by the number of

possible genotypes, which grows exponentially with the haplotype length.

They considered only when all individuals were heterozygous for fewer than

16 loci and when the total number of possible haplotypes in the sample did

not exceed 16,384.

Ito et al. (2003) applied nonparametric bootstrap method to estimate

empirically the standard errors of the frequencies of haplotype. The real

data analysis showed that the frequencies of haplotypes could be inferred

rather accurately from the pooled DNA data when the frequencies were

bigger than 0.1, while the estimated haplotype frequencies with lower fre-

quencies were not reliable as shown by the large standard errors calculated

by the bootstrap method. The performance of their program depended on

the number of combinations, which increased by a power function of the

number of alleles at a locus and also by a factorial of the number of subjects

13
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in a pool. They commented that their program could work for genotype

data with 6 loci and pool size 6, 13 loci and pool size 2, or 25 loci and pool

size 1 (i.e. individual).

• HAPLOPOOL. Kirkpatrick et al. (2007) proposed a method of esti-

mating haplotype frequencies from blocks of consecutive single-nucleotide

polymorphisms (SNPs). They suggested searching for a set of potential

haplotypes of size D, Hc =

{
Ỹd =

(
Ỹ1d, · · · , ỸLd

)′
, d = 1, · · · , D

}
, with

corresponding frequencies f̃d, d = 1, · · · , D, by using the perfect phylogeny

model (Kingman, 1982). Since the tree T̃ generated from the perfect phy-

logeny model may not include all the valid haplotypes which were compat-

ible with the observed pooled data, they proposed adding a penalty factor

to the likelihood function, called the mutation number of the configuration,

which measured how the observed data deviated from the set of haplotypes{
Ỹd, d = 1, · · · , D

}
. This mutation number was defined as the difference

between the observed data and the generated haplotypes with configuration

ci for pool i, mut(ci, i) =
∑L

l=1

∣∣∣tli −∑D
d=1 ỹldcld

∣∣∣, where ci = (ci1, · · · , ciD).

With this definition, the likelihood function can be written as

L(t1, · · · , tn|T̃ ) =
n∏
i=1

(
max
ci

εmut(ci,i)
D∏
d=1

f̃ cidd
cid!

)
.

where ε was the given probability for a mutation. A bottom-up dynam-

ic programming algorithm was used on the tree to find the most likely

configuration.

However, when the mutation number was large, the observed data can-

not be explained by the generated haplotype from the perfect phylogeny

model. They suggested using a greedy approach (Halperin and Karp, 2004)
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1.2. Haplotype Frequency Estimation

to obtain another potential set of haplotypes Hg. For each pool, this al-

gorithm can provide a valid configuration for all pooled data. Thus, the

observed pool can be eventually explained by haplotypes in the configura-

tion. A plausible set of haplotypes needed to be assessed was a combination

of sets from the perfect phylogeny model together with the greedy algorith-

m, H = Hc ∪Hg. Then the standard EM algorithm can be applied to this

set of haplotypes H.

They expected the number of valid haplotypes D was very small (no

more than 20) with small pool sizes (typically be 1, 2 or 3), and therefore

their algorithms can run efficiently. So they needed to partition the region

into small blocks. Each subset of SNPs was analyzed separately and can be

treated as a linear combination of the entire region, in the form of Cix = bi,

where the {0, 1} matrix Ci denotes the combination of subset i, the vector

bi denotes the haplotype frequencies of the subset i and the vector x denotes

the frequencies of entire haplotypes. The aim is to find

x∗ = arg minx≥0 (Cix− bi)2 ,

• PoooL. Zhang et al. (2008) proposed a constrained EM algorithm

to estimate haplotype frequencies from large pooled genotype data. Cal-

culation of the expected number of haplotypes that are compatible with

the pooled genotypes in the Equation (1.9), was the most time-consuming

part of the EM algorithm. A multivariate normal distribution was used to

approximate the distribution of the pooled genotype Ti. Under the nor-

mality assumption (1.7), they showed that Equation (1.9) depended on

f only through ω and Σ0, which can be estimated in the tth step, as

ω̂(t) =
∑r

j=1 f̂
(j),(t)y(j) and Σ̂

(t)
0 =

∑r
j=1 f̂

(j),(t)y(j)y(j)′ − ω̂(t)ω̂(t)′ , respec-
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tively. Then they suggested applying a constrained maximization method

to estimate the haplotype frequencies f .

They suggested a computational efficiency for large pools via the use of

asymptotic normality of the pooled allele frequencies. Their approach can-

not work properly when the number of loci was large. Hence, they suggested

to incorporate sliding window method (Yang et al., 2006) and partition-

ligation method (Niu et al., 2002) when the number of loci was large.

• Approximate EM algorithm. Instead of applying a constrained

maximization method (Zhang et al., 2008), Kuk et al. (2009) proposed to

revert to the usual EM algorithm to obtain MLE via the use of asymptotic

normality of the pooled genotype data. The denominator in the Equation

(1.9) can be approximated by the normal density functions

P (Ti = ti) ≈ Φ
(
Ti; Kω̂

(t), KΣ̂
(t)
0

)
.

where Φ is normal density functions. When y = y(i), the numerator can be

written as P
(
Yi1 = y(i), Ti = ti

)
= P

(
Ti = ti|Yi1 = y(i)

)
f̂ (i),(t), where

P
(
Ti = ti|Yi1 = y(i)

)
≈ Φ

[
Ti − y; (K − 1)ω̂(t), (K − 1)Σ̂

(t)
0

]
.

So the ratio in the Equation (1.9) can be approximated by

P (Yi1 = y|Ti = ti) =
P (Yi1 = y, Ti = ti)

P (Ti = ti)

≈f̂ (i),(t)
Φ
[
Ti − y; (K − 1)ω̂(t), (K − 1)Σ̂

(t)
0

]
Φ
(
Ti; Kω̂(t), KΣ̂

(t)
0

)
Compared with PoooL algorithm (Zhang et al., 2008), the proposed
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1.2. Haplotype Frequency Estimation

method was much simpler to implement since there was no need to invoke

sophisticated iterative scaling methods. Simulation study showed that the

proposed approach lead to estimates with substantially smaller SDs than

PoooL while retaining the advantage of computational efficiency over the

EM algorithm. Similar to most of other haplotype estimates, the major

limitation of this approach was that it cannot work properly when the

number of loci was large. Like in Zhang et al. (2008), sliding window method

(Yang et al., 2006) or partition-ligation method (Niu et al., 2002) were

suggested to be incorporated when the number of loci was very large.

1.2.4 The focus of this topic

Our focus is on computationally fast non-Bayesian methods of estimating

haplotype frequencies from individual or pooled genotype data with ap-

plications to case-control studies involving rare variants (RVs). There are

two main impediments to the use of EM algorithm in estimating haplotype

distribution from pooled genotype data. First, the number of putative hap-

lotypes grows exponentially with the number of loci. Secondly, things get

worse when pool size increases as the number of individual haplotype con-

figurations compatible with the observed pool totals becomes astronomical

quickly. As a result, the EM algorithm can only be applied to data with

small to moderate number of markers and pool size.

In chapter 3, we propose a collapsed data MLE that does not suffer from

the two aforementioned drawbacks of the EM algorithm. This desirable

algorithm is made possible by collapsing the pool total at each marker to

just “0” or “at least 1”, as carried out in the literature of group testing

(Dorfman, 1943; Gastwirth and Hammick, 1989). We show our proposed
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method can be calculated very fast regardless of pool size and haplotype

length. We provide theoretical and empirical evidence to suggest that the

proposed estimation method will not suffer much loss in efficiency if the

variants are rare.

However, if the pool size is moderate or large, which is recommended

from the cost saving point of view, an estimator based on the original

pooled data without collapsing can be substantially more efficient than the

collapsed data MLE. This is why we want to modify the EM algorithm for

finding the pooled data MLE to make it computationally feasible. Gasbarra

et al. (2011) commented that without prior knowledge or restriction on the

possible haplotypes, existing algorithms cannot handle the case of 21 loci

with pool size 6. We have recorded running times of 1862 and 2900 seconds

on an intel (R) Core (TM) desktop when the traditional EM algorithm is

applied to pooled genotype data with 12 loci for 74/37 pools of size 2/4

each. Gasbarra et al. (2011) advocate the use of database information to

create a list of frequently occurring haplotypes. By combining this idea of

using database information to create a list with a normal approximation

(Zhang et al., 2008) for the density of the pooled allele frequencies, Pirinen

(2009) proposed an AEML (Approximate EM with List) algorithm which

runs much faster than the unrestricted EM algorithm.

In chapter 4, we propose using collapsed data list to create an internal

list from the data at hand, and then restrict the haplotypes to come from

this list only in implementing the EM algorithm. We do not assume the

existence of an external list for two reasons. First, database information

for rare alleles is currently still lacking. Secondly, an EM type algorithm

restricted to a list is sensitive to the correct choice and completeness of the
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external list used. Our collapsed data list is shown to have the desirable

effect of amplifying the haplotype frequencies. To improve coverage, we pro-

pose ways to add and remove haplotypes from the list, and a benchmarking

method to determine the frequency threshold for removing haplotypes.
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Chapter 2

Human Biomonitoring

This chapter is organized as follows. Section 2.1 highlights the main findings

of our method; Section 2.2 describes a group-specific Gaussian likelihood

estimator (GLE) and section 2.3 demonstrates the usefulness of pooling

by a real data example; Section 2.4 considers an empirical Bayesian Gaus-

sian likelihood approach (EB-GLE) to pool information across demograph-

ic groups, by using a mixed effect formulation, followed by an adaptive

version of EB-GLE to accommodate a more general mean-variance rela-

tionship in section 2.5; Section 2.6 describes a way to select mean model

via Gaussian likelihood Akaike Information Criterion (AIC) (Akaike, 1974)

and Bayesian Information Criterion (BIC) (Gideon, 1978), and provides

further analyses on NHANES 2003-04 data based on various estimators

with smoothing across demographic groups; Section 2.7 describes Bayesian

analogues of the empirical Bayes Gaussian likelihood estimators; Section

2.8 considers a simulation study and section 2.9 concludes this chapter with

some discussion.

The materials presented in this chapter have been submitted to Statis-

tics in Medicine for the first revision.
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2.1. Summary

2.1 Summary

Motivated by Caudill’s papers, we propose a more efficient method to es-

timate the log-normal distribution of the concentration using pooled sam-

ples. The single measurement from each pool is an average (with equal or

unequal weights) of log-normal results, which is approximately normally

distributed if the pool size K is large enough by the Central Limit Theo-

rem. So it is tempting to approximate the true distribution by a Gaussian

likelihood and use it to obtain estimates. Even though the pool size K is

required to be large to justify the Gaussian likelihood approximation, K

does not need to be large to produce consistent estimates as the number of

pools increases. This is because Gaussian estimation is based on unbiased

estimating equations. We further suggest using a mixed effect formulation

by treating the means of the log-normal distributions across demographic

groups as fixed effects and the squared coefficients of variation as random

effects. By assuming a common distribution for the random effects, we are

able to use an empirical Bayes approach in conjunction with the Gaussian

working likelihood to pool information across demographic groups. Under-

lying this suggestion of treating the squared coefficients of variation as

random effects is the belief that the variance of the exposure distribution is

roughly proportional to the square of the mean exposure. More generally,

we can postulate that the variance is proportional to the mean raised to a

power. We describe a weighted least squares method to estimate the power

coefficient from pooled data, which leads to an adaptive version of the em-

pirical Bayes Gaussian likelihood estimator. Gaussian likelihood versions

of the AIC and BIC are used as an exploratory tool to select a model of

the mean exposure as a function of the demographic variables. One could
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also use the selected mean model in place of the saturated model in the

proposed quasi empirical Bayes approach. Bayesian analogues of the em-

pirical Bayes Gaussian likelihood estimators can also be obtained using the

software JAGS (Plummer, 2003). We use the 2003-04 NHANES exposure

data for the biochemical 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB153) as the

main data set to illustrate all these techniques. The advantage of using

the 2003-04 data, which were collected at the individual level, is that we

can form our own pools to compare the estimates based on individual and

pooled data.

To assess the performance of the various estimators proposed, we apply

them to data simulated from 24 log-normal distributions, one for each de-

mographic group, with parameters in each group set to values compatible

with the 2003-04 data. The simulation results show that the proposed em-

pirical Bayes Gaussian likelihood estimators outperform Caudill’s (Caudill,

2012) estimators for most demographic groups with much smaller bias and

better coverage in interval estimation, particularly after bias correction. It

also has smaller mean squared error than the group-specific Gaussian like-

lihood estimator, which highlights the benefit of borrowing strength from

other groups. Our study also shows that the reduction in variance which

arises from the use of a more parsimonious model of the means is offset

by an increase in bias, leading to poor confidence interval coverage in a

few groups, and the empirical Bayes estimator based on a saturated mean

model actually has better performance. The empirical Bayes Gaussian like-

lihood estimator and its Bayes analogue perform similarly, but the former

is less computing intensive because it does not require Markov chain Monte

Carlo (MCMC) sampling, which opens the possibility of further improve-
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ment by using the bootstrap to estimate the bias and mean squared error

of estimators.

2.2 Gaussian Estimation

In this section, we consider parameter estimation one demographic group

at a time, and derive sandwich type variance formulae for the Gaussian

likelihood estimators. Smoothing of estimates across demographic groups

will be dealt with in section 2.4. Suppose individual samples were grouped

into ni pools of equal size K in the ith demographic group, i = 1, · · · , d.

Denote by Xijk the pollutant concentration of individual k in the jth pool of

the ith demographic group with logXijk ∼ N (µi, σ
2
i ) independently, where

i = 1, · · · , d, j = 1, · · · , ni, k = 1, · · · , K. Assume for the time being that

the unweighed average Aij =
∑K

k=1Xijk/K is recorded for the jth pool in

the ith group. This can be extended to unequal weights (see section 2.9).

The probability density of each Aij is given by the K-fold convolution of

log-normal densities which is highly intractable and not easy to maximize

directly. In principle, one could use the expectation maximization (EM)

algorithm (Dempster et al., 1977) to obtain the maximum likelihood esti-

mators, but the conditional expectations of the sufficient statistics under

the log-normal assumption

E

[
K∑
k=1

logXijk

∣∣∣ K∑
k=1

Xijk

]
, E

[
K∑
k=1

(logXijk)
2
∣∣∣ K∑
k=1

Xijk

]

required in the E-step of the EM algorithm have no closed-form expres-

sions. In our real data example in section 2.3, we consider a Monte Carlo

implementation of the EM algorithm by approximating the above condi-
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tional expectations using simulations at each step. The resulting algorithm

is computing intensive and is not amenable to hierarchical modeling to facil-

itate pooling of information across demographic groups. For these reasons,

we will consider the EM algorithm no further in this study and advocate

Gaussian estimation instead as detailed below.

According to the Central Limit Theorem, the pool average Aij is ap-

proximately normally distributed if the pool size K is large with mean αi

and variance β2
i /K, i = 1, · · · , d, where

αi = E [Xijk] = exp
(
µi + σ2

i /2
)
, β2

i = var [Xijk] = α2
i

[
exp

(
σ2
i

)
− 1
]
.

(2.1)

So it is tempting to approximate the pooled data likelihood by a Gaussian

likelihood. This is a special case of Gaussian estimation (Whittle, 1962;

Crowder, 1985) applied to pooled data. Whereas Gaussian estimation is

usually used for non-Gaussian data, the pool average Aij is asymptotically

normally distributed if K is large and so the maximum Gaussian likelihood

estimator (GLE) can be expected to be asymptotically equivalent to the

pooled data maximum likelihood estimate (MLE) for large pool size K.

However, K does not need to be large for the method to produce consistent

estimates as the number of pools increases. This is a property of Gaussian

estimation. As long as the mean and variance-covariance structures of the

model are not misspecified, the score functions of the Gaussian working

likelihood yield unbiased estimating equations (Crowder, 2001), and the

usual sandwich type standard error estimates can be used to assess the

precision of the estimates. The Gaussian likelihood in the present case

can be maximized easily to yield α̂i,G = ai and β̂2
i,G = Kb2

i , where ai =
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2.2. Gaussian Estimation∑ni
j=1 Aij/ni = Āi. and b2

i =
∑ni

j=1

(
Aij − Āi.

)2
/ni are the sample mean

and sample variance of the pool averages Aij in the ith demographic group.

The GLE of µi and σ2
i can be obtained by substituting α̂i,G and β̂2

i,G into

(2.1), which can be inverted to give

σ̂2
i,G = log

(
β̂2
i,G/α̂

2
i,G + 1

)
,

µ̂i,G = log α̂i,G − σ̂2
i,G/2 = log ai − σ̂2

i,G/2. (2.2)

Note that β̂2
i,G/α̂

2
i,G = K(bi/ai)

2, where (bi/ai)
2 is the square of the sample

coefficient of variation. For the purpose of comparison, Caudill’s estimator

of µi in the equal weight case without smoothing across demographic groups

is

µ̂i,C =

ni∑
j=1

logAij/ni − σ̂2
i,G/2 = log gi − σ̂2

i,G/2

where gi =
(∏ni

j=1Aij

)1/ni
is the geometric mean in the ith demographic

group. Comparing µ̂i,C with (2.2), we can see that µ̂i,C differs from µ̂i,G in

the use of the geometric mean gi rather than the arithmetic mean ai. Since

gi ≤ ai, it follows that µ̂i,C ≤ µ̂i,G, which explains the negative bias of µ̂i,C .

We derive the asymptotic variance formulae for the GLE’s next. Based

on the Gaussian approximation for the distribution of pooled data, we

use N (αi, β
2
i /K) as the working distribution for the pool average Aij.

Taking the first order partial derivative of the log Gaussian likelihood

based on one pool average Ai,1 with respect to αi and β2
i yields the s-

core vector Si,1 =
(
Sαi , Sβ2

i

)T
, where Sαi = K (Ai,1 − αi) /β2

i and Sβ2
i

=

K (Ai,1 − αi)2 /(2β4
i )−1/(2β2

i ). The variance-covariance matrix of the score
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vector Si,1 is

Vi,1 =

 K
β2
i

ρi,3
2β3

i

ρi,3
2β3

i

2K+ρi,4
4Kβ4

i

 ,

where ρi,3 = [exp(σ2
i ) + 2] [exp(σ2

i )− 1]
1/2

and ρi,4 = exp(4σ2
i )+2 exp(3σ2

i )+

3 exp(2σ2
i )− 6 are the skewness and excess kurtosis of the individual data

Xijk in the ith demographic group. Differentiating Si,1 and then taking the

expectation, we obtain the Hessian matrix

Hi,1 = −

 K
β2
i

0

0 1
2β4

i

 .

With ni pools of data, Hi = niHi,1 and Vi = niVi,1, and the sandwich

type asymptotic covariance matrix of the maximum Gaussian likelihood

estimates of αi and β2
i is given by

Cov(α̂i,G, β̂
2
i,G) = H−1

i ViH
−1
i =

1

niK

 β2
i β3

i ρi,3

β3
i ρi,3 β4

i (2K + ρi,4)

 .

Using the delta method, the asymptotic covariance matrix of the GLE of

µi and σ2
i based on pooled samples is given by

Cov(µ̂i,G, σ̂
2
i,G) =


∂µi

∂αi

∂µi

∂β2
i

∂σ2
i

∂αi

∂σ2
i

∂β2
i

Cov(α̂i,G, β̂
2
i,G)


∂µi

∂αi

∂µi

∂β2
i

∂σ2
i

∂αi

∂σ2
i

∂β2
i


T

=
β2
i

4α2
i (α

2
i + β2

i )
2niK

 si ti

ti ui

 ,

26



2.3. First Analysis of the 2003-04 NHANES Data

where si = α2
iβ

2
i (2K + ρi,4) + (α2

i + 2β2
i )(4α

2
i + 8β2

i − 4αiβiρi,3), ui =

4α2
iβ

2
i (2K+ρi,4)+16β4

i−16αiβ
3
i ρi,3, and ti = −2α2

iβ
2
i (2K+ρi,4)+12αiβ

3
i ρi,3+

4α3
iβiρi,3 − 8α2

iβ
2
i − 16β4

i .

The 95th percentile of the concentration is Pi,95 = exp (µi + fσi), where

f = 1.645 is the 95th percentile of the standard normal distribution. The

vector of the first order partial derivatives of Pi,95 with respect to µi and σ2
i

is dPi,95 = (exp(µi + fσi), exp(µi + fσi)f/(2σi))
T . Using the delta method

again, we obtain

var
(
P̂i,95,G

)
= dTPi,95Cov(µ̂i,G, σ̂

2
i,G)dPi,95 .

2.3 First Analysis of the 2003-04 NHANES Data

In 2001, the U.S. Centers for Disease Control and Prevention (CDC) be-

gan to provide an ongoing assessment of the U.S. populations exposure to

environmental chemicals by conducting NHANES surveys, and published

its findings in the biennial National Report on Human Exposure to Envi-

ronmental Chemicals. To save cost, a weighted pooled-sample design was

first used in NHANES 2005-06, as opposed to the 2003-04 design of taking

measurements from individuals. The details of the sampling scheme for N-

HANES 2005-06 and the estimation method proposed by Caudill has been

reported before (Caudill, 2012).

The main example in this study is to use the 2003-04 NHANES data

to estimate the exposure levels of PCB153 in 24 demographic groups in

the U.S. defined according to race or ethnicity (Non-Hispanic White, Non-

Hispanic Black, Mexican American), gender (male, female), and age (12-19

years, 20-39 years, 40-59 years, 60+ years). The 2003-04 data are preferred
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over the 2005-06 data because individual data were collected in 2003-04,

which allow us to test the log-normal assumption, and provide us with the

extra option of pooling the data ourselves to enable comparisons between

the individual and pooled data estimates. The data can be obtained online

from (http://wwwn.cdc.gov/nchs/nhanes/search/nhanes03 04.aspx).

We will begin by testing the log-normal assumption within the Box-

Cox family of distributions. In other words, we assume that the individual

measurements taken in each demographic group are normally distributed

with group-specific mean and variance after the transformation

X(λ) =


Xλ−1
λ

if λ 6= 0

logX if λ = 0
,

where the transformation parameter λ is common to all the groups. A point

estimate of λ based on the 2003-04 individual PCB153 data is -0.033, and

a 95% confidence interval of λ obtained by inverting the likelihood ratio

test (i.e., from the profile log-likelihood of λ) is (-0.081, 0.013). Thus the

log-normal assumption seems to be supported by the data. We also perform

Kolmogorov-Smirnov test and obtain similar results that we cannot reject

the log-normal assumption for all the 24 demographic groups (P values,

range: 0.229-0.980; median: 0.734), providing further justification for the

use of log-normal distribution.

Table 2.1(a) presents the demographic group-specific MLEs of the 95th

percentile Pi,95 (i = 1, · · · , 24) of individual exposure to PCB153 based on

the individual data collected in 2003-04 and the log-normal assumption.

We focus on estimation of the 95th percentile in this study since health

officials are primarily interested in high exposure, which is also the most
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2.3. First Analysis of the 2003-04 NHANES Data

challenging. In comparison, estimation of the mean or median exposure is

relatively easier, with little observed difference between different estimators.

Also shown in Table 2.1(a) are the group-specific empirical 95th percentiles

which do not depend on distributional assumptions and hence are non-

parametric. The parametric and non-parametric estimates are reasonably

close for most groups. In addition to point estimates, we also report 95%

confidence intervals of the 95th percentiles. These confidence intervals are

of the form

(
exp

[
log P̂i,95 − 1.96 SE

(
log P̂i,95

)]
, exp

[
log P̂i,95 + 1.96 SE

(
log P̂i,95

)])

since the distribution of log P̂i,95 is likely to be less skewed than that of P̂i,95.

For the empirical 95th percentiles, their standard errors involve the density

function which is estimated using kernel method with Gaussian kernel and

bandwidth determined by cross-validation.

To demonstrate the usefulness of pooling, we randomly group the in-

dividual observations within each demographic group into pools of size 8

each, and we apply the Monte Carlo EM algorithm described briefly in

the last section, as well as the Gaussian likelihood method to estimate the

parameters separately for each group. The results are summarized in Table

2.1(b). It can be seen that the Gaussian likelihood estimates, which are

very simple to compute, are very close to the Monte Carlo EM estimates.

This suggests that the Gaussian approximation is adequate in this example

with pool size equal to 8. As the Monte Carlo EM algorithm is comput-

ing intensive, and not easy to generalize to enable pooling of information

across groups, we will consider it no further in this study. With or with-

out pooling, the results suggest that non-Hispanic blacks aged 60 or above,
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Table 2.1: Estimates of group-specific 95th percentiles using individual data
based on nonparametric method and log-normal assumption, and using
pooled data based on Monte Carlo EM (MCEM) and Gaussian likelihood
estimator (GLE), with 95% confidence intervals in parentheses.

(a) Individual data

Gender Race∗ Age N† Nonparametric Log-normal

Male NHW 12-19 77 30.8 (24.4-38.9) 23.4 (17.9-30.5)
20-39 102 49.4 (41.8-58.5) 40.9 (33.1-50.7)
40-59 106 113.5 (86.6-148.8) 105.5 (84.4-131.8)
60+ 153 150.3 (136.4-165.6) 168.1 (143.5-196.9)

NHB 12-19 124 23.3 (16.9-32.2) 23.1 (19.2-27.7)
20-39 39 65.4 (53.6-79.8) 44.4 (30.6-64.5)
40-59 44 165.5 (102.6-266.8) 139.7 (99.4-196.1)
60+ 30 441.5 (142.1-1371.8) 532.6 (310.8-912.6)

MA 12-19 98 17.2 (12.8-23.2) 12.9 (10.7-15.5)
20-39 44 20.8 (12.8-34.0) 19.7 (15.2-25.5)
40-59 30 86.3 (35.4-210.1) 61.0 (42.3-88.0)
60+ 37 95.5 (70.5-129.3) 81.3 (62.0-106.6)

Female NHW 12-19 76 19.5 (14.2-26.7) 17.1 (13.5-21.6)
20-39 128 42.1 (27.4-64.7) 35.5 (29.3-43.1)
40-59 101 76.4 (64.1-91.1) 76.4 (64.3-90.8)
60+ 142 145.7 (125.2-169.5) 146.7 (126.8-169.8)

NHB 12-19 106 20.9 (18.5-23.5) 16.5 (13.6-19.9)
20-39 46 38.0 (28.7-50.5) 31.6 (23.4-42.6)
40-59 44 139.0 (53.6-360.5) 119.4 (89.6-159.2)
60+ 31 332.4 (261.6-422.4) 323.2 (230.8-452.7)

MA 12-19 85 9.4 (7.7-11.6) 8.1 (7.0-9.4)
20-39 54 15.6 (11.8-20.5) 15.0 (11.9-18.7)
40-59 32 94.1 (24.1-366.8) 64.1 (40.2-102.2)
60+ 45 110.0 (83.8-144.4) 87.6 (67.1-114.4)

∗NHW: non-Hispanic white, NHB: non-Hispanic black, MA: Mexican American.
†N : number of individual data.
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(b) Pooled data

Gender Race∗ Age n† MCEM GLE

Male NHW 12-19 9 24.5 (16.1-37.2) 26.1 (15.5-44.0)
20-39 12 48.4 (33.8-69.3) 48.3 (32.1-72.8)
40-59 13 113.8 (79.7-162.6) 105.5 (72.5-153.6)
60+ 19 126.6 (104.5-153.5) 123.5 (102.6-148.7)

NHB 12-19 15 25.8 (19.0-35.0) 25.4 (18.4-35.2)
20-39 4 48.9 (25.6-93.5) 47.0 (23.7-93.0)
40-59 5 117.4 (72.4-190.3) 116.7 (71.0-191.9)
60+ 3 341.9 (188.4-620.7) 329.6 (182.4-595.8)

MA 12-19 12 11.2 (8.8-14.3) 10.8 (8.6-13.7)
20-39 5 19.7 (12.6-30.8) 18.4 (12.1-28.0)
40-59 3 35.0 (26.8-45.7) 34.6 (25.9-46.2)
60+ 4 95.6 (52.8-173.1) 102.8 (52.7-200.3)

Female NHW 12-19 9 22.0 (13.9-34.8) 22.5 (12.6-40.4)
20-39 16 38.0 (28.1-51.3) 36.7 (26.6-50.5)
40-59 12 61.7 (49.8-76.6) 61.4 (49.4-76.3)
60+ 17 131.6 (107.1-161.6) 131.1 (106.0-162.1)

NHB 12-19 13 17.1 (12.7-22.9) 17.6 (12.7-24.4)
20-39 5 32.9 (19.5-55.4) 33.2 (19.2-57.3)
40-59 5 129.4 (78.9-212.4) 119.7 (74.3-193.0)
60+ 3 335.2 (176.7-635.9) 335.4 (170.8-658.6)

MA 12-19 10 7.9 (6.1-10.2) 8.0 (6.1-10.5)
20-39 6 12.3 (8.9-16.9) 12.1 (8.8-16.6)
40-59 4 70.7 (34.6-144.3) 71.4 (29.0-175.8)
60+ 5 92.0 (55.8-151.5) 91.1 (55.5-149.4)

∗NHW: non-Hispanic white, NHB: non-Hispanic black, MA: Mexican American.
†n: number of pools.
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regardless of gender, have the highest exposure to PCB153.

2.4 Empirical Bayes GLE

According to the sampling scheme of NHANES 2005-06 (Caudill, 2012), in-

dividual samples were collected in 24 demographic groups based on race /

ethnicity, gender and age group. These samples were pooled and measured

in each group. The number of pools in demographic groups varied depend-

ing on the total number of individual aliquots available, with a range from

3 to 17. The estimates may be not very accurate for groups with very few

pools. A better estimator can be obtained by borrowing strength from oth-

er demographic groups. Hence, Caudill (2012) used weighted linear squares

to determine the relationship between different groups and pooled the in-

formation in an ad hoc way. We propose using an empirical Bayes approach

to pool information across demographic groups by treating certain group-

specific parameters as random effects that follow a common distribution.

Since the exact distribution of Aij is intractable, we replace it by a work-

ing Gaussian likelihood φ(Aij;αi, β
2
i ) =

(
K

2πβ2
i

)1/2

exp
[
−K(Aij−αi)2

2β2
i

]
. Note

that β2
i = γiα

2
i , where γi = exp(σ2

i ) − 1, i = 1, · · · , d. Instead of estimat-

ing separately for each demographic group, we propose using an empirical

Bayes approach to estimate αi and γi simultaneously for all demographic

groups. We will treat the easier to estimate first moments αi = E [Xijk]

as fixed effects, and γi = (βi/αi)
2 = CV2

i as random effects to result in

a mixed model. The reason for dividing β2
i by α2

i is to remove the de-

pendence of β2
i = var [Xijk] on αi = E [Xijk]. Out of convenience, we as-

sume the random effects γi follow a conjugate inverse gamma distribution

π(γ;κ, λ) = λκ

Γ(κ)
γ−(κ+1) exp

(
−λ
γ

)
, where κ > 0 is the shape parameter
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and λ > 0 is the rate parameter. Note that we are using this mixed model

merely as a vehicle for combining information across groups. The data that

we use in section 2.8 to test the method are not simulated from this mixed

model. The joint distribution under this working model is given by

d∏
i=1

[
ni∏
j=1

φ(Aij;αi, γi)

]
π(γi;κ, λ)

=
d∏
i=1

{
ni∏
j=1

(
K

2πγiα2
i

)1/2

exp

[
−K(Aij − αi)2

2γiα2
i

]}
λκ

Γ(κ)
γ
−(κ+1)
i exp

(
− λ
γi

)

=
d∏
i=1

(
K

2πα2
i

)ni/2
γ
−(κ+ni/2+1)
i exp

{
−

[
K
∑ni

j=1(Aij − αi)2

2α2
i

+ λ

]
/γi

}
λκ

Γ(κ)
.

Integrating out the random effects γi in the above function yields the

marginal likelihood

d∏
i=1


(

K

2πα2
i

)ni/2 Γ(κ+ ni/2)[
K

∑ni
j=1(Aij−αi)2

2α2
i

+ λ
]κ+ni/2

λκ

Γ(κ)

 .

Taking the logarithm of the above yields the marginal log-likelihood func-

tion

l(α1, · · · , αd, κ, λ) =
d∑
i=1

{
2κ logαi −

(
κ+

ni
2

)
log

[
K

ni∑
j=1

(Aij − αi)2 + 2λα2
i

]

+ log Γ
(
κ+

ni
2

)}
+ dκ log (2λ)− d log Γ(κ).

(2.3)

up to an additive constant.

Taking the first order partial derivatives with respect to αi, i = 1, · · · , d,
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yields

∂l

∂αi
=

2κ

αi
−
(
κ+

ni
2

) −2K
∑ni

j=1 (Aij − αi) + 4λαi

K
∑ni

j=1 (Aij − αi)2 + 2λα2
i

.

Setting ∂l
∂αi

= 0 yields

(
2niλ+ n2

iK
)
α2
i +

(
2κK

ni∑
j=1

Aij − niK
ni∑
j=1

Aij

)
αi − 2κK

ni∑
j=1

A2
ij = 0.

(2.4)

This quadratic equation has two roots and we keep the positive one α̂i =

−b+
√
b2−4ac

2a
since αi > 0, where a = 2niλ + n2

iK, b = 2κK
∑ni

j=1Aij −

niK
∑ni

j=1 Aij, c = −2κK
∑ni

j=1 A
2
ij. This positive root is the maxima of

the log-likelihood function (2.3) given λ and κ since ∂2l
∂α2

i
(α̂i) < 0. To

maximize the log-likelihood with respect to θ = (λ, κ)T , we derive the

first order derivatives with respect to θ and can obtain the score vector

Sθ =
(
∂l
∂λ
, ∂l
∂κ

)T |θ,
∂l

∂λ
=

d∑
i=1

[
− (2κ+ ni)α

2
i

K
∑ni

j=1 (Aij − αi)2 + 2λα2
i

]
+
dκ

λ
,

∂l

∂κ
=

d∑
i=1

{
2 logαi − log

[
K

ni∑
j=1

(Aij − αi)2 + 2λα2
i

]
+ ψ

(
κ+

ni
2

)}
+

d log (2λ)− dψ(κ),

(2.5)

where ψ(x) = d [log Γ(x)] /dx is the first order derivative of the logarithm

of the gamma function. To use Newton-Raphson algorithm, we further take

the second order derivatives of the log-likelihood function with respect to

θ and obtain the observed information matrix Jθ = −

 ∂2l
∂λ2

∂2l
∂λ∂κ

∂2l
∂λ∂κ

∂2l
∂κ2

∣∣∣∣∣
θ

,
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with

∂2l

∂λ2
=

d∑
i=1

 (4κ+ 2ni)α
4
i[

K
∑ni

j=1 (Aij − αi)2 + 2λα2
i

]2

− dκ

λ2
,

∂2l

∂λ∂κ
=

d∑
i=1

[
− 2α2

i

K
∑ni

j=1 (Aij − αi)2 + 2λα2
i

]
+
d

λ
,

∂2l

∂κ2
=

d∑
i=1

[
ψ′
(
κ+

ni
2

)]
− dψ′(κ),

(2.6)

where ψ′(x) = d2 [log Γ(x)] /dx2 is the second order derivative of the log-

arithm of the gamma function. The algorithm for solving Sθ = 0 given

α1, · · · , αd is as follows:

1. Initialize θ̂r, r = 0;

2. Update θ̂r+1 = θ̂r + J−1

θ̂r
Sθ̂r according to (2.5) and (2.6), and set

r = r + 1;

3. If the increase in marginal log-likelihood function is small, i.e.

l(α1, · · · , αd, θ̂r+1) − l(α1, · · · , αd, θ̂r) < ε, stop; Otherwise, back to

step 2.

where ε is a prespecified tolerance value (e.g. 1e-5). We have described ways

to update estimates for α1, · · · , αd, λ and κ, and we will present our full

algorithm next. EB-GLE (empirical Bayes Gaussian likelihood estimation):

1. Initialize θ̂(q) = (λ̂(q), κ̂(q)) and α̂
(q)
i , i = 1, · · · , d; Set q = 0;

2. Update α̂
(q+1)
i , i = 1, · · · , d, using the positive root obtained from

Equation (2.4) given λ̂(q) and κ̂(q);

3. Update θ̂(q+1) using Newton-Raphson algorithm given θ̂(q) and α̂
(q+1)
i ,

i = 1, · · · , d;
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4. Set q = q+1; Stop if θ̂(q+1) and α̂
(q+1)
i , i = 1, · · · , d, converge and sat-

isfy the criteria that the increase in marginal log-likelihood function

is small, i.e. l(α̂
(q+1)
1 , · · · , α̂(q+1)

d , θ̂(q+1)) − l(α̂
(q)
1 , · · · , α̂(q)

d , θ̂(q)) < ε;

Otherwise, back to step 2.

Let λ̂EB, κ̂EB and α̂i,EB, i = 1, · · · , d, be the resulting empirical

Bayes Gaussian likelihood estimates (EB-GLEs), γi can be estimated

by using the conditional expectation given the data Aij, j = 1, · · · , ni,

and with parameter values set to λ̂EB, κ̂EB and α̂i,EB, i = 1, · · · , d.

The conditional distribution of γi is an inverse gamma distribution,

Γ−1
[
κ+ ni/2, K

∑ni
j=1(Aij − αi)2/(2α2

i ) + λ
]
, and hence γi can be estimat-

ed by

γ̂i,EB =E
[
γi
∣∣Aij, j = 1, · · · , ni; α̂i,EB, λ̂EB, κ̂EB

]
=
K
∑ni

j=1(Aij − α̂i,EB)2/(2α̂2
i,EB) + λ̂EB

κ̂EB + ni/2− 1
.

Next, µi and σi can be estimated by substituting α̂i,EB and β̂2
i,EB = γ̂i,EBα̂

2
i,EB

into (2.1), which can be inverted to give

σ̂i,EB =
√

log (γ̂i,EB + 1), µ̂i,EB = log α̂i,EB − σ̂2
i,EB/2.

The pth percentile for the ith demographic group can be estimated by

P̂i,p,EB = exp (µ̂i,EB + fpσ̂i,EB) ,

where fp is the pth percentile of the standard normal distribution.
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2.5 An Adaptive EB Estimator via Estimating the

Mean-Variance Relationship

In section 2.4, we assume that γi =
var[Xijk]
{E[Xijk]}2

, i = 1, · · · , 24, can be

treated as identically distributed random effects. This can be considered as

a relaxation from constant γi to random γi. Now, constant γi corresponds

to the mean-variance relationship var [Xijk] = c {E [Xijk]}2, which in a

way is the natural one for log-normal Xijk because this holds when σ2
i =

var [logXijk] are constant.

The empirical Bayes Gaussian likelihood estimation method described

in section 2.4 can be extended easily to accommodate a more general mean-

variance relationship

var [Xijk] = c {E [Xijk]}φ . (2.7)

In fact, the only change is to replace the working Gaussian distribution

with N
(
αi, γiα

φ
i /K

)
. The corresponding marginal log-likelihood is given

by

d∏
i=1


(

K

2παφi

)ni/2
Γ(κ+ ni/2)[

K
∑ni
j=1(Aij−αi)2

2αφi
+ λ
]κ+ni/2

λκ

Γ(κ)

 ,

which can be maximized to obtain the adaptive version of the estimates of

λ, κ and αi, i = 1, · · · , d, using an algorithm similar to the one described

in section 2.4.

We now describe a method to estimate φ from pooled data. Taking
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logarithm on both sides of (2.7), we have

log {var [Xijk]} = a+ φ log {E [Xijk]}.

Now E [Xijk] can be estimated by the group average Āi =
∑ni

j=1Aij/ni, and

var [Xijk] can be estimated by Ku2
i , where u2

i =
∑ni

j=1

(
Aij − Āi

)2
/(ni− 1)

is the unbiased sample variance of the pool averages Aij in demographic

group i. This suggests that φ can be estimated by the slope of a weighted

least squares regression of log (u2
i ) on log

(
Āi
)

with weights ni − 1. This

choice of weights is suggested by the following argument. If the Aij are

truly normal, then (ni − 1)u2
i =

∑ni
j=1

(
Aij − Āi

)2 ∼ var [Aij]χ
2
ni−1, and

so (ni − 1)2 var [u2
i ] = var [Aij]

2 2(ni − 1), which implies var [log (u2
i )] ≈

var[u2i ]
E2[u2i ]

=
2 var2[Aij ]

(ni−1) var2[Aij ]
∝ (ni − 1)−1.

An adaptive version of the empirical Bayes Gaussian likelihood estima-

tor suggests itself when the weighted least squares estimator φ̂ is used in

place of φ.

2.6 Further Analysis of the 2003-04 NHANES Data

Based on the pooled version of the 2003-04 data, the weighted least squares

estimate of φ is 1.843, which is quite near 2. A plot of log(u2
i ) versus log(Āi)

with the weighted least squares line superimposed can be found in Figure

2.1. Thus the estimation method derived in section 2.4 based on a fixed

φ of 2 should suffice. The resulting empirical Bayes estimates of the 95th

percentiles of the 24 demographic groups are displayed in Table 2.2 along-

side the estimates obtained using Caudill’s method and the group-specific

GLEs. Ninety five percent confidence intervals of the form
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Figure 2.1: Plot of log (u2
i ) versus log

(
Āi
)

for the artificially pooled N-
HANES 2003-04 data. The radius of the circle indicates the relative weight
of this data point in the weighted least squares regression and the line
represents the weighted least squares fit.

CI1 =
(

exp
[
log P̂i,95 − 1.96 SE

(
log P̂i,95

)]
, exp

[
log P̂i,95 + 1.96 SE

(
log P̂i,95

)])
(2.8)

are given for all estimators. For the group-specific Gaussian likelihood es-

timates, standard errors are obtained using the formulae given in section

2.2. For the other estimators, parametric bootstrap (Efron, 1979) with 2000

bootstrap replicates is used to obtain the standard errors or root mean

squared errors of log
(
P̂95

)
. To be precise, the bootstrap samples are simu-

lated according to log-normal distributions with parameters µi and σ2
i set

to the group-specific GLEs.

We will use the confidence intervals constructed from the group-specific
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Table 2.2: Estimates of 95th percentiles using pooled data based on group-
specific Gaussian likelihood estimator (GLE), Caudill’s estimator (Caudil-
l), empirical Bayes Gaussian likelihood estimator (EB-GLE) and EB-GLE
with selected mean model (EB-GLEM), with the 95% confidence intervals
(CIs) constructed using three methods.

(a) GLE and Caudill’s estimator

GLE Caudill
i Gender Race∗ Age n† Estimate CI1‡ Estimate CI1‡ CI2‡ CI1-BC‡

1 Male NHW 12-19 9 26.1 (15.5-44.0) 24.2 (19.1-30.6) (15.9-36.6) (22.7-36.4)
2 20-39 12 48.3 (32.1-72.8) 43.8 (36.4-52.9) (29.6-64.9) (43.4-63.0)
3 40-59 13 105.5 (72.5-153.6) 90.1 (74.9-108.4) (56.5-143.6) (93.2-134.9)
4 60+ 19 123.5 (102.6-148.7) 149.3 (130.5-170.9) (110.3-202.1) (113.6-148.8)
5 NHB 12-19 15 25.4 (18.4-35.2) 26.7 (22.6-31.6) (22.1-32.2) (23.6-33.0)
6 20-39 4 47.0 (23.7-93.0) 43.5 (32.4-58.4) (28.6-66.2) (37.8-68.0)
7 40-59 5 116.7 (71.0-191.9) 113.3 (91.1-140.9) (85.8-149.6) (99.4-153.9)
8 60+ 3 329.6 (182.4-595.8) 307.6 (233.8-404.8) (216.9-436.3) (261.0-452.0)
9 MA 12-19 12 10.8 (8.6-13.7) 17.2 (14.6-20.2) (8.3-35.4) (10.2-14.1)
10 20-39 5 18.4 (12.1-28.0) 24.6 (20.4-29.7) (15.9-38.1) (16.7-24.3)
11 40-59 3 34.6 (25.9-46.2) 60.2 (53.5-67.7) (23.2-156.1) (33.0-41.8)
12 60+ 4 102.8 (52.7-200.3) 89.6 (67.3-119.3) (54.7-146.8) (82.6-146.5)
13 Female NHW 12-19 9 22.5 (12.6-40.4) 20.0 (15.4-26.1) (12.2-32.9) (19.1-32.3)
14 20-39 16 36.7 (26.6-50.5) 36.4 (31.2-42.5) (28.8-46.0) (34.2-46.5)
15 40-59 12 61.4 (49.4-76.3) 83.1 (74.2-93.2) (51.5-134.3) (58.5-73.5)
16 60+ 17 131.1 (106.0-162.1) 149.5 (130.4-171.4) (121.4-184.1) (120.4-158.2)
17 NHB 12-19 13 17.6 (12.7-24.4) 20.2 (16.8-24.3) (16.6-24.7) (16.2-23.4)
18 20-39 5 33.2 (19.2-57.3) 34.5 (27.2-43.7) (26.7-44.5) (28.6-45.9)
19 40-59 5 119.7 (74.3-193.0) 118.9 (95.9-147.5) (93.1-151.9) (101.9-156.6)
20 60+ 3 335.4 (170.8-658.6) 284.4 (209.3-386.6) (171.4-471.9) (257.0-474.8)
21 MA 12-19 10 8.0 (6.1-10.5) 12.6 (10.3-15.5) (6.2-25.7) (7.3-10.9)
22 20-39 6 12.1 (8.8-16.6) 19.4 (16.5-22.8) (9.1-41.3) (11.3-15.7)
23 40-59 4 71.4 (29.0-175.8) 54.7 (37.4-80.0) (25.5-117.1) (52.4-112.0)
24 60+ 5 91.1 (55.5-149.4) 90.8 (73.3-112.5) (70.8-116.5) (78.2-120.0)

Average length 85.4 36.1 66.6 40.2
n ≥ 9 30.8 17.6 40.3 17.7
n ≤ 6 140.0 54.7 92.9 62.6
∗NHW: non-Hispanic white, NHB: non-Hispanic black, MA: Mexican American.
†n: number of pools.
‡Confidence intervals given by (2.8), (2.9) and (2.10).

GLEs as the benchmark since these estimates are consistent if there is suffi-

cient numbers of pools within each demographic group. To protect against

possible bias in the EB-GLE and Caudill’s estimates, we also construct

confidence intervals of the form

CI2 =
(

exp
[
log P̂i,95 − 1.96 RMSE

(
log P̂i,95

)]
, exp

[
log P̂i,95 + 1.96 RMSE

(
log P̂i,95

)])
(2.9)

where RMSE
(

log P̂i,95

)
is the bootstrap estimates of the root mean squared
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(b) EB-GLE and EB-GLEM

EB-GLE EB-GLEM
i Estimate CI1∗ CI2∗ CI1-BC∗ Estimate CI1∗ CI2∗ CI1-BC∗

1 25.0 (16.5-38.0) (15.7-39.9) (18.3-42.2) 32.2 (24.5-42.4) (21.1-49.3) (20.8-35.9)
2 47.0 (33.5-65.9) (32.3-68.2) (36.3-71.4) 48.2 (37.1-62.6) (36.4-63.8) (39.1-66.0)
3 103.1 (75.3-141.3) (72.7-146.2) (81.3-152.6) 98.1 (77.2-124.6) (71.1-135.3) (86.2-139.0)
4 137.9 (117.8-161.5) (116.2-163.7) (113.8-156.1) 140.1 (118.8-165.3) (113.2-173.4) (110.9-154.2)
5 25.1 (19.0-33.2) (18.7-33.8) (20.0-35.0) 25.4 (19.9-32.4) (19.7-32.8) (20.7-33.8)
6 45.1 (28.2-72.0) (25.8-78.9) (33.0-84.2) 50.0 (39.2-63.7) (39.1-63.8) (38.6-62.8)
7 119.6 (86.4-165.5) (84.2-169.8) (92.5-177.0) 125.6 (99.2-159.0) (99.2-159.1) (98.5-157.9)
8 352.7 (253.7-490.2) (250.2-497.1) (266.5-515.0) 366.1 (283.6-472.7) (282.2-475.0) (276.5-461.0)
9 12.4 (10.4-14.8) (10.2-15.2) (10.0-14.2) 12.3 (10.4-14.6) (10.0-15.2) (9.7-13.7)
10 20.4 (15.7-26.4) (15.7-26.4) (15.6-26.3) 21.9 (18.3-26.3) (16.5-29.2) (16.3-23.5)
11 52.5 (46.2-59.8) (28.3-97.4) (33.9-43.9) 48.1 (42.1-54.9) (24.6-94.1) (30.1-39.2)
12 99.2 (63.2-155.5) (58.4-168.5) (73.0-179.4) 108.8 (78.4-150.9) (77.8-152.0) (81.1-156.2)
13 21.6 (13.7-34.0) (12.9-35.9) (15.4-38.2) 23.9 (17.8-32.2) (17.8-32.2) (17.8-32.3)
14 36.2 (27.5-47.5) (26.9-48.6) (29.2-50.4) 36.7 (29.2-46.2) (28.7-46.9) (30.5-48.3)
15 72.5 (61.4-85.5) (59.0-89.1) (57.7-80.3) 70.7 (60.0-83.3) (53.7-93.1) (53.6-74.4)
16 143.1 (120.5-169.9) (120.1-170.4) (118.5-167.1) 148.6 (123.6-178.6) (118.0-187.2) (115.1-166.3)
17 17.6 (13.5-23.0) (13.2-23.5) (14.2-24.3) 17.9 (14.1-22.8) (13.9-23.0) (14.6-23.6)
18 32.9 (22.6-47.8) (21.4-50.5) (25.2-53.3) 38.5 (30.8-48.1) (28.9-51.3) (28.1-43.8)
19 124.8 (91.3-170.5) (89.9-173.3) (96.2-179.6) 118.2 (91.2-153.1) (89.7-155.8) (95.8-160.8)
20 337.6 (226.2-503.9) (213.2-534.6) (253.8-565.4) 381.5 (287.4-506.3) (282.0-516.0) (272.4-479.9)
21 9.0 (7.3-11.0) (7.3-11.0) (7.1-10.7) 9.1 (7.6-11.0) (7.2-11.6) (7.0-10.3)
22 14.7 (12.2-17.7) (11.4-19.0) (11.2-16.2) 16.7 (14.1-19.7) (10.1-27.4) (11.1-15.5)
23 66.6 (35.7-124.2) (31.3-141.7) (44.4-154.4) 54.7 (39.8-75.3) (25.6-116.8) (56.6-106.9)
24 93.5 (67.3-129.8) (65.5-133.4) (72.2-139.2) 106.0 (78.4-143.2) (77.2-145.5) (74.6-136.2)

Average length 55.1 64.0 59.9 43.6 53.6 43.2
n ≥ 9 25.8 28.4 26.7 23.0 29.4 22.6
n ≤ 6 84.5 99.6 93.0 64.2 77.7 63.7
∗Confidence intervals given by (2.8), (2.9) and (2.10).
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error (RMSE) of log P̂i,95 as an estimator of logPi,95.

By inspecting Table 2.2, we can see that both Caudill’s estimator and

EB-GLE lead to confidence intervals shorter than those constructed using

group-specific GLE, and this is because of pooling of information across

demographic groups. There is a huge difference in length between CI1 and

CI2 constructed using Caudill’s estimates (the average length is almost

doubled from 36.1 to 66.6). As the difference between CI2 and CI1 is due

to the use of RMSE instead of SE, this suggests that Caudill’s estimates are

severely biased and that the resulting CI1s are too short and likely to under-

cover. In contrast, there is very little difference between CI1 and CI2 based

on EB-GLE in 23 out of the 24 groups. The only demographic group with

a substantial difference between the two CIs is group 11 (which has only 3

pools of individuals) for which CI1 = (46.2, 59.8) and CI2 = (28.3, 97.4).

Rather than using the RMSE to construct confidence intervals as in

(2.9), which is likely to lead to intervals on the wide side, anther strategy

is to incorporate bias correction in CI1, leading to

CI1-BC =
(

exp
[
log P̂i,95 − b− 1.96 SE

(
log P̂i,95

)]
, exp

[
log P̂i,95 − b+ 1.96 SE

(
log P̂i,95

)])
(2.10)

where b is the bootstrap estimate of the bias of log P̂i,95 as an estimator of

logPi,95. Note that we have ignored the variability of b as an estimator of

the bias in (2.10) in the hope that it is relatively smaller than the variance of

log P̂i,95. Simulation results to be reported later in section 2.8 suggest that

CI1-BC works well for EB-GLE but not for Caudill’s estimator. From Table

2.2, we can see that CI1-BC seems to work well for EB-GLE and affects

changes only where it matters in correcting the confidence interval from
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2.6. Further Analysis of the 2003-04 NHANES Data

(46.2, 59.8) to (33.9, 43.9) for group 11 without increasing the width greatly.

This is in contrast to the wide CI2 = (28.3, 97.4) obtained when RMSE is

used instead of SE. The average length of CI1-BC for EB-GLE is 59.9 which

is 30% shorter than the average length of CI1 based on the group-specific

GLEs. The average length of CI1-BC for Caudill’s estimator is 40.2 which

is even shorter, but simulation results to be reported in section 2.8 show

that CI1-BC constructed from Caudill’s estimator has poor coverage.

Table 2.3: Selection of log-linear model of mean exposure based on pooled
2003-04 NHANES data by Gaussian AIC/BIC∗, and parameter estimates
under the selected model.

(a) Model selection.

i Model† logL‡ AIC∗ BIC∗

1 gender -1014.11 2034.22 2044.25
2 race -979.64 1967.29 1980.66
3 age -753.87 1513.74 1523.77

4 gender+race -979.59 1969.19 1985.90
5 gender+age -749.19 1506.38 1519.75
6 race+age -697.88 1405.77 1422.48
7 gender×race -979.26 1972.53 1995.92
8 gender×age -747.46 1504.92 1521.63
9 race×age -677.36 1368.71 1392.11

10 gender+race+age -691.39 1394.78 1414.84
11 age+gender×race -691.25 1398.50 1425.24
12 race+gender×age -688.22 1390.45 1413.85
13 gender+race×age -667.99 1351.99 1378.72
14§ gender×age+race×age -662.91 1343.83 1373.91
15 gender×race+race×age -667.74 1355.49 1388.91
16 gender×race+gender×age -688.19 1394.37 1424.45
17 gender×race+gender×age+race×age -662.73 1347.47 1384.23
18 gender×race×age -662.22 1350.45 1393.90
∗AIC: Akaike information criterion, BIC: Bayesian information criterion.
†Model: ‘×’ indicates interaction with main effects included.
‡logL: Gaussian log-likelihood function.
§Model 14: selected with smallest AIC and BIC.

Thus far, we have treated the means αi = E [Xijk] , i = 1, · · · , 24,

as fixed effects, and
var[Xijk]

{E[Xijk]}φ
with appropriately chosen φ (the default

is 2) as random effects. A natural next step is to use a more parsimo-

nious model of the means which allows even more pooling of informa-

tion across demographic groups. Towards this aim, we adopt a general-

ized linear framework, with log-link for the αi = E [Xijk], since they are
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(b) Estimates and standard errors (SEs) of the coefficients in the selected model.

Coefficients in the mean model
Estimate SE Estimate SE

Constant 3.2180 0.0484 Age-40 0.0309 0.0018
Gender:Female -0.1696 0.0468 (Age-40)×Female 0.0058 0.0018
Race:NHB∗ 0.2308 0.0588 (Age-40)×NHB∗ 0.0167 0.0027
Race:MA∗ -0.5795 0.0846 (Age-40)×MA∗ 0.0069 0.0034

Coefficients of Age
Race∗ Male Race∗ Female

NHW 0.0309 0.0018 NHW 0.0367 0.0019
NHB 0.0476 0.0023 NHB 0.0534 0.0023
MA 0.0378 0.0030 MA 0.0436 0.0033
∗NHW: non-Hispanic white, NHB: non-Hispanic black, MA: Mexican American.

(c) Estimates and standard errors (SEs) of the group-specific means

Male Female
Saturated Selected Saturated Selected

model model model model
Race∗ Age n† Estimate SE Estimate SE n† Estimate SE Mean SE

NHW 12-19 9 9.07 1.15 11.73 0.93 9 7.46 1.05 8.58 0.67
20-39 12 17.69 1.74 18.06 1.08 16 14.24 1.08 14.34 0.78
40-59 13 39.64 3.56 33.49 1.44 12 34.65 1.45 29.88 0.90
60+ 19 66.57 2.45 68.10 3.76 17 66.85 2.91 69.48 3.27

NHB 12-19 15 9.97 0.77 9.81 0.67 13 7.21 0.55 7.18 0.47
20-39 4 17.55 2.87 19.09 0.99 5 13.29 1.70 15.16 0.76
40-59 5 49.90 5.63 50.62 2.95 5 52.71 5.63 44.10 2.60
60+ 3 149.56 19.47 147.60 14.08 3 138.40 21.58 150.59 14.88

MA 12-19 12 5.86 0.27 5.54 0.26 10 4.11 0.23 4.06 0.22
20-39 5 8.91 0.79 9.41 0.43 6 6.72 0.41 7.47 0.43
40-59 3 23.99 1.19 19.29 1.69 4 23.36 5.07 17.49 1.84
60+ 4 38.93 6.20 47.78 7.45 5 39.04 4.38 48.74 8.62

∗NHW: non-Hispanic white, NHB: non-Hispanic black, MA: Mexican American.
†n: number of pools.

positive, and with var [Xijk] = c {E [Xijk]}2, which is supported by the

weighted least squares analysis. The quasi AIC/BIC criteria are used as

an exploratory tool for model selection based on the Gaussian likelihood

computed using the pooled data Aij under various models for logαi =

log {E [Xijk]} = log {E [Aij]}, and with mean-variance relationship given

by var
[
Āij
]

= K−1 var [Xijk] ∝ {E [Xijk]}2. A list of the models considered

and their associated Gaussian likelihood AIC/BIC are given in Table 2.3(a).

It can be seen that both the AIC and BIC select a model which contains

the main effects of race, gender and age, as well as the interaction between

age and race, and between age and gender, but no interaction between race
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and gender, and no 3-way interaction. The parameter estimates for this

selected model are given in Table 2.3(b). It can be seen that the regres-

sion coefficients of age are significantly positive under all 6 combinations

of race and gender, which suggest that there are age-related accumulation

of PCB153. It is also interesting to note that non-Hispanic black females

and non-Hispanic black males have the largest two coefficients of age, and

this is consistent with the last remark in section 2.3 that non-Hispanic

blacks aged 60 or above, regardless of gender, have the highest exposure to

PCB153. Table 2.3(c) lists the estimates of the group-specific means ob-

tained under the saturated model and the selected model. The estimates

are broadly comparable, but as expected, by using the more parsimonious

model selected by AIC/BIC, the estimated standard errors become smaller.

Assuming again an inverse gamma distribution for γi =
var[Xijk]
{E[Xijk]}2

, an

empirical Bayes Gaussian likelihood estimator based on the selected mean

model can be derived in a way similar to the derivation in section 2.4, where

the only difference is in replacing the saturated model for the αi = E [Xijk]

by the selected model. The empirical Bayes Gaussian likelihood estimates

of the 95th percentiles of the 24 demographic groups with the selected mean

model incorporated are also shown in Table 2.2 under the name EB-GLEM,

together with the associated CI1, CI2 and CI1-BC. As is the case for EB-

GLE, CI1 and CI1-BC for EB-GLEM are substantially different only in

demographic group 11. The CIs constructed from EB-GLEM are shorter

than those based on EB-GLE (43.6 versus 55.1 for CI1; 43.2 versus 59.9 for

CI1-BC), due to a more economic modeling of the mean structure.
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2.7 Bayesian Estimates

A quasi Bayesian approach could also be used instead of the proposed quasi

empirical Bayes approach. We implement this using the software JAGS by

specifying independent normal priors with mean 0 and variance 10,000

for the parameters of the log-linear model of the means, and independent

gamma priors Γ(0.01, 0.01) for the hyper-parameters κ and λ of the in-

verse gamma mixing distribution of the γi. We call this a quasi Bayesian

approach because we are treating the Aij as if they are exactly normal.

The posterior medians will be used as point estimates, and 95% credible

intervals constructed instead of confidence intervals.

An exact Bayesian approach based on the observed pooled data (which

is a form of incomplete data) is computing intensive. Akin to exact max-

imum likelihood based on pooled log-normal data, which requires the use

of the EM algorithm to solve a fixed point problem, exact Bayesian infer-

ence based on pooled data in this case would require the use of the poor

man’s data augmentation algorithm by Wei and Tanner (1990) to solve

a functional fixed point problem. To digress, consider only one pool and

imagine a situation where the posterior distribution f(θ|x1, · · · , xK) of the

generic parameter θ given the complete data x1, · · · , xK is easy to find, but

the posterior distribution f(θ|x̄) when only the average x̄ of x1, · · · , xK is

observed is difficult to obtain. Now

f(θ|x̄) =

∫
· · ·
∫
f(θ|x1, · · · , xK)f(x1, · · · , xK |x̄)dx1 · · · dxK

=

∫
· · ·
∫
f(θ|x1, · · · , xK)

[∫
f(x1, · · · , xK |x̄, θ∗)f(θ∗|x̄)dθ∗

]
dx1 · · · dxK .

Thus f(θ|x̄) is a fixed point to the above functional equation and the poor

man’s data augmentation algorithm is an iterative simulations based pro-
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cedure to solve this functional fixed point problem.

To control the amount of computation at a manageable level, we will not

implement the exact Bayes approach. Instead, we compute the quasi Bayes

estimates which treat the Gaussian likelihood as if it is the true likelihood.

The resulting Bayesian analogue of EB-GLE will be denoted by B-GLE. By

making use of MCMC method, which is built into JAGS, we can use other

mixing distributions for the random effects γi, and not limit ourselves to

the conjugate inverse gamma mixing distribution. In our simulation study,

we will consider gamma and log-normal mixing distributions in addition to

inverse gamma. The flip side of using MCMC method is that it is computing

intensive, and so the B-GLE is not amenable to bias correction via the

bootstrap.

2.8 Simulation Study

To compare the performance of the various estimators constructed from

pooled data, we conduct a simulation study that mimics the NHANES

design. Specifically, we simulate 8ni individual samples from demographic

group i (i = 1, · · · , 24) according to a log-normal distribution with param-

eters µi and σ2
i set to the values estimated by the group specific Gaussian

estimation method. These values of µi, σ
2
i and ni (which varies from 3 to

17) are listed in Table 2.4 and treated as the true parameter values for our

simulation study. After simulating the individual values, we group them

at random into ni pools of size 8 each and compute the simple average

of each pool, and the pool averages, rather than the underlying individual

values, are what we use to construct the various estimates. The method-

s that we use to construct estimates include (i) group-specific Gaussian
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Table 2.4: Mean, percent bias (% bias) and mean squared error (MSE)
of the group-specific Gaussian likelihood estimator (GLE), empirical Bayes
Gaussian likelihood estimator (EB-GLE) and Caudills estimator of the 95th

percentile P95 for 24 demographic groups based on 1000 simulations, togeth-
er with average length (L) and coverage (C) of the 95% confidence intervals
(CIs) based on three methods.

(a) Estimation

TRUE GLE EB-GLE Caudill
i n µ σ2 P95 Mean % bias MSE Mean % bias MSE Mean % bias MSE

1 9 1.82 0.77 26.08 23.99 -8.02 33.05 23.87 -8.47 35.11 22.04 -15.50 23.69
2 12 2.54 0.66 48.34 45.68 -5.51 71.33 45.41 -6.07 70.28 40.65 -15.90 73.92
3 13 3.38 0.61 105.50 100.30 -4.93 290.11 99.80 -5.40 276.56 85.23 -19.21 473.30
4 19 4.10 0.19 123.54 121.19 -1.90 134.50 127.81 3.46 122.16 141.90 14.86 425.76
5 15 2.03 0.54 25.43 24.21 -4.83 15.64 24.17 -4.95 14.36 24.31 -4.42 5.92
6 4 2.56 0.62 46.96 39.75 -15.37 200.39 41.20 -12.26 143.37 40.58 -13.59 73.97
7 5 3.70 0.41 116.73 104.17 -10.76 786.70 110.33 -5.48 439.02 107.22 -8.14 239.78
8 3 4.84 0.34 329.64 275.03 -16.57 9761.52 320.33 -2.82 3482.25 300.02 -8.99 2664.12
9 12 1.68 0.18 10.83 10.42 -3.82 1.70 11.32 4.50 1.30 15.54 43.48 23.89
10 5 2.05 0.27 18.39 16.69 -9.24 14.76 18.53 0.78 6.49 22.44 22.03 21.08
11 3 3.15 0.06 34.60 31.42 -9.20 30.54 47.00 35.83 163.83 56.01 61.89 470.06
12 4 3.36 0.59 102.76 87.68 -14.68 982.57 91.36 -11.09 665.10 84.78 -17.50 488.54
13 9 1.57 0.89 22.52 20.85 -7.38 27.02 20.73 -7.94 31.46 18.30 -18.72 24.09
14 16 2.38 0.55 36.67 35.14 -4.18 29.40 35.01 -4.54 27.12 33.62 -8.33 17.01
15 12 3.47 0.16 61.35 59.23 -3.46 49.03 65.40 6.60 48.99 77.94 27.04 296.83
16 17 4.09 0.23 131.08 127.37 -2.84 196.18 133.16 1.58 139.51 141.99 8.32 222.99
17 13 1.74 0.47 17.61 16.78 -4.69 7.49 16.88 -4.16 6.17 18.32 4.05 3.56
18 5 2.34 0.50 33.19 30.05 -9.46 72.92 31.03 -6.51 50.03 32.02 -3.53 16.27
19 5 3.78 0.38 119.74 108.34 -9.52 795.68 115.99 -3.13 419.24 113.60 -5.13 202.64
20 3 4.70 0.46 335.43 271.93 -18.93 11503.45 304.13 -9.33 5472.89 276.43 -17.59 5563.17
21 10 1.30 0.22 7.97 7.65 -4.01 1.19 8.24 3.40 0.77 11.33 42.15 12.72
22 6 1.82 0.17 12.10 11.36 -6.09 3.73 13.27 9.63 2.99 17.66 45.89 33.19
23 4 2.69 0.92 71.38 59.74 -16.30 553.57 60.45 -15.32 535.94 51.33 -28.09 492.23
24 5 3.46 0.41 91.06 81.80 -10.17 441.56 86.49 -5.02 239.89 85.85 -5.72 120.49

Average 8.41∗ 1083.50 7.43∗ 516.45 19.17∗ 499.55
n ≥ 9 4.63∗ 71.39 5.09∗ 64.48 18.50∗ 133.64
n ≤ 6 12.19∗ 2095.62 9.77∗ 968.42 19.84∗ 865.46
∗Average of absolute % bias.

likelihood estimation (GLE), (ii) Caudill’s method, (iii) empirical Bayes

Gaussian likelihood estimation (EB-GLE) under a saturated mean model

and φ = 2, (iv) the adaptive version where φ is estimated by the weighted

least squares method described in section 2.5, (v) EB-GLE under the mean

model selected in Table 2.3 and φ = 2, (vi) the Bayes analogue of (iii) using

various mixing distributions for the γi, and finally (vii) the Bayes analogue

of (v).

The first comparison that we would like to make is between the group-
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(b) Confidence interval

GLE EB-GLE Caudill
CI1∗ CI1∗ CI1-BC∗ CI2∗ CI1-BC∗ CI2∗

i L C L C L C L C L C L C

1 25.09 0.86 19.53 0.82 21.46 0.86 21.50 0.83 11.62 0.68 20.42 0.85
2 37.35 0.91 30.91 0.88 33.16 0.91 33.38 0.90 17.68 0.69 36.32 0.84
3 74.90 0.90 63.47 0.88 67.56 0.91 68.08 0.89 38.14 0.71 85.57 0.83
4 44.23 0.91 41.32 0.95 41.20 0.92 42.25 0.96 33.11 0.81 74.48 0.87
5 15.70 0.90 13.65 0.88 14.35 0.90 14.46 0.89 8.62 0.72 13.70 0.95
6 52.49 0.76 35.74 0.71 41.06 0.72 43.22 0.78 21.49 0.54 42.89 0.90
7 98.77 0.79 74.06 0.82 79.86 0.76 85.15 0.87 45.61 0.58 90.03 0.94
8 287.19 0.66 187.52 0.79 197.61 0.59 290.21 0.97 142.73 0.50 335.07 0.94
9 4.64 0.87 4.19 0.96 4.15 0.92 4.47 0.98 3.64 0.81 22.32 0.94
10 13.09 0.79 9.96 0.91 10.19 0.79 11.88 0.98 6.45 0.59 26.87 0.92
11 14.05 0.64 12.17 0.01 9.37 0.63 61.02 0.90 7.09 0.48 140.92 0.98
12 112.69 0.74 77.35 0.71 88.36 0.71 93.44 0.78 47.38 0.52 91.55 0.84
13 24.47 0.88 18.56 0.84 20.55 0.87 20.48 0.86 11.21 0.71 19.86 0.83
14 22.27 0.90 19.49 0.87 20.48 0.90 20.65 0.88 11.58 0.68 21.15 0.90
15 24.68 0.88 22.64 0.93 22.14 0.89 25.02 0.95 14.02 0.69 73.43 0.87
16 52.85 0.90 48.52 0.96 48.83 0.93 49.56 0.97 36.59 0.77 62.38 0.93
17 10.88 0.89 9.44 0.88 9.92 0.89 10.00 0.89 6.52 0.73 10.49 0.96
18 32.49 0.82 24.03 0.80 26.66 0.78 27.63 0.83 14.29 0.58 28.81 0.97
19 99.83 0.81 75.12 0.86 80.37 0.79 87.25 0.93 46.48 0.57 97.52 0.95
20 327.78 0.68 209.81 0.70 231.75 0.61 295.81 0.88 153.58 0.51 315.27 0.85
21 4.03 0.89 3.51 0.96 3.53 0.91 3.73 0.98 3.33 0.84 16.32 0.92
22 6.64 0.82 5.42 0.92 5.22 0.83 7.26 0.97 4.01 0.68 30.30 0.91
23 107.91 0.79 68.39 0.71 82.45 0.76 82.70 0.75 39.60 0.58 69.74 0.71
24 77.20 0.80 57.92 0.84 62.42 0.78 66.69 0.89 34.86 0.59 71.53 0.96

Average 65.47 0.82 47.20 0.82 50.94 0.81 61.08 0.90 31.65 0.65 74.87 0.90
n ≥ 9 28.42 0.89 24.60 0.90 25.61 0.90 26.13 0.91 16.34 0.74 38.04 0.89
n ≤ 6 102.51 0.76 69.79 0.73 76.28 0.73 96.02 0.88 46.96 0.56 111.71 0.91
∗Confidence intervals given by (2.8), (2.9) and (2.10).
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specific GLE (which does not pool information across different demographic

groups) with the other methods, which all attempt to pool information

across groups in some way. To be concrete, we compare the group-specific

GLE with EB-GLE based on the saturated mean model and φ = 2. We

can see from Table 2.4 that the EB-GLE, which borrows strength from

other groups has smaller MSE than the group-specific GLE in 21 of the

24 demographic groups for estimating P95. Across all groups, the average

MSE is 516.45 for EB-GLE, which is much smaller than the average MSE of

1083.50 for the group-specific GLEs. Next, we compare the 2 estimators in

terms of length and coverage of the confidence interval CI1 of P95 given by

(2.8). From Table 2.4, we see that the average length (over all simulations

as well as across the 24 demographic groups) of the confidence intervals

constructed using group-specific GLE is 65.47 with average coverage 0.82

(0.89 over the 12 groups with at least 9 pools of individuals, 0.76 over the

12 groups with 6 or less pools). For the sake of brevity, we will denote this

coverage breakdown in the format 0.82 (0.89, 0.76) from now on. Thus there

is undercoverage, and the primary reason seems to be that of insufficient

number of pools in some groups (only 3 pools each in 3 groups, and 4 pools

each in another 3 groups). For the confidence intervals constructed using

EB-GLE, the average length is 47.2 (compared with 65.47 for group-specific

GLE) and the coverage remains at 0.82 (0.90, 0.73). Looking at the results

more closely, the coverage is only 0.01 for group 11, which has only 3 pools

of data. This is caused by the 36% bias of EB-GLE in estimating P95 for

this group. This is in deep contrast to the less than 10% bias in absolute

value of EB-GLE in 20 of the remaining 23 groups. A plausible explanation

for an occasional big bias of EB-GLE is this. Think of EB-GLE as some
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kind of shrinkage estimator, it is to be expected that shrinkage will not be

beneficial universally across all groups, and so it is not inconceivable that

while the EB-GLE can improve the estimation in most groups, it is at the

expense of poorer performance in one or a few groups. One remedy is the

following. Since we are using the bootstrap to estimate the standard error

of log
(
P̂95

)
anyway, we can use the same bootstrap samples to estimate

the bias of log
(
P̂95

)
in estimating the true log (P95), which leads us to the

bias-corrected confidence interval CI1-BC given by (2.10). The results of

the bias-corrected confidence intervals based on EB-GLE are also shown

in Table 2.4. Compared with the non-bias corrected version, the average

length is increased slightly to 50.94, and the average coverage is maintained

at 0.81 (0.90, 0.73). In particular, the coverage in group 11 is improved

from 0.01 to 0.63, which is comparable to the coverage of 0.64 achieved

by the group-specific GLE in that group, and this is achieved by intervals

shorter in length on the average (9.37 versus 14.05). Thus the bias-corrected

confidence interval of P95 based on EB-GLE seems to perform quite well.

Rather than estimating the bias, another possibility is to use the bootstrap

estimate of RMSE of log
(
P̂95

)
instead of the bootstrap standard error to

result in CI2 given by (2.9), which has superior coverage 0.90 (0.91, 0.88),

but the average length (over all 24 groups) increased slightly to 61.08. Even

for demographic group 11, the coverage is improved to 0.90, but this is not

very useful, because the true P95 for this group is only 34.60, yet the average

half-length of the intervals is 30.51 when RMSE is used instead of SE.

The next thing to look at is to see if EB-GLE based on, say, the satu-

rated mean model and φ = 2 is better than Caudill’s estimator. Comparing

these two estimators of P95, EB-GLE is less biased than Caudill’s estima-
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tor in 21 out of the 24 demographic groups. The average (over 24 groups)

absolute percent bias is 19.17% for Caudill’s estimator, and only 7.43% for

EB-GLE. Caudill’s estimator has small variance, and as a result the asso-

ciated confidence intervals are short, but due to its huge bias, the coverage

0.52 (0.49, 0.55) is very poor. This is not shown in Table 2.4 to save space.

After bootstrap bias correction, we can see from Table 2.4 that the average

coverage increases only slightly to 0.65 (0.74, 0.56), which is a sign that

the variability of the bootstrap estimate of bias cannot be ignored. If we

use RMSE instead of SE, then the resulting CI2 confidence intervals of P95

based on Caudill’s estimator has average coverage 0.90 (0.89, 0.91), but the

average length of 74.87 is longer than the average length of 61.08 for CI2

based on EB-GLE, which has similar average coverage.

Next, we compare EB-GLE with φ = 2 with the adaptive version where

φ is estimated from the data using the weighted least squares method. The

mean of φ̂ over the 1000 simulations is 1.831 with standard error 0.125,

which is compatible with the value φ = 2 suggested by Figure 2.1. It is

re-assuring to see from Table 2.5 that the weighted least squares method

seems to do a good job in estimating φ, and that the adaptive EB-GLE

(AEB-GLE) performs only slightly worse than EB-GLE based on φ = 2.

For the bias-corrected confidence intervals, the average length when φ is

estimated is 53.47, slightly longer than the average length of 50.94 when

φ is fixed at 2, and achieve similar coverage. We have also tried EB-GLE

with a mis-specified φ = 1. The results are poor and will not be shown to

save space. Thus the choice of φ matters. As commented earlier, φ = 2 is

the natural choice when the exposure distributions are log-normal. If there

is any doubt, we can estimate φ from the pooled data at hand and compute
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Table 2.5: Mean, percent bias (% bias) and mean squared error (MSE) of the
empirical Bayes Gaussian likelihood estimator (EB-GLE), adaptive empir-
ical Bayes Gaussian likelihood estimator (AEB-GLE) and empirical Bayes
Gaussian likelihood estimator with selected mean model (EB-GLEM) of the
95th percentile P95 for 24 demographic groups based on 1000 simulations,
together with average length (L) and coverage (C) of the 95% confidence
intervals (CIs) based on three methods.

(a) Estimation

EB-GLE AEB-GLE EB-GLEM
i n P95 Mean % bias MSE Mean % bias MSE Mean % bias MSE

1 9 26.08 23.87 -8.47 35.11 22.39 -14.14 37.16 30.91 18.52 43.22
2 12 48.34 45.41 -6.07 70.28 41.49 -14.17 102.87 46.24 -4.34 41.65
3 13 105.50 99.80 -5.40 276.56 88.69 -15.93 557.93 95.87 -9.13 211.14
4 19 123.54 127.81 3.46 122.16 116.15 -5.98 250.74 132.40 7.17 204.92
5 15 25.43 24.17 -4.95 14.36 22.52 -11.47 17.87 24.40 -4.06 10.35
6 4 46.96 41.20 -12.26 143.37 39.19 -16.55 143.67 47.79 1.76 39.05
7 5 116.73 110.33 -5.48 439.02 101.88 -12.72 568.62 118.30 1.35 224.68
8 3 329.64 320.33 -2.82 3482.25 291.05 -11.71 4554.78 342.70 3.96 2392.43
9 12 10.83 11.32 4.50 1.30 11.29 4.23 1.22 11.52 6.38 1.49
10 5 18.39 18.53 0.78 6.49 18.44 0.30 5.07 20.62 12.13 8.60
11 3 34.60 47.00 35.83 163.83 46.69 34.95 155.96 48.50 40.18 203.73
12 4 102.76 91.36 -11.09 665.10 84.71 -17.57 760.26 100.52 -2.18 331.91
13 9 22.52 20.73 -7.94 31.46 19.50 -13.40 31.30 22.84 1.43 12.23
14 16 36.67 35.01 -4.54 27.12 32.10 -12.48 40.45 35.34 -3.64 19.22
15 12 61.35 65.40 6.60 48.99 61.73 0.62 37.93 69.00 12.46 93.28
16 17 131.08 133.16 1.58 139.51 120.44 -8.12 361.79 140.91 7.50 267.50
17 13 17.61 16.88 -4.16 6.17 16.05 -8.84 6.60 17.16 -2.55 4.88
18 5 33.19 31.03 -6.51 50.03 29.71 -10.50 46.19 37.04 11.60 34.53
19 5 119.74 115.99 -3.13 419.24 107.05 -10.60 513.50 115.57 -3.48 265.11
20 3 335.43 304.13 -9.33 5472.89 274.94 -18.03 7339.06 357.55 6.59 3446.00
21 10 7.97 8.24 3.40 0.77 8.32 4.37 0.79 8.61 8.05 1.05
22 6 12.10 13.27 9.63 2.99 13.47 11.34 3.40 15.43 27.48 12.87
23 4 71.38 60.45 -15.32 535.94 56.04 -21.50 565.90 51.16 -28.32 466.98
24 5 91.06 86.49 -5.02 239.89 80.42 -11.68 294.21 96.83 6.33 260.99

Average 7.43∗ 516.45 12.13∗ 683.22 9.61∗ 358.24
n ≥ 9 5.09∗ 64.48 9.48∗ 120.55 7.10∗ 75.91
n ≤ 6 9.77∗ 968.42 14.79∗ 1245.89 12.11∗ 640.57
∗Average of absolute % bias.
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(b) Confidence interval

EB-GLE AEB-GLE EB-GLEM
CI1-BC∗ CI2∗ CI1-BC∗ CI2∗ CI1∗ CI1-BC∗ CI2∗

i L C L C L C L C L C L C L C

1 21.46 0.86 21.50 0.83 20.45 0.85 23.47 0.84 19.02 0.83 15.52 0.81 40.16 0.95
2 33.16 0.91 33.38 0.90 34.72 0.92 42.68 0.91 24.27 0.91 25.32 0.84 27.85 0.93
3 67.56 0.91 68.08 0.89 81.63 0.95 102.03 0.95 42.87 0.84 46.47 0.78 56.62 0.86
4 41.20 0.92 42.25 0.96 62.66 0.97 80.98 0.98 44.26 0.91 42.48 0.92 50.58 0.95
5 14.35 0.90 14.46 0.89 13.97 0.91 17.77 0.90 11.91 0.90 12.37 0.87 12.93 0.91
6 41.06 0.72 43.22 0.78 37.68 0.69 43.87 0.75 24.90 0.93 22.89 0.53 60.65 1.00
7 79.86 0.76 85.15 0.87 80.80 0.78 96.77 0.82 61.44 0.94 59.20 0.67 93.52 1.00
8 197.61 0.59 290.21 0.97 210.04 0.61 282.02 0.84 172.87 0.91 156.01 0.52 391.67 1.00
9 4.15 0.92 4.47 0.98 3.89 0.83 4.38 0.97 4.15 0.94 3.98 0.90 4.96 0.97
10 10.19 0.79 11.88 0.98 9.20 0.75 11.64 0.98 8.75 0.91 7.65 0.69 18.90 0.99
11 9.37 0.63 61.02 0.90 9.24 0.62 58.93 0.88 11.54 0.00 7.69 0.43 101.20 0.99
12 88.36 0.71 93.44 0.78 85.20 0.70 100.33 0.73 67.78 0.88 65.40 0.63 107.26 0.98
13 20.55 0.87 20.48 0.86 19.54 0.86 21.80 0.86 14.11 0.94 13.79 0.79 19.00 0.97
14 20.48 0.90 20.65 0.88 21.37 0.92 27.68 0.91 16.51 0.90 17.14 0.85 18.09 0.92
15 22.14 0.89 25.02 0.95 25.50 0.90 30.38 0.96 24.24 0.77 21.34 0.87 47.14 0.97
16 48.83 0.93 49.56 0.97 71.31 0.97 91.97 0.98 54.96 0.95 51.96 0.94 65.01 0.97
17 9.92 0.89 10.00 0.89 9.20 0.89 11.25 0.89 8.45 0.90 8.71 0.86 9.01 0.92
18 26.66 0.78 27.63 0.83 24.49 0.75 28.35 0.81 18.90 0.92 16.61 0.64 44.01 0.99
19 80.37 0.79 87.25 0.93 81.72 0.79 98.83 0.85 56.84 0.85 57.28 0.63 85.45 0.98
20 231.75 0.61 295.81 0.88 239.52 0.62 305.95 0.75 221.06 0.95 182.36 0.56 553.53 1.00
21 3.53 0.91 3.73 0.98 3.30 0.84 3.65 0.98 3.51 0.95 3.32 0.89 4.42 0.97
22 5.22 0.83 7.26 0.97 4.87 0.78 7.47 0.93 6.10 0.28 4.79 0.82 17.92 0.91
23 82.45 0.76 82.70 0.75 77.87 0.73 86.55 0.74 26.42 0.35 33.26 0.49 65.64 0.65
24 62.42 0.78 66.69 0.89 61.48 0.78 74.16 0.82 63.76 0.95 58.75 0.80 87.61 0.99

Average 50.94 0.81 61.08 0.90 53.74 0.81 68.87 0.88 42.03 0.82 38.93 0.74 82.63 0.95
n ≥ 9 25.61 0.90 26.13 0.91 30.63 0.90 38.17 0.93 22.35 0.89 21.87 0.86 29.65 0.94
n ≤ 6 76.28 0.73 96.02 0.88 76.84 0.72 99.57 0.82 61.70 0.74 55.99 0.61 135.61 0.96
∗Confidence intervals given by (2.8), (2.9) and (2.10).

54



2.8. Simulation Study

the adaptive EB-GLE.

We now investigate what happens if a more parsimonious mean model,

such as the one identified in Table 2.3 based on the 2003-04 NHANES data,

which the present simulation study tries to mimic, is used to obtain the

EB-GLE instead of the saturated model. As one would expect, the use of

a more parsimonious mean model reduces the variance but it is at the ex-

pense of bias. It can be seen from Table 2.5 that this model-based EB-GLE

of P95 is severely biased in 4 demographic groups, and the associated CI1

confidence intervals have low coverage in 3 of the 4 groups (0 for group 11,

0.28 for group 22, 0.35 for group 23). Bias correction improves the coverage

in these groups, but lowers the coverage in other groups, and the aver-

age coverage over all 24 groups is actually made worse by bias correction.

The use of RMSE instead of SE leads to good coverage, but the average

length is almost doubled to 82.63. This shows that while a properly selected

mean model can reduce variance, it will lead to more biased estimates, as

compared to a saturated model. Furthermore, the estimation of the group-

specific 95th percentile exp (µi + 1.645σi) of a log-normal distribution from

the estimates of µi and σi is a kind of extrapolation, and the effect of the

bias in estimating the µi and σi will be blown up.

Finally, in Table 2.6, we focus on the Bayes analogue B-GLE of EB-

GLE under various choices (inverse-gamma, gamma, log-normal) of the

mixing distribution. It can be seen that the choice does not change the

results that much. A comparison of Table 2.5 with Table 2.6 suggests that

EB-GLE and B-GLE are quite comparable. For the saturated model case,

the quasi Bayes credible interval, like its EB counterpart, has low coverage

for demographic group 11. As commented in the last paragraph, when the
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Table 2.6: Mean, percent bias (% bias) and mean squared error (MSE) of
the Bayesian Gaussian likelihood estimator (B-GLE) under various choices
of the mixing distribution and B-GLE under a selected mean model (B-
GLEM) in estimating the 95th percentile P95 for 24 demographic groups
based on 1000 simulations, together with average length (L) and coverage
(C) of 95% credible intervals (CrIs).

(a) Estimation

B-GLE B-GLEM
Inverse-Gamma Gamma Log-normal Inverse-Gamma

i n P95 Mean % bias MSE Mean % bias MSE Mean % bias MSE Mean % bias MSE

1 9 26.08 23.73 -9.02 32.22 23.77 -8.85 33.02 23.75 -8.93 33.18 30.36 16.40 36.13
2 12 48.34 45.16 -6.58 65.34 44.87 -7.18 62.17 44.81 -7.31 64.81 45.63 -5.60 41.63
3 13 105.50 99.30 -5.88 293.40 99.38 -5.80 279.49 99.15 -6.02 290.54 94.04 -10.86 251.65
4 19 123.54 130.05 5.27 137.30 129.10 4.51 149.49 129.35 4.70 144.57 132.96 7.62 202.13
5 15 25.43 24.16 -4.99 12.35 24.33 -4.34 10.97 24.25 -4.66 11.47 24.20 -4.84 9.77
6 4 46.96 41.68 -11.25 124.19 42.07 -10.43 119.21 41.86 -10.86 122.52 46.06 -1.93 31.17
7 5 116.73 111.26 -4.69 387.60 112.16 -3.91 342.35 111.41 -4.55 346.98 115.20 -1.31 193.27
8 3 329.64 326.17 -1.05 3096.76 329.42 -0.07 3477.33 327.40 -0.68 3358.50 332.82 0.96 1834.22
9 12 10.83 11.61 7.16 1.66 11.51 6.31 1.77 11.53 6.43 1.65 11.59 7.00 1.60
10 5 18.39 18.86 2.59 5.48 19.01 3.38 7.06 18.91 2.83 6.59 20.02 8.91 5.64
11 3 34.60 48.38 39.81 200.03 47.65 37.71 183.32 47.86 38.31 186.77 46.15 33.39 141.17
12 4 102.76 90.48 -11.95 549.95 91.83 -10.63 538.33 91.36 -11.09 555.30 97.75 -4.88 261.43
13 9 22.52 20.14 -10.58 28.15 20.00 -11.17 28.24 20.01 -11.11 28.36 22.19 -1.44 10.45
14 16 36.67 35.01 -4.55 24.66 35.31 -3.72 22.22 35.21 -3.98 23.31 35.05 -4.44 18.26
15 12 61.35 67.27 9.65 67.87 66.03 7.62 65.09 66.39 8.21 63.14 68.18 11.12 77.22
16 17 131.08 135.40 3.29 156.84 135.78 3.58 186.24 135.49 3.36 173.09 141.85 8.21 286.09
17 13 17.61 16.79 -4.62 5.89 16.92 -3.87 5.13 16.84 -4.33 5.36 16.88 -4.11 4.77
18 5 33.19 30.62 -7.75 39.86 30.79 -7.23 39.72 30.60 -7.80 40.87 35.64 7.37 21.14
19 5 119.74 116.73 -2.51 347.65 118.70 -0.87 371.03 118.00 -1.45 364.69 111.55 -6.84 270.59
20 3 335.43 310.32 -7.49 4739.95 313.74 -6.47 5127.90 312.01 -6.98 5165.28 347.50 3.60 2470.59
21 10 7.97 8.37 5.01 0.86 8.36 4.94 1.00 8.34 4.65 0.90 8.53 7.05 0.98
22 6 12.10 13.56 12.04 3.70 13.53 11.80 4.10 13.52 11.75 3.79 15.14 25.14 11.03
23 4 71.38 59.29 -16.93 505.11 59.78 -16.25 479.72 59.68 -16.40 488.60 49.14 -31.16 553.47
24 5 91.06 86.68 -4.82 207.27 87.88 -3.49 221.68 87.36 -4.06 221.50 95.63 5.02 213.17

Average 8.31∗ 459.75 7.67∗ 489.86 7.94∗ 487.57 9.13 289.48
n ≥ 9 6.38∗ 68.88 5.99∗ 70.40 6.14∗ 70.03 7.39 78.39
n ≤ 6 10.24∗ 850.63 9.35∗ 909.31 9.73∗ 905.12 10.88 500.57
∗Average of absolute % bias.
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(b) Credible interval

B-GLE B-GLEM
Inverse-gamma Gamma Log-normal Inverse-gamma

i L C L C L C L C

1 12.05 0.70 11.49 0.71 11.80 0.71 15.37 0.74
2 19.30 0.76 18.59 0.76 18.94 0.76 16.86 0.82
3 40.78 0.77 39.66 0.79 40.21 0.78 28.12 0.65
4 42.23 0.90 44.46 0.91 43.45 0.90 46.96 0.86
5 9.10 0.80 9.02 0.83 9.09 0.83 8.53 0.84
6 30.55 0.83 30.11 0.83 30.49 0.83 24.95 0.97
7 69.58 0.94 70.91 0.95 70.40 0.94 61.57 0.96
8 263.35 0.97 274.05 0.96 269.67 0.96 219.02 0.97
9 4.65 0.88 4.98 0.90 4.83 0.90 4.60 0.89
10 11.46 0.96 12.17 0.96 11.88 0.96 10.73 0.94
11 37.09 0.19 41.70 0.67 39.30 0.48 23.66 0.18
12 65.69 0.84 65.77 0.86 66.35 0.85 63.47 0.95
13 10.47 0.67 9.76 0.65 10.13 0.66 9.95 0.87
14 12.83 0.81 12.71 0.82 12.85 0.82 11.62 0.84
15 27.06 0.83 28.96 0.87 28.03 0.86 25.13 0.78
16 46.09 0.92 48.83 0.90 47.53 0.90 55.72 0.85
17 6.69 0.83 6.72 0.87 6.72 0.87 6.36 0.87
18 19.53 0.89 19.47 0.88 19.54 0.86 19.03 0.93
19 72.45 0.94 75.26 0.94 74.57 0.93 50.67 0.92
20 256.96 0.93 261.74 0.92 260.81 0.92 250.04 0.97
21 3.64 0.91 3.89 0.92 3.78 0.93 3.77 0.90
22 7.43 0.87 8.17 0.90 7.86 0.90 8.17 0.57
23 46.49 0.67 44.22 0.67 45.74 0.67 17.92 0.01
24 53.95 0.94 55.52 0.93 55.18 0.93 63.62 0.94

Average 48.73 0.82 49.92 0.85 49.55 0.84 43.58 0.80
n ≥ 9 19.58 0.82 19.92 0.83 19.78 0.83 19.42 0.83
n ≤ 6 77.88 0.83 79.92 0.87 79.32 0.85 67.74 0.77
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mean model selected in Table 2.3 is used, the bias is increased, leading

to low coverage for groups 11 and 23, and to a lesser degree, also group

22. Since the computation of the quasi Bayes estimator using the software

JAGS requires the use of MCMC sampling, it is computing intensive, and

as a result it is not feasible to use the bootstrap to estimate the bias or

mean squared error of the quasi Bayes estimator. Thus while the EB-GLE

and B-GLE have similar performance, the former has the advantage that

it can be improved further via bootstrap estimation of the bias or RMSE.

2.9 Discussion

We have proposed EB-GLE and its Bayesian analogue B-GLE to estimate

the log-normal distribution based on pooled samples, which is easily imple-

mented and more efficient than the estimators proposed by Caudill (2012).

Our simulation study shows that EB-GLE and B-GLE perform similarly,

but bootstrap resampling is only feasible for the former. We recommend

the bias-corrected confidence interval CI1-BC based on EB-GLE which has

good coverage property for those demographic groups with sufficient num-

ber of pools. It is to be expected that for those groups with only 3 or

4 pools, there is really not much that one can do. One could used the t

instead of standard normal percentiles to construct confidence intervals.

Another possibility is to use the RMSE instead of SE, but our simulation

study shows that the resulting interval CI2 will sometimes be too long to

be of practical value. Our study also shows that the reduction in variance

which arises from the use of a more parsimonious model of the means can

be offset by an increase in bias, leading to poor confidence interval cov-

erage in a few groups with insufficient number of pools. One can make a
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case for the use of the saturated mean model because pooling does not

really affect the estimation of the mean that much. Thus even if we have

only 5 pools within a demographic group, say, of size 8 each, the mean of

the 5 pool averages is actually the average of 40 individual measurements,

which may be sufficiently precise, and there may not be a need to model

the mean more parsimoniously. For estimating the variance (hence also the

percentiles, which are functions of the mean and variance), efficiency is lost

by pooling, and it is desirable to borrow strength from other demographic

groups, which we do by treating the squared coefficients of variation as

random effects. Our preferred estimator is EB-GLE based on the saturat-

ed mean model with bias correction carried out in constructing confidence

intervals. This recommendation is also supported by another simulation

study with parameter values in the 24 demographic groups set to values

inferred from Table II of Caudill (2012) for NHANES 2005-06 in Table 2.7.

There is some difference between EB-GLE and B-GLE and B-GLE seems

better. However, B-GLE is more computing intensive.

Besides assuming log-normal distribution for the data, nonparametric

density estimation is also possible for pooled data, when no clear paramet-

ric distributions are available to adequately fit the data. The nonparametric

approach to estimate cumulants/moments from pooled data has been de-

scribed in section 2 of Xu and Kuk (2014). The moments can be used to

determine the density function. An alternative way is to look at characteris-

tic function. Nonparametric method can be used to estimate characteristic

function of the sums, and then take the power of one over pool size K to

obtain characteristic function of individual data. Based on inversion formu-

la, density function of individual data can be derived from its characteristic
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Table 2.7: Mean, percent bias (% bias) and mean squared error (MSE)
of the group-specific Gaussian likelihood estimator (GLE), Caudills esti-
mator, empirical Bayes Gaussian likelihood estimator (EB-GLE), adaptive
empirical Bayes Gaussian likelihood estimator (AEB-GLE) and Bayesian
Gaussian likelihood estimator (B-GLE) of the 95th percentile P95 for 24 de-
mographic groups of NHANES 2005-06 based on 1000 simulations, together
with average length (L) and coverage (C) of the 95% confidence intervals
(CIs) based on three methods and credible intervals (CrIs).

(a) Estimation of GLE, Caudill’s estimator and EB-GLE

GLE Caudill EB-GLE
i n P95 Mean % bias MSE Mean % bias MSE Mean % bias MSE

1 9 16.30 15.81 -3.00 3.02 14.64 -10.16 3.17 15.85 -2.76 2.24
2 12 31.40 30.57 -2.65 8.47 27.63 -12.02 15.24 30.56 -2.68 6.82
3 12 87.70 86.04 -1.90 44.21 84.69 -3.44 17.41 87.69 -0.02 29.50
4 15 149.80 148.22 -1.05 38.73 165.17 10.26 264.70 155.62 3.89 62.89
5 13 19.00 18.63 -1.97 2.41 17.90 -5.80 1.63 18.77 -1.20 1.78
6 6 35.40 33.11 -6.46 29.20 28.60 -19.21 49.03 32.86 -7.18 23.48
7 5 96.80 89.12 -7.93 276.33 76.37 -21.11 443.39 88.66 -8.41 212.35
8 5 245.00 226.30 -7.63 1816.78 187.73 -23.38 3445.37 224.33 -8.44 1404.18
9 11 10.10 9.85 -2.51 0.72 9.71 -3.87 0.29 9.97 -1.32 0.49
10 9 19.30 18.84 -2.40 2.02 20.35 5.44 1.49 19.68 1.98 1.24
11 4 44.00 39.93 -9.26 68.75 35.60 -19.08 76.65 40.13 -8.79 46.05
12 4 91.00 79.41 -12.74 561.61 55.45 -39.07 1304.14 76.02 -16.46 576.14
13 10 12.60 12.30 -2.39 1.02 12.45 -1.18 0.25 12.55 -0.41 0.65
14 16 22.80 22.55 -1.11 1.18 24.94 9.39 4.91 23.34 2.38 1.13
15 13 71.60 70.71 -1.24 12.16 78.36 9.44 49.92 74.21 3.64 14.87
16 17 138.50 137.05 -1.05 53.46 141.05 1.84 28.23 140.36 1.35 42.61
17 14 11.70 11.50 -1.67 0.41 12.61 7.79 0.98 11.88 1.57 0.30
18 7 28.20 26.81 -4.93 12.19 24.87 -11.79 12.43 27.01 -4.22 8.28
19 7 102.70 98.55 -4.04 108.53 97.70 -4.87 41.41 101.81 -0.87 54.61
20 5 282.00 255.33 -9.46 3475.67 181.17 -35.75 10472.92 246.11 -12.73 3558.56
21 16 8.10 8.01 -1.13 0.16 8.91 9.95 0.74 8.26 1.99 0.14
22 9 12.70 12.22 -3.78 2.09 11.25 -11.46 2.39 12.23 -3.72 1.59
23 6 50.10 47.65 -4.89 28.46 48.71 -2.78 5.29 49.73 -0.74 12.10
24 3 93.10 78.39 -15.80 726.14 59.72 -35.85 1168.09 76.23 -18.13 652.66

Average 4.62∗ 303.07 13.12∗ 725.42 4.79∗ 279.78
∗Average of absolute % bias.
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(b) Estimation of AEB-GLE and B-GLE

AEB-GLE B-GLE
i Mean % bias MSE Mean % bias MSE

1 15.59 -4.38 2.31 15.80 -3.06 2.29
2 29.83 -4.99 9.08 30.60 -2.55 7.03
3 85.75 -2.22 54.65 87.98 0.32 27.86
4 153.35 2.37 92.40 156.52 4.49 77.14
5 18.44 -2.94 1.99 18.73 -1.44 1.74
6 32.09 -9.35 26.88 32.86 -7.17 23.42
7 86.37 -10.78 271.75 89.55 -7.49 190.83
8 217.61 -11.18 2117.68 224.71 -8.28 1375.86
9 9.85 -2.46 0.45 10.01 -0.91 0.44
10 19.51 1.08 1.07 19.77 2.42 1.20
11 39.36 -10.56 50.91 40.16 -8.72 43.75
12 73.36 -19.38 660.24 75.79 -16.71 538.62
13 12.41 -1.48 0.61 12.58 -0.12 0.67
14 23.09 1.28 1.03 23.47 2.92 1.31
15 73.20 2.23 16.70 74.46 4.00 17.68
16 137.52 -0.71 115.01 140.70 1.59 41.14
17 11.79 0.78 0.25 11.95 2.14 0.35
18 26.52 -5.96 9.53 27.27 -3.30 7.62
19 99.90 -2.72 90.58 102.34 -0.35 51.96
20 236.05 -16.29 4911.84 244.54 -13.29 3345.70
21 8.21 1.41 0.11 8.29 2.35 0.15
22 12.04 -5.20 1.61 12.31 -3.11 1.49
23 49.00 -2.20 14.47 50.13 0.06 12.47
24 73.96 -20.56 722.70 77.30 -16.97 568.76

Average 5.94∗ 382.24 4.74∗ 264.15
∗Average of absolute % bias.

(c) Confidence interval of GLE, Caudill’s estimator and EB-GLE

GLE Caudill EB-GLE
CI1∗ CI1∗ CI1-BC∗ CI2∗ CI1∗ CI1-BC∗ CI2∗

i L C L C L C L C L C L C L C

1 6.26 0.87 2.31 0.28 2.61 0.56 7.26 0.81 5.42 0.86 5.62 0.86 5.88 0.87
2 10.69 0.89 3.74 0.07 4.31 0.53 15.09 0.79 9.63 0.87 9.93 0.88 10.29 0.88
3 23.50 0.87 10.18 0.74 10.73 0.56 24.50 0.92 20.51 0.91 20.73 0.87 21.30 0.93
4 22.54 0.89 19.15 0.07 17.68 0.81 56.93 0.89 20.22 0.83 19.77 0.89 25.85 0.91
5 5.58 0.87 2.24 0.54 2.42 0.55 6.25 0.87 5.00 0.88 5.10 0.87 5.23 0.88
6 18.11 0.81 5.67 0.04 7.01 0.49 22.29 0.70 14.95 0.75 16.07 0.79 17.34 0.77
7 52.70 0.77 16.53 0.05 20.75 0.49 62.82 0.68 41.70 0.70 45.34 0.74 49.69 0.73
8 138.56 0.79 45.28 0.03 58.51 0.48 178.53 0.69 110.50 0.71 120.98 0.77 132.97 0.74
9 3.11 0.88 1.44 0.78 1.51 0.65 3.09 0.93 2.73 0.89 2.78 0.87 2.86 0.90
10 4.86 0.85 2.20 0.52 2.12 0.56 6.19 0.92 3.97 0.95 3.95 0.84 4.45 0.99
11 25.34 0.73 7.84 0.11 9.64 0.46 26.77 0.66 18.78 0.66 20.66 0.69 23.57 0.70
12 77.53 0.74 19.72 0.02 31.58 0.49 99.15 0.68 61.37 0.64 73.40 0.72 79.74 0.70
13 3.77 0.88 1.69 0.89 1.73 0.61 3.44 0.97 3.21 0.91 3.26 0.88 3.36 0.93
14 3.94 0.90 2.13 0.02 1.99 0.62 7.77 0.79 3.50 0.93 3.47 0.89 3.82 0.96
15 12.51 0.88 7.44 0.04 6.92 0.67 25.43 0.82 10.89 0.90 10.68 0.87 13.22 0.93
16 26.83 0.90 16.62 0.90 16.65 0.72 25.03 0.95 24.06 0.95 24.02 0.89 24.73 0.96
17 2.34 0.88 1.41 0.26 1.32 0.67 3.77 0.84 2.04 0.95 2.03 0.89 2.16 0.98
18 11.76 0.83 4.01 0.19 4.56 0.50 12.97 0.74 9.75 0.80 10.20 0.81 10.85 0.81
19 34.53 0.81 13.92 0.67 14.69 0.53 33.99 0.91 27.49 0.87 27.94 0.80 30.41 0.94
20 204.63 0.79 57.24 0.00 87.54 0.54 302.05 0.76 169.91 0.70 194.36 0.78 210.79 0.76
21 1.48 0.89 1.11 0.16 1.03 0.79 3.06 0.85 1.32 0.96 1.31 0.92 1.40 0.98
22 4.96 0.85 1.90 0.23 2.16 0.55 5.89 0.77 4.31 0.84 4.49 0.84 4.71 0.84
23 17.12 0.81 6.44 0.81 6.62 0.48 16.33 0.95 13.04 0.88 13.20 0.78 15.04 0.97
24 79.47 0.67 20.74 0.04 31.51 0.42 86.65 0.58 57.04 0.54 70.29 0.62 79.78 0.62

Average 33.00 0.83 11.29 0.31 14.40 0.57 43.14 0.81 26.72 0.83 29.57 0.82 32.48 0.86
∗Confidence intervals given by (2.8), (2.9) and (2.10).
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(d) Confidence interval of AEB-GLE and credible interval of B-GLE

AEB-GLE B-GLE
CI1∗ CI1-BC∗ CI2∗ CrI

i L C L C L C L C

1 4.98 0.82 5.29 0.84 6.37 0.86 5.64 0.93
2 9.83 0.79 10.43 0.89 13.06 0.90 9.60 0.92
3 26.32 0.86 27.14 0.92 32.79 0.93 23.58 0.96
4 32.97 0.94 32.49 0.96 37.88 0.97 29.97 0.85
5 4.79 0.83 5.00 0.85 6.15 0.88 5.19 0.94
6 14.18 0.70 15.70 0.80 19.24 0.79 15.46 0.87
7 42.75 0.64 47.71 0.76 57.93 0.76 45.82 0.88
8 125.03 0.65 140.25 0.79 167.36 0.79 116.93 0.87
9 2.43 0.86 2.53 0.84 2.95 0.89 3.00 0.97
10 3.78 0.93 3.80 0.80 4.54 0.98 5.61 0.97
11 17.67 0.60 19.90 0.67 24.95 0.69 22.48 0.90
12 59.08 0.58 73.57 0.71 87.13 0.71 50.76 0.68
13 2.92 0.89 3.01 0.85 3.47 0.91 3.76 0.97
14 3.66 0.94 3.67 0.89 4.31 0.97 4.60 0.93
15 14.24 0.94 14.12 0.93 16.71 0.97 15.95 0.89
16 39.43 0.88 39.89 0.96 47.73 0.96 28.45 0.95
17 1.87 0.94 1.88 0.84 2.16 0.97 2.62 0.95
18 9.27 0.74 9.92 0.79 12.02 0.80 11.10 0.95
19 31.98 0.80 33.00 0.82 38.78 0.86 36.45 0.97
20 184.12 0.65 219.25 0.80 258.94 0.80 144.10 0.79
21 1.18 0.95 1.19 0.86 1.34 0.97 1.66 0.94
22 3.90 0.77 4.15 0.83 4.97 0.84 4.52 0.92
23 13.22 0.83 13.59 0.79 16.63 0.92 19.16 0.98
24 53.86 0.50 68.56 0.61 84.10 0.62 57.61 0.73

Average 29.31 0.79 33.17 0.83 39.65 0.86 27.67 0.90
∗Confidence intervals given by (2.8), (2.9) and (2.10).

function.

We have assumed equal weights so far. However, our proposed method

can be easily extended to the case of unequal weights. Assume that Aij =∑K
k=1 ωijkXijk is the jth pool average with normalized weights ωijk in the

ith demographic group and
∑K

k=1 ωijk = 1. To approximate the distribution

by normal distribution, we can write down the expectation and variance of

the weighted averages,

E [Aij] = E[Xijk] = αi,

var [Aij] =
K∑
k=1

ω2
ijk var [Xijk] =

K∑
k=1

ω2
ijkβ

2
i = ϕijβ

2
i ,

where ϕij =
∑K

k=1 ω
2
ijk. We use N (αi, ϕijβ

2
i ) as the working distribution
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for Aij, and the marginal log-likelihood function after integrating out the

γi = (βi/αi)
2 ∼ Γ−1(κ, λ) is given by

l(α1, · · · , αd, κ, λ) =
d∑
i=1

{
2κ logαi −

(
κ+

ni
2

)
log

[
ni∑
j=1

(Aij − αi)2

ϕij
+ 2λα2

i

]

+ log Γ
(
κ+

ni
2

)}
+ dκ log (2λ)− d log Γ(κ).

We can obtain the EB-GLE with unequal weights by maximiz-

ing the above marginal log-likelihood. Unfortunately, we cannot find

the weights ωijk used in NHANES 2005-06 from the online link

(http://wwwn.cdc.gov/nchs/nhanes/search/nhanes05 06.aspx), and

so we are not able to apply the above method to the weighted pool av-

erages collected in 2005-06.

The empirical Bayes approach is a popular approach to pool informa-

tion across groups, In our particular context, we treat the group-specific

exposure means αi as fixed effects and model them by either a saturated or

non-saturated model; and we treat the squared coefficients of variation γi

as random effects that follow a common distribution. It is this common dis-

tribution or homogeneity assumption which allows us to pool information

across groups. Our model shares some similarity with hierarchical or multi-

level modeling. Shrinkage method is another way to combine information

across groups and empirical Bayes or Bayes estimator can be considered

as one kind of shrinkage estimators. Strictly speaking, what we propose in

this paper are quasi Bayes and quasi EB estimators because we are treat-

ing the working Gaussian likelihoods as if they are the true likelihoods. To

obtain the exact EB or Bayes estimators would typically require the EM

algorithm for the former, and data augmentation for the latter, which are
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computing intensive. In comparison, the proposed EB-GLE and B-GLE are

simpler to compute, and our study suggests that the Gaussian likelihoods

work quite well when the pool size is 8. Another way to enable pooling of

information across “neighboring” groups is by some kind of nonparametric

smoothing. Unfortunately in our situation, race and gender are categorical

variables, and we do not have enough age groups to perform any kind of

meaningful smoothing by age. The same comment would apply to quantile

regression method, which in a way is the natural method to use, given that

our main interest is focused on the percentiles. Furthermore, pooled data

does not contain too much information about the quantiles of individual

exposure due to the convergence to normal distribution effect of averaging.

Thus quantile regression based on pooled data is a challenging problem

that we will address in future investigation.

Estimation of the 95th and other extreme percentiles is highly sensitive

to the distributional assumption made. This is because the 95th percentile

will be given by different functions of, say, the mean and variance, depend-

ing on whether the exposure distribution is log-normal, gamma, or inverse

Gaussian, just to name a few examples. But no matter what the exposure

distribution is, the proposed EB-GLE method can be applied in almost the

same way, and this is another advantage of our method. In the biomonitor-

ing literature, the log-normal distribution is the popular choice, and this is

backed up by our Box-Cox transformation analysis based on the 2003-04

NHANES data. It is more difficult to test distributional assumption when

only pooled data are available, such as in NHANES 2005-06. This is be-

cause regardless of what the distribution of the individual exposures is,

the distribution of the pool averages will tend to the normal distribution
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as pool size increases by virtue of the Central Limit Theorem. One way

to overcome this problem is to use historical data, For example, we can

use the 2003-04 individual data to justify the log-normal assumption, and

keep faith in it for the 2005-06 data. Another possible strategy is to use

a mixed design to collect some individual data in addition to pooled da-

ta. Collecting individual data will boost our ability to test distributional

assumption, while pooling will save cost. There is some design issue to be

solved, such as finding the optimal ratio of pooled to individual data, and

subsequently how to compute estimators based on a combination of pooled

and individual data. We will again leave these for future investigations.

Another area where pooling is used is in genetic association study.

Pooled genotype data are often reported instead of individual genotype

data to save genotyping cost. Kuk et al. (2014) have also proposed a ran-

dom effects formulation for certain baseline parameters to enable pooling

of information across different genetic markers.
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Collapsed Data MLE

This chapter is organized as follows. Section 3.1 summarizes the collapsed

data maximum likelihood estimator and highlights the main findings; Sec-

tion 3.2 provides the details of our method; Section 3.3 considers a real

data analysis and section 3.4 concludes this chapter with some discussion

and extensions.

The materials presented in this chapter have been published in Kuk

et al. (2013b).

3.1 Summary

In this chapter, we propose an estimation method that does not suffer

from the aforementioned drawbacks of the expectation maximization (EM)

algorithm (see section 1.2.4). To begin with, our method is non-iterative

in nature, and the amount of computation does not increase with pool

size. Finally, the number of putative haplotypes with positive probability

estimates does not grow exponentially with the number of markers. In fact,

the number of haplotypes that we need to deal with is no greater than the

number of pools, and is often much less, especially for rare variants (RVs).
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This desirable algorithm is made possible by collapsing the pool total at

each marker (which can take on values 0, 1, · · · , K = 2k, where k is the

number of individuals in each pool) to just “0” or “at least 1”, as done in the

literature of group testing (Dorfman, 1943; Gastwirth and Hammick, 1989).

It should be pointed out, though, that the group testing literature deals

mainly with estimating the prevalence of a single binary trait, whereas we

are now dealing with multiple genetic variants. The haplotype frequency

estimates produced by our method are in fact the maximum likelihood

estimates (MLEs) based on the collapsed data.

Pirinen (2009) pointed out that it may be possible to use database

information to create a list of frequently occurring haplotypes and that the

EM algorithm will run much faster if the underlying unobserved haplotypes

are restricted to come from this list only. We call the resulting procedure the

EML algorithm. Since we are focusing on RVs, there may not be an external

list of common haplotypes available from existing databases. Instead, we

construct at the outset an internal list of all possible haplotypes compatible

with the observed pool totals. This list is constructed only once and will

not be repeated at each iteration of the EML algorithm.

We conduct a running time analysis to compare the collapsed data

method with the EML algorithm. The EM algorithm without a list is much

slower and will not be considered. For rare alleles, the total allele frequen-

cy at most markers and for most pools will equal to 0 or a small number

like 1 or 2, and this greatly reduces the amount of computation required

to construct the list of all possible underlying haplotypes. This makes the

EML algorithm a worthy competitor of the collapsed data method. When

applied to genotype data collected from 148 obese persons for 25 rare vari-
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ants around the MGLL gene, and 32 rare variants around the FAAH gene,

the collapsed data method is 50 to 200 times faster than the EML algo-

rithm when the pool size is 2. When the pool size is 4, the collapsed data

method took 0.61 and 6.45 seconds to run on an intel (R) Core (TM) 2

desktop for the cases of 25 and 32 rare variants respectively, but the EML

algorithm was still running after 10 hours and as a result was aborted.

The price paid for proposing such a fast and simple algorithm is possible

loss of estimation efficiency. We show theoretically that there will not be

much loss of efficiency for the case of rare variants. Even if the variants are

not rare, the collapsed data method will still be useful for the purpose of

obtaining consistent initial estimates to input to more sophisticated algo-

rithms, and for screening a large number of possible causal variants to a

more manageable set within a narrower region to be studied further using

more advanced methods or molecular haplotyping.

We conclude this chapter by an application to identify rare variants as-

sociated with obesity. Using resequenced data collected from a case control

study involving 148 obese persons and 150 controls, and a method called

RARECOVER, Bhatia et al. (2010) identified 12 RVs associated with obe-

sity in a 5Kbp window containing 25 RVs just upstream of the MGLL gene.

We apply the collapsed data method to estimate the haplotype distribu-

tion for the 25 RVs in this window. Comparing the haplotype frequency

estimates for the cases and controls, we are able to identify a much more

parsimonious subset of 3 RVs than the 12 RVs selected by RARECOVER.

From the set of 32 rare variants around the FAAH gene, we discover an

interesting potential interaction between two of them. We conclude this

chapter with some discussion on the effect of noise due to pooling, and the
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analysis of replicated measurements with correlation.

3.2 Statistical Models and Methods

3.2.1 Collapsed data estimator

Focusing on bi-allelic loci, the two possible alleles at each locus can be

represented by “1” (the minor allele) and “0”. As a result, the alleles at

selected loci of a chromosome can be represented by a binary haplotype

vector. Since human chromosomes come in pairs, there are 2 haplotype

vectors for each individual, one maternal, and one paternal. Suppose we

have n pools of k individuals each so that there are K = 2k haplotype-

s within each pool. Denote by Yij = (Y1ij, · · · , YLij) the jth haplotype in

the ith pool, where i = 1, · · · , n, j = 1, · · · , K, and L is the number of

markers being typed. Assuming Hardy-Weinberg equilibrium, the nK hap-

lotype vectors are independent and identically distributed with probability

function

f(y1, · · · , yL) = P (Y1ij = y1, · · · , YLij = yL)

for every L-tuple y = (y1, · · · , yL) belonging to the Cartesian product Ω =

{0, 1}L. With pooling, the observed data are the pool totals

Ti =
K∑
j=1

Yij =

(
K∑
j=1

Y1ij, · · · ,
K∑
j=1

YLij

)
= (T1i, · · · , TLi) , i = 1, · · · , n.

The probability function p (t1, · · · , tL) of each pool total, with (t1, · · · , tL) ∈

{0, 1, · · · , K}L, is given by the K-fold convolution of the haplotype prob-

ability function f (y1, · · · , yL) and so the likelihood based on the observed

pooled data is highly intractable and not easy to maximize directly. If the
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individual haplotypes were actually observed, then the population haplo-

type distribution function can be estimated simply by the empirical haplo-

type distribution. By taking conditional expectation to estimate iteratively

the unobserved haplotype frequencies in the sample, the EM algorithm can

be used to obtain the MLEs of {f(y), y ∈ Ω} based on the observed pool

totals, but as pointed out earlier, the EM algorithm is very computing

intensive and not viable if L or k is large.

Next, we will show that the MLEs of {f(y), y ∈ Ω} based on the col-

lapsed data

Zi =

(
I

{
K∑
j=1

Y1ij ≥ 1

}
, · · · , I

{
K∑
j=1

YLij ≥ 1

})
= (Z1i, · · · , ZLi)

defined via indicator functions are very easy to obtain. Note that what Zi

does is to collapse each total allele frequency to either “0” or “at least 1”

as done in classical group testing.

From here on, we will call {Yij, i = 1, · · · , n, j = 1, · · · , K} the complete

haplotype data (usually not observed but will be used as a benchmark);

{Ti, i = 1, · · · , n} the pooled genotype data (or individual genotype data if

pool size is 1), and {Zi, i = 1, · · · , n} the collapsed data. In this chapter,

we refer to k as the pool size, not K.

Suppressing its dependence on the pool size k, let

g (z1, · · · , zL) = P (Z1i = z1, · · · , ZLi = zL)

with z = (z1, · · · , zL) ∈ Ω = {0, 1}L be the probability function of the col-

lapsed data. The likelihood function based on the collapsed data Z1, · · · , Zn
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is multinomial, i.e., proportional to

∏
z∈Ω

g(z)nZ(z),

where for every z = (z1, · · · , zL) ∈ Ω, nZ(z) is the number of pools with

Zi = z. The value of g(z) which maximizes the above multinomial likelihood

is simply the sample proportion

ĝ(z) =
nZ(z)

n
. (3.1)

We consider next the probabilities of zero pool totals at various loci. Let Λ

be a subset of {1, 2, · · · , L} which specifies the positions of the zeros, then

g0(Λ) = P (Zli = 0, l ∈ Λ)

can be obtained by summing g(z) over all those z = (z1, · · · , zL) satisfying

zΛ = (zl, l ∈ Λ) = 0. By summing the MLE ĝ(z) of g(z) in a similar way,

we can see that the MLE of g0(Λ) based on the collapsed data Z1, · · · , Zn

is given by

ĝ0(Λ) =
n0Z(Λ)

n
, (3.2)

where n0Z(Λ) is the number of pools with Zli = 0 for l ∈ Λ (i.e., with no

minor alleles at the positions specified by Λ).

The quantities that we are interested in estimating are the haplotype

frequencies {f(y), y ∈ Ω}, and not g(z) or g0(Λ). To find the MLE of f(y),

we will derive an equation expressing f(y) as a function of g0(Λ). Since we

have already obtained in (3.2) the collapsed data MLE ĝ0(Λ) of g0(Λ), the

collapsed data MLE f̂(y) of f(y) can be obtained by substituting ĝ0(Λ)
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into the equation for f(y). We begin by relating f(0, · · · , 0) to g(0, · · · , 0)

first. By definition

g(0, · · · , 0) = P

(
K∑
j=1

Ylij = 0, l = 1, · · · , L

)

= P

(
K⋂
j=1

{Ylij = 0, l = 1, · · · , L}

)

= f(0, · · · , 0)K

is the probability of the event that all K haplotypes in a pool are zero

vectors, and so

f(0, · · · , 0) = g(0, · · · , 0)
1
K . (3.3)

More generally, let Λ be a non-empty subset of {1, · · · , L}, we have

g0 (Λ) = P

(
K∑
j=1

Ylij = 0, l ∈ Λ

)

= P

(
K⋂
j=1

{Ylij = 0, l ∈ Λ}

)

= P (Ylij = 0, l ∈ Λ)K .

If we define

f0 (Λ) = P (Ylij = 0, l ∈ Λ) ,

as the probability that the allele type is “0” at the positions specified

by Λ in a single haplotype, then the equation above can be rewritten as

g0 (Λ) = f0 (Λ)K , or equivalently

f0 (Λ) = g0 (Λ)
1
K , (3.4)
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which is a generalization of (3.3). It follows from (3.2) and (3.4) that the

collapsed data MLE of f0 (Λ) is

f̂0 (Λ) = ĝ0 (Λ)
1
K =

[
n0Z (Λ)

n

] 1
K

. (3.5)

Now that we know how to estimate f0 (Λ), all the haplotype frequencies

f(y), y ∈ Ω, can be estimated too because f(y) can be expressed in terms

of the f0 (Λ) as follows. Note that

f(y1, · · · , yL) = P (Y1ij = y1, · · · , YLij = yL)

= E

 ∏
l∈Λ(y)

(1− Ylij)
∏

l∈Λ′(y)

Ylij


= E

 ∏
l∈Λ(y)

Wlij

∏
l∈Λ′(y)

(1−Wlij)

 ,
where Λ(y) denotes the positions of the 0’s in y = (y1, · · · , yL), Λ′(y) is the

complement of Λ(y) which gives the positions of the 1’s, and Wlij = 1−Ylij.

Now E

[∏
l∈Λ

Wlij

]
= f0 (Λ) by definition, and so the last expectation in the

above equation can be expanded as

f(y) = E

 ∏
l∈Λ(y)

Wlij

∏
l∈Λ′(y)

(1−Wlij)


= f0 (Λ(y)) +

m∑
r=1

(−1)r
∑

S⊂Λ′(y)
|S|=r

f0 (Λ(y) ∪ S) ,

which can also be derived using the inclusion-exclusion principle, and m

is the number of 1’s in the haplotype vector y. Substituting (3.5) into the
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above equation, we obtain

f̂(y) =f̂0 (Λ(y)) +
m∑
r=1

(−1)r
∑

S⊂Λ′(y)
|S|=r

f̂0 (Λ(y) ∪ S)

= [ĝ0 (Λ(y))]
1
K +

m∑
r=1

(−1)r
∑

S⊂Λ′(y)
|S|=r

[ĝ0 (Λ(y) ∪ S)]
1
K

=

[
n0Z

(
Λ(y)

)
n

] 1
K

+
m∑
r=1

(−1)r
∑

S⊂Λ′(y)
|S|=r

[
n0Z (Λ(y) ∪ S)

n

] 1
K

(3.6)

as the collapsed data MLE of f(y). f̂(y) may be negative according to (3.6)

due to calculation error, but it’s rare based on my experience. To restrict

the estimate f̂(y) within the legitimate range, one way is to truncate the

estimate between zero and one.

3.2.2 Running time analysis and comparison with the EML al-

gorithm

It can be seen from (3.6) that the collapsed data estimation method is

non-iterative and the amount of computation does not depend that much

on K since (3.6) depends on K only through the power 1
K

. The only ap-

parent difficulty that might limit the applicability of this method is that

we seemingly need to evaluate (3.6) for 2L − 1 choices of y which increases

exponentially with L. That this is not necessary is a consequence of the

following lemma.

Lemma 3.1. If g(y) = P (Z = y) = 0, then f(y) = P (Y = y) = 0.

To prove lemma 3.1, we note that if every haplotype Y1, · · · , YK in a

pool is equal to y = (y1, · · · , yL), then the vector of total allele frequencies
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is t = (t1, · · · , tL) = (Ky1, · · · , KyL), with the consequence that tl = 0

if yl = 0, and tl = K ≥ 1 if yl = 1. By definition, the collapsed data is

zl = 0 if tl = 0, and zl = 1 if tl ≥ 1, so it follows that z = (z1, · · · , zL) =

(y1, · · · , yL) = y. Since {Y1 = · · · = YK = y} ⇒ {Z = y}, we have 0 ≤

f(y)K = P (Y1 = · · · = YK = y) ≤ P (Z = y) = g(y). It follows that if

g(y) = 0, then f(y) must also equal 0.

Let f̂(·) and ĝ(·) be the collapsed data MLE of f(·) and g(·) respectively.

By the invariance property of MLE, the relationship between f̂(·) and ĝ(·)

is the same as that between f(·) and g(·), and so lemma 3.1 can be applied

to the estimates as well. Thus we know without calculation that if ĝ(y) = 0,

then f̂(y) = 0, and this results in the following rule for finding the non-zero

f̂(y).

Rule 3.1. Use (3.6) to evaluate f̂(y) only for those y with ĝ(y) > 0.

In view of (3.1), rule 3.1 means that we only need to use (3.6) to evaluate

f̂(y) for those y which coincides with at least one of the collapsed pool totals

Zi, i = 1, · · · , n. There are at most n such y’s, which does not increase with

L, and the number will often be much less than n due to repetition among

the Zi’s. The number of times one needs to evaluate (3.6) will be especially

small for the case of rare variants because most of the Zi’s will be vectors of

all zeros or mostly zeros, and so the number of distinct Zi’s is much smaller

than n. As a result, the collapsed data method of estimation is very fast.

In comparison, the most time consuming part of the EM algorithm is

to obtain for each pool the collection of all possible underlying haplotype

vectors that sum up to the observed pool total. Omitting the subscript for

numbering the pools, this amounts to finding all possible combinations of

K binary vectors Y1 = (Y11, · · · , YL1) , · · · , YK = (Y1K , · · · , YLK) that add
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up to the observed pool total T = (T1, · · · , TL). The algorithm that we use

to do this is the following. For every l = 1, · · · , L, since Tl = Yl1 + · · ·+YlK

is given, it means that the value at locus l must equal to 1 for Tl haplotype

vectors, and equal to 0 for the remaining K − Tl haplotype vectors; and

there are KCTl ways to choose the first set of Tl vectors. Doing this for all L

loci, we have to consider a total of
∏L

l=1 KCTl possibilities which increases

very quickly with K and L, and this is for one pool only. Fortunately, if the

alleles are rare, we can expect the values of the haplotype vectors to be fully

resolved at most loci, and have little phase ambiguity at the other loci. In

other words, we can expect most of the Tl to be 0, and the remaining Tl to be

small, with the consequence that
∏L

l=1 KCTl is not prohibitively large. Each

of the
∏L

l=1 KCTl ways of assigning zeros and ones will result in K haplotype

vectors, and we simply take the union of all such haplotype vectors to create

a list of haplotypes compatible with the total allele frequencies of a single

pool. We take the union of the pool specific lists to obtain a merged list.

We can save a lot of computer time by obtaining this (merged) list at the

outset once and for all, and then constrain the EM algorithm to estimate

the frequencies of only those haplotypes on the list. We call this the EML

algorithm which is similar in spirit to the AEML algorithm proposed by

Pirinen (2009), except that we do not use normal approximation (as we are

working with small pool sizes), and we do not assume the existence of an

external list due to insufficient database information about rare alleles.

To compare the running time of the collapsed data method and the

EML algorithm, we consider data collected from the CRESCENDO cohort

(http://clinicaltrials.gov/ct/show/NCT00263042) of 298 individuals

at the two extreme ends of the Body Mass Index (BMI): 148 obese in-
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dividuals (cases) with BMI greater than 40kg/m2, and 150 controls with

BMI lower than 30kg/m2. Individual samples were re-sequenced around

two genes known to be involved in endocannabinoid metabolism: FAAH

on chromosome 1, and MGLL on chromosome 3. There are 31Kbp of re-

sequenced data near the FAAH gene, and 157Kbp near the MGLL locus.

Bhatia et al. (2010) discovered two 5Kbp regions enriched in rare variants

located just upstream of the FAAH and MGLL genes respectively, with

32 RVs in the first region, and 25 RVs in the second region. Our running

time analysis makes use of data from the cases only as the control data

leads to rather trivial haplotype probability estimates concentrated almost

entirely at the ancestral haplotype (0, 0, · · · , 0) of all zeros, plus a few hap-

lotypes with only one or two 1’s. Table 3.1 reports the running times of

the collapsed data method and the EML algorithm for estimating the hap-

lotype distributions of the 25 RVs in the MGLL region, and the 32 RVs

in the FAAH region, when the 148 cases are grouped into pools of size 1,

2 and 4 respectively. The lengths of the EML lists of possible haplotypes

are also shown. It can be seen that the collapsed data method always runs

faster than the EML algorithm, and much faster when the pool size k and

Table 3.1: Running times in seconds of the collapsed data (CD) method
and the EML algorithm for estimating the haplotype distributions of the
25 RVs in the MGLL region and the 32 RVs in the FAAH region when 148
obese individuals are grouped into pools of various sizes.

MGLL FAAH
Pool size k = 1 k = 2 k = 4 k = 1 k = 2 k = 4

CD EML CD EML CD EML CD EML CD EML CD EML

Time∗ 0.33 1.14 0.36 18.71 0.61 > 10 h 0.44 0.72 0.67 126.38 6.45 > 10 h
Length† 67 88 136 37 125 611
∗Running time.
†Length of haplotype list.
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the number L of RVs increase. This is because increasing k and L does

not increase the running time of the collapsed data method substantially,

whereas the running time of the EML algorithm increases very rapidly. For

the MGLL region with 25 RVs, the running time of EML is 1.14 seconds on

an intel (R) Core (TM) 2 desktop when k = 1. The running time increases

to 18.71 seconds when k = 2, and to more than 10 hours when k = 4. One

explanation for this huge increase is the fact that when the 148 individuals

are grouped into 37 pools of size 4 each, one of the 37 pools has a total allele

count of 3 at one site, a count of 1 at five other sites, and 0 at the remain-

ing 19 sites. Thus just for this pool alone, the EML algorithm has to go

through
∏L

l=1 KCTl = 8C3 (8C1)5 (8C0)19 = 1, 835, 008 possibilities to come

up with the list of haplotypes compatible with the observed pool total. For

the FAAH region with 32 RVs, the EML algorithm takes 126.38 seconds

to run when the pool size is 2 (partly because one of the 74 pools of size

2 has a total allele count of 2 at four sites, a count of 1 at two other sites,

and 0 at the remaining 26 sites, leading to (4C2)4 (4C1)2 (4C0)26 = 20, 736

possibilities). When the pool size is increased to k = 4, one of the pools has

a total of 2 at five sites, 1 at four sites, and 0 elsewhere, which translates to

(8C2)5 (8C1)4 (8C0)23 ≈ 7e10 possibilities. As a result, the EML algorithm

takes more than 10 hours to run again and is aborted. Thus we have seen

how
∏L

l=1 KCTl can get to become very large even though k is as small as

4 and the alleles are rare. The number
∏L

l=1 KCTl will grow even bigger if

the alleles are not rare because of larger Tl values. In contrast, the total

number of haplotypes that the collapsed data method has to consider is

given by the number of pools with distinct pool total configurations, which

is bounded above by the number of pools, and will not grow with k and L.
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This is the main reason why the collapsed data method is faster than the

EML algorithm, particularly when k and L are increased.

Table 3.2: Estimates of haplotype frequencies for the 25 RVs in the MGLL
region obtained from pooled genotype data of 148 obese individuals using
the collapsed data (CD) method and the EML algorithm, with standard
errors in parentheses.

k = 1 k = 2 k = 4
Positions of “1”s CD EML CD EML CD

None 0.7927 (0.0251) 0.7941 (0.0238) 0.7912 (0.0286) 0.8202 (0.0231) 0.7572 (0.0447)
1 0.0536 (0.0145) 0.0505 (0.0132) 0.0497 (0.0171) 0.0397 (0.0126) 0.0549 (0.0311)
2 0.0043 (0.0042) 0.0034 (0.0034)
3 0.0456 (0.0134) 0.0433 (0.0123) 0.0381 (0.0153) 0.0291 (0.011) 0.0394 (0.0274)
5 0.0043 (0.0042) 0.0034 (0.0034)
6 0.0043 (0.0042) 0.0034 (0.0034) 0.0067 (0.0067) 0.0034 (0.0034)
9 0.0085 (0.0060) 0.0072 (0.0051) 0.0133 (0.0093) 0.0079 (0.0056)
11 0.0043 (0.0042) 0.0034 (0.0034)
15 0.0043 (0.0042) 0.0034 (0.0034)
19 0.0043 (0.0042) 0.0068 (0.0048) 0.0067 (0.0067) 0.0069 (0.0048) 0.0214 (0.0212)
20 0.0043 (0.0042) 0.0068 (0.0048) 0.0067 (0.0067) 0.0069 (0.0048) 0.0214 (0.0212)
21 0.0043 (0.0042) 0.0034 (0.0034)
22 0.0127 (0.0073) 0.0101 (0.0058) 0.0197 (0.0113) 0.0101 (0.0058) 0.0394 (0.0274)
23 0.0043 (0.0042) 0.0034 (0.0034) 0.0067 (0.0067) 0.0034 (0.0034) 0.0214 (0.0212)
24 0.0127 (0.0073) 0.0101 (0.0058) 0.0067 (0.0067) 0.004 (0.0039)
1, 3 0.0048 (0.0055) 0.0040 (0.0049) 0.0090 (0.0091) 0.0059 (0.0063) 0.0172 (0.0214)
1, 9 0.0034 (0.0040) 0.0029 (0.0034) 0.0032 (0.0057) 0.0022 (0.0035) 0.0259 (0.0181)
1, 15 0.0056 (0.0056) 0.0034 (0.0034)
1, 24 0.0098 (0.0078) 0.0064 (0.0049) 0.0137 (0.0136)
2, 3 0.0059 (0.0058) 0.0034 (0.0034) 0.0155 (0.0154)
3, 9 0.0155 (0.0154)
3, 11 0.0059 (0.0058) 0.0034 (0.0034) 0.0155 (0.0154)
3, 14 0.0040 (0.0040) 0.0034 (0.0034) 0.0059 (0.0058) 0.0034 (0.0034) 0.0155 (0.0154)
5, 21 0.0067 (0.0067) 0.0034 (0.0034)
6, 7 0.0250 (0.0101) 0.0203 (0.0082) 0.0314 (0.0138) 0.0182 (0.0081) 0.0394 (0.0274)
19, 20 0.0017 (0.0017) 0.0033 (0.0035)
1, 3, 15 0.0087 (0.0087)
3, 6, 7 0.0026 (0.0039) 0.0034 (0.0034) 0.0066 (0.0076) 0.0057 (0.0049) 0.0233 (0.0217)
5, 6, 21 0.0214 (0.0212)
6, 7, 24 0.0155 (0.0154)
6, 19, 20 0.0017 (0.0017)
7, 19, 20 0.0017 (0.0017)
1, 6, 7, 24 0.0039 (0.0038) 0.0034 (0.0034)
6, 7, 19, 20 0.0041 (0.0041) 0.0017 (0.0017) 0.0057 (0.0056) 0.0033 (0.0034)
1, 3, 6, 7, 24 0.0041 (0.0041) 0.0032 (0.0034) 0.0092 (0.0069)
1, 6, 7, 19, 20 0.0077 (0.0089)
1, 12, 13, 22, 25 0.0039 (0.0039) 0.0034 (0.0034) 0.0053 (0.0053) 0.0034 (0.0034)
1, 12, 13, 22, 24, 25 0.0094 (0.0094)

Sum of other haplotype probabilities 1.44e-13 4.39e-17

Table 3.2 reports the haplotype frequency estimates for the 25 RVs in

the MGLL region obtained using the collapsed data method and the EML

algorithm, and Table 3.3 does the same for the 32 RVs in the FAAH region.

79



Chapter 3. Collapsed Data MLE

Table 3.3: Estimates of haplotype frequencies for the 32 RVs in the FAAH
region obtained from pooled genotype data of 148 obese individuals using
the collapsed data (CD) method and the EML algorithm, with standard
errors in parentheses.

k = 1 k = 2 k = 4
Positions of “1”s CD EML CD EML CD

None 0.7623 (0.0266) 0.7065 (0.0267) 0.7467 (0.0323) 0.7351 (0.0260) 0.7787 (0.0405)
1 0.0044 (0.0044) 0.0034 (0.0034)
3 0.0044 (0.0044) 0.0034 (0.0034)
5 0.0044 (0.0044) 0.0034 (0.0034) 0.0080 (0.0080) 0.0034 (0.0034)
7 0.0044 (0.0044) 0.0068 (0.0048) 0.0080 (0.0080) 0.0073 (0.0051)
9 0.0044 (0.0044) 0.0034 (0.0034)
10 0.0132 (0.0076) 0.0101 (0.0058) 0.0232 (0.0133) 0.0101 (0.0058)
11 0.0044 (0.0044) 0.0034 (0.0034) 0.0080 (0.0080) 0.0034 (0.0034) 0.0179 (0.0178)
14 0.0044 (0.0044) 0.0034 (0.0034) 0.0080 (0.0080) 0.0034 (0.0034)
17 0.0044 (0.0044) 0.0034 (0.0034) 0.0080 (0.0080) 0.0034 (0.0034)
20 0.0044 (0.0044) 0.0034 (0.0034)
21 0.0261 (0.0105) 0.0263 (0.0098) 0.0305 (0.0150) 0.0220 (0.0089) 0.0334 (0.0233)
22 0.0088 (0.0062) 0.0068 (0.0048) 0.0080 (0.0080) 0.0034 (0.0034) 0.0179 (0.0178)
24 0.0132 (0.0076) 0.0304 (0.0100) 0.0232 (0.0133) 0.0300 (0.0105) 0.0179 (0.0178)
25 0.0088 (0.0062) 0.0135 (0.0067) 0.0157 (0.011) 0.0135 (0.0067) 0.0179 (0.0178)
26 0.0044 (0.0044) 0.0034 (0.0034)
28 0.0597 (0.0155) 0.0670 (0.0149) 0.0705 (0.0215) 0.0598 (0.0141) 0.0471 (0.0267)
30 0.0044 (0.0044) 0.0035 (0.0035)
31 0.0044 (0.0044) 0.0034 (0.0034) 0.0080 (0.0080) 0.0034 (0.0034)
32 0.0044 (0.0044) 0.0037 (0.0037)
2, 25 0.0044 (0.0044) 0.0034 (0.0034)
3, 24 0.0034 (0.0034)
5, 28 0.0122 (0.0122)
7, 24 0.0297 (0.0111) 0.0507 (0.0127) 0.0330 (0.0149) 0.0482 (0.0127) 0.0155 (0.0154)
7, 25 0.0155 (0.0154)
10, 21 0.0137 (0.0136)
12, 13 0.0044 (0.0044) 0.0034 (0.0034) 0.0080 (0.0080) 0.0034 (0.0034) 0.0179 (0.0178)
21, 23 0.0043 (0.0043) 0.0034 (0.0034)
21, 28 0.0021 (0.0041) 9e-04 (0.0036)
21, 30 0.0041 (0.0042) 0.0032 (0.0034)
21, 32 0.0071 (0.0071) 0.0034 (0.0034)
22, 30 0.0043 (0.0043) 0.0033 (0.0034) 0.0077 (0.0077) 0.0037 (0.0037)
24, 28 0.0031 (0.0041) 0.0034 (0.0034) 5e-04 (0.0067) 0.0010 (0.0036) 0.0054 (0.0129)
26, 28 0.0061 (0.0061) 0.0034 (0.0034)
28, 30 0.0061 (0.0061) 0.0034 (0.0034)
28, 31 0.0122 (0.0122)
28, 32 0.0038 (0.0041) 0.0030 (0.0034) 0.0061 (0.0061) 0.0034 (0.0034)
1, 21, 23 0.0071 (0.0071) 0.0034 (0.0034)
2, 20, 25 0.0075 (0.0075) 0.0034 (0.0034)
3, 7, 24 0.0063 (0.0062) 0.0137 (0.0136)
4, 7, 24 0.0042 (0.0042) 0.0034 (0.0034) 0.0063 (0.0062) 0.0034 (0.0034) 0.0137 (0.0136)
7, 10, 24 0.0137 (0.0136)
7, 17, 24 0.0137 (0.0136)
7, 21, 24 0.0028 (0.0061) 0.0019 (0.0035)
7, 22, 24 0.0038 (0.0041) 0.0034 (0.0034)
7, 24, 28 0.0128 (0.0141)
7, 24, 30 0.0040 (0.0041) 0.0034 (0.0034) 0.0063 (0.0062) 0.0034 (0.0034)
14, 21, 32 0.0137 (0.0136)
21, 22, 30 0.0059 (0.0068) 0.0030 (0.0034)
22, 28, 30 0.0111 (0.0110)
24, 28, 32 0.0102 (0.0101)
26, 28, 30 0.0122 (0.0122)
1, 21, 23, 28 0.0102 (0.0101)
7, 21, 24, 28 0.0067 (0.0077)
7, 21, 24, 30 0.0111 (0.0110)
7, 22, 24, 28 0.0053 (0.0049) 0.0034 (0.0034)
8, 27, 28, 29 0.0034 (0.0034) 0.0034 (0.0034)
21, 22, 28, 30 0.0070 (0.0090)
7, 10, 22, 24, 28 0.0082 (0.0073)
8, 26, 27, 28, 29 0.0041 (0.0041) 0.0034 (0.0034)
8, 9, 26, 27, 28, 29 0.0060 (0.0060) 0.0034 (0.0034)
2, 8, 9, 20, 25, 26, 27, 28, 29 0.0111 (0.0110)

Sum of other haplotype probabilities 1.30e-24 1.12e-06
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We only report the EML estimates for pool sizes 1 and 2 as it is too time

consuming to run the EML algorithm when k = 4 (see Table 3.1). For

the EML method, haplotypes with estimated probabilities less than 10−5

are not listed out separately, but the total probability of all these omitted

haplotypes is reported and is found to be negligible. It can be seen that

the collapsed data estimates and the EML estimates are quite close to each

other. When the pool size is increased, we can see that for the collapsed

data method, some haplotypes with a few “1”s drop out from the list of

haplotypes with positive probability estimates, and their places are taken

by a few haplotypes with more “1”s. This is not surprising in view of rule

3.1 as increasing the pool size will lead to non-zero allele frequencies at more

loci. However, the haplotypes being swapped all have small probabilities

and do not really change the overall picture of the haplotype distribution.

It is also reassuring to see that the collapsed data method captures almost

the same haplotypes as the EML method which is based on a much longer

list of possible haplotypes. Comparing the columns of Table 3.2 for the

same k, we can see that the EML algorithm produces just three more

haplotypes, each with an estimated frequency of 0.0017, than the collapsed

data estimation method when k = 1; and only one more haplotype with

an estimated frequency of 0.0033 when k = 2. A similar pattern emerges

from Table 3.3 for the case of 32 RVs. This suggests that the phenomenon

of haplotypes with very few “1”s giving way to haplotypes with more “1”s

as pool size increases has more to do with pooling itself than the further

collapsing of pooled data and the subsequent use of rule 3.1. In any case,

we believe that the problem has been exaggerated in Tables 3.2 and 3.3 due

to insufficient number of pools. Because we fix the number of individuals
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at 148, there are only 37 pools of size 4. If we have instead 148 pools of

4 individuals each, which would cost about the same to genotype as 148

individuals, then there will be less chance for the collapsed data method to

miss important haplotypes. To be concrete, let us consider the haplotype

y = (0, · · · , 0, 1, 0) with a solitary “1” at position 24 for the MGLL data.

Suppose we assume that f(y) = 0.013 and f(0, · · · , 0) = 0.8, which seem

reasonable based on the estimates reported in Table 3.2. For a pool of k

individuals (2k haplotypes), let T be the sum of the 2k haplotypes, and Z

the result of collapsing T component-wise according to whether the total

allele count at each site is “0” or “at least 1”. If one of the 2k haplotypes

is y = (0, · · · , 0, 1, 0), and the rest are all ancestral (i.e., the most common

haplotype of all zeros), which occurs with probability 2k(0.013)(0.8)2k−1,

then T = y + (2k − 1)0 = y = Z. Since this is just one but not the only

way to get Z = y, we can conclude that P (Z = y) ≥ 2k(0.013)(0.8)2k−1. It

follows that if the pool size is k = 2, we have P (Z = y) ≥ 4(0.013)(0.8)3 =

0.0266. With 74 pools of size 2 each, the probability that Z 6= y for all 74

pools (which will cause the collapsed data method to miss this haplotype

according to rule 3.1) is less than or equal to (1− 0.0266)74 = 0.136. Thus

the probability that the collapsed data method based on 74 pools of size 2

each will not miss y = (0, · · · , 0, 1, 0) is at least 0.864, which is indeed the

case in Table 3.2. When the pool size is k = 4, P (Z = y) ≥ 8(0.013)(0.8)7 =

0.0218. With only 37 pools of size 4, the probability that y is missed by the

collapsed data method is less than or equal to (1−0.0218)37 = 0.442, and so

the probability that y = (0, · · · , 0, 1, 0) is not missed is at least 0.558. The

fact that the lower bound is only 0.558 explains why y = (0, · · · , 0, 1, 0)

disappears from the list in Table 3.2 when k = 4. Have we had 148 pools
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of size 4 each, the probability of missing y = (0, · · · , 0, 1, 0) is smaller

than or equal to (1 − 0.0218)148 = 0.038, and so the probability that the

collapsed data method will not miss y is at least 0.962. The above argument

can be generalized to show that for every y with f(y) > 0 and for every

pool size, we can find the number of pools necessary to ensure that the

collapsed data method will not miss y with probability larger than some

desired value, say, 0.95. Thus increasing the number of pools will alleviate

the problem of missing haplotypes.

3.2.3 Variance and efficiency formulae

The collapsed data method is very fast to run; the only concern is that

there might be some loss of estimation efficiency. To investigate this, we will

derive some variance and efficiency formulae, and show that the collapsed

data method is well suited to estimating certain union type probabilities

when the variants are rare. We start with f(0, · · · , 0), the probability that

all the alleles are zeros. As ĝ(0, · · · , 0) is just the sample proportion of pools

with zero sums,

var [ĝ(0, · · · , 0)] =
g(0, · · · , 0) [1− g(0, · · · , 0)]

n
.

Now f̂(0, · · · , 0) = ĝ(0, · · · , 0)
1
K according to (3.3), and so we can use the

delta method to obtain

var
[
f̂(0, · · · , 0)

]
=

[
1

K
g(0, · · · , 0)

1
K
−1

]2
g(0, · · · , 0) [1− g(0, · · · , 0)]

n

=
f(0, · · · , 0)2−K [1− f(0, · · · , 0)K

]
nK2

(3.7)
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as the asymptotic variance of f̂(0, · · · , 0) when the number of pools n in-

creases. If complete haplotype data were available (i.e. if all 2nk haplotypes

in the n pools were known), the complete data MLE of f(0, · · · , 0) is simply

f̂C(0, · · · , 0) = nY (0)/(2nk), where nY (0) is the number of haplotypes of

ancestral type (i.e., consisting of all zeros) in the sample of 2nk haplotypes.

It has variance

var
[
f̂C(0, · · · , 0)

]
=
f(0, · · · , 0) [1− f(0, · · · , 0)]

2nk
.

As n increases, the asymptotic efficiency of f̂(0, · · · , 0) relative to f̂C(0, · · · , 0)

is

ARE
[
f̂(0, · · · , 0), f̂C(0, · · · , 0)

]
=

var
[
f̂C(0, · · · , 0)

]
var
[
f̂(0, · · · , 0)

]
= Kf(0, · · · , 0)K−1

[
1− f(0, · · · , 0)

1− f(0, · · · , 0)K

]
=

Kf(0, · · · , 0)K−1

1 + f(0, · · · , 0) + · · ·+ f(0, · · · , 0)K−1
.

(3.8)

If all the variants are rare, f(0, · · · , 0) will be close to 1, and

ARE
[
f̂(0, · · · , 0), f̂C(0, · · · , 0)

]
will also be close to 1. Often we will be

dealing with a large number of markers, and a proper framework to han-

dle this is to assume that f(0, · · · , 0) tends to a limit c as L increases.

This is reasonable because even though each variant is rare, when there

is enough of them, there is a non-negligible probability that at least 1 of

the rare variants will occur. Mathematically, if the L variants occur inde-

pendently with a small probability aL/L each, and lim
L→∞

aL = a > 0, then

lim
L→∞

f(0, · · · , 0) = lim
L→∞

(
1− aL

L

)L
= e−a = c < 1, which is just the Poisson

84



3.2. Statistical Models and Methods

law for rare events, and the limiting ARE becomes

KcK−1

1 + c+ · · ·+ cK−1
< 1.

If the variants are so rare that the probability of occurrence of each variant

is aL/L, with lim
L→∞

aL = a = 0, then c = 1, and f̂(0, · · · , 0) becomes fully

efficient.
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Figure 3.1: Asymptotic relative efficiency of the collapsed data MLE versus
the complete data MLE of the haplotype frequency of all zeros for various
choices of the true frequency.

To see it graphically, we plot in Figure 3.1 the asymptotic relative ef-

ficiency given by (3.8) as a function of pool size k = K/2 for 4 choices of

f(0, · · · , 0), 0.8, 0.85, 0.9 and 0.95. We can see that the ARE of f̂(0, · · · , 0)

relative to f̂C(0, · · · , 0) depends on how large f(0, · · · , 0) is (i.e., how rare

85



Chapter 3. Collapsed Data MLE

the alleles are) and the pool size. There is not much loss in efficiency in

using f̂(0, · · · , 0) instead of f̂C(0, · · · , 0) for pools of size 1 as the AREs

are all very close to 1. When the pool size is 2, the ARE ranges from 69%

to 92% as f(0, · · · , 0) increases from 0.8 to 0.95. If the alleles are so rare

that f(0, · · · , 0) = 0.95, the ARE lies above 80% even for pool size 5.

Note that the ARE that we compute using (3.8) is conservative in 2 ways.

First, we are benchmarking f̂(0, · · · , 0) against an estimator f̂C(0, · · · , 0)

which cannot be computed from the observed pooled genotype data as it

requires complete haplotype information. Secondly, the ARE formula (3.8)

does not take costs into consideration. Suppose it is M times more expen-

sive to obtain the haplotype information of an individual than to genotype

the pooled sample of a group of individuals, then for the same cost of

genotyping n pools of k individuals each, we can only obtain haplotype

information for nI = n/M individuals. Thus a fairer comparison is to com-

pare var
[
f̂(0, · · · , 0)

]
with f(0, · · · , 0) [1− f(0, · · · , 0)] /(2nI), and so we

should multiply (3.8) by Mk. Even under the conservative assumption that

M = 1 (i.e., cost of phasing = cost of genotyping), we should multiply (3.8)

by k, the pool size.

The variance of the EM estimates (based on pooled genotyped data)

should be in between that of f̂(0, · · ·, 0) (obtained by collapsing the pooled

genotype data) and f̂C(0, · · ·, 0) (based on complete haplotype data), but

the EM algorithm is a lot more computing intensive than the collapsed

data method. Thus if it can be demonstrated that the simpler estimator f̂

loses little efficiency relative to the gold standard f̂C , then there is no need

to compute the EM estimate.

We consider now more generally the relative efficiency for estimating
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f0(Λ) = P (Ylij = 0, l ∈ Λ) for non-empty subsets Λ of {1, · · · , L}. Note

that f(0, · · · , 0) is just f0(Λ) when Λ = {1, · · · , L}. Using derivations sim-

ilar to those used to derive (3.8), we obtain

ARE
[
f̂0(Λ), f̂0C(Λ)

]
=

Kf0(Λ)K−1

1 + f0(Λ) + · · ·+ f0(Λ)K−1
(3.9)

as the generalization of (3.8), where f̂0C(Λ) is the complete data MLE of

f0(Λ). By definition, f0(Λ) ≥ f(0, · · · , 0) and so

ARE
[
f̂0(Λ), f̂0C(Λ)

]
=

Kf0(Λ)K−1

1 + f0(Λ) + · · ·+ f0(Λ)K−1

≥ Kf(0, · · · , 0)K−1

1 + f(0, · · · , 0) + · · ·+ f(0, · · · , 0)K−1

= ARE
[
f̂(0, · · · , 0), f̂C(0, · · · , 0)

]
.

The implication of this result is that relative to the complete data MLE,

the collapsed data MLE will do even better in estimating the probability

of a subset of zeros rather than the probability of all zeros.

Summarizing our results so far, the proposed method is well suited to

estimating probabilities of the type f0(Λ) = P (Ylij = 0, l ∈ Λ), and with

little loss of efficiency if the variants are rare and the pool size is not

too large. This serves our purpose well because probabilities like f0(Λ) =

P (Ylij = 0, l ∈ Λ) play a special role in the study of rare genetic variants.

As the frequency of occurrence of each rare variant is very low, some kind

of collapsing is needed. Bhatia et al. (2010) defined the union of a set of

variants to take on the value 1 when at least one of the variants occurs,

and 0 if none of the variants occurs. If Λ ⊂ {1, · · · , L} indexes the variants

of which we are taking the union, then the probability that the union
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variant occurs is pU (Λ) = 1 − f0 (Λ) which of course can be estimated by

p̂U (Λ) = 1− f̂0 (Λ), where f̂0 (Λ) is given by (3.5). Analogous to (3.7), we

can obtain

var [p̂U (Λ)] = var
[
f̂0 (Λ)

]
=
f̂0(Λ)2−K

[
1− f̂0(Λ)K

]
nK2

from the binomial variance of ĝ0 (Λ) using delta method. The asymptotic

relative efficiency of p̂U (Λ) = 1 − f̂0 (Λ) is the same as that of f̂0 (Λ) and

so is also given by (3.9).

We end this section by discussing variance estimation for the haplo-

type frequency estimates f̂(y), y ∈ {0, 1}L. Since it follows from (3.6) that

every f̂(y) can be expressed as a linear combination of the probabilities

f̂0(Λ), we can obtain the variance of f̂(y) from the covariance matrix of

f̂0(Λ),Λ ⊂ {1, · · · , L}. To obtain the covariance matrix of f̂0(Λ), we use

variance formula like the one above and the fact that

cov
[
f̂0(Λ1), f̂0(Λ2)

]
=

[
1

K
g0(Λ1)

1
K
−1

] [
1

K
g0(Λ2)

1
K
−1

]
g0(Λ1 ∪ Λ2)− g0(Λ1)g0(Λ2)

n

=
f0(Λ1)1−Kf0(Λ2)1−K [f0(Λ1 ∪ Λ2)K − f0(Λ1)Kf0(Λ2)K

]
nK2

.

3.3 An Analysis of Rare Variants Associated with

Obesity

As many common diseases cannot be explained by common variants, there

is a theory that they might be caused by multiple rare variants. The lack of

rare variant data had hampered the investigation of this “common disease,

rare variant” hypothesis, but recent advances in technology have made it
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possible to re-sequence large stretches of a genome in a cost effective way.

Thus the time is ripe for rare variant analysis, and as a result there is a

huge surge of papers on this topic. The analysis of rare variants presents

many new challenges. Most existing methods of data analysis are not de-

signed with rare attributes in mind and their naive applications will lead

to imprecise estimates and tests of low power. As a result, various strate-

gies to handle rare variant data have been proposed, including collapsing

(Li and Leal, 2008), weighting (Madsen and Browning, 2009), thresholding

(Price et al., 2010), C-alpha test (Neale et al., 2011) based on comparing

the expected variance with the actual variance of the distribution of allele

frequencies, score-type tests (Lin and Tang, 2011) and the sequence kernel

association test (Wu et al., 2011). All the above procedures are concerned

with testing the overall significance of a collection of variants rather than

variant selection, and are not developed with pooled data in mind which,

as noted by Kim et al. (2010), could be important for rare variants. Bha-

tia et al. (2010) proposed a covering method called “RARECOVER” for

selecting rare variants associated with common diseases. RARECOVER

is basically a step-up greedy procedure whereby at each step, the variant

which maximizes the Pearson’s chi square statistic upon taking union with

the variants selected so far is added to the existing set if the increase in

Pearson’s statistic exceeds a certain threshold. Applying RARECOVER to

the case control data described earlier in section 3.2.2, Bhatia et al. (2010)

identified 12 RVs out of the 25RVs in a 5Kbp window just upstream of the

MGLL gene as potential causal variants of obesity.

To provide an alternative analysis, we use the collapsed data method to

compute the haplotype frequency estimates separately for the 148 cases and
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150 controls, and the results are shown in the left panel of Table 3.4. Due to

limited information, it is difficult to establish significance based on single

variant analyses, and it is important to borrow strength across different rare

variants. It is hoped that we can select variants with low individual minor

allele frequency in such a way that their union has a higher frequency of

occurrence of say, 10 to 20%. As argued earlier, the collapsed data method

is particularly well suited to the estimation of union probabilities with high

efficiency given by (3.9) for the case of rare variants and small pool size.

To identify which RVs to include in the union, we compare the haplotype

frequency estimates reported in the left panel of Table 3.4 for the cases and

controls. In view of our earlier comment that it is the insufficient power of

single variant analysis which necessitates the formation of union variants,

we will use a more liberal level of 10% significance to perform the initial

screening of haplotypes. The three haplotypes depicted in bold type in the

left panel of Table 3.4 are those with case frequency significantly higher

than the control frequency at the 10% level (i.e., standardized difference

greater than 1.28). From the haplotypes with only one “1”, we pick out

RV3 (chr3 129031107) and RV9 (chr3 129031864) as candidate RVs that

are associated with obesity. From the haplotypes with two “1”s, we pick out

RV6 (chr3 129031590) and RV7 (chr3 129031591). For these 4 RVs, their

union probability is estimated to be .0958 (SE = .0176) for the cases and

.027 (SE = .0094) for the controls to result in a standardized difference of

3.45. A closer examination of Table 3.4 reveals that there is some redun-

dancy between RV6 and RV7 as these 2 RVs tend to occur together always.

Thus it may be sufficient to include only one of them in the union variant.

Between the two, RV6 is slightly more significant (marginal frequency of 10
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for cases versus 3 for controls, as opposed to 9 and 3). If we leave out RV7,

the union probability of the remaining RV3, RV6 and RV9 is estimated to

be .0958 (SE = .0176) for the cases and .0236 (SE = .0088) for the controls

to result in a larger standardized difference of 3.67. If we replace RV6 by

RV7 in the union, the union probability is estimated to be .0921 (SE =

.0172) for the cases and .027 (SE = .0094) for the controls with a smaller

standardized difference of 3.32. Since the probability of haplotype is small,

we also calculate the relative risk. Z scores for the logarithm of relative risk

were 3.22 for the four rare variants (RV3, RV6, RV7 and RV9), 3.37 if we

leave out RV7 and 3.31 if we leave out RV6. Similar results are obtained

using both difference and relative risk. In view of the above discussion,

we select RV3, RV6 and RV9 as potential causal RVs out of the total of

25 RVs. This is a more parsimonious selection than the 12 RVs picked by

RARECOVER.

Haplotype based inference can provide more information than single

marker analyses. For example, the high linkage disequilibrium between RVs

6 and 7 for the MGLL data mentioned above was discovered by inspecting

the left panel of Table 3.4. To give another example, we look at the right

panel of Table 3.4, which shows the collapsed data estimates of the hap-

lotype frequencies in the FAAH region. It can be seen that RVs 7 and 24

(depicted in bold type) occur together a lot. Based on single locus allele

frequencies, RV24 is not associated with obesity (total allele count is 28 for

cases, 24 for controls, with a standardized difference of 0.63), whereas RV7

is marginally significant (20 versus 11 for a standardized difference of 1.7).

From the right panel of Table 3.4, we see that the estimated frequencies

that only RV7 occurs (out of the 32 RVs in the FAAH region) are about
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Table 3.4: Estimates of haplotype frequencies and probabilities of various
variant combinations for the 25 RVs in the MGLL region and the 32 RVs
in the FAAH region obtained by collapsing data from 148 cases and 150
controls, with k = 1 and standard errors in parentheses.

MGLL FAAH
Positions of “1”s Cases Controls Positions of “1”s Cases Controls

None 0.7927 (0.0251) 0.8981 (0.0180) None 0.7623 (0.0266) 0.8327 (0.0226)
1 0.0536 (0.0145) 0.0364 (0.0113) 1 0.0044 (0.0044)
2 0.0043 (0.0042) 3 0.0044 (0.0044)
3 0.0456 (0.0134) 0.0147 (0.0073) 5 0.0044 (0.0044)
4 0.0037 (0.0037) 6 0.0040 (0.0040)
5 0.0043 (0.0042) 7 0.0044 (0.0044) 0.0040 (0.0040)
6 0.0043 (0.0042) 9 0.0044 (0.0044)
7 10 0.0132 (0.0076) 0.0119 (0.0068)
8 0.0074 (0.0052) 11 0.0044 (0.0044) 0.0159 (0.0079)
9 0.0085 (0.006) 14 0.0044 (0.0044)
10 0.0037 (0.0037) 15 0.0040 (0.0040)
11 0.0043 (0.0042) 17 0.0044 (0.0044)
15 0.0043 (0.0042) 18 0.0040 (0.0040)
19 0.0043 (0.0042) 19 0.0040 (0.0040)
20 0.0043 (0.0042) 20 0.0044 (0.0044)
21 0.0043 (0.0042) 21 0.0261 (0.0105) 0.0198 (0.0088)
22 0.0127 (0.0073) 0.0037 (0.0037) 22 0.0088 (0.0062)
23 0.0043 (0.0042) 24 0.0132 (0.0076) 0.0314 (0.0109)
24 0.0127 (0.0073) 0.0111 (0.0064) 25 0.0088 (0.0062) 0.0198 (0.0088)
1, 3 0.0048 (0.0055) 26 0.0044 (0.0044)
1, 9 0.0034 (0.0040) 28 0.0597 (0.0155) 0.0353 (0.0116)
1, 16 0.0036 (0.0036) 30 0.0044 (0.0044)
1, 17 0.0036 (0.0036) 31 0.0044 (0.0044)
1, 18 0.0036 (0.0036) 32 0.0044 (0.0044)
3, 14 0.0040 (0.0040) 0.0036 (0.0036) 2, 25 0.0044 (0.0044)
6, 7 0.0250 (0.0101) 0.0037 (0.0037) 6, 16 0.0040 (0.0040)
3, 6, 7 0.0026 (0.0039) 0.0036 (0.0036) 7, 24 0.0297 (0.0111) 0.0188 (0.0084)
1, 6, 7, 24 0.0039 (0.0038) 12, 13 0.0044 (0.0044)
6, 7, 19, 20 0.0041 (0.0041) 21, 23 0.0043 (0.0043)
1, 12, 13, 22, 25 0.0039 (0.0039) 21, 30 0.0041 (0.0042)

21, 28 0.0021 (0.0041) 0.0030 (0.0038)
22, 30 0.0043 (0.0043)
24, 28 0.0031 (0.0041)
28, 32 0.0038 (0.0041)
4, 7, 24 0.0042 (0.0042)
7, 24, 30 0.0040 (0.0041)
7, 22, 24 0.0038 (0.0041)
8, 26, 27, 28, 29 0.0041 (0.0041)

Variant combinations Variant combinations
3 or 6 or 7 or 9 0.0958 (0.0176) 0.0270 (0.0094) 7 but not 24 0.0044 (0.0044) 0.0040 (0.0040)
3 or 6 or 9 0.0958 (0.0176) 0.0236 (0.0088) 24 but not 7 0.0163 (0.0081) 0.0314 (0.0109)
3 or 7 or 9 0.0921 (0.0172) 0.0270 (0.0094) 7 and 24 0.0416 (0.0129) 0.0188 (0.0084)
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the same for cases and controls, .0044 versus .04, and the standardized

difference is .07. Interestingly, the estimated frequency of RV24 occurring

only is higher among the controls than cases (.0314 versus .0132), and the

standardized difference is -1.37 which seems to suggest weakly that RV24

alone may be a protective variant. The estimated frequency of both RVs 7

and 24 occurring (and nothing else) is .0297 which is higher than the corre-

sponding frequency of .0188 for the controls, even though the standardized

difference is only .78. These findings suggest that it may be worthwhile to

study the association between obesity and the following 2-variant combi-

nations: “RV7 but not RV24”, “RV24 but not RV7” and “both RV7 and

RV24”. The frequencies of occurrences of these combinations can be ob-

tained separately for the cases and controls by summing the frequencies

of all those haplotypes satisfying the given conditions, and standard errors

of these sums can be obtained from the variances and covariances of the

haplotype frequency estimates. This is done at the lower right hand cor-

ner of Table 3.4. We can see that “RV7 but not RV24” is not associated

with obesity (standardized difference is .07). For the combination “RV24

but not RV7”, the standardized difference is -1.11. The negative difference

suggests protectiveness, although its magnitude is not large enough to be

statistically significant (2-sided p value is .267). Finally, for “both RV7 and

RV24”, the standardized difference is 1.48 with a 1-sided p value of .07.

We use a 1-sided p value here since we are primarily interested in find-

ing variants which cause obesity. Thus our analysis based on haplotype

frequency estimates suggests that there is potentially an interesting inter-

action effect between RV7 and RV24 on obesity. Even though the evidence

is not conclusive, there is a hint that both variants have to occur to cause
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obesity. Further investigation is required to verify or disprove the above

conjectures. With 32 RVs in the FAAH region, there are 496 pairs of RVs

to explore for possible interaction. By looking closely at the 40 or so FAAH

haplotypes with positive estimated probabilities listed in Table 3.4, we are

able to flag out RVs 7 and 24 as a potentially interesting pair. Lin and Zeng

(2006) also noted that it is the sparseness of the estimated haplotype fre-

quency distribution which makes “haplotyping an effective data-reduction

strategy”.

3.4 Discussion and Extensions

We have proposed a very fast method to compute haplotype frequency

estimates from individual or pooled genotype data which is non-iterative in

nature, feasible for all pool size and number of markers, and is significantly

faster than the EML algorithm. This is made possible by collapsing the

total allele counts to “0” and “≥ 1”. Efficiency calculation suggests that

the method is well suited to the estimation of union probabilities with

little loss of efficiency if the variants are rare and the pool size is not too

large. We conclude that the proposed method is adequate and useful for the

purpose of screening out rare variants to form union variants, and highly

reliable for estimating union probabilities. Even if the variants are not rare,

the proposed method can be used to provide quick initial estimates of the

haplotype frequencies. It is also valuable as a quick screening tool to filter a

large number of variants down to a more manageable set for further study.

In obtaining the results for Tables 3.2, 3.3 and 3.4, we have assumed

that we can observe the total allele counts exactly when K haplotypes are

pooled together. In practice, pooling will add noise to the data. One way to
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simulate this noise is to use the binomial model proposed by Quade et al.

(2005). To be specific, suppose the pool size is k, and the true total allele

count at a particular locus is t (i.e., in the pool of K = 2k haplotypes,

t of them have the allele “1” at that locus, and the remaining 2k − t

haplotypes have the allele “0”). We assume that the genetic materials of the

k individuals are mixed together in equal proportions and a total of KD

readings are to be taken from the pooled sample so that there are D reads

per haplotype on the average, which is known as the sequencing depth. This

results in an amplified count A ∼ Binomial (KD, p = t/K), and we divide

A by D, and round it to the nearest integer to obtain the observed count

y. If A/D is midway between two integers, we pick one of them as y with

equal probability. Note that for a fixed K, A/D → t in probability as the

sequencing depth D increases, and so the amount of noise decreases with

D. In practice, we often fix the total number of reads KD, and so the depth

will decrease with pool size, which serves to explain why increasing the pool

size can lead to noisier data. To investigate the effect of noise induced by

pooling on the collapsed data estimator, we take the MGLL data as the

“true” data, and we add noise at every locus independently using the above

binomial model with pool size 1, 2 and 4, and KD = 64. This is done 200

times for each pool size. For each set of “noisy” data generated, we use the

collapsed data method to estimate the haplotype frequencies. The average

estimates over the 200 samples and their standard errors are reported in

Table 3.5. It can be seen that the averages of the “noisy” data estimates are

quite close to the collapsed data estimates based on the true allele count

data without noise. The standard error increases with pool size, but this is

to be expected because we fix the total number of reads at 64, and so the
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sequencing depth decreases from D = 32 when the pool size is 1 to D = 8

when the pool size is 4. But even when the pool size is 4, there is good

agreement between the estimates with and without noise added.

Table 3.5: Collapsed data estimates of haplotype frequencies for the 25 RVs
in the MGLL region with and without “noise” added to the pooled genotype
data of 148 obese individuals, with standard errors in parentheses.

k = 1 k = 2 k = 4
Positions of “1”s No noise Noise added No noise Noise added No noise Noise added

None 0.7927 0.7927 (0) 0.7912 0.7929 (0.0037) 0.7572 0.7718 (0.0150)
1 0.0536 0.0536 (0) 0.0497 0.0493 (0.0025) 0.0549 0.0552 (0.0129)
2 0.0043 0.0043 (0)
3 0.0456 0.0456 (0) 0.0381 0.0377 (0.0025) 0.0394 0.0401 (0.0134)
5 0.0043 0.0043 (0)
6 0.0043 0.0043 (0) 0.0067 0.0070 (0.0020)
9 0.0085 0.0085 (0) 0.0133 0.0134 (0.0012)
11 0.0043 0.0043 (0)
15 0.0043 0.0043 (0)
19 0.0043 0.0043 (0) 0.0067 0.0067 (0.0001) 0.0214 0.0191 (0.0023)
20 0.0043 0.0043 (0) 0.0067 0.0067 (0.0001) 0.0214 0.0191 (0.0023)
21 0.0043 0.0043 (0)
22 0.0127 0.0127 (0) 0.0197 0.0194 (0.0012) 0.0394 0.0337 (0.0089)
23 0.0043 0.0043 (0) 0.0067 0.0066 (0.0009) 0.0214 0.0180 (0.0054)
24 0.0127 0.0127 (0) 0.0067 0.0067 (0.0011)
1, 3 0.0048 0.0048 (0) 0.0090 0.0086 (0.0017) 0.0172 0.0120 (0.0083)
1, 9 0.0034 0.0034 (0) 0.0032 0.0032 (0.0006) 0.0259 0.0187 (0.0078)
1, 15 0.0056 0.0055 (0.0008)
1, 24 0.0098 0.0096 (0.0011) 0.0137 0.0098 (0.0050)
2, 3 0.0059 0.0056 (0.0011) 0.0155 0.0109 (0.0059)
3, 9 0.0155 0.0110 (0.0053)
3, 11 0.0059 0.0057 (0.0008) 0.0155 0.0117 (0.0053)
3, 14 0.0040 0.0040 (0) 0.0059 0.0058 (0.0004) 0.0155 0.0116 (0.0054)
5, 21 0.0067 0.0064 (0.0013)
6, 7 0.0250 0.0250 (0) 0.0314 0.0303 (0.0023) 0.0394 0.0329 (0.0121)
1, 3, 15 0.0087 0.0061 (0.0036)
3, 6, 7 0.0026 0.0026 (0) 0.0066 0.0064 (0.0013) 0.0233 0.0151 (0.0086)
5, 6, 21 0.0214 0.0140 (0.0084)
6, 7, 24 0.0155 0.0099 (0.0064)
1, 6, 7, 24 0.0039 0.0039 (0)
6, 7, 19, 20 0.0041 0.0041 (0) 0.0057 0.0055 (0.0007)
1, 3, 6, 7, 24 0.0041 0.0039 (0.0010) 0.0092 0.0051 (0.0037)
1, 6, 7, 19, 20 0.0077 0.0061 (0.0028)
1, 12, 13, 22, 25 0.0039 0.0039 (0) 0.0053 0.0050 (0.0012)
1, 12, 13, 22, 24, 25 0.0094 0.0057 (0.0043)

A good experimental design may include replicates obtained, for exam-

ple, by performing multiple assaying of the specimens from each pool of

individuals. Let T
(r)
i =

(
T

(r)
1i , · · · , T

(r)
Li

)
be the total allele counts observed

at the L loci for the rth replicate of the ith pool, i = 1, · · · , n, r = 1, · · · , R;

and Z
(r)
i =

(
Z

(r)
1i , · · · , Z

(r)
Li

)
=
(
I
{
T

(r)
1i ≥ 1

}
, · · · , I

{
T

(r)
Li ≥ 1

})
the data
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that result from collapsing each total count to “0” or “at least 1”. The

collapsed data estimation method can be extended easily to handle repli-

cated data by noting the following. We can see from (3.6) that to estimate

the haplotype probability function f(y1, · · · , yL), it suffices to know how

to estimate the probability g0

(
Λ
)

that the collapsed counts are zeros at a

subset of loci for all possible choices of the subset Λ. Without replicates,

the collapsed data estimator of g0 (Λ) is

ĝ0 (Λ) =

n∑
i=1

I {Zli = 0 for l in Λ}

n
=
n0Z (Λ)

n
, (3.10)

where n0Z (Λ) =
∑n

i=1 I {Zli = 0 for l in Λ} is simply counting the number

of pools with zero allele counts at the sites specified by Λ, and we can

estimate the variance of ĝ0 (Λ) by the binomial variance formula

v̂ar [ĝ0 (Λ)] =
ĝ0(Λ) [1− ĝ0(Λ)]

n
.

When there are replicates, the obvious extension of (3.10) is

ĝ0 (Λ) =

n∑
i=1

R∑
r=1

I
{
Z

(r)
li = 0 for l in Λ

}
nR

=

n∑
i=1

Pi

n
= P̄ , (3.11)

where Pi = R−1
∑R

r=1 I
{
Z

(r)
li = 0 for l in Λ

}
is the proportion of replicates

in the ith pool with zero allele counts at the sites specified by Λ. The

binomial variance formula is no longer applicable because the replicated

measurements from the same pool are likely to be positively correlated.

Since ĝ0

(
Λ
)

defined by (3.11) is just the sample mean P̄ of the Pi from

independent pools of individuals, we can use the following variance estimate

97



Chapter 3. Collapsed Data MLE

instead

v̂ar
[
ĝ0

(
Λ
)]

= v̂ar
[
P̄
]

=
s2
P

n
, (3.12)

where s2
P is the sample variance of P1, · · · , Pn. The ratio of n−1s2

P to the

binomial variance estimate ĝ0 (Λ) [1− ĝ0 (Λ)] /(nR) can be viewed as an

over-dispersion or variance inflation factor. Finally, we can substitute (3.11)

into (3.6) to obtain estimates of f(y1, · · · , yL), and we can obtain variance

estimates using (3.12) and the delta method.
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EM with an Internal List

This chapter is organized as follows. Section 4.1 highlights the main find-

ings of our method; Section 4.2 describes the details of our expectation

maximization (EM) algorithm restricted within an internal list based on

collapsed data; Section 4.3 considers a real data analysis and a simulation

study; Section 4.4 concludes this chapter with some discussion.

The materials presented in this chapter have been published in Kuk

et al. (2013a).

4.1 Summary

Gasbarra et al. (2011) advocate the use of database information to create a

list of frequently occurring haplotypes. We do not assume the existence of

an external list for two reasons. First, database information for rare alleles

is currently still lacking. Secondly, an EM type algorithm restricted to a

list is sensitive to the correct choice and completeness of the external list

used. Instead, we use the data on hand to construct an internal list.

Motivated by the collapsed data estimation method developed by Kuk

et al. (2013b) which only keeps track of whether an allele count is “0” or
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“≥ 1”, we propose a collapsed data (CD) list of possible haplotypes. It will

be shown in section 4.2 that for rare genetic variants, the CD list has inflat-

ed probabilities of capturing the true underlying haplotypes. To improve

coverage, we augment the CD list by adding those haplotypes with only one

“1” (i.e., only one rare variant occurs) to result in an augmented CD (ACD)

list. The EM algorithm restricted to the ACD list still does not perform

satisfactorily in our simulation studies, apparently due to the inclusion of

too many false haplotypes. In response, we propose an ATCD (augmented

and trimmed CD) list where those haplotypes with estimated frequencies

lower than a threshold at each iteration of the algorithm are removed from

the list. We propose a method to select the threshold by benchmarking

the resulting EM estimate of the frequency of the ancestral haplotype of

all zeros (i.e., no variant occurs) with the corresponding estimate obtained

using the collapsed data method of Kuk et al. (2013b).

To assess the performance of the various estimators, we simulate geno-

type data resembling those collected for the 148 obese individuals in

the CRESCENDO cohort study http://clinicaltrials.gov/ct/show/

NCT00263042, at 25 loci near the MGLL gene on chromosome 3, and 32 loci

near the FAAH gene on chromosome 1. The EM estimates based on the

CD list and the ACD list do not perform well in the simulation study. In

particular, they over-estimate the haplotype frequency of the ancestral hap-

lotype of all zeros. The EM estimates based on the ATCD list, on the other

hand, perform very well. In the two scenarios involving 25 and 32 loci, the

EM-ATCDL estimates outperform the EM estimates based on other lists

as well as the collapsed data maximum likelihood estimates (MLE). We

conclude that the augmented and trimmed CD list is a useful list for the
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EM algorithm to base upon in estimating the haplotype distributions of

rare variants.

4.2 Statistical Models and Methods

4.2.1 Collapsed data list

Focusing on bi-allelic loci, the two possible alleles at each locus can be

represented by “1” (the minor or variant allele) and “0” (the major allele).

As a result, the alleles at selected loci of a chromosome can be represented

by a binary haplotype vector. Since human chromosomes come in pairs,

there are 2 haplotype vectors for each individual, one maternal, and one

paternal. Suppose we have n pools of k individuals each so that there are

K = 2k haplotypes within each pool. Denote by Yij = (Y1ij, · · · , YLij) the

jth haplotype in the ith pool, where i = 1, · · · , n, j = 1, · · · , K, and L is

the number of loci to be genotyped. Assuming Hardy-Weinberg equilibrium,

the nK haplotype vectors are independent and identically distributed with

probability function

f(y1, · · · , yL) = P (Y1ij = y1, · · · , YLij = yL)

for every L-tuple y = (y1, · · · , yL) belonging to the Cartesian product Ω =

{0, 1}L. With pooling, the observed data are the pool totals

Ti =
K∑
j=1

Yij =

(
K∑
j=1

Y1ij, · · · ,
K∑
j=1

YLij

)
= (T1i, · · · , TLi) , i = 1, · · · , n.

The probability function p (t1, · · · , tL) of each pool total is given by the

K-fold convolution of the haplotype probability function f(y1, · · · , yL) and
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so the likelihood based on the observed pooled data is highly intractable

and not easy to maximize directly.

Kuk et al. (2013b) defined the collapsed data via indicator functions as

Zi =

(
I

{
K∑
j=1

Y1ij ≥ 1

}
, · · · , I

{
K∑
j=1

YLij ≥ 1

})
= (Z1i, · · · , ZLi) .

Note that what Zi does is to collapse each total allele frequency to either “0”

(coded as 0) or “at least 1” (coded as 1) as done in classical group testing

(Dorfman, 1943). From here on, we will call {Yij, i = 1, · · · , n, j = 1, · · · , K}

the complete haplotype data (usually not observed);
{
Ti, i = 1, · · · , n

}
the

pooled genotype data (reduces to individual genotype data if the pool size

is 1), and {Zi, i = 1, · · · , n} the collapsed data. We refer to k as the pool

size, not K.

4.2.2 EM with an internal list

Since the collapsed data is a reduction of the pooled data, the collapsed

data MLE is less efficient than the pooled data MLE. Kuk et al. (2013b)

showed that the loss of estimation efficiency due to the collapsing of pooled

data is not large for rare variants and small pool size. However, if the pool

size is moderate or large, which is recommended from the cost saving point

of view, an estimator based on the original pooled data without collapsing

can be substantially more efficient than the collapsed data MLE. This is

why we want to modify the EM algorithm for finding the pooled data MLE

to make it computationally feasible.

If the individual haplotypes Yij, i = 1, · · · , n, j = 1, · · · , K, were actu-

ally observed, then the population haplotype distribution function can be
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estimated simply by the empirical haplotype distribution. In other words,

the so-called complete data MLE of f(y), y ∈ Ω, is

f̂C(y) =
m(y)

nK
, (4.1)

where m(y) =
∑n

i=1

∑K
j=1 I (Yij = y) is the number of times y appears in

Yij. The E-step of the EM algorithm involves taking conditional expectation

of m(y) given the observed data and current estimates f̂ (t)(y), y ∈ Ω, to

get

m̂(t)(y) = E [m(y)|T1 = t1, · · · , Tn = tn]

=
n∑
i=1

K∑
j=1

P (Yij = y|Ti = ti)

=
n∑
i=1

KP (Yi1 = y|Ti = ti) ,

where

P (Yi1 = y|Ti = ti) =
P (Yi1 = y, Ti = ti)

P (Ti = ti)

=

∑
y2∈Ω,··· ,yK∈Ω
y+y2+···+yK=ti

[
f̂ (t)(y)

∏K
j=2 f̂

(t)(yj)
]

∑
y1∈Ω,··· ,yK∈Ω
y1+···+yK=ti

[∏K
j=1 f̂

(t)(yj)
] (4.2)

Since the complete data multinomial likelihood belongs to the exponential

family, the M-step can be carried out analytically to yield the updating

formula

f̂ (t+1)(y) =
m̂(t)(y)

nK
(4.3)

which is just (4.1) with m(y) replaced by the imputed value m̂(t)(y).
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The E-step of the EM algorithm is very time consuming. As one can see

from (4.2), it involves finding all possible underlying haplotype vectors that

sum up to the observed pool total. The combinatorial problem is greatly

reduced if we can restrict the possible haplotypes to come from a relatively

short list.

Let R ⊂ Ω be a reduced list of possible haplotypes obtained by whatever

method. The generic EM with a list algorithm operates in the same way as

the EM algorithm described above except that the updating formula (4.3)

is only applied to y ∈ R ⊂ Ω, and Ω is replaced by R under the summation

symbols in Equation (4.2).

Kuk et al. (2013b) described a combinatorial method to arrive at a re-

duced list R, but the resulting EML algorithm is still very time consuming.

As can be seen from Table 4.1, the EM with a list (EML) method (Kuk

et al., 2013b) is not feasible for pool size larger than 2. Thus there is a need

for alternative methods to arrive at a reduced list. Motivated by the fact

that the collapsed data MLE f̂CD(y) > 0 only for “those haplotypes y which

coincide with at least one of the collapsed data vectors Zi, i = 1, · · · , n, in

the sample”, it seems sensible to apply the EM algorithm with haplotypes

Table 4.1: Running times of EM algorithms based on different lists

MGLL FAAH
EML EM-CDL EM-ATCDL EML EM-CDL EM-ATCDL

k = 1 1.14 0.08 3.68 0.72 0.13 4.57
k = 2 18.71 0.10 7.05 126.38 0.17 6.78
k = 4 > 10 h 0.23 7.39 > 10 h 0.13 27.93

Running times in seconds for EML (EM with combinatorially determined list),
EM-CDL (EM with CD list) and EM-ATCDL (EM with augmented and trimmed CD
list with adaptive threshold) for estimating the haplotype distributions of the 25 rare
variants in the MGLL region and the 32 rare variants in the FAAH region when 148

obese individuals are grouped into pools of various sizes.

104



4.2. Statistical Models and Methods

restricted to this list, which we call the CD list. Let y be a non-ancestral

haplotype (i.e., y 6= 0, the vector of all zeros) with frequency f(y) > 0, the

probability that it is captured in a list of n randomly sampled haplotypes

is 1− [1− f(y)]n (≈ 1− e−nf(y) if f(y) is small and n is large), whereas the

probability that it is captured by the CD list constructed from n pools of

k individuals each is 1− [1− g(y)]n ≈ 1− e−ng(y). Thus if g(y) > f(y), the

probability that y is captured by the CD list is higher than the probability

that it is captured by direct sampling of haplotypes (not to mention the

extra cost incurred in resolving the phase ambiguity to sample the haplo-

types directly), and by increasing the number of pools n, we can make the

capture probability arbitrarily large. For example, if we want the CD list

to capture y with probability at least 1 − ε, all we have to do is to solve

1 − e−ng(y) ≥ 1 − ε (after Poisson approximation) to get n ≥ − log (ε)
g(y)

. A

sufficient condition for g(y) to be greater than f(y) is given below.

Lemma 4.1. Let y be non-ancestral, g(y) > f(y) if f(0) >
(

1
2k

) 1
2k−1 , where

k is the number of individuals in each pool.

Proof. A sufficient condition for Z = y is that one of the 2k haplotype

vectors Y1, · · · , Y2k in a pool of k individuals is equal to y = (y1, · · · , yL),

and the other 2k − 1 haplotype vectors are all zero vectors. Thus g(y) ≥

2kf(y)f(0)2k−1, and the lemma follows.

The values of
(

1
2k

) 1
2k−1 for various choices of the pool size k are given in

Table 4.2. Thus if the alleles are sufficiently rare in the sense that f(0) is

larger than the threshold given in Table 4.2, then there is a better chance

of capturing each non-ancestral haplotype with f(y) > 0 by the CD list

than by direct sampling of haplotypes. This is achieved by re-distributing
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Table 4.2: Sufficient conditions for non-ancestral haplotype frequencies to
be increased by collapsing data

Lower threshold of f(0)

k = 1 k = 2 k = 3 k = 4 k = 5
0.5000 0.6300 0.6988 0.7430 0.7743

Sufficient conditions for collapsed data frequencies {g(y), y 6= 0} to be greater than
haplotype frequencies {f(y), y 6= 0} for various choices of pool size k.

the probability of the ancestral haplotype in the process of pooling and

collapsing. In other words, the reason why it is possible to have g(y) > f(y)

for non-ancestral y is because g(0) = f(0)2k < f(0). We cannot have

g(y) > f(y) for all haplotypes y because both g(y) and f(y) must sum

to 1. Table 4.3 shows how the probabilities are being re-distributed for a

25-loci case. The true haplotype distribution f(y) is listed in column 1 of

Table 4.3, whereas the distributions g(y) of the collapsed data for various

pool sizes are given in the subsequent columns. For non-ancestral y, we can

see from Table 4.3 that g(y) > f(y), and more so when the pool size is

increased (up to a point), which is good news for the CD list. For example,

f(1, 0, · · · , 0) = 0.0509, whereas g(1, 0, · · · , 0) = 0.0839 when k = 1, and

continues to increase to 0.1143 and 0.1169 when the pool size is increased

to 2 and 3. We are particularly interested in the capability of the CD list

in capturing haplotypes with multiple 1’s. For the last haplotype listed in

Table 4.3 (which contains five 1’s), f(y) = 0.0034, but g(y) is 0.0097 when

the pool size is 3. Thus if we have n = 200 pools (which is one setting of

our simulation study) of k = 3 individuals each, the probability that this

haplotype is captured by the CD list is 0.8577 = 1 − (1 − 0.0097)200 ≈

1 − e−200(0.0097) = 0.8563. But g(y) will also assign positive probabilities

to some haplotypes y even though f(y) = 0 since
∑

y:f(y)>0

g(y) < 1, which
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is why we propose to trim the CD list. To see how g(y) can be positive

even though f(y) = 0, consider the following case with just 2 loci. Suppose

f(1, 0) > 0, f(0, 1) > 0, but f(1, 1) = 0. By pooling k individuals together,

it is obviously possible to have total allele counts T1 ≥ 1, T2 ≥ 1 at both

loci, and hence (Z1, Z2) = (1, 1), which means that (1, 1) will appear on

the CD list even though f(1, 1) = 0.

Table 4.3: Induced collapsed data frequencies

Haplotype y f(y) g(y)
Positions of ‘1’s TRUE k = 1 k = 2 k = 3 k = 4

None 0.7995 0.6392 0.4085 0.2611 0.1669
1 0.0509 0.0839 0.1143 0.1169 0.1065
2 0.0034 0.0055 0.0070 0.0067 0.0058
3 0.0436 0.0716 0.0967 0.0980 0.0883
5 0.0034 0.0055 0.0070 0.0067 0.0058
6 0.0034 0.0055 0.0070 0.0067 0.0058
9 0.0073 0.0117 0.0151 0.0146 0.0125
11 0.0034 0.0055 0.0070 0.0067 0.0058
15 0.0034 0.0055 0.0070 0.0067 0.0058
19 0.0068 0.0109 0.0141 0.0136 0.0117
20 0.0068 0.0109 0.0141 0.0136 0.0117
21 0.0034 0.0055 0.0070 0.0067 0.0058
22 0.0102 0.0164 0.0213 0.0206 0.0178
23 0.0034 0.0055 0.0070 0.0067 0.0058
24 0.0102 0.0164 0.0213 0.0206 0.0178
1, 3 0.0040 0.0117 0.0307 0.0482 0.0610
1, 9 0.0029 0.0058 0.0105 0.0135 0.0148
3, 14 0.0034 0.0057 0.0082 0.0088 0.0084
6, 7 0.0204 0.0332 0.0439 0.0435 0.0384
3, 6, 7 0.0034 0.0077 0.0164 0.0231 0.0271
1, 6, 7, 24 0.0034 0.0060 0.0097 0.0119 0.0132
1, 12, 13, 22, 25 0.0034 0.0059 0.0087 0.0097 0.0096

Sum of haplotype probabilities 1.0000 0.9751 0.8822 0.7650 0.6462

Haplotype frequencies f(y) for a 25-loci case and the induced collapsed data
frequencies g(y) for various pool sizes k.

The CD list misses some haplotypes with f(y) > 0, while some other

haplotypes with f(y) = 0 are erroneously included. This suggests that the
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CD list needs to be augmented as well as trimmed. Since we are focusing

on rare variants, we augment the CD list by adding all those vectors with

only one “1” to the list if they are not already there. Thus we are adding

at most L haplotypes to the CD list. Beginning the EM iteration with the

augmented CD list, we remove a haplotype from the list if its estimated

frequency at the current iteration of the EM algorithm is less than a thresh-

old. The way we select the threshold (typically over a grid) is to choose the

one that results in an estimate of the ancestral haplotype frequency f(0)

closest to the collapsed data MLE f̂CD(0), which should be a reasonable

benchmark.

4.3 Results

To identify rare genetic variants associated with obesity, investigators of

the CRESCENDO cohort study obtained re-sequenced data for 148 obese

persons and 150 controls around two genes known to be involved in endo-

cannabinoid metabolism: FAAH on chromosome 1, and MGLL on chromo-

some 3. There are 31Kbp of re-sequenced data near the FAAH gene, and

157Kbp near the MGLL locus. Bhatia et al. (2010) discovered two 5Kbp

regions enriched in rare variants (RVs) located just upstream of the FAAH

and MGLL genes respectively, with 32 RVs in the first region, and 25 RVs

in the second region. To estimate the underlying haplotype distributions,

we apply the algorithms proposed in this chapter, as well as the EM with a

list (EML) method described in Kuk et al. (2013b), where the list is deter-

mined combinatorially. The collapsed data maximum likelihood estimates

(CDMLE) are also computed. To save space, we only report the estimates

based on the obese individuals, which is the more interesting case, as there
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are very few mutations among the control subjects. Table 4.4 reports the

CDMLE’s, as well as the estimates obtained using EML, EM-CDL (EM

with CD list) and EM-ATCDL (EM with augmented and trimmed CD

list) algorithms for the 25 loci case. The estimates on the left panel (k = 1)

are based on individual genotype data, whereas the right panel (k = 2)

estimates are based on pooled genotype data that result from grouping the

148 obese individuals into 74 pools of size 2 each. Obviously, the estimates

based on 148 pools of size 1 (i.e., individual genotype data) should be more

reliable than those based on 74 pools of size 2, and so we should use the

estimates on the left panel of Table 4.4 as the benchmark. It is interesting

to note that as the pool size k increases to 2, the CDMLE, EML and EM-

CDL estimates remove some haplotypes that are assigned probabilities in

the k = 1 case, and in their place, some other haplotypes not presented

in the k = 1 case are assigned probabilities in the k = 2 case. We will see

later in the Methods section that it is an inherent property of the CD list to

include extraneous false haplotypes as pool size increases. By augmenting

and trimming the CD list in the proposed way, the EM-ATCDL estimates

based on k = 1 and 2 are much more comparable with similar support,

which is desirable.

Table 4.1 reports the running times of various algorithms. It can be

seen that the EML algorithm takes longer to run than EM-CDL and EM-

ATCDL, and is computationally prohibitive (takes longer than 10 hours

on an Intel (R) Core (TM) 2 desktop) when the pool size is k = 4 in

both the 25 and 32 loci cases. Both EM-CDL and EM-ATCDL remain

computationally feasible when k = 4. Understandably, EM-CDL is a bit

faster to run as no augmentation and trimming is involved.
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Table 4.4: Haplotype frequency estimates in the MGLL region using data
from 148 obese individuals

k = 1, n = 148 k = 2, n = 74
Position of ‘1’s CDMLE EML EM-CDL EM-ATCDL CDMLE EML EM-CDL EM-ATCDL

None 0.7927 0.7941 0.7995 0.7984 0.7912 0.8202 0.8169 0.7898
1 0.0536 0.0505 0.0509 0.0544 0.0497 0.0397 0.0398 0.0494
2 0.0043 0.0034 0.0034 0.0034 0.0034
3 0.0456 0.0433 0.0436 0.0441 0.0381 0.0291 0.0291 0.0440
5 0.0043 0.0034 0.0034 0.0034 0.0034
6 0.0043 0.0034 0.0034 0.0034 0.0067 0.0034 0.0034 0.0034
9 0.0085 0.0072 0.0073 0.0103 0.0133 0.0079 0.0079 0.0101
11 0.0043 0.0034 0.0034 0.0034 0.0034
14 0.0034
15 0.0043 0.0034 0.0034 0.0034 0.0034
19 0.0043 0.0068 0.0068 0.0068 0.0067 0.0069 0.0101 0.0101
20 0.0043 0.0068 0.0068 0.0068 0.0067 0.0069 0.0101 0.0101
21 0.0043 0.0034 0.0034 0.0034 0.0034
22 0.0127 0.0101 0.0102 0.0103 0.0197 0.0101 0.0101 0.0101
23 0.0043 0.0034 0.0034 0.0034 0.0067 0.0034 0.0034 0.0034
24 0.0127 0.0101 0.0102 0.0103 0.0067 0.0040 0.0040 0.0040
1, 3 0.0048 0.0040 0.0040 0.0038 0.0090 0.0059 0.0059 0.0020
1, 9 0.0034 0.0029 0.0029 0.0032 0.0022 0.0022
1, 15 0.0056 0.0034 0.0034
1, 24 0.0098 0.0064 0.0064 0.0095
2, 3 0.0059 0.0034 0.0034
3, 14 0.0040 0.0034 0.0034 0.0059 0.0034 0.0034
3, 11 0.0059 0.0034 0.0034
5, 21 0.0067 0.0034 0.0034
6, 7 0.0250 0.0203 0.0204 0.0205 0.0314 0.0182 0.0181 0.0189
19, 20 0.0017 0.0033
3, 6, 7 0.0026 0.0034 0.0034 0.0034 0.0066 0.0057 0.0057 0.0081
6, 19, 20 0.0017
7, 19, 20 0.0017
1, 6, 7, 24 0.0039 0.0034 0.0034 0.0034
6, 7, 19, 20 0.0041 0.0017 0.0057 0.0033 0.0034 0.0034
1, 3, 6, 7, 24 0.0041 0.0032 0.0032
1, 12, 13, 22, 25 0.0039 0.0034 0.0034 0.0034 0.0053 0.0034 0.0034 0.0034

Estimates of haplotype frequencies for the 25 rare variants in the MGLL region obtained by CDMLE
(collapsed data maximum likelihood estimation), EML (EM with combinatorially determined list),

EM-CDL (EM with CD list) and EM-ATCDL (EM with augmented and trimmed CD list with
adaptive threshold) based on n = 148/k pools of k individuals each.

To facilitate comparison of estimators in situations similar to those un-

der which the original data were collected, we simulate haplotype data from

the MGLL region (25 loci) and FAAH region (32 loci) according to the

haplotype distributions listed as “true” in Tables 4.5 and 4.6. These distri-

butions are actually the haplotype distributions estimated using EM-CDL

from the individual genotype data of the 148 cases of the CRESCENDO

cohort study, but we will treat them as the true distributions in our simula-

tion study. Thus there are only 22 possible haplotypes for the 25 loci case,
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Table 4.5: Average estimates of haplotype frequencies for a 25 loci case

k = 2 k = 4

Position of ‘1’ TRUE CDMLE EML
EM- EM- EM-

CDMLE
EM- EM- EM-

CDL ATCDL TCDL CDL ATCDL TCDL

(a) n = 100

None 0.7995 0.7973 0.8279 0.8283 0.8003 0.8067 0.7961 0.8535 0.7957 0.8119
(0.0232) (0.0169) (0.0170) (0.0215) (0.0192) (0.0204) (0.0118) (0.0179) (0.0144)

1 0.0509 0.0508 0.0412 0.0412 0.0477 0.0477 0.0502 0.0344 0.0457 0.0494
(0.0155) (0.0115) (0.0115) (0.0119) (0.0112) (0.0152) (0.0083) (0.0093) (0.0086)

2 0.0034 0.0036 0.0019 0.0019 0.0031 0.0024 0.0032 0.0008 0.0028 0.0020
(0.0040) (0.0022) (0.0022) (0.0025) (0.0027) (0.0044) (0.0012) (0.0023) (0.0029)

3 0.0436 0.0441 0.0353 0.0353 0.0425 0.0408 0.0435 0.0277 0.0396 0.0411
(0.0139) (0.0104) (0.0104) (0.0112) (0.0107) (0.0144) (0.0077) (0.0097) (0.0080)

5 0.0034 0.0035 0.0019 0.0019 0.0031 0.0027 0.0031 0.0008 0.0028 0.0015
(0.0039) (0.0021) (0.0021) (0.0028) (0.0029) (0.0043) (0.0011) (0.0017) (0.0024)

6 0.0034 0.0027 0.0017 0.0016 0.0029 0.0022 0.0038 0.0013 0.0030 0.0019
(0.0035) (0.0021) (0.0021) (0.0028) (0.0030) (0.0050) (0.0017) (0.0022) (0.0026)

9 0.0073 0.0092 0.0056 0.0056 0.0085 0.0087 0.0073 0.0029 0.0074 0.0079
(0.0065) (0.0039) (0.0039) (0.0046) (0.0052) (0.0066) (0.0026) (0.0045) (0.0062)

11 0.0034 0.0041 0.0022 0.0022 0.0036 0.0029 0.0032 0.0008 0.0027 0.0016
(0.0048) (0.0025) (0.0025) (0.0029) (0.0031) (0.0046) (0.0013) (0.0021) (0.0025)

15 0.0034 0.0039 0.0021 0.0021 0.0032 0.0026 0.0034 0.0009 0.0029 0.0017
(0.0052) (0.0028) (0.0028) (0.0032) (0.0033) (0.0050) (0.0013) (0.0021) (0.0025)

19 0.0068 0.0069 0.0039 0.0039 0.0061 0.0055 0.0075 0.0022 0.0058 0.0051
(0.0056) (0.0031) (0.0031) (0.0040) (0.0044) (0.0066) (0.0020) (0.0031) (0.0042)

20 0.0068 0.0073 0.0041 0.0041 0.0061 0.0058 0.0080 0.0023 0.0057 0.0051
(0.0060) (0.0035) (0.0035) (0.0042) (0.0045) (0.0065) (0.0020) (0.0028) (0.0040)

21 0.0034 0.0038 0.0020 0.0020 0.0032 0.0029 0.0041 0.0011 0.0033 0.0022
(0.0041) (0.0022) (0.0022) (0.0027) (0.0031) (0.0051) (0.0014) (0.0023) (0.0028)

22 0.0102 0.0117 0.0070 0.0070 0.0095 0.0099 0.0110 0.0043 0.0096 0.0091
(0.0075) (0.0047) (0.0047) (0.0053) (0.0054) (0.0085) (0.0033) (0.0046) (0.0056)

23 0.0034 0.0032 0.0018 0.0018 0.0028 0.0024 0.0038 0.0010 0.0029 0.0019
(0.0039) (0.0023) (0.0023) (0.0028) (0.0030) (0.0045) (0.0012) (0.0021) (0.0026)

24 0.0102 0.0096 0.0060 0.0060 0.0095 0.0098 0.0114 0.0043 0.0098 0.0118
(0.0065) (0.0041) (0.0041) (0.0051) (0.0057) (0.0076) (0.0028) (0.0047) (0.0057)

1, 3 0.0040 0.0048 0.0039 0.0039 0.0045 0.0043 0.0071 0.0049 0.0061 0.0052
(0.0049) (0.0037) (0.0037) (0.0041) (0.0040) (0.0070) (0.0040) (0.0046) (0.0048)

1, 9 0.0029 0.0030 0.0021 0.0021 0.0023 0.0018 0.0051 0.0023 0.0028 0.0017
(0.0035) (0.0024) (0.0024) (0.0033) (0.0033) (0.0055) (0.0021) (0.0031) (0.0032)

6, 7 0.0204 0.0210 0.0150 0.0148 0.0215 0.0195 0.0203 0.0104 0.0210 0.0219
(0.0098) (0.0072) (0.0072) (0.0075) (0.0077) (0.0105) (0.0043) (0.0068) (0.0060)

3, 14 0.0034 0.0035 0.0021 0.0021 0.0020 0.0028 0.0031 0.0012 0.0015 0.0021
(0.0037) (0.0022) (0.0022) (0.0032) (0.0031) (0.0038) (0.0015) (0.0024) (0.0026)

3, 6, 7 0.0034 0.0037 0.0028 0.0029 0.0025 0.0030 0.0047 0.0028 0.0022 0.0016
(0.0047) (0.0036) (0.0036) (0.0044) (0.0047) (0.0053) (0.0025) (0.0033) (0.0035)

1, 6, 7, 24 0.0034 0.0031 0.0021 0.0021 0.0006 0.0006 0.0036 0.0018 0.0006 0.0000
(0.0033) (0.0023) (0.0023) (0.0023) (0.0021) (0.0037) (0.0018) (0.0017) (0.0004)

1, 12, 13, 22, 25 0.0034 0.0037 0.0024 0.0024 0.0026 0.0029 0.0038 0.0016 0.0005 0.0025
(0.0038) (0.0025) (0.0025) (0.0031) (0.0029) (0.0035) (0.0015) (0.0018) (0.0027)

Sum of remaining 0.0376 0.0248 0.0248 0.0117 0.0124 0.0893 0.0366 0.0255 0.0109
haplotype probabilities

Sum of probabilities 0.0247 0.0241 0.0244 0.0218 0.0286 0.0296 0.0285 0.0179 0.0367
of missed haplotypes

Sum of squared errors 0.00166 0.00186 0.00189 0.00110 0.00106 0.00201 0.00415 0.00091 0.00089

Length of list 26.77 116.28 26.77 19.06 18.25 45.23 45.23 25.38 15.62
SD of length (3.26) (81.30) (3.26) (3.03) (2.18) (3.94) (3.94) (4.78) (2.40)
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(b) n = 200

None 0.7995 0.7979 0.8248 0.8250 0.7981 0.8009 0.7990 0.8451 0.7970 0.8040
(0.0150) (0.0117) (0.0117) (0.0148) (0.0132) (0.0154) (0.0086) (0.0133) (0.0125)

1 0.0509 0.0514 0.0433 0.0433 0.0492 0.0503 0.0502 0.0387 0.0462 0.0507
(0.0103) (0.0082) (0.0082) (0.0089) (0.0088) (0.0121) (0.0069) (0.0077) (0.0080)

2 0.0034 0.0035 0.0020 0.0020 0.0033 0.0031 0.0037 0.0011 0.0030 0.0024
(0.0032) (0.0018) (0.0018) (0.0024) (0.0026) (0.0035) (0.0011) (0.0013) (0.0021)

3 0.0436 0.0430 0.0362 0.0362 0.0435 0.0426 0.0441 0.0322 0.0406 0.0426
(0.0092) (0.0075) (0.0075) (0.0082) (0.0074) (0.0105) (0.0054) (0.0071) (0.0065)

5 0.0034 0.0033 0.0018 0.0018 0.0032 0.0028 0.0034 0.0011 0.0030 0.0023
(0.0028) (0.0016) (0.0016) (0.0020) (0.0023) (0.0035) (0.0011) (0.0013) (0.0021)

6 0.0034 0.0038 0.0023 0.0023 0.0033 0.0031 0.0033 0.0014 0.0028 0.0022
(0.0031) (0.0019) (0.0020) (0.0021) (0.0025) (0.0035) (0.0013) (0.0014) (0.0019)

9 0.0073 0.0080 0.0054 0.0054 0.0079 0.0088 0.0081 0.0036 0.0070 0.0092
(0.0038) (0.0026) (0.0026) (0.0032) (0.0037) (0.0043) (0.0019) (0.0026) (0.0031)

11 0.0034 0.0032 0.0018 0.0018 0.0030 0.0027 0.0032 0.0010 0.0029 0.0023
(0.0026) (0.0016) (0.0016) (0.0022) (0.0024) (0.0031) (0.0011) (0.0015) (0.0021)

15 0.0034 0.0035 0.0019 0.0019 0.0030 0.0028 0.0038 0.0012 0.0031 0.0028
(0.0033) (0.0018) (0.0018) (0.0023) (0.0025) (0.0031) (0.0010) (0.0015) (0.0021)

19 0.0068 0.0063 0.0039 0.0039 0.0062 0.0061 0.0066 0.0026 0.0056 0.0057
(0.0039) (0.0025) (0.0025) (0.0029) (0.0034) (0.0041) (0.0015) (0.0018) (0.0026)

20 0.0068 0.0068 0.0042 0.0042 0.0062 0.0063 0.0063 0.0026 0.0054 0.0059
(0.0039) (0.0025) (0.0025) (0.0028) (0.0030) (0.0038) (0.0015) (0.0022) (0.0026)

21 0.0034 0.0038 0.0022 0.0022 0.0035 0.0032 0.0037 0.0012 0.0031 0.0025
(0.0035) (0.0020) (0.0020) (0.0023) (0.0026) (0.0034) (0.0011) (0.0015) (0.0021)

22 0.0102 0.0105 0.0071 0.0071 0.0097 0.0103 0.0112 0.0052 0.0086 0.0098
(0.0058) (0.0037) (0.0037) (0.0041) (0.0041) (0.0052) (0.0022) (0.0030) (0.0029)

23 0.0034 0.0039 0.0022 0.0022 0.0031 0.0030 0.0035 0.0011 0.0030 0.0025
(0.0027) (0.0015) (0.0016) (0.0021) (0.0022) (0.0030) (0.0010) (0.0015) (0.0021)

24 0.0102 0.0105 0.0069 0.0069 0.0107 0.0114 0.0106 0.0049 0.0088 0.0115
(0.0050) (0.0033) (0.0033) (0.0043) (0.0042) (0.0059) (0.0023) (0.0036) (0.0043)

1, 3 0.0040 0.0046 0.0037 0.0037 0.0041 0.0040 0.0052 0.0041 0.0049 0.0047
(0.0041) (0.0032) (0.0032) (0.0033) (0.0034) (0.0048) (0.0029) (0.0030) (0.0031)

1, 9 0.0029 0.0036 0.0026 0.0026 0.0030 0.0022 0.0030 0.0018 0.0027 0.0010
(0.0027) (0.0019) (0.0019) (0.0026) (0.0028) (0.0031) (0.0015) (0.0022) (0.0020)

6, 7 0.0204 0.0191 0.0148 0.0146 0.0215 0.0199 0.0206 0.0124 0.0212 0.0223
(0.0067) (0.0048) (0.0047) (0.0056) (0.0054) (0.0073) (0.0037) (0.0048) (0.0046)

3, 14 0.0034 0.0030 0.0019 0.0019 0.0020 0.0027 0.0036 0.0015 0.0025 0.0029
(0.0029) (0.0018) (0.0018) (0.0026) (0.0025) (0.0026) (0.0011) (0.0020) (0.0018)

3, 6, 7 0.0034 0.0039 0.0029 0.0029 0.0021 0.0027 0.0038 0.0025 0.0024 0.0019
(0.0035) (0.0025) (0.0025) (0.0029) (0.0031) (0.0041) (0.0022) (0.0028) (0.0029)

1, 6, 7, 24 0.0034 0.0039 0.0028 0.0028 0.0007 0.0006 0.0039 0.0020 0.0002 0.0000
(0.0025) (0.0019) (0.0019) (0.0019) (0.0018) (0.0026) (0.0014) (0.0009) (0.0002)

1, 12, 13, 22, 25 0.0034 0.0035 0.0025 0.0024 0.0027 0.0032 0.0033 0.0017 0.0004 0.0031
(0.0022) (0.0016) (0.0017) (0.0023) (0.0023) (0.0026) (0.0013) (0.0014) (0.0020)

Sum of remaining 0.0340 0.0227 0.0227 0.0102 0.0074 0.0703 0.0310 0.0255 0.0076
haplotype probabilities

Sum of probabilities 0.0103 0.0097 0.0100 0.0132 0.0173 0.0131 0.0118 0.0111 0.0200
of missed haplotypes

Sum of squared errors 0.00077 0.00125 0.00126 0.00059 0.00054 0.00101 0.00281 0.00055 0.00048

Length of list 39.65 152.30 39.65 22.08 19.63 71.24 71.24 29.29 19.81
SD of length (3.90) (71.65) (3.90) (4.20) (3.70) (5.02) (5.02) (5.82) (5.22)

Average estimates of haplotype frequencies for a 25 loci case based on 100 simulations
of n pools of k individuals each using CDMLE (collapsed data MLE), EML (EM
with combinatorially determined list), EM-CDL (EM with CD list), EM-ATCDL
(augmented and trimmed CD list) and EM-TCDL (CD list with trimming and no
augmentation), with standard errors in parentheses.
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Table 4.6: Average estimates of haplotype frequencies for a 32 loci case

k = 2 k = 4

Position of ‘1’ TRUE CDMLE EML
EM- EM- EM-

CDMLE
EM- EM- EM-

CDL ATCDL TCDL CDL ATCDL TCDL

(a) n = 100

None 0.7995 0.7979 0.8248 0.8250 0.7981 0.8009 0.7990 0.8451 0.7970 0.8040
(0.0150) (0.0117) (0.0117) (0.0148) (0.0132) (0.0154) (0.0086) (0.0133) (0.0125)

1 0.0509 0.0514 0.0433 0.0433 0.0492 0.0503 0.0502 0.0387 0.0462 0.0507
(0.0103) (0.0082) (0.0082) (0.0089) (0.0088) (0.0121) (0.0069) (0.0077) (0.0080)

2 0.0034 0.0035 0.0020 0.0020 0.0033 0.0031 0.0037 0.0011 0.0030 0.0024
(0.0032) (0.0018) (0.0018) (0.0024) (0.0026) (0.0035) (0.0011) (0.0013) (0.0021)

3 0.0436 0.0430 0.0362 0.0362 0.0435 0.0426 0.0441 0.0322 0.0406 0.0426
(0.0092) (0.0075) (0.0075) (0.0082) (0.0074) (0.0105) (0.0054) (0.0071) (0.0065)

5 0.0034 0.0033 0.0018 0.0018 0.0032 0.0028 0.0034 0.0011 0.0030 0.0023
(0.0028) (0.0016) (0.0016) (0.0020) (0.0023) (0.0035) (0.0011) (0.0013) (0.0021)

6 0.0034 0.0038 0.0023 0.0023 0.0033 0.0031 0.0033 0.0014 0.0028 0.0022
(0.0031) (0.0019) (0.0020) (0.0021) (0.0025) (0.0035) (0.0013) (0.0014) (0.0019)

9 0.0073 0.0080 0.0054 0.0054 0.0079 0.0088 0.0081 0.0036 0.0070 0.0092
(0.0038) (0.0026) (0.0026) (0.0032) (0.0037) (0.0043) (0.0019) (0.0026) (0.0031)

11 0.0034 0.0032 0.0018 0.0018 0.0030 0.0027 0.0032 0.0010 0.0029 0.0023
(0.0026) (0.0016) (0.0016) (0.0022) (0.0024) (0.0031) (0.0011) (0.0015) (0.0021)

15 0.0034 0.0035 0.0019 0.0019 0.0030 0.0028 0.0038 0.0012 0.0031 0.0028
(0.0033) (0.0018) (0.0018) (0.0023) (0.0025) (0.0031) (0.0010) (0.0015) (0.0021)

19 0.0068 0.0063 0.0039 0.0039 0.0062 0.0061 0.0066 0.0026 0.0056 0.0057
(0.0039) (0.0025) (0.0025) (0.0029) (0.0034) (0.0041) (0.0015) (0.0018) (0.0026)

20 0.0068 0.0068 0.0042 0.0042 0.0062 0.0063 0.0063 0.0026 0.0054 0.0059
(0.0039) (0.0025) (0.0025) (0.0028) (0.0030) (0.0038) (0.0015) (0.0022) (0.0026)

21 0.0034 0.0038 0.0022 0.0022 0.0035 0.0032 0.0037 0.0012 0.0031 0.0025
(0.0035) (0.0020) (0.0020) (0.0023) (0.0026) (0.0034) (0.0011) (0.0015) (0.0021)

22 0.0102 0.0105 0.0071 0.0071 0.0097 0.0103 0.0112 0.0052 0.0086 0.0098
(0.0058) (0.0037) (0.0037) (0.0041) (0.0041) (0.0052) (0.0022) (0.0030) (0.0029)

23 0.0034 0.0039 0.0022 0.0022 0.0031 0.0030 0.0035 0.0011 0.0030 0.0025
(0.0027) (0.0015) (0.0016) (0.0021) (0.0022) (0.0030) (0.0010) (0.0015) (0.0021)

24 0.0102 0.0105 0.0069 0.0069 0.0107 0.0114 0.0106 0.0049 0.0088 0.0115
(0.0050) (0.0033) (0.0033) (0.0043) (0.0042) (0.0059) (0.0023) (0.0036) (0.0043)

1, 3 0.0040 0.0046 0.0037 0.0037 0.0041 0.0040 0.0052 0.0041 0.0049 0.0047
(0.0041) (0.0032) (0.0032) (0.0033) (0.0034) (0.0048) (0.0029) (0.0030) (0.0031)

1, 9 0.0029 0.0036 0.0026 0.0026 0.0030 0.0022 0.0030 0.0018 0.0027 0.0010
(0.0027) (0.0019) (0.0019) (0.0026) (0.0028) (0.0031) (0.0015) (0.0022) (0.0020)

6, 7 0.0204 0.0191 0.0148 0.0146 0.0215 0.0199 0.0206 0.0124 0.0212 0.0223
(0.0067) (0.0048) (0.0047) (0.0056) (0.0054) (0.0073) (0.0037) (0.0048) (0.0046)

3, 14 0.0034 0.0030 0.0019 0.0019 0.0020 0.0027 0.0036 0.0015 0.0025 0.0029
(0.0029) (0.0018) (0.0018) (0.0026) (0.0025) (0.0026) (0.0011) (0.0020) (0.0018)

3, 6, 7 0.0034 0.0039 0.0029 0.0029 0.0021 0.0027 0.0038 0.0025 0.0024 0.0019
(0.0035) (0.0025) (0.0025) (0.0029) (0.0031) (0.0041) (0.0022) (0.0028) (0.0029)

1, 6, 7, 24 0.0034 0.0039 0.0028 0.0028 0.0007 0.0006 0.0039 0.0020 0.0002 0.0000
(0.0025) (0.0019) (0.0019) (0.0019) (0.0018) (0.0026) (0.0014) (0.0009) (0.0002)

1, 12, 13, 22, 25 0.0034 0.0035 0.0025 0.0024 0.0027 0.0032 0.0033 0.0017 0.0004 0.0031
(0.0022) (0.0016) (0.0017) (0.0023) (0.0023) (0.0026) (0.0013) (0.0014) (0.0020)

Sum of remaining 0.0340 0.0227 0.0227 0.0102 0.0074 0.0703 0.0310 0.0255 0.0076
haplotype probabilities

Sum of probabilities 0.0103 0.0097 0.0100 0.0132 0.0173 0.0131 0.0118 0.0111 0.0200
of missed haplotypes

Sum of squared errors 0.00077 0.00125 0.00126 0.00059 0.00054 0.00101 0.00281 0.00055 0.00048

Length of list 39.65 152.30 39.65 22.08 19.63 71.24 71.24 29.29 19.81
SD of length (3.90) (71.65) (3.90) (4.20) (3.70) (5.02) (5.02) (5.82) (5.22)
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(b) n = 200

None 0.7113 0.7108 0.7674 0.7677 0.7115 0.7219 0.7110 0.8075 0.7109 0.7374
(0.0202) (0.0132) (0.0132) (0.0197) (0.0161) (0.0232) (0.0119) (0.0192) (0.0147)

1 0.0034 0.0031 0.0013 0.0013 0.0032 0.0022 0.0034 0.0005 0.0031 0.0012
(0.0032) (0.0014) (0.0014) (0.0022) (0.0025) (0.0054) (0.0007) (0.0015) (0.0018)

3 0.0034 0.0039 0.0016 0.0016 0.0032 0.0028 0.0036 0.0005 0.0030 0.0017
(0.0034) (0.0014) (0.0014) (0.0022) (0.0025) (0.0047) (0.0007) (0.0014) (0.0022)

5 0.0034 0.0037 0.0016 0.0016 0.0035 0.0029 0.0036 0.0006 0.0032 0.0017
(0.0035) (0.0015) (0.0015) (0.0022) (0.0027) (0.0049) (0.0007) (0.0013) (0.0022)

7 0.0068 0.0066 0.0038 0.0041 0.0061 0.0064 0.0065 0.0027 0.0058 0.0061
(0.0048) (0.0024) (0.0028) (0.0030) (0.0040) (0.0070) (0.0024) (0.0024) (0.0053)

9 0.0034 0.0037 0.0015 0.0015 0.0034 0.0029 0.0038 0.0006 0.0031 0.0016
(0.0038) (0.0016) (0.0016) (0.0024) (0.0029) (0.0049) (0.0008) (0.0015) (0.0022)

10 0.0102 0.0098 0.0050 0.0050 0.0087 0.0093 0.0103 0.0026 0.0088 0.0085
(0.0059) (0.0029) (0.0030) (0.0035) (0.0035) (0.0072) (0.0017) (0.0026) (0.0042)

11 0.0034 0.0038 0.0016 0.0016 0.0032 0.0029 0.0027 0.0004 0.0031 0.0010
(0.0030) (0.0013) (0.0013) (0.0023) (0.0026) (0.0044) (0.0007) (0.0014) (0.0019)

14 0.0034 0.0034 0.0014 0.0014 0.0031 0.0023 0.0030 0.0004 0.0029 0.0013
(0.0037) (0.0016) (0.0016) (0.0022) (0.0027) (0.0048) (0.0007) (0.0015) (0.0021)

17 0.0034 0.0033 0.0014 0.0014 0.0029 0.0023 0.0031 0.0005 0.0028 0.0014
(0.0035) (0.0014) (0.0014) (0.0021) (0.0024) (0.0047) (0.0008) (0.0015) (0.0021)

20 0.0034 0.0037 0.0015 0.0015 0.0030 0.0025 0.0028 0.0004 0.0029 0.0014
(0.0035) (0.0014) (0.0014) (0.0019) (0.0025) (0.0042) (0.0006) (0.0014) (0.0021)

21 0.0264 0.0251 0.0164 0.0164 0.0252 0.0252 0.0266 0.0117 0.0257 0.0260
(0.0089) (0.0051) (0.0051) (0.0064) (0.0063) (0.0135) (0.0040) (0.0055) (0.0056)

22 0.0068 0.0074 0.0040 0.0040 0.0095 0.0099 0.0067 0.0016 0.0089 0.0074
(0.0055) (0.0029) (0.0029) (0.0040) (0.0051) (0.0067) (0.0017) (0.0038) (0.0062)

24 0.0306 0.0307 0.0223 0.0234 0.0289 0.0295 0.0297 0.0194 0.0273 0.0291
(0.0096) (0.0066) (0.0066) (0.0070) (0.0074) (0.0146) (0.0049) (0.0058) (0.0061)

25 0.0136 0.0138 0.0075 0.0075 0.0129 0.0129 0.0155 0.0047 0.0139 0.0125
(0.0072) (0.0036) (0.0036) (0.0040) (0.0036) (0.0100) (0.0029) (0.0042) (0.0051)

26 0.0034 0.0033 0.0013 0.0013 0.0029 0.0023 0.0037 0.0005 0.0031 0.0014
(0.0035) (0.0014) (0.0014) (0.0024) (0.0026) (0.0052) (0.0007) (0.0014) (0.0021)

28 0.0675 0.0661 0.0487 0.0488 0.0615 0.0640 0.0668 0.0390 0.0614 0.0629
(0.0136) (0.0089) (0.0089) (0.0107) (0.0105) (0.0162) (0.0075) (0.0090) (0.0086)

30 0.0036 0.0032 0.0017 0.0017 0.0070 0.0064 0.0043 0.0009 0.0077 0.0060
(0.0029) (0.0015) (0.0015) (0.0039) (0.0056) (0.0053) (0.0011) (0.0040) (0.0067)

31 0.0034 0.0037 0.0016 0.0016 0.0031 0.0025 0.0031 0.0004 0.0030 0.0014
(0.0037) (0.0016) (0.0016) (0.0021) (0.0025) (0.0044) (0.0006) (0.0013) (0.0020)

32 0.0038 0.0034 0.0016 0.0016 0.0045 0.0041 0.0041 0.0007 0.0042 0.0029
(0.0032) (0.0015) (0.0016) (0.0029) (0.0037) (0.0060) (0.0010) (0.0021) (0.0038)

2, 25 0.0034 0.0034 0.0015 0.0015 0.0021 0.0026 0.0036 0.0006 0.0013 0.0018
(0.0033) (0.0015) (0.0015) (0.0029) (0.0028) (0.0048) (0.0008) (0.0020) (0.0023)

7, 24 0.0510 0.0507 0.0403 0.0386 0.0525 0.0530 0.0523 0.0319 0.0524 0.0519
(0.0120) (0.0079) (0.0078) (0.0094) (0.0084) (0.0139) (0.0063) (0.0089) (0.0064)

12, 13 0.0034 0.0031 0.0013 0.0013 0.0016 0.0023 0.0029 0.0005 0.0011 0.0014
(0.0033) (0.0015) (0.0015) (0.0025) (0.0026) (0.0049) (0.0009) (0.0020) (0.0022)

21, 23 0.0034 0.0031 0.0015 0.0015 0.0018 0.0023 0.0035 0.0007 0.0016 0.0019
(0.0035) (0.0016) (0.0016) (0.0027) (0.0026) (0.0042) (0.0009) (0.0023) (0.0023)

21, 28 0.0009 0.0031 0.0021 0.0021 0.0022 0.0019 0.0035 0.0016 0.0015 0.0010
(0.0038) (0.0022) (0.0022) (0.0027) (0.0030) (0.0050) (0.0017) (0.0023) (0.0027)

21, 30 0.0033 0.0035 0.0018 0.0018 0.0022 0.0018 0.0035 0.0008 0.0016 0.0012
(0.0033) (0.0016) (0.0016) (0.0027) (0.0027) (0.0044) (0.0010) (0.0024) (0.0023)

22, 30 0.0034 0.0029 0.0014 0.0013 0.0017 0.0017 0.0037 0.0007 0.0014 0.0014
(0.0031) (0.0015) (0.0015) (0.0024) (0.0027) (0.0051) (0.0009) (0.0021) (0.0022)

24, 28 0.0034 0.0042 0.0034 0.0033 0.0036 0.0035 0.0064 0.0036 0.0037 0.0040
(0.0048) (0.0030) (0.0030) (0.0032) (0.0034) (0.0072) (0.0028) (0.0029) (0.0036)

28, 32 0.0030 0.0034 0.0019 0.0019 0.0022 0.0019 0.0033 0.0011 0.0018 0.0018
(0.0033) (0.0018) (0.0019) (0.0028) (0.0028) (0.0037) (0.0011) (0.0021) (0.0026)

4, 7, 24 0.0034 0.0028 0.0015 0.0016 0.0013 0.0024 0.0028 0.0008 0.0008 0.0019
(0.0025) (0.0014) (0.0014) (0.0022) (0.0022) (0.0027) (0.0008) (0.0016) (0.0019)
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7, 22, 24 0.0034 0.0042 0.0025 0.0026 0.0019 0.0011 0.0029 0.0015 0.0018 0.0012
(0.0036) (0.0022) (0.0021) (0.0028) (0.0024) (0.0034) (0.0013) (0.0024) (0.0025)

7, 24, 30 0.0034 0.0034 0.0023 0.0023 0.0019 0.0018 0.0033 0.0014 0.0018 0.0018
(0.0032) (0.0022) (0.0022) (0.0031) (0.0031) (0.0035) (0.0013) (0.0024) (0.0029)

Sum of remaining 0.0828 0.0454 0.0453 0.0178 0.0083 0.2194 0.0592 0.0243 0.0160
haplotype probabilities

Sum of probabilities 0.0278 0.0265 0.0271 0.0263 0.0384 0.0474 0.0462 0.0222 0.0553
of missed haplotypes

Sum of squared errors 0.00161 0.00451 0.00456 0.00103 0.00100 0.00334 0.01152 0.00092 0.00152

Length of list 62.39 159.68 62.39 30.60 23.57 106.91 106.91 36.11 21.92
SD of length (4.88) (27.84) (4.88) (6.04) (4.22) (6.41) (6.41) (7.12) (5.11)

Average estimates of haplotype frequencies for a 32 loci case based on 100 simulations
of n pools of k individuals each using CDMLE (collapsed data MLE), EML (EM
with combinatorially determined list), EM-CDL (EM with CD list), EM-ATCDL
(augmented and trimmed CD list) and EM-TCDL (CD list with trimming and no
augmentation), with standard errors in parentheses.

and 32 haplotypes for the 32 loci case. After generating the haplotypes, we

form n pools of 2k haplotypes each (n = 100, 200; k = 1, 2, 3, 4) and the re-

sulting pooled genotype data will be treated as the observed data to be used

to construct estimates. The results reported in Tables 3 and 4 are based on

100 simulations. The gold standard that we use is the EM-PL estimator,

which assumes knowledge of the perfect list (i.e, knowing exactly which

f(y) > 0). Because the perfect list is used, the EM algorithm in this case

will yield the MLE based on the pooled genotype data. We will not have

such knowledge in reality and so our real interest is in comparing the per-

formance of the following estimators: CDMLE (collapsed data MLE), EML

(EM with combinatorially determined list), EM-CDL (CD list), EM-ACDL

(augmented CD list), EM-ATCDL (augmented and trimmed CD list), and

EM-TCDL (CD list with trimming and no augmentation). For removing

haplotypes from both the ATCD and TCD lists, we try threshold values

from 0.0001 to 0.002 in steps of 0.0001, and select the threshold to yield an

estimate of f(0) as close to f̂CD(0) as possible. Based on the study of Kuk

et al. (2013b), f̂CD(0) seems to be a reasonable benchmark to use. In fact,
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we can see from Tables 4.5 and 4.6 that the average of f̂CD(0) (over 100

simulations) is always close to the average of the gold standard f̂EM−PL(0),

and this lends further support to the use of f̂CD(0) as a benchmark. We

have simulated data for k = 1, 2, 3, 4. As the EML algorithm takes too long

to run (see Table 4.1), we compute the EML estimates for k = 1 and 2

only. To save space, we only report the results of k = 2 and 4 in Tables

4.5 and 4.6. The results for EM-CDL and EM-ACDL are close, and so we

table the results of EM-CDL only. In order not to make the tables unduly

long, we table only the averages of f̂(y) for those y with f(y) > 0, together

with the sum of f̂(y) over the remaining y’s, as well as the averages over

simulations of the sum of squared errors
∑
y∈Ω

[
f̂(y)− f(y)

]2

, Ω = {0, 1}L,

for the various estimators of f(y). To supplement Tables 4.5 and 4.6, we

plot the simulated averages of the sum of squared errors against pool size

k for all 7 estimators, including EM-PL.

It can be seen from Tables 4.5 and 4.6 that EM-CDL overestimated

the frequency f(0) of the ancestral haplotype quite severely, and it has the

largest sum of squared error among all the estimators. The performance

of EML is very similar to that of EM-CDL (both unsatisfactory) but the

computational cost is much higher. It suffers from assigning small proba-

bilities to too many false haplotypes. For example, for the 25 loci case with

n = 100, k = 2, the EML list on the average contains 116 haplotypes even

though the true distribution is concentrated on 22 haplotypes. The total

probability that the EML estimator attaches to haplotypes outside of the

true 22 is only 0.0248 on the average. This foretells the need for trimming

which is a point we will come back to later.

Augmenting the CD list did not help much as the results for EM-ACDL
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Figure 4.1: Expected sum of squared errors of various haplotype frequency
estimators for a 25 loci case. Expected sum of squared errors of various
haplotype frequency estimators (EM-CDL: EM with CD list; EM-ACDL:
augmented CD list; EML: EM with combinatorially determined list; CDM-
LE: collapsed data MLE; EM-TCDL: CD list with trimming and no aug-
mentation; EM-ATCDL: augmented and trimmed CD list; EM-PL: EM
with perfect list) based on 100 simulations of n pools of k individuals each
when the true haplotype distribution over 25 loci is as given in Table 4.5.

are almost the same as that of EM-CDL when n = 200, and only slight-

ly better when n = 100 (not shown in the tables, but we can see this

from Figures 4.1 and 4.2). Trimming in addition to augmenting the CD

list improved things a lot, as demonstrated by the good results of EM-

ATCDL in both Tables 3 and 4. From Figures 4.1 and 4.2, we can see that

EM-ATCDL is clearly the best estimator among those considered, other

than the perfect list estimator which is not a legitimate estimator. Since

augmenting alone did not improve results much, but trimming in addition

to augmenting did, we were curious to see whether trimming alone would

work or not. As expected, we can see from Tables 3 and 4 that the TCD

list (trimming without augmentation) is on the average shorter than the
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Figure 4.2: Expected sum of squared errors of various haplotype frequency
estimators for a 32 loci case. Expected sum of squared errors of various
haplotype frequency estimators (EM-CDL: EM with CD list; EM-ACDL:
augmented CD list; EML: EM with combinatorially determined list; CDM-
LE: collapsed data MLE; EM-TCDL: CD list with trimming and no aug-
mentation; EM-ATCDL: augmented and trimmed CD list; EM-PL: EM
with perfect list) based on 100 simulations of n pools of k individuals each
when the true haplotype distribution over 32 loci is as given in Table 4.6.

ATCD list. Consequently, the TCD list will miss more true haplotypes, and

the sum of probabilities of the missed haplotypes is higher for EM-TCDL

than for EM-ATCDL, and more so for the 32 loci case and when the num-

ber of pools is 100 rather than 200. In particular, the sum of probabilities

of the missed haplotypes for the 32 loci case with k = 4 is 0.0798 (after

averaging over simulations) when n = 100, and improves slightly to 0.0553

when n = 200. The corresponding figures for EM-ATCDL are 0.0328 and

0.0222. In terms of sum of squared errors, EM-TCDL is also inferior to

EM-ATCDL for the 32 loci case, particularly when n = 100.

The collapsed data MLE advocated by Kuk et al. (2013b) behaves very

similarly to the gold standard EM-PL estimator in terms of bias or expected
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Figure 4.3: Expected sum of squared errors of the EM-ATCDL estima-
tor with fixed threshold (25 loci case). Expected sum of squared errors
of the EM-ATCDL estimator for various choices of the threshold (Opti-
mal threshold: the threshold obtained by minimizing the averaged sum of
squared errors; Average adaptive threshold: adaptively chosen thresholds
obtained by minimizing the distance between f̂(0) and f(0) over the grid
0.0001 to 0.002 in steps of 0.0001) based on 100 simulations of n pools of
k individuals each when the true haplotype distribution over 25 loci is as
given in Table 4.5.

value, but it suffers from having a larger variance, especially for larger pool

size. In contrast, the EM-CDL estimates have small variance but large

bias. By benchmarking against CDMLE, the EM-ATCDL estimates have

smaller bias than EM-CDL and smaller variance than CDMLE. The main

advantage of the collapsed data MLE is its simplicity and small bias. As

shown by Kuk et al. (2013b), the loss in efficiency due to collapsing the

pooled genotype data locus-wise to just “0” and “≥ 1” is not large for small

pool size (especially when k = 1 which corresponds to individual genotype

data) and rare alleles, but it is better to use EM-ATCDL if k ≥ 2.

To further see if our benchmarking method of determining the threshold
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Figure 4.4: Expected sum of squared errors of the EM-ATCDL estima-
tor with fixed threshold (32 loci case). Expected sum of squared errors
of the EM-ATCDL estimator for various choices of the threshold (Opti-
mal threshold: the threshold obtained by minimizing the averaged sum of
squared errors; Average adaptive threshold: adaptively chosen thresholds
obtained by minimizing the distance between f̂(0) and f(0) over the grid
0.0001 to 0.002 in steps of 0.0001) based on 100 simulations of n pools of
k individuals each when the true haplotype distribution over 32 loci is as
given in Table 4.6.

for the removal of haplotypes is reasonable or not, we also compute the

EM-ATCDL estimates based on fixed threshold in our simulation study

to find out which threshold is “optimal”. Figures 4.3 and 4.4 depict the

averages of the sum of squared errors
∑
y∈Ω

[
f̂(y)− f(y)

]2

, Ω = {0, 1}L, over

100 simulations for the EM-ATCDL estimates f̂(y) as a function of the

threshold value. The position of the “optimal” threshold which minimizes

that averaged sum of squared errors is depicted by the vertical dashed

line, whereas the average of the adaptively chosen thresholds (obtained by

minimizing the distance between f̂(0) and f(0) over the grid 0.0001 to

0.002 in steps of 0.0001) is depicted by the dotted vertical line. It can be
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seen that the averages of the adaptively chosen thresholds are quite close

to the “optimal” thresholds which lends support to the proposed adaptive

method.

4.4 Discussion

The EM algorithm for estimating haplotype frequencies from pooled geno-

type data is computationally not feasible when the number of loci and/or

the pool size is large due to the combinatorial challenge of finding all possi-

ble haplotypes that are compatible with the observed pool tools. Gasbarra

et al. (2011) raised the possibility of using database information to form a

list of frequently occurring haplotypes, and by restricting attention to only

those haplotypes on such a list, Pirinen (2009) made the EM algorithm

much more viable. The success of the EM with a list method is, however,

dependent on the correctness of the list used. In the absence of an external

list of possible haplotypes, especially for rare alleles for which there is not

a lot of database information, and to protect against using the wrong list,

we look at the feasibility of using the data at hand to create an internal

list of possible haplotypes to be fed into the EM algorithm. Motivated by

the collapsed data method studied by Kuk et al. (2013b), we propose a

CD list with amplified haplotype frequencies. This alone does not work

well but with appropriate augmentation and trimming, the resulting EM-

ATCDL algorithm performs very well in our simulation study. It should be

pointed out that even though the ATCD list originates from the CD list

which is based on collapsed data: a further reduction of pooled genotype

data, the EM-ATCDL estimates themselves are computed using the pooled

data, which explains why they are better than the collapsed data MLEs.
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The simulation results also suggest that augmenting the collapsed data list

alone, or trimming the list alone, is not good enough, and it is necessary to

do both. The average lengths of the various lists are also shown in Tables

3 and 4. We can see that the average length of the ATCD list ranges from

20 (k = 1, n = 100) to 30 (k = 4, n = 200) for the 25 loci case, and from 28

(k = 1, n = 100) to 36 (k = 4, n = 200) for the 32 loci case. Without using

a list, there are 225 ≈ 3e7 and 232 ≈ 4e9 possible haplotypes. Thus by using

the ATCD list, we can restrict our attention to only 20 to 40 haplotypes,

hence the huge savings in running time. It can also be seen from Tables 3

and 4 that making a list longer does not guarantee better results, as the

EML and CD lists are much longer than the ATCD list but the resulting

estimates are much worse. What seems important is to add the right hap-

lotypes and remove unnecessary ones. If an imperfect external list exists,

then a sensible hybrid method is to combine it with the collapsed data list

to form a union list which can be further augmented and trimmed using

the techniques described in this chapter.

Currently we are only adding haplotypes with a single “1” to the list,

which seems reasonable for the study of rare variants, but one can con-

ceivably also add haplotypes with two 1’s to the list. This will increase

the number of possibilities substantially during the first iteration of the

EM algorithm, but most of these haplotypes will be removed after one

iteration.

The signs are promising that the use of the ATCD list can push the

limit of the EM algorithm in terms of the number of loci and pool size

that it can handle. This method is particularly well suited for estimating

the haplotype distributions of rare variants which are of substantial current
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interest. Note that our method does not require sampling, and is shown in

simulation study to work for case of 32 loci and pool size 4, which is beyond

the scope of most sampling-based methods, MCMC or deterministic. To

calculate the standard errors of parameter estimates, Louis’s formula is

one choice. However, since we add and remove haplotypes from the list in

the implementation of EM algorithm, the final estimates may not be MLEs.

So we suggest using bootstrap to compute the standard errors.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.1.1 Human biomonitoring

Chapter 2 considers the human biomonitoring of exposure to environmental

chemicals, which has become increasingly important. Individual monitoring

is not viable due to low individual exposure level or insufficient volume of

materials and the prohibitive cost of taking measurements from large num-

ber of subjects. Pooling of samples is an efficient and cost effective way to

collect data. Estimation is, however, complicated as individual values with-

in each pool are not observed but are only known up to their average or

weighted average. The distribution of such averages is intractable when the

individual measurements are log-normally distributed, which is a common

assumption. We propose to replace the intractable distribution of the pool

averages by a Gaussian likelihood to obtain parameter estimates. If the pool

size is large, this method produces statistically efficient estimates, but re-

gardless of pool size, the method yields consistent estimates as the number

of pools increases. An empirical Bayes (EB) Gaussian likelihood approach,
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as well as its Bayesian analogue, are developed to pool information from

various demographic groups by using a mixed effect formulation. We al-

so discuss methods to estimate the underlying mean-variance relationship,

and to select a good model for the means, which can be incorporated into

the proposed EB or Bayes framework. By borrowing strength across groups,

the EB estimator is more efficient than the individual group-specific esti-

mator. Simulation results show that the EB Gaussian likelihood estimates

outperform a previous method proposed for the National Health and Nu-

trition Examination Surveys with much smaller bias and better coverage

in interval estimation, especially after correction of bias.

5.1.2 Haplotype frequency estimation

Chapter 3 considers the estimation of haplotype frequencies based on pooled

genotype in the case of rare variants. Haplotype information could lead to

more powerful tests of genetic association than single locus analyses. Due to

phase ambiguity, the estimation of haplotype frequencies from genotype da-

ta is non-trivial. The challenge is compounded when individuals are pooled

together to save costs or to increase sample size which is crucial in the study

of rare variants. Existing expectation maximization (EM) type algorithms

are slow and cannot cope with large pool size or long haplotypes. We show

that by collapsing the total allele frequencies of each pool suitably, the

maximum likelihood estimates (MLEs) of haplotype frequencies based on

the collapsed data can be calculated very quickly regardless of pool size and

haplotype length. A running time analysis is provided to demonstrate the

considerable savings in time that the collapsed data method can bring. The

method is particularly well suited to estimating certain union probabilities
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useful in the study of rare variants. Theoretical and empirical evidence are

given to suggest that the proposed estimation method will not suffer much

loss in efficiency if the variants are rare. The method is used to analyze

re-sequencing data collected from a case control study involving 148 obese

persons and 150 controls. Focusing on a region containing 25 rare variants

around the MGLL gene, our method selects 3 rare variants as potentially

causal. This is more parsimonious than the 12 variants selected by a recent-

ly proposed covering method. From another set of 32 rare variants around

the FAAH gene, we discover an interesting potential interaction between

two of them.

In chapter 4, for more efficient estimates, we propose a way to construct

a data-based list of possible haplotypes to be used in conjunction with the

EM algorithm to make it more feasible computationally. By viewing the

pooled genotype data as incomplete data, the EM algorithm is the natural

algorithm to use, but it is computationally intensive. A recent proposal

to reduce the computational burden is to make use of database informa-

tion to form a list of frequently occurring haplotypes, and to restrict the

haplotypes to come from this list only in implementing the EM algorithm.

There is, however, the danger of using an incorrect list, and there may not

be enough database information to form a list externally in some applica-

tions. We investigate the possibility of creating an internal list from the

data at hand. One way to form such a list is to collapse the observed total

allele frequencies to “zero” or “at least one”, which is shown to have the

desirable effect of amplifying the haplotype frequencies. To improve cov-

erage, we propose ways to add and remove haplotypes from the list, and

a benchmarking method to determine the frequency threshold for remov-
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ing haplotypes. Simulation results show that the EM estimates based on

a suitably augmented and trimmed collapsed data list (ATCDL) perform

satisfactorily. In two scenarios involving 25 and 32 loci respectively, the

EM-ATCDL estimates outperform the EM estimates based on other lists

as well as the collapsed data MLEs. The proposed augmented and trimmed

CD list is a useful list for the EM algorithm to base upon in estimating

the haplotype distributions of rare variants. It can handle more markers

and larger pool size than existing methods, and the resulting EM-ATCDL

estimates are more efficient than the EM estimates based on other lists.

We have proposed two methods for genetic studies, collapsed data M-

LE and a modified EM with an internal list. Running time analysis was

reported in Tables 3.1 and 4.1. Collapsed data MLE runs very fast regard-

less of pool size and haplotype length, so it can be applied in large scale

datasets. The modified EM algorithm also runs fast and can push the limit

of the EM algorithm in terms of the number of loci and pool size that it

can handle, which may be applicable in moderate or large datasets.

5.2 Ongoing and Future Work

5.2.1 Human biomonitoring

Pooling of samples is an efficient and cost effective way to collect data

since the number of chemical measurements required can be substantially

reduced. However, the individual values within each pool are not observed,

and only their averages or weighted averages are measured. Previously,

pooled samples were analyzed based on the strata of age group, gender

and race, and only pooled level data were used in the model. However,
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demographic data (e.g. age) are available for each individual within the pool

and can be incorporated in the model to further smooth across demographic

groups. Model selection based on pooled data is an interesting question

and Gaussian version of BIC needs further investigation if it is a valid

method. In general, hypothesis testing is an important statistical problem

in statistical inference. In the future work, we can also consider if it is

possible to perform Gaussian likelihood based score test. We discuss below

some other possible future research on this topic.

• Integrating individual and pooled level data. Assume the un-

weighed average Aij =
∑K

k=1Xijk/K is recorded for the jth pool in the

ith group containing K individuals with Yijk = logXijk ∼ N (µi, σ
2
i ),

where i = 1, · · · , d, j = 1, · · · , ni, k = 1, · · · , K. More information (e.g.

age) are available for each individual Xijk, denoted by a vector Uijk =

(Uijk1, · · · , UijkM)′. Previous estimator was proposed by categorizing Uijk

into groups with similar demographic characteristics and then only group

level information were retained and used. Intuitively, a better estimator

can be investigated by incorporating the individual level data Uijk in the

model.

For simplicity, we consider one pool here. Suppressing the dependence

on the group i and pool j, the model after incorporating individual level

data is written as

A =

∑K
k=1 Xk

K
, logXk ∼ N(ζ ′Uk, σ

2)

where A and Uk = (Uk1, · · · , UkM)′ are observed; Xk, k = 1, · · · , K, are

latent variables; ζ = (ζ1, · · · , ζM)′ and σ2 are the parameters. The probabil-

ity density of A is given by the K-fold convolution of log-normal densities,
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which is highly intractable and not easy to maximize directly. Monte Carlo

EM (MCEM) algorithm and Gaussian likelihood estimation can be applied,

by using similar techniques as described in the chapter 2

When implementing MCEM, at the E-step, we take conditional expecta-

tion of the complete data log-likelihood function l(ζ, σ2; logX1, · · · , logXK)

given the observed data A and U = (U1, · · · , UK)′, and the current esti-

mates ζ̂(r) and σ̂2
(r) obtained from the rth iteration to get

Q(ζ, σ2; ζ̂(r), σ̂
2
(r)) = E

[
l(ζ, σ2; logX1, · · · , logXK)|A,U ; ζ̂(r), σ̂

2
(r)

]
=− K

2
log σ2 − 1

2σ2
E

[
K∑
k=1

(logXk − ζ ′Uk)2|A,U ; ζ̂(r), σ̂
2
(r)

]

up to an additive constant. At the M-step, we maximize Q(ζ, σ2; ζ̂(r), σ̂
2
(r))

with respect to ζ and σ2 to obtain the updated estimates

ζ̂(r+1) =(UTU)−1 E
[
UT lX|A,U ; ζ̂(r), σ̂

2
(r)

]
σ̂2

(r+1) =
E
[
lXT lX|A,U ; ζ̂(r), σ̂

2
(r)

]
− ζ̂T(r+1)U

TUζ̂(r+1)

K

where lX = (logX1, · · · , logXK)′. The conditional expectations

E

[
K∑
k=1

(Ukm logXk)
∣∣∣A,U ; ζ̂(r), σ̂

2
(r)

]
, m = 1, · · · ,M,

E

[
K∑
k=1

(logXk)
2
∣∣∣A,U ; ζ̂(r), σ̂

2
(r)

]

required in the E-step of the EM algorithm have no closed-form expressions.

We can consider using MCEM by approximating the above conditional

expectations.
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Gaussian likelihood estimator is an alternative method to use. Accord-

ing to the Central Limit Theorem, the pool average is approximately nor-

mally distributed if the pool size K is large with mean and variance, given

by

E [A] =

∑K
k=1 exp

(
ζTUk + σ2/2

)
K

var [A] =

∑K
k=1 exp

(
2ζTUk + σ2

)
[exp (σ2)− 1]

K2

If only pooled level information are used, Uk, k = 1, · · · , K are constant

for all the individuals within the same pool. This is the case that has been

discussed in the chapter 2.

5.2.2 Haplotype frequency estimation

For non-rare alleles, haplotype distributions cannot be estimated well from

pooled data. The asymptotic efficiency of pooled data estimator is reduced

by a factor equal to the pool size whenever the order of the cumulant to

be estimated is increased by one (Kuk et al., 2010), and hence it may be

appropriate to use pooled data to estimate only the low order of haplotype

frequencies, e.g. the first and second order of marginal frequencies. A sen-

sible strategy is to collect individual as well as pooled genotype data. In

addition, it is interesting to see if our collapsed data MLE can be extended

for family-based data where independence assumption is no longer valid.

One possibility is to use a random effects formulation. We discuss below

some other ongoing and possible future research on how to integrate these

two data.

• Combining individual and pooled genotype data. A calibra-
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tion type estimator based on the combined data is proposed which is

more efficient than the estimator based on individual data alone. In or-

der to take use of both individual and pooled genotype data, we pro-

pose adjusting the individual data estimators by using the first and/or

second order of marginal frequencies estimated from pooled data. Denote

by f0 = (f0(1), · · · , f0(Λi), · · · )T the vector of the first and/or second order

of marginal frequencies with “0” at positions Λi, where Λi is a non-empty

subset of {1, · · · , L}. We consider adjusting the individual data estimator

of f in the following form:

f̂B = f̂idv +BT
(
f̂pol − f̂idv

)
.

where f̂B is the adjusted estimator and f̂idv is the individual data estima-

tor of f ; f̂idv and f̂pol are the individual and pooled data estimators of f0

respectively. The variance of the adjusted estimator f̂B is given by

var
[
f̂B

]
= var

[
f̂idv

]
+BT cov

[
f̂pol − f̂idv

]
B + 2 cov

[
f̂idv, f̂pol − f̂idv

]
B.

We can choose B to minimize the above variance. Taking the first partial

derivatives with respect to B yields

∂ var
[
f̂B

]
∂B

= 2 cov
[
f̂pol − f̂idv

]
B + 2 cov

[
f̂idv, f̂pol − f̂idv

]T
.

Let
∂ var[f̂B]

∂B
= 0, then we can obtain the optimal B∗ which minimizes the

variance of the adjusted estimator. Since it is always easy to have a full
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rank cov
[
f̂pol − f̂idv

]
, the optimal B∗ is then given by

B∗ = − cov
[
f̂pol − f̂idv

]−1

cov
[
f̂idv, f̂pol − f̂idv

]T
. (5.1)

The variance of the adjusted estimator using the above optimal B∗ is given

by

var
[
f̂B∗
]

= var
[
f̂idv

] (
1−R2

)
, (5.2)

where

R2 = cov
[
f̂idv, f̂pol − f̂idv

]
cov

[
f̂pol − f̂idv

]−1

var
[
f̂idv

]−1

cov
[
f̂idv, f̂pol − f̂idv

]T
is the multiple correlation. According to (5.2), the adjusted estimator f̂B∗

has smaller variance than the individual data estimator f̂idv. If all the haplo-

type frequency estimators are unbiased, the adjusted frequency ĥB∗ should

also be unbiased. So we may expect the adjusted estimator f̂B∗ would per-

form better than the individual data estimator f̂idv.

• Optimal combination ratio. Given the same cost of genotyping for

individual and pooled data, the total number of genotyping is fixed (i.e.

n = nI +nP ), and this brings up the question that how to assign samples in

order to obtain efficient estimators. We can further investigate (5.2) to find

an optimal ratio between the numbers of individual and pooled genotype

data at a fixed cost of genotyping. The individual data MLE of haplotype

frequency f̂I can be estimated through EM algorithm. f̂idv and f̂idv can be

written as a linear combination of ĥI ,

f̂idv = ITh f̂I , f̂idv = JT f̂I ,
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where Ih is a vector with all zeros but one “1”, indicating the position of

f̂idv in f̂I ; and J is a matrix with each column specifying which haplotypes

are compatible with the corresponding marginal haplotype. For example,

f0(Λ) = P (Yl = 0, l ∈ Λ) =
∑
f(yl = 0, l ∈ Λ), where f0(Λ) is the marginal

frequency with “0” at positions Λ, and f(yl = 0, l ∈ Λ) is the frequency

of haplotype with zeros at positions Λ. So
{

var
[
f̂idv

]
R2
}

in (5.2) can be

calculated as

cov
[
f̂idv, f̂pol − f̂idv

]
cov

[
f̂pol − f̂idv

]−1

cov
[
f̂idv, f̂pol − f̂idv

]T
= cov

[
ITh f̂I , f̂pol − JT f̂I

]
cov

[
f̂pol − JT f̂I

]−1

cov
[
ITh f̂I , f̂pol − JT f̂I

]T
= Cov[ITh f̂I ,−JT f̂I ]

{
cov

[
f̂pol

]
+ cov

[
JT f̂I

]}−1

cov
[
ITh f̂I ,−JT f̂I

]T
= ITh cov

[
f̂I

]
J
{

cov
[
f̂pol

]
+ JT cov

[
f̂I

]
J
}−1

JT cov
[
f̂I

]T
Ih,

let CI = cov
[
f̂I

]
and CP = cov

[
f̂pol

]
; the above function can be written

as

ITh cov
[
f̂I

]
J
{

cov
[
f̂pol

]
+ JT cov

[
f̂I

]
J
}−1

JT cov
[
f̂I

]T
Ih

= ITh CIJ
(
CP + JTCIJ

)−1
JTCIIh

= ITh CIJC
−1
P

(
I + JTCIJC

−1
P

)−1
JTCIIh

= ITh CIJC
−1
P JT

(
I + CIJC

−1
P JT

)−1
CIIh

= ITh CIJC
−1
P JTCI

(
I + JC−1

P JTCI
)−1

Ih. (5.3)

Substituting (5.3) into the variance formula of f̂B∗ in (5.2), then we have

Var[ĥB∗ ] =ITh CIIh − ITh CIJC−1
P JTCI

(
I + JC−1

P JTCI
)−1

Ih

=ITh CI

[
I− JC−1

P JTCI
(
I + JC−1

P JTCI
)−1
]
Ih
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=ITh CI
(
I + JC−1

P JTCI
)−1

Ih

=ITh
(
C−1
I + JC−1

P JT
)−1

Ih (5.4)

which implicitly involves nI , nP and haplotype frequencies. Since CP =

1
nP

 f0(1) [1− f0(1)] f0(1, 2)− f0(1)f0(2) · · ·
...

. . .

, define JC−1
P JT = nPF.

For the individual data, we have CI = O(1/nI). When nI is large, CI can

be approximated by Q
nI

. So the above function (5.4) can be approximated

by

var
[
f̂B∗
]
≈ ITh

(
nIQ

−1 + nPF
)−1

Ih, (5.5)

which is a trade-off between nI and nP . A further look at (5.2) can give

us some explanation. In (5.2), the variance of the adjusted estimator using

the optimal B∗ is a multiplication between var
[
f̂idv

]
and (1−R2). So the

decrease in var
[
f̂B∗
]

can be contributed by a decrease in var
[
f̂idv

]
or an

increase in R2. Note that the variance of the individual data MLE,

var
[
f̂idv

]
= ITh CIIh = O

(
1

nI

)

which will decrease as the number of individual data nI increases at fixed

nP . Based on (5.3), R2 can be calculated as

R2 =
ITh CIJC

−1
P JTCI

(
I + JC−1

P JTCI
)−1

Ih

ITh CIIh
≈
ITh QFQ

(
nI
nP

I + FQ
)−1

Ih

ITh QIh
(5.6)

According to (5.6), R2 will increase to 1 as the number of pooled data nP

increases at fixed nI . So the increase in either nI and nP can lead to an

decrease in var
[
f̂B∗
]
. An optimal combination ratio between nI and nP
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may be obtained based on (5.5).
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