
	
	
	
	

	
	
	

LC:	 A	 MOSTLY-‐STRONGLY-‐TIMED	 PROTOTYPE-‐BASED	 COMPUTER	 MUSIC	
	

PROGRAMMING	 LANGUAGE	 THAT	 INTEGRATES	 OBJECTS	 AND	 MANIPULATIONS	
	

FOR	 MICROSOUND	 SYNTHESIS	
	
	
	
	

	
	
	

	
	

	
	

HIROKI	 NISHINO	
	

(Master	 of	 Media	 and	 Governance),	 KEIO	 UNIVERSITY	
	
	
	
	

A	 THESIS	 SUBMITTED	 	
	

FOR	 THE	 DEGREE	 OF	 DOCTOR	 OF	 PHILOSOPHY	
	
	
	

NUS	 GRADUATE	 SCHOOL	 FOR	 INTEGRATIVE	 SCIENCES	 AND	 ENGINEERING	
	

NATIONAL	 UNIVERSITY	 OF	 SINGAPORE	
	

	
	

2014	
	

1. Reviewer: Professor Brad Garton

2. Reviewer: Professor Roger Zimmerman

3. Reviewer: Professor Eric Lyon

Day of the defense: 08th/May/2014

Signature from head of PhD committee:

ii

This thesis is dedicated to my father, the late Hirotoshi Nishino, and my

mother, the late Miyoko Nishino.

Acknowledgements

This thesis would not have been possible without help and support from

numerous people.

First and foremost, I am deeply grateful to my supervisor Professor Ry-

ohei Nakatsu, who has been helping me with his mentorship and invaluable

insights on creativity and technology through my Ph.D. study. The en-

couragement that I have received from his supervision was not just limited

to academic research but also for personal issues regarding to life. It was

his guidance that led my interest in the creative applications of computer

technology to the more academic investigation to contribute to computer

music research.

I am so truly thankful to the Thesis Advisory Committee Chair, Professor

Steven Miller, especially for his insightful perspective as a professional com-

puter music composer and for the encouragement towards a larger achieve-

ment. Having a computer music composer with mastery as one of my ad-

visers has helped me deepen the insight into the history of computer music.

I wish to express my sincerest gratitude to Thesis Advisory Committee

member, Professor Naotoshi Osaka for his advices. His proficiency in both

musical creation and engineering research encouraged me to the further

investigation of any questions in creative practices that could result in a

contribution to engineering research. The synergy between creativity and

technology seen in his computer music research and compositions has been

always a great source of motivation.

I feel incredibly fortunate to have insightful thesis examiners, Professor Brad

Garton, Professor Eric Lyon, and Professor Roger Zimmermann.

I am grateful to a number of people who helped me, both for academic

matters and personal issues at National University of Singapore, I would

like to thank Professor Philip Moore, Professor Tang Bor Luen, Profes-

sor Lawrence Wong, Ms. Wendy Lee, and Mr. Tan Boon Chye for their

continuous support during my study at National University of Singapore.

It has also been a great pleasure to work with the people at Interactive

and Digital Media Institute, not just for the research inspiration but also

for their friendship. I would like to show my gratitude to the Cute Centre

director, Professor Ellen Yu-Luen Do, and the researchers, Dr. Koh Sueda,

Dr. Yuichiro Katsumoto, Dr. Masaaki Sato, Dr. Kentaro Yasu, Dr. Kelvin

Cheng for their insights as researchers in related fields.

I would also like to thank my fellow Ph.D students, Zhu Kening, Wang

Xuan, Jeffrey Koh, Roshan Peiris, Kasun Karunanayaka, Nimesha Ranas-

inghe, Weiquan Lu, Wei Jun, Elham Saadatian, Yoonsoon Choi, Ron Huang,

Stefano Fasciani, Srikumar Karaikudi Subramanian and Suranga Nanayakkara.

In addition, I am grateful to the people outside Interactive Digital and Me-

dia Institute who motivated and inspired me on the subject of art and/or

technology during this Ph.D study. I would like to thank Professor Masahiko

Inami, Professor Tsuyoshi Natsuno, Professor Annie On Ni Wan, Professor

Eunsu Kang, Professor Satoru Tokuhisa, Dr. Hugo Solis, Ms. Karolina

Sobecka, Mr. Rodeny Berry, Mr. Kentaro Fujinuma, Mr. Hisashi Ishihara,

and Mr. Yuta Nakayama.

Last but not least, as this thesis is also highly motivated by my own in-

terests in artistic creation, I am deeply grateful to my mentors in Gagaku

music, Master Sukeyasu Shiba and Ms. Naoko Miyamaru, for deepening

my understanding of music and cultural tradition.

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Problem statement . 1

1.2 Contribution . 6

1.3 Roadmap . 9

2 Background and Motivation: Three Problems in Today’s Computer

Music Programming Language Design 11

2.1 The insufficient support for dynamic modification of a computer music

program . 13

2.1.1 Rapid-prototyping . 13

2.1.2 Live-coding . 14

2.1.3 The problems in the existing computer music programming lan-

guages . 17

2.2 The insufficient support for precise timing behaviour and other features

with respect to time . 19

2.2.1 Precise timing behaviour in non real-time computer music lan-

guages and systems . 19

2.2.2 Precise timing behaviour in the era of the hybrid computer music

systems . 19

2.2.3 Precise timing behaviour in the era of stand-alone real-time com-

puter music systems . 23

i

CONTENTS

2.2.3.1 The necessity for precise timing behaviour with sample-

rate accuracy . 23

2.2.3.2 Timing behaviour in sound synthesis libraries and frame-

works . 24

2.2.3.3 The use of coroutines in a sound synthesis framework . 31

2.2.4 Strongly-timed programming . 33

2.2.4.1 Synchronous programming 33

2.2.4.2 ChucK, a strongly-timed programming language 34

2.2.4.3 Discrete event simulation in FORMULA, coroutines in

LuaAV and strongly-timed programming in ChucK . . 34

2.2.4.4 Visual computer music programming languages 36

2.2.5 The problems in the existing computer music programming lan-

guages . 38

2.3 The difficulty in microsound synthesis programming caused by the anti-

pattern of abstraction inversion . 41

2.3.1 The unit-generator concept and microsound synthesis techniques 42

2.3.1.1 The unit-generator concept 42

2.3.1.2 Microsound synthesis techniques 44

2.3.2 Abstraction inversion in microsound synthesis programming . . . 45

2.3.2.1 Abstraction inversion 45

2.3.2.2 The microsound synthesis examples in SuperCollider

and ChucK . 46

2.3.2.3 The microsound synthesis examples in visual program-

ming languages . 54

2.3.2.4 The lack of objects and manipulations for microsound

synthesis in the sound synthesis software frameworks . 55

2.3.3 The problems in the existing computer music programming lan-

guages . 64

2.4 The problems as design opportunities 66

3 Design: LC, a Mostly-strongly-timed Prototype-based Computer Mu-

sic Programming Language that Integrates Objects and Manipula-

tions for Microsound Synthesis 69

3.1 The basic language features . 70

ii

CONTENTS

3.1.1 The grammar . 70

3.1.2 Operators and primitive types 70

3.1.3 Typing and variable scope . 74

3.1.4 Control structure . 74

3.1.5 Lexical closure . 75

3.1.6 Exception handling . 77

3.1.7 Tail call optimization . 78

3.1.8 Strongly-timed programming . 82

3.1.9 Lightweight concurrency and multitasking 82

3.2 The Core Language Features . 86

3.2.1 Prototype-based programming 86

3.2.1.1 Prototype-based programming at the level of composi-

tional algorithms . 87

3.2.1.2 Prototype-based programming at the level of sound syn-

thesis . 94

3.2.2 Mostly-strongly-timed programming and other features with re-

spect to time . 103

3.2.2.1 Mostly-strongly-timed programming 106

3.2.2.2 Timed-tagged message communication 107

3.2.2.3 Timing constraints . 115

3.2.3 The Integration of objects and manipulations for microsound syn-

thesis . 118

3.2.3.1 Objects and manipulations for microsound synthesis . . 122

3.2.3.2 Microsound synthesis in LC 126

3.2.3.3 The collaboration between microsounds and unit-generators144

4 Discussion: the Necessity for the Development of LC as a New Lan-

guage and the Benefits of Its Language Design 167

4.1 The justification of the development of LC as a new computer music

programming language . 167

4.1.1 The necessity to provide more suitable syntaxes for frequently

performed tasks . 168

4.1.2 Execution time constraints . 168

iii

CONTENTS

4.1.3 Mostly-strongly-timed programming cannot be implemented as

library functions . 173

4.1.4 The necessity for LC’s own compiler and virtual machine 174

4.2 Comparing LC with the existing computer music languages 177

4.2.1 The support for dynamic modification of a computer music sys-

tem at runtime . 177

4.2.1.1 Dynamic modification of a computer music system in

the existing computer music languages 178

4.2.1.2 The benefits of LC’s language design for dynamic mod-

ification of a computer music system 191

4.2.2 The support for precise timing behaviour and other features with

respect to time . 194

4.2.2.1 Timing behaviour in the existing computer music lan-

guages . 195

4.2.2.2 Other features with respect to time in the existing com-

puter music languages 196

4.2.2.3 The benefits of LC’s language design 202

4.2.3 The difficulty in programming microsound synthesis techniques . 206

4.2.3.1 Abstraction inversion in the unit-generator languages . 206

4.2.3.2 When black-box abstractions do not benefit 207

4.2.3.3 Microsound objects and manipulations in the existing

computer music languages 216

4.2.3.4 The benefits of LC’s language design 223

5 Conclusion and Future Work 235

5.1 Conclusion . 235

5.1.1 Problems . 235

5.1.2 Contribution . 237

5.1.3 Conclusion . 238

5.2 Future Work . 239

5.2.1 Language features. 239

5.2.2 Performance efficiency. 239

5.2.3 Garbage collection . 242

iv

CONTENTS

References 245

6 Appendix I: Related Publications 257

7 Appendix II: A Brief History of Computer Music Languages and Sys-

tems - the Synergy between Technology and Creativity 263

7.1 Early computer music programming languages and systems 264

7.1.1 MUSIC-N languages . 264

7.1.2 Other notable early computer music programming languages and

systems . 271

7.1.2.1 Other Music-N descendant and non Music-N descen-

dant languages . 271

7.1.2.2 Computer music programming languages and systems

for algorithmic compositions 271

7.2 Real-time computer music programming languages and systems 273

7.2.1 Early live computer music systems (before real-time digital sound

synthesis) . 273

7.2.2 The emergence of variable-function digital signal processors . . . 274

7.2.3 MIDI-based interactive computer music systems 281

7.2.4 The development of standalone real-time computer music pro-

gramming languages . 283

7.2.5 Software libraries for digital sound synthesis 284

7.2.6 New exploration in computer music programming language design 285

7.2.7 The emergence of mobile platforms 291

7.3 The synergy between technology and creativity 291

8 Appendix III: the Implementation of the Proof-of-concept Prototype

of LC 295

8.1 System architecture . 295

8.2 LC Editor . 295

8.3 LC Virtual Machine . 296

8.4 Latency issues . 297

8.5 The issues related to the performance efficiency 301

8.5.1 Audio vectors . 301

v

CONTENTS

8.5.2 Parallelism . 301

9 Appendix IV: Additional Discussion 303

9.1 The definition of ‘abstraction inversion’ referred in this thesis 303

9.2 The HCI related issues . 308

9.2.1 The expected users . 308

9.2.2 The conceptual gap between the unit-generator concept and mi-

crosound synthesis techniques . 309

9.2.3 User interface design . 313

9.3 Other miscellaneous issues . 314

9.3.1 Popularization . 314

9.3.2 Musical practices that LC may be suitable for and may not be

suitable for . 317

vi

Abstract

Through the design of LC, a new computer music programming language,

this thesis contributes to solutions to three problems in today’s computer

music language design: (1) the insufficient support for dynamic modifica-

tion, (2) the insufficient support for precise timing behaviour and other

desirable features with respect to time, and (3) the difficulty in microsound

synthesis programming caused by the anti-pattern of abstraction inversion.

As the creation process of computer music composition can be highly ex-

ploratory in that musicians normally experiment with different composi-

tional and sound synthesis algorithms, better support for rapid-prototyping

is considered important. At the same time, recent computer music practices

can even involve dynamic modification of a program at runtime, on-the-fly

on stage, at both levels of compositional algorithms and sound synthesis.

Nevertheless, even the latest computer music languages do not provide a

terse and consistent programming model with a sufficient degree of sup-

port for dynamic modification, especially at the sound synthesis level. This

thesis contributes to this issue by the adoption of prototype-based program-

ming, which is highly dynamic in its nature, at both levels of compositional

algorithms and sound synthesis in the language design.

The insufficient support for precise timing behaviour and other desirable

features with respect to time is another significant problem in many com-

puter music languages. While the strongly-timed programming concept

can achieve precise timing behaviour with sample-rate accuracy by the ex-

plicit control of the advance of logical time, a time-consuming task that

hinders the advance of logical time can easily cause the temporary suspen-

sion of real-time DSP. This thesis proposes the concept of mostly-strongly-

timed programming, which extends strongly-timed programming with ex-

plicit switching to asynchronous context, in which a thread can be pre-

empted regardless of the synchronization with the advance of logical time;

thus, a mostly- strongly-timed program can avoid temporary suspension of

real-time DSP by executing time-consuming tasks in the asynchronous pre-

emptive context, while maintaining sample-rate accurate timing behaviour

of strongly-timed programming. This thesis also discusses the benefits for

integrating other desirable features with respect to time, such as timing

constraints and time-tagged message communication.

Microsound synthesis programs written in unit-generator languages often in-

volve certain programming patterns, which complicate the implementation

to compensate imprecise timing behaviour and the lack of the consideration

on microsound synthesis in the abstraction of its underlying sound synthe-

sis framework. Such a symptom can be assessed as abstraction inversion,

an anti-pattern that occurs when high-level abstractions must be combined

to express a lower-level abstraction. This thesis proposes a novel abstrac-

tion for microsound synthesis that integrates objects and manipulations for

microsounds in the design, which can collaborate with the traditional unit-

generator concept in a complementary style. Together with precise timing

behaviour supported by mostly-strongly-timed programming, the abstrac-

tion makes it possible to describe microsound synthesis techniques more

tersely without involving abstraction inversion.

As above, this thesis contributes to three issues that computer music lan-

guage research faces today, through the design of LC, a mostly-strongly-

timed prototype-based programming language that integrates objects and

manipulations for microsounds.

List of Tables

2.1 Discrete-Event Simulation Approach: Simple Telephone Call Centre Sim-

ulation (taken from (245, p.16)). 21

2.2 Waveset transformations in the Composer’s Desktop Project software

(242, p.207). 48

2.3 Nine time scales of music by Roads (242, p.3). 57

2.4 The typical abstraction hierarchicy in sound synthesis framework design 58

2.5 Three type constructors in Chronic (56, p.8). 62

3.1 The grammar of LC. 71

3.1 The grammar of LC in EBNF (continued). 72

3.2 The relative precedence levels of operators in LC. 73

3.3 The data types available in LC. 73

3.4 The constructor definition of Exception object in LC 77

3.5 Arithmetic operations on time and duration in LC. 83

3.6 The list of library functions for Table objects. 90

3.7 The list of Patch object’s methods . 97

3.8 The list of unit-generator’s methods. 98

3.9 Samples object. 123

3.9 Samples object (continued). 124

3.10 SampleBuffer object. 126

3.11 The list of library functions related to microsound synthesis in the pro-

totype version of LC. 128

3.12 The list of library functions related to microsound synthesis in the pro-

totype version of LC (continued). 129

ix

LIST OF TABLES

3.13 Waveset transformations in the Composer’s Desktop Project software

(242, p.207), reproduced from Table 2.2. 140

3.14 The list of UGen’s methods for the collaboration between microsounds

and unit-generators in LC. 153

3.15 The list of Patch’s methods for the collaboration between microsounds

and unit-generators in LC. 154

4.1 The six required features for high-level real-time programming as Lee et

al. discuss in (179) . 198

4.1 The six required features for high-level real-time programming as Lee et

al. discuss in (179) (continued). 199

x

List of Figures

1.1 A waveset harmonic distortion example in SuperCollider. 7

1.1 A waveset harmonic distortion example in SuperCollider (continued). . . 8

1.2 A bitwise operation (bitwise-and) example in Lua. 8

2.1 A picture of live-coding performance . 15

2.2 A photo of ReacTable . 16

2.3 A Just-in-Time programming example in SuperCollider (320, p.209). . . 17

2.4 The components of a computer music performance system 20

2.5 An example of real-time sound synthesis in STK (rtsine.cpp from STK

tutorial program). 26

2.5 An example of real-time sound synthesis in STK (rtsine.cpp from STK

tutorial program) (continued). 27

2.6 Two different tasks to be performed concurrently. 27

2.7 An example that combines two tasks (task A and task B). 28

2.8 An example with a scheduler function. 29

2.9 An example of the infite loop with the 1.0 second sleep inside. 29

2.10 A temporal recursion example. 30

2.11 A coroutine example in LuaA (150, p.73). 32

2.12 A LuaAV example (307). 32

2.13 An Esterel example and its specification (37). 33

2.14 A ChucK program to generate a sine wave, changing its frequency of

oscillation every 100 milliseconds. (312, p.43). 35

2.15 A simple ChucK program, which performs the equivalent task as the

Figure 2.12 example in LuaAV. 35

2.16 An Instrument with attack, decay, and vibrato 43

xi

LIST OF FIGURES

2.17 A mutex example with abstraction inversion in Ada (28). 46

2.18 A bitwise operation (bitwise-and) example in Lua (reproduced from Fig-

ure 1.2). 46

2.19 A pictorial representation of waveset harmonic distortion. 47

2.20 A waveset harmonic distortion example in SuperCollider (reproduced

from 1.1). 49

2.20 A waveset harmonic distortion example in SuperCollider (reproduced

from 1.1) (continued). 50

2.21 A pictorial representation of synchronous granular synthesis. 51

2.22 A synchronous granular synthesis example in ChucK. 52

2.23 Another synchronous granular synthesis example in ChucK with less

memory-leak. 53

2.24 A pictorial representation of waveset inversion 54

2.25 A granular synthesis patch by Richard Dudas (the whole patch) 55

2.26 A granular synthesis patch by Richard Dudas (the inside rgrain2∼ sub-

patch) . 56

2.27 Object-oriented granulator structure . 60

2.28 Event sequence when samples are requested from a granulator 60

2.29 Event sequence when it is time to activate a new grain 61

2.30 A pictorial representation of temporal type constructor examples given

by Brandt . 62

2.31 A score example with sine beeps in Chronic (56, p.26). 63

3.1 Local variables and global variables in LC. 74

3.2 An example of dynamic-typing and strong-typing in LC. 75

3.3 An example of control structures in LC(left) and its output(right). . . . 76

3.4 The examples of lexical closure in LC. 76

3.5 An example of default parameters/keyword arguments in LC. 77

3.6 The built-in exception hierarchy example in LC (the prototype version). 78

3.7 An example of exception handling in LC. 79

3.7 An example of exception handling in LC (continued). 80

3.7 An example of exception handling in LC (continued). 81

3.8 A simple tail call example in LC. 82

xii

LIST OF FIGURES

3.9 A strongly-timed programming example in LC. 83

3.10 Directly computing output samples without unit-generators in LC. . . . 84

3.11 A simple multi-threading example in LC. 85

3.12 Table object examples in LC(1). 87

3.12 Table object examples in LC(1) (continued). 88

3.13 A Table example in LC(2). 89

3.14 A delegation example in LC. 92

3.15 An object-cloning example in LC. 93

3.15 An object-cloning example in LC (continued). 94

3.16 A duck-typing example in LC. 95

3.17 A simple sine wave oscillator example in LC. 99

3.18 Another sine wave oscillator example in LC. 100

3.19 A patch expression example in LC. 101

3.20 A subpatch example in LC. 102

3.21 A patch-cloning example in LC. 103

3.22 A duck-typing example (for Patch object) in LC. 104

3.22 A duck-typing example (for Patch object) in LC (continued). 105

3.23 A mostly-strongly-programming example in LC. 108

3.23 A mostly-strongly-programming example in LC (continued). 109

3.24 A timed interthread messaging example in LC(1). 112

3.25 A timed interthread messaging example in LC(2). 113

3.25 A timed interthread messaging example in LC(2) (continued). 114

3.26 A thread start-time constraint example in LC. 116

3.27 A patch start-time constraint example in LC. 117

3.28 A timeout example in LC(1). 119

3.29 A timeout example in LC(2). 120

3.30 A timeout example in LC(3). 121

3.31 A timeout example in LC(4). 121

3.32 A Samples object creation example. 122

3.33 An indexed-access to Samples object example. 125

3.34 A SampleBuf object example. 127

3.35 A ReadADC/WriteDAC example. 131

3.36 A synchronous granular synthesis example. 132

xiii

LIST OF FIGURES

3.37 A quasi-synchronous granular synthesis example. 133

3.38 An asynchronous granular synthesis example. 133

3.39 A granular sampling example (pitch-shifting). 135

3.39 A granular sampling example (pitch-shifting) (continued). 136

3.40 A granular sampling example (time-stretching). 137

3.40 A granular sampling example (time-stretching) (continued). 138

3.41 A waveset example to reproduce the original sound in LC. 141

3.42 A waveset inversion example in LC. 141

3.43 A waveset distortion example in LC. 142

3.44 A waveset transposition example in LC. 143

3.45 A waveset substitution example in LC. 144

3.46 A waveset harmonic distortion example in LC. 145

3.47 A waveset inversion + waveset transposition example (real-time sound

input) in LC. 146

3.48 A waveset harmonic distortion example (real-time sound input) in LC. . 147

3.49 A FFT/IFFT example (cross synthesis). 148

3.50 A PFFT/PIFFT example (cross synthesis). 149

3.51 A PFFT/PIFFT example (time-stretching). 150

3.52 A PFFT/PIFFT example (time-stretching real-time input). 151

3.53 A PFFT/PIFFT example (time-stretching real-time input, with a buffer).152

3.54 An example of creating Sample objects from the unit-generator’s output

samples (1) . 157

3.55 An example of creating Sample objects from the unit-generator’s output

samples (2). 158

3.56 An example to create Sample objects from the patch’s output samples. . 159

3.57 A granular synthesis example with the pregenerated grains. 160

3.58 A granular synthesis example with on-demand generation of the grains. 161

3.59 A duck-typing example of ‘pread’. 162

3.60 A reverberation example (1). 163

3.61 A reverberation example (2). 164

3.62 A reverberation example (3). 165

xiv

LIST OF FIGURES

3.63 A duck-typeing example to apply an envelope (by a unit-generator) and

an envelope + reverberation (by a patch) to the output of waveset har-

monic distortion. 166

4.1 A simple sine wave oscillator example in LC (reproduced from Figure

3.17). 169

4.2 A timed interthread messaging example in LC(1) (reproduced from Fig-

ure 3.24). 170

4.3 Another sine wave oscillator example in LC (reproduced from 3.18). . . 171

4.4 A timed interthread messaging example in LC. 172

4.5 An example of context switching between synchronous/non-preemptive

context and asynchronous/preemptive context with an execution time

constraint. 175

4.6 An example of context switching by library function calls between the

synchronous/non-preemptive context and the asynchronous/preemptive

context with an execution time constraint. 176

4.7 A prototype-based programming example by Dictionary and Event in

SuperCollider. 179

4.8 A prototype-based programming example with chuchklib in SuperCol-

lider (320, p.600). 180

4.9 Playing Synth objects in SuperCollider. 182

4.10 Just-in-Time programming example in SuperCollider (320, pp.208-210). 183

4.11 Creating a proxy object explicitly and changing its source (from (320,

p.215)). 184

4.12 Refactoring a synthesis graph at runtime (from (320, p.212)). 184

4.13 Parameter mapping and setting (from (320, p.216)). 185

4.14 A simple example to connect/disconnect the connections in a synthesis

graph in ChucK. 187

4.15 A typing issue in dynamic modification at the sound synthesis level in

ChucK. 188

4.16 An oscillator with amplitude modulation: synthesis graph (left), and

equivalent abstract syntax tree (right) 190

4.17 An execution-time constraint example in Impromptu (276). 202

xv

LIST OF FIGURES

4.18 A bitwise operation (bitwise-and) example in Lua (reproduced from 2.18).208

4.19 A waveset harmonic distortion example in SuperCollider (reproduced

from Figure 2.20). 209

4.19 A waveset harmonic distortion example in SuperCollider (continued) (re-

produced from Figure 2.20). 210

4.20 Another synchronous granular synthesis example in ChucK with less

memory-leak (reproduced from 2.23). 211

4.21 A synchronous granular synthesis example with a triangle envelope ap-

plied to the entire sound output in SuperCollider. 212

4.21 A synchronous granular synthesis example with a triangle envelope ap-

plied to the entire sound output in SuperCollider (continued). 213

4.22 Another synchronous granular synthesis example in ChucK with a tri-

angle envelope applied to the entire sound output. 214

4.23 A waveset harmonic distortion example in Nyquist’s SAL programming

language. 216

4.24 A macro definition of seqrep in Nyquist (open source distribution) - Copy-

right (c) 2000-2002, by Roger B. Dannenberg). 217

4.25 A simple FFT-based cross synthesizer example. 220

4.26 A simple FFT-based cross synthesizer example (using the different hop

sizes for the source a and source b). 221

4.26 A simple FFT-based cross synthesizer example (using the different hop

sizes for the source a and source b) (continued). 222

4.27 Underlying pipeline of a generic hybrid synthesis/analysis system in

ChucK audio programming language . 223

4.28 A sound synthesis and lowpass filter example in Matlab (205). 224

4.29 A waveset harmonic distortion example in LC (reproduced from Figure

3.46). 226

4.30 A synchronous granular synthesis example (reproduced from Figure 3.36).227

4.31 A reverberation example (2) (reproduced from Figure 3.61). 228

4.32 A waveset harmonic distortion example in LC (equivalent to Figure 4.23

Nyquist exmaple). 229

4.33 Another cross synthesis example in LC (with the variable hopsizes). . . 231

xvi

LIST OF FIGURES

4.34 An example to create Sample objects from the unit-generator’s output

samples (1) (reproduced from Figure 3.54). 232

4.35 A duck-typing example to apply an envelope (by a unit-generator) and an

envelope + reverberation (by a patch) to the output of waveset harmonic

distortion (reproduced from Figure 3.63). 233

7.1 An IBM 704 computer . 265

7.2 An instrument with attack, decay, and vibrato 268

7.3 An instrument with attack, decay, and vibrato 268

7.4 VAX 11/750 . 269

7.5 DEC VT-100 Terminal . 270

7.6 A commnd line example in CARL (213). 271

7.7 A MINC program example (taken from STRUM1.sco, which is a part of

the RTcmix 4.0 package released under GPL license). 272

7.8 An IRCAM/Sogitec Real-Time Digital Signal Processor 4X’s circuit boards276

7.9 An example of a Patcher program . 278

7.10 An IRCAM Signal Processing Workstation (left) and an i860 board (right)279

7.11 A Max/FTS patch example . 280

7.12 A screenshot of AUTOBUSK . 282

7.13 A screenshot of SuperCollider . 287

7.14 A screenshot of Impromptu . 288

7.15 A screenshot of miniAudcle . 289

8.1 The overall system architecture of LC (the proof-of-concept prototype) . 296

8.2 A screenshot of LC Editor (the proof-of-concept prototype) 297

8.3 The implementation to handle everything within the audio callback func-

tion . 299

8.4 How the audio computation is triggered 300

8.5 The implementation to perform DSP in an real-time thread 300

9.1 Classic synthesis techniques classified according to their principles of

realization . 310

9.2 The examples of the descriptions on frequency-domain synthesis techiniques

in Csound book (52). 311

xvii

LIST OF FIGURES

9.3 The examples of the descriptions on microsound synthesis techiniques in

Microsound (242). 311

xviii

1

Introduction

1.1 Problem statement

Even since the earliest era in the history of computer music, programming languages

tailored for computer music have been playing a significant role in both academic re-

search and artistic creation. Computer musicians and researchers still show considerable

interest in computer music languages as primary tools for both research and creation;

research on computer music languages is still very active as one of the central topics in

the computer music community even today.

Throughout the history of computer music, computer music languages have been

continuously evolved by researchers and engineers in the field, making the best use of

the available computer technology of the time and being influenced from achievements

in programming language research.

For instance, the development of faster processors made it possible to compute

digital signals fast enough for real-time use, and computer music languages began to

take real-time sound synthesis into consideration as one of the most important design

criteria. The popularization of object-oriented programming also had a significant influ-

ence on computer music language design. Textual computer music languages are often

designed with the object-oriented programming paradigm and even visual computer

music programming languages adopt the concept in language designs today; the unit-

generator concept is also extended with the object-oriented programming paradigm and

the features of object-oriented programming, such as the encapsulation of the data and

1

1. INTRODUCTION

methods to control behaviour, are quite common today.

In addition to the influence of the advance of computer technology and programming

language research, computer music language design has been significantly influenced by

needs arising among artists, which may be specific to computer music. For example, the

demands for a computer music language that is user-friendly, even to computer music

composers without expertise in programming, led to the development and prosperity

of visual computer music languages such as Max/MSP and PureData. For another

example, as the creative exploration by composers and sonic artists in interactive music

composition and interactive installations increased, computer music languages began

to take the capability of interaction beyond the traditional score-orchestra model into

consideration as one of the essential language features.

Thus, both the advancement in computer technology and programming language

research and the domain-specific needs in computer music have motivated the design

and development of new computer music languages throughout the history of computer

music.

This Ph.D thesis addresses three problems that computer music programming lan-

guage design faces in our decade: (1) the insufficient support for dynamic modification

of a computer music program, (2) the insufficient support for precise timing behaviour

and other desirable features with respect to time, and (3) the difficulty in microsound

synthesis programming caused by the anti-pattern of abstraction inversion; these issues

are of significant importance when considering the emergence of new sound synthesis

techniques and novel creative practices in computer music in the last several decades.

The development of a new computer music programming language that overcomes such

issues can benefit the further research in computer music programming language design

and the creative explorations by computer musicians of our time.

The insufficient support for dynamic modification of a computer music pro-

gram. The creation process of a computer music composition can be quite similar to

rapid-prototyping, as “audio programming, in both computational acoustics research

and in music composition and performance, is necessarily an experimental and empirical

process; it requires rapid experimentation, verification/rejection/workshoping of ideas

2

1.1 Problem statement

and approaches, and takes the forms of both short-term and sustained prototyping”

(312, p.3). Composers usually experiment with various different sound synthesis and

compositional algorithms during the creation process, similar to the way programmers

do with their programs in the process of rapid-prototyping.

On the other hand, recent computer music practices often call for dynamic mod-

ification of a computer music program that is already being executed. For instance,

in live-coding performance (43)(62)(77)(212)(216), performers write and modify com-

puter music programs on-the-fly on stage. Similarly, in the performance that involve

‘dynamic-patching’ (160)(162), an instrument is built and modified while it is playing,

by connecting and disconnecting sound synthesis modules.

Broadly speaking, the degree of the support for such dynamic modification of a

computer program can be significantly limited by the language design. Significant

demands exist for more dynamic computer music languages in today’s computer music

research and practices.

The insufficient support for precise timing behaviour and other desirable

features with respect to time. As computer music is a time-based art form, precise

timing behaviour can be quite important in computer music programming. Compared

to visual presentation, in which 60 frames-per-second is good enough for human visual

perception, human auditory perception is far more sensitive to timing and a high degree

of precision is required both at the rhythmic level and the audio level.

At the rhythmic level, Lyon discusses that “even when the amount of deviation

from sample accuracy is not clearly noticeable at a rhythmic level, it may still have

an undesirable musical effect. For example, a pulsation may feel not quite right when

there are a few 10s of milliseconds of inaccuracy in the timing from beat to beat” and

“smaller inaccuracies, though rhythmically acceptable, can still cause problems when

sequencing sounds with sharp transients, since changes in alignment on the order of a

couple of milliseconds will create different comb filtering effects as the transients slightly

realign on successive attacks” in (194). On the other hand, sample-rate accuracy in

timing behaviour is necessary to accurately perform some sound synthesis techniques;

as discussed in the next section, many microsound synthesis techniques require precise

timing behaviour with sample-rate accuracy to render the sound output. Imprecise

3

1. INTRODUCTION

timing behaviour can result not just in theoretically inaccurate output, but often in

clearly a noticeable difference to human auditory perception.

Furthermore, many computer music programming languages still lack desirable fea-

tures with respect to time, such as timing constraints and timed communications. As

such features are almost essential to real-time programming languages, computer music

programming languages of our time should be equipped with such features with respect

to time, together with sample-rate accurate precise timing behaviour.

The difficulty in microsound synthesis programming caused by the anti-

pattern of abstraction inversion. Microsound synthesis techniques were rapidly

popularized in computer music practices in the last several decades. Generally speak-

ing, in microsound synthesis techniques, short sound particles (or microsounds) that

overlap-add onto others constitute the entire sound. Normally, microsound synthesis

techniques require sample-rate accuracy in the scheduling of microsounds to render

the sound output as theoretically expected. While most computer music languages

provide various unit-generators for microsound synthesis techniques as built-in objects,

such a strategy to encapsulate the algorithms of microsound synthesis within the unit-

generators significantly limits what users can explore in the domain of microsounds,

as the users can not experiment beyond the functionalities and interfaces of the unit-

generators; the extension and modification of built-in unit-generators require a certain

level of expertise in programming skill, which hardly can be expected of the end users.

Yet, while it is still possible to write microsound synthesis programs within the

existing computer music languages, creative exploration in microsound synthesis still

may be hindered by some obstacles. Because of the lack of direct counterpart objects

to microsounds in the unit-generator concept, each microsound must be normally mod-

elled as a note-level object. To make matters worse, to compensate imprecise timing

behaviour in many languages, it is required to take a special care in scheduling, such

as the use of a library function so to schedule note-level events ahead of the actual

timing. Figure 1.1 is an example of waveset harmonic distortion in SuperCollider (320)

and describes a typical example of such a programming pattern. While we describe

waveset harmonic distortion and this example in more detail, it should be noted that

4

1.1 Problem statement

each microsound is modelled as a note-level object (defined between line 06-13) and

library objects (Pbind and Ppar) are involved in this implemenation; programming

microsound synthesis techniques within a unit-generator programming language often

involves such cumbersome programming patterns with library functions/objects, even

when the synthesis techniques to be performed are conceptually very simple. This

would make creative exploration by computer musicians harder in the domain of mi-

crosound synthesis.

Such a situation can be considered an anti-pattern called abstraction inversion,

which “occurs when a programmer is forced to use a combination of higher-level ab-

stractions to express a lower-level abstraction” (28). For instance, the lack of the

bitwise operators in the early versions of the Lua is one of the widely-known examples

of abstraction inversion. While the bitwise-and operation can be performed just by

using ‘&’ in C or C++ (e.g., by the expression such as ‘a & b’), one has to perform the

same operation by writing the code in the early versions of Lua, because of the lack of

bitwise operators. Figure 1.2 describes a bitwise-and example in Lua.

In a traditional unit-generator-based sound synthesis framework, the lack of objects

and functions that can directly represent microsounds and related manipulations can

lead to a similar problem. In a unit-generator language, as shown in the SuperCol-

lider example in Figure 1.1, the combination of higher-level abstractions is a certain

programming pattern described above, which involves note-level objects and library

functions (or library objects) for scheduling. Generally speaking, microsounds can be

considered to belong to a lower-level than notes, as the entire sound output of a mi-

crosound synthesis technique is conceptually a note-level object, which consists of many

microsounds; While many computer music languages still do not provide simple and

effective means for it, scheduling is also conceptually a very simple operation.

Thus, the difficulty in microsound synthesis programming can be viewed as a prob-

lem of abstraction inversion, caused by the lack of objects and manipulations that

can directly represent microsounds and related manipulations. It is desirable to be

removed so that further creative exploration by computer musicians can be facilitated

in the domain of microsounds; there is a strong necessity to investigate a more suit-

5

1. INTRODUCTION

able abstraction that can provide a terse programming model for microsound synthesis

techniques.

1.2 Contribution

These three issues described above provide design opportunities for a new computer

music language.

LC adopts the concept of prototype-based programming both at both levels of

the compositional algorithms and sound synthesis, for the better support of runtime

dynamism. Prototype-based programming is significantly flexible and robust against

dynamic modifications at runtime, which are very favourable for both rapid-prototyping

and live-coding.

While the strongly-timed programming concept can achieve precise timing be-

haviour with sample-rate accuracy by the explicit control in the advance of logical

time, a time-consuming task that hinders the advance of logical time can easily cause

a temporary suspension of real-time DSP, as the output samples in a strongly-timed

program cannot be computed without the advance of logical time. LC proposes the

mostly-strongly-timed programming concept, which extends the strongly-timed pro-

gramming concept with explicit switching between non-preemptive/synchronous con-

text and preemptive/asynchronous context. Such extension allows time-consuming

tasks to be preempted so that they do not hinder the advance of logical time, while

maintaining sample-rate accurate timing behaviour of strongly-timed programming.

Furthermore, LC also introduces other desirable features such as timing constraints

and timed-tagged message communications, which are beneficial for computer music

programming.

LC also provides a novel abstraction for its underlying sound synthesis framework,

which directly integrates objects and manipulations for microsound synthesis. Sup-

ported by such framework design and sample-rate accurate timing behaviour provided

by mostly-strongly-timed programming, microsound synthesis algorithms can be tersely

described and compute accurately in LC, without involving abstraction inversion as seen

in unit-generator languages.

6

1.2 Contribution

01: Server.default = s = Server.internal;

02: s.boot;

03: w = Wavesets.from("sound.aif");

04:(

05: b = w.buffer;

06: SynthDef(\wvst0, {
07: arg out = 0, buf =0, start = 0, length = 441,

08: playRate =1, sustain = 1, amp= 1;

09: var phasor = Phasor.ar(rate:playRate, start:0, end:length) + start;

10: var env = EnvGen.ar(Env([amp, amp, 0], [sustain,0]), doneAction:2);

11: var snd = BufRd.ar(1, buf, phasor) * env;

12: OffsetOut.ar(out, snd);

13: }).add;
14:)

15: (

16: var numOfWavesets = w.lengths.size;

17: var original = Pbind(

18: \instrument, \wvst0,

19: \startWs, Pseries(0, 1, numOfWavesets),

20: \numWs, 1,

21: \playRate, 1,

22: \bufnum, b.bufnum,

23: \repeats, 1,

24: \amp, 1,

25: [\start, \length, \sustain], Pfunc({|ev|
26: var start, length, wsDur;

27: #start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);

28: [start, length, wsDur * ev[\repeats] / ev[\playRate].abs]

29: }),
30: \delta, Pkey(\sustain)

31:);

Figure 1.1: A waveset harmonic distortion example in SuperCollider.

7

1. INTRODUCTION

32: var octup = Pbind(

33: \instrument, \wvst0,

34: \startWs, Pseries(0, 1, numOfWavesets),

35: \numWs, 1,

36: \playRate, 2,

37: \bufnum, b.bufnum,

38: \repeats, 2,

39: \amp, 1,

40: [\start, \length, \sustain], Pfunc({|ev|
41: var start, length, wsDur;

42: #start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);

43: [start, length, wsDur * ev[\repeats] / ev[\playRate].abs]

44: }),
45: \delta, Pkey(\sustain)

46:);

47:

48: Ppar([original, octup]).play(SystemClock);

49:)

Figure 1.1: A waveset harmonic distortion example in SuperCollider (continued).

01: function bit and(x, y)

02: local digit = 1

03: local ret = 0

04: local limit = x > y and x or y

05: while digit <= limit do

06: if (x % (digit * 2)) >= digit and (y % (digit * 2)) >= digit then

07: ret = ret + digit

08: end

09: digit = digit * 2

10: end

11: return ret

12: end

Figure 1.2: A bitwise operation (bitwise-and) example in Lua.

8

1.3 Roadmap

Thus, this thesis contributes to a solution for the above three issues in computer

music language design research in our decade through the design and development

of LC. The contributions are made by (1) the adoption of the programming concept

for general-purpose languages to a domain-specific problem (the application of the

prototype-based programming concept at both levels of compositional algorithm and

sound synthesis), (2) the proposition of a new programming language concept (the

mostly-strongly-timed programming concept, which extends the strongly-timed pro-

gramming concept with explicit switch between synchronous context and asynchronous

context), and (3) the novel approach to the sound synthesis framework design (the

integration of the objects and manipulations for microsound synthesis in the sound

synthesis framework).

1.3 Roadmap

The rest of this thesis is organized as follows. In the next chapter (Chapter 2), the

three problems in computer music language design, which hinder creative exploration

in our decade, are described. These problems are addressed as a significant opportunity

for the development of a new computer music language. Then, the language design of

LC, a new computer music language, is described in the following chapter with various

examples in Chapter 3. The discussion on the benefits of the design of LC is presented

in comparison with the other existing languages in Chapter 4. The conclusion and

future work are placed in the last chapter (Chapter 5).

Additionally, Appendix I lists up the related publications by the author with brief

descriptions regarding how each publication relates to this thesis. Appendix II describes

a brief history of computer music languages and systems to endorse the argument that

the problems in creative practices can lead to contributions to academic research. Ap-

pendix III provides brief descriptions of the implementation of the proof-of-concept

prototype of LC. Appendix IV also provides some additional discussions on miscella-

neous issues, which are not within the scope of this thesis, but may be desirable to

consider for the further investigation.

9

1. INTRODUCTION

10

2

Background and Motivation:

Three Problems in Today’s

Computer Music Programming

Language Design

While the advance of computer technology has motivated the development of new

computer music languages and systems, the aspiration for new artistic forms and the

problems discovered through such creative practices also have suggested the limitations

of existing computer music languages and systems, which also provide significant design

opportunities for new languages and systems.

Even in the very early stages of computer music research and creation, the syn-

ergy between technology and creativity played a significant role in the development of

computer music languages and systems. Shortly after the first digital sound synthesis

program was developed by Mathews and his colleagues at the Bell laboratory (204) in

the late 1950s, the researchers began designing special-purpose languages tailored for

computer music with domain-specific abstractions. Two core abstractions for computer

music languages were established in this era, as seen in MUSIC-III (developed in 1960)

(94, p.26)(243) and these two core abstractions, the unit-generator concept and the

score-orchestra model, are still widely applied not just to MUSIC-N family languages

such as Csound (305), but also to many other recent computer music languages.

The desire to perform computer music compositions in real-time, especially those

11

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

generated by algorithms, led to the development of hybrid computer music systems.

A hybrid computer music system in this era normally consists of a mini-compute and

external synthesizer hardware. For instance, the GROOVE systems (203), the Yale

synthesizer (117), and MUSYS (134) were systems of this kind and all of them were

developed in the early 1970s; such efforts founded the basis for interactive music sys-

tems in the following decade when the MIDI interface standard (23) emerged in 1980s.

When special DSP hardware made real-time digital sound synthesis possible as seen

in the series of IRCAM hardware (4A (229),4B (8), 4C (98), 4X (214), IRCAM musical

workstation (187)), Kyma/Platpus (258)(259), and MARS workstation (20)(72), the

creative practices made the researchers of the time aware of the necessity to develop

a more user-friendly flexible programming environment for rapid-prototyping and end-

user programming under such environments; Max (230)(231) is possibly one of the most

notable programming languages of this kind, which was originally developed for such

special hardware in this era. Its concept of visual programming is still widely adopted

in many widely-used computer music languages today.

Around the 1990s, when real-time sound synthesis was realized even on stand-

alone computers without the assistance of external hardware, the researchers began

developing the stand-alone real-time versions of existing computer music languages,

such as the real-time version of Csound (305), Max/MSP (327), and RTcmix (122)(297),

together with new computer music languages such as PureData (232) and SuperCollider

(210).

Creative practices that were developed in the previous decades became new criteria

for computer music language design, not separately as before, but altogether; computer

music language researchers of the time began researching language design that can

support algorithmic/interactive music systems, real-time digital sound synthesis, and

new interfaces for musical expressions and the like, which used to be handled in different

programming environments, in just one integrated environment.

Thus, computer music systems and languages have been fostered through synergy

between technology and creativity. The readers who are interested in such an aspect

of computer music programming languages and systems are recommended to read Ap-

pendix II, which provides a more detailed description of the historical development of

computer music languages and systems with some emphasis on such synergy between

12

2.1 The insufficient support for dynamic modification of a computer music
program

technology and creativity. Appendix II also provides more detailed information on the

computer music languages and systems mentioned above.

Upon the perspective as above, it can be considered that the problems found in

creative practices suggest, not just the limitation of the existing computer music lan-

guages, but also the necessity for the further research in computer music language

design. This chapter describes three problems in today’s computer music program-

ming language design, which hinder creative exploration in computer music: (1) the

insufficient support for dynamic modification of a computer music program, (2) the in-

sufficient support for precise timing behaviour and other features with respect to time,

and (3) the difficulty in microsound synthesis programming caused by the anti-pattern

of abstraction inversion. These problems are addressed as a significant motivation for

the design and development of a new programming language.

2.1 The insufficient support for dynamic modification of

a computer music program

2.1.1 Rapid-prototyping

Generally speaking, the programming concepts and paradigms that a programming

language built upon have significant influences on how much the programming language

can support rapid-prototyping of an application.

For instance, in (222), Ousterhout categorizes programming languages into two

categories, system programming languages and scripting languages1, and discusses the

benefit of scripting languages for rapid application development in the detail.

Ousterhout also discusses how dynamically-typed scripting languages are beneficial

for rapid application development, because “implementation inheritance causes the

same intertwining and brittleness that have been observed when goto statements are

overused” and “as a result, OO systems often suffer from complexity and lack of reuse”

(222).

1In (222), Ousterhout lists Pascal, C, C++, Java and the like as the examples of system program-
ming languages, which are frequently used to develop software such as operating systems and database.
On the other hand, the examples of scripting languages listed include Perl, Python, Unix shells and
such, which are considered beneficial to ‘glue’ the existing software libraries together.

13

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

The issue of rapid-prototyping is a topic of significant interest in computer music lan-

guage design today. Wang describes the rapid-prototyping nature of computer music

programming as follows.

“Audio programming, in both computational acoustics research and in music com-

position and performance, is necessarily an experimental and empirical process; it

requires rapid experimentation, verification/rejection/workshoping of ideas and ap-

proaches, and takes the forms of both short-term and sustained prototyping” (312, p.3).

In other words, computer music programming is highly exploratory in its nature

and better support for rapid-prototyping is necessary for the facilitation of creative

exploration in computer music; many papers on the IRCAM Music Workstation clearly

state such support for rapid-prototyping as one of the design goals in the development

of their computer music languages and systems (93)(95)(96)(186). Many recent works

still discuss this issue of rapid-prototyping as their motivations as seen in STK (82),

Marsyas(298), and CLAM (12).

2.1.2 Live-coding

The emergence and popularization of live-coding practices are also casting significant

questions in computer music language design today. Figure 2.1 shows a picture of a

live-coding performance by Wrongheaded (Matthew Yee-King and Click Nilson). As

live-coding performances normally involve coding/modification activity on-the-fly on

stage, the support for dynamic modification of a computer music program at runtime

is an important feature to consider in language design.

Recent research on computer music programming language design often discusses

the necessity for computer music programming languages with features to support live-

coding activity. For instance, Wang puts a significant focus on live-coding in the design

of his computer music language, ChucK, and describes one of the central ideas as “a

programming paradigm and run-time environment that allow on-the-fly programming,

enabling dynamically modifiable programs for performance and experimentation” (312,

p.39).

Sorensen and Brown, the main contributors of Impromptu computer music lan-

guage, emphasize that they designed Impromptu programming language “to provide

14

2.1 The insufficient support for dynamic modification of a computer music
program

Figure 2.1: A picture of live-coding performance - by Wrongheaded (Matthew Yee-King
and Click Nilson). Photo by Dave Griffiths used under Creative Commons BY-SA 2.0.

15

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

a dynamic, real-time, multi-user platform capable of supporting the creation, modi-

fication, distribution and evaluation of source code in live performance” and “highly

dynamic, real-time environment is ideal for crafting media art works” (61).

Such demand for dynamism is considered of importance, not just at the level of

compositional algorithms, but also at the level of sound synthesis. One good example

is the concept of dynamic patching proposed by Kaltenbrunner and his colleagues in

a series of papers on ReacTable (Figure 2.2) (159)(160)(163). In dynamic patching,

the objects for sound synthesis and signal processing are automatically reconnected,

according to a set of rules, such as proximity between objects at runtime during a live

performance (162).

Figure 2.2: A photo of ReacTable - by Daniel Williams. (This file is licensed under the
Creative Commons Attribution-Share Alike 2.0 Generic license.)

The dynamic modification at the sound synthesis level can also be seen in the con-

text of live-coding. For instance, Pd∼graz, a group that consists of IOhannes m zmölnig

and his colleague musicians, perform live-coding pieces in PureData, which involves the

dynamic modification at the sound synthesis level1. Rohrhuber and his colleagues devel-

1One of the known performances by Pd∼graz is the piece ‘Blind Date’ at International Computer

16

2.1 The insufficient support for dynamic modification of a computer music
program

01: p = ProxySpace.push;

02: ∼x = { SinOsc.kr(4) };
03: ∼y = { SinOsc.kr(13) };
04: ∼z = { SinOsc.ar(∼x * ∼y % 0.4 * 500 + 600) * 0.2 };
05: ∼z.play;
06:

07://now ∼x and ∼y can be replaced

08: ∼x = { SinOsc.kr(0.4) };
09: ∼y = { SinOsc.kr(1.3) };
10:

11: p.clear(2).pop; //release environment (2 sec fadeout)

Figure 2.3: A Just-in-Time programming example in SuperCollider (320, p.209).

oped the just-in-time programming library to extend SuperCollider with the capability

of dynamic modification of sound synthesis graphs1(22)(247)(320, chapter 7). Figure

2.3 shows an example code of the just-in-time programming library described in (320,

p.209).

2.1.3 The problems in the existing computer music programming lan-

guages

As today’s computer music practices can involve dynamic modification of a computer

music program to a significant degree, some recent computer music languages clearly

state the intentions to support such dynamism, as seen in SuperCollider, Impromptu

and Chuck. Yet, while both SuperCollider and Impromptu are highly dynamic at

the compositional algorithm level, these languages seem to lack a terse and consistent

programming model for dynamic modification at the sound synthesis level.

For example, SuperCollider depends on the just-in-Time programming library for

the dynamic modification of a sound synthesis graph, yet it requires the use of proxy

objects as seen in Figure 2.3. As Impromptu entirely depends on Apple’s Audio Unit

framework for sound synthesis, it is not very expressive at the sound synthesis level in

comparison with the unit-generator languages; In Impromptu, the dynamic modifica-

tion at the sound synthesis level is limited only within what the Audio-Unit framework

Music Conference, Queens University Belfast, UK, 2008.
1Just-in-time programming library can be also used for the dynamic modification of tasks, as

described in (22, p.119) and (320, p.217)

17

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

allows.1.

On the other hand, in ChucK, the dynamic modification of unit-generators can be

performed relatively easily by using ChucK operator (=>) and UnChucK operator (=<

and !=>). However, as ChucK is designed as a statically-typed class-based language

without first-class functions, replacing a unit-generator with another unit-generator

with of a different type may cause various typing-related problems2. Strong-typing

may also cause similar problems at the compositional algorithm level.

Visual programming languages (e.g., Max/MSP and PureData) allow dynamic mod-

ification of a synthesis graph to a considerable degree. The connections between sound

synthesis and signal processing objects can be freely disconnected and reconnected.

The creation of a new object is also easy. Yet, under a visual programming environ-

ment, the modification of compositional algorithms and synthesis graphs can take more

time compared to textual programming languages, as programming activity can require

more user actions with the mouse and the keyboard.

Furthermore, visual programming languages are highly interactive and normally

respond to any modification immediately as it is made; while this feature of direct ma-

nipulation3 may be desirable in many cases, it may lead to unwanted musical output

in a live-coding performance when the intention is not to intermediately reflect any

modification to the sound output until finished with all the intended modifications.

1Extempore (277), a successor internal DSL of Impromptu built on Scheme, is currently under
development by Sorensen and Swift so that it provides more expressiveness at the sound synthesis
level. In Extempore, a user can define a callback function for DSP and the instruments with sound
effects can be defined; yet the former may be too low level as an end-user programming language and
the latter may have some limitations in its application domain; In the latter model, a note-level object
can be defined as a function. An instrument level object plays such note-level objects with sound
effects. While this model may be beneficial for some application domains, it may not be appropriate
for other domains, such as dynamic-patching, in which it is required to modify a sound synthesis graph
dynamically.

2For instance, suppose that one wants to replace a SinOSC object (sine wave oscillator) with a
SawOsc object (sawtooth wave oscillator). As these two belong to different classes, one cannot simply
assign a new instance of a SawOsc to a variable that is typed as SinOSC. While these two classes share
the parent class UGen, using this parent class may cause another problem when one wants to access
a field or a method specific to an inherited class; typecasting to the child class must be involved, yet
such down-casting is unsafe.

3Cook summarizes Shneiderman’s three principles of direct manipulation systems (266) in (81)
as follows: (1) continuous representation of the objects of interest, (2) physical actions or presses of
labelled buttons instead of complex syntax, (3) rapid incremental reversible operations whose effect on
the object of interest is immediately visible.

18

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

Thus, while recent creative practices can involve dynamic modification of a com-

puter music system to a considerable degree at both levels of compositional algorithms

and sound synthesis, the existing computer music programming languages exhibit a

certain degree of drawback, at least at either the compositional algorithm level or the

sound synthesis level.

2.2 The insufficient support for precise timing behaviour

and other features with respect to time

This section discusses the insufficient support for precise timing behaviour and other

desirable features with respect to time in computer music languages. While many non

real-time, non interactive computer music languages traditionally have provided precise

timing behaviour in logical time, computer music systems today require capabilities of

both real-time sound synthesis and interactivity. Furthermore, timing behaviour with

sample-rate accuracy is becoming a significant criterion in computer music practices

especially for microsound synthesis. In this section, we discuss this issue related to

‘time’ in computer music systems and languages.

2.2.1 Precise timing behaviour in non real-time computer music lan-

guages and systems

Non real-time/non-interactive computer music languages and systems can easily achieve

precise timing behaviour. While there exists the distinction between audio-rate and

control-rate (53, p.468), this was a problem due to the implementation of a sound syn-

thesis framework that involves audio-vectors (53, p.467) in audio computation, musical

events can be processed with sample-rate accurate timing precision just by setting the

control-rate to the same rate as the audio-rate.

2.2.2 Precise timing behaviour in the era of the hybrid computer

music systems

As live computer music began attracting interest among computer musicians, the issue

of precise timing behaviour in real-time arose. Unlike non real-time/non-interactive

computer music systems, interactive computer music systems must interact with mu-

sical events, compositional algorithms, and the user inputs, while also outputting the

19

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

generated musical events in real-time; thus, timing behaviour with better precision in

real-time became an issue of significance for computer music programming languages

and systems in this era.

The work related to FORMULA (Forth Music Language) (16) is of particular inter-

ests in this sense, as it addresses the challenges in timing precision in early interactive

music research. In addition, FORMULA implemented several features with respect to

time, such as nested timing constraints and background tasks, which seem to be lacking

in many recent computer music languages; thus, FORMULA would be an interesting

design exemplar to revisit even today.

Figure 2.4: The components of a computer music performance system - as described by
Anderson and Kuivila in ‘A System for Computer Music Performance’ (16).

As shown in Figure 2.4, the typical computer music performance system of this era

consisted of a computer and an external synthesizer peripherals. Stand-alone real-time

sound synthesis solely on a computer was still not possible. FORMULA adopted the

concept of discrete event simulation (30)(180) to a computer music system of this kind

and processed musical events in logical time rather than in real-time. Robinson ex-

plains the concept of discrete event simulations as follows:

“In discrete-event simulation, only the points in time at which the state of the

system changes are represented. In other words the system is modelled as a series of

events, that is, instants in time when a state-change occurs. Examples of events are

20

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

Time Event

3 Customer arrives

Operator 1 starts service

6 Customer arrives

Operator 2 starts service

8 Operator 1 completes service

9 Customer arrives

Operator 1 starts service

11 Operator 2 completes service

12 Customer arrives

Operator 2 starts service

14 Operator 1 completes service

15 Customer arrives

Operator 1 starts service

17 Operator 2 completes service

18 Customer arrives

Operator 2 starts service

20 Operator 1 completes service

21 Customer arrives

Operator 1 starts service

23 Operator 2 completes service

24 Customer arrives

Operator 2 starts service

Table 2.1: Discrete-Event Simulation Approach: Simple Telephone Call Centre Simula-
tion (taken from (245, p.16)).

customer arrives, a customer starts receiving service and a machine is repaired. Each

of these occurs at an instant in time.” and “this obviously requires a time-slicing sim-

ulation to be carried out first” (245, p.15).

Table 2.1 shows an example of discrete event simulation of a simple telephone call

centre simulation by Robinson(245, p.16). In this example, a customer arrives every

three minutes and each operator (operator 1 & 2) requires five minutes to complete the

services. In this simulation, each time-slice corresponds to one minute. As shown, “the

system is modelled as a series of events” (245, p.15) in logical time and some events

are treated as if they actually occurred precisely at the same moment. For instance, at

minute three, a customer arrives and operator 1 starts service right at the same instant

in logical time. Obviously, in real-time, these events would have some lag in the real

world, as a customer must arrive first to be served by operator 1 and these events rarely

happen exactly at minute three. Yet, discrete event simulation simplifies real-world by

21

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

a time-slicing simulation.

FORMULA applies this concept of discrete event simulation to computer music

systems, and its system executes tasks in logical time, which is time-sliced as above.

As tasks and events are scheduled in logical time, it is not affected by the passage of

time in real time. These tasks and events can be scheduled and executed with precise

timing in logical time. Thus, musical events can be handled with precise timing in

logical time, which is time-sliced by a certain time-unit.

However, as a real-time computer music system, it is still necessary to manage

the coordination between the system’s internal logical time with real time. In the

implementation of FORMULA, logical time is advanced ahead of real time to achieve

better timing precision and FORMULA’s operating system buffers the generated output

events, which are associated with its own output timing in logical time. When real time

actually catches up with the given timing, the buffered events are sent to the external

hardware at once. By such a mechanism, even when two different events are generated

with different timings in real time, if the timing of the output in logical time of these

two are the same, FORMULA can minimize the difference in the output timing of these

two events in real time when these events are sent to the external hardware, since these

output events are buffered within the system and sent out together when real time

catches up with the time stamp.

Instead, even when the events from the input devices are processed right after the

system receives it, there can be some delay in response. For instance, if a system is set

up to advance the logical time 100 ms before real time at maximum, even if the system

generates a reaction to some input event immediately after it is received, the output

can be delayed 100 ms at maximum in real time to be output to the external hardware

as it is buffered until real time catches up its time stamp. Hence, the difference between

logical time and real time should be minimized as much as possible to achieve faster

interaction to the users, while such strategy contributes to the synchronization the

output events from a system to its external synthesizer.

A similar approach to achieve better timing precision by the utilization of internal

logical time can be often seen in different computer music languages and systems in

the same era, (e.g., HMSL (226), Moxie (76) and the CMU MIDI Toolkit (88)).

22

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

As described by Anderson and Kuivila, the requirements for timing precision in

FORMULA’s operating system (and other research in the same era listed above) were

significantly lower than what is required today. For instance, in FORMULA’s operating

system, input frequency for continuous gestures was considered “at a low rate (less than

200 samples per second)”, and the output rate for I/O devices was considered “usually

low (less than 100 commands per second)” (16). While they also mention that the

output rate may be higher for continuous note parameters such as timbre, what they

refer to is the MIDI interface standard (23), the bandwidth of which is just 31.25K

bits-per-second (= 4000 Bytes per second)1.

The low communication rate of MIDI was also a significant problem, even when

a computer music system was designed to schedule the output events with as precise

timing as possible. A MIDI note-on event consists of three bytes; even if the system

scheduled 13 notes simultaneously, there can be a gap of about 9.75 ms between the

first output note and the last output note (13 notes * 3 bytes = 49 bytes and 49 bytes

/ 4000 bytes per second = 0.00975 Sec). To fill such a gap due to the bandwidth,

additional care had to be taken, (e.g., buffering the events also on the side of a MIDI

synthesizer).

2.2.3 Precise timing behaviour in the era of stand-alone real-time

computer music systems

2.2.3.1 The necessity for precise timing behaviour with sample-rate accu-

racy

After stand-alone real-time sound synthesis was realized on personal computers, the

issue of precise timing behaviour arouse again, but in a different context. For in-

stance, while Nyquist (89) was developed as a non real-time sound synthesis language2,

its design, which seamlessly integrates compositional algorithms and sound synthesis,

brought a problem of synchronization between compositional algorithms and sound

synthesis with sample-rate accuracy. Such a sample-rate accuracy in timing behaviour

is also considered important for realizing musical compositions in the microsound time

1This bandwidth is the MIDI 1.0 specification, which was widely used around that time.
2The later version of Nyquist can render the output sound in real time, yet it is still not a real-time,

interactive computer music programming languages in the sense that SuperCollider or Max/MSP is;
the problem domain that Nyquist focuses on differs from the development of interactive computer music
applications.

23

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

scale, for instance, ones by Xenakis (325), Wishart (322), and Roads (242).

As seen in computer music languages with the score-orchestra model (e.g. Csound),

the synchronization with sample-rate accuracy between compositional algorithms and

sound synthesis can be easily achieved for non real-time/non-interactive usage.

However, in a real-time interactive computer music system, such synchronization

can be a more complicated issue. Unlike non real-time/non-interactive applications,

computer music systems and languages must support interactive compositional algo-

rithms, performing various tasks simultaneously. Musical events are not deterministic

in an interactive music and a program must react to the data and events coming from

the input devices. Furthermore, tasks may be activated or deactivated dynamically at

runtime. Such non-deterministic nature of real-time computer music interactions com-

plicates the issue of timing precision excessively, especially since the output samples

must be computed in real time on the computer system while performing interactions;

thus, how to coordinate interaction and real-time sound synthesis became a significant

issue to consider in software design. The following sections discuss this issue in more

details.

2.2.3.2 Timing behaviour in sound synthesis libraries and frameworks

Some real-time sound synthesis libraries run a separate thread for interactive composi-

tional algorithms so that sound synthesis can be performed in a thread with a higher

priority than other threads. JSyn for Java (65) and Csound API for Python (176)

belong to this kind.

However, the sample-rate accurate synchronization between two separate threads

can be very difficult under the preemptive multitasking environment, since many general-

purpose programming languages (in the above case, Java and Python) and the operating

systems abstract the concept of time away, as discussed by Lee in (178). The threads

for user tasks and the high-priority thread for sound synthesis can hardly synchronize

and coordinate their behaviours with sample-rate accuracy under this kind of sound

synthesis framework/library design.

24

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

On the other hand, some class libraries provide a means to control the progress of

logical time with sample-rate accuracy, explicitly within the audio computation thread.

Synthesis Toolkit (82) (STK) would be a good example to illustrate such library design.

In Synthesis Toolkit, the method, ‘tick()’ can be used to compute a single sample, and

logical time can be considered to be advanced for one sample every time the ‘tick()’

method is called. Figure 2.5 describes an example of the real-time sound output of a

single sine wave in STK.

Such software design is beneficial to achieve sample-rate accuracy in timing be-

haviour, since the ‘tick()’ method call controls the advance of logical time in sound

synthesis. However, while precise timing control can be achieved, this programming

model makes it difficult to integrate compositional algorithms. In Figure 2.5, the com-

positional algorithms must be executed before line 43 where ‘tick()’ is called to compute

the next output sample. A program can involve a certain degree of complexity in some

cases, especially when a task must be interleaved and fragmented by ‘sleep’.

To illustrate, a case involving two tasks follows. Task A first performs action A

followed by sleep for 0.25 seconds and then performs action B followed by another sleep

for 1 second before performing action C. Task B first performs action E followed by

sleep for 0.75 seconds and then performs action F. As these two tasks can be expressed

with one thread of execution for each, the pseudo code example can be written as shown

in Figure 2.6.

However, when these two tasks collaborate, they must be described in one line of

execution, and the tasks must be merged into one as in Figure 2.7. Clearly, this is cum-

bersome. To avoid such complexity in a program, the task scheduler is often integrated

to invoke scheduled tasks (if any) before computing the next sample. The Figure 2.8

example shows a pseudo code with such a task scheduler. When taskA() and taskB()

are called, it registers the actions to the scheduler, instead of performing the actions

immediately. In the main loop, the scheduler function is first called to process the

scheduled tasks and then computes the output samples.

Generally speaking, it is not ideal if the code must be separated into fragments

every time sleep in logical time is required, as this can complicate a program even

when the task to be performed is conceptually simple. Consider a simple program with

25

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

01: // rtsine.cpp STK tutorial program

02:

03: #include "SineWave.h"

04: #include "RtWvOut.h"

05: #include <cstdlib>"

06:

07: using namespace stk;

08:

09: int main()

10: {
11: // Set the global sample rate before creating class instances.

12: Stk::setSampleRate(44100.0);

13: Stk::showWarnings(true);

14:

15: int nFrames = 10000;

16: SineWave sine;

17: RtWvOut *dac = 0;

18:

19: try {
20: // Define and open the default realtime output device for one-channel playback

21: dac = new RtWvOut(1);

22: }
23: catch(StkError &) {
24: exit (1);

25: }
26:

27: sine.setFrequency(441.0);

28:

29: // Option 1: Use StkFrames

30: /*

31: StkFrames frames (nFrames, 1);

32: try {
33: dac− >tick(sine.tick(frames));

34: }
35: catch (StkError &) {
36: goto cleanup;

37: }
38: */

39:

Figure 2.5: An example of real-time sound synthesis in STK (rtsine.cpp from STK tutorial
program).

26

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

40: // Option 2: Single-sample computations

41: for (int i=0; i<nFrames; i++) {
42: try {
43: dac− >tick(sin.tick()));

44: }
45: catch (StkError &) {
46: goto cleanup;

47: }
48: }
49:

50: cleanup:

51: delete dac;

52:

53: return 0;

54: }

Figure 2.5: An example of real-time sound synthesis in STK (rtsine.cpp from STK tutorial
program) (continued).

01: void taskA()

02: {
03: actionA();

04: sleep(0.25);

05:

06: actionB();

07: sleep(1);

08:

09: actionC();

10:

11: return;

12: }
13:

14: void taskB()

15: {
16: actionE();

17: sleep(0.75);

18:

19: actionF();

20:

21: return;

22: }

Figure 2.6: Two different tasks to be performed concurrently.

27

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

01: void advance logical time(float duration)

02: {
03: int samples = (int)(duration * SAMPLE RATE);

04: for (int i = 0; i < samples; i++){
05: //tick

06: tick();

07: }
08: }
09:

10: void taskC()

11: {
12: actionA();

13: actionE();

14: //call tick() to advance logical time for 0.25 second

15: tick(0.25);

16:

17: actionB();

18: //call tick() to advance logical time for 0.5 second

19: tick(0.5);

20:

21: actionF();

22: //call tick() to advance logical time for 0.5 second

23: tick(0.5);

24:

25: actionC();

26: return;

27:}

Figure 2.7: An example that combines two tasks (task A and task B).

28

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

01: void taskA()

02: {
03: schedule(actionA, 0.0);

04: schedule(actionB, 0.25);

05: schedule(actionC, 1.25);

06: }
07:

08: void taskB()

09: {
10: schedule(actionE, 0.0);

11: schedule(actionF, 0.75);

12: }
13:

14: void scheduler main loop()

15: {
16: while(true){
17: //process the scheduled tasks

18: process scheduled task();

19:

20: //tick the logical time, perform DSP

21: tick();

22: }
23: return;

24: }

Figure 2.8: An example with a scheduler function.

01: void taskD(){
02: while(true){
03: actionA();

04: sleep(0.25):

05:

06: actionB();

07: sleep(0.25):

08:

09: actionC();

10: sleep(0.5):

11: }
12: }

Figure 2.9: An example of the infite loop with the 1.0 second sleep inside.

29

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

01: void taskD()

02: {
03: schedule(actionA, 0.0);

04: schedule(actionB, 0.25);

05: schedule(actionC, 0.5);

06: //rescheduling this function 1.0 second after.

07: schedule(taskD, 1.0);

08: }

Figure 2.10: A temporal recursion example.

an infinite loop as in Figure 2.9. Such a code may require modification to involve a

programming pattern called temporal recursion1 as in Figure 2.10.

While these two examples above seem similar, there is a substantial difference in

their behaviours between the infinite loop example (Figure 2.9) and the temporal recur-

sion example (Figure 2.10) when considering the execution in a real-time, interactive

programming environment such as live coding. For instance, while the infinite loop

example may be processed in its own thread, the termination of the thread can simply

stop the actions inside the loop at any time. It is possible to stop the thread right after

actionB() is executed as there is an interval of 0.25 seconds before actionC() . When

the thread is terminated there, actionC() will not be executed.

Yet, in the example of the temporal recursion, as the tasks are scheduled at once,

including the rescheduling of taskD, the function taskD is executed without any sleep

unlike the infinite loop example. Then, to terminate the task right before the scheduling

of actionC by user interaction can be difficult. While the user has to stop the execution

of taskD right after actionB is scheduled on line 04, there is no interval; thus, Figure 2.9

1While earlier papers that describe similar programming patterns can be found such as MOXI, a
language for computer music performance by Collinge (76) and CMU MIDI toolkit by Dannenberg (88),
both didn’t use the term, temporal recursion, and this term likely may be first invented by Sorensen and
his colleagues to explain the programming pattern that they often utilize in Impromptu programming
language (274)(276). However, it may be arguable if the term temporal recursion itself is appropriate
for the programming pattern; the programming model of temporal recursion as Sorensen describes it
differs from a normal recursive call in that it is a function that reschedules another call to itself. It does
not call the function directly as seen in a normal recursive call. Sorensen’s temporal recursion may
be more similar to continuation-passing style (17), in that the function passes where the computation
should continue as an argument for another function. While recursion can be easily converted into
continuation-passing style (CPS), since temporal recursion in Impromptu as Sorensen describes, just
schedules the function itself to Impromptu’s scheduler so that it can be invoked some time in the future.
Yet, we do not discuss this issue of the definition of the term temporal recursion further, as it is outside
of the scope of the interests in this thesis.

30

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

and Figure 2.10 are not completely equivalent and timing behaviours at runtime sig-

nificantly differ between these two examples, when considering user interaction. Extra

care is needed in cases where this difference matters.

2.2.3.3 The use of coroutines in a sound synthesis framework

Coroutines can be beneficial for tersely describing a program that must concurrently

process multiple tasks, without involving code fragmentation as seen in the examples

in the previous section. The concept of coroutines is fairly mature in the history of

programming languages and the term ‘coroutine’ itself was originated in the paper by

Conway (80) written in 1963. Lerusalimschy briefly describes the concept as shown be-

low, and Figure 2.11 describes a simple example of coroutine in the Lua programming

language (150, p.73).

“A coroutine is similar to a thread (in the sense of multi-threading): a line of exe-

cution, with its own stack, its own local variables, and its own instruction pointer”, yet

“the main difference between threads and coroutines is that, conceptually (or literally,

in a multiprocessor machine), a program with threads runs several threads concurrently.

Coroutines, on the other hand, are collaborative: A program with coroutines is, at any

given time, running only one of its coroutines and this running coroutine only suspends

its execution when it explicitly requests to be suspended.” (150).

Some software sound synthesis frameworks make the best use of the collaborative

nature of coroutines for achieving precise timing behaviour with sample-rate accuracy

in real-time sound synthesis. LuaAV by Wakefield and his colleagues (306)(308)(307)

is a good example of this kind. The code in Figure 2.12 illustrates a simple example

in LuaAV (307). In this example, the function call wait(1) actually suspends the

execution and asks the underlying scheduler to resume this coroutine after 1 second.

The underlying audio synthesis engine within the same framework can compute output

samples until the timing (in logical time) when any coroutine is scheduled. When

the logical time reaches the timing, the framework resumes the scheduled coroutine(s).

Thus, the collaborative nature of coroutines is beneficial to achieve sample-rate accuracy

in timing behaviour while avoiding the code fragmentations or the utilization of a

particular programming pattern such as temporal recursion.

31

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

01: co = coroutine.create(function ()

02: for i=1,10 do

03: print("co", i)

04: coroutine.yield()

05: end

06: end)

coroutine.resume(co) --> co 1

coroutine.resume(co) --> co 2

coroutine.resume(co) --> co 3

...

coroutine.resume(co) --> co 10

coroutine.resume(co) -- prints nothing

Figure 2.11: A coroutine example in LuaA (150, p.73).

01: -- define a function to print a message

02: -- repeatedly, every 1 second

03: function printer(message)

04: while true do

05: print(message)

06: wait(1)-- wait 1 second

07: end

08: end

09: -- start ticking:

10: go(printer, "tick")

11: -- start tocking after 0.5 seconds

12: go(0.5, printer, "tock")

Figure 2.12: A LuaAV example (307).

32

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

01: do Wait for a hit on a READY button

02: do within a time limit of 10 SECOND;

03: every STOP do emit RING BELL end in case of timeout, emit an ALARM;

04: upto READY while waiting, any hit on the STOP

05: watching 10 SECOND button should ring a BELL.

06: timeout emit ALARM end

Figure 2.13: An Esterel example and its specification (37).

2.2.4 Strongly-timed programming

2.2.4.1 Synchronous programming

While the use of coroutines in a sound synthesis framework can be used to achieve

timing behaviour with sample-rate accuracy as seen in LuaAV, Wang considered such

a problem in the context of synchronous programming in the design of his ChucK

audio programming language (312). Synchronous programming languages (e.g. Esterel

(37)(38), Argos (198), Lustre (71) and SIGNAL (177)) are different with respect to

time from real-time programming languages; while real-time programming languages

(e.g., real-time Java (50) and Ada95 (67)) deal with the timing constraints given by

the passage of physical time, synchronous programming languages replace the notion

of the passage of physical time with the concept of logical-instant.

Synchronous programming languages are based on the ideal synchronous hypothesis

(37), which states “ideal systems produce their outputs synchronously with their in-

puts” and “all computation and communications are assumed to take zero time (that is,

all temporal scopes are executed instantaneously)” (66, p.360). Clearly, this assumption

of ‘an infinitely fast machine’ is impossible to realize. Instead, “during implementation,

the ideal synchronous hypothesis is interpreted to imply the system must execute fast

enough for the effects of the synchronous hypothesis to hold” (66, p.360).

Many synchronous programming languages are designed to develop reactive sys-

tems. Reactive systems are “computer systems that continuously react to their envi-

ronment at a speed determined by this environment”, whereas transformational systems

are computer systems “whose inputs are available at the beginning of the execution and

which deliver their outputs when terminating” and interactive systems “continuously

interact with their environment, but at their own rate” (135). Figure 2.13 describes an

example in Esterel and its specifications. As shown, an Esterel program is described

as reactions to the external logical events.

33

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

2.2.4.2 ChucK, a strongly-timed programming language

In the design of ChucK, Wang proposed the concept of strongly-timed programming

as a variation of synchronous programming, which integrates the explicit advance of

logical synchronous time into an imperative programming language. A simple ChucK

program in Figure 2.14 illustrates the concept of strongly-timed programming.

On line 02, a simple synthesis patch is created by assigning a sine wave oscillator

to the variable foo and connecting its output to dac (digital-to-analog converter) for

sound output. In the infinite loop between line 05 and line 11, a random floating point

value between 30 and 1000 is generated and set to the freq field of the foo, to change the

frequency of the sine wave oscillator. As the strongly-timed programming concept is

likewise founded on the ideal synchronous hypothesis, no advance in logical synchronous

time is made so far (until line 9) , since (all computation and communications are

assumed to take zero time (66, p.360)).

The core concept of strongly-timed programming is the best illustrated on line 10.

The expression ‘100::ms => now’ suspends the execution of the current thread and then

advances ChucK’s internal logical time for 100 ms1 before the thread is resumed. While

the thread is sleeping, the underlying sound synthesis framework computes the output

audio samples from the unit-generator graph until the time when the next thread must

be awakened. Hence, the frequency of the sine wave oscillator patch in the program is

changed every 100 ms precisely in logical time with sample-rate accuracy. Additionally,

Figure 2.15 shows a simple ChucK program that performs the same task as the LuaAV

example in Figure 2.122.

2.2.4.3 Discrete event simulation in FORMULA, coroutines in LuaAV and

strongly-timed programming in ChucK

Even though there exists some similarity between the concept of discrete event simu-

lation and the concept of synchronous programming, and there even exists a compiler

that translates a synchronous program in Esterel into the equivalent C program that

performs discrete event simulation (107), these two are different concepts; the former

1While 100 ms is equal to 4410 samples in the system with the sample-rate of 44100Hz, in the
case such a value as 1 ms (=44.1 samples) is used, it is truncated to 44 samples in ChucK. This may
accumulate an error in timing.

2However, as ChucK doesn’t have the features to schedule the start of a thread in the future, one
must explicitly advance the logical time as seen on line 10.

34

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

01: // synthesis patch

02: SinOsc foo => dac;

03:

04: // infinite time loop

05: while(true)

06: {
07: // randomly choose a frequency

08: Std.rand2f(30, 1000) => foo.freq;

09: // advance time

10: 100::ms => now;

11: }

Figure 2.14: A ChucK program to generate a sine wave, changing its frequency of oscil-
lation every 100 milliseconds. (312, p.43).

01: fun void printer(string message)

02: {
03: while(true){
04: <<< message >>>;

05: 1::second +=> now;

06: }
07: }
08:

09: spork ∼ printer("tick");

10: 0.5::second +=> now;

11: spork ∼ printer("tock");

12: //so to keep the childe threads alive.

13: while(true) 10::second +=> now;

Figure 2.15: A simple ChucK program, which performs the equivalent task as the Figure
2.12 example in LuaAV.

35

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

(discrete event simulation) is a model of a system for a discrete sequence of events in

time and the latter (synchronous programming) is a programming language concept.

As Wang emphasizes in (312), ChucK’s strongly-timed programming concept is in the

context of synchronous programming. It is designed upon ideal synchronous hypoth-

esis, in which all computation and communications are considered to consume zero

time. Such a concept of ideal synchronous hypothesis does not exist in discrete event

simulation.

The difference in the problem domains between FORMULA and ChucK/LuaAV

should be also emphasized. FORMULA adopts discrete event simulation mainly for

communication with the external synthesizer hardware in precise timing, while the

problem domain of ChucK and LuaAV focus on the accurate computation of output

samples when sample-rate accuracy in timing precision is required; the motivations and

the concepts significantly differ between FORMULA and ChucK/LuaAV, even though

both involve internal logical time in their design.

One may also consider that the strongly-timed programming concept is similar to

the use of coroutines in LuaAV. However, coroutine is a different concept in language

design and has nothing to do with the ideal synchronous hypothesis. While coroutines

can be used to achieve a precise timing behaviour, this is an issue in software design

rather than a programming concept.

Strongly-timed programming is a concept in programming language design and

differs from the concept of discrete event simulation, which is a model of a system,

and differs from coroutines, which is another concept in programming language design.

Strongly-timed programming is a variation of synchronous programming and signifi-

cantly relies on the ideal synchronous hypothesis, which is not taken into account in

discrete event simulation and coroutines.

2.2.4.4 Visual computer music programming languages

While this thesis focuses on the design of a textual computer music language, we briefly

discuss the issue of precise timing behaviour in visual computer music languages in this

section. Generally speaking, many visual computer music languages exhibit a timing

behaviour similar to the synchronous programming concept. In visual languages, the

36

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

tasks for compositional algorithms often run between each DSP computation cycle.

The documentation of PureData (1) clearly explains such behaviour.

“Audio and message processing are interleaved in Pd. Audio processing is sched-

uled every 64 samples at Pd’s sample rate; at 44100 Hz. This gives a period of 1.45

milliseconds. You may turn DSP computation on and off by sending the ‘pd’ object

the messages ‘dsp 1’ and ‘dsp 0’.”

“In the intervals between, delays might time out or external conditions might arise

(incoming MIDI, mouse clicks, or whatnot). These may cause a cascade of depth-first

message passing; each such message cascade is completely run out before the next mes-

sage or DSP tick is computed. Messages are never passed to objects during a DSP

tick; the ticks are atomic and parameter changes sent to different objects in any given

message cascade take effect simultaneously.”

As above, since the system does not allow the computation of the next output sam-

ples until it finishes processing all the messages, any message processing in PureData

conceptually consumes zero time in logical time. While the control-rate still exists in

PureData1, the effort has been made to realize sample-rate accurate event handling as

seen in (194). Furthermore, setting the audio vector size to one sample would suffice

to achieve sample-rate accuracy in such languages, even though this may lead to con-

siderable inefficiency in real-time DSP performance.

Recent versions of Max have several different strategies for handling events (2)(168).

When Scheduler in Audio Interrupt (SIAI) of Max/MSP is turned on, the high priority

events can be processed inside the audio thread. Max uses this strategy normally in

non real-time mode. Yet, MAX normally processes the events in other threads so to

avoid the suspension of DSP by timing-consuming tasks. This event-processing strategy

outside the audio thread also classifies events to high-priority events and low-priority

events. However, speaking generally, processing events in a separate thread (not in the

1As it computes the audio output by the audio vector of 64 samples as described, PureData can
interact with the events only at this rate.

37

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

audio thread), causes a lack of precise timing behaviour and synchronization between

the tasks, as discussed in Section 2.2.3.2.

2.2.5 The problems in the existing computer music programming lan-

guages

As described so far, precise timing behaviour has been traditionally a topic of significant

interest, especially after the emergence of live interactive computer music practices. Un-

like in non real-time/non-interactive computer music environments, which only have to

deal with deterministic events offline, the requirements for real-time interaction com-

plicate this issue, since such systems must interact with incoming events and data

while keeping a certain precision in timing behaviour. In the era when a live com-

puter music system still consisted of a computer and external hardware, the problem

of precise timing behaviour was seen in the context of the interaction with the external

devices. However, after real-time DSP was realized on a stand-alone computer with-

out the aid of external hardware, the focus of this issue shifted onto the achievement

of sample-rate accuracy in the synchronization between compositional algorithms and

real-time sound synthesis. The difference in the problem domains between FORMULA

and ChucK/LuaAV may illustrate such transitions well.

However, while the approaches taken in ChucK and LuaAV successfully achieved

precise timing behaviour with sample-rate accuracy, a problem still exists for truly

interactive computer music applications. The solutions proposed by ChucK and LuaAV

still exhibit a significant problem in the presence of time-consuming tasks. As it is

seen more clearly in ChucK’s strongly-timed programming, it is assumed that a task

can be completed before the beginning of the next DSP cycle. When the advance of

internal logical synchronous time is hindered by a time-consuming task, the underlying

sound synthesis framework can easily fail to provide output sound samples to the sound

devices; thus, temporary suspension in real-time DSP can occur.

Yet, a computer music program can often involve time-consuming tasks. For in-

stance, loading a large sound file from the disk and analysing it for waveset synthesis

can be time-consuming and can easily suspend real-time DSP. In addition, audio com-

putation can never be resumed if an error is made in writing an infinite loop that does

38

2.2 The insufficient support for precise timing behaviour and other
features with respect to time

not contain the advance of logical-time within.

While the design of the scheduler in Max/MSP may provide a certain solution

for this issue, it is still problematic as it causes another problem. As described in

the previous section, processing the tasks in a different thread than the audio thread

makes it almost impossible to realize the precise synchronization between compositional

algorithms and sound synthesis. This is fundamentally the same issue in the sound

synthesis framework design that processes the compositional algorithms in separate

threads from the audio computation thread. The same problem can be also found in

SuperCollider and Impromptu, as both perform compositional algorithms in a different

thread (or a process). While the execution of time-consuming tasks does not suspend

real-time DSP in these languages, the synchronization between sound synthesis and

compositional algorithm is significantly damaged.

Moreover, not just synchronization between compositional algorithms and sound

synthesis, but also synchronization between compositional algorithms is also an issue

to consider if compositional algorithms are also performed by several different threads.

Even in the situation where two different threads output events that should be per-

formed at exactly at the same timing, these two events may not be processed right with

the same timing1.

There still remains a problem in precise timing behaviour, even in the latest com-

puter music languages. While the design of FORMULA suggests the benefits of pro-

cessing time-consuming tasks in the background, since it is for the research on hybrid

computer music systems with external synthesizer, both motivation and requirements

for timing behaviour largely differ from what we currently require; today’s computer

music systems must achieve sample-rate accurate timing behaviour and stand-alone

real-time DSP at the same time.

The integration of background tasks in LuaAV would require significant redesign and

modification, not just in the software framework, but also in the run-time system of the

host programming language, especially because the Lua programming language, upon

which LuaAV is built, intentionally excludes preemptive threading from the language

1Such an issue is actually another benefit of the synchronous language design with coroutines as in
LuaAV or lightweight concurrency as in ChucK.

39

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

specifications and supports multi-tasking only by coroutines. ChucK’s strongly-timed

programming concept is based on the ideal synchronous hypothesis that assumes an

instruction consumes zero time. Hence, its language design does not consider the con-

cept of background tasks, as any task can be conceptually finished without the advance

of logical time, except when the task explicitly advances logical time.

Other desirable features with respect to time are not integrated well into those

languages with sample-rate accurate timing behaviour. Even those features seen in the

era of the hybrid computer music systems seem to disappear in recent computer music

languages. For instance, FORMULA had time-control structures such as maxtime(n)1

and mintime(n)2 for timing constraints.

For another instance, Impromptu is an example of recent computer music languages

that consider such features with respect to time in their language design. In (276),

Sorensen and Gardner discuss desirable features with respect to time in the design of

Impromptu, referring to the paper ‘Motivating time as a first class entity’ by Lee et

al.(179). The list of the features Sorensen and Garder discussed includes: (1) the abil-

ity to express timing constraints, (2) timed communication, (3) enforcement of timing

constraints, (4) tolerance to violations and constraints, (5) maintaining consistency in

distributed real-time systems, and (6) static timing verification; yet, while Impromptu

succeeded in achieving the design goals to some degree, Impromptu has not realized

the sample-rate accurate synchronization between compositional algorithms and sound

synthesis, as Impromptu processes compositional algorithms and sound synthesis in

different threads.

As above, while ChucK and LuaAV have achieved precise timing behaviour with

sample-rate accuracy, they still exhibit the serious problem of suspension of real-time

DSP in the presence of time-consuming tasks. Even though the designers of Impromptu

made efforts to integrate other desirable features with respect to time into the computer

music language, such features are not realized with sample-rate accuracy. It is still an

1“The maxtime (n) structure specifies that the statement is to consume at most n units of virtual
time. When the statement is entered, the upper limit (time-position + n) is recorded” (16).

2“The mintime (n) structure specifies that the statement is to be extended by an ‘invisible’ time
advance, if necessary, so that it consumes at least n units of virtual time. When the statement is
entered, the lower limit (time-position + n) is recorded. If, when the end of the statement is reached,
the time position is less than this limit, a time-advance() is done to reach the limit” (16).

40

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

issue of significant interest to investigate how precise timing behaviour can be accom-

plished while avoiding such temporary suspensions in real-time DSP. It should also be

considered as to how other desirable features with respect to time can be integrated

with precise timing behaviour; the existing computer music programming languages

only partially achieve such design goals.

2.3 The difficulty in microsound synthesis programming

caused by the anti-pattern of abstraction inversion

The popularization of microsound synthesis techniques in creative practices reveals a

problem in existing computer music programming languages. Generally speaking, a

microsound synthesis techniques conceptualize the entire sound as the composition of

many short sound particles (or microsounds), which may overlap onto others (overlap-

add). This concept of microsound synthesis techniques significantly differs from what

the traditional unit-generator concept assumes, as it is modelled after electronic sound

synthesis by standard electronic equipments (e.g., oscillators and filters).

Such a gap in concepts leads to difficulty in programming microsound synthesis

techniques in unit-generator languages1. While it is still possible to encapsulate each

microsound synthesis technique within a dedicated unit-generator, such an approach

can cause a significant obstacle when exploring microsound synthesis techniques, as it

hinders further exploration beyond the ready-made functions and interfaces provided

by unit-generators; such a situation is not ideal support of creative practices.

A user can modify the code of such unit-generators or even write a new unit-

generator from scratch, to go beyond such a restriction. However, in this case, a certain

expertise in programming is required, together with the understanding of the language’s

sound synthesis framework, which hardly can be expected of end-users. Moreover, even

for a user with the best expertise in programming, such a situation is not ideal for rapid-

prototyping and creative exploration, as it can require a considerable amount of time

to develop a new unit-generator.

1Roads categorizes those computer music programming languages built upon the unit-generator
concept as unit-generator languages in (241, p.787).

41

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

Thus, it is desirable to implement microsound synthesis techniques within a com-

puter music language, since the algorithms can be directly modifiable in the computer

music programming language, and the creative exploration can be made easier. How-

ever, this strategy also exhibits another type of problems in computer music program-

ming. As the traditional abstraction of the unit-generator concept does not provide

direct counterpart objects and manipulations to the ones that appear in the concep-

tualization of microsound synthesis techniques, normally each microsound is modelled

as a note-level object in a unit-generator language, and overlap-add of microsounds is

performed by scheduling of such note-level objects.

Moreover, some additional programming patterns or the use of library functions may

need to be involved due to the lack of precise timing behaviour in some computer music

programming languages; as a result, even when implementing a microsound synthesis

technique that is conceptually very simple, the actual code can be more complicated.

The following sections in this chapter describe such difficulty in microsound synthe-

sis programming in the existing computer music programming languages. The problem

is discussed mainly in the context of the software anti-pattern (13) called abstraction

inversion (28).

2.3.1 The unit-generator concept and microsound synthesis techniques

2.3.1.1 The unit-generator concept

The unit-generator concept first appeared in MUSIC-III in 1960. A unit-generator is

“a software module that emits audio or control signals (envelopes) or modifies these

signals” (241, p.787), “which can be interconnected to form synthesis instruments or

patches that generate sound signals” (241, p.89). Figure 2.16 shows the pictorial rep-

resentation of a unit-generator graph. The origin of the unit-generator concept is

considered to be rooted in analogue sound synthesizers. Mathews and his colleagues,

the inventors of the unit-generator concept, clearly state that unit-generators perform

“conceptually similar functions to standard electronic equipment used for electronic

sound synthesis” in the book they wrote in 1969 (204, p.36).

Since its conception, the unit-generator concept has been serving as one of the

most important core abstractions in computer music language design. While there

exists a certain degree of difference in how the unit-generator concept is integrated and

42

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

Figure 2.16: An Instrument with attack, decay, and vibrato - as seen in An Acoustic
Compiler for Music and Psychological Stimuli by Mathews (201).

43

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

implemented1, the concept is still seen even in the latest computer music languages.

Languages such as Csound (52), Max/MSP (327), PureData (227)(232), SuperCollider

(211)(320), and ChucK (312)(314) all depend on the unit-generator concept for digital

sound synthesis.

2.3.1.2 Microsound synthesis techniques

Around the mid-1940s, Dennis Gabor, a British physicist, first proposed the concept

of sound that originated microsound synthesis techniques. While the theory proposed

by Gabor is more strongly associated with time-frequency analysis rather than digital

sound synthesis, the concept that Gabor presented is considered to have had the most

significant influence in the emergence of microsound synthesis techniques as we have

today. In (242, p.57), Roads briefly summarizes the concept as follows.

“In Gabor’s conception, any sound can be decomposed into a family of functions

obtained by time and frequency shift of a single Gaussian particle. Another way of

saying this is that any sound can be decomposed into an appropriate combination of

thousands of elementary grains.”

Generally speaking, microsound synthesis techniques involve short-duration sound

particles that may overlap-add each other to constitute the entire sound output; nor-

mally the duration of such sound particles extends between “the threshold of timbre

perception (several hundred microseconds) up to the duration of short sound objects

(∼ 100 ms)” and they span “the boundary between the audio frequency range (ap-

proximately 20 Hz to 20 kHz) and the infrasonic frequency range (below 20 Hz)” (242,

p.21).

Even though the implementations of microsound synthesis techniques as a computer

program were realized long after Gabor’s original publication2, various new microsound

synthesis techniques have been developed since then. Such synthesis techniques as gran-

1For instance, some computer music languages such as Max/MSP and ChucK extends the unit-
generator concept with methods as in object-oriented programming languages while other languages
such as Csound and SuperCollider simply implement the unit-generator without such extensions.

2One of the earliest known study that involves digital granular synthesis was composed by Roads
in 1974, using Music V language (242, p.302).

44

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

ular synthesis (240), FOF synthesis (246), FOG synthesis (74), and waveset synthesis

(322) all belong to the category of microsound synthesis.

2.3.2 Abstraction inversion in microsound synthesis programming

2.3.2.1 Abstraction inversion

In this subsection, we discuss the difficulty in microsound synthesis programming in

the context of abstraction inversion, one of the major software anti-patterns. The term

software anti-patterns is defined as “a collection of tasks/techniques/actions that have

proven ineffective for developing software” (13) and abstraction inversion “occurs when

a programmer is forced to use a combination of higher-level abstractions to express a

lower-level abstraction” (28).

One of the most well-known examples of abstraction inversion is the mutex1 ex-

ample in the Ada programming language as Baker describes in (28); since the early

versions of Ada did not provide mutex,2, mutual exclusion must be implemented by

using rendezvous, which is “a kind of synchronous communication mechanism between

the client task and the server task” (193). In Ada, a server task accepts only one

particular request at a time and the other client tasks will be blocked until their re-

quests are accepted. By using this mechanism, mutex can be implemented by writing

a server task with the infinite loop that first accepts a ‘Lock’ request and then accepts

an ‘Unlock’ request. Figure 2.17 describes the example by Baker (28).

However, the ‘rendezvous’ mechanism involves mutual exclusion internally to guar-

antee the server task process only one request at a time, blocking the other requests.

Hence, this Ada’s mutex example is considered a typical abstraction inversion in that

the higher-level abstraction (rendezvous) is used to describe a lower-level abstraction

(mutual exclusion).

Bitwise operation in the Lua programming language (151) is another widely-known

example of abstraction inversion. Since the earlier versions of Lua3 had no bitwise

1‘Mutex’ stands for mutual exclusion that ensures that only a single task (or thread) can execute
the critical section of a program.

2However, the language specification of Ada was extended to include mutex from Ada95 (285).
3prior to the Lua 5.2.

45

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

01: task body Mutex is

02: begin

03: loop

04: accept Lock;

05: accept Unlock;

06: end loop;

07: end Mutex;

Figure 2.17: A mutex example with abstraction inversion in Ada (28).

01: function bit and(x, y)

02: local digit = 1

03: local ret = 0

04: local limit = x > y and x or y

05: while digit <= limit do

06: if (x % (digit * 2)) >= digit and (y % (digit * 2)) >= digit then

07: ret = ret + digit

08: end

09: digit = digit * 2

10: end

11: return ret

12: end

Figure 2.18: A bitwise operation (bitwise-and) example in Lua (reproduced from Figure
1.2).

operators (e.g., ‘|’ (bitwise or) and ‘&’ (bitwise and) as seen in the C programming

language), one must implement bitwise operators in Lua as shown in Figure 2.18, or

must use the external module written in the C programming language must be used.

As even simple bitwise operations must be written as the combination of loops and

conditional branches, this Lua example is considered an abstraction inversion problem;

thus, the inappropriate abstraction in programming language design can easily lead to

unnecessary complexity.

2.3.2.2 The microsound synthesis examples in SuperCollider and ChucK

The gap between the unit-generator concept, which originates the sound synthesis by

analogue electronic equipment, and microsound synthesis techniques, which considers

short sound particles to be building blocks of the entire sound, can be clearly seen

in the actual source code for microsound synthesis techniques. As described in the

46

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

following examples, implementation can involve a certain degree of complexity even for

a conceptually simple microsound synthesis technique.

Figure 2.19 shows a pictorial representation of waveset harmonic distortion. A

waveset is defined as “the distance from a zero-crossing to a 3rd zero-crossing” (323,

p.50), as seen in the segments separated by the dotted lines on three waveforms (a)

(b) (c) in Figure 2.19. Generally speaking, Waveset synthesis techniques constitute its

output by transforming and scheduling wavesets in various ways. Table 2.2 describes

the list waveset synthesis techniques that are available in the Composer’s Desktop

Project software by Trever Wishart (322)(323) (taken from (242, p.207)).

Figure 2.19: A pictorial representation of waveset harmonic distortion.

As seen in the table, Waveset harmonic distortion is a simple sound synthesis tech-

nique, which “superimposes N harmonics on the waveset fundamental with a scaling M

relative to the previous harmonic” (242, p.207). As already described previously, when

implementing microsound synthesis algorithms in a unit-generator language, each mi-

crosound is normally modelled as a note-level object. Figure 2.20 is one of the typical

strategies to implement waveset harmonic distortion in SuperCollider computer music

language (320). While we do not explain the detail of the code in this section, this

example code clearly seems more complicated when compared to the simple concept of

waveset harmonic distortion.

47

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

Waveset transposition substitutes N copies of a waveset in the place of

M wavesets, for example 2 in the space of 1, or 1

in the space of 4, for doubling and quartering of

frequency, respectively

Waveset reversal reverses individual wavesets while retaining their

order; reversals can be of each individual waveset

or collections of N wavesets at a time.

Waveset shaking alternates between compressing (in time) and

expanding (in time) successive wavesets

Waveset inversion inverts the phase of all wavesets in a signal; in

Wishart’s diagram half-wavesets are inverted

Waveset omission deletes every Nth waveset, leaving silence in its

place; controlled by initial and final density

from 0 to 100 %

Waveset shuffling permutes collections of wavesets. A simple

shuffle of successive wavesets starting with (a,

b, c, d) becomes (d, c, a, b)

Waveset distortion distorts a signal by squaring and cubing the

signal; the example given in Wishart does not

indicate how it is tied to waveset boundaries

Waveset substitution replaces wavesets by a stipulated waveform of the

same amplitude, frequency, and time span as the

original waveset

Waveset harmonic

distortion

superimposes N harmonics on the waveset

fundamental with a scaling factor M relative to

the previous harmonic

Waveset averaging creates a signal containing N new wavesets that

are the average duration and the average amplitude

and time function of the N original wavesets; the

overall duration of the signal is unchanged

Waveset enveloping applies an envelope to 1 to N wavesets at a time

Waveset transfer substitutes the waveform of the wavesets in signal

A into the time frames of the wavesets in signal B

Waveset interleaving

method 1

substitutes wavesets from signal A into alternate

wavesets of signal B; applied either to individual

wavesets or groups.

Waveset interleaving

method 2

interleaves wavesets from signal A with wavesets

of signal B, thus lengthening the output signal;

applied either to individual wavesets or groups

Waveset

time-stretching

repeats each waveset N times

Waveset time-shrinking retains only the first of every N wavesets or

retains only the loudest of every N wavesets

Waveset normalizing normalizes every N wavesets above a stipulated

amplitude threshold, thus a 10% threshold has a

greater effect than a 90% threshold

Table 2.2: Waveset transformations in the Composer’s Desktop Project software (242,
p.207).

48

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

01: Server.default = s = Server.internal;

02: s.boot;

03: w = Wavesets.from("sound.aif");

04:(

05: b = w.buffer;

06: SynthDef(\wvst0, {
07: arg out = 0, buf =0, start = 0, length = 441,

08: playRate =1, sustain = 1, amp= 1;

09: var phasor = Phasor.ar(rate:playRate, start:0, end:length) + start;

10: var env = EnvGen.ar(Env([amp, amp, 0], [sustain,0]), doneAction:2);

11: var snd = BufRd.ar(1, buf, phasor) * env;

12: OffsetOut.ar(out, snd);

13: }).add;
14:)

15: (

16: var numOfWavesets = w.lengths.size;

17: var original = Pbind(

18: \instrument, \wvst0,

19: \startWs, Pseries(0, 1, numOfWavesets),

20: \numWs, 1,

21: \playRate, 1,

22: \bufnum, b.bufnum,

23: \repeats, 1,

24: \amp, 1,

25: [\start, \length, \sustain], Pfunc({|ev|
26: var start, length, wsDur;

27: #start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);

28: [start, length, wsDur * ev[\repeats] / ev[\playRate].abs]

29: }),
30: \delta, Pkey(\sustain)

31:);

Figure 2.20: A waveset harmonic distortion example in SuperCollider (reproduced from
1.1).

49

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

32: var octup = Pbind(

33: \instrument, \wvst0,

34: \startWs, Pseries(0, 1, numOfWavesets),

35: \numWs, 1,

36: \playRate, 2,

37: \bufnum, b.bufnum,

38: \repeats, 2,

39: \amp, 1,

40: [\start, \length, \sustain], Pfunc({|ev|
41: var start, length, wsDur;

42: #start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);

43: [start, length, wsDur * ev[\repeats] / ev[\playRate].abs]

44: }),
45: \delta, Pkey(\sustain)

46:);

47:

48: Ppar([original, octup]).play(SystemClock);

49:)

Figure 2.20: A waveset harmonic distortion example in SuperCollider (reproduced from
1.1) (continued).

Synchronous granular synthesis is another widely-used microsound synthesis tech-

nique, in which “sounds result from one or more streams of grains”. “Within each

stream, one grain follows another, with a delay period between the grains. Synchronous

means that the grains follow each other at regular intervals” (242, p.93). Figure 2.21

describes a pictorial representation of synchronous granular synthesis. As shown, even

all the grains involved in the synthesis are completely identical to each other, simply

altering the interval between the grains can result in various pitches and waveforms in

synchronous granular synthesis.

While synchronous granular synthesis is conceptually simple, its implementation

in a unit-generator language can also involve a certain degree of complexity, similar

to that seen in the previous waveset synthesis example in SuperCollider. The code in

Figure 2.22 is an example of synchronous granular synthesis in the ChucK program-

ming language. As ChucK does not offer any note-level object in its abstraction, each

microsound is modelled as a thread in this example1.

1In (312) and other publications, Wang uses the word ‘shred’ for a non-preemptive thread in ChucK.
Yet, as this word is a ChucK-specific technical term and not used in any other languages, we simply
use the word ‘thread’ (or ‘non-preemptive thread’) in this thesis.

50

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

While the example in ChucK in Figure 2.22 may seem terser than the waveset

synthesis example in SuperCollider in Figure 2.20, the code still exhibits a certain

degree of complexity when considering the very simple concept of synchronous granular

synthesis. As the current implementation of ChucK does not provide any garbage

collection mechanism, the code can be further complicated to minimize memory leak.

The use of the SndBuf object within each thread is also problematic as it loads the

sound file from the disk when it is played and disk-access occurs every time a grain is

played. Figure 2.23 shows an example of the version with less memory-leak and disk-

access. To minimize the allocation of new objects and disk-access as much as possible,

the program launches only the required number of the threads that keep on looping

during sound synthesis.

Figure 2.21: A pictorial representation of synchronous granular synthesis. - All the grains
are identical; the change of the interval results in the various pitches and waveforms.

Furthermore, the conceptual gap between microsound synthesis techniques and the

unit-generator concept can lead to a further problem in programming. Given library

functions for microsound synthesis may be considered enough and users may not have

to understand the detail of the whole implementation. However, while the use of the

library functions may reduce the complexity at the surface level, the implementation

details may need modified, which may be abstracted away by encapsulation, for further

exploration of a certain microsound synthesis technique.

51

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

01: "sound.aif" => string filename;

02:

03: 22050 => int startPos;

04: 0.1 => float sustain;

05: 40 => int rep;

06: 0.05 => float interval;

07:

08: fun void grain()

09: {
10:

11: SndBuf buf => Envelope env => dac.left;

12: filename => buf.read;

13:

14: startPos => buf.pos;

15: sustain::second / 2 => env.duration;

16:

17: env.keyOn();

18: (sustain * 0.5)::second => now;

19: env.keyOff();

20: (sustain * 0.5)::second => now;

21:

22: return;

23: }
24:

25: for(0 => int i; i < rep; i + 1 => i){
26: spork ∼ grain();

27: interval::second +=> now;

28: }
29:

30: sustain::second +=> now;

Figure 2.22: A synchronous granular synthesis example in ChucK.

52

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

01: "a11wlk01-44_1.aif" => string filename;

02:

03: 22050 => int startPos;

04: 0.1 => float sustain;

05: 40 => int rep;

06: 0.05 => float interval;

07: 0 => int cnt;

08:

09: (sustain / interval) $ int => int numOfThreads;

10: if (sustain / interval > numOfThreads){
11: numOfThreads + 1 => numOfThreads;

12: }
14: fun void grain()

15: {
16: SndBuf buf => Envelope env => dac.left;

17: filename => buf.read;

18:

19: while(cnt < rep){
20: cnt + 1 => cnt;

21:

22: now + numOfThreads * interval::second => time nextGrainStartTime;

23:

24: startPos => buf.pos;

25: sustain::second / 2 => env.duration;

26:

27: env.keyOn();

28: (sustain * 0.5)::second +=> now;

29: env.keyOff();

30: (sustain * 0.5)::second +=> now;

31:

32: nextGrainStartTime =>now;

33: }
34: return;

35: }
36:

37: for(0 => int i; i < numOfThreads; i + 1 => i){
38: spork ∼ grain();

39: interval::second +=> now;

40: }
41: (interval * (rep - numOfThreads) + sustain)::second +=> now;

Figure 2.23: Another synchronous granular synthesis example in ChucK with less
memory-leak.

53

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

For instance, waveset inversion may involve such modification. Waveset inversion

is a waveset synthesis technique that inverts the half-wavecycles (322, p.42) as pictori-

ally represented in Figure 2.24. As an inverted waveset cannot be generated simply by

changing the playback speed as in the case of waveset harmonic distortion, it is neces-

sary to modify a unit-generator graph to invert a waveform and to perform pre-analysis

to obtain the parameters required for the inversion. The difficulty in microsound syn-

thesis can not be solved by providing the library code that encapsulates the details,

since the encapsulated details may need to be accessed for further exploration.

Figure 2.24: A pictorial representation of waveset inversion - the original waveset (left)
and the inverted waveset (right).

2.3.2.3 The microsound synthesis examples in visual programming lan-

guages

While this thesis focuses on the design of the textual programming languages, we

also additionally describe an example of granular synthesis in a visual programming

language. Figure 2.25 (the whole patch) and Figure 2.26 (inside the rgrain2∼— sub-

patch) show a granular synthesis example by Dudas. While the program is written in

Max/MSP, the same programming pattern can be applied to PureData, too.

The programming pattern used in this patch is to cascade the subpatches (rgrain2∼),

each of which plays a single grain. When a subpatch that is already active receives the

request to play a single grain, it forwards the request to the next cascaded subpatch.

The overlap-add of the grains is performed in this manner1.

1However, such delegation mechanism is not necessary when using a poly object provided in the
recent version of Max/MSP, which makes it possible to use a subpatch as if it were a polyphonic
synthesizer.

54

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

Basically speaking, The same problem of abstraction inversion as seen in the textual

computer music language examples can be observed, since a subpatch is considered a

higher-level abstraction than a single microsound. Encapsulation by the subpatch is

not beneficial when experimenting with the different kind of microsounds, as the algo-

rithm encapsulated within the subpatch may need modified (as in the case of waveset

inversion).

Figure 2.25: A granular synthesis patch by Richard Dudas (the whole patch) - the
courtesy of the composer.

2.3.2.4 The lack of objects and manipulations for microsound synthesis in

the sound synthesis software frameworks

Table 2.3 describes the hierarchical classification of the time-scales of music by Roads

(242, p.3). As shown, microsound time-scale is conceptually placed in the lower level

in this hierarchy. While the entire sound produced by a microsound synthesis tech-

nique consists of many microsounds, which may overlap-add each other, in practice,

each microsound is modelled as a note-level object as seen in the previous examples in

unit-generator languages. Hence, the complexity exhibited in the code examples can be

considered as abstraction inversion; while the task to be performed is simply scheduling

of microsounds, users have to implement it as the scheduling of many note-level objects,

55

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

Figure 2.26: A granular synthesis patch by Richard Dudas (the inside rgrain2∼ subpatch)
- the courtesy of the composer.

56

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

Time-scale Description

Infinite The ideal time span of mathematical durations such as the infinite
sine waves of classical Fourier analysis.

Supra A time scale beyond that of an individual composition and ex-
tending into months, years, decades, and centuries.

Macro The time scale of overall musical architecture or form, measured
in minutes or hours, or in extreme cases, days.

Meso Divisions of form. Grouping of sound objects into hierarchies of
phrase structures of various sizes, measured in minutes or seconds.

Sound object A basic unit of musical structure, generalizing the traditional con-
cept of note to include complex and mutating sound events on a
time scale ranging from a fraction of a second to several seconds.

Micro Sound particles on a time scale that extends down to the threshold
of auditory perception (measured in thousandths of a second or
milli-seconds).

Sample The atomic level of digital audio systems: individual binary sam-
ples or numerical amplitude values, one following another at a
fixed time interval. The period between samples in measured in
millionths of a second (microseconds).

Subsample Fluctuations of a time scale too brief to be properly recorded or
perceived, measured in billionths of a second (nanoseconds) or less.

Infinitesimal The ideal time span of mathematical durations such as the in-
finitely brief delta functions.

Table 2.3: Nine time scales of music by Roads (242, p.3).

together with the use of library functions (Pbind/Ppar in the SuperCollider example)

or multi-threading (in the ChucK example).

It would be also helpful to clarify the difference between these examples of mi-

crosound synthesis and the examples of Ada’s rendevous & Lua’s bitwise operations.

In the examples of Ada’s rendevous, mutex is internally used to implement Ada’s ren-

devous mechanism. In Lua’s bitwise operation, every value inside the Lua’s virtual

machine is internally expressed in bits. The problems of abstraction inversion in these

languages occur when these languages abstract the lower-level details away in the lan-

guage design; the problems of abstraction inversion were caused by the inaccessibility of

the lower-level details, and they can be easily solved by making these details accessible

from the language level, as seen in the later versions of these languages.

Yet, the problems in the examples in SuperCollider and ChucK differ slightly, in

57

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

Abstraction-level Description

note/synth/patch These correspond to the sound object time-scale in nine
musical time-scales by Roads. While a “note” in CSound
score file and a “synth” in SuperCollider are clearly close to
‘the traditional concept of note’ as in Figure 2.3, a ‘patch’
in visual computer music languages such as Max/MSP or
PureData may also be considered to include the upper level
time-scales such as meso or macro, since it normally in-
cludes musical control algorithms together within synthesis
algorithms.

unit-generator audio vector In many computer music systems, unit-generators perform
DSP by fixed size vectors of samples called audio vectors
(53, p.467). Normally, audio vectors are not directly visible
to users.

sample Within unit-generators, each sample for signal output is
computed by iterating input audio-vectors, (typically in a
loop). Yet, some recent computer music programming lan-
guages (such as ChucK) perform sample-by-sample compu-
tation without involving audio-vectors.

Table 2.4: The typical abstraction hierarchicy in sound synthesis framework design

that the abstractions of the microsound objects and the related manipulations do not

exist at all in the underlying sound synthesis framework. The problem is not about

the accessibility of the lower-level details, but about the inappropriate abstraction in

the underlying software frameworks. Generally speaking, domain-specific languages

are normally built on a certain software framework or library1. Hence, the design of

a computer music programming language is significantly influenced by the underlying

software framework or library.

Table 2.4 describes the typical sound synthesis software framework design in a unit-

generator language. While some languages do not involve the audio-blocks in sound

synthesis and compute the sound output sample-by-sample, the direct counterpart ob-

jects and manipulations for microsounds are entirely lacking in many frameworks, as

seen in SuperCollider or ChucK; therefore, the problems caused by abstraction inversion

in microsound synthesis programming cannot be resolved by recovering the accessibility

to the internal lower-level abstractions, since such internal entities do not exist in the

1As Fowler describes in (114, p.29), “the most common way to build in abstraction is by imple-
menting a library or framework” and “in this view a DSL is a front-end to a library providing a different
style of manipulation to the command-query API.”

58

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

underlying framework, unlike in the cases of Ada’s mutex and Lua’s bitwise operators1.

However, there can be found several previous works that contain the internal rep-

resentations for microsounds in the underlying software frameworks. In (36), Bencina

discusses the software design for a real-time granular synthesizer, which is suitable for

hosting several different types of granular synthesis techniques, such as Tapped De-

lay Line Granular Synthesis, Stored Sample Granular Synthesis, and Synthetic Grain

Granular Synthesis.

Figure 2.27 describes the structure of the granular synthesizer proposed by Bencina.

As seen in this figure, there is an object for Grain in this software design. Figure 2.28

and Figure 2.29 describe the event sequences when samples are requested and when a

new grain is activated.

Brandt proposed and implemented the concept of temporal type constructors in

Chronic (56), an internal domain-specific language2 for non real-time sound synthesis

built upon OCaml (182). Brandt mainly argues that the problems, such as difficulty

in expressing FOF synthesis in unit-generator languages, are due to the inappropriate

typing and inaccessibility to the lower-level details caused by the unit-generator con-

cept. A brief explanation on type constructors by Brandt himself can be found in (56,

p.7) as follows.

“A type constructor builds complex types from simpler ones. For example, C has

the ‘pointer to...’ type constructor. We can write this as ‘α pointer’, where α is a free

type variable which might be, for example, int. Or α can be a non-atomic type, like

1One may argue that the definition of abstraction inversion should be limited to inexposure of a
lower-level function/object. However, it seems that the majority of academic publications use the term
‘abstraction inversion’ in a much broader sense. Even the publication by Baker (28), which is often
referred to for the definition of abstraction inversion, describes many cases that do not fit within the
narrower definition. In addition, unit-generator languages often provide unit-generators dedicated for
microsound synthesis techniques. Since there may exist some objects that represent microsounds within
such unit-generators, they are not directly accessible. Thus, the situation described in this chapter can
be considered abstraction inversion even in the narrower definition. We additionally discuss such an
issue with more detail in Appendix IV, Section 9.1.

2“An internal DSL is a DSL represented within the syntax of a general-purpose language. It’s a
stylized use of that language for a domain-specific purpose” (114, p.15). “Internal DSLs morph the
host language into a DSL itself - the Lisp tradition is the best example of this” and are “often called
‘embedded DSLs’ ”(115).

59

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

Figure 2.27: Object-oriented granulator structure - as described by Bencina in (36).

Figure 2.28: Event sequence when samples are requested from a granulator - by Bencina
(36).

60

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

Figure 2.29: Event sequence when it is time to activate a new grain - by Bencina (36).

“int pointer”, leading to“int pointer pointer”. In this way a single type constructor

can build a series of types”.

Brandt explains that a temporal type constructor “is one that introduces a relation

to a one-dimensional axis, which we call time” (57) to the concept of type constructor.

Figure 2.5 describes three temporal type constructors proposed by Brandt and Figure

2.30 shows several pictorial representations of temporal type constructors by Brandt

(56), such as multi-channel audio as Sample ivec vec (or an vector of the infinite length

vectors of Samples) on the left, chord progression as Pitch vec event vec (or a vector of

events that consist of the vector of pitches) in the middle, granular sound synthesis as

Sample vec event ivec on the right. Figure 2.31 describes a very simple example of a

score to play sine wave oscillators in Chronic.

Brandt discuses that ‘unit-generators’ are “black-box primitives” in computer mu-

sic language design and that “if a desired operation is not present, and cannot be

represented as a composition of primitives, it cannot be realized within the language”;

thus, the motivation for temporal type constructors in Chronic is in recovering such

accessibility and also in providing more complex “time-structured types needed for the

problems at hand, from ‘audio stream’ to complex score structures” (56, pp.4-5).

Both of the previous research by Bencina and Brandt discuss the software/language

design that takes microsound synthesis into account and both contain the internal

representations for microsounds. However, Bencina’s software design focuses on gran-

61

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

Type Description

α event an event whose timestamp is of type Time
α vec a finite vector, indexed by Time
α ivec an infinite vector, indexed by Time

Table 2.5: Three type constructors in Chronic (56, p.8).

Figure 2.30: A pictorial representation of temporal type constructor examples given by
Brandt - multi-channel audio (left), chord progress (middle), and granular synthesis sound
(right) (56, pp8-12).

ular synthesizer software rather than computer music programming language design

in general; when microsound synthesis techniques are explored in a computer music

language, it is necessary to allow a user program to control the scheduling and the

definition/instantiation of microsounds; as Becina’s software design does not consider

how grains should be created and activated/deactivated by a user program, it still lacks

the generality required for computer music language design.

Brandt himself considers that Chronic still leaves ‘an open problem’ in causality, as

its programming model accepts both forward dependency and backward dependency

(56, p.77). In other words, since a Chronic program allows the future events and val-

ues to influence the past events and values, its programming model may not be easily

applicable for real-time synthesis and interaction, while such acausal behaviour may

simplify non real-time computer music programs.

Thus, even though both works by Bencina and by Brandt consider the internal

representations for microsounds, both of them do not place the programming language

design for live computer music within the scope of interest. Further consideration is

still required to investigate more appropriate abstractions for real-time sound synthesis

and interactive computer music systems. We also briefly describe such an issue as an

62

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

01: (* score example with sine beeps *)

02:

03: open Vec

04: open Event

05: open Evvec

06: open Chroniclib

07: open Util 08:

09: let fs = 44100.

10: let secs to samples s = int (fs *. s)

11:

12: (*** handwritten score of note events *)

13: let makenote time secs db hz dur sec = (* save a little typing *)

14: (db, V.const hz (secs to samples dur secs)) @@ (secs to samples time secs)

15:

16: (* score is (db: float, hz: float vec) event vec *)

17: let score = [|

18: (* time dB Hz dur *)

19: makenote 0. (-.3.) 400. 0.5;

20: makenote 1. (-.10.) 400. 0.5;

21: makenote 1.5 (-.10.) 500. 0.5;

22: makenote 2. (-.10.) 600. 0.5;

23: }
24:

25: (*** define synthesizer of sine beeps *)

26: let sinetab = LV.table of sine 4096

27: (*** synth beep: (float * float vec) -> float vec *)

28: let synth beep (db, hz) = (* dur is implicit in length of hz vector *)

29: let freq = V.scale (1./.fs) hz in

30: let beep = LV.osci v sinetab freq 0.

31: in V.scale (L.db to amp db) beep

32:

33: (*** synthesize, mix and output *)

34: let sound = EV.vmix (V.map (E.lift synth beep) score)

35: let = V.print floats sound

Figure 2.31: A score example with sine beeps in Chronic (56, p.26).

63

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

HCI related topic in Appendix IV: Additional Discussion, Section 9.2.2. However, we

also would like to emphasize such an HCI issue is not a main topic of interest; we focus

on the software engineering aspects (abstraction inversion) in this thesis.

2.3.3 The problems in the existing computer music programming lan-

guages

The previous sections described the problems related to microsound synthesis in com-

puter music programming. While it is possible to encapsulate whole algorithms within

the built-in unit-generators, such an approach is not beneficial when users intend to

explore the microsound synthesis algorithms, as their exploration can be significantly

limited by the constraints given by the interfaces and functionalities of unit-generators.

On the other hand, the implementations of microsound synthesis techniques solely

within existing computer music languages exhibit a considerable degree of complexity

even when the techniques to implement are conceptually simple.

We discussed this difficulty in the context of software anti-pattern of abstraction

inversion, which is caused by the lack of objects and manipulations in the software

sound synthesis framework underlying computer music languages. In many computer

music languages, this leads certain programming patterns to model each microsound as

a note-level object and to perform overlap-add by scheduling such note-level objects. As

the programming patterns involve the combination of higher-level abstractions (note-

level objects and scheduling of note-level objects), because of the inaccessibility and/or

lack of lower-level abstractions (microsounds objects and related manipulations), the

difficulty involved in microsound synthesis programming can be assessed as abstraction

inversion.

While previous research on software design for a granular synthesizer by Bencina

directly involves the objects for grains internally, it focuses on a stand-alone synthesizer

application and does not take the programming language design into account. Bencina’s

Chronic language (36) is appropriate for certain kinds of computer music applications,

yet it still lacks the consideration for how such software design can be integrated into

computer music language design for real-time sound synthesis and interactive applica-

tions; as Brandt himself admits, it has a significant problem in causality and does not

64

2.3 The difficulty in microsound synthesis programming caused by the
anti-pattern of abstraction inversion

provide appropriate abstraction for such a domain(56, p.77).

Thus, there is still a significant necessity to investigate a more appropriate software

sound synthesis framework design, which can reduce the difficulty in microsound syn-

thesis programming, to facilitate creative exploration in the domain of microsounds in

interactive, real-time computer music languages.

In addition, GEN, one of the features in the recent version of Max in which users

can describe sound synthesis/processing algorithms and compile it into a native code

in C++ or a Max/MSP object, may also be considered an example of abstraction

inversion in a visual programming language, as GEN is another programming environ-

ment integrated seamlessly within Max. Since single sample feedback is not possible

by Max as it performs DSP by audio vectors1(53, p.467), “higher-level structure to im-

plement a low-level concept”2(319); a program must be written within GEN, another

programming environment, (high-level structure), to achieve single sample feedback (a

lower-level concept). Some other sound synthesis/processing techniques such as physi-

cal modelling may also require GEN to be implemented within Max.

Such a problem of single sample feedback in Max, which leads to the integration of

GEN within the programming environment, is largely due to the utilization of audio

vectors in real-time DSP. It is also possible to view this problem as an issue of the sound

synthesis framework design. While this may be an interesting topic, which may be ben-

eficial to some readers, we do not discuss it further as this thesis focuses on abstraction

inversion in microsound synthesis programming. However, such an view may be bene-

ficial some readers as a topic for further discussion in sound synthesis framework design.

1Of course, if the size of audio vectors is set to 1 sample, even computer music languages that
compute audio by audio vectors can achieve single sample feedback, yet this can also lead to significant
damage to performance efficiency, which is the reason why audio vectors are utilized.

2This explanation of abstraction inversion is by Waroquiers, which can be found in (319) must be
utilized. Section 9.1 in Appendix IV additionally discusses the definition of abstraction inversion found
in previous works.

65

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

2.4 The problems as design opportunities

In this chapter, three problems in computer music programming language design were

described: (1) the insufficient support for dynamic modification of a computer music

program, (2) the insufficient support for precise timing behaviour and other features

with respect to time, and (3) the difficulty in microsound synthesis programming caused

by the anti-pattern of abstraction inversion.

The insufficient support for dynamic modification of a computer music program

can be a significant obstacle for programming activity such as rapid-prototyping and

live-coding. While computer music programming languages should offer better support

for dynamic modification both at the levels of compositional algorithms and sound

synthesis, existing computer music languages fail to provide a terse and consistent

programming model that can be applied to both levels.

Regarding the insufficient support for precise timing behaviour and other features

with respect of time, many computer music languages still fail to provide sample-rate

accurate timing behaviour, which is of significant importance both at the rhythmic level

and at the acoustic level. While some of the recent computer music languages such as

ChucK and LuaAV provide sample-rate accuracy in timing based on synchronous be-

haviour, these languages still have a significant problem: real-time DSP can be easily

suspended by a time-consuming task. Furthermore, while some recent languages con-

sider other desirable features with respect to time (e.g., timed communications and

timing constraints), there is no computer music language that implements such desir-

able features with sample-rate accurate timing precision, yet; better support for precise

timing behaviour and other features with respect to time is still demanded in computer

music language design.

Programming microsound synthesis techniques can involve a considerable degree of

difficulty even when the microsound synthesis techniques to implement are simple in

their concepts. This problem is an example of the software anti-pattern called abstrac-

tion inversion, which is caused by the lack of objects and manipulations for microsound

synthesis in the underlying sound synthesis framework. While some researchers suggest

that software design with internal representations for microsounds can be beneficial for

this issue, as the designs proposed by related works only focus on the implementation

66

2.4 The problems as design opportunities

of stand-alone synthesizer applications or non real-time sound synthesis, further inves-

tigation is still required for the sound synthesis framework design for computer music

languages, taking interactivity and real-time sound synthesis into consideration.

These problems provide significant motivation for the design and development of

a new computer music programming language; as seen in the history of the evolution

of computer music languages, the problems arisen in creative practices often not only

clarify the limitation of existing computer music languages but also indicate the direc-

tion for further research.

67

2. BACKGROUND AND MOTIVATION: THREE PROBLEMS IN
TODAY’S COMPUTER MUSIC PROGRAMMING LANGUAGE
DESIGN

68

3

Design: LC, a

Mostly-strongly-timed

Prototype-based Computer

Music Programming Language

that Integrates Objects and

Manipulations for Microsound

Synthesis

In this chapter, we describe LC, a new computer music programming language, the de-

sign of which was motivated by the three problems in computer music language design

described in the previous chapter.

Generally speaking, by adopting the concept of prototype-based programming at

both levels of compositional algorithms and sound synthesis, LC supports dynamic

modification of a computer music system to a significant degree, with a terse and

consistent program model.

LC also proposes the concept of mostly-strongly-timed programming in its lan-

guage design, which extends the strongly-timed programming concept by the explicit

69

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

switching between synchronous/non-preemptive context and asynchronous/preemptive

context, so that time-consuming tasks can be preempted without suspending real-time

DSP. Additionally, other desirable features with respect to time, such as timing con-

straints and time-tagged message communication, are integrated together with sample-

rate timing precision.

While LC is still equipped with unit-generators, LC also directly integrates the

objects and manipulations for microsound synthesis in the abstraction of its sound

synthesis framework. Such design makes it possible to provide a simple and terse

programming model for microsound synthesis techniques, without involving abstrac-

tion inversion, which can lead to a considerable complexity in microsound synthesis

programming. The collaboration between this novel abstraction and the traditional

unit-generator concept is also considered in its design so that it can be performed as

seamlessly as possible.

The following sections describe the core features of LC’s language design as listed

above, after a brief description of basic language design such as typing and control

structures.

3.1 The basic language features

3.1.1 The grammar

Figure 3.1 describes the grammar of LC1 in EBNF2.

3.1.2 Operators and primitive types

Table 3.2 describes the operators and the operator precedence in LC. There is no

suffix increment/decrement (‘i++’ or ‘i−−’ as in Java) and prefix increment/decrement

(‘++i’ or ‘−−i’ as in Java) and ternary conditional (‘x > y ? x : y’ as in Java) in the

current prototype of LC.

Table 3.3 describes the primitive types available in LC. All the objects are allocated

in the heap and variables just keep the references to the heap objects.

1As LC is still just a proof-of-concept prototype, this grammar is still only for the current prototype.
There is a plan for further extension and modification.

2As proposed by ISO/IEC 14977 standard (279)

70

3.1 The basic language features

PROGRAM = { STMT } ;

STMT = ((VAR LIST | GVAR LIST | IF | WHILE | LABELED WHILE |

FOR | LABELED FOR | BREAK | CONTINUE | RETURN | SYNC | ASYNC |

WITHIN | TRY CATCH | THROW | RECEIVE | EXPR | |

EMPTY STMT), ‘;’) | COMPOUND STMT ;

COMPOUND STMT = ‘{ ’, { STMT }, ‘}’ ;

EMPTY STMT = ε ;

VAR LIST = ‘var’, IDENT, [‘=’, EXPR], { ‘,’, IDENT, [‘=’, EXPR] } ;

GVAR LIST = ‘global’, IDENT, [‘=’, EXPR], { ‘,’, IDENT, [‘=’, EXPR] } ;

IF = ‘if’, ‘(’, EXPR, ‘)’, STMT, [‘else’, STMT] ;

LABELED WHILE = IDENT, ‘:’, WHILE ;

WHILE = ‘while’, ‘(’, EXPR, ‘)’, STMT ;

LABELED FOR = IDENT, ‘:’, FOR ;

FOR = ‘for’, ‘(’, FOR INIT, ‘;’, FOR COND, ‘;’, FOR LOOP, ‘)’, STMT ;

FOR INIT = [VAR LIST | (EXPR, { ‘,’, EXPR })] ;

FOR COND = [EXPR] ;

FOR LOOP = [(EXPR, { ‘,’, EXPR })] ;

RETURN = ‘return’, [EXPR] ;

BREAK = ‘break’, [IDENT] ;

CONTINUE = ‘continue’, [IDENT] ;

SYNC = ‘sync’, STMT ;

ASYNC = ‘async’, STMT ;

WITHIN = ‘within’, ‘(’, EXPR, ‘)’, STMT [‘timeout’ STMT];

TRY CATCH = ‘try’, STMT, { ‘catch’, ’(’, IDENT,

[‘:’, SYMBOL, { ‘,’, SYMBOL }], ’)’, STMT }- ;

THROW = ‘throw’, EXPR ;

RECEIVE = ‘receive’, ‘(’, ’var’, IDENT, ‘)’,

‘{’, { (RECV CASE | RECV COND | ‘default’) , ‘:’, STMT }, ‘}’ ;

RECV CASE = ‘case’, EXPR ;

RECV COND = ‘cond’, EXPR ;

EXPR = SEND EXPR ;

SEND EXPR = ASSIGN EXPR, { ‘<-’, [’@’, ASSIGN EXPR, ‘,’], ASSIGN EXPR } ;

ASSIGN EXPR = LOR EXPR, { (‘=’ | ‘+=’ | ‘-=’ | ‘*=’ | ‘/=’ | ‘%=’ |

‘&=’ | ‘|=’ | ‘^=’ | ‘<<=’ | ‘>>=’ | ‘>>>=’), EXPR } ;

LOR EXPR = LAND EXPR, { ‘||’, LAND EXPR } ;

LAND EXPR = BITOR EXPR, { ‘&&’, BITOR EXPR } ;

BITOR EXPR = BITXOR EXPR, { ‘|’, BITXOR EXPR } ;

BITXOR EXPR = BITAND EXPR, { ‘^’, BITAND EXPR } ;

BITAND EXPR = EQL EXPR, { ‘&’, EQL EXPR } ;

EQL EXPR = REL EXPR, { (‘==’ | ‘!=’), REL EXPR } ;

REL EXPR = CONCAT EXPR, { (‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘instanceof’),

CONCAT EXPR } ;

Table 3.1: The grammar of LC.

71

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

CONCAT EXPR = BITSHIFT EXPR, { ‘..’, BITSHIFT EXPR } ;

BITSHIFT EXPR = ADD EXPR, { (‘<<’ | ‘>>’ | ‘>>>’), ADD EXPR } ;

ADD EXPR = MUL EXPR, { (‘+’ | ‘-’), MUL EXPR } ;

MUL EXPR = DUR EXPR, { (‘*’ | ‘/’ | ‘%’), DUR EXPR } ;

DUR EXPR = PRIMARY, { ‘::’, (‘minute’ | ‘second’ | ‘ms’ | ‘samp’) } ;

PRIMARY = [PREFIX], (SYMBOL | STRING | INTEGER | DOUBLE | ‘true’ |

‘false’ | ‘now’ | ‘null’ | ‘SampleRate’ | NEW EXPR | ARRAY EXPR |

FUNCTION EXPR | PATCH EXPR | UPDPATCH EXPR (IDENT, [POSTFIX]) |

(GVAR, [POSTFIX])) | (‘(’, EXPR, ‘)’, [POSTFIX]) ;

PREFIX = ‘-’ | ‘!’ | ‘+’ | ‘ ’;

POSTFIX = { (‘.’, IDENT) | (‘[’, EXPR, ‘]’) | FUNCTION CALL | NEW THREAD |

METHOD CALL } ;

FUNCTION EXPR = ‘function’, ‘(’, [PARAM LIST], ‘)’ STMT, [POSTFIX] ;

PARAM LIST = (‘var’, IDENT, [‘=’, EXPR], { ‘,’, IDENT, [‘=’, EXPR] }) ;

ARRAY EXPR = ‘[’, EXPR, { ‘,’, EXPR }, ‘]’, [POSTFIX];

NEW EXPR = ‘new’, IDENT, ’(’, [ARG LIST], ’)’, [POSTFIX] ;

FUNCTION CALL = ‘(’, [ARG LIST], ‘)’, [POSTFIX] ;

NEW THREAD = ‘@’, ‘(’, [ARG LIST], ‘)’, [POSTFIX] ;

METHOD CALL = ‘->’, (FUNCTION CALL | THREAD CREATION), [POSTFIX] ;

ARG LIST = ([IDENT, ‘:’], EXPR), { ‘,’, [IDENT, ‘:’], EXPR } ;

PATCH EXPR = ‘patch’, ‘{’, PSTMTS, ’}’, [POSTFIX] ;

UPDPATCH EXPR = ‘update patch’, ‘(’, EXPR, ‘)’, ‘{’, PSTMTS, ’}’, [POSTFIX] ;

PSTMTS = { PSTMT ‘;’ } ;

PSTMT = [IDENT, ’:’], EXPR, { (‘=>’, ‘=|’), | [IDENT, ‘:’], EXPR };

NOTE: Each of SYMBOL, STRING, INTEGER, DOUBLE, IDENT and GVAR corresponds to a symbol

value, a string value, an integer value, a floating point value, an identifier, and a

global variable name ($varname), respectively.

Table 3.1: The grammar of LC in EBNF (continued).

72

3.1 The basic language features

Operator Description

1 () [] . -> :: grouping, array access, member access, method call, and du-
ration operator

2 ! ∼ - unary operators (logical negation, one’s complement, negative)
3 * / % multiplication, division, modulo
4 + - addition, subtraction
5 << >> bitwise shift left, bitwise shift right
6 .. string concatenation operator
7 < <= > >= instanceof less than, less than or equal, greater than, greater than or

equal, instanceof
8 == != equal and not equal
9 & bitwise and

10 ^ bitwise exclusive or
11 | bitwise or
12 && logical and
13 || logical or
14 = += -= *= /= %= &=

|= ^= <<= >>= >>>=

assignment operators

15 <- inter-thread messaging

Table 3.2: The relative precedence levels of operators in LC.

Value Types

Type Description
boolean boolean (true or false)
integer integer (64-bit)
float floating point (64-bit)
symbol a symbol internally bound to its own unique ID. A symbol

starts with a backslash (e.g., \hanning, \Exception)
time the logical time in samples elapsed since the virtual machine

start-up (64-bit)
duration duration in samples (64-bit)

Reference Types (built-in native objects)

Type Description
Function a first class function object
Exception an exception object
String an immutable string object
Samples an immutable vector of samples
SampleBuf a mutable vector of samples
Array an array object
Thread a thread object
Patch a patch object
Table a table object
UGen unit-generator objects

Table 3.3: The data types available in LC.

73

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //local variables

02: var a = 1234; //assigning an integer value.

03: var b = 0.123; //assigning a float value.

04:

05: //global variables. use ‘global’ for declaration.

06: global c;

07: c = 10;

08: //‘$identifier’ can be used for a global variable.

09: //(this ‘$d’ is the same variable as ‘global d’).

10: $d = "I am a global variable.";

11: //the below prints out ‘I am a global variable.’

12: println($d)

13: //the below also prints out ‘I am a global variable.’

14: global d;

15: println(d);

Figure 3.1: Local variables and global variables in LC.

3.1.3 Typing and variable scope

LC has both local variables and global variables as shown in Figure 3.1. By using ‘$iden-

tifier’, a global variable can be accessed without declaration. As LC is dynamically-

typed, types are evaluated at runtime as in Lua (150)(152) and Ruby (294), whereas

statically-typed languages such as Java (128) and ChucK (312)(314) verify the type

safety of a program during compilation.

LC is a strongly-typed language, which “detects when two types are compatible,

throwing an error or coercing the types if they are not” and does little implicit type

conversion (290, p.141), like Ruby, Python (301), and Self (300), whereas weakly-typed

languages such as PHP (181) and Perl (310) perform implicit type conversion as much

as possible1. Figure 3.2 shows a brief example of dynamic-typing and strong-typing in

LC.

3.1.4 Control structure

LC supports standard control structures as seen in other imperative programming lan-

guages. Currently, LC supports if, else, for, and while. The break and continue

1For instance, Ruby throws an exception for such an expression as “456” + 7 (string + integer),
while PHP returns 463 by implicitly converting“456” to an integer value of 456. Some other weakly-
typed language may instead return string “4567”, by converting 7 to a string “7”.

74

3.1 The basic language features

01: //dynamic-typing

02: var a = 1234 ; // assigning an integer value.

03: var b = "567"; // assigning a reference to a String object.

04:

05: //strong-typing

06: //‘integer + string’ causes a runtime error

07: var c = a + b;

08: //it is required to use the string concatenation operator

09: //to convert an integer value to a string value.

10: var d = a .. b;

11: //this prints out "1234567".

12: println(d);

Figure 3.2: An example of dynamic-typing and strong-typing in LC.

statements can be labelled. Figure 3.3 describes a simple example of the control struc-

tures in LC.

3.1.5 Lexical closure

If a programming language can enclose a function in another function and allows full ac-

cess to local variables to the enclosing function from the enclosed function, the language

is said to have the feature of lexical scoping (150, p.47). Furthermore, if a language

treats a function as a first-class value1 and a function can capture variables in such lex-

ical context, the language is said to have the feature of lexical closure. Some languages

such as Pascal (321) and Algol (215) have lexical scoping, but no lexical closure. The

languages such as Scheme (6), JavaScript (127), and Lua (152) are equipped with the

lexical closure feature.

LC supports lexical closure. Figure 3.4 describes a simple example of a lexical clo-

sure in LC. As seen between lines 10-11, the local variable i (line 02) is captured by the

function (lines 04-07)2. LC also supports keyword arguments (or named parameters)

and default values as described in Figure 3.5.

1Generally speaking, a function is said to be a first-class value if “a function is a value with the
same rights as conventional values like numbers and strings”. A first-class function “can be stored
in variables (both global and local)” and “be passed as arguments, and can be returned by other
functions” (151, p.18).

2As the current prototype of LC doesn’t provide a syntax sugar for function definition, an anony-
mous function is assigned to the variable ‘newCounter’ in this example.

75

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //if-else variable ‘a’ is even

02: var a = 10; count:0

03: if (a % 2 == 0){ count:1

04: println("variable ‘a’ is even"); count:2

05: } count:3

06: else { count:4

07: println("variable ‘a’ is odd"); count:5

08: } count:6

09: count:7

10: //for loop count:8

11: for (var i = 0;i < 10; i += 1){ count:9

12: println("count:" .. i); i:3, j:0

13: } i:3, j:1

14: i:3, j:2

15: //while loop i:3, j:3

16: var i = 0; i:3, j:4

17: outer loop: i:4, j:0

18: while(true){ i:4, j:1

19: i += 1; i:4, j:2

20: if (i >= 5){ i:4, j:3

21: break outer loop; i:4, j:4

22: }
23: for(var j = 0; j < 5; j +=1){
24: if (i < 3) continue outter loop;

25: println("i:" .. i ", j:" .. j);

26: }
27: }

Figure 3.3: An example of control structures in LC(left) and its output(right).

01: var newCounter = function(){
02: var i = 0;

03: // anonymous function

04: return function(){
05: i = i + 1;

06: return i;

07: };
08: };
09: var c1 = newCounter();

10: println(c1()); // 1;

11: println(c1()); // 2;

Figure 3.4: The examples of lexical closure in LC.

76

3.1 The basic language features

01: var f = function(var value = 10, message = "hello"){
02: println("value:" .. value .. ", message:" .. message);

03: };
04: //using the default parameters.

05: //this prints out "value:10, message:hello".

06: f();

07:

08: //give only ‘message’ for the argument.

09: //this prints out "value:10, message:have a nice day".

10: f(message:"have a nice day");

11:

12: //change the order of the arguments by giving the names.

13: //this prints out "value:99, message:good night".

14: f(message:"good night", value:99);

Figure 3.5: An example of default parameters/keyword arguments in LC.

The constructor definition

Exception(type=\Exception, message = null, value = null, parent = null)

Arguments

type a symbol value for the exception type.

message a string value, which is used for the

user-friendly message.

value any value, which can be used to retain detailed

information for the exception.

parent a parent exception in the exception hierarchy.

Table 3.4: The constructor definition of Exception object in LC

3.1.6 Exception handling

LC has an exception handling mechanism. Exception is provided as in Table 3.4. Both

built-in exceptions and user-defined exceptions can be used. Exceptions are organized

hierarchically. Figure 3.6 shows the built-in exception hierarchy in the current pro-

totype. Figure 3.7 describes how to throw and catch an exception in LC. Multiple

exceptions can be caught by one catch block as in example (3) and user-defined excep-

tions can also have its own parent in the exception hierarchy as in example (5). This

exception hierarchy is realized by delegation mechanism (as described in the later sec-

tion) and thus it can be specified at runtime; when a catch block examines the type of

the exception, LC also traverses the ancestor exceptions in the hierarchy dynamically

so to mimic the exception handling in class-based programming languages.

77

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

\Exception
+-- \StandardError

+-- \ArithmeticError
+--\ZeroDivisionError

+-- \AttributeError
+-- \MemoryError
+-- \ThreadError
+-- \TimeError
+-- \TypeError
+-- \ValueError

Figure 3.6: The built-in exception hierarchy example in LC (the prototype version).

3.1.7 Tail call optimization

A tail call is a function call that “happens when a function calls another as its last

action so it has nothing else to do” (151, p.58). Figure 3.8 shows a very simple example

of a tail call. As shown, after calling g(x), the function immediately returns and has

nothing else to do.

When a tail call is performed, “the program does not need to return to the calling

function when the called function ends. Therefore, after the tail call, the program does

not need to keep any information about the calling function in the stack” (151, p.58).

For instance, in the Figure 3.8 example, assume another function h made a call to

function f. Then, function f calls function g. After calling g, as there is nothing left

to do in function f, the code can immediately return to function h, not to f, without

changing the result of the entire function call.

If a compiler generates such a code (or an interpreter behaves as above) in such

a situation, it is said that the compiler (or interpreter) supports proper tail calls and

this optimization is called tail call optimization. The benefit of tail call optimization

is that it can avoid the unnecessary allocation of the extra stack space. As functional

programming languages often lack the loop structure and therefore require a recursive

call, tail call optimization is an essential language feature in functional programming

languages. This is the same for an imperative programming language to describe an

algorithm that involves a recursive call.

LC supports tail-call optimization in the form of return any function call(x). If the

78

3.1 The basic language features

try-catch example(1)
01: //try-catch example(1)

02: try {
03: //below zero division throws an \ZeroDivisionError exception.

04: println("10 / 0 = " .. 10 / 0);

05: }
06: //the below catches the exception.

07: catch(e:\ZeroDivisionError){
08: println("in the catch block.");

09: println("exception type = " .. e.type);

10: }

The output of try-catch example(1)
in the catch block.

exception type = \ZeroDivisionError

try-catch example(2)
01: //try-catch example(2)

02: try {
03: //below zero division throws

04: //an \ZeroDivisionError exception.

05: println("10 / 0 = " .. 10 / 0);

06: }
07: //the above \ZeroDivisionError will be caught by the below catch block,

08: //since \ArithmeticException is its ancestor in the hierarchy.

09: catch(e:\ArithmeticException){
10: println("in the 1st catch block.");

11: println("exception type = " .. e.type);

12: }
13: //the code never reach below.

14: catch(e:\ZeroDivisionError){
15: println("in the 2nd catch block.");

16: println("exception type = " .. e.type);

17: }

The output of try-catch example(2)
in the 1st catch block.

exception type = \ZeroDivisionError

Figure 3.7: An example of exception handling in LC.

79

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

try-catch example(3)

01: //try-catch example(3)

02: try {
03: //below zero division throws an \ZeroDivisionError exception.

04: println("10 / 0 = " .. 10 / 0);

05: }
06: //the above exception will be caught by the below catch block,

07: //A catch block can catch multiple exception.

08: catch(e:\TimeError, \ZeroDivisionError){
09: println("in the catch block.");

10: println("exception type = " .. e.type);

11: }

The output of try-catch example(3)

in the catch block.

exception type = \ZeroDivisionError

try-catch example(4)

01: //try-catch example(4)

02: try {
03: //throwing a user-defined exception.

04: throw new Exception(\MyException, "user defined exception", 12345);

05: }
06: catch(e:\Exception){
07: println("in the catch block.");

08: println("exception type = " .. e.type);

09: println("exception message = " .. e.message);

10: println("exception value = " .. e.value);

11: if (e.parent != null){
12: println("exception parent = " .. e.parent.type);

13: }
14: else {
15: println("no parent exception");

16: }
17: }

The output of try-catch example(4)

in the catch block.

exception type = \MyException
exception message = user defined exception

exception value = 12345

no parent exception.

Figure 3.7: An example of exception handling in LC (continued).

80

3.1 The basic language features

try-catch example(5)

01: //try-catch example(5)

02: try {
03: //a user-defined exception with the parent exception specified.

04: throw new Exception(\MyException, parent:new Exception(\StandardError));
05: }
08: catch(e:\StandardError){
09: println("in the catch block.");

10: println("exception type = " .. e.type);

11: println("exception message = " .. e.message);

12: println("exception value = " .. e.value);

13: if (e.parent != null){
14: println("parent exception = " .. e.parent.type);

15: }
16: else {
17: println("no parent exception");

18: }
19: }

The output of try-catch example(5)

in the catch block.

exception type = \MyException
exception message = user defined exception

exception value = 12345

parent exception = \StandardError

Figure 3.7: An example of exception handling in LC (continued).

81

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: var f = function(var x){
02: return g(x);

03: };

Figure 3.8: A simple tail call example in LC.

expression that follows return statement is a function call, LC generates the code with

tail-call optimization. The same kind of the specification can be seen in Lua (150)(151).

3.1.8 Strongly-timed programming

LC proposes a new programming concept of mostly-strongly-timed programming, which

extends the concept of strongly-timed programming proposed by Wang in his ChucK

programming language (312). While LC is a dynamically-typed language, the basic

concept and the primitive types used for strongly-timed programming are still applica-

ble to LC; LC also provides both types of time and duration, each of which is equivalent

to ChucK’s time and dur. The value of time represents the time elapsed since the start

of the virtual machine and duration represents the duration. Both are based on LC’s

internal logical synchronous time with sample rate accuracy.

Table 3.5 describes the arithmetic operations for these types. A simple example of

strongly-timed programming in LC is shown in Figure 3.9. As described in the example,

the special variable now represents the current logical synchronous time in the system

and the assignment to now lets the current thread sleep until the given wake-up time.

The thread is woken up with sample-rate accuracy in timing.

The sample-rate accurate timing behaviour in LC also makes it possible to compute

the output samples directly without depending on the unit-generators or microsound

synthesis objects in LC. Figure 3.10 shows an example that directly generates white

noise just by sample-by-sample computation with strongly-timed programming.

3.1.9 Lightweight concurrency and multitasking

Generally speaking, native threads (operating system’s threads) are considered heavy-

weight as it takes a considerable amount of time and memory space1 for instantiation

1For instance, Xie describes that “a thread on Red Hat Enterprise Linux (RHEL4), needs a
10MB stack, which means at least 10MB is leaked if you haven’t joined it” (Avoiding memory

82

3.1 The basic language features

type op type result type commute
duration + duration -> duration yes
duration - duration -> duration no
duration * float -> duration yes
duration / float -> duration no
duration / duration -> float no
time + duration -> time yes
time - duration -> time no
time - time -> duration no

Table 3.5: Arithmetic operations on time and duration in LC.

A strongly-timed programming example

01: //store the current time as the task start time.

02: //‘now’ represents the current VM time in samples.

03: var startTime = now;

04:

05: //loop for 10 seconds

06: var endTime = now + 10::second;

07: while (now <= endTime){
08: println("elapsed " .. (now - startTime) / SampleRate .. " sec");

09:

10: //sleep for 1 second

11: now += 1::second;

12: //alternatively you can write as below, too

13: //now = now + 1::second

14: }

The output from the above example

elapsed 0 sec

elapsed 1 sec

elapsed 2 sec

elapsed 3 sec

elapsed 4 sec

elapsed 5 sec

elapsed 6 sec

elapsed 7 sec

elapsed 8 sec

elapsed 9 sec

elapsed 10 sec

Figure 3.9: A strongly-timed programming example in LC.

83

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //generating white noise directly without unit-generators

02: while(true){
03: var out = Rand(-1.0, 1.0);

04: PanOut(out, 0);

05: now += 1::samp;

06: }

Figure 3.10: Directly computing output samples without unit-generators in LC.

and activation, whereas green threads (or software threads implemented by a virtual

machine) are considered lightweight and perform significantly better in thread acti-

vation and synchronization, with less memory space, as reported in (284). It is also

reported that the Erlang programming language, which uses software processes1, could

host 20 million lightweight tasks at once during a benchmark test2.

Such features of lightweight concurrency are also appropriate to achieve precise tim-

ing behaviour with sample-rate accuracy, as described in Section 2.2; many computer

music programming languages utilize coroutines (as in LuaAV) or its own software

threads (as in ChucK), since the green threads can suspend/switch threads with very

low overhead in comparison with native threads. LC also realizes multi-tasking by

green threads for this reason.

To facilitate multi-tasking, LC provides a simple syntax to create and start a new

thread from a user program. Figure 3.11 describes a simple example of multi-threading

in LC. As shown, a new thread object can be created by placing ‘@’ before the argument

list. This returns a new thread object, which is still not activated, instead of calling a

function immediately. The thread object can be started by calling the start() method.

leaks in POSIX thread programming, http://www.ibm.com/developerworks/linux/library/l-memory-
leaks/index.html).

1Erlang’s process is implemented as software process as well as green threads.
2Ulf Wiger (14 November 2005). ”Stress-testing erlang”,

https://groups.google.com/forum/#!original/comp.lang.functional/5kldn1QJ73c/T3py-yqmtzMJ ,
accessed on Oct-02-2013.

84

3.1 The basic language features

01: //any function can be used as an entry point of a thread.

02: var f = function(var name, message, period, repeat){
03: for (var i = 0; i < repeat; i+=1){
04: println(name .. ":" .. message .. ", count=" .. i);

05: now += period;

06: }
07: };
08:

09: //placing ‘@’ before the argument list will create a thread object,

10: //instead of a function call.

11: var john = f@("John Bull", "How are you?", 1::second, 3);

12: var jane = f@("Jane Doe ", "Fine. And you?", 1.5::second, 2);

13:

14: //starting each thread.

15: //the first argument must be thread object itself: Thread.start(self).

16: john.start(john);

17: //Yet a syntax sugar is provided to abbreviate the first ‘self’ argument.

18: //The −> operator will automatically add the ‘self’ argument as below.

19: jane->start();

The output of the above example

John Bull:How are you?, count=0

Jane Doe :Fine. And you?, count=0

John Bull:How are you?, count=1

John Bull:How are you?, count=2

Jane Doe :Fine. And you?, count=1

Figure 3.11: A simple multi-threading example in LC.

85

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

3.2 The Core Language Features

3.2.1 Prototype-based programming

Prototyped-based programming is relatively newer in comparison with class-based pro-

gramming. The first prototype-based programming language was Self developed in

1986 (300), whereas the first class-based programming language, Simula, was devel-

oped in 1967 (85). Yet, a number of prototype-based languages have developed since

then. While the list includes programming languages such as Omega (47)(48), Kevo

(286)(287), GlyphicScript (264), and NewtonScript (272)(270), perhaps the most well-

known prototyped-based languages today would be JavaScript (127) and Lua (152),

due to their recent rapid popularization among programmers.

While prototype-based programming is a concept that belongs to the object-oriented

programming paradigm, the concept significantly differs from that of class-based lan-

guages such as C++ (283), Java (128), etc. In prototype-based programming languages,

there are no classes1. Dony describes prototype-based languages: “are all based on a

similar set of basic principles: object-centered representation, dynamic addition (dele-

tion) of slots2, cloning and message delegation” (101). Yet, Donny et al. also pointed

out that “current prototype-based languages differ in the semantics of object represen-

tation, object creation, object encapsulation, object activation and object inheritance”

(102) and prototype-based languages exhibit considerable variations in the language

design.

Such features make prototype-based programming languages highly flexible and

tolerant against the dynamic modification of a program and also favourable for the

support of rapid-prototyping. As discussed in the earlier chapter, while some of the

recent computer music languages support such dynamic modification, they still have

drawbacks at least at the levels of either compositional algorithms or sound synthesis

and merely provide a consistent programming model at these two levels. To provide a

1For this reason, prototype-based programming is often referred as ‘classless’ languages.
2Slots treats the variables and methods in the same way. Some languages such as OBJECT-LISP

distinguish these two; for instance OBJECT-LISP uses the ‘defobfub’ function for method definition and
uses ‘have’ method for attribute definition, while other languages such as Self instead simply provide
slots.

86

3.2 The Core Language Features

prototype-based programming example(1)

01: //create a Table object

02: var obj = new Table();

03:

04: //then, attach values and functions to its slots

05: obj.name = "John";

06: obj.age = 34;

07: obj.print = function(var self){
08: println("name :" .. self.name .. ", age:" .. self.age);

09: };
10:

11: //calling the method.

12: obj.print(obj);

13: //alternatively, use −> operator to abbreviate ‘self’.

14: obj->print();

The output from the above example(1)

name :John, age:34

Figure 3.12: Table object examples in LC(1).

simple and consistent programming model for dynamic modification, which is a signif-

icant factor in supporting rapid-prototyping and live-coding, LC adopts the concept of

prototype-programming at both levels of compositional algorithms and sound synthesis.

3.2.1.1 Prototype-based programming at the level of compositional algo-

rithms

Table object. LC provides the Table object for prototype-based programming at the

level of compositional algorithms. LC’s table object is similar to Object in JavaScript

or Table in Lua. As in many other prototype-based programming languages, this Table

object can be attached to any slot dynamically at runtime after creation. Figure 3.12

describes an example of how Table object can be created and initialized. In example

(2), two variables (‘_name’ and ‘_age’) are made invisible and inaccessible from outside

by using a lexical closure, and the accessor methods (setName and setAge) must be

used to change the values.

Similarly as in Lua (150), ‘Table’ in LC is implemented as a key-value map. Symbol,

string, integer, float, and reference types can be used as a key to store/access any value.

87

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

prototype-based programming example(2)

01: //mimicking ‘private’ instance fields by lexical closure.

02: var newInfo = function(var name, age){
03: var this = new Table();

04: var _name = name;

05: var _age = age;

06: this.print = function(var self){
07: println("name :" .._name .. ", age:" .. _age);

08: };
09:

10: this.setName = function(var self, name){
11: _name = name;

12: };
13:

14: this.setAge = function(var self, age){
15: _age = age;

16: };
17: return this;

18: };
19:

20: var objA = newInfo("Jane", 11);

21: var objB = newInfo("Mary", 92);

22:

23: //‘−>’ operator automatically add ‘self’ as a first argument.

24: //(below is equivalent to objA.print(objA).)

25: objA->print();

26: objB->print();

27:

28: objA->setName("Jennifer");

29: objA->setAge(23);

30: objA->print();

The output from the above example(2)

name :Jane, age:11

name :Mary, age:92

name :Jennifer, age:23

Figure 3.12: Table object examples in LC(1) (continued).

88

3.2 The Core Language Features

using a Table object as a hash map

01: //create a Table object, ex nihilo.

02: var map = new Table();

03:

04: //add key-value pairs

05: map[\name] = "Mary";

06: map["my key"] = "my value";

07: map[1] = new Table();

08: map[10.5] = new Exception(\my expcetion);

09: var t = new Table();

10: map[t] = "an object reference can be also used as a key.";

11:

12: //then access each value

13: println(map[\name]);

14: println(map["my key"]);

15: println(map[1]);

16: println(map[10.5].type);

17: println(map[5]);

The output from the above example

Mary

my value

#<Table:0x7f9123819310>

\my exception

an object reference can be also used as a key.

Figure 3.13: A Table example in LC(2).

The slot access of ‘obj.slotname’ is equivalent to ‘obj[\slotname]’. Figure 3.13 describes

a simple example of Table object and index operator.

A set of library functions to manipulate a Table object is also provided in LC. The

global variable $Table holds a reference to a Table object, which retains the library

functions in its slots. Table 3.6 shows the list of the library functions1. The main

reason these functions are not directly assigned to each instance of a Table object is

because one may want to create a slot with the same name for other purposes or even to

write their versions of these library functions; for instance, as seen in the next section,

a user may want to create a deep copy of a Table object instead of a shallow copy as

provided by the ‘clone’ function. In such cases, always attaching such library functions

1Such a design strategy can be also seen in Lua’s table object which retains the related library
functions.

89

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

Table object: the library functions

setDelegate(var self, delegate)

set the delegation from the table self to the parent table delegate.

getDelegate(var self)

returns the delegation table of self, if any. If there is no delegation set

up, returns null.

hasSlot(var self, slot)

check if the table self or any tables in its delegation chain has the slot

slot (a symbol value). This function returns a boolean value.

hasOwnSlot(var self, slot)

check if the table self has its own slot slot (a symbol value) (not in the

delegated tables). This function returns a boolean value.

clone(var self)

returns a shallow copy of the table self.

getSlotNames(var self)

returns an array of the available slot names in the table self.

Table 3.6: The list of library functions for Table objects.

to the Table object’s slots by default may cause some problems, especially if they are

assigned to slots implicitly (see Figure 3.15 for an example).

Delegation. Instead of the inheritance mechanism in class-based languages, prototype-

based languages provide delegation. Delegation is a message forwarding mechanism,

first introduced in the Act 1 language (184). Dony briefly explains the essence of the

delegation mechanism below.

“The basic idea of delegation is to forward message that cannot be handled by an

object to another object called its parent in Self or proxy in Act 1” and “the key point

of delegation is that the pseudo-variable ‘self’ still points to the original receiver of the

message, even if the method used to answer the message is found in one of its parent

(185). Delegation is proposed as a mean for an object to retrieve and share knowledge

provided by another object” (101)

90

3.2 The Core Language Features

The advocates of prototype-based programming often argue that delegation is “more

powerful than class-inheritance” (31); for instance, Lieberman discusses that he can eas-

ily simulate class-inheritance by using delegation, “but not map the reverse” (31)(185).

LC’s Table object provides this delegation mechanism, by using the setDelegate(self,

delegate) method of $Table. Figure 3.14 describes an example of delegation in LC. A

similar mechanism is also used in the previous example of exception handling for the

exception hierarchy; each catch block traverses ancestor exceptions to examine if the

thrown exception is of the type to be caught by the block.

Cloning. As shown in the previous examples, a Table object can be created ex nihilo

(from scratch) by using the ‘new’ operator. As in many prototype-based languages, it is

possible to create an object by cloning. LC performs a shallow copy1 by the ‘clone(var

self)’ function.

Figure 3.15 describes an example of object-cloning in LC. As shown on line 15,

simply cloning a Table object doesn’t copy the objects in its slots and copies the

reference to the same object. A user would need to write their own version of the

‘clone’ method for a deep copy when it is necessary as on lines 23-31.

Duck-typing. Duck-typing allows polymorphism “based on what an object can sup-

port rather than that object’s inheritance hierarchy” (290, p.39) and is supported by

many dynamically-typed languages. For instance, Ruby (206), Lua (150), Python

(301), Groovy (166), and JavaScript (127) all support duck-typing. The concept of

duck-typing is often explained by the phrase, “if it walks like a duck and quacks like

a duck, it must be a duck” (118, p.61). Unlike in class-based languages, in which the

inheritance hierarchy decides if an object can respond to a certain message, in dynamic

languages that allow duck-typing, an object can respond to any message as long as the

object supports the message, regardless of the object type.

LC also allows duck-typing as shown in the Figure 3.16 example. In this ex-

ample, the two Table objects (‘man’ and ‘dog’) are totally independent from each

other, yet both of them have slots with the same name and functions set to the slots

1a shallow copy “merely copies a single object and the object references within it”, whereas a deep
copy “copies every object recursively” (252).

91

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

a delegation example

01: //create a parent table first.

02: var t1 = new Table();

03: //add key-value pairs to the parent

04: t1.hello = function(var self){
05: println("Hello, world!");

06: };
07:

08: //create a another table and set up the delegation.

09: var t2 = new Table();

10: //below ‘Table’ is a built-in global object.

11: $Table.setDelegate(t2, t1);

12: //the access to t2.hello(var self) is forwarded to t1.

13: t2->hello()

14:

15: //assigning another function to t1.hello.

16: t1.hello = function(var self){
17: println("Hello, my friend!");

18: };
19: //calling t2.hello(var self) again.

20: t2->hello();

21:

22: //assigning t2’s own slot.

23: t2.hello = function(var self){
24: println("Hello, my dear!");

25: };
26: t2->hello();

27: //calling t1’s hello.

28: t1->hello();

29: //indexed access is also delegated.

30: t1["myslot"] = "delegated(t1)!";

31: println(t2["myslot"]);

32: //assigning t2’s own thread.

33: t2["myslot"] = "I am t2.";

34: println(t2["myslot"]);

35: println(t1["myslot"]);

The output from the above example
Hello, world! line 13

Hello, my friend! line 20

Hello, my dear! line 26

Hello, my friend! line 28

delegated(t1)! line 31

I am t2. line 34

delegated(t1)! line 35

Figure 3.14: A delegation example in LC.

92

3.2 The Core Language Features

an object-cloning example

01: //create a Table object first.

02: var t1 = new Table();

03: //set some value to it slot

04: t1.message = "Hello, I am the ‘message’ slot of t1.";

05: //then, create another object.

06: var t2 = new Table();

07: $Table.setDelegate(t2, t1); //then, set up delegation to t1.

08: println(t2.message); //"Hello, I am the ‘message’ slot of t1."

09:

10: //clone the object t2.

11: var t3 = $Table.clone(t2);

12: println(t3.message); //"Hello, I am the ‘message’ slot of t1."

13:

14: //check if the reference to the delegated object is the same.

15: println($Table.getDelegate(t2) == $Table.getDelegate(t3)); //"true"

16: //assigning the reference to ‘clone’ function to the slot ‘clone’ of t3.

17: //t3->clone() will be the same as $Table.clone(t3);

18: t3.clone = $Table.clone;

19: var t4 = t3->clone(); //t4 will be also a shallow copy.

20: println(t4.message); //"Hello, I am the ‘message’ slot of t1."

21:

22: //create a deep copy version of ‘clone’.

23: t3.clone = function(var self){
24: var clone = $Table.clone(t3);

25: //copy the parent (delegation) table, too.

26: var delegate = $Table.getDelegate(t3);

27: delegate = $Table.clone(delegate);

28: delegate.message = "I am the message slot, but not of t1";

29: $Table.setDelegate(clone, delegate);

30: return clone;

31: };
32: var t5 = t3->clone();

33: println(t3.message);

34: println(t5.message);

35:

36: //"changing the value at t1.message. (t1 is a parent table of t3.)"

37: t1.message = "Hello, I am changed.";

38: println(t3.message);

39: println(t5.message);

40: println($Table.getDelegate(t3) == $Table.getDelegate(t5)); //"false"

Figure 3.15: An object-cloning example in LC.

93

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

The output from the above example
Hello, I am the ‘message’ slot of t1. line 08

Hello, I am the ‘message’ slot of t1. line 12

true line 15

Hello, I am the ‘message’ slot of t1. line 20

Hello, I am the ‘message’ slot of t1. line 33

I am the ‘message’ slot, but not of t1 line 34

Hello, I am changed. line 38

I am the ‘message’ slot, but not of t1 line 39

false line 40

Figure 3.15: An object-cloning example in LC (continued).

have the same number of arguments; thus they can respond to the same method call

(‘object->greet();’) as on line 19.

3.2.1.2 Prototype-based programming at the level of sound synthesis

Patch object and unit-generators. While we discuss a different abstraction of dig-

ital sound synthesis for microsound synthesis in the later section, LC is still equipped

with traditional unit-generators in its sound synthesis framework. LC provides the

Patch object to support prototype-based programming in sound synthesis by the unit-

generators. The reason LC provides two different objects, (Table and Patch), is that

digital sound synthesis is a highly domain-specific feature that requires intimate col-

laboration with the underlying software framework. Furthermore, providing another

object dedicated to sound synthesis makes it easier to provide the features for frequently

performed tasks; for instance, cloning a sound-object normally supposes a deep copy as

the purpose of cloning is basically to generate another sound object independent from

the original sound-object.

Only a unit-generator or another patch object (subpatch) to the slots of a Patch

object. A runtime exception is thrown when assigning the other type of values. A unit-

generator (and subpatch) can belong to only one patch and cannot be shared between

two or more patches. Once it is attached to a patch, it cannot be assigned to any other

patch. A Patch object has its own methods attached to its slots by default and the

assignment to these slots also causes a runtime exception, whereas the library functions

for Table objects are separately retained by $Table global variable; Table 3.7 lists the

94

3.2 The Core Language Features

a duck-typing example

01: //create a Table object.

02: var man = new Table();

03: //set some value to it slots

04: man.message = "This is the ‘message’ slot of ‘man’.";

05: man.greet = function(var self){
06: println("Hello!");

07: };
08:

09: //create another Table object.

10: var dog = new Table();

11: dog.message = "This is the ‘message’ slot of ‘dog’.";

12: dog.greet = function(var self){
13: println("Bow wow!");

14: };
15:

16: var test = function(var object){
17: println("the slot ‘message’ contains the value:" .. object.message);

18: //calling the ‘greet(var self)’.

19: object->greet();

20: };
21:

22: //pass each object to ‘test’ function.

23: test(man);

24: test(dog);

The output from the above example
the slot ‘message’ contains the value:This is the ‘message’

slot of ‘man’.

line 17

Hello! line 19

the slot ‘message’ contains the value:This is the ‘message’

slot of ‘dog’.

line 17

Bow wow! line 19

Figure 3.16: A duck-typing example in LC.

95

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

available methods for a Patch object.

While the methods and attributes of unit-generators significantly vary, as each unit-

generator has its own unique methods and attributes, LC provides the basic set of the

methods and attributes shared by all the unit-generators. Table 3.8 lists these methods

and attributes. As described, they are mostly for the collaboration between the unit-

generators and microsound synthesis objects/manipulations in LC’s sound synthesis

framework1.

Figure 3.17 is a simple Patch object example to play a sine wave oscillator. As

shown in this example, the unit-generators are not directly connected to each other.

Instead, the Patch object manages all the connections between the slots. This design

makes it easier to replace a unit-generator with another one by assignment as on lines

36-42. There is no necessity to remove an existing connection and build a new connec-

tion between the unit-generators, as seen in other languages2.

LC also provides a useful syntax sugar for creating a patch object, patch and

update patch(patch) as shown Figure 3.18, which performs the equivalent task as Figure

3.17. The expression, patch {...} creates and returns a Patch object. Inside the block

following patch, => operator and =| operator can be used to connect/disconnect the

connections between the slots. The unit-generators can also be created by placing its

name after a slot name followed by ‘:’. The other expression update patch receives a

Patch object inside parentheses and modifies it in the same way as the patch expression

does. See Figure 3.19 for some more examples.

As shown in these examples, LC’s Patch object allows a significant degree of dy-

namism in the creation and modification of sound objects by adopting the concept of

prototype-based programming at the sound synthesis level.

Subpatches. LC’s Patch object can also be used as a subpatch, as shown in Figure

3.20. Inlet∼ and Outlet∼ unit-generators are provided. By using the slot names given

to these unit-generators, signals can be routed between a subpatch and its parent patch.

1The detail of these methods will be described in the later section dedicated to microsound synthesis.
2The detailed discussion on such a problem is described in the chapter, Discussion.

96

3.2 The Core Language Features

The Patch object’s methods

clone(var self)

returns a deep copy of the object self. All the unit-generators and

subpatches in the patch are recursively copied.

start(var self, duration=-1::samp, offset=0::samp)

activates (start playing) the patch self for duration after offset. Giving a

negative number for duration makes the patch active until it is explicitly

deactivated.

stop(var self)

immediately deactivates (stop playing) the patch.

connect(var self, src, outlet, dst, inlet)

makes a connection between the outlet outlet of the unit-generator (or

subpath) of src to the inlet inlet of the unit-generator (or subpatch) of dst.
The modification won’t be reflected until compile(var self) is explicitly

called.

disconnect(var self, src, outlet, dst, inlet)

disconnect the connection between the outlet outlet of the unit-generator (or

subpath) of src to the inlet inlet of the unit-generator (or subpatch) of dst.
The modification won’t be reflected until compile(var self) is explicitly

called.

write(var self, samples, inlet=\defin, offset=0::samp, ugen inlet=\defin)

writes a Samples object to the inlet ugen inlet of the

unit-generator/subpatch stored at the slot inlet, with offset to the future.

This function is used for the collaboration between the traditional

unit-generator-based sound synthesis and LC’s microsound synthesis

framework

process(var self, dur)

process the patch for dur. This function is used for the collaboration

between the traditional unit-generator-based sound synthesis and LC’s

microsound synthesis framework.

read(var self, dur, outlet=\defout, offset=0::samp, ugen outlet=\defout)

read the output for the last dur duration from ugen outlet of the

unit-generator/subpatch stored at the slot outlet. This function returns a

Samples object and is used for the collaboration between the traditional

unit-generator-based sound synthesis and LC’s microsound synthesis

framework.

pread(var self, dur, outlet=\defout, ugen outlet=\defout)

process the patch for dur and returns the output from ugen outlet of the

unit-generator/subpatch stored at the slot outlet. This function returns a

Samples object and is used for the collaboration between the traditional

unit-generator-based sound synthesis and LC’s microsound synthesis

framework.

Table 3.7: The list of Patch object’s methods

97

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

The unit-generator’s methods

clone(var self)

returns a deep copy of the object self. All the unit-generators and

subpatches in the patch are recursively copied.

write(var self, samples, inlet=\defin, offset=0::samp)

writes a Samples object to the inlet inlet of the unit-generator/subpatch

stored at slot, with offset to the future. This function is used for the

collaboration between the traditional unit-generator-based sound synthesis

and LC’s microsound synthesis framework

process(var self, dur)

process the patch for dur. This function is used for the collaboration

between the traditional unit-generator-based sound synthesis and LC’s

microsound synthesis framework.

read(var self, dur, slot=\defout, offset=0::samp)

read the output for the last dur duration from outlet of the

unit-generator/subpatch stored at slot. This function returns a Sam-
ples object and is used for the collaboration between the traditional

unit-generator-based sound synthesis and LC’s microsound synthesis

framework.

pread(var self, dur, outlet=\defout)

process the patch for dur and returns the output from the outlet outlet of

the unit-generator. This function returns a Samples object and is used

for the collaboration between the traditional unit-generator-based sound

synthesis and LC’s microsound synthesis framework.

retain

‘retain’ is an attribute (not a method), which returns and sets up the

number of the output samples that should be retained. For intance, ‘var

a = new Sin∼(); a.retain = 1::second;’ will let the sine wave oscillator

retain the last 1 second output samples.

Table 3.8: The list of unit-generator’s methods.

98

3.2 The Core Language Features

A simple sine wave oscillator example

01: //create a Patch object.

02: var p = new Patch();

03: //store unit-generator objects to its slots.

04: p.src = new Sin∼(440);//u-gen names always start with a tilde.

05: p.dac = new DAC∼();
06: //connect the default output of a sine wave osc to DAC’s default input.

07: p->connect(\src, \defout, \dac, \defin);

08: //update the unit-generator graph.

09: p->compile();

10: //start playing the patch immediately.

11: p->start();

12:

13: //wait for 1 second and change the frequency.

14: now += 1::second;

15: p.src.freq = 880;

16:

17: //wait for 0.5 second and disconnect sin and dac.

18: now += 0.5::second;

19: p->disconnect(\src, \defout, \dac, \defin);

20: //it is necessary to update the unit-generator graph again.

21: p->compile();

22:

23: //wait for 0.5 second again, connect to DAC’s right channel(ch1).

24: now += 0.5::second;

25: p->connect(\src, \defout, \dac, \ch1);

26: p->compile();

27: //wait for 1 second again, deactivate the patch.

28: now += 1::second;

29: p->stop();

30:

31: //wait for 0.5 second, activate the patch again.

32: now += 0.5::second;

33: p->start();

34:

35: //swap a sine wave osc with a phasor.

36: var tmp = p.src; //store a sinewave osc to tmp.

37: p.src = new Phasor∼(440);
38: p->compile();

39: //restore a sinewave osc after 1 sec.

40: now += 1::second;

41: p.src = tmp;

42: p->compile();

Figure 3.17: A simple sine wave oscillator example in LC.

99

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

Another simple sine wave oscillator example

01: //create a Patch object.

02: //patch { ... } expression is a syntax sugar to create a new patch.

03: var p = patch {
04: //=> operator builds a connection.

05: //if no inlet/outlet is specified it connects defout to defin.

06: src:Sin∼(440) => dac:DAC∼();
07: };
08: p->start();

09: now += 1::second;

10: p.src.freq = 880;

11:

12: now += 0.5::second;

13: //update patch { ... } expression is a syntax sugar to update a patch.

14: update patch(p) {
15: //=| operator removes an existing connection.

16: //when no inlet/outlet is specified, it disconnects defout and defin.

17: src =| dac;

18: };
19:

20: update patch(p){
21: //=> operator can also specify inlet/outlet explicitly.

22: src { \out => \ch1 } dac;

23: };
24: now += 1::second;

25: p->stop();

26:

27: now += 0.5::second;

28: p->start();

29:

30: var tmp = p.src;

31: update patch(p){
32: src:Phasor∼(440);
33: };
34: now += 1::second;

35: update patch(p){
36: src:tmp;

37: };

Figure 3.18: Another sine wave oscillator example in LC.

100

3.2 The Core Language Features

a patch example

01: //a simple patch. if no slot names given,

02: //LC automatically generates slotnames such as 0, 1, 2 ...

03: var p1 = patch {
04: Sin∼(440) => DAC∼();
05: };
06:

07: //slot names given and used again.

08: //the connection specifies inlet and outlet.

09: var p2 = patch {
10: src:Sin∼(440) { \out => \ch0 } DAC∼();
11: src { \out => \ch1 } dac;

12: };
13:

14: //connecting one outlet to several inlets at once.

15: var p3 = patch {
16: src:Sin∼(440) { \out => [\ch0, \ch1] } DAC∼();
17: };
18:

19: //cascading the unit-generators.

20: var p4 = patch {
21: Sin∼(10, amp:1) { \out => \amp } src:Sin∼(880) => DAC∼();
22: };

Figure 3.19: A patch expression example in LC.

101

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

a subpatch example

01: //create a patch to be used as a subpatch.

02: var sub1 = patch {
03: //create an inlet and connect its output as a freq input of a sine osc.

04: defin:Inlet∼() {\out => \freq} Sin∼() => defout:Outlet∼();
05: };
06:

07: //create another patch to be used also as a subpatch.

08: var sub2 = patch {
09: //this a triangle wave version.

10: defin:Inlet∼() {\out => \freq} Triangle∼() => defout:Outlet∼();
11: };
12:

13: //create one more patch. use ‘sub1’ as a subpatch

14: var parent = patch {
15: sig:Sig∼(220) => s:sub1 => DAC∼();
16: };
17: parent->start();

18:

19: //wait for 1 second and replace the subpatch, then change the freq.

20: update patch(parent){
21: s:sub2;

22: };
23: parent.sig.amp = 1760;//Sig∼ ugen output the constant signal given by amp.

Figure 3.20: A subpatch example in LC.

102

3.2 The Core Language Features

a patch-cloning example

01: //create a patch to be used as a prototype.

02: var p = patch {
03: //a simple sine wave oscllator.

04: s:Sin∼() => DAC∼();
05: };
06:

07: //clone it 8 times to play a phrase.

08: for (var i = 1; i <= 8; i += 1){
09: //first, clone the prototype.

10: var note = p->clone();

11: //‘note’ is a deep copy. changing ‘freq’ doesn’t affect other objects.

12: note.s.freq = i * 440;

13: note->start(dur:1::second);//play it for 1 second.

14: now += 0.5::second;//wait 0.5 second before the next note.

15: }

Figure 3.21: A patch-cloning example in LC.

Cloning. While Table returns a shallow copy when cloned, Patch returns a deep copy.

All the subpatches and unit-generators in a patch are recursively copied. This makes

it easier to use a Patch object as if it were a note-level object in other computer music

languages (for instance as in Csound). Figure 3.21 shows an example to clone a Patch

object.

Duck-typing. As duck-typing is applicable to any object in LC, patches and unit-

generators can also receive the benefits of duck-typing. Figure 3.22 describes a simple

example of duck-typing for Patch objects. While p1 and p2 are totally independent

from each other, since both patches have the slot s and both unit generators (Phasor∼
and Sin∼) have the slots freq, the patches can be treated in the same manner in the

function test. Since the table created between lines 11-28 has the slots required in the

function test, there occurs no runtime-error in this example.

3.2.2 Mostly-strongly-timed programming and other features with re-

spect to time

In the previous chapter, the problem of precise timing behaviour and the lack of other

features with respect to time were described. The recent programming languages such

103

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A patch duck-typing example

01: //create a patch.

02: var p1 = patch {
03: s:Phasor∼() {\out => \ch0 } DAC∼();
04: };
05:

06: //create another patch.;

07: var p2 = patch {
08: s:Sin∼() {\out => \ch1 } DAC∼();
09: };
10:

11: //create/initialize tables.

12: var t1 = new Table();

13: var t2 = new Table();

14: t1.s = t2;

15: t1.message = "Hello, world!";

16: t1.start = function(var self, dur){
17: println(self.message);

18: println("self.s.freq=" .. self.s.freq);

19:

20: var stime = now;

21: var etime = now + dur;

22: while(now <= etime){
23: var elapsed = (now - stime) / SampleRate;

24: println("time elapsed:" .. elapsed);

25: now += 1::second;

26: }
27: println("Bye!");

28: };
29:

30: //a test function for duck-typing.

31: var test = function(var obj, duration=5.0::second)

32: {
33: obj.s.freq = Rand(1, 10)* 440;

34: obj->start(dur:duration);

35: };
36:

37: //pass patches and a table as an argument.

38: test(p1);//p1 will start playing.

39: test(p2);//p2 will start playing.

40: test(t1);//t1.start(var self, dur) will be executed.

Figure 3.22: A duck-typing example (for Patch object) in LC.

104

3.2 The Core Language Features

The output from the above example

Hello, world!

self.s.freq=1320

time elapsed:0

time elapsed:1

time elapsed:2

time elapsed:3

time elapsed:4

time elapsed:5

Bye!

Figure 3.22: A duck-typing example (for Patch object) in LC (continued).

as LuaAV (307) and ChucK (312) provide sample-rate accurate behaviour by explicitly

controlling the progress of the internal logical time, and compositional algorithms can

be easily synchronized with real-time sound synthesis. However such software design

still leaves a significant problem in timing behaviour.

As logical time cannot be progressed without explicit control in these languages,

time-consuming tasks can easily invalidate the underlying assumption that tasks will

advance logical synchronous time before the deadline to provide its output samples

for real-time sound synthesis; missing the deadline causes temporal suspension in real-

time DSP. As tasks must be always performed synchronously with logical time, these

languages do not allow describing such time-consuming tasks as preemptive background

threads.

However, such time-consuming tasks can be frequently seen in computer music.

For instance, it can consume a considerable amount of time to load a sound file from

disk and then analyse the sound data to extract wavesets. While a user may consider

inserting the explicit advance of logical time (or explicit task-switching) inside the

time-consuming part of a task so that the task can be performed without suspending

real-time DSP, the resulting program can be unnecessarily complicated. It should be

also noted that such a strategy cannot be applied to a certain kind of tasks that can be

suspended by I/O block; for instance, DISK I/O can block the execution of a thread,

yet it is very unpredictable within a computer program as to when the disk I/O can be

finished.

105

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

Furthermore, even the most recent computer music languages lack some desirable

features with respect to time, with which general purpose real-time programming lan-

guages are normally equipped. While the designers of Impromptu considered such

features in its language design (276), Impromptu’s software design regarding execution

time constraints has a significant flaw in expressing the nested constraints. Moreover,

due to Impromptu’s software design, it does not guarantee precise timing behaviour

and a user often has to take some special care when dealing with time.

To overcome such problems as above, LC proposes and implements the concept

of mostly-strongly-timed programming, also integrating other features with respect to

time together.

3.2.2.1 Mostly-strongly-timed programming

As described in the previous section, the strongly-timed programming concept is ap-

plied to LC’s language design. Yet, as already mentioned, time-consuming tasks can

cause a temporary suspension of real-time DSP under such a language design. LC

solves this problem by extending the strongly-timed programming concept, introduc-

ing the explicit switch in runtime between synchronous/non-preemptive context and

asynchronous/preemptive context.

There are two keywords used in mostly-strongly-timed programming for context

switching. After the keyword async, the virtual machine executes its following block

in the asynchronous context, in which a thread can be preempted without the explicit

advance of time; instead, the explicit control of the advance of logical time is lost

until the ‘async’ block is over, as the advance of logical time occurs regardless of the

progress of the tasks. However, if a thread advances the logical time explicitly, for

instance by such an expression as ‘now += 1::second’, which advances the logical time

by duration, the thread resumes with sample-rate accurate timing precision, even in the

asynchronous context. Yet, when wake-up timing is given by a specific time (e.g., now

= SomeSpecificWakeUpTime) an exception can be thrown if the logical time is already

advanced beyond the given time. If not, the thread can be resumed with sample-rate

accuracy in timing.

On the other hand, after the keyword sync, the virtual machine switches the thread

to the synchronous context, in which any thread cannot be suspended without the

106

3.2 The Core Language Features

explicit advance of logical time (as in strongly-timed programming). These sync and

async blocks can be nested.

Thus, mostly-strongly-timed programming resolves the problem of temporary sus-

pension of real-time DSP caused by time-consuming tasks in strongly-timed program-

ming, while maintaining its sample-rate accurate timing precision. Mostly-strongly-

timed programming also can be used to realize a background task, as a thread in asyn-

chronous/preemptive context can process its task regardless of the advance of logical

time. Figure 3.23 briefly describes an example of mostly-strongly-timed programming

in LC.

3.2.2.2 Timed-tagged message communication

In addition to mostly-strongly-timed programming, LC also provides other desirable

features with respect to time. As LC’s timing behaviour is based on its logical syn-

chronous time, all these features can be performed with sample-rate accurate timing

precision.

Concurrency: synchronization and communication. As a computer program

often requires multi-tasking, programming languages also need to provide a means for

the communication and synchronization between tasks. The communication mecha-

nisms are generally based into two programming models, shared-memory and message-

passing. Burns et al. briefly describes these models as below.

“In the shared-memory approach some or all of a program’s variables are accessi-

ble to multiple threads. For a pair of threads to communicate, one of them writes a

value to a variable and the other simply reads it. In a message-passing programming

model, threads have no common state. For a pair of threads to communicate, one of

them must perform an explicit send operation to transmit data to another” (66, p.671).

“Synchronization refers to any mechanism that allows the programmer to control

the relative order in which operations occur in different threads. Synchronization is

generally implicit in message-passing models: a message must be sent before it can be

received. If a thread attempts to receive a message that has not yet been sent, it will

107

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A mostly-strongly-timed programming example

01: //create/play a sine wave oscillator patch to hear the suspension of real-time DSP

02: var p = patch {
03: s:Sin∼(440) => DAC∼();
04: };
05: p->start();

06:

07: //do some time-consuming tasks. the code below will be blocked for file I/O

08: //and can causes a temporary suspension of real-time DSP, which is audible;

09: //one may hear the sine wave oscillator stops its sound output for a while.

10: for (var i = 0; i < 16; i += 1){
11: //load sample0.wav - sample15.wav to the buffers no. 0-15

12: LoadSndFile(i, "/sound/sample" .. i .. ".wav");

13: }
14:

15: //the below infinite loop suspends the DSP forever, since there is no explicit

16: //advance of the logical time within, while the thread is in the ‘sync’ context.

17: /*

18: while(true){
19: }
20: */

21: //--

22: // mostly-strongly-timed programming

23: //--

24: //an array with 16 elements.

25: var wsarray = new Array(16);

26:

27: //‘async’ block switches to the preemptive/asynchronous context. The current

28: //thread can be preempted even when there is no explicit advance of logical time.

29: async {
30: //the below doesn’t suspend the real-time DSP.

31: for (var i = 0; i < 16; i += 1){
32: //load sample0.wav - sample15.wav to the buffers no. 0-15

33: LoadSndFile(i, "/sound/sample" .. i .. ".wav");

34: }
35:

36: //‘sync’ block switches to the non-preemptive/synchronous context.

37: sync{
38: for (var i = 0; i < 10; i += 1){
39: p.s.freq = Rand(1, 10) * 220;

40: now += 1::second;

41: }
42: //switching to the async context again.

43: async {

Figure 3.23: A mostly-strongly-programming example in LC.

108

3.2 The Core Language Features

44: //analyse/extract wavesets from the sound buffers.

45: //(the extraction can consume lots of time).

46: for (var i = 0; i < 16; i +=1){
47: wsarray[i] = ExtractWavesets(i);

48: }
49: }//the end of async block(lines 43-49); switching back to the sync context.

50: }//the end of sync block(lines 37-51); switching back to the async context.

51:

52: //this infinite loop don’t suspend DSP, since this is the async context and

53: //the underlying scheduler can preempt the thread without

54: //the explicit advance of logical time.

55: while(true){
56: }
57: }//the end of async block (lines 29-57); switching back to async context.

Figure 3.23: A mostly-strongly-programming example in LC (continued).

wait for the sender to catch up. Synchronization is generally not implicit in shared-

memory models: unless we do something special, a ‘receiving’ thread could read the

‘old’ value of a variable, before it has been written by the sender” (66, p.671).

Besides theses two models, tuple space, which originates in the Linda language by

Gelernter and his colleagues (124)(125), may be particularly notable. Impromptu (276)

provides this model as its language feature. While the tuple space model is also consid-

ered as a kind of distributed shared space memory model (69, pp.177-185), yet, unlike

the shared-memory model described above, it involves implicit synchronization. Mat-

suoka and Kawai briefly explain this concept as below.

In the Tuple1 Space, “the list of formal and actual arguments given in the send re-

quest forms a Tuple. The sender process inserts the Tuple into the Tuple Space. Each

Tuple is a unique, independent existence in the Tuple Space. The receiver process gives

its own list of arguments in its Tuple withdrawal request. Withdrawal occurs when

there is a Tuple matching the receiver’s specific request; otherwise, the receiver process

waits until such a Tuple becomes available in the Tuple Space. The receiver obtains

1A tuple is a sequence of elements. For example, (1, 5, 10) denotes a 3-tuple and (”foo”, ”bar”,
a object, yet another object, 1123) denotes a 5-tuple.

109

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

the necessary information from elements of the Tuple where the formal argument of

the receiver matched the actual element of the Tuple.” (207)

As Burns et al. also discuss in (66, p.660), the above programming models for

communication and synchronization can be realized both as a feature in programming

language design or as a library package. The recent computer music languages seem

more reliant on the shared-memory programming model. For instance, ChucK provides

the native Event class, which can be considered a variation of monitor-based synchro-

nization1, and the communication between threads is mainly performed by the shared-

memory model. SuperCollider also provides the Condition object for monitor-based

synchronization. The communication between threads is performed by the shared-

memory model. A notable example of the message-passing model in computer music

language design is RPC (Remote Procedure Call) in Impromptu (276). In addition to

the RPC mechanism, Impromptu also provides tuple space.

Time-tagged message communication in LC. LC adopts the message-passing

model and provides the feature in the forms of library functions and language specifi-

cation2. Each message can be tagged with its delivery timing and LC’s strongly-timed

programming feature also guarantees messages can be received at the specified time

with sample-rate accuracy; if the receiver thread is not waiting for a message at the

specified time, the message will remain in the message queue of the receiver thread and

will be received immediately when the receiver thread starts receiving.

Figure 3.24 is an example of time-tagged message communication in LC, in which

Thread’s recv method and queueMessage method are used. The queueMessage can

specify delivery timing when the message can be readable by the receiver thread. Both

1Synchronization can be categorized into busy-wait synchronization and scheduler-based synchro-
nization. The former (busy-wait synchronization) loops until a thread acquires the requesting lock
as seen in the spin lock mechanism. The later blocks the thread that is currently running and then
switches to a different thread, as seen in semaphores and monitors (66, Chapter 12.3: Shared Memory).
Java’s synchronization mechanism, which provides notify()/notifyAll()/wait() methods, is an example
of monitor-based synchronization.

2As the prototype of LC focuses on the adoption of the message-passing model into a computer
music language and does not particularly offer some mechanism for mutual exclusion. However, the
current version of LC does not require a mutual exclusion mechanism since in the sync context, only one
thread can be activated and it is non preemptive. Thus, the part of the code which requires resource
locking can be enclosed in the sync context for mutual exclusion. We would like to leave the issue
of whether LC should adopts mutual exclusion as a topic of further investigation, as the issue is also
related to parallelisation; the current prototype of LC is concurrent, but not parallel.

110

3.2 The Core Language Features

time value (the delivery time) as on lines 29-30 and duration value (offset from now)

can be given for the timing. The mode parameter (\blocking or \nonblocking) can be

also specified. In the non-blocking mode, recv immediately returns the symbol value,

\nomessage, if there is no message available. In the case \nomessage need to be sent

from the sender thread, a user can use Thread’s isMessageReceived method to make

sure if \nomessage is returned because there was no message available.

Alternatively, LC also provides the receive statement and <- operator for time-

tagged message communication, as shown in Figure 3.25. The <- operator can be used

in the same manner as the queueMessage method, as seen between lines 62-741. As

shown between line 69-70, the <- operator can specify the message delivery timing by

‘@’ followed by a time value or a duration value. When ‘@’ is not given, it is delivered

immediately to the receiver’s message queue.

The receive statement is used between lines 06-44. As on line 06, the receive state-

ment is followed by a variable declaration within the parentheses. The receive statement

blocks until when a message is received and then the received message is first stored into

this variable (in the Figure 3.25 example, it is stored to ‘msg’). Then, each case and

cond will be examined one-by-one from the beginning if the received message matches

the given conditions. When case is examined, it simply applies the ‘==’ operator be-

tween the received message and its following value, while cond evaluates the following

boolean condition. If the evaluation result is true, the following compound statement

({ ... }) is executed. When there is no matching case/cond, the code jumps to the de-

fault label (as on line 53) if any. When there is neither matching cond/case nor default,

the message will be temporarily neglected and the receive statement will start waiting

for the next message. These neglected messages are pushed to the ‘unmatched’ queue

and when the code reaches the next receive statement, all the unmatched messages will

be returned to the thread’s message queue in the same order as when they were first

received (as seen between lines 47-56).

1As the < − operator returns the receiver thread object and is left-associative, the operator can
be cascaded as shown in Figure 3.25.

111

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A timed interthread messaging example in LC(1)

01: //create a function object.

02: var f = function(){
03: var thread = GetCurrentThread();

04: while(true){
05: //receive a message in the blocking mode.

06: var message = thread->recv(\blocking);

07: if (message == \quit){
08: break;

09: }
10: println("received :" .. message);

11: }
12:

13: println("bye!");

14: return;

15: };
16:

17: //starting the function in a new thread

18: var thread = f@();

19: thread->start();

20:

21: //queue a message to the thread’s mailbox

22: thread->queueMessage("Hello!");

23: now += 1::second;

24:

25: //since the return value of queueMessage() is the thread itself,

26: //it can be cascaded as below.

27: //it is also possible to specify the message delivery timing.

28: thread->queueMessage("Sending the first message")

29: ->queueMessage("This should be received after 1 sec", now + 1::second)

30: ->queueMessage("This should be received after 2 sec", now + 2::second);

31:

32: if duration value is used as timing, it is interpreted as ‘now + duration’.

33: thread->queueMessage(\quit, 3::second);

The output from the above example

received :Hello!

received :Sending the first message

received :This should be received after 1 sec

received :This should be received after 2 sec

bye!

Figure 3.24: A timed interthread messaging example in LC(1).

112

3.2 The Core Language Features

A timed interthread messaging example in LC(2)

01: //create a function object.

02: var f = function(){
03: var thread = GetCurrentThread();

04: while(true){
05: //receive statement . the received message will be set to ‘msg’.

06: receive(var msg){
07: //if msg == \quit
08: case \quit:{
09: //exit this while loop.

10: break;

11: }
12:

13: //‘case’ can be juxtaposed.

14: case \salut:
15: case \hello:
16: case \greet:{
17: println("hello (received:" .. msg .. ")");

18: }
20:

21: //‘cond’ takes a boolean expression.

22: cond msg instanceof \integer || msg instanceof \symbol:{
23: println("integer or symbol:" .. msg);

24: }
25: cond msg instanceof \float && msg >= 0:{
26: println("float (msg >= 0) :" .. msg);

27: }
28: cond msg instanceof \float && msg < 0:{
29: println("float (msg < 0) :" .. msg);

30: }
31: cond msg instanceof \Array:{
32: print("received an array [");

33: for (var i = 0; i < msg.size; i += 1){
34: print(msg[i]);

35: if (i == msg.size - 1){
36: println("]");

37: }
38: else {
39: print(", ");

40: }
41: }
42: }//the end of ‘for’.

43: }//the end of the ‘cond’.

44: }//the end of the above receive statement.

Figure 3.25: A timed interthread messaging example in LC(2).

113

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

45: println("");

46: println("received ‘\\quit’.);
47: println("try receiving two more messages in the message queue.");

48: for (var i = 0; i < 2; i+= 1){
49: receive(var msg){
50: cond msg instanceof \String:{
51: println("string : " .. msg);

52: }
53: default:{
54: println("default(received :" .. msg .. ")");

55: }
56: }
57: }
58: println("bye!");

59: };
60:

61: var receiver = f@();

62: receiver->start();

63: //send messages

64: receiver <- \salut
65: <- @now + 1::second, \hello;
66: //send some more

67: receiver <- @5::second, \greet
68: <- @2.5::second, 100

69: <- 0.5

70: <- @1.5::second, -100.0

71: <- @now + 3::second, \some other symbol;

72: receiver <- @2::second , [1, \foo, 3, \bar];
73: receiver <- @4::second , "a string"

74: <- @4::second , \quit
75: <- @4::second , "yet-another string";

The output from the above example
hello (received:\salut) line 17 (sent on line 64)

float (msg >= 0) :0.500000 line 26 (sent on line 69)

hello (received:\hello) line 17 (sent on line 65)

float (msg < 0) :-100.000000 line 29 (sent on line 70)

received an array [1, \foo, 3, \bar] lines 32-42 (sent on line 72)

integer or symbol :100 line 23 (sent on line 68)

integer or symbol :\some other symbol line 23 (sent on line 71)

received ‘\quit’.
try receiving two more messages in the message

queue.

string : a string line 51 (sent on line 73)

string : yet-another string line 51 (sent on line 75)

bye! line 57

Figure 3.25: A timed interthread messaging example in LC(2) (continued).

114

3.2 The Core Language Features

3.2.2.3 Timing constraints

Start-time constraint and execution-time constraint. One of the most impor-

tant features, which is seen in many real-time programming languages, is to give tim-

ing constraints to a task (e.g., start-time constraints and execution-time constraints).

Start-time constraint “provides the earliest deadline by which a function must begin

execution” (or in other words, when the task can be started), and execution-time con-

straint “expresses the maximum time available for the execution” (or time-out) (276).

The feature of start-time constraints is relatively easy to implement; the underlying

scheduler of a computer music language can simply schedule a task to be started at the

scheduled time or a thread can sleep right after its entrance until the given start-time.

However the constraint on execution-time requires more effort to implement. Unlike

the exception-handling mechanism, in which an exception occurs at a certain point of

the code, time-out can occur at any point in the code when the given execution-time

constraint was violated; thus, timing constraints involves asynchronous transfer of con-

trol (ATC), which “is a transfer of control within a thread, triggered not by the thread

itself but from some action by another thread or an event handler” (60).

Some programming languages provide the syntaxes and semantics for timing con-

straints and others do not (66). For instance, Ada (285) provides the mechanism for

timeout as a part of its language specification while real-time Java handles it within the

framework of exception handling by adding a special exception called Asynchronous-

lyInterruptedException. As for computer music programming languages, while many

recent computer music languages still lack this feature of timing constraints, Impromptu

is designed with such features provided by its scheduler (274)(276). Yet, as discussed

in the next chapter, Impromptu has a flaw in its software design in execution-time

constraints and cannot deal well with nested timing constraints.

Start-time constraint in LC. LC provides the start-time constraint feature for two

objects: Thread and Patch, as both of these objects involve concurrency1. Since LC is

a mostly-strongly-timed language, this feature is performed with sample-rate accuracy.

Figure 3.26 and Figure 3.27 describe the start-time constraint examples in LC. As

shown on Figure 3.26 (lines 07-09) and Figure 3.27 (lines 12-14), by giving an argument

1Patch objects must generate sound output concurrently when activated.

115

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A thread start-time constraint example in LC

01: var f = function(var msg){
02: print(msg);

03: println(now);

04: };
05:

06: //starting three threads, each with a different start-time constraint.

07: f@("the 1st thread with 1.0 sec offset :")->start(offset:1::second);

08: f@("the 2nd thread with 1.5 sec offset :")->start(offset:1.5::second);

09: f@("the 3rd thread with 2.0 sec offset :")->start(offset:2.0::second);

10: print("now :");

11: println(now);

The output from the above example

now :#<time:192.261224sec(8478720::samp)>

the 1st thread with 1.0 sec offset :#<time:193.261224sec(8522820::samp)>

the 2nd thread with 1.5 sec offset :#<time:193.761224sec(8544870::samp)>

the 3rd thread with 2.0 sec offset :#<time:194.261224sec(8566920::samp)>

Figure 3.26: A thread start-time constraint example in LC.

offset (duration from now) to start method, Thread and Patch can be activated at the

specified time.

Execution-time constraint in LC. LC is also equipped with the execution-time

constraint feature as a part of its language design. As LC is a mostly-strongly-timed

programming language as described earlier, this timing constraint is also performed in

logical synchronous time with sample-rate accuracy.

The within-timeout statement provides the execution time constraint feature. Ba-

sically speaking, the within block will be given an execution-time constraint and if the

given deadline is reached while executing the block, the code will jump to the timeout

block immediately when the execution-time constraint is violated. If the within block is

executed within the given time constraints, timeout block will be simply skipped after

the within block is over.

In Figure 3.28, the within block between lines 07-13 is given the execution time

constraint of five seconds as on line 05. While the block contains an infinite loop (lines

09-12), in which the frequency of a sine wave oscillator of the patch created between

116

3.2 The Core Language Features

A patch start-time constraint example in LC(1)

01: var p1 = patch {
02: src:Noise∼() => DAC∼();
03: };
04:

05: var p2 = patch {
06: src:Sin∼(440) {\defout => \ch1} DAC∼();
07: };
08:

09: var p3 = patch{
10: src:Phasor∼(440) => DAC∼();
11: };
12: p1->start(offset:1::second);

13: p2->start(offset:2::second);

14: p3->start(offset:0.25::second);

Figure 3.27: A patch start-time constraint example in LC.

lines 01-04, the code will timeout after five seconds and then jump to the timeout block

on line 14, because of the execution constraint. It is possible to write a within block

without a matching timeout block as shown between lines 18-24, in a case when a user

does not need to handle time-out.

One of the interesting features of LC’s execution-time constraint is that an execution-

time constraint with zero time can be given, as in the synchronous context, LC’s logical

time will not be advanced without explicit instruction by a user program. As the within

statement between lines 27-33 is in the ‘sync’ context1 and there is no explicit advance

of logical time, the ‘for’ loop inside the within block can be processed within zero sam-

ple time. Thus, the following timeout block will never be reached in this example.

While some programming languages such as real-time Java or Ruby handle the

execution-time constraint feature within the framework of exception-handling as seen

in real-time Java, LC provides the dedicated syntax and semantics, separated from the

exception-handling mechanism. The main reason is that the behaviours of execution-

time constraints and exception-handling significantly differ when nested.

Generally speaking, in the exception handling mechanism, when an exception is

thrown in the inner try-catch block, the system examines which catch block can handle

1In the current version of LC prototype, the default context is ‘sync’.

117

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

the exception from the most inner catch block towards the outer blocks. On the other

hand, when the execution-time constraints are nested, the outer execution-time con-

straint may impose shorter duration than the inner constraint. In such a case, when

the deadline of the outer constraint is reached, the thread of execution must jump

directly to the handler of the outer constraint1. Figure 3.29 describes an example of

nested execution-time constraints in LC. As shown, exactly when the deadline of the

outer execution-time constraint is reached, the control immediately jumps to the time-

out block of the outer execution-time constraint, as normally expected for the nested

execution-time constraints.

Furthermore, as LC is mostly-strongly-timed, the within-timeout statement can

be effectively utilized for execution-time constraints in the asynchronous/preemptive

context. In the Figure 3.30 example, if the task (between lines 06-11) to load the sound

files and to extract wavesets fails to be completed before the deadline, the code replaces

the wavesets with the previously used ones (line 15); thus, in LC, a time-consuming task

can run in the background and a user can describe the handler when the background

task failed to be finished before the given deadline. Such a feature would be desirable

to dynamically record and process the instrumental/digitally-generated sounds in live

computer music performances.

Time constrained communication in LC can also be achieved by the combination

of an execution time constraint and inter-thread message communication described in

the previous section; the deadline to receive the response from the other thread can be

given as an execution time constraint as in Figure 3.31.

3.2.3 The Integration of objects and manipulations for microsound

synthesis

In Chapter 2.3, the difficulty of microsound synthesis programming in the existing

computer music languages was discussed and the problem were assessed as a case of

the abstraction inversion software anti-pattern2.

1Such a behaviour of nested execution-time constraints differs from one of exception handling. Thus,
in real-time Java, which handles execution-time constraint within the exception-handling mechanism
must introduce a special behaviour for execution-time constraints, which differs from the other normal
exceptions.

2The problem of cognitive misfits between the conceptualization of microsound synthesis techniques
and language design was also briefly discussed in the same chapter.

118

3.2 The Core Language Features

A timeout example in LC(1)

01: var p = patch{
02: sin:Sin∼(440) => DAC∼();
03: };
04: p->start();

05:

06: //timeout after 5 sec

07: within(5::second){
08: //an infinite loop, which changes the sine wave frequency every 0.5 sec.

09: while(true){
10: p.sin.freq = Rand(1,10)* 440;

11: now += 0.5::second;

12: }
13: }
14: timeout{
15: println("timeout!");

16: }
17:

18: //no timeout block

19: within(Rand(5,8)::second){
20: while(true){
21: p.sin.freq = Rand(1,10)* 440;

22: now += Rand(2,4) * 0.125::second;

23: }
24: }
25:

26: //zero sec timeout is possible as LC is strongly-timed.

27: within(0::sample){
28: //print out 100 asterisks. this can be performed in 0 sample, as the thread is

29: //now in the ‘sync’ context and there is no explicit advance of logical time.

30: for(var i = 0; i < 100; i += 1){
31: println("*");

32: }
33: }
34: timeout{
35: println("the code won’t reach here.");

36: }

Figure 3.28: A timeout example in LC(1).

119

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A timeout example in LC(2)

01: var start = now;

02: within(1::second){
03: //advance the time 0.25 sec. still before the deadline.

04: now += 0.25::second;

05: within(10::second){
06: //advance the time 5 sec. the outer deadline is violated.

07: now += 5::second;

08: }
09: timeout{
10: var elapsed = now - start;

11: println("timeout!! the inner timeout block!!");

12: println(elapsed);

13: }
14: }
15: timeout{
16: var elapsed = now - start;

17: println("timeout!! the outer timeout block!!");

18: println(elapsed);

19: }

The output from the above example

timeout!! the outer timeout block!!

#<dur:44100::samp>

Figure 3.29: A timeout example in LC(2).

120

3.2 The Core Language Features

A timeout example in LC(3)

01: async {
02: var tmp = wsarray;

03: wsarray = new Array(16);

04:

05: //try loading 16 new sound files and extract wavesets within 0.5 second.

06: within(0.5::second){
07: //try loading 16 sound files.

08: for (var i = 0; i < 16; i +=1){
09: LoadSndFile(i, "/sound/sample" .. i .. ".aif");

10: wsarray[i] = ExtractWavesets(0);

11: }
12: }
13: timeout{
14: //in case we failed to meet above before the deadline, use the old one.

15: wsarray = tmp;

16: }
17: }

Figure 3.30: A timeout example in LC(3).

A timeout example in LC(4)

01: //sending a message to ‘receiver’ thread.

02: suppose the receiver thread is already created.

03: receiver <- "hello";

04: //the deadline for the response is 5 second later.

05: within(5::second){
06: receive(var msg){
07: default:

08: println("received : " .. msg);

09: }
10: println("done.");

11: }
12: //when the response didn’t arrive before the deadline.

13: timeout {
14: println("missed the deadline for the response.");

15: }

Figure 3.31: A timeout example in LC(4).

121

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A Samples object creation example

01: //creating a new Samples object from the buffer no. 0.

02: //reading 256 samples, changing pitch one octave higher

03: //from 1 sec after the begging of the buffer.

04: var snd = ReadBuf(bufno:0, dur:256::samp, rate:2.0, offset:1::second);

05: //creating a new Samples object by generating a window by a library function.

06: var win = GenWindow(521::samp, \hanning);
07: //creating a new Samples object by calling the Samples’ methods.

08: var grain = snd->applyEnv(win);

09: var halfAmp = snd->amplify (0.5);

10: var octUp = snd->resample(snd.size / 2);

11: var reversed = snd->reverse();

Figure 3.32: A Samples object creation example.

From such a perspective, it can be assumed that the difficulty in microsound syn-

thesis programming can be reduced by designing a sound synthesis framework that

does not cause abstraction inversion; LC integrates the direct counterpart objects for

microsounds in its abstraction, together with the related methods and functions. LC

also still provides the traditional unit-generators and the means for the collaboration

between the unit-generators and microsound synthesis objects.

3.2.3.1 Objects and manipulations for microsound synthesis

Samples object. In LC’s sound synthesis framework, each microsound is abstracted

as a Samples object. A Samples object is immutable and contains an arbitrary number

of samples within (as much as the operating system allows to allocate the memory for

samples).

A Samples object can be created in many different ways. Figure 3.32 describes an

example of the various ways to create Samples objects. As Samples is immutable, a

new object is returned by these methods; the original object will not be changed at

all. Table 3.9 describes the methods and attributes of Samples. Each sample within a

Samples object can be directly accessed by index as shown in Figure 3.33.

SampleBuffer object. As Samples is an immutable object, LC provides Sample-

Buffer for tasks that involve the modification of the sample values within a microsound.

Samples and SampleBuffer objects can be mutually convertible to the other type by

122

3.2 The Core Language Features

Samples object

size

the size slot retains the number of samples within the Samples object

(read-only).

dur

the dur slot retains the duration in samples of the Samples object

(read-only).

resample(var self, size)

returns a new Samples object by resampling self to size samples

reverse(var self)

returns a new Samples object created by reversing the waveforms of self

amplify(var self, amp)

returns a new Samples object created by amplifying self by amp.

normalize(var self)

returns a new Samples object created by normalizing self.

add(var self, samples)

returns a new Samples object created by adding samples to self.

sub(var self, samples)

returns a new Samples object created by subtracting samples from self.

mul(var self, samples)

returns a new Samples object created by multiplying self by samples.

div(var self, samples)

returns a new Samples object created by dividing self by samples.

accumulatePhase(var self, phase)

accumelates the phase information. The phase is added to self, but will be

wrapped between -PI to PI.

Table 3.9: Samples object.

123

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

Samples object (continued)

invertWS(var self)

returns a new Samples object created by performing waveset inversion to self.

applyEnv(var self, env)

returns a new Samples object created by applying the envelope env to self.

maxAmp(var self)

returns the maximum amplitude of self.

fir(var self, coefs)

returns a new Samples object created by applying FIR filter below with coefs
(an array of coefficients, [a0, a1, a2, ... aN]) to self.
y(n) = a0 * x(n) + a1 * x(n - 1) + a2 * x(n - 2) ... aN * x(n - N)

iir(var self, coefsA, coefsB)

returns a new Samples object created by applying IIR filter below with co-
efsA (an array of coefficients, [a0, a1, a2, ... aN]) and coefsA (an array

of coefficients, [b1, b2, ... bN]) to self.
y(n) = a0 * x(n) + a1 * x(n - 1) + a2 * x(n - 2) ... aN * x(n - N) - b1 *

y(n - 1) - b2 * y(n - 2) - b3 *(n - 3) - ... - bN * y(n - N)

copyOfRange(var self, start=0, end=-1)

returns a new Sample object, copying the samples within self. The start and

end parameters specify the range to be copied. When giving a negative

value for end, it is interpreted as end = size - 1.

getWaveset(var self, start=0)

extract a waveset within the Samples object self from the given index start.
The return value is a new Sample object which is the first waveset found.

If not found, the return value will be ‘null’.

getZeroCrossingIndex(var self, start=0)

searches the first zero-crossing point within the Samples object self
from the given index start. The return value is the index of the first

zero-crossing. If no zero-crossing is found, the return value will -1.

toSampleBuffer(var self, start=0, end=-1)

returns a new SampleBuffer object, copying the samples within self. The start
and end parameters specify the range to be copied. When giving a negative

value for end, it is interpreted as end = size - 1.

Table 3.9: Samples object (continued).

124

3.2 The Core Language Features

An indexed-access to Samples object example

01: var win = GenWindow(128::samp, \triangle);
02:

03: //iterate each samples within ‘win’.

04: for(var i = 0; i < win.size; i += 1){
05: println("win[" .. i .. "] = " .. win[i]);

06: }

The output from the above example

win[0] = 0.000000

win[1] = 0.015625

win[2] = 0.031250

win[3] = 0.046875

win[4] = 0.062500

win[5] = 0.078125

win[6] = 0.093750

...

win[126] = 0.031250

win[127] = 0.015625

Figure 3.33: An indexed-access to Samples object example.

125

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

SampleBuffer object

size

the size slot retains the number of samples within the SampleBuffer object

(read-only).

dur

the dur slot retains the duration in samples of the Samples object

(read-only).

toSamples(var self, start=0, end=-1)

returns a new Samples object, copying the samples within self. The start
and end parameters specify the range to be copied. When giving a negative

value for end, it is interpreted as end = size - 1.

Table 3.10: SampleBuffer object.

calling toSampleBuffer or toSamples method. Table 3.10 describes the methods and

attributes of SampleBuffer. SampleBuffer allows indexed-access to the samples both

for read and write, as shown in Figure 3.34.

Library functions to manipulate microsounds. As described, a Samples object

can be used to represent a microsound, and its methods provide the related manipula-

tions for microsound synthesis, such as enveloping, addition, amplification, etc. Some

manipulations are better provided as library functions not as Sample’s methods, if they

are not directly associated with an existing Samples object; for instance, a function to

create a new Samples object from a sound buffer is not associated to any particu-

lar Samples object that is already created. Table 3.11 lists the library functions to

create/manipulate Samples in the current prototype of LC.

3.2.3.2 Microsound synthesis in LC

This section provides the code examples for microsound synthesis techniques in LC.

While there are lots of synthesis techniques that belong to the family of microsound syn-

thesis, those most widely-used in computer music compositions are described to provide

the enough information for the following discussion in the later chapter. The examples

include granular synthesis (synchronous, quasi-synchronous and asynchronous), granu-

lar sampling, and waveset synthesis. Time-stretching and cross-synthesis by FFT/IFFT

126

3.2 The Core Language Features

A SampleBuffer object example

01: //create a SampleBuffer object (8 samples).

02: var sbuf1 = new SampleBuffer(8);

03: //generate a square waveform.

04: for(var i = 0; i < subf1.size; i += 1){
05: if (i < subf1.size / 2){
06: sbuf1[i] = 1.0;

07: }
08: else {
09: sbuf1[i] = -1.0;

10: }
11: }
12: //create a Samples object

13: var smp1 = sbuf1->toSamples();

14: println("a new Samples object");

15: for(var i = 0; i < smp1.size; i += 1){
16: println("smp1[" .. i .. "] = " .. smp1[i]);

17: }
18: //amplify ‘smp1’ and convert it back to a SampleBuffer object

19: var tmp = smp1->amplify(2.0);

20: var sbuf2 = tmp->toSampleBuffer();

21: println("a new SampleBuffer object");

22: for(var i = 0; i < sbuf2.size; i += 1){
23: println("sbuf2[" .. i .. "] = " .. sbuf2[i]);

24: }

The output from the above example

a new Samples object

smp1[0] = 1.000000

smp1[1] = 1.000000

smp1[2] = 1.000000

smp1[3] = 1.000000

smp1[4] = -1.000000

smp1[5] = -1.000000

smp1[6] = -1.000000

smp1[7] = -1.000000

a new SampleBuffer object

sbuf2[0] = 2.000000

sbuf2[1] = 2.000000

sbuf2[2] = 2.000000

sbuf2[3] = 2.000000

sbuf2[4] = -2.000000

sbuf2[5] = -2.000000

sbuf2[6] = -2.000000

sbuf2[7] = -2.000000

Figure 3.34: A SampleBuf object example.

127

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

The list of library functions for microsound synthesis

ReadADC(var dur, channel=0, offset=0::samp)

Read the input samples from the sound input at the channel channel for the

duration dur. Giving offset parameter will give an offset to read. The

return value is a Samples object. For instance, ReadDAC(512::samp, 1) will

read the last 512 samples from the input channel 1 and ReadADC(128::samp,

offset:10::samp) will returns the samples between the last 138th sample to

10th sample.

WriteDAC(var samples, pan=0, offset=0::samp)

Write out a Samples object for the sound output with panning (-1.0 - 1.0).

To schedule the sound output in the future, the offset argument specify when

the output is scheduled (the duration from now).

PanOut(var samples, pan=0, offset=0::samp)

Write out a Samples object for the sound output, with panning (panning
between -1.0 to 1.0). To schedule the sound output in the future, the offset
can be specify the duration from now when the output is scheduled.

GenWindow(size, type=\hanning, amp=1.0)

GenWindow generates a window of type with the amplitude amp. The return

value is a Samples object that contains the window.

ReadBuf(bufno, dur, rate=1.0, offset=0::samp, channel=0

ReadBuf returns a Sample object, taken from the buffer no. bufno, with the

duration of dur. The rate parameter can be given to specify the reading

rate (e.g., giving 2.0 for rate will result in octave higher samples and

0.5 for octave lower). The offset parameter specifies the duration from

the beginning of the buffer, where the samples should be taken from the

buffer and channel can be given when the buffer contains multi-channel audio

samples.

WriteBuf(bufno, samples, offset=0::samp, channel=0, mode=\overwrite

WriteBuf write the given Samples object samples, at the position in the

buffer given by offset to the channel channel. The writing mode can be

specified by mode, which can be either \overwrite or \overlap add.

ExtractWavesets(var bufno, channel=0)

Analyse the sample data at the channel channel of the buffer No bufno and

returns an array of Samples, each element of which is a waveset.

Table 3.11: The list of library functions related to microsound synthesis in the prototype
version of LC.

128

3.2 The Core Language Features

The list of library functions for microsound synthesis (FFT)

CreateBuf(var bufno, dur, numChannels=1)

CreateBuf creates a new buffer with the buffer no bufno, the duration of dur
and the number of channels numChannels. If the buffer with the same bufno
already exsits, the old one is deleted and replaced by new one.

DeleteBuf(var bufno)

DeleteBuf deletes the buffer bufno from the current environment.

LoadSndFile(var bufno, file)

LoadSndFile creates the buffer no bufno and loads the sound file file. If

the buffer with the same bufno already exists, the old one is deleted and

replaced by a new one.

FFT(var samples)

FFT performs fast Fourier transform to given samples (The current version

just performs real FFT only). The size of the Samples object samples must

be the power of two. This function returns the FFT result as an array of

Samples objects ([real-part, imaginary-part]).

IFFT(var real, imag)

IFFT performs inverse fast Fourier transform to given real and imag. The

sizes of the Samples objects real and imag must be a power of two. This

function returns the IFFT result as a Samples object (only real part of the

signal).

CarToPol(var real, imag)

CarToPol performs cartesian to polar coordinate conversion and returns an

array [magnitude, phase].

PolToCar(var mag, phase)

PolToCar performs polar to cartesian coordinate conversion and returns an

array [real, imag].

PFFT(var samples, window=\hanning)

PFFT performs FFT, after windowing the window type of window and returns

an array of magnitude, phase]. While the same tasks can be performed by

combining the other functions, this function is provided for the utility.

PIFFT(var mag, phase, window=\hanning)

PIFFT performs IFFT, after windowing the window type of window and returns

a Samples object (real-part). While the same tasks can be performed by

combining the other functions, this function is provided for the utility.

Table 3.12: The list of library functions related to microsound synthesis in the prototype
version of LC (continued).

129

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

are also included as LC’s sound synthesis framework can perform sound processing in

the frequency domain within the same framework.

ReadADC and WriteDAC. First, we describe a simple example that reads the

samples from the sound input and writes them out to the sound output. Figure 3.35

first simply routes the input to the left channel (of a stereo output device) for three

seconds without any sound processing. Then, it reads both left and right channels and

outputs the samples, applying a one second delay only to the right channel. The last

part of the code plays the original input for three seconds, followed by the reversed

sound. As the example reads the last 64 samples from ADC in every iteration and

then outputs it to DAC, the code would cause the same amount of latency between the

input and the output.

Synchronous, quasi-synchronous, and asynchronous granular synthesis. As

briefly described in the earlier chapter, synchronous granular synthesis is a kind of

granular synthesis, in which “sounds result from one or more streams of grains. Within

each stream, one grain follows another, with a delay period between the grains. Syn-

chronous means that the grains follow each other at regular intervals” (242, p.93).

Quasi-synchronous granular synthesis is another variation of granular synthesis, in

which “the grains follow each other at unequal intervals, where a random deviation

factor determines the irregularity” (242, p.93). On the other hand, asynchronous gran-

ular synthesis “abandons the concept of linear streams of grains” and “instead, it scat-

ters the grain over a specified duration within regions inscribed on the time-frequency

plane” (242, p.96).

Figure 3.36 describes an example of simple synchronous granular synthesis in LC.

The code first creates a SampleBuffer object with 1024 samples and fills it with four

cycles of a sine wave. Then, these 1024 samples are applied to a Hanning window

to create a grain (lines 01-11). The code between lines 13-18 performs synchronous

granular synthesis with this grain, by writing the grain to the sound output and then

waiting for the 1/4 duration of the grain so that the four grains can overlap each other.

It should be noted that the code reuses the same grain in the main loop. As Samples

in LC is an immutable object, it can be guaranteed that once microsound is generated,

130

3.2 The Core Language Features

A ReadADC/WriteDAC example

01: //first 3 seconds, perform play-through (to the left channel)

02: within(3::second){
03: while(true){
04: //read 64 samples from ADC

05: var in = ReadADC(64::samp);

06: WriteDAC(in);

07: //advance the time for the duration of the input samples.

08: now += in.dur;

09: }
10: }
11: //then read/write to both channels, applying 1 sec delay to the left channel.

12: within(3::second){
13: while(true){
14: var l = ReadADC(64::samp); //left channel

15: var r = ReadADC(64::samp, 1);//right channel

16: WriteDAC(l,0);

17: WriteDAC(r,1, offset:1::second);

18: now += l.dur;

19: }
20: }
21:

22: //play-through for 3 seconds, then play it backward.

23: within(3::second){
24: var pos = 0::second;

25: var dur = 512::samp;

26: var win = GenWindow(512::samp, \hanning);
27: var ipos= 6::second;

28: while(true){
29: //read 512 samples at ‘pos’ and send it to DAC.

30: var original= ReadADC(dur);

31: WriteDAC(original);

32: //output the reversed version.

33: //ipos moves from 6 sec to 3 sec since the start

34: WriteDAC(original->reverse(), offset:ipos);

35: //advance the reading position and the logical time

36: now += dur;

37: //adjust ‘ipos’ so that the next grain for reversed play-back can be

38: //should be placed the right before the previous one.

39: ipos -= dur * 2;

40: }
41: }

Figure 3.35: A ReadADC/WriteDAC example.

131

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

A synchronous granular synthesis example

01: //create a SampleBuffer and fill it with 256 samp sinewave * 4 cycles

02: var sbuf = new SampleBuffer(1024);

03: for (var i = 0; i < sbuf.size; i += 1){
04: sbuf[i] = Sin(3.14159265359 * 2 * (i * 4.0 / sbuf.size));

05: }
06:

07: //create a grain. apply an envelope to sinewave and resample it to 440 samples

08: var tmp = sbuf->toSamples();

09: var win = GenWindow(1024::samp, \hanning);
10:

11: var grain = tmp->applyEnv(win)->resample(440)->amplify(0.25);

12:

13: within(5::second){
14: while(true){
15: WriteDAC(grain);

16: now += grain.dur / 4;

17: }
18: }

Figure 3.36: A synchronous granular synthesis example.

it will be never changed and be reused even when grains must overlap each other as in

this example. Figure 3.37 describes an example of quasi-synchronous granular synthesis

in LC. As shown, the only difference from Figure 3.36 in this example is line 16, where

the interval to the next grain is modified to give a random value between 1 - 20 ms.

Figure 3.38 describes an example of simple asynchronous granular synthesis. Unlike

two previous examples, it randomly distributes 2048 grains, each with a various dura-

tion (64 - 512 samples) within the next five seconds. The scheduling of these grains is

done synchronously at once (without the advance of logical time).

Granular pitch-shifting and time-stretching. While there exist various phase-

vocoding techniques for time-stretching and pitch-shifting, a microsound synthesis tech-

nique called granular-sampling (189) is also often used in computer music compositions

due to its computational efficiency. Generally speaking, both techniques involve the

creation of grains by extracting short fragments from the original sound samples (or

real-time input) and applying a window function to the fragments. Then, these grains

132

3.2 The Core Language Features

A quasi-synchronous granular synthesis example

01: //create a SampleBuffer and fill it with 256 samp sinewave * 4 cycles

02: var sbuf = new SampleBuffer(1024);

03: for (var i = 0; i < sbuf.size; i += 1){
04: sbuf[i] = Sin(3.14159265359 * 2 * (i * 4.0 / sbuf.size));

05: }
06:

07: //create a grain. apply an envelope to sinewave and resample it to 440 samples

08: var tmp = sbuf->toSamples();

09: var win = GenWindow(1024::samp, \hanning);
10:

11: var grain = tmp->applyEnv(win)->resample(440)->amplify(0.25);

12:

13: within(5::second){
14: while(true){
15: WriteDAC(grain);

16: now += Rand(1, 20)::ms;

17: }
18: }

Figure 3.37: A quasi-synchronous granular synthesis example.

An asynchronous granular synthesis example

01: //this time white noise is used as the sound source/

02: var sbuf = new SampleBuffer(1024);

03: for (var i = 0; i < sbuf.size; i += 1){
04: sbuf[i] = Rand(-1.0, 1.0);

05: }
06:

07: var tmp = sbuf->toSamples();

08: var win = GenWindow(1024::samp, \hanning);
09:

10: var grain = tmp->applyEnv(win)->amplify(0.5);

11:

12: //distributing 2048 grains randomly for 5 seconds.

13: for(var i = 0; i < 2048; i += 1){
14: var offset = Rand(0, 5.0)::second;

15: var snd = grain->resample(Rand(64, 512));

16: WriteDAC(snd, offset: offset);

17: }

Figure 3.38: An asynchronous granular synthesis example.

133

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

are scheduled for playback, overlapping onto others. For pitch-shifting, each grain is

resampled shorter or longer, according to the desired pitch before playing back. For

instance, resampling a grain composed of 441 samples to 882 samples creates a new

grain whose pitch is one octave lower pitch when both of them are played back in the

same sample rate.

On the other hand, time-stretching by granular sampling is made possible by ad-

vancing the reading position to extract sound samples from the original material at

the different rate than playing back. To give an example, assume such a situation as

follows. The first 1024 samples were read from the beginning of the sound buffer and

then played it back. After 512 samples in logical time, the next 1024 samples are read

at the position of the 256th sample in the buffer and played it back. By repeating

such a procedure, the original sound samples can be time-stretched twice as long as the

original sound without altering its pitch.

Figure 3.39 and Figure 3.40 describe examples of pitch-shifting and time-stretching

by granular-sampling in LC. As shown, even granular sampling of real-time audio input

can be done by a simple algorithm. As seen in Figure 3.39 (on line 27), in LC’s

programming model, it is possible to directly apply a filter to a microsound if there

is any need to avoid aliasing caused by resampling. The time-stretching example for

real-time audio input doesn’t require the sound buffer and can be realized by directly

scheduling the grains obtained from the sound input.

Waveset synthesis. As described in Section 2.3, waveset synthesis techniques also

belong to the family of microsound synthesis as well as granular synthesis techniques.

To perform waveset synthesis techniques, it is necessary to analyse the sound material

and to extract wavesets, by examining the zero-crossings in the sound1. Generally

speaking, waveset synthesis techniques are performed by transforming and rescheduling

such wavesets. See Table 3.13 (reproduced from 2.2).

LC provides the ExtractWavesets function, which analyses a sound buffer to ex-

tract the wavesets and returns an array of Samples object, each of which represents an

extracted waveset. Waveset synthesis techniques can be performed in LC by applying

1As described in Section 2.3, waveset is defined as “the distance from zero-crossing to a 3rd zero
crossing”, whereas wavecycle is defined as “the wavelength of sound, where clearly pitched” (323, p.50).

134

3.2 The Core Language Features

A granular pitch-shifting example

01: //load a sound file to the buffer no.0

02: LoadSndFile(0, "/sound/sample1.aif");

03: //play back the original sound for 2::second

04: within(2::second){
05: var pos = 0::second;

06: var dur = 512::samp;

07: while(true){
08: //read 512 samples at ‘pos’ and send it to DAC.

09: var sample = ReadBuf(0, dur, offset:pos);

10: WriteDAC(sample);

11: //advance the reading position and the logical time

12: pos += dur;

13: now += dur;

14: }
15: }
16: //pitch-shifting (octave upper)

17: within(2::second){
18: var pos = 0::second;

19: var dur = 512::samp;

20: var win = GenWindow(512::samp, \hanning);
21: while(true){
22: //read 512 samples at ‘pos’

23: var sample = ReadBuf(0, dur * 2, offset:pos);

24: //resample to 1/2 size and apply an hanning window

25: var tmp = sample->resample(dur);

26: //if there is a need to consider aliasing, once can apply a filter as below.

27: //tmp = tmp->fir([0.5, 0, 0.5]);

28: var grain= tmp->applyEnv(win);

29: WriteDAC(grain);

30: //advance the reading position and the logical time

31: //but with 2 overlaps

32: pos += dur / 2;

33: now += dur / 2;

34: }
35: }

Figure 3.39: A granular sampling example (pitch-shifting).

135

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

36: //pitch-shifting (real-time input for 5 seconds) (octave down)

37: within(5::second){
38: var pos = 0::second;

39: var dur = 512::samp;

40: var win = GenWindow(512::samp, \hanning);
41: while(true){
42: //read 512 samples from ADC

43: var sample = ReadADC(dur);

44: //resample to 1/2 size and apply an hanning window

45: var tmp = sample->resample(sample.size * 2);

46: var grain= tmp->applyEnv(win);

47: WriteDAC(grain);

48: //advance the reading position and the logical time

49: //but with 2 overlaps

50: now += dur / 2;

51: }
52: }
53:

54: //harmonizing major 3rd to the input for 5 seconds

55: within(5::second){
56: var dur = 512::samp;

57: var win = GenWindow(dur, \hanning);
58:

59: while(true){
60: //read 512 samples at ‘pos’ and send it to DAC.

61: var original= ReadADC(dur);

62:

63: //512 * 1.26 samples -> resample to 512 -> major 3rd upper

64: var sample = ReadADC(dur * 1.26);

65: var tmp = sample->resample(original.size);

66: var grain = tmp->applyEnv(win);

67:

68: WriteDAC(original->amplify(0.5));

69: WriteDAC(grain);

70: //advance the logical time

71: now += dur / 2;

72: }
73: }

Figure 3.39: A granular sampling example (pitch-shifting) (continued).

136

3.2 The Core Language Features

A granular time-stretching example

01: //load a sound file to the buffer no.0

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //time-stretching (twice as long as the original)

05: within(4::second){
06: var pos = 0::second;

07: var dur = 512::samp;

08: var win = GenWindow(512::samp, \hanning);
09: while(true){
10: //read 512 samples at ‘pos’

11: var sample = ReadBuf(0, dur, offset:pos);

12: var grain= sample->applyEnv(win);

13: WriteDAC(grain);

14: pos += dur / 4;

15: now += dur / 2;

16: }
17: }
18: //time-stretching (half as long as the original)

19: within(4::second){
20: var pos = 0::second;

21: var dur = 512::samp;

22: var win = GenWindow(512::samp, \hanning);
23: while(true){
24: //read 512 samples at ‘pos’

25: var sample = ReadBuf(0, dur, offset:pos);

26: var grain= sample->applyEnv(win);

27: WriteDAC(grain);

28: pos += dur / 2;

29: now += dur / 4;

30: }
31: }

Figure 3.40: A granular sampling example (time-stretching).

137

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

32: //time-stretching (real-time sound input. the original is played-through

33: //on the left channel and time-stretched (twice as long as the original)

34: //on the right channel)

35: within(4::second){
36: var wpos = now; //write timing for time-stretched version (in time line)

37: var dur = 512::samp;

38: var win = GenWindow(512::samp, \hanning);
39: while(true){
40: var sample = ReadADC(dur);

41: var grain = sample->applyEnv(win);

42: WriteDAC(grain);

43: WriteDAC(grain, 1, offset:(wpos - now));

44: wpos += dur / 2;

45: now += dur / 4;

46: }
47: }

Figure 3.40: A granular sampling example (time-stretching) (continued).

methods/library functions (or directly manipulating sample values by indexed-access if

necessary) to these wavesets. For instance, in Wishart’s Composer’s Desktop Project

software, 17 different waveset synthesis techniques are available as seen in Table 3.13.

The following code examples describe the examples of waveset inversion, waveset dis-

tortion, waveset transposition, waveset substitution, and waveset harmonic distortion

in LC.

Figure 3.41 is a simple example to reproduce the original sound by iterating each

waveset in the array of wavesets returned by the ExtractWavesets function. Waveset

inversion can be performed by inverting each waveset by the invertWS method, and

waveset distortion can be performed by squaring each waveset by the mul method1 as

seen in Figure 3.42 and Figure 3.43; The only difference between these two examples is

the use of the invertWS method (line 10 in Figure 3.42) and the mul method (line 10

in Figure 3.43).

Figure 3.44 describes an example of waveset transposition in LC. As shown, waveset

transposition can be performed simply by resampling the original wavesets and schedul-

1While the code will be computationally inefficient, it is also possible to invert and distort a waveset
by examining each sample within a Sample object and by using SampleBuffer to generate a new Sample
object.

138

3.2 The Core Language Features

ing it for output. Figure 3.45 describes a waveset substitution example. In this example

SampleBuffer is used to create a waveform to replace the original wavesets. Then, it

is resampled to the same size as each original waveset and written out to the sound

output. Figure 3.46 is an example of waveset harmonic distortion. In this example,

each original waveset is resampled and amplified. These resampled/weighted wavesets

are scheduled so that it can overlap-add onto the original wavesets.

Figure 3.47 and Figure 3.48 are examples to apply waveset synthesis techniques to

the real-time sound synthesis input. The former example combines waveset inversion

and waveset transposition, and the latter performs waveset harmonic distortion. As

presented, the code only has to involve a small modification to extract wavesets from

real-time sound input. It should also be noted that the combination of different waveset

synthesis techniques as seen in Figure 3.47 can be still easily made without involving

much complexity.

Thus, various waveset synthesis techniques can be performed by combining basic

manipulations scheduling of wavesets in LC’s programming model. While only five of

the 17 waveset synthesis techniques in Table 3.13 were shown in these code examples,

all 17 waveset synthesis techniques in the list can be performed in LC; as long as a

waveset synthesis technique can be described algorithmically, the waveset synthesis

technique can be implemented in LC, since LC allows direct access to the samples

within a Samples object by indexed-access, and Samples object can be scheduled with

sample-rate accuracy. For instance, waveset enveloping can be performed by using the

append method to combine N wavesets together and applyEnv to applying an envelope

to the combined wavesets.

Fourier Transform and Inverse Fourier Transform. LC can also perform Fourier

transform and Inverse Fourier transform. The related library functions are listed in

Table 3.11. As Samples and SamplesBuffer objects are used to represent the data for

FFT/IFFT, various synthesis techniques in the frequency domain can be performed in

LC within the same microsound synthesis framework.

139

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

Waveset transposition subsititues N copies of a waveset in the place of

M wavesets, for example 2 in the space of 1, or 1

in the space of 4, for doubling and quartering of

frequency, respectively

Waveset reversal reverses individual wavesets while retaining their

order; reversals can be of each individual waveset

or collections of N wavesets at a time.

Waveset shaking alternates between compressing (in time) and

expanding (in time) successive wavesets

Waveset inversion inverts the phase of all wavesets in a signal; in

Wishart’s diagram half-wavesets are inverted

Waveset omission deletes every Nth waveset, leaging silence in its

place; controled by initial and final density from

0 to 100 %

Waveset shuffling permutes collections of wavesets. A simple

shuffle of successive wavesets starting with (a,

b, c, d) becomes (d, c, a, b)

Waveset distortion distorts a signal by squaring and cubing the

signal; the example given in Wishart does not

indicate how it is tied to waveset boundaries

Waveset substitution replaces wavesets by a stipulated waveform of the

same amplitude, frequency, and time span as the

original waveset

Waveset harmonic

distortion

superimposes N harmonics on the waveset

fundamental with a scaling factor M relative to

the previous harmonic

Waveset averaging creates a signal containing N new wavesets that

are the average duration and the average amplitude

and time function of the N original wavesets; the

overall duration of the signal is unchanged

Waveset enveloping applies an envelope to 1 to N wavesets at a time

Waveset transfer substitutes the waveform of the wavesets in signal

A into the time frames of the wavesets in signal B

Waveset interleaving

method 1

substitutes wavesets from signal A into alternate

wavesets of signal B; applied either to individual

wavesets or groups.

Waveset interleaving

method 2

interleaves wavesets from signal A with wavesets

of signal B, thus lengthening the output signal;

applied either to individual wavesets or groups

Waveset

time-stretching

repeats each waveset N times

Waveset time-shrinking retains only the first of every N wavesets or

retains only the loudest of every N wavesets

Waveset normalizing normalizes every N wavesets above a stipulated

amplitude threshold, thus a 10% threashold has a

greater effect than a 90% threashold

Table 3.13: Waveset transformations in the Composer’s Desktop Project software (242,
p.207), reproduced from Table 2.2.

140

3.2 The Core Language Features

01: //load the sound file onto the buffer no.0

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //ExtractWavesets returns the array of wavesets extracted from the buffer.

05: var wavesets = ExtractWavesets(0);

06:

07: //output the array of wavesets from the beginning one-by-one

08: //to reconstruct the original sound.

09: for (var i = 0; i < wavesets.size; i +=1){
10: WriteDAC(wavesets[i]);

11: now += wavesets[i].dur;

12: }

Figure 3.41: A waveset example to reproduce the original sound in LC.

01: //load the sound file onto the buffer no.0

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //ExtractWavesets returns the array of wavesets extracted from the buffer.

05: var wavesets = ExtractWavesets(0);

06:

07: //iterate through the array of wavesets from the beginning one-by-one

08: //to perform waveset inversion.

09: for (var i = 0; i < wavesets.size; i +=1){
10: //invert the waveset.

11: var inverted = wavesets[i]->invertWS();

12: WriteDAC(inverted);

13: now += inverted.dur;

14: }

Figure 3.42: A waveset inversion example in LC.

141

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //load the sound file onto the buffer no.0

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //ExtractWavesets returns the array of wavesets extracted from the buffer.

05: var wavesets = ExtractWavesets(0);

06:

07: //iterate through the array of wavesets from the beginning one-by-one

08: //to perform waveset distortion.

09: for (var i = 0; i < wavesets.size; i +=1){
10: //distort the waveset.

11: var distorted = wavesets[i]->mul(wavesets[i]);

12: WriteDAC(distorted);

13: now += distorted.dur;

14: }

Figure 3.43: A waveset distortion example in LC.

Figure 3.49 and Figure 3.50 show simple cross synthesis examples in LC. To per-

form cross synthesis, “two input signals are required: signal A’s spectrum is convolved

with the amplitude spectrum of signal B. Thus, the pitch/phase information of sig-

nal A and the time varying spectral envelope of signal B are combined to form the

output signal” (265). While Figure 3.49 describes the straight forward implementa-

tion that uses FFT/IFFT functions and includes such tasks as windowing by Hanning

window, conversions between Cartesian coordinates and polar coordinates, Figure 3.50

uses PFFT/PIFFT functions to simplify the implementation. PFFT/PIFFT functions

can apply a windowing function and the conversion between Cartesian coordinates and

polar coordinates at once, while both examples implement the same algorithm.

Figure 3.51 describes a simple example of time-stretching by phase vocoding (100)(113).

As in Figure 3.50, PFFT/PIFFT library functions are used to simplify the implementa-

tion. While the code uses the sub method on line 23 and the accumulatePhase method

on line 26, a user can also write the code to compute the subtraction and accumulation

by using Samples and SamplesBuffer objects, since each sample in a Samples object

is directly accessible by indexed-access. Hence, any arithmetic computation on sam-

ples can be directly implemented in LC, if necessary to implement a certain synthesis

technique.

142

3.2 The Core Language Features

01: //load the sound file onto the buffer no.0

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: var wavesets = ExtractWavesets(0);

05:

06: //4 wavesets in the space of 1

07: for (var i = 0; i < wavesets.size; i +=1){
08: //resample the wave set to 1/4 of the original size.

09: var ws = wavesets[i];

10: var resampled = ws->resample(ws.size / 4);

11:

12: //repeat 4 times.

13: for (var j = 0; j < 4; j += 1){
14: WriteDAC(resampled, offset:resampled.dur * j);

15: }
16:

17: //sleep until the next scheduling timing.

18: now += ws.dur;

19: }
20:

21: //1 wavesets in the space of 2

22: for (var i = 0; i < wavesets.size - 1; i += 2){
23: //get two wavesets from the array

24: var ws1 = wavesets[i];

25: var ws2 = wavesets[i + 1];

26:

27: //resample the 1st one to the size of (1st + 2nd)

28: var resampled = ws1->resample(ws1.size + ws2.size);

29:

30: //write it out and sleep until the next scheduling timing.

31: WriteDAC(resampled);

32: now += resampled.dur;

33: }

Figure 3.44: A waveset transposition example in LC.

143

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //create a square wave

02: var tmp = new SampleBuffer(256);

03: for (var i = 0; i < 128; i += 1){
04: tmp[i] = 1.0;

05: }
06: for (var i = 128; i < 256; i += 1){
07: tmp[i] = -1.0;

08: }
09: var square = tmp->toSamples();

10:

11: LoadSndFile(0, "/sound/sample1.aif");

12: var wavesets = ExtractWavesets(0);

13: for (var i = 0; i < wavesets.size; i += 1){
14: var ws = wavesets[i];

15: var out= square->resample(ws.size)->amplify(ws->maxAmp());

16: WriteDAC(out);

17: now += out.dur;

18: }

Figure 3.45: A waveset substitution example in LC.

Figure 3.52 and Figure 3.53 perform time-stretching by phase-vocoding for real-time

sound input. The algorithm in Figure 3.52 can be CPU intensive because FFT/IFFT

occurs in a short period, depending on the given parameters. On the other hand, the

Figure 3.53 example stores the real-time input to the buffer once and then reads the

buffer, performing time-stretching. Such a strategy results in less computational cost

compared to the Figure 3.52 example, as the number of FFT/IFFT function calls can

be reduced even for the same parameters1.

3.2.3.3 The collaboration between microsounds and unit-generators

While LC’s programming model for microsound synthesis is significantly different from

the traditional unit-generator concept as described so far. LC provides the mechanism

to facilitate the collaboration between these two different concepts. Table 3.14 and Ta-

ble 3.15 list the related methods Patch object and UGen objects for such collaboration

1The biggest difference between these two algorithms is the period of FFT/IFFT calls. In
Figure 3.52, the example is defined by the hopsize to read the original input, while the period of
FFT/IFFT in in the Figure 3.53 example is defined by the hopsize to output the time-stretched sound;
the FFT/IFFT period of the latter algorithm is longer. Thus, less FFT/IFFT function calls are made
in the same duration in Figure 3.53, and it is more suitable for real-time sound processing.

144

3.2 The Core Language Features

01: LoadSndFile(0, "/sound/sample1.aif");

02: var wavesets = ExtractWavesets(0);

03:

04: //weights for 1st and 2nd harmonics

05: var weight1 = 0.5;

06: var weight2 = 1.2;

07:

08: for (var i = 0; i < wavesets.size; i +=1){
09: //create the 2nd and 3rd harmonics from the original waveset.

10: var ws = wavesets[i];

11: var harm1 = ws->resample(ws.size / 2)->amplify(weight1);

12: var harm2 = ws->resample(ws.size / 3)->amplify(weight2);

13:

14: //schedule each waveset

15: PanOut(ws, 0.0);

16: //put 1st harmonics that overlap-add the original

17: PanOut(harm1, -1.0);

18: PanOut(harm1, -1.0, offset:harm1.dur);

19: //2nd harmonics

20: PanOut(harm2, 1.0);

21: PanOut(harm2, 1.0, offset:harm2.dur);

22: PanOut(harm2, 1.0, offset:harm2.dur * 2);

23:

24: now += ws.dur;

25: }

Figure 3.46: A waveset harmonic distortion example in LC.

145

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: while(true){
02: //read ADC for 50 msec, which is the largest waveset size we assume.

03: var input = ReadADC(50::ms);

04: //get the first wave set found in the input.

05: var waveset = input->getWaveset();

06: //if there is no waveset found getWaveset() returns null.

07: if (waveset == null){
08: //then find the first zero-crossing index to discard unnecessary input.

09: var adv= waveset->getZeroCrossingIndex()::samp;

10: //if there is no crossing, getZeroCrossingIndex() returns -1.

11: if (adv < 0::samp){
12: //then discard the whole input for the last 50 msec.

13: adv = 50::ms;

14: }
15: //advance the time to skip the unnecessary input.

16: now += adv;

17: continue;

18: }
19: //perform waveset inversion, then waveset transposition.

20: waveset = waveset->invertWS();

21: waveset = waveset->resample(waveset.size);

22: PanOut(waveset);

23: PanOut(waveset, offset:waveset.dur);

24:

25: now += waveset.dur;

26: }

Figure 3.47: A waveset inversion + waveset transposition example (real-time sound
input) in LC.

146

3.2 The Core Language Features

01: //performing waveset harmonic distortion to the real-time input

02: var weight1 = 0.5;

03: var weight2 = 0.5;

04:

05: while(true){
06: //read ADC for 50 msec, which is the largest waveset size we assume.

07: var input = ReadADC(50::ms);

08:

09: //get the first wave set found in the input.

10: var waveset = input->getWaveset();

11: //if there is no waveset found getWaveset() returns null.

12: if (waveset == null){
13: //then find the first zero-crossing index to discard unnecessary input.

14: var adv= waveset->getZeroCrossingIndex()::samp;

15: //if there is no crossing, getZeroCrossingIndex() returns -1.

16: if (adv < 0::samp){
17: //then discard the whole input for the last 50 msec.

18: adv = 50::ms;

19: }
20: //advance the time to skip the unnecessary input.

21: now += adv;

22: continue;

23: }
24:

25: //now we got a waveset from real-time input.

26: //perform waveset harmonic distortion now.

27: var harm1 = waveset->resample(waveset.size / 2)->amplify(weight1);

28: var harm2 = waveset->resample(waveset.size / 3)->amplify(weight2);

29: PanOut(waveset);

30: PanOut(harm1, -1.0);

31: PanOut(harm1, -1.0, offset:harm1.dur);

32: PanOut(harm2, 1.0);

33: PanOut(harm2, 1.0, offset:harm2.dur);

34: PanOut(harm2, 1.0, offset:harm2.dur * 2);

35:

36: //sleep until the next input.

37: now += waveset.dur;

38: }

Figure 3.48: A waveset harmonic distortion example (real-time sound input) in LC.

147

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //loading the sound files onto the buffers.

02: LoadSndFile(0, "/sound/violin.wav");

03: LoadSndFile(1, "/sound/kill humans.wav");

04:

05: //the duration of each window, the number of overlapping and the hanning window.

06: var dur = 1024::samp;

07: var overlap = 4;

08: var win = GenWindow(dur, \hanning);
09:

10: //process 800 frames.

11: for(var i = 0; i < 800; i += 1){
12: //first, extract the sound fragments from the given sound materials.

13: var src1 = ReadBuf(0, dur, offset:i * dur / overlap);

14: var src2 = ReadBuf(1, dur, offset:i * dur / overlap);

15: //apply the hanning window to both of them.

16: var wsrc1 = src1->applyEnv(win);

17: var wsrc2 = src2->applyEnv(win);

18:

19: //now perform FFT. FFT returns an array of Samples objects, [real, imaginary].

20: var fft1 = FFT(wsrc1);

21: var fft2 = FFT(wsrc2);

22: //perform cartesian-to-polar conversion.

23: var pol1 = CarToPol(fft1[0],fft1[1]);

24: var pol2 = CarToPol(fft2[0],fft2[1]);

25:

26: //applying the magnitude of the voice material to the violin sound.

27: //to perform cross synthesis.

28: var pved = pol1[0]->mul(pol2[0]);

29:

30: //covert it back to cartesian form

31: var car = PolToCar(pved, pol1[1]);

32:

33: ///perform IFFT and apply the hanning window again.

34: var ifft = IFFT(car[0], car[1]);

35: var wifft= ifft->applyEnv(win);

36:

37: //send the samples to the sound output, sleep until the next frame.

38: WriteDAC(wifft);

39: now += src1.dur / overlap;

40: }

Figure 3.49: A FFT/IFFT example (cross synthesis).

148

3.2 The Core Language Features

01: //loading the sound files onto the buffers.

02: LoadSndFile(0, "/sound/violin.wav");

03: LoadSndFile(1, "/sound/kill humans.wav");

04:

05: //the duration of each window, the number of overlapping and the hanning window.

06: var dur = 1024::samp;

07: var overlap = 4;

08:

09: //process 800 frames.

10: for(var i = 0; i < 800; i +=1){
11: //first, extract the sound fragments from the given sound materials.

12: var src1 = ReadBuf(0, dur, offset:i * dur / overlap);

13: var src2 = ReadBuf(1, dur, offset:i * dur / overlap);

14:

15: //now perform FFT. PFFT apply a window function and

16: //returns returns an array of Samples objects, [magnitude, phase].

17: var pfft1 = PFFT(src1, \hanning);
18: var pfft2 = PFFT(src2, \hanning);
19:

20: //perform cross synthesis.

21: var ppved = pfft1[0]->mul(pfft2[0]);

22:

23: //perform IFFT

24: var pifft = PIFFT(ppved, pfft1[1], \hanning);
25:

26: //send the samples to the sound output, sleep until the next frame.

27: WriteDAC(pifft);

28: now += src1.dur / overlap;

29: }

Figure 3.50: A PFFT/PIFFT example (cross synthesis).

149

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //load the sound files.

02: LoadSndFile(0, "/sound/kill humans.wav");

03: //perform the time-stretching for 24 seconds, using the time-out feature.

04: within(24::second){
05: //the parameters (window/frame size, the initial reading position)

06: var dur = 1024::samp;

07: var overlap = 4;

08: var stretch = 4;

09: var pos = dur / (overlap * stretch);

10:

11: //extract the first frame and keep the information.

12: var firstFrame= ReadBuf(0, dur);

13: var ffted = PFFT(firstFrame);

14: //take the initial previous phase and accumulated phase from the first frame.

15: var prevPhase = ffted[1];

16: var accumPhase= prevPhase;

17:

18: //main loop for phase vocoder time-stretching.

19: while(true){
20: //read the next frame and perform FFT

21: var sample= ReadBuf(0, dur, offset:pos);

22: var ffted = PFFT(sample);

23:

24: //get the phase difference between the previous frame and current frame.

25: //multiply it by ‘stretch’ (= resynthesis hop size / analysis hop size)

26: //to compute the phase increment in resynthesis version.

27: var dif = ffted[1]->sub(prevPhase)->amplify(stretch);

28: accumPhase = accumPhase->accumulatePhase(dif);//accumulate it

29:

30: //update the previous phase info

31: prevPhase = ffted[1];

32:

33: //perform IFFT with the accumulated phase and output the sound.

34: var iffted = PIFFT(ffted[0], accumPhase);

35: PanOut(iffted, 0);

36:

37: //move the reading position and sleep until the next frame.

38: pos += dur / (overlap * stretch);

39: now += dur / overlap;

40: }
41: }

Figure 3.51: A PFFT/PIFFT example (time-stretching).

150

3.2 The Core Language Features

01: //time-stretching the real-time audio input by phase vocoding.

02: //5 seconds of real-time input is immediately extended to 1.5 times

03: //as long as the original. As this can be very CPU intensive, depending

04: //on the overlap, stretch, dur as they define how often PFFT and PIFFT are

05: //called and how long each call can consume time for computation.

06: within(5::second){
07: var dur = 4096::samp;

08: var overlap = 4;

09: var stretch = 1.5;

10: take the first frame.

11: var prevPhase = PFFT(ReadADC(dur))[1];

12: var accumPhase= prevPhase;

13: now += dur / (overlap * stretch);

14: var wpos = now;

15:

16: while(true){
17: var sample = ReadADC(dur);

18:

19: var ffted = PFFT(sample);

20:

21: var dif = ffted[1]->sub(prevPhase)->amplify(stretch);

22: prevPhase = ffted[1];

23:

24: accumPhase = accumPhase->accumulatePhase(dif);

25: var iffted = PIFFT(ffted[0], accumPhase);

26: PanOut(iffted, offset:(wpos - now));

27: wpos+= dur / overlap;

28: //wait until the next frame to read from ADC

29: now += dur / (overlap * stretch);

30: }
31: }

Figure 3.52: A PFFT/PIFFT example (time-stretching real-time input).

151

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //perform recording for 10 second during time-stretching.

02: var recordDur = 10::second;

03: //create the buffer for the recording

04: CreateBuf(0, recordDur);

05: //frame size, overlap, stretch parameters.

06: var framesize = 1024::samp;

07: var overlap = 4;

08: var hopsize = framesize / overlap;

09: var stretch = 4;

10:

11: //write the first frame onto the buffer.

12: var input = ReadADC(framesize);

13: WriteBuf(0, input);

14: var prevPhase = PFFT(input)[1];

15: var accumPhase= prevPhase;

16:

17: //the initial write/read positions on the buffer.

18: var wpos= framesize;

19: var rpos= 0::samp;

20:

21: within(recordDur * stretch){
22: while(true){
23: //wait for the hop size and update the read position on the buffer.

24: now += hopsize;

25: rpos+= hopsize / stretch;

26: //write the next input to the buffer.

27: if (wpos < recordDur){
28: var input = ReadADC(hopsize);

29: WriteBuf(0, input, offset:wpos);

30: wpos += hopsize;

31: }
32: //perform time-stretching

33: var snd = ReadBuf(0, framesize, offset:rpos);

34: var ffted = PFFT(snd);

35:

36: var dif = ffted[1]->sub(prevPhase)->amplify(stretch);

37: prevPhase = ffted[1];

38:

39: accumPhase = accumPhase->accumulatePhase(dif);

40: var iffted= PIFFT(ffted[0], accumPhase);

41:

42: PanOut(iffted, 0.0);

43: }
44: }

Figure 3.53: A PFFT/PIFFT example (time-stretching real-time input, with a buffer).

152

3.2 The Core Language Features

The list of UGen’s methods for the collaboration between microsounds and unit-
generators

retain

The duration of the output samples to keep is stored in this field re-
tain. By assigning a duration, the unit-generator will update the size

of the internal buffer to keep the output so to store the output samples.

The default value is 0::samp. The samples can be taken by calling ‘read’

method.

process(var self, dur)

Processes the patch for dur. This function is used for the collaboration

between the traditional unit-generator-based sound synthesis and LC’s

microsound synthesis framework.

read(var self, dur, outlet=\defout, offset=0::samp)

Reads the output for the last dur duration from outlet, with offset. This

function returns a Samples object and is used for the collaboration between

the unit-generator framework and LC’s microsound synthesis framework.

pread(var self, dur, outlet=\defout)

Processes the patch for dur and returns the output from the outlet outlet.
This function returns a Samples object and is used for the collaboration

between the unit-generator framework and LC’s microsound synthesis

framework.

write(var self, samples, inlet=\defin, offset=0::samp)

Writes a Samples object to the inlet inlet of the unit-generator, with off-
set to the future. This function is used for the collaboration between the

unit-generator framework and LC’s microsound synthesis framework

Table 3.14: The list of UGen’s methods for the collaboration between microsounds and
unit-generators in LC.

between microsounds and unit-generators. Every UGen object is equipped with these

methods in Table 3.14, regardless of its actual type.

As there are still many sound synthesis/processing algorithms that can be better de-

scribed by the unit-generator concept (e.g., envelope-shaping, FM-synthesis, amplitude-

modulation, reverberation and the like) such a mechanism that can combine two dif-

ferent programming models are of significant importance. By using these methods, the

collaboration between these two different programming models can be performed in LC

as described in the following examples.

153

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

The list of Patch’s methods for the collaboration between microsounds and unit-
generators

write(var self, samples, inlet=\defin, offset=0::samp, ugen inlet=\defin)

Writes a Samples object to the inlet ugen inlet of the

unit-generator/subpatch stored at the slot inlet, with offset to the future.

This function is used for the collaboration between the unit-generator

framework and LC’s microsound synthesis framework.

process(var self, dur)

Processes the patch for dur. This function is used for the collaboration

between the unit-generator framework and LC’s microsound synthesis

framework.

read(var self, dur, outlet=\defout, offset=0::samp, ugen outlet=\defout)

Reads the output for the last dur duration from ugen outlet of the

unit-generator/subpatch stored at the slot outlet. This function

returns a Samples object and is used for the collaboration between the

unit-generator-based framework and LC’s microsound synthesis framework.

pread(var self, dur, outlet=\defout, ugen outlet=\defout)

Processes the patch for dur and returns the output from the outlet

ugen outlet of the unit-generator/subpatch stored at the slot outlet. This

function returns a Samples object and is used for the collaboration between

the unit-generator framework and LC’s microsound synthesis framework.

Table 3.15: The list of Patch’s methods for the collaboration between microsounds and
unit-generators in LC.

154

3.2 The Core Language Features

Generating a microsound from the output of a unit-generator or a patch.

While the unit-generators in LC can constitute a patch, which can be played along

with the advance of logical time, both a patch and a unit-generator has the feature to

create a new Samples object from its output, regardless of the advance of logical time.

Thus, a user can easily generate Samples objects by using unit-generators and patches,

and then directly apply various manipulations to the generated Samples objects to

perform microsound synthesis. For instance, in the Figure 3.36 example, SampleBuffer

and for-loop are used to generate a Samples object that contains four cycles of a sine

wave, with which the example performs synchronous granular synthesis. Yet, this task

can also be performed with Sin∼ unit-generator by using retain field and read method.

Figure 3.54 and Figure 3.55 are examples that generate Samples objects from the

output of a unit-generator. In Figure 3.54, by assigning a duration value to retain, the

unit generator is set up to keep the last output samples for the duration, and these

samples can be taken out in the form of a Samples object as shown on lines 11, 29,

and 39. Figure 3.55 performs the same task, but with the pread method instead. The

difference between these two examples is that pread can directly produce Samples of

the given duration, even when retain is not set up1. As a unit-generator in LC can

have multiple numbers of outlets, both read and pread methods can specify the outlet

to obtain the output samples from, as on line 39 of Figure 3.54 and on line 20 of Figure

3.55.

One of the benefits of such a design is that a user can create microsounds and

then store it for the later use as seen in Figure 3.57. Even on-demand generation of

microsounds is possible as in Figure 3.58. Such a strategy can reduce the required

computational cost in microsound synthesis and is hard to realize in a unit-generator

language.

Patch objects can also be used to produce Samples objects as well as unit-generator

objects, as shown in Figure 3.56. As described in Table 3.14 and Table 3.15, the

signatures of these methods are defined with the orders and the default values that can

1However, as the pread method is not capable of creating Samples objects from multiple outlets in
the current version of LC, it is necessary to use retain/process/read for this purpose; it is planned to
modify the behaviour in the later version so that the pread method can also read from multiple outlets
at once.

155

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

make the best use of duck-typing. Figure 3.59 is a simple example of such duck-typing.

Duck-typing can facilitate the collaboration between the two programming models, also

when microsounds are used as input to a unit-generator or a patch as described in the

next paragraph.

Giving a microsound as an input to a unit-generator or a patch. Some tasks

are easier to achieve if a Samples object can be used as the input to a unit-generator

or a patch (e.g., applying an envelope or reverberation to the entire sound output of

microsound synthesis). Both LC’s unit-generator and patch have the write method,

which allows a user to route a Samples object to the inlets.

Figure 3.60 and Figure 3.61 are examples of writing Samples objects into the input

of a unit-generator or a patch for the reverberation. As shown in these examples, just

by using the write method, a Samples object can be treated as the input signal to a

unit-generator (or a patch) and then one can obtain the processed samples by reading

from the unit-generator (or the patch).

Figure 3.62 is another reverberation example. In this example, the patch that re-

ceives Samples objects to its input is already being played. As the patch is active and

produces its output synchronizing with the advance of logical time, using the write

method is enough to play the processed sound unlike the previous two examples, in

which a user must explicitly process the output and send it to the sound output device.

Furthermore, as seen in Figure 3.59, thanks to duck-typing, a unit-generator can

be easily replaced with a patch without any modification to the existing code in many

cases. Figure 3.63 describes an example of waveset harmonic distortion, the output of

which is first applied to a triangular envelope by a unit-generator, then to a triangular

envelope with reverberation by a patch. As shown, the same function can be reused

without any modification; thus, the bidirectional collaboration between the traditional

unit-generator concept and LC’s microsound synthesis framework can be performed

without difficulty.

156

3.2 The Core Language Features

01: //instantiate a white noise generator

02: var src = new Noise∼();
03:

04: //we want to keep the latest 1 second output.

05: src.retain = 1::second;

06:

07: //process for 1 second, without the advance of logical time.

08: src->process(1::second);

09:

10: //get the last 1 second output.

11: var out = src->read(1::second);

12:

13: //set it to the sound output.

14: PanOut(out);

15: now += 1::second;

16:

17: //instantiate a sine wave oscillator.

18: src = new Sin∼(440);
19:

20: //we want to keep the last 50 msec output.

21: src.retain = 50::ms;

22:

23: //play a sine wave of 440 Hz.

24: within(5::second){
25: while(true){
26: //process for 50 msec, without the advance of logical time.

27: //then read the last 50msec output and write to DAC.

28: src->process(50::ms);

29: var out = src->read(50::ms);

30:

31: //set it to the sound output.

32: PanOut(out);

33: now += out.dur;

34: }
35: }
36: //change the frequency every 50 msec.

37: while(true){
38: src->process(50::ms);

39: var out = src->read(50::ms, \out);
40: PanOut(out);

41: //update the frequency.

42: src.freq = Rand(1,8) * 440;

43: now += out.dur;

44: }

Figure 3.54: An example of creating Sample objects from the unit-generator’s output
samples (1)

157

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //using ‘pread’ instead

02: var src = new Noise∼();
03: var out = src− >pread(1::second);
04: PanOut(out);

05: now += 1::second;

06:

07: //instantiate a sine wave oscillator.

08: src = new Sin∼(440);
09:

10: within(5::second){
11: while(true){
12: //generate a Samples object of 50ms duration and output.

13: var out = src->pread(50::ms);

14: PanOut(out);

15: now += out.dur;

16: }
17: }
18: //change the frequency every 50 msec.

19: while(true){
20: var out = src->pread(50::ms, \out);
21: PanOut(out);

22: src.freq = Rand(1,8) * 440;

23: now += out.dur;

24: }

Figure 3.55: An example of creating Sample objects from the unit-generator’s output
samples (2).

158

3.2 The Core Language Features

01: //create a patch. the sine wave oscillator with tremolo/ring modulation.

02: var p = patch {
03: amp:Sin∼(25.0) {\out => \amp} defout:Sin∼(440) => DAC∼();
04: };
05:

06: //to retain the last 1 sec output from Sin∼.
07: p.defout.retain = 1::second;

08:

09: //process the patch for 1 second without the advance of logical time.

10: p->process(1::second);

11:

12: //get the last 1 sec output and send it to the sound output.

13: var out = p->read(1::second);

14: PanOut(out);

15:

16: now += 1::second;

17:

18: within(5::second){
19: while(true){
20: //let’s hear the phase output of p.amp

21: out = p->pread(50::ms, \amp, \phase);
22: PanOut(out);

23: now += out.dur;

24: }
25: }
26:

27: //changing the frequency every 50msec

28: while(true){
29: out = p->pread(50::ms, \defout);
30: p.defout.freq = Rand(1, 8) * 440;

31: PanOut(out);

32: now += out.dur;

33: }

Figure 3.56: An example to create Sample objects from the patch’s output samples.

159

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //create an array to store pregenerated grains

02: var grains = new Array(100);

03:

04: //generate grains with 400Hz - 500Hz sine waves.

05: var win = GenWindow(512::samp, \hanning);
06: for (var i = 0; i < grains.size; i += 1){
07: var src = new Sin∼(i + 400);

08: var tmp = src->pread(win.dur);

09: var grn = tmp->applyEnv(win);

10: grains[i] = grn;

11: }
12:

13: within(5::second){
14: while(true){
15: var idx = Rand(0, grains.size - 1);

16: PanOut(grains[idx]);

17: now += grains[idx].dur;

18: }
19: }

Figure 3.57: A granular synthesis example with the pregenerated grains.

160

3.2 The Core Language Features

01: //an array to store grains.

02: var grains = new Array(100);

03: var win = GenWindow(512::samp, \hanning);
04: //perform granular synthesis for 5 second.

05: within(5::second){
06: while(true){
07: //pick up random index and check if a grain is already stored.

08: var idx = Rand(0, grains.size - 1);

09: var grn = grains[idx];

10: //if no grain is stored at the index, generate one and store it.

11: if (grn == null){
12: var src = new Sin∼(idx + 400);

13: var tmp = src->pread(win.dur);

14: grn = tmp->applyEnv(win);

15: grains[idx] = grn;

16: }
17: //output the grain and sleep until the next scheduling timing.

18: PanOut(grn);

19: now += grn.dur / Rand(0.5, 2);

20: }
21: }

Figure 3.58: A granular synthesis example with on-demand generation of the grains.

161

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //a simple function that plays given sound source ‘src’ for duration ‘dur’

02: var f = function(var src, dur)

03: {
04: within(dur){
05: while(true){
06: var out = src->pread(50::ms);

07: PanOut(out, 0.0);

08: now += out.dur;

09: }
10: }
11: };
12:

13: //src1 is a unit-generator while src2 is a patch.

14: var src1 = new Phasor∼(880);
15: //set Freeverb∼ as the default output of the patch (‘defout’).

16: var src2 = patch {
17: Sin∼(440) => defout:Freeverb∼(damp:1, fb1:0.58, fb2:0.2, spread:200)

18: => DAC∼();
19: };
20:

21: f(src1, 3::second);

22: f(src2, 5::second);

Figure 3.59: A duck-typing example of ‘pread’.

162

3.2 The Core Language Features

01: //loading the sound file onto the buffer.

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //Freeverb is a reverbrator unit-generator

05: var reverb = new Freeverb∼(damp:1, fb1:0.58, fb2:0.2, spread:200);

06:

07: //play the sound for 20 second

08:

09: var entireDur = 20::second;

10: within(entireDur){
11:

12: //perform granular-sampling time-stretching with reverberation.

13: var pos = 0::second;

14: var dur = 512::samp;

15: var win = GenWindow(512::samp, \hanning);
16:

17: var overlap = 2;

18: var adv = dur / overlap;//the amount of the time to advance in each iteration.

19:

20: while(true){
21: //generate a grain.

22: var sample = ReadBuf(0, dur, offset:pos);

23: var grain= sample->applyEnv(win);

24:

25: //write it to the reverbrator’s default input (defin).

26: reverb->write(grain);

27: //read the output samples from the reverbrator’s default output.

28: var out = reverb->pread(adv); //read from ‘defout’ outlet.

29: //send it out to the sound output.

30: PanOut(out);

31:

32: //update the reading position and advance the time.

33: pos += dur / 4;

34: now += adv;

35: }
36: }

Figure 3.60: A reverberation example (1).

163

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //loading the sound file onto the buffer.

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //Freeverb is a reverbrator unit-generator.

05: var reverb = patch {
06: defin: Freeverb(damp:0.2, fb1:0.58, fb2:0.2, spread:200) => defout: DAC();

07: };
08:

09: //play the sound for 20 seconds.

10: var entireDur = 20::second;

11: within(entireDur){
12: //perform granular-sampling time-stretching.

13: var pos = 0::second;

14: var dur = 512::samp;

15: var win = GenWindow(512::samp, \hanning);
16:

17: var overlap = 2;

18: var advance = dur / overlap;

19:

20: while(true){
21:

22: var sample = ReadBuf(0, dur, offset:pos);

23: var grain = sample->applyEnv(win);

24: //write it to the reverbrator’s default input (defin).

25: reverb->write(grain);

26: var out = reverb->pread(advance); //read from ‘defout’ outlet.

27: WriteDAC(out);

28:

29: pos += dur / 4;

30: now += advance;

31: }
32: }

Figure 3.61: A reverberation example (2).

164

3.2 The Core Language Features

01: //loading the sound file onto the buffer.

02: LoadSndFile(0, "/sound/sample1.aif");

03: //Freeverb is a reverbrator unit-generator.

04: var reverb = patch {
05: reverb:Freeverb∼(damp:0.2, fb1:0.58, fb2:0.2, spread:200) => DAC∼();
06: };
07: //start this patch immediately. keep on playing regardless of below loop.

08: reverb->start();

09:

10: //play the sound for 20 seconds.

11: var entireDur = 20::second;

12: within(entireDur){
13: //perform granular-sampling time-stretching.

14: var pos = 0::second;

15: var dur = 512::samp;

16: var win = GenWindow(512::samp, \hanning);
17:

18: while(true){
19: var sample = ReadBuf(0, dur, offset:pos);

20: var grain = sample->applyEnv(win);

21: //this time we only have to write to the patch. As the patch is being played

22: //by the system, it automatically sends the samples to DAC (see line 08).

23: reverb->write(grain, \reverb);
24:

25: pos += dur / 4;

26: now += dur / 2;

27: }
28: }

Figure 3.62: A reverberation example (3).

165

3. DESIGN: LC, A MOSTLY-STRONGLY-TIMED
PROTOTYPE-BASED COMPUTER MUSIC PROGRAMMING
LANGUAGE THAT INTEGRATES OBJECTS AND MANIPULATIONS
FOR MICROSOUND SYNTHESIS

01: //load a sound file and extract wavesets.

02: LoadSndFile(0, "/sound/sample1.aif");

03: var wavesets = ExtractWavesets(0);

04: //below function performs waveset harmonic distortion.

05: //and write out the output to the given ‘stream’

06: var f = function(var stream, entireDur){
07: var weight1 = 0.5;

08: var weight2 = 0.5;

09: //perform waveset harmonic distortion.

10: within(entireDur){
11: for (var i = 0; i < wavesets.size; i+= 1){
12: var ws = wavesets[i];

13: var harm1 = ws->resample(ws.size / 2)->amplify(weight1);

14: var harm2 = ws->resample(ws.size / 3)->amplify(weight2);

15:

16: stream->write(ws);

17: stream->write(harm1);

18: stream->write(harm1, offset:harm1.dur);

19: stream->write(harm2);

20: stream->write(harm2, offset:harm2.dur);

21: stream->write(harm2, offset:harm2.dur * 2);

22:

23: var out = stream->pread(ws.dur);

24: PanOut(out);

25: now += ws.dur;

26: }
27: }
28: };
29: //apply an triangular envelope.

30: var entireDur = 2::second;

31: var envelope = new Line∼([\reset, 0, 1.0, entireDur / 2, 0.0, entireDur / 2]);

32: envelope->trigger();

33: //pass it to the waveset harmonic distortion function.

34: f(envelope, entireDur);

35: //apply an triangular envelope + reverberation.

36: var p = patch {
37: defin:Line∼([\reset, 0, 1.0, entireDur / 2, 0.0, entireDur / 2]) =>

38: Freeverb∼(damp:0.2, fb1:0.58, fb2:0.2, spread:200) => defout:DAC∼();
39: };
40: p.defin->trigger();

41: f(p, entireDur);

Figure 3.63: A duck-typeing example to apply an envelope (by a unit-generator) and an
envelope + reverberation (by a patch) to the output of waveset harmonic distortion.

166

4

Discussion: the Necessity for the

Development of LC as a New

Language and the Benefits of Its

Language Design

This chapter first describes why it was necessary to develop LC as an entirely new

language with its own compiler and virtual machine, not just as a sound synthesis

framework or internal DSL built upon some other language. Then, the benefits of

LC’s language design are discussed by comparing LC to the existing computer music

languages from the perspective of the three issues discussed in Chapter 2: (1) the

insufficient support for dynamic modification of a computer music program, (2) the

insufficient support for precise timing behaviour and other features with respect to

time, and (3) the difficulty in microsound synthesis programming caused by the anti-

pattern of abstraction inversion. The last section summarises the discussion in this

chapter to clarify the contribution of this thesis.

4.1 The justification of the development of LC as a new

computer music programming language

As described in previous chapters, LC is developed as a computer music programming

language with its own syntax, compiler and virtual machine, and does not depend on

167

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

any other general-purpose programming language or domain-specific language. Some

may suggest designing a language with the same features as an internal DSL or us-

ing software libraries for some general purpose programming language, rather than

developing one from scratch.

However, there are several reasons that require LC to be developed as a new com-

puter music language: (1) LC’s design intends to provide more suitable syntaxes for

frequently performed tasks (e.g., patch-creation and message-communication), (2) the

nested execution time constraints must support a different behaviour than the normal

exception-handling mechanism when nested, and LC also requires performing execu-

tion time constraints with logical synchronous time, not real-time, (3) mostly-strongly-

timed programming cannot be implemented as library functions; thus, it was necessary

to develop LC as a new computer music programming languages with its own syntax,

compiler, and virtual machine.

4.1.1 The necessity to provide more suitable syntaxes for frequently

performed tasks

Some features of LC may be simply implemented as library functions or software frame-

works. For instance, the ‘Patch’ object (Figure 4.1) and the message-passing feature

(Figure 4.2) in LC can be implemented as library functions. However, since these

features are often used by users, it is better to provide more suitable syntaxes for pro-

gramming and comprehension. LC provides syntax sugars for such features as shown

in Figure 4.3 and Figure 4.4.

To provide such syntaxes, a programming environment must translate the code

to one that the base language can accept and requires support at the level of micro

definition or pre-compiler; then, the language is already considered an internal DSL at

least.

4.1.2 Execution time constraints

While execution time constraint is one of the most essential features that real-time

programming languages must support, many general-purpose programming languages

lack this feature and require some extension to the language specifications. The main

reason for this is that the execution time constraint is an asynchronous transfer of

control (ATC) and the behaviour of the nested constraints differ significantly from

168

4.1 The justification of the development of LC as a new computer music
programming language

A simple sine wave oscillator example

01: //create a Patch object.

02: var p = new Patch();

03: //store unit-generator objects to its slots.

04: p.src = new Sin∼(440);//u-gen names always start with a tilde.

05: p.dac = new DAC∼();
06: //connect the default output of a sine wave osc to DAC’s default input.

07: p->connect(\src, \defout, \dac, \defin);

08: //update the unit-generator graph.

09: p->compile();

10: //start playing the patch immediately.

11: p->start();

12:

13: //wait for 1 second and change the frequency.

14: now += 1::second;

15: p.src.freq = 880;

16:

17: //wait for 0.5 second and disconnect sin and dac.

18: now += 0.5::second;

19: p->disconnect(\src, \defout, \dac, \defin);

20: //it is necessary to update the unit-generator graph again.

21: p->compile();

22:

23: //wait for 0.5 second again, connect to DAC’s right channel(ch1).

24: now += 0.5::second;

25: p->connect(\src, \defout, \dac, \ch1);

26: p->compile();

27: //wait for 1 second again, deactivate the patch.

28: now += 1::second;

29: p->stop();

30:

31: //wait for 0.5 seconds, activate the patch again.

32: now += 0.5::second;

33: p->start();

34:

35: //swap a sine wave osc with a phasor.

36: var tmp = p.src; //store a sinewave osc to tmp.

37: p.src = new Phasor∼(440);
38: p->compile();

39: //restore a sinewave osc after 1 sec.

40: now += 1::second;

41: p.src = tmp;

42: p->compile();

Figure 4.1: A simple sine wave oscillator example in LC (reproduced from Figure 3.17).

169

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

A timed interthread messaging example in LC(1)

01: //create a function object.

02: var f = function(){
03: var thread = GetCurrentThread();

04: while(true){
05: //receive a message in the blocking mode.

06: var message = thread->recv(\blocking);

07: if (message == \quit){
08: break;

09: }
10: println("received :" .. message);

11: }
12:

13: println("bye!");

14: return;

15: };
16:

17: //starting the function in a new thread

18: var thread = f@();

19: thread->start();

20:

21: //queue a message to the thread’s mailbox

22: thread->queueMessage("Hello!");

23: now += 1::second;

24:

25: //since the return value of queueMessage() is the thread itself,

26: //it can be cascaded as below.

27: //it is also possible to specify the message delivery timing.

28: thread->queueMessage("Sending the first message")

29: ->queueMessage("This should be received after 1 sec", now + 1::second)

30: ->queueMessage("This should be received after 2 sec", now + 2::second);

31:

32: if duration value is used as timing, it is interpreted as ‘now + duration’.

33: thread->queueMessage(\quit, 3::second);

The output from the above example

received :Hello!

received :Sending the first message

received :This should be received after 1 sec

received :This should be received after 2 sec

bye!

Figure 4.2: A timed interthread messaging example in LC(1) (reproduced from Figure
3.24).

170

4.1 The justification of the development of LC as a new computer music
programming language

Another simple sine wave oscillator example

01: //create a Patch object.

02: //patch { ... } expression is a syntax sugar to create a new patch.

03: var p = patch {
04: //=> operator builds a connection.

05: //if no inlet/outlet is specified it connects defout to defin.

06: src:Sin∼(440) => dac:DAC∼();
07: };
08: p->start();

09: now += 1::second;

10: p.src.freq = 880;

11:

12: now += 0.5::second;

13: //update patch { ... } expression is a syntax sugar to update a patch.

14: update patch {
15: //= | operator removes an existing connection.

16: //when no inlet/outlet is specified, it disconnects defout and defin.

17: src =| dac;

18: };
19:

20: update patch(p){
21: //=> operator can also specify inlet/outlet explicitly.

22: src { \out => \ch1 } dac;

23: };
24: now += 1::second;

25: p->stop();

26:

27: now += 0.5::second;

28: p->start();

29:

30: var tmp = p.src;

31: update patch(p){
32: src:Phasor∼(440);
33: };
34: now += 1::second;

35: update patch(p){
36: src:tmp;

37: };

Figure 4.3: Another sine wave oscillator example in LC (reproduced from 3.18).

171

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

A timed interthread messaging example in LC

01: //create a function object.

02: var f = function(){
03: exit:

04: while(true){
05: receive(var message){
06: case \quit:
07: break exit;

08: default:

09: println("received :" .. message);

10: }
11: }
12: println("bye!");

13: return;

14: };
15:

16: var thread = f@();

17: thread->start();

18:

19: thread <- "Hello!";

20: now += 1::second;

21:

22: thread <- "Sending the first message"

23: <- @1::second, "This should be received after 1 sec"

24: <- @2::second, "This should be received after 2 sec";

25:

26: thread <- @3::second, \quit;

Figure 4.4: A timed interthread messaging example in LC.

172

4.1 The justification of the development of LC as a new computer music
programming language

normal exception handling, as “nested ATC’s (for example, for timeouts) must work

properly. A timeout from an outer timer must be handled in the outer scope, even if

the control is in the scope of an inner (longer) timer” (60).

Thus, to support the nested execution time constraints, a language must provide the

correct behaviour in handling asynchronous transfer of control. However, many general-

purpose programming languages do not provide such a feature. Moreover, since LC is

strongly-timed and executes interactive programs in internal logical synchronous time,

existing real-time programming languages are not particularly beneficial for LC to be

built upon the languages, as they provide such features with respect to time in real

time; supporting execution-time constraints in logical synchronous time with sample-

rate accuracy is another significant reason for development of a new language from

scratch.

4.1.3 Mostly-strongly-timed programming cannot be implemented as

library functions

The mostly-strongly-timed programming concept is one of the core features of LC, and

this feature cannot be implemented as just a library, because it requires the support

from the underlying task scheduler at least at the virtual machine level. As described

in Chapter 2.2, synchronizing the timing behaviour with sample-rate accuracy in multi-

threading with native threads can be almost impossible under many operating systems.

Instead, many computer music languages implement the feature of coroutines (as in Lu-

aAV) or software threads (as in ChucK) to achieve sample-rate accurate synchronization

in logical synchronous time.

Mostly-strongly-timed programming extends such synchronous behaviour with ex-

plicit switching between synchronous/non-preemptive context and asynchronous/preemptive

context within the same thread. While many languages support both collaborative/non-

preemptive multithreading by coroutines and preemptive multithreading by native or

software threads, these are independent from each other and the context switching

between two different models as seen in mostly-strongly-timed programming is not

supported in the existing programming languages; such context switching must be

dealt with within the underlying task scheduler, and the runtime environment may

require a significant degree of modification in its implementation. when implementing

173

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

the mostly-strongly-timed programming concept in an existing programming language.

Moreover, even when the underlying scheduler is modified to support context switch-

ing between synchronous/non-preemptive context and asynchronous/preemptive con-

text, the mostly-strongly-timed programming cannot be supported in the form of library

function calls. Otherwise, mostly-strongly-timed programs cannot provide the precise

timing behaviour with sample-rate accuracy, when an execution time constraint causes

time-out or an exception is thrown at runtime.

For example, see the Figure 4.5 example. It may appear that this example can be

translated to the Figure 4.6 example, which involves library function calls for context

switching, in the pre-compilation phase. However, in the presence of an execution

time constraints or exception-handling as in these two examples, the behaviour of the

translated program cannot be equivalent.

In Figure 4.5, the statement on line 08 violates the execution time constraints given

on line 04. This results in the code jumping to the ‘timeout’ statement, recovering

the original context. Thus, in this example, the thread’s context switches back to the

synchronous context when the time-out occurs. However, in the Figure 4.6 example,

which uses the library functions for context switching, it exhibits a different behaviour.

When the time-out occurs on line 14, the code jumps to the line 18, where the timeout

block starts, but since the switch back to the synchronous context is not performed

until line 24, the underlying scheduler may suspend the thread and advance the logical

synchronous time. Hence, while the original code can guarantee that the logical time

at the beginning of ‘timeout’ block is not advanced right after the time-out occurred,

the translated code, which uses the library function call for context switching, may

advance logical synchronous time; thus, the context switching needs to be handled at

the virtual machine level and can’t be replaced by the library function call.

4.1.4 The necessity for LC’s own compiler and virtual machine

As described in this section, to provide more appropriate syntaxes for certain features,

it is necessary to use macro definitions or a precompiler, if LC needs to be implemented

upon an existing programming language. To provide execution time constraints, the

base languages must be equipped with the nested execution time constraints properly, as

its behaviour differs from the normal exception-handling mechanism. Moreover, context

174

4.1 The justification of the development of LC as a new computer music
programming language

01: //switch to sync context

02: sync {
03: //give an execution time constraint of 5 sec.

04: within(5::second){
05: //switch to async context.

06: async{
07: //intentionally causing the time out.

08: now += 10::second;

09: }
10: }
11: //the whole ‘timeout’ block below must be executed

12: //in the synchronous/non-preemptive context.

13: //in other words, the whole timeout block below must be

14: //executed right when the execution time constraint is violated

15: //without any progress of logical synchronous time.

16: timeout{
17: //the code must reach here exactly when the above

18: //execution time constraint is violated.

19: println("timeout!");

20: }
21: }

Figure 4.5: An example of context switching between synchronous/non-preemptive con-
text and asynchronous/preemptive context with an execution time constraint.

175

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: var prevCtx1;

02: {
03: //store the current sync context to recover it later.

04: prevCtx1 = getCurrentSyncContext();

05: //then switch to the sync context.

06: switchToSyncContext();

07: {
08: var prevCtx2;

09: within(5::second){
10: //save the previous context before switching to the async context.

11: prevCtx2 = getCurrentSyncContext();

12: //now switch to the async context.

13: switchToAsyncContext();

14: now += 10::second;

15: //recover the previous context when no timeout occurs

16: setCurrentSyncContext(prevCtx2);

17: }
18: timeout {
19: //before processing ‘timeout’ block, the previous context must be

20: //recovered. however, the underlying scheduler may suspend this thread

21: //before the below function call to recover the previous ‘sync’ context,

22: //as the thread is still in the ‘async’ context.

23: //thus, the advance of logical synchronous time can occur here.

24: setCurrentSyncContext(prevCtx2);

25: println("timeout!");

26: }
27: }
28: }
29: //recover the original context.

30: setCurrentSyncContext(prevCtx1);

Figure 4.6: An example of context switching by library function calls between the
synchronous/non-preemptive context and the asynchronous/preemptive context with an
execution time constraint.

176

4.2 Comparing LC with the existing computer music languages

switching between synchronous and asynchronous contexts in the mostly-strongly-timed

programming concept cannot be correctly implemented by the use of library functions

and must be handled at the level of the virtual machine or runtime environment.

Therefore, it is more appropriate to develop LC as an independent programming

language with its own compiler and virtual machine than as an internal DSL or software

library/framework for an existing programming language; even in the latter case, there

would be a substantial amount of software development involved at many different

levels of language implementation. To make matters worse, it would be necessary to

extend the language specification of the original language.

4.2 Comparing LC with the existing computer music lan-

guages

In this section, the comparison between LC and existing computer music languages is

described to evaluate the benefits of LC’s language design in the three issues addressed

as design opportunities for a new computer music language: the insufficient support for

dynamic modification of a computer music system in run-time, the lack of precise timing

behaviour with other features with respect to time, and the difficulty in microsound

synthesis programming.

The following subsections provides descriptions related to these three issues in ex-

isting computer music languages, such as SuperCollider (210) (320), ChucK (312)(314),

Impromptu (61)(274)(276), Max (234)(327), PureData (233), and similar languages, to

clarify the benefits of LC’s language design regarding the three issues.

4.2.1 The support for dynamic modification of a computer music sys-

tem at runtime

As described in Section 2.1, recent computer music practices, such as live-coding and

dynamic-patching, often require a significant degree of dynamism at runtime at both

levels of compositional algorithms and sound synthesis, and such dynamism in program-

ming is also considered beneficial for rapid-prototyping of a computer music system.

While it has become an the important design criterion to integrate sound synthesis

and compositional algorithms seamlessly into one environment around the late 90s as

seen in Nyquist (89)(90), SuperCollider, or Max (231)(327), even recent computer music

177

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

languages have certain drawbacks in their language designs in order to fully support the

dynamic modification at both levels of compositional algorithms and sound synthesis,

especially when we consider interactive music applications1; this is especially true when

considering whether a certain computer music language provides a terse and consistent

programming model that can be applied to these two levels. The existing languages

often provide such a dynamic feature as an extension as discussed below.

4.2.1.1 Dynamic modification of a computer music system in the existing

computer music languages

SuperCollider. As SuperCollider was designed under a large influence (211) from

Smalltalk (126), which is a dynamic object-oriented programming language, it can

support the dynamic modification of a computer music system at the compositional

algorithm level. One can easily mimic prototype-based programming with Dictionary

or Event (an associative collection that stores key-value pairs) and first class functions

in SuperCollider, as shown in Figure 4.7. The extension called chucklib is also available

to facilitate prototype-based programming in SuperCollider (320, Chapter 20) (Fig-

ure 4.8). As shown in these examples, SuperCollider can support a certain degree of

dynamic modification in runtime by prototype-based programming at the level of com-

positional algorithms.

However, largely due to SuperCollider’s software architecture that divides its run-

time system into scsynth, which is a sound synthesis server, and sclang, which is an

interpreter where compositional algorithms are performed, the programming models

for dynamic modification significantly differ between the compositional algorithms and

the sound synthesis level; SuperCollider extended its original language specification

with Just-in-Time programming (247) (320, Chapter 7) for dynamic modification at

the sound synthesis level.

Generally speaking, one must utilize a Synth object so that sound synthesis can

be performed on scserver. Even when one uses such expression as ‘{ SinOsc.ar(440)

}.play’ in SupeCollider, it is using the play method of a function object (a block ‘{ ... }’
in SuperCollider is a function object), which creates and plays a Synth object. Figure

1As Nyquist is not designed for interactive music applications, this subsection does not further
discuss Nyquist.

178

4.2 Comparing LC with the existing computer music languages

01: //using Dictionary for prototyped-based programming

02: d = Dictionary.new;

03: d[\say] = {
04: arg self, message;

05: ("message :" + message).postln;

06: };
07:

08: d[\performAddition] = {
09: arg self, a,b;

10: a + b;

11: };
12:

13: d[\say].value(d, "Hello, world");

14: d[\performAddition].value(d, 1,2);

15:

16: //using Event instead.

17: e = (); //create an Event object.

18:

19: e.say = {
20: arg self, message;

21: ("message :" + message).postln;

22: };
23: e.performAddition = {
24: arg self, a, b;

25: a + b;

26: };
27: //An Event object implicitly passes the reference to itself as a first argument.

28: e.say("Hello, world");

29: e.performAddition(1,2);

Figure 4.7: A prototype-based programming example by Dictionary and Event in Super-
Collider.

179

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: (

02: ∼greeter = Proto({
03: ∼sayhi = { |name|

04: "%, %\n".postf(∼greeting.value, name ? ∼name);
05: };
06: ∼name = "Monique"; //default name

07: ∼greeting = "Hello"; //default greeting

08: });
09:

10: ∼frenchGreeter = ∼greeter.clone({
11: ∼greeting = "Bonjour";

12: });
13:

14: ∼timeAwareFrenchGreeter = ∼frenchGreeter.clone({
15: ∼greeting = {
16: var hour = Date.getDate.hour;

17: if (hour < 18) { ∼dayGreeting } { ∼eveningGreeting };
18: };
19: ∼dayGreeting = "Bonjour";

20: ∼eveningGreeting = "Bon soir";

21: });
22:)

23:

24: ∼greeter.sayhi;
25: ∼greeter.sayhi("Bob");
26: ∼frenchGreeter.sayhi("Isabelle");
27: ∼timeAwareFrenchGreeter.sayhi("Eric");

Figure 4.8: A prototype-based programming example with chuchklib in SuperCollider
(320, p.600).

180

4.2 Comparing LC with the existing computer music languages

4.9 describes how to play a Synth object in SuperCollider.

As mentioned above, the dynamic modification of a unit-generator graph must in-

volve Just-in-Time programming extensions in SuperCollider to the original language.

Figure 4.10 describes several examples of Just-in-Time programming. Figure 4.10

(above) describes a simple example, which does not involve Just-in-Time programming.

The code between line 04-08 repeatedly send an message to play a note number x for

the duration 0.125 second to scserver. As the whole program is executed on sclang, the

update of the variables (x and y) on line 13 and 14 can be reflected to the messages

sent to scserver.

However, since the dynamic modification of a synthesis graph must involve the sound

synthesis server scserver, which is a different program than the interpreter sclang, the

code cannot be as simple as the above example any more. The Figure 4.10 example

(middle) describes a wrong way of dynamic modification of a sound synthesis graph,

which is ineffective. To make such a dynamic modification of a synthesis graph in

SuperCollider, one needs to use proxies as in Figure 4.10 (bottom). While this example

implicitly creates proxy objects, it is also possible to explicitly create a proxy object.

Figure 4.11 (above) describes an example of such explicit creation and use of a proxy

object.

As shown, a proxy object play a role of place holder for the other objects and

it is required to involve NodeProxy object for objects on the scsever side, explicitly

or implicitly. As seen in Figure 4.10 (bottom), the use of ProxySpace simplifies the

creation of NodeProxy objects in the current environment. However, it also makes it

unclear if the variable contains the reference to a server side object as a NodeProxy, or if

it contains a value on the sclang side. This can make it harder for users to comprehend

what the program does, especially when one must take care in distinguishing if an

object is on the side of scserver or within the sclang interpreter.

In such a programming model, since the modification of a synthesis graph in Just-in-

Time programming is possible only at the point where proxy objects are used, one must

use proxy objects before which part of a synthesis graph must be dynamically modified

before writing the code, otherwise it can require a significant amount of refactoring in

runtime as shown in Figure 4.12. Furthermore, many proxy objects can be involved for

more fine-grained modification, as shown in Figure 4.13.

181

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: //the simplest way to perform synthesis.

02: //the code below implicitly instantiates a BinaryOpUGen that holds

03: //the references to two SinOsc unit-generators and adds the input from them.

04: //as {...} in SuperCollider is indeed a function object and calling ‘play’ method

05: //of a function object will creates an Synth object and then send it to server

06: //and then performs sound synthesis immediately.

07: { SinOsc.ar(440) + SinOsc.ar(880) }.play;
08:

09: //store an instrument definition named \inst1 to the server.

10: //this makes the reuse of the definition of Synth objects a lot easier.

11: (

12: SynthDef(\inst1, {
13: arg freq = 440;

14: var a = SinOsc.ar(freq) + SinOsc.ar(freq * 2);

15: Out.ar(0, a);

16: }
17:).add;

18:

19: //play the instrument \inst1.
20: Synth(\inst1);
21: Synth(\inst1, [\freq, 880]);

Figure 4.9: Playing Synth objects in SuperCollider.

As above, SuperCollider adopts different programming models for the dynamic mod-

ification at the levels of compositional algorithms and sound synthesis and the dynamic

modification at the sound synthesis level can often exhibit such problems as premature

commitment1 and viscosity2. These problems can be attributed not just to SuperCol-

lider’s language design and programming models, but also to its software architecture

that separate the sound synthesis software from the language interpreter.

ChucK. As ChucK is a statically-typed class-based language, dynamic modification

at the compositional algorithm level can be a lot constrained by types and class-

1Green and Blackwell describes the problems of premature commitment “arise when the target
notation contains many internal constraints or dependencies and when the order constraints force the
user to make a decision before full information is available (premature commitment) or to look ahead
in a way that is cognitively expensive (enforced lookahead)” (129).

2Green and Blackwell defines viscosity as “resistance to change: the cost of making small changes”
and viscosity “becomes a problem in opportunistic planning when the user/planner changes the plan”
(129).

182

4.2 Comparing LC with the existing computer music languages

a modulo algorithm that operates over states of variables (from (320, p.208))

01: (

02: Task {
03: x = 4; y = 13;

04: loop {
05: x = (x * y) % 5;

06: (note: x.postln, dur: 0.125).play;

07: 0.125.wait;

08: };
09: }.play;
10:); // creates a loop of values;

11:

12: // change x and y;

13: x = 5; // new initial value

14: y = 4; // new multiplication factor

a wrong way to modify a synthesis graph (from (320, p.209))

01: (

02: {
03: x = SinOsc.kr(4);

04: y = SinOsc.kr(13);

05: SinOsc.ar(x * y % 0.4 * 500 + 600) * 0.2

06: }.play;
07:)

08:

09: //change x and y?

10: x = SinOsc.kr(4); // no effect.

11: y = SinOsc.kr(4); // no effect either.

dynamic synthesis graph (from (320, p.210))

01: p = ProxySpace.push;

02: ∼x = { SinOsc.kr(4) };
03: ∼y = { SinOsc.kr(13)};
04: ∼z = { SinOsc.ar(∼x * ∼y % 0.4 * 500 + 600) * 0.2 };
06: ∼z.play;
07:

08: // now ∼x and ∼y can be replaced

09: ∼x = { SinOsc.kr(0.4) };
10: ∼y = { SinOsc.kr(1.3) };
11:

12: p.clear(2).pop; // release environment (2 sec fadeout)

Figure 4.10: Just-in-Time programming example in SuperCollider (320, pp.208-210).

183

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: n = NodeProxy.new;

02: x = { SinOsc.ar(n.kr * 200 + 300) * 0.1 }.play;
03: n.source = { LFPulse.kr([1.3,2.1,3.2]).sum };
04: n.clear; x.free;

Figure 4.11: Creating a proxy object explicitly and changing its source (from (320,
p.215)).

01: p = ProxySpace.push; // if needed

02:

03: ∼a = Lag.ar(LFClipNoise.ar(2 ! 2, 0.5, 0.5), 0.2) ;

04: (

05: ∼b = {
06: var c, d;

07: c = Dust.ar(20 ! 2);

08: d = Decay2.ar(c, 0.01, 0.02, SinOsc.ar(11300));

09: d + BPF.ar(c * 5, ∼a.ar * 3000 + 1000, 0.1)

10: }
11:);

12:

13: ∼b.play;
14:

15: // the refactored code from above

16:

17: (

18: ∼a = {
19: var a;

20: a = Lag.ar(LFClipNoise.ar(2 ! 2, 0.5, 0.5), 0.2);

21: BPF.ar(∼c.ar * 5, a * 3000 + 1000, 0.1)

22: }
23:);

24: ∼c = { Dust.ar(20 ! 2) };
25: ∼d = { Decay2.ar(∼c.ar, 0.01, 0.02, SinOsc.ar(11300) };
26: ∼b = ∼a + ∼b;
27:

28: ∼b.play;

Figure 4.12: Refactoring a synthesis graph at runtime (from (320, p.212)).

184

4.2 Comparing LC with the existing computer music languages

01: ∼out.play; ∼out.fadeTime = 3;

02: (

03: // name with a represents audio rate argument

04: ∼out = { | freq = 440, mod=0.4, detune=0.1, a in = #[1,1] |
05: freq = freq * ([0, detune] + 1);

06: LFTri.ar(LFTri.ar(mod * freq).range(freq * mod, freq)) * a in * 0.2

07: }
08:);

09:

10: (

11: ∼mod2 = { LFNoise1.kr(1).range(0,1) };
12: ∼mod1 = { LFPulse.kr(∼mod2.kr * 30 + 1, 0, 0.3) };
13: ∼freq1 = { ∼mod1.kr * 13100 + 100 };
14: ∼freq2 = { LFTri.kr(30) * 200 + 300 };
15: ∼audio1 = { BrownNoise.ar(LFClipNoise.kr(10. dup), 1) };
16: ∼audio2 = { SinOsc.ar(LFNoise2.kr(1.dup).exprange(4, 1000)) };
17:);

18:

19: ∼out.map(\freq, ∼freq2, \mod, ∼mod1);
20: ∼out.set(\detune, 0.01);

21: ∼out.map(\freq, ∼freq1, \mod, ∼mod1);
22: //xmap crossfades over fade time to new value.

23: ∼out.xmap(\freq, ∼freq1, \mod, ∼mod2);
24: ∼out.xmap(\freq, ∼freq2, \mod, ∼mod1, \a in, ∼audio2);
25: ∼out.map(\a in, ∼audio1);

Figure 4.13: Parameter mapping and setting (from (320, p.216)).

185

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

hierarchy. While ChucK allows overloading of functions, the current version1 simply

neglects the redefinition of a function. Chuck also lacks other desirable features, such

as first class functions and duck-typing. This makes a ChucK program a lot less flexi-

ble against dynamic modification in comparison with other computer music languages

with dynamic features. On the other hand, at the sound synthesis level, Chuck’s ‘=>’

operator (for connection) and ‘=<’ (for disconnection) makes it significantly easier to

modify a unit-generator graph dynamically. Figure 4.14 describes an example of the

dynamic modification of the unit-generator graph in ChucK.

However, unlike the dynamic modification of the connections in a synthesis graph,

ChucK has a significant obstacle in replacing a unit-generator with another unit-

generator between the different types in runtime. Figure 4.15 example describes such

an issue. Two problems can be observed. The first problem is that as ChucK is a

class-based programming language, the replacement of a unit-generator with another

unit-generator can involve an issue of typing as seen in Figure 4.15 (1). While one can

use the reference type of the parent class instead in Figure 4.15 (2), as the connection

between unit-generators is built between instances of the unit-generators, just

assigning a new unit-generator to some variable does not cause the modification of a

synthesis graph. To make an effective change in a synthesis graph, as seen in Figure

4.15 (3), one must disconnect the old instance from the synthesis graph first, and then

connect the new instance. If the old instance was connected to many different unit-

generators, one must rebuild all the existing connections in such a manner. Moreover,

as the reference type of the parent class is involved in typing, the methods and at-

tributes in the child class cannot be directly accessed (see line 15 in Figure 4.15 (3)

example).

Thus, generally speaking, ChucK has a drawback in dynamic modification at both

levels of compositional algorithms and sound synthesis and it is due to as it is its nature

as a statically-typed class-based language. Although the lack of the notion of ‘subpatch’

may make it harder to build and modify more complicated synthesis graphs in ChucK.

Furthermore, the current implementation of ChucK hardly allows interaction with

a program that is already being executed. One cannot modify any part of the code

or directly change parameters from outside of a program once after it is launched,

while many other recent computer music languages can perform such interaction with

1version 1.2.1.4-beta-1 (dracula).

186

4.2 Comparing LC with the existing computer music languages

01: //connect a sine wave oscillator to a gain controller and DAC.

02: SinOsc sin => Gain gain => dac;

03:

04: //set the frequency of ‘s’ to 440Hz.

05: 440 => sin.freq;

06:

07: //when ‘3’ is set to ‘op’ field of a unit-generator,

08: //the unit-generator will multiply all inputs.

09: 3 => gain.op;

10:

11: //connect another sine wave oscillator to the gain controller

12: //and set the frequency to 5Hz for tremolo effect.

13: SinOsc amp => gain;

14: 5 => amp.freq;

15:

16: //play the sound for 3 seconds.

17: 3::second +=> now;

18: <<< "3 sec passed. no tremolo effect from now" >>>;

19:

20: //kill the tremolo effect by disconnecting ‘amp’ from ‘gain’.

21: amp =< gain;

22:

23: 3::second +=> now;

Figure 4.14: A simple example to connect/disconnect the connections in a synthesis
graph in ChucK.

the current environment. This can significantly limit the dynamic modification at any

level.

Other textual computer music languages. As Impromptu (276) is an internal

domain-specific language built on Scheme (278), which is very dynamic in its nature

as one of the LISP family languages, it offers a substantial flexibility against dynamic

modification at the level of compositional algorithm. Withal, as its sound synthesis

functionality fully depends on Apple’s Audio Unit framework, Impromptu’s flexibility

at the level of sound synthesis is constrained by the underlying Audio Unit framework;

the Audio Unit framework provides a similar programming model to the unit-generator

languages in that it builds the graph of the sound synthesis modules to perform the

entire sound synthesis, yet the granularity of sound synthesis algorithms that can be

187

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

A typing issue in dynamic modification in ChucK (1)

01: //‘@’ denotes the reference type.

02: //so ‘SinOsc@’ is a reference to ‘SinOsc’

03: new SinOsc @=> SinOsc@ osc;

04: osc => dac;

05: 3::second +=> now;

06: //the statement below results in a type error,

07: //as one cannot assign Phasor@ to SinOsc@.

08: new Phasor @=> osc;

09: 3::second +=> now;

A typing issue in dynamic modification in ChucK (2)

01: //‘@’ denotes the reference type.

02: //use ‘UGen@’ instead, as UGen is a parent class of all ugens.

03: new SinOsc @=> UGen@ osc;

04: osc => dac;

05: 3::second +=> now;

06: //the statement below do not result in a type error,

07: //however, still ineffective, since ChucK builds the connection

08: //*between the instances of the unit-generators*

09: //so simply assigning a new unit-generator to ‘osc’ doesn’t

10: //cause the update of the unit-generator.

11: new Phasor @=> osc;

12: 3::second +=> now;

A typing issue in dynamic modification in ChucK (3)

01: //‘@’ denotes the reference type.

02: //use ‘UGen@’ instead, as UGen is a parent class of all ugens.

03: new SinOsc @=> UGen@ osc;

04: osc => dac;

05: 3::second +=> now;

06: //first we disconnect the old connection.

07: osc =< dac;

08: //then instantiate a new object and reconnect.

09: new Phasor @=> osc;

10: osc => dac;

11: 3::second +=> now;

12:

13: //however the statement below results in a syntax error,

14: //as UGen class doesn’t have ‘freq’.

15: 880 => osc.freq;

Figure 4.15: A typing issue in dynamic modification at the sound synthesis level in
ChucK.

188

4.2 Comparing LC with the existing computer music languages

described differs a lot.

While the unit-generator languages provides very simple sound synthesis modules

such as sine wave oscillators and filters as components to build sound objects (or note-

level objects), the Audio Unit framework provides higher-level components as AU In-

strument, a software synthesizer modules that “take MIDI and soundbank data as

input and provide audio data as output — letting a user play a virtual instrument”

(19), and AU Effect, software modules that apply various sound effects to the given

input. Thus, while it still allows dynamic modification between these AU components,

the exploration of the sound synthesis algorithms can be significantly limited compared

to the unit-generator languages.

Extempore (277), the successor language of Impromptu recently under develop-

ment, has a language design that takes Impromptu’s limitation into account and it can

describe sound synthesis algorithms at two levels. Extempore allows a user to write

the DSP function called back from the underlying sound driver, in which a user can

directly describe the algorithms to compute the output samples while it is also possible

to write virtual instruments that plays notes together with audio effects. The code

at both levels can be dynamically compiled into native machine code at runtime by

LLVM’s just-in-time compiler (172) for better performance efficiency.

However, while the capability to write the callback function makes it virtually pos-

sible to describe any sound synthesis algorithms, it is too low level for many sound

synthesis algorithms as the user must write an excessive amount of the code them-

selves, unlike unit-generator languages. On the other hand, while an instrument-like

abstraction can be useful in many cases, it may not be beneficial to some application

domains like dynamic-patching (as seen in the performance by reacTable (159)(160));

the latter requires the dynamic modification of the sound synthesis algorithms while

the sound is being generated; thus, Extempore still leaves a design issue when

considering the generality of its programming model, though it would be useful for a

certain kind of tasks.

LuaAV is an internal DSL built upon Lua, a dynamically-typed programming lan-

guage and it can be flexible for dynamic modification at the compositional algorithm

level. At the sound synthesis level, LuaAV provides a programming model similar to

189

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

SuperCollider in that it builds a hierarchical directed acyclic graph (DAC) (or simply, a

tree structure) of unit-generators. A graph shown in Figure 4.16 can derive from such

a statement ‘local dag = sin(time() * 500) * sin(time() * 0.1)’ as described in (273).

The recent version of LuaAV translates a synthesis graph first into an equivalent C

language program and then into a native machine code by just-in-time compiler, clang

(171), a C compiler for LLVM and thus achieve a better efficiency in DSP.

In the current version of LuaAV, it does not seem possible to modify a synthesis

graph for dynamic-patching, and may require further extension as seen in SuperCol-

lider’s Just-in-Time programming. It may also require further consideration on how

to realize such dynamism when just-in-time compilation to the native machine code is

performed.

Figure 4.16: An oscillator with amplitude modulation: synthesis graph (left), and equiv-
alent abstract syntax tree (right) - taken from Smith’s publication ‘Augmenting Computer
Music with Just-in-time Compilation’ (273).

Visual computer music languages. Generally speaking, in visual computer music

programming environments such as Max and PureData, a user can dynamically instan-

tiate and delete unit-generators and the modification of a synthesis graph can be easily

performed. Even putting aside the argument that graphical programming languages

190

4.2 Comparing LC with the existing computer music languages

can be much harder to comprehend in certain situations (131)(132), graphical program-

ming with direct manipulation leaves some problems in computer music practices; as

the manipulation of graphical objects can take effect immediately and often take more

time than textual languages to make modifications with the keyboard and mouse, one

may need to take extra care in dealing with the nature of direct manipulation in a

live-coding performance.

While both PureData and Max offer some interfaces, so that lots of dynamic modi-

fications can be performed immediately and automatically (e.g., by external programs

or by an embedded scripting language), this means that such tasks can be difficult to

achieve solely within the languages. In addition, if users are required to learn other

programming languages, it is clearly not a very ideal situation.

4.2.1.2 The benefits of LC’s language design for dynamic modification of

a computer music system

The programming concepts and models in the existing computer music languages de-

scribed so far, propose several perspectives to view how and how much a computer

music programming language can support dynamic modification of a computer music

system at runtime. The following paragraphs discuss the benefits of the language design

of LC, based on these perspectives.

Capability. Some languages are not capable of dynamic modification due to the lan-

guage design or runtime environment. ChucK has a significant drawback for dynamic

modification because of its statically-typed class-based language design, and its run-

time environment, which does not allow modification of a program interactively during

execution, is also a significant obstacle. While LuaAV allows the execution of new code

in the same runtime environment for live-coding, it is not capable of modifying a sound

synthesis algorithm dynamically during its sound generation.

Granularity. It is also important to consider the granularity of dynamic modification,

especially at the sound synthesis level. While dynamically-typed languages provide lots

of flexibility at runtime, as the sound synthesis features are based on the underlying

software framework or library, to what level a language supports dynamism at the

sound synthesis level can differ a lot.

191

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

Since Impromptu depends on Apple’s Audio Unit framework, its granularity is not

so fine-grained as the abstractions applied to Audio Units are more similar to virtual

software synthesizer instruments; a user cannot redefine or modify sound synthesis

algorithms with the same granularity as in other unit-generator languages, which are

capable of describing much lower level sound synthesis algorithms. While Extempore

provides the lowest level granularity to describe the callback function for DAC output,

this is likely too low level for many tasks in computer music. While it is possible to

redefine note-level objects and sound effect algorithms for virtual instruments, such a

model is not appropriate for some tasks that require dynamic modification of a sound

synthesis graph (e.g. dynamic patching as seen in reacTable).

Premature commitment. Even when dynamic modification is possible, if the lan-

guage design enforces a user to consider where and what to modify before making the

actual modification, such a situation may not be ideal to support creative exploration

by computer musicians.

The problems of premature commitment can frequently occur in Just-in-Time pro-

gramming in SuperCollider, since proxy objects must be placed at the points where

there can be dynamic modification of a synthesis graph. ChucK also can exhibit a

premature commitment problem when replacing unit-generators, as a reference to the

parent class must be used before making the actual replacement. On the other hand, in

Impromptu, it is only necessary to update the synthesis graph after performing dynamic

instantiation of Audio Units and modification to the connections.

Viscosity. It is important, not just whether the dynamic modification is possible,

but also to see how much effort must be involved to make a dynamic modification.

Graphical computer music languages clearly exhibit such problems of viscosity. While

a simple modification such as connecting/disconnecting two unit-generators can be

easily performed in graphical languages, the direct manipulation in graphical program-

ming environments normally involves more user actions and takes longer time for more

complex modification at both levels of compositional algorithms and sound synthesis.

Textual computer music languages can also exhibit the viscosity problems. As

seen in the Figure 4.12 example, SuperCollider’s Just-in-Time programming can be

considered viscous when one needs to refactor the code by inserting proxy objects for

192

4.2 Comparing LC with the existing computer music languages

more dynamic modification in a synthesis graph. ChucK also exhibits the problem of

viscosity when replacing unit-generators. As in Figure 4.15 (below), it is necessary

to disconnect the old unit-generator from the graph and then connect the new one

to perform the replacement. If a unit-generator is connected to many other unit-

generators, one must perform the same procedure to all the connections. Impromptu’s

programming model also exhibits the same problem as ChucK.

On the other hand, in Max and PureData, one can simply change the type of an

object directly while keeping the existing connections with the other objects and the

viscosity with the object replacement is not exhibited. The viscosity problem in the

replacement of the unit-generators seen in SuperCollider, ChucK, and Impromptu seem

mostly due to that these languages build the connections directly between the

inlets and outlets of the unit-generator instances; it is better to manage the

connections in a synthesis graph separately from the instances.

The benefits of LC’s language design. LC was designed to take such problems

in the existing languages into consideration, and its design and implementation offer

better support for the dynamic modification of a computer music program to a consider-

able degree in comparison with predecessors; LC adopts prototype-based programming

at both levels of compositional algorithms and sound synthesis and provide a terse

and consistent programming model, which is beneficial for dynamic modification of a

computer music system. As described in Chapter 8, LC’s virtual machine dynamically

loads new bytecode and executes it within the same name space and the same memory

space. This makes on-the-fly redefinition and modification easier.

LC is capable of dynamic modification at both levels of compositional algorithms as

well as other languages as SuperCollider, Impromptu, Max/MSP, and PureData. All

these languages are designed as a dynamically-typed textual language or a graphical

language with direct manipulation. Even the programming environment developed only

to test the current proof-of-concept prototype of LC allows such dynamic modification

even during a program being executed. For instance, suppose there is a loop that keeps

on calling a certain function assigned to the global variable a every 200 msec. If a user

writes a new function and assigns it to the global variable a, the loop will then call the

193

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

new function from the next iteration. Thus, the language design of LC is very suitable

for an interactive programming environment1.

The granularity of dynamic modification in LC is fine-grained. It supports the

dynamic modification at the level of the unit-generator graph. Moreover, it can directly

compute output samples, even without depending on unit-generators; thus, LC’s sound

synthesis framework supports dynamism at various granularity levels.

Dynamic modification in LC does involve less premature commitment in comparison

with other languages. It provides a similar programming model to Impromptu, as it

can dynamically instantiate new unit-generators/subpatches and reconnect synthesis

graphs without any preparation before actual modification. Calling compile method

can update the patch to reflect the modification.

LC is less viscous in the modification of a synthesis graph. As in Max/MSP or

PureData, its Patch object also manages the connections between unit-generators (and

subpatches) separately from the instances. As previously describe in Section 3.2.1.2,

LC does not directly connect the unit-generator instances as in other textual languages

above and instead Patch object manages the connections between its slots rather than

the instances.

The cause of the obstacles against dynamic modification seems rooted in many dif-

ferent aspects of computer music languages (e.g. what kind of programming paradigms

and concepts are adopted, how sound synthesis is abstracted, and how the runtime

environment such as interpreter, compiler, virtual machine, and the software synthesis

framework, are implemented). The design of LC is considerably flexible in dynamic

modification and also beneficial for supporting creative exploration by users, for exam-

ple, in rapid-prototyping and live-coding activity.

4.2.2 The support for precise timing behaviour and other features

with respect to time

Supporting precise timing behaviour is still an important criterion in computer mu-

sic language. While the desirable precision was much lower in the hybrid computer

music systems with external MIDI synthesizers in the 1980s, today’s computer music

1Sorensen and Gardner calls such an interactive programming activity as seen in live-coding as
cyber-physical programming in (276), considering a programmer as one of the agents involved in the
entire system.

194

4.2 Comparing LC with the existing computer music languages

systems require more precise timing behaviour. Microsound synthesis techniques re-

quire sample-rate accuracy in scheduling microsounds to precisely render its output.

Also, even at the rhythmic level, it is argued that “a pulsation may feel not quite right

when there are a few 10s of milliseconds of inaccuracy in the timing from beat to beat”

(194); thus, today’s computer music practices require much higher precision in timing

behaviour than before.

While many computer music systems and languages still have some problem in

precise timing behaviour, some of the recent computer music languages have achieved

precise timing behaviour, with sample-rate accuracy by introducing the concept of syn-

chronous programming. Yet, such languages can suffer from the temporal suspension

of real-time sound synthesis in the presence of time-consuming tasks.

Furthermore, many desirable features with respect to time, such as execution time

constraints, which are almost indispensable in real-time programming languages, are

still not available in many recent computer music languages, while some of such features

were implemented in the hybrid computer music systems of the previous decades. The

following sections discuss such issues in the existing languages and describes the benefits

of LC’s language design.

4.2.2.1 Timing behaviour in the existing computer music languages

This section mainly focuses on recent programming languages and discuss the pre-

cision of timing behaviour, as today’s computer music systems require much higher

precision in timing behaviour than the hybrid computer music systems with external

MIDI synthesizers. However, FORMULA (Forth Music Language) (16) should be wor-

thy of reviewing in that its virtual system time concept is a precursor to the recent

synchronous approach as seen in ChucK and LuaAV as described in Section 2.2.

ChucK and LuaAV. Among recent computer music languages, ChucK and LuaAv

are of significant interest as these languages achieve sample-rate accuracy in timing

behaviour. While ChucK proposes the concept of strongly-timed programming, the

behaviour of LuaAV is based on a similar synchronous approach. ChucK is also in-

teresting in that it proposes the deterministic behaviour in scheduling and order of

its threads. However, as discussed above, these languages based on such synchronous

195

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

approaches can suffer from the temporal suspension of real-time DSP in the presence

of time-consuming tasks.

SuperCollider and Impromptu. Both SuperCollider and Impromptu (and Extem-

pore) separate the sound synthesis servers from the interpreters and are not based on the

synchronous approach as in ChucK and LuaAV. Hence, while both adopt the concept

of logical time in the design, there is still the necessity to take the passage of real time

into account to some degree when programming. Moreover, the separation between

interpreters and synthesis servers in these languages makes it impossible to precisely

synchronize compositional algorithms and sound synthesis algorithms with sample-rate

accuracy. Such a drawback is considered problematic to certain application domains.

Other languages. While PureData is also implemented based on the synchronous

approach, as it computes output samples by audio vectors, and compositional algo-

rithms are executed in the same thread with audio computation between DSP cycles,

the precision of timing behaviour is determined by the size of audio vectors. As in

ChucK and LuaAV, time consuming-tasks can temporarily suspend real-time DSP in

PureData.

On the other hand, Max/MSP normally processes compositional algorithms in a

separate thread to avoid such real-time DSP suspension; this leads to imprecise timing

behaviour as in SuperCollider and Impromptu, and users must take extra care when

timing precision matters.

4.2.2.2 Other features with respect to time in the existing computer music

languages

As already mentioned, many recent computer music programming languages still lack

other desirable features with respect to time.

In ‘Motivating time as a first class entity’, Lee et al. (179) discuss six desirable

features for high-level real-time programming: (1) expression of timing, (2) timed com-

munication1, (3) enforcement of timing constraints, (4) time fault tolerance, (5) main-

taining consistency in distributed real-time systems, and (6) static timing verification.

1‘Timed communication’ should not be confused with time-tagged messages as seen in Section
3.2.2.2.

196

4.2 Comparing LC with the existing computer music languages

Table 4.1 describes these six features with more detail.

While many computer music languages rarely refer to such features of real-time

programming languages, these six desirable features can also be considered criteria for

computer music language design, as seen in Sorensen’s discussion on Impromptu(276).

The following discussion on the features with respect to time also refers to these six

features.

Impromptu is particularly interesting, as the developers considered these features in

the language design. FORMULA (15)(16) is another interesting work as a predecessor

language of this kind. Even though FORMULA itself is a language/system developed

around early the 1990s and only targeting hybrid computer music systems with the

external synthesizer hardware, and such hybrid computer music systems may seem al-

ready outdated today, the concepts to integrate these time-related features in computer

music systems are still worthy of reviewing.

FORMULA. Since FORMULA is designed for hybrid computer music systems with

external MIDI synthesizer, its precision of timing behaviour is assumed to be much

lower than what is required for real-time sound synthesis today. Yet, the features of

FORMULA described in (16) seem to implement some of the six desirable features as

above.

• expression of timing — Start-time constraint is implemented as library func-

tions for task scheduling and execution-time constraint is implemented as time-

control structures: ‘maxtime(n) statement’, ‘mintime(n) statement’, and ‘min-

loop(n) statement’. For instance, when the time-control structure ‘maxtime(n)’

executes its following statement, which may be compound statement ({... }), if

the ‘time advance’ function call advances FORMULA’s virtual system time over

the given execution constraint, it immediately stops the execution of the current

statement and jumps to the next statement right after ‘maxtime(n) statement’.

Yet, as the only point to check if the violation occurred or not is the time advance

function call, it is uncertain how an execution time constraint can be realized

within FORMULA’s background process, which may not call this function.

197

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

expression of timing it is desirable for language to support timing

constraints (e.g., start-time constraint and

execution-time constraint). The feature of

variable time constraints is required as "timing

constraints may be variable with their value

depending of the state of the environment" (179).

As timing constraints may be nested, the support

for nested time constraints is also required.

timed communication is described as predictable communication and

time constrained communication. For the former,

it is emphasized that the communication is

predictably fast enough and should support

asynchronous messages and concurrent shared

data so that "the forms of communication are

low overhead and thus physically fast", since

"neither form requires waiting in a queue

or buffer (or at most a small buffer for

asynchronous messages)" (179). For the later,

as "messages often have a specific interval

when they are valid", "for the send primitive

the ability to stamp a message with a validity

time interval is required" and "for the receive
primitive the ability to specify a deadline for

waiting for a message is required" (179).

enforcement of timing

constraints

"It is necessary to provide system support to

enforce timing constraints. System support

includes: The underlying system detecting

violations of timing constraints and invoking

appropriate action when they are violated; The

run-time system changing timing constraints

due to nesting of constraints, propagation of

constraints form a sending process based on the

urgency of messages, and the setting of values

for variable constraints; The run-time scheduler

scheduling processes based on their current

timing constraints so that all system constraints

can be met" (179).

Table 4.1: The six required features for high-level real-time programming as Lee et al.
discuss in (179)

198

4.2 Comparing LC with the existing computer music languages

time fault tolerance "Violation of timing constraints are called

time faults. In order to provide complete

control, the system must be time fault tolerant

by handling missed timing constraints" (179).

maintaining consistency

in distributed real-time

systems

It is necessary "to guarantee a consistent

global state, some changes to the system state

must be carried out completely or not carried

out at all so as not to leave the system in an

inconsistent state" and "the traditional solution

is to provide atomic actions with the property

that the actions either complete entirely or

have no effect". "Adding atomicity with respect

to time faults leads to the notion of timed

atomic action". "A timed atomic action either

performs completely within its timing constraints

or appears as if it never executed" (179).

static timing

verification

is "offline static verification of real-time

programs". "Static timing verification tools

examine the timing that was expressed and

determine if the timing constraints can be met"

(179).

Table 4.1: The six required features for high-level real-time programming as Lee et al.
discuss in (179) (continued).

199

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

• timed communication — It does not seems considered in the language features

of FORMULA. However, as FORMULA is equipped with the mutual exclusion

mechanism, concurrent shared data can be used for fast communication between

processes, while the asynchronous message communication mechanism does not

seems supported.

• enforcement of timing constraints — It is described that FORMULA’s oper-

ating systems can enforce timing constraints by the underlying scheduler in (16).

FORMULA is also capable of handling the nested time-control structures.

• time fault tolerance — FORUMULA’s time-control structure does not appear

to have a handler when any violation has occurred. Using a flag that is set to

‘false’ in the end of a block that is given a time constraint may be helpful to check

if any violation has occurred in order to handle the violation.

• maintaining consistency in distributed real-time systems — This issue is

not discussed in the related publications (15)(16). Yet, as FORMULA has the

mutual exclusion mechanism, it can be used to maintain consistency as is seen in

general-purpose programming languages.

• static timing verification — This is another issue that is not discussed in their

publications.

Impromptu.

• expression of timing — Impromptu can express both start-time constraints

and execution-time constraints by its underlying scheduler (276). Figure 4.17 de-

scribes an example of execution-time constraints in Impromptu (276). As shown,

an execution-time constraint in Impromptu can be given when passing a first-

class function to a scheduler. However, this programming model exhibits a serious

problem as it cannot express the nested timing constraints as described later.

• timed communication — Impromptu’s primary communication mechanism is

remote-procedure calls (RPCs) (276) and both synchronous and asynchronous

200

4.2 Comparing LC with the existing computer music languages

RPCs are supported1. Time constrained communication can be realized by giving

an execution-time constraint to RPCs.

• enforcement of timing constraints — Both start-time and execution-time

constraints are available in Impromptu. Impromptu’s scheduler is responsible

for dispatching events to the requested process. Each process is responsible for

execution-time constraints (276).

• time fault tolerance — When Impromptu missed start-time constraints, the

underlying the scheduler simply culls the missed events and prints out an error

message. The violation of execution time constraints is not handled at all.

• maintaining consistency in distributed real-time systems — Sorensen

describes the use of Tuple space (275)(276) for the maintenance of consistency in

distributed real-time systems in Impromptu.

• static timing verification — Static timing verification is not available in Im-

promptu. However, such a feature is almost unrealisable as live-coding activity

involves the creation and modification of a new program on-the-fly. It is impossi-

ble to estimate what kind of tasks a user may program and execute beforehand.

Other languages. Many other computer music languages still lack these six desirable

features. Even among the widely-used computer music languages, neither SuperCol-

lider, ChucK, LuaAV, Max/MSP or PureData supports execution-time constraints.

While most of these languages support Open Sound Control (OSC) (324) for asyn-

chronous communications, the lack of execution-time constraints in these languages

may make it harder to realize time constrained message communications. The en-

forcement of timing constraints and tolerance constrains with respect to time seem not

considered in the design of these languages.

The maintenance of the consistency in distributed real-time systems may be re-

alizable as these languages do not provide preemptive threads and atomicity can be

expected; as the requests can be serialized and processed without preemption. Static

1“Asynchronous RPC calls do not block the caller (client) and the replies can be received as and
when they are needed, thus allowing the client execution to proceed locally in parallel with the callee
(server) invocation” (14) whereas on the contrary synchronous RPCs block until it receives the result.

201

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: ;; video player temporal recursion looping

02: ;; at a rate of 1/24th of one second

03: ;; maximum-execution time of 1/32nd of one second

04: (define video-player

05: (lambda (time mov position)

06: (let ((frame (gfx:get-movie-frame mov position)))

07: (gfx:draw-image time *canvas* frame 1)

08: (schedule (cons (+ (now) (/ *second* 24))

09: (/ *second* 32))

10: video-player

11: (+ time (/ *second* 24))

12: mov (+ position 1/24)))))

13: ;; this call starts the temporal recursion

14: ;; the execution deadline for this first call

15: ;; is the default execution duration of the process

16: (video-player (now) (gfx:load-movie "/tmp/myfilm.mp4") 0.0)

Figure 4.17: An execution-time constraint example in Impromptu (276).

timing verification is not provided, yet this is also unrealizable in live-coding as dis-

cussed in the previous paragraph on Impromptu.

4.2.2.3 The benefits of LC’s language design

Precise Timing Behaviour. LC is a mostly-strongly-timed programming language

and its behaviour is with the precision of sample-rate accuracy. The mostly-strongly-

timed programming concept extends the strongly-timed programming concept by inte-

grating the explicit context switching between the synchronous context and the asyn-

chronous context and time-consuming tasks can be preempted when necessary.

Other features with respect to time. LC has also taken these six desirable fea-

tures with respect to time into account in the language design as below.

• expression of timing — LC can express both start-time constraints and execution-

time constraints. The former is supported both for threads and patches. Patches

can be given the duration as execution-time constraints for sound synthesis.

Threads can be given execution time constraints with the within statement.

202

4.2 Comparing LC with the existing computer music languages

• timed communication — LC’s inter-thread communication is based on a mes-

sage passing mechanism. Message passing is performed asynchronously for send

primitives and both synchronous (blocking) and asynchronous (non blocking) be-

haviour is supported for receive primitives. As LC provides the execution-time

constraint feature, it can be used for timed communication. Moreover, When LC

receives a message, it comes with the timestamp of the actual delivery time (in

logical time), thus it is easy to check the validity of the received message if the

message can be invalid after a certain duration. Thus, LC meets the criteria for

timed communication. Additionally, LC’s send primitive can specify the delivery

time.

• enforcement of timing constraints — The enforcement of timing constraints

is performed by LC’s virtual machine. As LC is based on logical synchronous time

as it is a mostly-strongly-timed programming language with sample-rate accurate

timing behaviour, these constraints are always enforced with precise timing.

• time fault tolerance — As LC is based on logical-time, start-time constraints

are always performed with precise timing, which means start-time constraints

will never be violated. Execution-time constraints can be handled by the timeout

statement with sample-rate accuracy in timing.

• maintaining consistency in distributed real-time systems — LC can pro-

vide atomicity required for this issue by using the sync statement, as no other

thread can be executed while one thread is in ’sync’ context1.

• static timing verification — LC is assumed to be utilized in an interactive

programming environment. It is impossible to realize this feature as one can

write/modify a program at runtime and execute it interactively.

The benefits of LC’s language design. LC’s mostly-strongly-timed programming

concept provides precise timing behaviour with sample-rate accuracy, as seen in ChucK

and LuaAV. These three languages also provide multi-tasking by coroutines (LuaAV)

and by lightweight concurrency by software thread (ChucK and LC). Such a language

1This behaviour in ’sync’ context is guaranteed because the current prototype of LC is concurrent
but not parallel.

203

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

design also contributes to sample-rate accurate synchronization not just between com-

positional algorithms and sound synthesis but also between compositional algorithms

that are separated into several different threads (or coroutines).

However, while ChucK and LuaAV also support sample-rate accuracy in timing be-

haviour, real-time DSP can be temporarily suspended in the presence of time-consuming

tasks, as they are only based on the synchronous approach. Fragmenting a time-

consuming task by inserting the explicit advance of logical synchronous time cannot

always solve the problem, as there are some tasks that involve an I/O block and unpre-

dictable timing. Such tasks cannot be fragmented despite being time-consuming; file

access is a typical example of this kind.

LC’s mostly-strongly-timed programming extends strongly-timed programming by

integrating the explicit context switching between the synchronous context and the

asynchronous context, and time-consuming tasks can be preempted when necessary.

Such time-consuming tasks can be explicitly enclosed in an ‘async’ block and be exe-

cuted regardless of the progress of logical time as a background task.

While FORMULA allows such tasks to run in background, it targets a hybrid com-

puter music system with an external synthesizer and is outdated, as today’s computer

music systems require sample-rate accuracy to perform certain synthesis techniques,

such as microsound synthesis techniques. Moreover, even when enclosing some time-

consuming part of a task as a background process, a computer music program often in-

volves the collaboration between a foreground process and a background process. This

can result in unnecessary complication of the resulting code, involving inter-process

communication even for a simple task; as the simple explicit context switching in LC

can describe the time-consuming part just as a compound statement (’{’ ... ’}’) to be

executed in the background, but within the same thread of execution, it doesn’t involve

much complication.

Thus, LC provides sample-rate accuracy in timing behaviour while allowing time-

consuming tasks to run in the background to ward off the suspension of real-time

DSP, and only simple explicit switching between the synchronous context and the

asynchronous context is required. Such a feature does not exist in any other computer

204

4.2 Comparing LC with the existing computer music languages

music language1.

When considering these six desirable features with respect to time, both FORMULA

and Impromptu seem to support these features to a certain degree. FORMULA’s ‘max-

time(n)’ time-control structure for execution-time constraints (in its virtual system

time) does not support the handler for the violation. The support for tolerance to vio-

lations and constraints seems insufficient and the violation of execution time-constraints

are checked only at the time advance function call. Such a design can be problematic

if an execution-time constraint must be given to a background task; many real-time

programming languages check the violation by a watchdog thread, since execution-time

constraints should be treated as asynchronous transfer of control (ATC), which “is a

transfer of control within a thread, triggered not by the thread itself but rather from

some action by another thread or an event handler” (60). As a violation is examined

at the time advance’ function call in FORMULA, it can lead to a problem in a back-

ground process, in which no ‘time advance’ function call may be invoked. Moreover,

it is targeting event level communications with the external hardware (such as MIDI

synthesizers), and its precision in timing is far from sample-rate accuracy, which is

required for recent computer music practices.

Impromptu is another interesting language that considers the features with respect

to time in its design. However, its programming model for execution-time constraints

has a problem in expressing nested execution-time constraints. As seen in the Fig-

ure 4.17 example, execution-time constraints are specified when passing functions to

Impromptu’s scheduler. However, such a design makes it harder to realize the nested

execution time constraints. Even the inner constraint must be given, the only entry

point of the execution timing constraints in Impromptu is schedule function call and it

immediately returns just after scheduling a function, without waiting until the sched-

uled function is finished. Thus, the nested timing constraints can be hardly expressed

1Yet, it should be noted that there has been some effort to integrate asynchronous behaviour into
synchronous programming languages as seen in the previous works such as (39) and (29). Neverthe-
less, these works are motivated by such issues as the extension of reactive systems, for communicating
reactive processes, “where a set of individual reactive synchronous processes is linked by asynchronous
communication channels” (39), or better performance efficiency by asynchronous concurrency in reac-
tive systems. Thus, there is a substantial difference in the context, the motivation, the target applica-
tions and the programming language concept between these works and LC; LC’s mostly-strongly-timed
programming is focused on precise timing behaviour in an imperative programming language designed
for interactive systems, with a significant focus on interactive music systems.

205

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

in Impromptu’s programming model, whereas it is only necessary to nest the within

statements in LC. Moreover, Impromptu does not provide the feature to handle the

violation of execution time constraints.

On the contrary, LC provides five of the six desirable features and the only feature

that is not supported is static timing verification. Yet, generally speaking, static tim-

ing verification involves the analysis of worst case execution time (WCET) and also

needs to collaborate with the compiler/interpreter and requires detailed information

about the environment. As described, such an assumption cannot be made in LC’s

target application domains; for instance, in live-coding, programmers write and modify

a program on-the-fly, and the information on programs that may be launched cannot

be given beforehand, while static time verification requires such information.

Thus, as above, LC provides sample-rate accuracy in timing behaviour with back-

ground processes, and it also meets the requirements of five out of six desirable features

proposed by Lee et al. (179), except static timing verification, which is unrealizable in

LC’s target application domain.

4.2.3 The difficulty in programming microsound synthesis techniques

In Section 2.3, the difficulty in programming microsound synthesis techniques was de-

scribed and assessed as a software anti-pattern of abstraction inversion. Based on

such a view, LC integrates the objects and library functions for microsound synthesis

techniques, expecting to reduce the difficulty by removing the problem of abstraction

inversion. In the following sections, the benefit of such sound synthesis framework

design is discussed.

4.2.3.1 Abstraction inversion in the unit-generator languages

As discussed in Section 2.3, abstraction inversion is a software anti-pattern, which oc-

curs “when a programmer is forced to employ a combination of higher-level abstractions

to express a lower-level abstraction” (28). The lack of bitwise operators in the early

versions of Lua provide a typical example of abstraction inversion, in that a user has

to write such a code as in Figure 4.18 just to perform a very simple bitwise operation.

206

4.2 Comparing LC with the existing computer music languages

Such a problem of abstraction inversion can be seen in the implementation of mi-

crosound synthesis techniques in the existing unit-generator languages, as a user has

to combine higher-level abstractions by modelling microsounds as a note-level object

that consist of unit-generators and scheduling them. Even when implementing a mir-

cosound synthesis technique, which is very simple in concept, the resulting code can be

a lot more complicated. Such examples as Figure 4.19 (waveset harmonic distortion in

SuperCollider) and Figure 4.20 (synchronous granular synthesis in ChucK) are briefly

described.

To make matters worse, as each microsound is modelled as a note-level object,

applying the effects to the entire output of microsound synthesis techniques can involve

more complexity; Figure 4.21 shows such an example. As shown, to apply a triangle

envelope to the output of synchronous granular synthesis, one must use a ‘bus’ to route

the output from each grain to the overall envelope instrument and then start them

altogether and thus introduce more complexity in the implementation. The equivalent

code example in ChucK in Figure 4.22 exhibits another kind of problem in envelope-

shaping. In this example, while it is only required to connect the output of the threads

to play grains to the input of the unit-generator that applies the entire envelope, it

must involve concurrency by multi-threading as shown1.

4.2.3.2 When black-box abstractions do not benefit

One may argue that the abstraction mechanism in programming languages can reduce

the difficulty in microsound synthesis programming. For instance, Figure 4.23 shows

such an example2 of waveset harmonic distortion in Nyquist (89)(90). While Nyquist

is originally designed as an internal DSP built on LISP, this example is written in the

SAL programming language3. .

1Such a problem in ChucK is likely due to both its lack of garbage collection and the software
design of unit-generators. The introduction of garbage collection and the redesign of the envelope
unit-generators may reduce the complexity. For instance, the complexity of the code may be reduced
by reimplementing the SndBuf unit-generator to access the shared sound buffer rather than loading its
own sound from the disk and by giving the overall envelope shape of the envelope shaper unit-generator
at its instantiation. However, it is still required to involve multi-threading, and explicit disconnection
of each grain from the entire envelop must be performed, even after such improvement; each grain must
be still modelled as a thread in this programming model and the garbage collector won’t be able to
collect the garbage unit-generator objects if it is still connected to the other live unit-generators.

2Thanks to an anonymous programmer from the Nyquist community for providing this example.
3The SAL languages is built on LISP, using LISP’s powerful macro definition, as a part of Nyquist’s

programming environment. The designers of Nyquist describes that users “who are put off by LISP

207

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: function bit and(x, y)

02: local digit = 1

03: local ret = 0

04: local limit = x > y and x or y

05: while digit <= limit do

06: if (x % (digit * 2)) >= digit and (y % (digit * 2)) >= digit then

07: ret = ret + digit

08: end

09: digit = digit * 2

10: end

11: return ret

12: end

Figure 4.18: A bitwise operation (bitwise-and) example in Lua (reproduced from 2.18).

While Nyquist itself is not a computer music language for interactive computer

music systems and is basically a language for non real-time sound synthesis, the code

example may seem fairly terse on the surface as the equivalent example in LC (Figure

4.32), yet it should be noted such a black box abstraction is not beneficial for creative

exploration in computer music.

In Figure 4.23, the code first uses a library function, extract-wavesets1. The extract-

wavesets call is assumed to return an array of sound objects, each of which can be used

to play a single waveset extracted from the given sound file. Then, the code performs

waveset harmonic distortion using Nyquist’s seqrep function2. The seqrep function com-

bines the iteration with an index variable and scheduling of sound objects to perform

sequential repetition. In the example, the index value i first starts from 0 then is in-

cremented to the given limit, the length of wavesets array by seqrep macro on line 4.

In each iteration, a waveset at the index i is given as an argument to the harm-dist

function call and harm-dist plays it together with its 1st harmonic, which repeats twice

while the original waveset is being played. After finishing playing these wavesets, seqrep

proceeds to the next iteration to play another waveset and its harmonics; thus, waveset

harmonic distortion is performed.

syntax may find Nyquist more accessible and easier to learn.” (91)
1This extract-wavesets seems not provided as a part of Nyquist. Yet, the code suggested by the

anonymous Nyquist programmer assume such a function is provided in this situation.
2As Dannenberg describes in the Nyquist Reference Manual (92), “technically, seqrep is not really

a function but abbreviation for a special kind of loop construct”. Yet, the manual often calls it a
“function”; we follow the same tradition among Nyquist programmers.

208

4.2 Comparing LC with the existing computer music languages

01: Server.default = s = Server.internal;

02: s.boot;

03: w = Wavesets.from("sound.aif");

04:(

05: b = w.buffer;

06: SynthDef(\wvst0, {
07: arg out = 0, buf =0, start = 0, length = 441,

08: playRate =1, sustain = 1, amp= 1;

09: var phasor = Phasor.ar(rate:playRate, start:0, end:length) + start;

10: var env = EnvGen.ar(Env([amp, amp, 0], [sustain,0]), doneAction:2);

11: var snd = BufRd.ar(1, buf, phasor) * env;

12: OffsetOut.ar(out, snd);

13: }).add;
14:)

15: (

16: var numOfWavesets = w.lengths.size;

17: var original = Pbind(

18: \instrument, \wvst0,
19: \startWs, Pseries(0, 1, numOfWavesets),

20: \numWs, 1,

21: \playRate, 1,

22: \bufnum, b.bufnum,

23: \repeats, 1,

24: \amp, 1,

25: [\start, \length, \sustain], Pfunc({|ev|
26: var start, length, wsDur;

27: #start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);
28: [start, length, wsDur * ev[\repeats] / ev[\playRate].abs]
29: }),
30: \delta, Pkey(\sustain)
31:);

Figure 4.19: A waveset harmonic distortion example in SuperCollider (reproduced from
Figure 2.20).

209

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

32: var octup = Pbind(

33: \instrument, \wvst0,
34: \startWs, Pseries(0, 1, numOfWavesets),

35: \numWs, 1,

36: \playRate, 2,

37: \bufnum, b.bufnum,

38: \repeats, 2,

39: \amp, 1,

40: [\start, \length, \sustain], Pfunc({|ev|
41: var start, length, wsDur;

42: #start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);
43: [start, length, wsDur * ev[\repeats] / ev[\playRate].abs]
44: }),
45: \delta, Pkey(\sustain)
46:);

47:

48: Ppar([original, octup]).play(SystemClock);

49:)

Figure 4.19: A waveset harmonic distortion example in SuperCollider (continued) (re-
produced from Figure 2.20).

However, the brevity of this Nyquist example is superficial, and it is questionable

whether such a solution by black-box abstraction of the detail can be beneficial to

users when considering the purpose for which computer musicians write their own

programs. It should be emphasized with a significant remark that the reason why

computer musicians program in computer music programming languages is mainly for

exploratory design and exploratory understanding1 for their creative practices.

For such activities, abstracting the complex detail within a function as a black-box

do not benefit the users, if what they want to explore is the algorithms hidden within

the function; in such a case, users have to access the hidden details to modify or to

understand the algorithms and they face the complexity of the implementation anyway.

To make matters worse, due to the abstraction barriers, which “isolate different levels

of the system” (5, p.88), there can be more difficulty in modification. For instance, to

1Blackwell and Green list such activities as sketching; design of typography, software, etc.; other
cases where the final product cannot be envisaged and has to be ‘discovered’ as the examples of ex-
ploratory design and discovering structure of algorithm, or discovering the basis of classification as the
examples of exploratory understanding (41).

210

4.2 Comparing LC with the existing computer music languages

01: "a11wlk01-44_1.aif" => string filename;

02:

03: 22050 => int startPos;

04: 0.1 => float sustain;

05: 40 => int rep;

06: 0.05 => float interval;

07: 0 => int cnt;

08:

09: (sustain / interval) $ int => int numOfThreads;

10: if (sustain / interval > numOfThreads){
11: numOfThreads + 1 => numOfThreads;

12: }
13: fun void grain()

14: {
15: SndBuf buf => Envelope env => dac.left;

16: filename => buf.read;

17:

18: while(cnt < rep){
19: cnt + 1 => cnt;

20:

21: now + numOfThreads * interval::second => time nextGrainStartTime;

22:

23: startPos => buf.pos;

24: sustain::second / 2 => env.duration;

25:

26: env.keyOn();

27: (sustain * 0.5)::second +=> now;

28: env.keyOff(); 29: (sustain * 0.5)::second +=> now;

30:

31: nextGrainStartTime =>now;

32: }
33: return;

34: }
35:

36: for(0 => int i; i < numOfThreads; i + 1 => i){
37: spork ∼ grain();

38: interval::second +=> now;

39: }
40: (interval * (rep - numOfThreads) + sustain)::second +=> now;

Figure 4.20: Another synchronous granular synthesis example in ChucK with less
memory-leak (reproduced from 2.23).

211

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: //booting the sound synthesis server

02: Server.default = Server.internal;

03: s.boot;

04: //read the sound file to extract grains.

05: b = Buffer.read(s, "/sound/sample1.aif");

06:

07: //to define instruments, evaluate below.

08: (

09: //the instrument to apply a triangle envelope to the grains,

10: //which are received from the bus input.

11: SynthDef(\envelope, {
12: arg out = 0, inbuf = 127, sustain = 1.0;

13: var env = EnvGen.ar(

14: Env.triangle(sustain),

15: doneAction:2

16:);

17: var snd = In.ar(inbuf) * env;

18: OffsetOut.ar(out, snd);

19: }).add;
20:

21: //the instrument that plays a single grain, output of which

22: //is routed to the bus input of the envelope instrument above.

23: SynthDef(\grain, {
24: arg out = 0, buf = 0, start = 0, sustain = 1.0, rate = 1;

25: var snd = PlayBuf.ar(1, buf, rate, startPos:start);

26: var env = EnvGen.ar(Env.triangle(sustain), doneAction:2);

27:

28: var grain = snd * env;

29: OffsetOut.ar(out, grain);

30: }).add;
31:)

32: //to perform synchronous granular synthesis, evaluate below.

33: (

34: //these are parameters for synchronous granular synthesis.

35: var out = 0;

36: var bufnum = b.bufnum;

37: var startPos = 22050;

38: var sus = 0.1;

39: var interval = 0.05;

40: var repeat = 20;

41: var route = 127;

42: var entireDur = interval * repeat + sus;

Figure 4.21: A synchronous granular synthesis example with a triangle envelope applied
to the entire sound output in SuperCollider.

212

4.2 Comparing LC with the existing computer music languages

43: //this generates an ‘event stream’ to play an envelope instrument once.

44: var env = Pbind(

45: \instrument, \envelope,
46: \out, out,

47: \inbuf, route,

48: \sustain, Pn(entireDur, 1),

49: \delta,0
50:);

51: //this generates an ‘event stream’ to play grains.

52: var grains = Pbind(

53: \instrument, \grain,
54: \out, route,

55: \buf, bufnum,

56: \sustain, sus,

57: \start, Pn(startPos, repeat),

58: \delta, interval

59:);

60: //playing the above instrument with the same timing.

61: Ppar([env, grains]).play(SystemClock);

62:)

Figure 4.21: A synchronous granular synthesis example with a triangle envelope applied
to the entire sound output in SuperCollider (continued).

213

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: "a11wlk01-44_1.aif" => string filename;

02: 22050 => int startPos;

03: 0.1 => float sustain;

04: 40 => int rep;

05: 0.05 => float interval;

06: 0 => int cnt;

07: (sustain / interval) $ int => int numOfThreads;

08: if (sustain / interval > numOfThreads){
09: numOfThreads + 1 => numOfThreads;

10: }
11:

12: Envelope globalEnv => dac.left;

13:

14: fun void overAllEnvelope(float entireDuration)

15: {
16: entireDuration::second / 2 => globalEnv.duration;

17: globalEnv.keyOn();

18: (entireDuration * 0.5)::second +=> now;

19: globalEnv.keyOff();

20: (entireDuration * 0.5)::second +=> now;

21: return;

22: }
23: fun void grain()

24: {
25: SndBuf buf => Envelope env => globalEnv;

26: filename => buf.read;

27: while(cnt < rep){
28: cnt + 1 => cnt;

29: now + numOfThreads * interval::second => time nextGrainStartTime;

30: startPos => buf.pos;

31: sustain::second / 2 => env.duration;

32: env.keyOn();

33: (sustain * 0.5)::second +=> now;

34: env.keyOff(); 35: (sustain * 0.5)::second +=> now;

36: nextGrainStartTime =>now;

37: }
38: return;

39: }
40:

41: for(0 => int i; i < numOfThreads; i + 1 => i){
42: spork ∼ grain();

43: interval::second +=> now;

44: }
45: (interval * (rep - numOfThreads) + sustain)::second +=> now;

Figure 4.22: Another synchronous granular synthesis example in ChucK with a triangle
envelope applied to the entire sound output.

214

4.2 Comparing LC with the existing computer music languages

perform waveset substitution, it is necessary to obtain the maximum amplitude of each

waveset to scale the substituting wavesets to the same amplitude as the original. Yet,

both the definition of the sound objects and the analysis of the given sound data are

encapsulated within the extract-wavesets function in the Figure 4.23 example. These

details are hidden under the abstraction barriers and a user must investigate the im-

plementation of the extract-waveset function for this purpose; this seems contradictory

that users have to face the complexity of the implementation while the motivation to

abstract the implementation within a function is to hide the complexity itself from the

users.

Furthermore, while Nyquist provides several different methods for scheduling, an

end-user may also want to investigate what the seqrep function does inside when ex-

perimenting with more complex algorithms in scheduling microsounds. While seqrep

is a basic control structure in a programming language as well as a for-loop is, it is

not as primitive as other control structures, as Nyquist’s seqrep combines two different

features, iteration and scheduling1. As shown in Figure 4.24, the actual implementa-

tion of seqrep requires the further understanding of LISP and Nyquist’s sound synthesis

framework; this is another problem that black box abstractions do not benefit much,

not just because one has to face the complexity of the detailed implementation, but

also because the detail is indeed a macro definition in LISP and not implemented in

the SAL programming language, which is provided for users who may have difficulty

with LISP programming.

Thus, even though the Figure 4.23 example in Nyquist seems much terser and sim-

pler in its appearance, such black-box abstraction can be helpful when the functions

can provide exactly what users want, but may not be beneficial for exploratory design

and exploratory understanding. Considering the accessibility to the detail of the al-

gorithms hidden inside the black boxes, black-box abstractions may be more harmful

for creative exploration and lead to the similar problems exhibited when microsound

1Nyquist documents by Dannenberg clearly state that seqrep combines iteration and scheduling.
In (92), Dannenberg describes “the seq function is used to invoke a sequence of behaviours. Each note
is started at the time the previous note finishes” and “the seqrep “function” works like seq except that
it creates copies of a sound by evaluating an expression multiple times”. Thus, the seqrep function
integrates both features of looping and scheduling.

215

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: function ws-harm-dist()

02: begin

03: with wavesets = extract-wavesets("sound.wav")

04: return seqrep(i, length(wavesets), harm-dist(wavesets[i]))

05: end

06: function harm-dist(grain) ; return grain + 2 copies up 1 octave

07: return cue(grain) + seqrep(j, 2, sound(grain) ∼ 0.5)

08: play ws-harm-dist()

Figure 4.23: A waveset harmonic distortion example in Nyquist’s SAL programming
language.

synthesis techniques are encapsulated within built-in unit-generators. It is also im-

portant in end-user programming to provide the language/library design that requires

less environment-specific knowledge and less cognitive resources in programming and

comprehension; thus, it is more desirable to provide a better abstraction of the sound

synthesis framework, which can appropriately express microsound synthesis techniques

without involving such complexity.

4.2.3.3 Microsound objects and manipulations in the existing computer

music languages

The previous sections briefly reviewed the difficulty with microsound synthesis pro-

gramming in the unit-generator languages and the reasons the black-box abstraction

of the complexity of the implementation does not benefit users for exploratory design

and exploratory understanding in computer music programming.

However, while the language design of LC intends to reduce this difficulty by provid-

ing a sound synthesis framework that directly integrates objects and manipulations for

microsound synthesis, some previous works also seem to provide programming mod-

els that are different from the unit-generator concept. For example, in Section 2.3,

the software synthesis framework design by Bencina (36) and Chronic computer music

language by Brandt (56) were discussed as the examples that consider the abstraction

of microsounds in the framework design. While Bencina’s work is about the software

design mainly targeting granular synthesizer software design and not appropriate to

be discussed in the context of computer music language design, Brandt’s work clearly

targets the language design. Some other works also exhibit alternative programming

216

4.2 Comparing LC with the existing computer music languages

01: (defmacro seqrep (pair sound)

02: ‘(let ((,(car pair) 0)

03: (loop%count ,(cadr pair))

04: (nyq%environment (nyq:the-environment))

05: seqrep%closure first%sound s%rate)

06: ; note: s%rate will tell whether we want a single or multichannel

07: ; sound, and what the sample rates should be.

08: (cond ((not (integerp loop%count))

09: (error "bad argument type" loop%count))

10: (t

11: (setf seqrep%closure #’(lambda (t0)

12: ; (display "SEQREP" loop%count ,(car pair))

13: (cond ((< ,(car pair) loop%count)

14: (setf first%sound

15: (with%environment nyq%environment

16: (at-abs t0 ,sound)))

17: ; (display "seqrep" s%rate nyq%environment ,(car pair)

18: ; loop%count)

19: (if s%rate

20: (setf first%sound (force-srates s%rate first%sound))

21: (setf s%rate (get-srates first%sound)))

22: (setf ,(car pair) (1+ ,(car pair)))

23: ; note the following test is AFTER the counter increment

24: (cond ((= ,(car pair) loop%count)

25: ; (display "seqrep: computed the last sound at"

26: ; ,(car pair) loop%count

27: ; (local-to-global 0))

28: first%sound) ;last sound

29: ((arrayp s%rate)

30: ; (display "seqrep: calling snd-multiseq at"

31: ; ,(car pair) loop%count (local-to-global 0)

32: ; (snd-t0 (aref first%sound 0)))

33: (snd-multiseq (prog1 first%sound

34: (setf first%sound nil))

35: seqrep%closure))

36: (t

37: ; (display "seqrep: calling snd-seq at"

38: ; ,(car pair) loop%count (local-to-global 0)

39: ; (snd-t0 first%sound))

40: (snd-seq (prog1 first%sound

41: (setf first%sound nil))

42: seqrep%closure))))

43: (t (snd-zero (warp-time *WARP*) *sound-srate*)))))

44: (funcall seqrep%closure (local-to-global 0))))))

Figure 4.24: A macro definition of seqrep in Nyquist (open source distribution) - Copy-
right (c) 2000-2002, by Roger B. Dannenberg).

217

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

models, even though they are neither clearly targeting microsound synthesis nor in-

teractive computer music applications. The following paragraphs briefly review such

languages for better comparison with LC and other computer music languages and

systems.

Chronic. As already described in Section 2.3, Chronic clearly takes microsound syn-

thesis techniques into account in its design and tries to provide better flexibility by

introducing what Brandt calls temporal type constructors. Brandt also argues for the

concept of ‘unit-generators’ as “black-box primitives” in computer music language de-

sign and that “if a desired operation is not present, and cannot be represented as a

composition of primitives, it cannot be realized within the language” and one of the

benefits in Chronic is to provide expressibility without black box abstraction (56, pp.4-

5).

However, Brandt also clearly states that in Chronic’s programming model, the use

of temporal type constructors for microsound synthesis only targets non real-time sound

synthesis and requires further consideration for real-time sound synthesis, as it has ‘an

open problem’ in causality, in that Chronic’s programming model accepts both forward

dependency and backward dependency (56, p.77).; While Chronic is an interesting

example to integrate objects for microsound in its sound synthesis framework design,

it fails to provide an appropriate abstraction for interactive music systems.

ChucK’s unit analyzer. While ChucK’s unit analyazer objects are not designed

for microsound synthesis in general and the target domain is limited for audio analysis

and spectral processing, we briefly review ChucK’ unit analyazer objects as readers

may find some similarity with the design of FFT/IFFT objects in LC’s sound synthesis

framework. Figure 4.25 describes a simple FFT-based cross synthesizer example in

ChucK. The unit analyzer, FFT and IFFT are used in this example. As shown in this

example, the FFT unit-analyzer can perform FFT for the given audio data and the

resulting spectral data can be extracted as an array of complex numbers, which can

be processed to perform the desired operation (as seen on line 27). The resulting data

after processing can be converted back to the audio signal by performing IFFT by the

IFFT unit-analyser.

218

4.2 Comparing LC with the existing computer music languages

The buffering of the sound data, windowing, overlap-add are performed internally

within the unit-analyzer object. Figure 4.27 pictorially describes the underlying mech-

anism in ChucK’s unit analyzer framework.

As in Brandt’s Chronic, Wang et al. also argue that the avoidance of black-box

abstraction of the low level details as a feature of ChucK’s unit analyzer design. They

describe that “the high-level abstractions in the system should expose essential low-

level parameters while doing away with syntactic overhead, thereby providing a highly

flexible and open framework that can be easily used for a variety of tasks” in (316).

While such a problem of accessibility with less abstraction barriers seem to be

successful to a certain degree, however, there appears to be a design problem in the unit

analyzers, as they must work within ChucK’s sound synthesis framework; in ChucK’s

sound synthesis framework, no unit generators can process inputs or produces outputs

without the advance of logical synchronous time, which is globally shared within the

system. Likewise, the behaviour of the unit analyzers is also synchronized with the

logical time. This makes it harder to apply the different hop-sizes between FFT and

IFFT objects.

Figure 4.26 describes a simple example of the cross synthesis to apply different hop-

size to the source for the formant, which seems to be a little more complicated than

the Figure 4.25 example. As the hop size for the output is half the frame size, it is

necessary to involve two pairs of a SndBuf unit-generator and an FFT unit-analyzer

under ChucK’s sound synthesis framework, in which an FFT object can be fed its input

samples only when the logical time advances. Moreover, the reading position from the

sound buffers must be updated so to provide the samples from the formant source with

the correct hop size. If the hop size of the output is set to 1/4 of the frame size, it is

required to modify the code to involve four pairs of a SndBuf unit-generator and an

FFT unit-analyzer, since four output frames will overlap. To experiment with various

input/output hopsizes, one may need to write more complicated code for generalization;

such a problem can be a significant obstacle to express more sophisticate audio analysis

and spectral processing algorithms in ChucK.

Matlab and Octave. Matlab (138) and Octave (105)1 are designed for numerical

computing in general, yet they can also perform sound synthesis and analysis. Both

1Octave is open source software, which has a considerable compatibility with Matlab.

219

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: //loading the sound files to the buffer objects.

02: "/sound/violin.wav" => string filename1;

03: "/sound/kill humans.wav" => string filename2;

04: SndBuf source1;

05: SndBuf source2;

06: filename1 => source1.read;

07: filename2 => source2.read;

08:

09: //build a synthesis graph.

10: source1 => FFT fft1 => blackhole;

11: source2 => FFT fft2 => blackhole;

12: IFFT ifft => dac;

13:

14: //set up FFT parameters.

15: 1024 => fft1.size => fft2.size => ifft.size => int FFT SIZE;

16: FFT SIZE / 2 => int HOP SIZE;

17:

18: Windowing.hann(FFT SIZE) => fft1.window;

19: Windowing.hann(FFT SIZE) => fft2.window;

20: Windowing.hann(FFT SIZE) => ifft.window;

21: //to store the cross synthesis result.

22: complex Z[FFT SIZE / 2];

23:

24: //main loop.

25: while(true){
26: //perform FFT for two inputs.

27: fft1.upchuck();

28: fft2.upchuck();

29: //cross synthesis.

30: for (int i; i < fft1.size() / 2; i++){
31: fft1.cval(i) $ polar => polar a;

32: fft2.cval(i) $ polar => polar b;

33: %(a.mag * b.mag, a.phase) => polar c;

34: c $ complex => Z[i];

35: }
36: //perform IFFT.

37: ifft.transform(Z);

38: //sleep until the next frame.

39: HOP SIZE::samp => now;

40: }

Figure 4.25: A simple FFT-based cross synthesizer example.

220

4.2 Comparing LC with the existing computer music languages

01: //loading the sound files to the buffer objects.

02: "/sound/violin.wav" => string filename1;

03: "/sound/kill humans.wav" => string filename2;

04: SndBuf source1;

05: SndBuf source2a;

06: SndBuf source2b;

07: filename1 => source1.read;

08: filename2 => source2a.read;

09: filename2 => source2b.read;

10:

11: //build a synthesis graph.

12: source1 => FFT fft1 => blackhole;

13: source2a => FFT fft2a => blackhole;

14: source2b => FFT fft2b => blackhole;

15: IFFT ifft => dac;

16:

17: //set up FFT parameters.

18: 1024 => fft1.size => fft2a.size => fft2b.size => ifft.size => int FFT SIZE;

19: FFT SIZE / 2 => int HOP SIZE OUT;

20: FFT SIZE / 4 => int HOP SIZE IN ;

21: Windowing.hann(1024) => fft1.window;

22: Windowing.hann(1024) => fft2a.window;

23: Windowing.hann(1024) => fft2b.window;

24: Windowing.hann(1024) => ifft.window;

25: //to store the cross synthesis result.

26: complex Z[FFT SIZE / 2];

27:

28: //feed the input samples for the first two frames.

29: 0 => int posA;

30: HOP SIZE IN => int posB;

31: ///after 512 samples, we need to reset the read position for source2B

32: FFT SIZE::samp / 2 +=> now;

33: posB => source2b.pos;

34: FFT SIZE::samp / 2 +=> now;

35:

36: //now, we are ready to start cross synthesis for the first frame.

37: while(true){
38: //first, process source2a

39: fft1.upchuck();

40: fft2a.upchuck();

Figure 4.26: A simple FFT-based cross synthesizer example (using the different hop sizes
for the source a and source b).

221

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

41: for(int i; i < fft1.size() / 2; i++){
42: fft1.cval(i) $ polar => polar a;

43: fft2a.cval(i)$ polar => polar b;

44: %(a.mag * b.mag, a.phase) => polar c;

45: c $ complex => Z[i];

46: }
47:

48: ifft.transform(Z);

49:

50: //update the reading position for the next frame from source 2a.

51: HOP SIZE IN * 2 +=> posA;

52: posA => source2a.pos;

53:

54: //sleep until the next output frame.

55: HOP SIZE OUT::samp => now;

56:

57: //now the source 2b is ready.

58: fft1.upchuck();

59: fft2b.upchuck();

60:

61: for (int i; i < fft1.size() / 2; i++){
62: fft1.cval(i) $ polar => polar a;

63: fft2b.cval(i) $ polar => polar b;

64: %(a.mag * b.mag, a.phase) => polar c;

65: c $ complex => Z[i];

66: }
67:

68: ifft.transform(Z);

69:

70: //update the reading position for the next frame from source 2b.

71: HOP SIZE IN * 2 +=> posB;

72: posB => source2b.pos;

73:

74: HOP SIZE OUT::samp => now;

75: }

Figure 4.26: A simple FFT-based cross synthesizer example (using the different hop sizes
for the source a and source b) (continued).

222

4.2 Comparing LC with the existing computer music languages

Figure 4.27: Underlying pipeline of a generic hybrid synthesis/analysis system in ChucK
audio programming language - (taken from the publication ‘Combining Analysis and Syn-
thesis in the ChucK Programming Language’ (316)).

provide a number of library functions for signal processing, which are useful for the

research and experiments in sound synthesis and analysis. As the sample data is ex-

pressed as a matrix, it permits direct access to each sample in the data. Such language

design may satisfy the capability of accessing to low-level data as Wang and Brandt

discussed in the design criteria for ChucK’s unit analyzer and Chronic. Figure 4.28

shows the examples in Matlab of simple sound synthesis and low pass filtering (205).

However, as Matlab and Octave are not designed specially for computer music pro-

gramming, they do not offer the high-level abstractions or software frameworks/libraries

for domain-specific needs of computer music as seen in many computer music languages,

such as the unit-generator concept and task-scheduling, real-time sound synthesis and

interactivity; hence, these languages are not particularly beneficial to computer mu-

sic programming when developing real-time interactive computer music systems, while

both are useful for the research and experiments in audio processing algorithms.

4.2.3.4 The benefits of LC’s language design

Abstraction inversion. Based on the assessment that the difficulty in microsound

synthesis programming in the existing computer music languages is caused by abstrac-

tion inversion due to the lack of the objects and functions that directly represent mi-

223

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

Generating 1.5 sec of a 50 Hz sawtooth and square wave with a sample-rate of 10k Hz

01: fs = 10000;

02: t = 0:1/fs:1.5;

03: x1 = sawtooth(2*pi*50*t);

04: x2 = square(2*pi*50*t);

05: subplot(211),plot(t,x1), axis([0 0.2 -1.2 1.2])

06: xlabel(’Time (sec)’);ylabel(’Amplitude’); title(’Sawtooth Periodic Wave’)

07: subplot(212),plot(t,x2), axis([0 0.2 -1.2 1.2])

08: xlabel(’Time (sec)’);ylabel(’Amplitude’); title(’Square Periodic Wave’)

applying a lowpass FIR filter to a noise waveform

01: Fs = 500; % sample rate in Hz

02: N = 500; % number of signal samples

03: rng default;

04: x = ecg(N)’+0.25*randn(N,1); % noisy waveform

05: t = (0:N-1)/Fs; % time vector

06:

07: % Design a 70th order lowpass FIR filter with cutoff frequency of 75 Hz.

08: b = fir1(70,75/(Fs/2));

09:

10: grpdelay(b,1,2048,Fs) % plot group delay

11: D = mean(grpdelay(b,1)) % filter delay in samples

12:

13: y = filter(b,1,[x; zeros(D,1)]); % Append D zeros to the input data

14: y = y(D+1:end); % Shift data to compensate for delay

15:

16: figure

17: plot(t,x,t,y,’r’,’linewidth’,1.5);

18: title(’Filtered Waveforms’);

19: xlabel(’Time (s)’)

20: legend(’Original Noisy Signal’,’Filtered Signal’);

21: grid on

22: axis tight

Figure 4.28: A sound synthesis and lowpass filter example in Matlab (205).

224

4.2 Comparing LC with the existing computer music languages

crosounds and the related manipulations, LC’s sound synthesis framework is designed

to directly integrate such objects and functions. LC also provides simple and means to

schedule microsounds with sample-rate accuracy. While strongly-timed programming

makes it easy to control the advance of logical time, the feature of start-time constraint

makes it a lot easy to schedule microsounds in the future without any advance of the

time and other library functions such as WriteDAC and PanOut also has the offset to

the timing when the Samples object is actually played. Thus, abstraction inversion can

be avoided. Such features in LC contribute to describe certain microsound synthesis

techniques, e.g. probabilistic scheduling of grains, tersely, compared to other languages.

For instance, the examples given in Section 3.2.3 are simple compared to the above

examples in the other languages. Waveset harmonic distortion (Figure 4.29) and syn-

chronous granular synthesis (Figure 4.30) in LC are much terse and simple in com-

parison with the examples in SuperCollider and ChucK (Figure 4.19 and Figure 4.20).

Applying sound effects to the entire output of microsound synthesis can be also easily

expressed as shown in Figure 4.31 compared to the similar example in SuperCollider

4.21.

Less black box abstractions. In the previous section, it was discussed that black

box abstractions do not benefit when one intends to explore what is abstracted. Ab-

stracting the implementation detail of a microsound synthesis technique within a func-

tion is not much meaningful for users as it is nothing but the detailed implementations

that they want to explore. As users also must face the abstraction barriers between

the layers of abstractions, it can be some more harmful for exploratory design and

exploratory understanding as discussed with the waveset harmonic distortion example

in Nyquist.

On the other hand, the Figure 4.32 example in LC, such black-box abstraction is

avoided as possible. While the ExtractWavesets function in this example seems alike

to extract-wavesets in the Figure 4.23 example, the array returned from the function

consists of Samples objects, each of which contain sample values for a single waveset.

Every single sample within a Samples object can be directly accessed, together with

225

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: LoadSndFile(0, "/sound/sample1.aif");

02: var wavesets = ExtractWavesets(0);

03:

04: //weights for 2nd and 3rd harmonics

05: var weight1 = 0.5;

06: var weight2 = 0.5;

07:

08: for (var i = 0; i < wavesets.size; i +=1){
09: //create the 2nd and 3rd harmonics from the original waveset.

10: var ws = wavesets[i];

11: var harm1 = ws->resample(ws.size / 2)->amplify(weight1);

12: var harm2 = ws->resample(ws.size / 3)->amplify(weight2);

13:

14: //schedule each waveset

15: PanOut(ws, 0.0);

16: //put 2nd harmonics that overlap-add the original

17: PanOut(harm1, -1.0);

18: PanOut(harm1, -1.0, offset:harm1.dur);

19: //3rd harmonics

20: PanOut(harm2, 1.0);

21: PanOut(harm2, 1.0, offset:harm2.dur);

22: PanOut(harm2, 1.0, offset:harm2.dur * 2);

23:

24: now += ws.dur;

25: }

Figure 4.29: A waveset harmonic distortion example in LC (reproduced from Figure
3.46).

226

4.2 Comparing LC with the existing computer music languages

A synchronous granular synthesis example

01: //create a SampleBuffer and fill it with 256 samp sinewave * 4 cycles

02: var sbuf = new SampleBuffer(1024);

03: for (var i = 0; i < sbuf.size; i += 1){
04: sbuf[i] = Sin(3.14159265359 * 2 * (i * 4.0 / sbuf.size));

05: }
06:

07: //create a grain. apply an envelope to sinewave and resample it to 440 samples

08: var tmp = sbuf->toSamples();

09: var win = GenWindow(1024::samp, \hanning);
10:

11: var grain = tmp->applyEnv(win)->resample(440)->amplify(0.25);

12:

13: within(5::second){
14: while(true){
15: WriteDAC(grain);

16: now += win.dur / 4;

17: }
18: }

Figure 4.30: A synchronous granular synthesis example (reproduced from Figure 3.36).

useful methods to perform typical manipulations on the samples1.

As scheduling of each waveset for the output can be performed quite simply in LC

and the explicit control of logical time is provided in the strongly-timed programming

concept, the entire sound synthesis algorithm of waveset harmonic distortion is de-

scribed without hiding the details under the abstraction barrier. Hence, modification

of a program can be easier; for instance, to perform waveset distortion, one only has to

multiply a Samples object with itself2 and the maximum amplitude and length of each

waveset, which are required to perfrom waveset substitution can be easily obtained by

accessing size of a Samples object and examining the samples within it directly3.

Microsound objects and manipulations. It was also reviewed several computer

music languages (and non computer music languages) with the language design that

1On the contrary, in the Figure 4.23 example in Nyquist, the elements in the array returned from
extract-wavesets function encapsulates the sound synthesis algorithms by box abstraction.

2For instance, the waveset distortion can be performed by ‘var distort = ws− >mul(ws);’ where
‘ws’ is the original waveset.

3A method ‘maxAmp()’ is also provided to obtain the maximum amplitude, while one can iterate
each sample by for-loop to obtain the maximum amplitude.

227

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: //loading the sound file onto the buffer.

02: LoadSndFile(0, "/sound/sample1.aif");

03:

04: //Freeverb is a reverbrator unit-generator.

05: var reverb = patch {
06: defin: Freeverb∼(damp:0.2, fb1:0.58, fb2:0.2, spread:200) => defout: DAC();

07: };
08:

09: //play the sound for 20 second.

10: var entireDur = 20::second;

11: within(entireDur){
12: //perform granular-sampling time-stretching.

13: var pos = 0::second;

14: var dur = 512::samp;

15: var win = GenWindow(512::samp, \hanning);
16:

17: var overlap = 2;

18: var advance = dur / overlap;

19:

20: while(true){
21:

22: var sample = ReadBuf(0, dur, offset:pos);

23: var grain = sample->applyEnv(win);

24: //write it to the reverbrator’s default input (defin).

25: reverb->write(grain);

26: var out = reverb->pread(advance); //read from ‘defout’ outlet.

27: WriteDAC(out);

28:

29: pos += dur / 4;

30: now += advance;

31: }
32: }

Figure 4.31: A reverberation example (2) (reproduced from Figure 3.61).

228

4.2 Comparing LC with the existing computer music languages

01: LoadSndFile(0, "sound.wav");

02: var wavesets = ExtractWavesets(0);

03: for (var i = 0; i < wavesets.length; i+= 1){
04: var orig = wavesets[i];

05: var octup = orig->resample(orig.size / 2);

06: WriteDAC(orig);

07: WriteDAC(octup);

08: WriteDAC(octup, offset:octup.dur);

09: now += orig.dur;

10: }

Figure 4.32: A waveset harmonic distortion example in LC (equivalent to Figure 4.23
Nyquist exmaple).

can model microsounds without the unit-generators. Yet, none of Chronic, Matlab and

Octave provide an appropriate abstraction for real-time sound synthesis in interactive

music systems. While ChucK is designed for interactive music applications, its unit-

analyzers are designed solely for audio analysis and processing in frequency domain

and lacks generality to apply to microsound synthesis. ChucK also exhibits the prob-

lem that the analysis and processing must be synchronized with the advance of logical

time and it is made a lot difficult to use the different hopsizes for FFT and IFFT objects.

To the contrary, LC’s microsound synthesis framework is designed for real-time

sound synthesis and interactive music applications and exhibits no problem with causal-

ity as seen in Chronic and LC’s synthesis framework can easily collaborate with the

other features in LC (such as the unit-generators, scheduling functions, light-weight con-

currency and the like). While Matlab and Octave are useful to explore non real-time

sound synthesis program, generally speaking, they do not provide such domain-specific

features for interactive computer music.

In ChucK, the FFT/IFFT objects must be employed inside the unit-generator graph

and it is necessary to advance the logical time, to feed the input/output samples to

perform FFT/IFFT. This leads to the unnecessary complexity in the implementation

when the hopsizes differ between the sound source and the output as seen in Figure 4.26.

In contrast, LC’s Samples objects and library functions are basically independent from

the unit-generators and the advance of the logical time. This leads to much simpler

implementation even when the hopsizes differ between the sound source and the output

229

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

as shown in Figure 4.33. As shown, simply changing the parameters on line 07 and 08

is enough to change the hopsizes both for the input and the output. In addition, as the

input samples for FFT can be directly obtained without the advance of logical time,

there is no latency in the output as is seen in ChucK’s example, in which the advance

of logical time must be involved to feed the input samples to FFT unit-analyzers.

Even when a user needs to handle real-time input, it can easily be handled by chang-

ing the ReadBuf function call to ReadADC function call. Moreover, unlike ChucK’s

unit-analizers, which are designed only for spectral processing and audio analysis in

frequency domain, LC’s sound synthesis framework is more general in that its program-

ming model integrates both spectral processing and microsound synthesis techniques

within the same framework.

Moreover, as LC is still equipped with traditional unit-generators, the sound syn-

thesis framework in LC also provides the capability for the collaboration between unit-

generators and microsound objects in LC. As seen in Figure 4.34 and Figure 4.35, the

output from a unit-generator (and from a patch) can be obtained as a Samples object,

even without the advance of logical time, to represent a microsound in LC. Any Samples

object can be given as an input signal to a unit-generator (and a patch); thus, LC’s

sound synthesis framework design allows mutual collaboration between two different

abstractions for sound synthesis.

The benefits of LC’s language design. As described above, LC’s sound synthe-

sis framework directly integrates objects and manipulations for microsound synthesis.

Such a design contributes to reducing the difficulty in microsound synthesis program-

ming, which is caused by the software anti-pattern of abstraction inversion as seen in

many other computer music languages that solely depend on the unit-generator con-

cept.

The reasons black-box abstraction of the detail of the complicated implementations

do not reduce the difficulty in microsound synthesis programming are also discussed.

As it is the detail of the implementation that users need to investigate for exploratory

design and exploratory understanding in microsound synthesis, providing a ready-made

black-box abstraction (e.g., a library function), for a certain microsound synthesis tech-

230

4.2 Comparing LC with the existing computer music languages

01: //load sound files

02: LoadSndFile(0, "/LCSynth/violin.wav");

03: LoadSndFile(1, "/LCSynth/kill humans.wav");

04:

05: //FFT/IFFT parameters.

06: var dur = 1024::samp;

07: var hop size in = dur / 4;

08: var hop size out = dur / 2;

09:

10: //perform cross synthesis

11: var i = 0;

12: while(true){
13: var src1 = ReadBuf(0, dur, offset:i * hop size out);

14: var src2 = ReadBuf(1, dur, offset:i * hop size in);

15:

16: var pfft1 = PFFT(src1, \hanning);
17: var pfft2 = PFFT(src2, \hanning);
18:

19: var ppved = pfft1[0]->mul(pfft2[0]);

20: var pifft = PIFFT(ppved, pfft1[1], \hanning);
21:

22: PanOut(pifft);

23: i += 1;

24: now += hop size out;

25: }

Figure 4.33: Another cross synthesis example in LC (with the variable hopsizes).

231

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

01: //instantiate a white noise generator

02: var src = new Noise∼();
03:

04: //we want to keep the latest 1 second output.

05: src.retain = 1::second;

06:

07: //process for 1 second, without the advance of logical time.

08: src->process(1::second);

09:

10: //get the last 1 second output.

11: var out = src->read(1::second);

12:

13: //set it to the sound output.

14: PanOut(out);

15: now += 1::second;

16:

17: //instantiate a sine wave oscillator.

18: src = new Sin∼(440);
19:

20: //we want to keep the last 50 msec output.

21: src.retain = 50::ms;

22:

23: //play a sine wave of 440 Hz.

24: within(5::second){
25: while(true){
26: //process for 50 msec, without the advance of logical time.

27: //then read the last 50msec output and write to DAC.

28: src->process(50::ms);

29: var out = src->read(50::ms);

30:

31: //set it to the sound output.

32: PanOut(out);

33: now += out.dur;

34: }
35: }
36: //change the frequency every 50 msec.

37: while(true){
38: src->process(50::ms);

39: var out = src->read(50::ms, \out);
40: PanOut(out);

41: //update the frequency.

42: src.freq = Rand(1,8) * 440;

43: now += out.dur;

44: }

Figure 4.34: An example to create Sample objects from the unit-generator’s output
samples (1) (reproduced from Figure 3.54).

232

4.2 Comparing LC with the existing computer music languages

01: //load a sound file and extract wavesets.

02: LoadSndFile(0, "/sound/sample1.aif");

03: var wavesets = ExtractWavesets(0);

04: //below function performs waveset harmonic distortion.

05: //and write out the output to the given ‘stream’

06: var f = function(var stream, entireDur){
07: var weight1 = 0.5;

08: var weight2 = 0.5;

09: //perform waveset harmonic distortion.

10: within(entireDur){
11: for (var i = 0; i < wavesets.size; i+= 1){
12: var ws = wavesets[i];

13: var harm1 = ws->resample(ws.size / 2)->amplify(weight1);

14: var harm2 = ws->resample(ws.size / 3)->amplify(weight2);

15:

16: stream->write(ws);

17: stream->write(harm1);

18: stream->write(harm1, offset:harm1.dur);

19: stream->write(harm2);

20: stream->write(harm2, offset:harm2.dur);

21: stream->write(harm2, offset:harm2.dur * 2);

22:

23: var out = stream->pread(ws.dur);

24: PanOut(out);

25: now += ws.dur;

26: }
27: }
28: };
29: //apply a triangular envelope.

30: var entireDur = 2::second;

31: var envelope = new Line∼([\reset, 0, 1.0, entireDur / 2, 0.0, entireDur / 2]);

32: envelope->trigger();

33: //pass it to the waveset harmonic distortion function.

34: f(envelope, entireDur);

35: //apply an triangular envelope + reverberation.

36: var p = patch {
37: defin:Line∼([\reset, 0, 1.0, entireDur / 2, 0.0, entireDur / 2]) =>

38: Freeverb∼(damp:0.2, fb1:0.58, fb2:0.2, spread:200) => defout:DAC∼();
39: };
40: p.defin->trigger();

41: f(p, entireDur);

Figure 4.35: A duck-typing example to apply an envelope (by a unit-generator) and
an envelope + reverberation (by a patch) to the output of waveset harmonic distortion
(reproduced from Figure 3.63).

233

4. DISCUSSION: THE NECESSITY FOR THE DEVELOPMENT OF LC
AS A NEW LANGUAGE AND THE BENEFITS OF ITS LANGUAGE
DESIGN

nique is not helpful in such a situation and can even be an obstacle since the detail can

be inaccessible in the presence of an abstraction barrier.

LC’s sound synthesis framework provides fine-grained manipulations of microsound

objects and low-level access to samples within a microsound object to facilitate ex-

ploratory design and exploratory understanding.

While LC is not the first language that argues such an issue of the integration of mi-

crosound objects and low-level accessibility, and there exists the predecessor languages,

which considered this issue as seen in Chronic and ChucK, none of the languages dis-

cussed above provides an appropriate programming model required for interactive music

systems with real-time sound synthesis capability, which is applicable to microsound

synthesis techniques with more generalization. Moreover, LC’s sound synthesis frame-

work also considers the mutual collaboration between the traditional unit-generator

concept and its microsound synthesis abstraction.

Such features of LC’s abstraction for microsound synthesis can provide a terse and

expressive programming model for various microsound synthesis techniques, allowing

users to explore the domain of microsounds with considerable flexibility, which is not

supported by other existing computer music languages to the same degree.

234

5

Conclusion and Future Work

This chapter first summarises this thesis and then clarifies the contributions made

through the development of LC in the conclusion section. Then, the direction of fur-

ther research, based on the knowledge and observation acquired through this work, is

discussed in the future work section.

5.1 Conclusion

5.1.1 Problems

This thesis first described the three problems in today’s computer music language de-

sign, which hinder creative exploration in artistic practices of our time. These were

discussed with the detail in Chapter 2. The following is summary of these three prob-

lems.

The insufficient support for dynamic modification of a computer music sys-

tem. As the process of musical creation is essentially exploratory and experimental,

a computer music language should be appropriately designed for rapid-prototyping.

At the same time, recent computer music practices involve a considerable degree of

dynamism in run-time as seen in live-coding and dynamic-patching. To facilitate such

programming activities, it is ideal for a computer music language to support dynamic

modification of a computer program at both levels of compositional algorithms and

sound synthesis. Yet the existing computer music languages still exhibit problems in

supporting dynamic modification and further improvement is still demanded.

235

5. CONCLUSION AND FUTURE WORK

The insufficient support for precise timing behaviour and other features

with respect to time. Especially after the emergence of real-time computer music

systems, timing precision has been a traditional issue in computer music. Yet, the tim-

ing precision required for today’s computer music practices is significantly higher than

that of the earlier decades. Generally speaking, microsound synthesis techniques even

require sample-rate accuracy in scheduling each microsound for precise sound output,

and such sample-rate accuracy is considered desirable in musical practices not just at

the acoustic level, but also at the rhythmic level. While some of the recent computer

music languages achieved sample-rate accuracy in timing behaviour by introducing the

concept of synchronous programming, the temporary suspension of real-time DSP can

be easily caused by a time-consuming task in these languages, as they are solely de-

pending on the synchronous approach. Yet, computer music programs often involve

such a time-consuming tasks. Furthermore, many recent computer music languages

still lack even the features with respect to time that were supported in the earlier era

when a computer music system was composed of a computer and external synthesizer

hardware; computer music languages of our time should support such features with

respect to time with sample-rate accurate timing behaviour.

The difficulty in microsound synthesis programming case by the anti-pattern

of abstraction inversion. The implementation of a microsound synthesis technique

in a unit-generator language often exhibits a considerable degree of complexity, even

when the microsound synthesis technique to be performed is conceptually simple. It

is desirable to reduce such complexity, to facilitate creative exploration in microsound

synthesis by computer musicians. While some previous works also discuss this difficulty

as a problem in the software architecture and language design, these works are target-

ing stand-alone software synthesizer applications and non real-time computer music

language design and are hardly applicable to the design of an interactive computer

music language with real-time sound synthesis. Thus, further research is still required

to investigate more appropriate software design for computer music languages, which

can reduce the difficulty in microsound synthesis programming.

236

5.1 Conclusion

5.1.2 Contribution

This thesis discusses the design and development of LC, a new computer music program-

ming language, by addressing these three problems as a significant design opportunity1.

LC is designed as a mostly-strongly-timed prototype-based programming language that

integrates objects and manipulations for microsound synthesis. The following describes

the contributions made through the design and development of LC.

Better support for dynamic modification of a computer program. LC adopts

the concept of prototype-based programming at both levels of compositional algorithms

and sound synthesis for better support for dynamic modification. Generally speaking,

prototype-based programming is beneficial to support the dynamic modification of

compositional algorithms, as its programming concept is considerably flexible against

the runtime modification of a program. While even recent computer music languages

exhibit such problems as premature commitment and viscosity in modification, LC

adopts prototype-based programming at both level of compositional algorithms and

sound synthesis, and such a language design makes LC capable of the fine-grained

dynamic modification of a unit-generator graph with considerable flexibility; thus, LC

supports a considerable degree of dynamic modification with the terse and consistent

programming model at both levels of compositional algorithms and sound synthesis.

Better support for precise timing behaviour and other features with respect

to time. LC proposes and implements the mostly-strongly-timed programming con-

cept, which extends the strongly-timed programming concept with the explicit switch

between synchronous/non-preemptive context and asynchronous/preemptive context.

Such context switching makes it possible to describe a time-consuming task as a back-

ground task, and the problem of temporary suspension of real-time DSP can be avoided

while maintaining the feature of precise timing behaviour in strongly-timed program-

ming. LC also takes desirable features with respect to time (e.g., execution time con-

straints and time fault tolerance) into consideration in its language design. These

desirable features are integrated into the language design with sample-rate accuracy in

timing behaviour in logical synchronous time.

1Appendix II describes a brief history of computer music languages and systems with an emphasis
on how computer music languages and systems have been developed through the synergy between
artistic creativity and technological advancement, with more detail.

237

5. CONCLUSION AND FUTURE WORK

The reduction of the difficulty in microsound synthesis programming. This

thesis addressed the difficulty in microsound synthesis programming as an issue of ab-

straction inversion, which occurs when the higher-level abstractions must be combined

to express lower-level abstractions, and also discussed that the black box abstraction

that hides the implementation details may reduce the complexity only at the surface

level and do not benefit users for exploratory design and exploratory understanding,

since it is such details that users have to comprehend and modify for further explo-

ration. LC’s underlying sound synthesis framework integrates the objects that directly

represent microsounds and related manipulations on microsound objects, based on the

assumption that the difficulty in microsound synthesis programming can be reduced by

the removal of the abstraction inversion. The interoperability between the traditional

unit-generator concept and LC’s microsound abstractions is also considered. The re-

sulting sound synthesis framework design makes LC highly expressive in microsound

synthesis, and various techniques can be implemented in a terse and simple manner.

5.1.3 Conclusion

While design is an ill-defined problem, which “addresses complex issues and thus cannot

easily be described in a concise, complete manner” (282), and many different solutions

can be proposed for one problem, LC took the three problems as described above as the

problem rooted in the design of a computer music language and its underlying sound

synthesis framework.

Upon such perspective, through the design and development of LC, this thesis

contributes to the solution to three problems in computer music programming. The

means of the contributions are: (1) the adoption of the concept for general-purpose

programming languages to a domain-specific problem (the adoption of prototype-based

programming to a computer music language at both levels of compositional algorithm

and sound synthesis), (2) the proposition of a new programming language concept (the

mostly-strongly-timed programming concept, which extends the strongly-timed pro-

gramming concept with explicit switch between synchronous context and asynchronous

context) and (3) the novel approach to the sound synthesis framework design (the inte-

gration of the objects and manipulation for microsound synthesis in the sound synthesis

framework).

238

5.2 Future Work

As the problems found in creative practices lead to the contributions in computer

music research, this thesis could be also viewed as an example of the synergy between

creativity and technology, as is often observed in the history of computer music. Such

an approach fostered through computer music history may have even more significance

than before, since many domain-specific programming languages and environments are

being developed to enhance artistic creativity in other digital art forms today.

5.2 Future Work

In this thesis, a new computer music programming language was designed and the proof-

of-concept prototype was also implemented. While the prototype is fully functional

and supports all the features described in this thesis, it is desirable to consider a

more stable and efficient implementation, possibly with additional language features.

While this thesis entirely focuses on the language design issues, the development of

the proof-of-concept prototype also suggests that research on computer music language

implementation is likely to lead to further research contributions. The following sections

discuss such topics of interests for future work.

5.2.1 Language features.

While the current version of LC is already expressive, further improvement may be still

be beneficial. For instance, LC still lacks such statements as the switch-case statement.

The prototype version has no suffix increment/decrement (‘i++’ or ‘i−−’), prefix in-

crement/decrement (‘++i’ or ‘−−i’), or ternary conditional (‘x > y ? x : y’). The data

type such as tuple as seen in Python (301) may be beneficial to describe a program a

little more tersely. Pattern-matching as in Erlang (21) may also be desirable for the

receive statement in LC.

Moreover, it is also desirable to develop the libraries for MIDI (23) and Open

Sound Control protocol (116). Yet, these communication protocols can likely fit in

LC’s message passing model without much difficulty.

5.2.2 Performance efficiency.

The current prototype of LC was developed only to prove that its language design and

concept are implementable and can run in real-time. While the resulting implemen-

239

5. CONCLUSION AND FUTURE WORK

tation is fully interactive and can perform real-time sound synthesis as expected, it is

desirable to improve the performance efficiency. Generally speaking, the research on

just-in-time compilation to native machine code at runtime may benefit all the issues in

following paragraphs. The previous work on the application of just-in-time compilation

to computer music languages can be seen in such works as Extempore’s xtlang (277),

LuaAV (273), and Kronos (217).

Performance efficiency of LC Virtual Machine. As the execution time of a

computer music program is spent mostly for digital sound processing, the bytecode

interpreter on LC Virtual Machine does not exhibit a significant problem in performance

efficiency, even though the proof-of-concept version is not efficient. The techniques to

improve the virtual machine performance are a traditional topic, and there would be

not be much concern for the improvement. Sasada’s thesis on the performance efficiency

of his Ruby virtual machine provides a good survey of the related techniques (167).

Performance efficiency in sound synthesis: the unit-generators. The digital

sound processing can be CPU intensive, and thus the improvement of DSP performance

is a topic of interest. While the proof-of-concept prototype is capable of real-time

sound synthesis by the unit-generators, as the implementation does not consider such

performance issues, the addition of the features during the design and development

process of the language seem to worsen the overall performance of the sound synthesis

by the unit-generators, in comparison with the earlier versions of LC. However, as

many unit-generator languages have been developed and some of them are released as

open-source software, refactoring the existing code or developing a new version of LC

can be easily improved, at least to the same degree by applying the implementation

techniques in these predecessor languages.

Performance efficiency in the sound synthesis: LC’s microsound objects

and functions. While LC’s microsound objects and functions are also implemented

without consideration for performance efficiency, it was also observed that such an

abstraction of microsound synthesis can benefit performance efficiency in some cases.

As LC’s Samples object is immutable, it can be easily reused without concern as to

whether the samples within a Samples object can be changed, and the same object can

240

5.2 Future Work

be scheduled multiple times with overlapping. Such overlapping of the same instance

of the unit-generator graph is not possible as each unit-generator has its own running

state (e.g., the current phase of a sine wave oscillator). Moreover, when the Samples

objects are sent to the input of a unit-generator or to the sound output, it is only

necessary to read the samples one-by-one from the internal buffer within a Samples ob-

ject, whereas the unit-generator graph involves the computation of its output samples.

Such characteristics seem to lead to better performance efficiency in microsound syn-

thesis techniques, in which microsounds can be pre-generated and reused. For instance,

synchronous granular synthesis technique is a synthesis technique of this kind. Other

microsound synthesis techniques can also receive the same benefits if microsounds can

be pre-generated.

However, a temporary suspension of real-time DSP was observed in the current

prototype when the duration of a Samples object was too large, while such suspension

has not been observed within the threshold of microsound time-scale1, and microsound

synthesis can be safely performed in real-time. For instance, if the duration of a Sam-

ples object is 30 seconds (= 1,323,000 samples under 44.1k Hz sample-rate), applying

an envelope to this object can be time-consuming and the deadline for real-time DSP

may be missed. One of the solutions is to apply the mostly-strongly-timed program-

ming concept so that this computation can be performed as a background task; in this

case, the logical time may be advanced during computation.

Yet, as LC’s Samples object is immutable, it is possible to apply the concept of

lazy evaluation for microsound synthesis without involving any modification to LC’s

language design. With lazy evaluation, a program “will not evaluate any expression

unless its value is demanded by some other part of the computation” (18). By applying

lazy evaluation, the manipulations on microsounds in LC on audio samples can be

deferred until the values are used, for instance, until when the sound device requires

the output samples. As the computation is performed only for the amount of the

samples required, the computation can be divided into fairly small fragments, even

1Roads describes the duration of each microsound extends between “the threshold of timbre per-
ception (several hundred microseconds) up to the duration of short sound objects (∼ 100 ms)” (242,
p.21).

241

5. CONCLUSION AND FUTURE WORK

when processing a large number of samples. For instance, when the size of the audio

vector for the sound output is set to 64 samples, it is necessary to compute only 64

samples in a Samples object at each DSP cycle and the rest of the samples in the

Samples object can remain unevaluated; thus, the introduction of lazy evaluation for

microsound synthesis is an interesting topic for the further research.

5.2.3 Garbage collection

The current version of LC implements a simple incremental mark-and-sweep garbage

collection algorithm, known as Yuasa’s snapshot-at-the-beginning algorithm (326). While

it seems the pause time by the garbage collector in the prototype is fairly small, the

further research would be desirable to investigate more appropriate garbage collection

algorithms for computer music systems. While the significant body of the previous

research has been done in the theory and implementation of garbage collection mech-

anism (156)(157), the research on the real-time garbage collectors still attracts sig-

nificant interests. As computer music languages can require both less pause time and

better throughput in garbage collection, the research on the real-time garbage collection

mechanism in computer music also may have a potential to benefit the research area

in general. While the recent progress of the garbage collection mechanism made even

a hard real-time garbage collector realized, as seen in (267), yet, generally speaking,

the behaviour of computer programs can significantly differ with application domains;

there is still a necessity to investigate garbage collection mechanisms for what kind of

garbage collection algorithms can be beneficial to each application domain.

Computer music programs may be particularly interesting in this sense, as a garbage

collector should not block real-time DSP and audio output. The discussion on such

issues of timing behaviour of a computer music program can be seen in previous works

such as Metronome garbage collector (24) and ROLLENDURCHMESSERZEITSAMM-

LER garbage collector (200). Furthermore, as the behaviour of a strongly-timed pro-

gram may exhibit its own characteristic in timing behaviour, it is desirable to investigate

more suitable garbage collection algorithms for strongly-timed programs and mostly-

strongly-timed programs. As some other multimedia applications can exhibit similar

timing behaviour to a strongly-timed program, in which a program sleeps until a certain

timing and must process the scheduled tasks as fast as possible to meet the deadline for

242

5.2 Future Work

the output, such an investigation of the characteristics of computer music programs may

benefit more general application domains of multimedia software; thus, the research on

garbage collection in computer music applications is an interesting topic.

243

5. CONCLUSION AND FUTURE WORK

244

References

[1] Pd documentation. 37

[2] Max 8 api documentation. 2011. 37

[3] Samuel Aaron, Alan F Blackwell, Richard Hoadley, and

Tim Regan. A principled approach to developing new

languages for live coding. In Proceedings of New Inter-

faces for Musical Expression, volume 2011, pages 381–

386, 2011. 290

[4] Curtis Abbott. The 4ced program. Computer Music

Journal, 5(1):13–33, 1981. 275

[5] Harold Abelson, G Sussman, and Julie Sussman. Struc-

ture and implementation of computer programs. Cam-

bridge, MA: MIT press, 21:257–261, 1985. 210

[6] Harold Abelson, RK Dybvig, CT Haynes, GJ Rozas,

NI Adams IV, DP Friedman, E Kohlbecker,

GL Steele Jr, DH Bartley, R Halstead, et al. Revised

report on the algorithmic language scheme. ACM

SIGPLAN Lisp Pointers, 4(3):1–55, 1991. 75

[7] Chris Adamson, Mike Lee, and Kevin Avila. Learning

core audio: A hands-on guide to audio programming for

Mac and iOS. Addison-Wesley Professional, 2012. 287

[8] HG Alles and Pepino di Giugno. A one-card 64 channel

digital synthesizer. Computer Music Journal, 1(4):7–9,

1977. 12, 274

[9] Jesse Allison and Christian Dell. Aural: A mobile in-

teractive system for geo-locative audio synthesis. 2012.

291

[10] Adam Alpern. Techniques for algorithmic composition

of music. On the web: http://hamp. hampshire. edu/˜

adaF92/algocomp/algocomp95. html, 1995. 272

[11] Xavier Amatriain. Clam: A framework for audio and

music application development. Software, IEEE, 24(1):

82–85, 2007. 285

[12] Xavier Amatriain, Pau Arumi, and David Garcia. A

framework for efficient and rapid development of cross-

platform audio applications. Multimedia Systems, 14

(1):15–32, 2008. 14

[13] S.W. Amber. Process patterns: Building large-scale sys-

tems using object technology. Cambridge University

Press, 1998. 42, 45

[14] Akkihebbal L Ananda, BH Tay, and Eng-Kiat Koh. A

survey of asynchronous remote procedure calls. ACM

SIGOPS Operating Systems Review, 26(2):92–109, 1992.

201

[15] David P. Anderson and R Kiuvila. Formula: A pro-

gramming language for expressive computer music.

Computer, 24(7):12–21, 1991. 197, 200, 282

[16] David P Anderson and Ron Kuivila. A system for com-

puter music performance. ACM Transactions on Com-

puter Systems (TOCS), 8(1):56–82, 1990. 20, 23, 40,

195, 197, 200, 282

[17] A. W. Appel and T. Jim. Continuation-passing,

closure-passing style. In Proceedings of the 16th ACM

SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’89, pages 293–302, New

York, NY, USA, 1989. ACM. ISBN 0-89791-294-2. doi:

10.1145/75277.75303. URL http://doi.acm.org/10.1145/

75277.75303. 30

[18] A.W. Appel. Modern compiler implementation in JAVA.

Cambridge University Press, 2002. 241

[19] Apple. Audio unit programming guide: Introduction.

2007. 189

[20] Fabio Armani, Lorenza Bizzarri, E Favreau, and An-

drea Paladin. Mars: Dsp environment and applications.

In Proceedings of the International Computer Music Con-

ference, pages 344–344. International Computer Music

Association, 1992. 12, 279

[21] Joe Armstrong. Programming Erlang. Pragmatic Book-

shelf, 2007. 239, 315

[22] Gérard Assayag and Andrew Gerzso. New computa-

tional paradigms for computer music. Delatour, 2009.

17

[23] MIDI Manufacturers Association. The complete midi

1.0 detailed specification: Incorporating all recom-

mended practices, 1996. 12, 23, 239, 274

[24] Joshua Auerbach, David F Bacon, Florian Bömers, and

Perry Cheng. Real-time music synthesis in java using

the metronome garbage collector. In Proceedings of the

International Computer Music Conference, Copenhagen,

Denmark, 2007. 242

[25] John Aycock. A brief history of just-in-time. ACM

Computing Surveys (CSUR), 35(2):97–113, 2003. 317

[26] J. Backus. The history of fortran i, ii and iii. vol-

ume 1, pages 21–37, Piscataway, NJ, USA, July 1979.

IEEE Educational Activities Department. doi: 10.

1109/MAHC.1979.10013. URL http://dx.doi.org/10.

1109/MAHC.1979.10013. 267

[27] Henry G Baker. Critique of din kernel lisp definition

version 1.2. Lisp and Symbolic Computation, 4(4):371–

398, 1992. 306

[28] T. Baker. Opening up ada-tasking. In Proceedings of

the 4th International Workshop on Real-time Ada Issues,

pages 60–64, 1990. xii, 5, 42, 45, 46, 59, 206, 303, 304,

305, 306, 307

245

http://doi.acm.org/10.1145/75277.75303
http://doi.acm.org/10.1145/75277.75303
http://dx.doi.org/10.1109/MAHC.1979.10013
http://dx.doi.org/10.1109/MAHC.1979.10013

REFERENCES

[29] Michael Baldamus and Klaus Schneider. Extending es-

terel by asynchronous concurrency. Technical report,

GI/GMM/ITG Fachtagung zum Entwurf Integrierter

Schaltungen, 1999. 205

[30] Jerry Banks and John S Carson. Discrete-event system

simulation. Pearson Education India, 1984. 20

[31] Daniel Bardou. Delegation as a sharing relation: Char-

acterization and interpretation. In Position Paper at the

Workshop on Prototype-based Object-oriented Program-

ming, ECOOP, volume 96. Citeseer, 1990. 91

[32] C. Barlow. Autobusk: An algorithmic real-time pitch

and rhythm improvisation programme. In Proceedings

of the International Computer Music Conference, pages

166–168. International Computer Music Association,

1990. 281

[33] C. Barlow. AUTOBUSK: a real-time pitch & rhythm

generator. University of Mainz, 2000. 281, 282

[34] J Beauchamp. Music 4c introduction. Computer Music

Project, School of Music, University of Illinois at Urbana-

Champaign, 1(99):3, 1993. 267

[35] James W Beauchamp. Music 4c, a multi-voiced synthe-

sis program with instruments defined in c. The Journal

of the Acoustical Society of America, 113:2215, 2003. 267

[36] R. Bencina. Audio Anecdotes III, chapter Implementing

real-time granular synthesis, pages 55–83. A.K Peters,

2006. 59, 60, 61, 64, 216

[37] G. Berry, P. Couronne, and G. Gonthier. Synchronous

programming of reactive systems: An introduction to

esterel. In Proceedings of the 1st Franco-Japanese Sym-

posium on Programming of future generation comput-

ers, pages 35–56, Amsterdam, The Netherlands, The

Netherlands, 1988. Elsevier Science Publishers B. V.

ISBN 0-444-70410-8. URL http://dl.acm.org/citation.

cfm?id=60661.60664. xi, 33

[38] Gérard Berry and Georges Gonthier. The esterel

synchronous programming language: Design, seman-

tics, implementation. Sci. Comput. Program., 19(2):

87–152, November 1992. ISSN 0167-6423. doi: 10.

1016/0167-6423(92)90005-V. URL http://dx.doi.org/

10.1016/0167-6423(92)90005-V. 33

[39] Gérard Berry, S Ramesh, and RK Shyamasundar. Com-

municating reactive processes. In Proceedings of the

20th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 85–98. ACM, 1993. 205

[40] Hugh Beyer and Karen Holtzblatt. Contextual design:

Defining customer-centered systems. Access Online via

Elsevier, 1997. 312

[41] A.F. Blackwell and T.R.G. Green. HCI models, theo-

ries and frameworks: Toward a multidisciplinary science,

chapter Notational systems - the cognitive dimensions

of notation framework, pages 103–134. Morgan Kauf-

mann, 2003. 210, 259

[42] A.F. Blackwell, L. Church, and T.R.G. Green. The ab-

stract is an enemy: Alternative perspectives to compu-

tational thinking. In Proceedings of the 2008 Psychology

of Programming Interest Group Workshop, 2008. 312

[43] Alan Blackwell and Nick Collins. The programming

language as a musical instrument. Proceedings of

PPIG05 (Psychology of Programming Interest Group),

2005. 3, 284, 289, 309

[44] A. Blandford, T.R.G. Green, D. Furniss, and S. Makri.

Evaluating system utility and conceptual fit using

cassm. International Journal of Human-Computer Stud-

ies, 66:393–400, 2008. 259, 312

[45] Ann Blandford and Thomas Green. From tasks to con-

ceptual structures: Misfit analysis. 2001. 312

[46] Ann Blandford, Thomas RG Green, and Iain Connell.

Formalising an understanding of user-system misfits.

In Engineering Human Computer Interaction and Inter-

active Systems, pages 253–270. Springer, 2005. 312

[47] G Blaschek. Type-safe oop with prototypes: The con-

cepts of omega. Structured Programming, 12(12):1–9,

1991. 86

[48] Günther Blaschek. Object-oriented programming with

prototypes. Springer-Verlag New York, Inc., 1994. 86

[49] Daniel G Bobrow, Linda G DeMichiel, Richard P

Gabriel, Sonya E Keene, Gregor Kiczales, and David A

Moon. Common lisp object system specification. ACM

Sigplan Notices, 23(SI):1–142, 1988. 290

[50] Gregory Bollella and James Gosling. The real-time

specification for java. Computer, 33(6):47–54, 2000. 33

[51] Bert Bongers. An interview with sensorband. Computer

Music Journal, 22(1):13–24, 1998. 284

[52] R.C. Boulanger. The Csound book: Perspectives in soft-

ware synthesis, sound design, signal processing, and pro-

gramming. The MIT Press, 2000. xvii, 44, 267, 307,

310, 311

[53] R.C. Boulanger and V. Lazzarini. The Audio program-

ming book. The MIT Press, 2011. 19, 58, 65, 301

[54] Pierre Boulez and Andrew Gerzso. Computers in music.

Scientific American, 258(4):44–51, 1988. 275, 284

[55] Lee Boynton. Midi-lisp: A lisp-based music programming

environment for the macintosh. Ann Arbor, MI: MPub-

lishing, University of Michigan Library, 1986. 281

[56] E. Brandt. Temporal type constructors for computer mu-

sic programming. PhD thesis, Carnegie Melon Univer-

sity, 2008. ix, xii, 59, 61, 62, 63, 65, 216, 218, 317,

318

[57] Eli Brandt. Implementing temporal type constructors

for music programming. In Proceedings of the 2001 In-

ternational Computer Music Conference, pages 99–102.

Citeseer, 2001. 61

[58] Peter Brinkmann, Peter Kirn, Richard Lawler, Chris

McCormick, Martin Roth, and Hans-Christoph Steiner.

Embedding pure data with libpd. In Proceedings of the

Pure Data Convention, 2011. 291

[59] Leo B Brodie. Forth inc., starting forth, 1986. 315

[60] Benjamin M Brosgol, Ricardo J Hassan II, and Scott

Robbins. Asynchronous transfer of control in the real-

time specification for java. In ACM SIGAda Ada Letters,

volume 22, pages 95–112. ACM, 2002. 115, 173, 205

246

http://dl.acm.org/citation.cfm?id=60661.60664
http://dl.acm.org/citation.cfm?id=60661.60664
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V

REFERENCES

[61] Andrew R Brown and Andrew Sorensen. Dynamic me-

dia arts programming in impromptu. In Proceedings of

the 6th ACM SIGCHI conference on Creativity & cogni-

tion, pages 245–246. ACM, 2007. 16, 177

[62] Andrew R Brown and Andrew Sorensen. Interacting

with generative music through live coding. Contempo-

rary Music Review, 28(1):17–29, 2009. 3, 289

[63] Andrew R Brown and Andrew C Sorensen. aa-cell

in practice: An approach to musical live coding. In

Proceedings of the International Computer Music Con-

ference, pages 292–299. International Computer Music

Association, 2007. 287

[64] W.J. Brown, C.R. Malveau, H.W. McCormick, and T.J.

Mowbray. Anti patterns: Refactoring software, architec-

tures, and projects in crisis. Wiley, 1998. 306

[65] Phil Burk. Jsyn–a real-time synthesis api for java.

In Proceedings of the 1998 International Computer Mu-

sic Conference, pages 252–255. International Computer

Music Association San Francisco, 1998. 24, 285

[66] Alan Burns and Andrew J Wellings. Real-time systems

and programing languages: Ada 95, Real-time Java and

Real-time Posix. Addison Wesley, 2001. 33, 34, 107,

109, 110, 115

[67] Alan Burns and Andy Wellings. HRT-HOOD: A struc-

tured design method for hard real-time Ada systems, vol-

ume 3. Elsevier, 1995. 33

[68] William AS Buxton. A composer’s introduction to com-

puter music. Journal of New Music Research, 6(2):57–

71, 1977. 274

[69] Nicholas Carrier and David Gelernter. Linda and

friends. Distributed shared memory: Concepts and sys-

tems, 21:177, 1998. 109

[70] Kim Cascone. The aesthetics of failure:‘post-digital’

tendencies in contemporary computer music. Computer

Music Journal, 24(4):12–18, 2000. 284

[71] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and

John A Plaice. Lustre: A declarative language for

real-time programming. In Proceedings of the 14th

ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 178–188. ACM, 1987. 33

[72] Sergio Cavaliere, Giuseppe Di Giugno, and Eugenio

Guarino. Mars: The x20 device and sm100 board. In

Proceedings of the International Computer Music Con-

ference, pages 348–348. International Computer Music

Association, 1992. 12, 279

[73] Joel Chadabe and Roger Meyers. An introduction to

the play program. Computer Music Journal, 2(1):12–18,

1978. 272

[74] J Michael Clarke, PD Manning, R Berry, and A Purvis.

Vocel: New implementations of the fof synthesis

method. In Proc. In. Comp. Music Conf., ICMC88,

Cologne, pages 357–371, 1988. 45

[75] John Clough. Tempo: A composer’s programming lan-

guage. Perspectives of New Music, 9(1):113–125, 1970.

272

[76] DJ Collinge. MOXIE: A language for computer music

performance. 1984. 22, 30, 281

[77] Nick Collins, Alex McLean, Julian Rohrhuber, and

Adrian Ward. Live coding in laptop performance. Or-

ganised Sound, 8(03):321–330, 2003. 3, 289, 290

[78] Iain Connell, Thomas Green, and Ann Blandford. On-

tological sketch models: Highlighting user-system mis-

fits. People and Computers XVII, pages 163–178, 2003.

312

[79] Iain Connell, Ann Blandford, and Thomas Green.

Cassm and cognitive walkthrough: Usability issues

with ticket vending machines. Behaviour & Information

Technology, 23(5):307–320, 2004. 312

[80] Melvin E Conway. Design of a separable transition-

diagram compiler. Communications of the ACM, 6(7):

396–408, 1963. 31, 290

[81] Curtis Cook, Margaret Burnett, and Derrick Boom. A

bug’s eye view of immediate visual feedback in direct-

manipulation programming systems. In Papers pre-

sented at the seventh workshop on Empirical studies of

programmers, pages 20–41. ACM, 1997. 18

[82] Perry R Cook and Gary Scavone. The synthesis toolkit

(stk). In Proceedings of the International Computer Mu-

sic Conference, pages 164–166, 1999. 14, 25, 285

[83] Duncan Coutts, Isaac Potoczny-Jones, and Don Stew-

art. Haskell: batteries included. In ACM Sigplan No-

tices, volume 44, pages 125–126. ACM, 2008. 316

[84] Brent Cowan and Bill Kapralos. Spatial sound for video

games and virtual environments utilizing real-time gpu-

based convolution. In Proceedings of the 2008 Confer-

ence on Future Play: Research, Play, Share, pages 166–

172. ACM, 2008. 281

[85] Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Ny-

gaard. Simula 67 common base language. 1967. 86

[86] Roger B Dannenberg. Arctic: A functional language

for real-time control. In Proceedings of the 1984 ACM

Symposium on LISP and functional programming, pages

96–103. ACM, 1984. 286

[87] Roger B Dannenberg. The canon score language. Com-

puter Music Journal, 13(1):47–56, 1989. 286

[88] Roger B Dannenberg. The cmu midi toolkit, version 3,

1993. 22, 30, 282

[89] Roger B Dannenberg. The implementation of nyquist,

a sound synthesis language. Computer Music Journal,

21(3):71–82, 1997. 23, 177, 207, 286

[90] Roger B Dannenberg. Machine tongues xix: Nyquist,

a language for composition and sound synthesis. Com-

puter Music Journal, 21(3):50–60, 1997. 177, 207

[91] Roger B Dannenberg. The nyquist composition envi-

ronment: Supporting textual programming with a task-

oriented user interface. Computer Science Department,

page 512, 2008. 208

[92] Roger B Dannenberg. Nyquist reference manual version

3.08, 2013. 208, 215

247

REFERENCES

[93] Maurizio De Cecco, E Lindeman, and Miller Puckette.

The ircam signal processing workstation prototyping

environment. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pages 639–

640. ACM, 1992. 14

[94] Roger T Dean. The Oxford handbook of computer music.

OUP USA, 2009. 11, 264, 266

[95] François Déchelle and Maurizio DeCecco. The ircam

real-time platform and applications. In Proceedings of

the 1995 International Computer Music Conference, In-

ternational Computer Music Association, San Francisco.

Citeseer, 1995. 14

[96] François Déchelle, Riccardo Borghesi, Maurizio De

Cecco, Enzo Maggi, Butch Rovan, and Norbert Schnell.

jmax: An environment for real-time musical applica-

tions. Computer Music Journal, 23(3):50–58, 1999. 14

[97] F. Détienne. Software design - cognitive aspects.

Springer, 2001. 312

[98] Gerzso Di Guigno and A Gerzso. La station de tra-

vail musical 4x. Technical report, IRCAM Technical

Report, Paris, 1986. 12, 274

[99] Stephan Diehl. Software visualization: visualizing the

structure, behaviour, and evolution of software. Springer,

2007. 314

[100] Mark Dolson. The phase vocoder: A tutorial. Computer

Music Journal, 10(4):14–27, 1986. 142

[101] Christophe Dony, Jacques Malenfant, and Pierre

Cointe. Prototype-based languages: From a new taxon-

omy to constructive proposals and their validation. In

ACM Sigplan Notices, volume 27, pages 201–217. ACM,

1992. 86, 90

[102] Christophe Dony, Jacques Malenfant, and Daniel Bar-

dou. Classifying prototype-based programming lan-

guages. Prototype-based Programming: Concepts, Lan-

guages and Applications, 1998. 86

[103] Paul Doornbusch. Computer sound synthesis in 1951:

The music of csirac. Computer Music Journal, 28(1):

10–25, 2004. 273

[104] Marc Downie. Fielda new environment for making dig-

ital art. Computers in Entertainment (CIE), 6(4):54,

2008. 313

[105] John W Eaton, David Bateman, and Søren Hauberg.

Gnu octave. Free Software Foundation, 1997. 219

[106] Kemal Ebcioglu and et al. X10: Programming for hier-

archical parallelism and non-uniform data access (ex-

tended abstract), 2004. 302

[107] Stephen A. Edwards, Vimal Kapadia, and Michael Ha-

las. Compiling esterel into static discrete-event code.

Electron. Notes Theor. Comput. Sci., 153(4):117–131,

June 2006. ISSN 1571-0661. doi: 10.1016/j.entcs.2006.

02.027. URL http://dx.doi.org/10.1016/j.entcs.2006.02.

027. 34

[108] Martin Erwig and Bernd Meyer. Heterogeneous visual

languages-integrating visual and textual programming.

In Visual Languages, Proceedings., 11th IEEE Interna-

tional Symposium on, pages 318–325. IEEE, 1995. 313

[109] Emmanuel Favreau, Michel Fingerhut, Olivier Koech-

lin, Patrick Potacsek, Miller Puckette, and Robert

Rowe. Software developments for the 4x real-time sys-

tem. In Proceedings of the International Computer Music

Conference, pages 369–373, 1986. 275, 277

[110] Guy Fedorkow, William Buxton, and KC Smith. A

computer-controlled sound distribution system for the

performance of electroacoustic music. Computer Music

Journal, 2(3):33–42, 1978. 273

[111] Jose L Fernandez. A taxonomy of coordination mecha-

nisms used in real-time software based on domain anal-

ysis. Technical report, DTIC Document, 1993. 305

[112] William Finzer and Laura Gould. Programming by re-

hearsal. Byte, 9(6):187, 1984. 313

[113] James L Flanagan, DIS Meinhart, Roger M Golden,

and Man Mohan Sondhi. Phase vocoder. The Journal

of the Acoustical Society of America, 38:939, 1965. 142

[114] M. Fowler. Domain-specific languages. Addison-Wesley,

2010. 58, 59, 285, 286

[115] Martin Fowler. Language workbenches: The killer-

app for domain specific languages. http://martinfowler.

com/articles/languageWorkbench.html, 2005. [Online; ac-

cessed 22-Mar-2014]. 59, 286

[116] Adrian Freed and Andy Schmeder. Features and future

of open sound control version 1.1 for nime. In NIME’09:

Proceedings of the 9th Conference on New Interfaces for

Musical Expression, 2009. 239, 287

[117] David Friend. A time-shared hybrid sound synthesizer.

Journal of the Audio Engineering Society, 19(11):928–

935, 1971. 12, 273

[118] Hal Edwin Fulton. The ruby way the second edition:

Solutions and techniques in ruby programming. Addison

Wesley Professional, 2006. 91

[119] D. Gabor. Lectures on communication theory. Tech-

nical Report 238, Research Laboratory of Electron-

ics,Massachusetts Institution of Technology, 1952. 309

[120] James Gabura and Gustav Ciamaga. Computer con-

trol of sound apparatus for electronic music. In Audio

Engineering Society Convention 33, 1967. 273

[121] Stephan J Garland. Dartmouth basic, a specification.

Hanover NH: Kiewit Computation Center. TM028, 1973.

308

[122] Brad Garton and Dave Topper. Rtcmix–using cmix in

real time. In Proceedings of the International Computer

Music Conference. International Computer Music Asso-

ciation, 1997. 12, 283, 286

[123] Lalya Gaye, Lars Erik Holmquist, Frauke Behrendt,

and Atau Tanaka. Mobile music technology: Report on

an emerging community. In Proceedings of the 2006 con-

ference on New interfaces for musical expression, pages

22–25. IRCAM-Centre Pompidou, 2006. 291

[124] David Gelernter. Generative communication in linda.

ACM Trans. Program. Lang. Syst., 7(1):80–112, January

1985. ISSN 0164-0925. doi: 10.1145/2363.2433. URL

http://doi.acm.org/10.1145/2363.2433. 109

248

http://dx.doi.org/10.1016/j.entcs.2006.02.027
http://dx.doi.org/10.1016/j.entcs.2006.02.027
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://doi.acm.org/10.1145/2363.2433

REFERENCES

[125] David Gelernter and Nicholas Carriero. Coordination

languages and their significance. Communications of the

ACM, 35(2):96, 1992. 109

[126] Adele Goldberg and David Robson. Smalltalk-80: The

language and its implementation. Addison-Wesley Long-

man Publishing Co., Inc., 1983. 178, 287

[127] Danny Goodman, Michael Morrison, and Brendan

Eich. Javascript R© bible. John Wiley & Sons, Inc., 2007.

75, 86, 91, 313

[128] James Gosling. Java language specification. Addison-

Wesley Professional, 2000. 74, 86

[129] Thomas Green and Alan Blackwell. Cognitive dimen-

sions of information artefacts: A tutorial. In BCS HCI

Conference, 1998. 182, 259

[130] Thomas R. G. Green and Marian Petre. Usability anal-

ysis of visual programming environments: A ’cognitive

dimensions’ framework. Journal of Visual Languages &

Computing, 7(2):131–174, 1996. 259

[131] Thomas RG Green and Marian Petre. When visual

programs are harder to read than textual programs.

In Human-Computer Interaction: Tasks and Organisa-

tion, Proceedings of ECCE-6 (6th European Conference

on Cognitive Ergonomics). GC van der Veer, MJ Tauber,

S. Bagnarola and M. Antavolits. Rome, CUD. Citeseer,

1992. 191, 313

[132] TRG Green, M Petre, and RKE Bellamy. Comprehen-

sibility of visual and textual programs: A test of su-

perlativism against the ’match-mismatch’ conjecture.

ESP, 91(743):121–146, 1991. 191, 313

[133] Ira Greenberg. Processing: creative coding and compu-

tational art. Apress, 2007. 314

[134] Peter Grogono. Musys: Software for an electronic mu-

sic studio. Software: Practice and Experience, 3(4):369–

383, 1973. 12, 274

[135] Nicolas Halbwachs. Synchronous programming of reac-

tive systems. Springer-Verlag, 2010. 33, 317

[136] Stuart Halloway. Programming Clojure. Pragmatic

Bookshelf, 2009. 290

[137] Kevin Hammond. Parallel functional programming: An

introduction. FTPable from ftp. dcs. glasgow. ac. uk,

1994. 315

[138] Duane Hanselman and Bruce C Littlefield. Master-

ing MATLAB 5: A comprehensive tutorial and reference.

Prentice Hall PTR, 1997. 219

[139] Drew Hemment. Locative arts. Leonardo, 39(4):348–

355, 2006. 291

[140] Rich Hickey. The clojure programming language. In

Proceedings of the 2008 symposium on Dynamic lan-

guages, page 1. ACM, 2008. 290

[141] Lejaren Hiller and Leonard Maxwell Isaacson. Illiac

suite, for string quartet, volume 30. New Music Edi-

tion, 1957. 272

[142] Lejaren Hiller, Antonio Leal, and Robert A Baker. Re-

vised musicomp manual. U. of Illinois Experimental Mu-

sic Studio Tech. Rep, (13), 1966. 272

[143] Jean-Michel Hoc. Psychology of programming. Academic

Pr, 1990. 312, 313

[144] Robert R Hoffman, Beth Crandall, and Nigel Shad-

bolt. Use of the critical decision method to elicit expert

knowledge: A case study in the methodology of cogni-

tive task analysis. Human Factors: The Journal of the

Human Factors and Ergonomics Society, 40(2):254–276,

1998. 312

[145] Manuel Hohenauer, Christoph Schumacher, Rainer Le-

upers, Gerd Ascheid, Heinrich Meyr, and Hans van

Someren. Retargetable code optimization with simd

instructions. In Proceedings of the 4th international con-

ference on Hardware/Software Codesign and System Syn-

thesis, pages 148–153. ACM, 2006. 301

[146] Anthony T Holdener. Ajax: the definitive guide. ”

O’Reilly Media, Inc.”, 2008. 314

[147] SR Holtzman. Using generative grammars for mu-

sic composition. Computer Music Journal, 5(1):51–64,

1981. 272

[148] Hubert S Howe. Music 4bf, a fortran version of music

4b. Princeton: Princeton University Music Dept, 1967.

267

[149] Paul Hudak, Tom Makucevich, Syam Gadde, and

Bo Whong. Haskore music notation–an algebra of

music–. Journal of Functional Programming, 6(03):465–

484, 1996. 290

[150] Roberto Ierusalimschy. Programming in lua. Roberto

Ierusalimschy, 2006. xi, 31, 32, 74, 75, 82, 87, 91, 313

[151] Roberto Ierusalimschy. Programming in lua, the third

Edition. Roberto Ierusalimschy, 2013. 45, 75, 78, 82

[152] Roberto Ierusalimschy, Luiz Henrique De Figueiredo,

and Waldemar Celes Filho. Lua-an extensible exten-

sion language. Software Practice and Experience, 26(6):

635–652, 1996. 74, 75, 86, 290

[153] Roberto Ierusalimschy, Luiz Henrique De Figueiredo,

and Waldemar Celes. The evolution of an extension

language: A history of lua. In Proceedings of V Brazil-

ian Symposium on Programming Languages, pages B–14–

B–28. Citeseer, 2001. 290, 313

[154] Roberto Ierusalimschy, Luiz Henrique de Figueiredo,

and Waldemar Celes. The evolution of lua. In Proceed-

ings of the third ACM SIGPLAN conference on History

of programming languages, pages 2–1. ACM, 2007. 290

[155] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Ya-

sue, Mikio Takeuchi, Takeshi Ogasawara, Toshio Sug-

anuma, Tamiya Onodera, Hideaki Komatsu, and

Toshio Nakatani. Design, implementation, and eval-

uation of optimizations in a just-in-time compiler. In

Proceedings of the ACM 1999 conference on Java Grande,

pages 119–128. ACM, 1999. 317

[156] Richard Jones and Rafael D Lins. Garbage collection:

Algorithms for automatic dynamic memory manage-

ment. 1996. 242

249

REFERENCES

[157] Richard Jones, Antony Hosking, and Eliot Moss. The

garbage collection handbook: The art of automatic mem-

ory management. Chapman & Hall/CRC, 2011. 242

[158] Simon Peyton Jones. Wearing the hair shirt: a ret-

rospective on haskell (invited talk). In ACM SIG-

PLAN Conference on Principles of Programming Lan-

guages (POPL03), 2003. 316

[159] Sergi Jorda, Martin Kaltenbrunner, Günter Geiger, and

Ross Bencina. The reactable*. In Proceedings of the

international computer music conference (ICMC 2005),

Barcelona, Spain, pages 579–582, 2005. 16, 189

[160] Sergi Jordà, Günter Geiger, Marcos Alonso, and Mar-

tin Kaltenbrunner. The reactable: Exploring the syn-

ergy between live music performance and tabletop tan-

gible interfaces. In Proceedings of the 1st international

conference on Tangible and embedded interaction, pages

139–146. ACM, 2007. 3, 16, 189

[161] P Kail. Forth programming language. SOFTWARE

WORLD., 16(3):2–5, 1985. 282

[162] Martin Kaltenbrunner, Günter Geiger, and Sergi Jordà.

Dynamic patches for live musical performance. In Pro-

ceedings of the 2004 conference on New interfaces for mu-

sical expression, pages 19–22, 2004. 3, 16

[163] Martin Kaltenbrunner, Sergi Jorda, Gunter Geiger, and

Marcos Alonso. The reactable*: A collaborative musi-

cal instrument. In Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises, 2006. WETICE’06.

15th IEEE International Workshops on, pages 406–411.

IEEE, 2006. 16

[164] Laszlo B Kish. End of moore’s law: thermal (noise)

death of integration in micro and nano electronics.

Physics Letters A, 305(3):144–149, 2002. 315

[165] Andrew Koenig. Patterns and antipatterns. Journal of

Object-Oriented Programming, 8(1):46–48, 1995. 306

[166] Dierk Koenig, Andrew Glover, Paul King, Guillaume

Laforge, and Jon Skeet. Groovy in action. Manning,

2007. 91

[167] Sasada Koichi. Efficient implementation of Ruby virtual

machine. PhD thesis, The University of Tokyo, 2007.

240, 317

[168] Topher La Fata. Max/msp: Writing max externals in

java. 37

[169] Paul Lansky. Cmix. Program Documentation. Prince-

ton, New Jersey: Princeton University. http://silvertone.

princeton. edu/winham/man, 1987. 271, 285, 286

[170] Paul Lansky. The architecture and musical logic and

cmix. 1990. 271, 285

[171] Chris Lattner. Llvm and clang: Next generation com-

piler technology. In The BSD Conference, pages 1–2,

2008. 190

[172] Chris Lattner and Vikram Adve. Llvm: A compilation

framework for lifelong program analysis & transforma-

tion. In Code Generation and Optimization, 2004. CGO

2004. International Symposium on, pages 75–86. IEEE,

2004. 189

[173] Mikael Laurson. PATCHWORK: A visual programming

language and some musical applications. PhD thesis,

Sibelius Academy Helsinki, 1996. 290

[174] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo.

An overview of pwgl, a visual programming environ-

ment for music. Computer Music Journal, 33(1):19–31,

2009. 290

[175] Victor Lazzarini. The development of computer music

programming systems. Journal of New Music Research,

(ahead-of-print):1–14, 2013. 264, 283, 285

[176] Victor Lazzarini, Alexis Kirke, Eduardo Miranda, Mika

Kuuskankare, Mikael Laurson, Florian Thalmann, and

Guerino Mazzola. A toolkit for music and audio activ-

ities on the xo computer. 2008. 24, 285

[177] Paul Le Guernic, Albert Benveniste, Patricia Bournai,

and Thierry Gautier. Signal–a data flow-oriented lan-

guage for signal processing. Acoustics, Speech and Signal

Processing, IEEE Transactions on, 34(2):362–374, 1986.

33

[178] Edward A Lee. Computing needs time. Communica-

tions of the ACM, 52(5):70–79, 2009. 24

[179] Insup Lee, Susan B Davidson, and Victor Fay-Wolfe.

Motivating time as a first class entity. 1987. x, 40, 196,

198, 199, 206

[180] AMC Leeming. A comparison of some discrete event

simulation languages. ACM SIGSIM Simulation Digest,

12(1-4):9–16, 1981. 20

[181] Rasmus Lerdorf, Kevin Tatroe, and Peter MacIntyre.

Programming PHP. O’Reilly Media, Inc., 2009. 74

[182] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques

Garrigue, Didier Rémy, and Jérôme Vouillon. The

ocaml system release 4.00. 2012. 59, 317

[183] Clayton Lewis. Using the “thinking-aloud” method in

cognitive interface design. IBM TJ Watson Research

Center, 1982. 312

[184] Henry Lieberman. A preview of act 1. AI memo No

625, 1981. 90

[185] Henry Lieberman. Using prototypical objects to im-

plement shared behavior in object-oriented systems.

In Conference proceedings on Object-oriented program-

ming systems, languages and applications, OOPLSA ’86,

pages 214–223, New York, NY, USA, 1986. ACM. ISBN

0-89791-204-7. doi: 10.1145/28697.28718. URL http:

//doi.acm.org/10.1145/28697.28718. 90, 91

[186] Eric Lindemann, Miller Puckette, Eric Viara, and

Michel Starkier. The ircam signal processing

workstation-an environment for research in real-time

musical signal processing and performance. Micropro-

cessing and Microprogramming, 30(1):167–174, 1990. 14

[187] Eric Lindemann, François Dechelle, Bennett Smith,

and Michel Starkier. The architecture of the ircam

musical workstation. Computer Music Journal, 15(3):

41–49, 1991. 12, 277

[188] Cort Lippe. Real-time computer music at ircam. Con-

temporary Music Review, 6(1):219–224, 1991. 277

250

http://doi.acm.org/10.1145/28697.28718
http://doi.acm.org/10.1145/28697.28718

REFERENCES

[189] Cort Lippe. Real-time granular sampling using the ir-

cam signal processing workstation. Contemporary Music

Review, 10(2):149–155, 1994. 132

[190] D Gareth Loy. Notes on the implementation of musbox:

A compiler for the systems concepts digital synthesizer.

Computer Music Journal, 5(1):34–50, 1981. 281

[191] D Gareth Loy. Life and times of the samson box. Com-

puter Music Journal, 37(3):26–48, 2013. 281

[192] Gareth Loy. The carl system: Premises, history, and

fate. Computer Music Journal, 26(4):52–60, 2002. 271

[193] Hongmin Lu, Yuming Zhou, Jiangtao Lu, and Baowen

Xu. A compile-time optimization framework for ada

rendezvous. ACM SIGPLAN Notices, 39(2):18–25, 2004.

45

[194] E. A. Lyon. A sample accurate triggering system for pd

and max/msp. In Proceedings of the 2006 International

Computer Music Conference, 2006. 3, 37, 195

[195] Thor Magnusson. ixi lang: A supercollider parasite

for live coding. In Proceedings of the International

Computer Music Conference. University of Huddersfield,

2011. 286, 290

[196] Joshua B Mailman. The fluxations stochastic interac-

tive algorithmic music engine (siame) and iphone app.

In Proceedings of the 9th Sound and Music Computing

Conference, Copenhagen, Denmark, 2012. 291

[197] Peter Manning. Electronic and computer music. Oxford

University Press, 2013. 275

[198] Florence Maraninchi and Yann Rémond. Argos: An

automaton-based synchronous language. Computer lan-

guages, 27(1):61–92, 2001. 33

[199] Shane Markstrum. Staking claims: A history of pro-

gramming language design claims and evidence: A po-

sitional work in progress. In Evaluation and Usability of

Programming Languages and Tools, page 7. ACM, 2010.

259

[200] Kjetil Matheussen. Conservative garbage collectors for

realtime audio processing. Ann Arbor, MI: MPublishing,

University of Michigan Library, 2009. 242

[201] Max V Mathews. An acoustic compiler for music and

psychological stimuli. Bell System Technical Journal,

40:677–694, 1961. 43, 266, 267, 268

[202] Max V Mathews and Joan E Miller. Music IV program-

mer’s manual. Bell Telephone Labs, 1979. 267

[203] Max V Mathews and F Richard Moore. Groove - a

program to compose, store, and edit functions of time.

Communications of the ACM, 13(12):715–721, 1970. 12,

273

[204] Max V Mathews, Joan E Miller, F Richard Moore,

John R Pierce, and Jean-Claude Risset. The technol-

ogy of computer music. MIT press Cambridge, 1969.

11, 42, 263, 266, 267, 308, 309

[205] MATLAB. Matlab R2013b documentation. The Math-

Works Inc., Natick, Massachusetts, 2013. xvi, 223, 224

[206] Yukio Matsumoto and K Ishituka. Ruby programming

language, 2002. 91

[207] Satoshi Matsuoka and Satoru Kawai. Using tuple

space communication in distributed object-oriented

languages. SIGPLAN Not., 23(11):276–284, January

1988. ISSN 0362-1340. doi: 10.1145/62084.62108. URL

http://doi.acm.org/10.1145/62084.62108. 110

[208] Andrew May. Philippe manoury: Jupiter. Computer

Music Journal, 23(3):118–120, 1999. 275, 284

[209] John McCarthy. Recursive functions of symbolic ex-

pressions and their computation by machine, part i.

Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-

0782. doi: 10.1145/367177.367199. URL http://doi.

acm.org/10.1145/367177.367199. 316

[210] James McCartney. Supercollider: A new real time syn-

thesis language. 1996. 12, 177, 286, 287

[211] James McCartney. Rethinking the computer music lan-

guage: Supercollider. Computer Music Journal, 26(4):

61–68, 2002. 44, 178, 286

[212] Alex McLean. Artist-programmers and programming lan-

guages for the arts. PhD thesis, Department of Comput-

ing, Goldsmiths, University of London, October 2011.

3

[213] F Richard Moore. The computer audio research lab-

oratory at ucsd. Computer Music Journal, 6(1):18–29,

1982. xvii, 271

[214] James A Moorer, Alain Chauveau, Curtis Abbott, Pe-

ter Eastty, and James Lawson. The 4c machine. Com-

puter Music Journal, 3(3):16–24, 1979. 12, 274

[215] Peter Naur, John W Backus, Friedrich L Bauer, Julien

Green, Charles Katz, John McCarthy, Alan J Perlis,

Heinz Rutishauser, Klaus Samelson, Bernard Vauquois,

et al. Revised report on the algorithmic language algol

60. Communications of the ACM, 6(1):1–17, 1963. 75

[216] Click Nilson. Live coding practice. In Proceedings of the

7th international conference on New interfaces for musi-

cal expression, pages 112–117. ACM, 2007. 3, 289

[217] Vesa Norilo. Recent developments in the kronos pro-

gramming language. In Proceedings of the ICMC2013

International Computer Music Conference, 2013. 240

[218] Vesa Norilo and Mikael Laurson. Kronos-a vectorizing

compiler for music dsp. In Proc. of the 12th Int. Con-

ference on Digital Audio Effects (DAFx-09), 2009. 317

[219] Yann Orlarey, Dominique Fober, and Stéphane Letz.

An algebra for block diagram languages. In Proceed-

ings of International Computer Music Conference, pages

542–547. Citeseer, 2002. 290

[220] Yann Orlarey, Albert Gräf, and Stefan Kersten. Dsp

programming with faust, q and supercollider. In Pro-

ceedings of the 4th International Linux Audio Conference

(LAC06), pages 39–47, 2006. 290

[221] Yann Orlarey, Dominique Fober, and Stephane Letz.

Faust: An efficient functional approach to dsp pro-

gramming. New Computational Paradigms for Computer

Music, 2009. 290

251

http://doi.acm.org/10.1145/62084.62108
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199

REFERENCES

[222] John K Ousterhout. Scripting: Higher level program-

ming for the 21st century. Computer, 31(3):23–30, 1998.

13

[223] Andrenacci Paolo, Armani Fabio, Bessegato Renato,

Paladin Andrea, Pisani Patrizio, Prestigiacomo Angelo,

Rosati Claudio, Sapir Sylviane, and Vetuschi Mauro.

The new mars workstation. In Proceedings of the... In-

ternational Computer Music Conference, page 215. Com-

puter Music Association, 1997. 279

[224] K Peppler and Y Kafai. Creative coding: Program-

ming for personal expression. Retrieved August, 30:

2008, 2005. 314

[225] Mark Pilgrim. HTML5: up and running. “O’Reilly Me-

dia, Inc.”, 2010. 314

[226] Larry Polansky. Live interactive computer music in

hmsl, 1984-1992. Computer Music Journal, 18(2):59–

77, 1994. 22, 281

[227] M. Puckette. The theory and technique of electronic mu-

sic. World Scientific Publishing Company, 2007. 44

[228] Miller Puckette. The patcher. In Proceedings of the In-

ternational Computer Music Conference, 1988. 277, 278

[229] Miller Puckette. Something digital. Computer Music

Journal, 15(4):65–69, 1991. 12, 274, 275

[230] Miller Puckette. Fts: A real-time monitor for multi-

processor music synthesis. Computer music journal, 15

(3):58–67, 1991. 12, 277, 279

[231] Miller Puckette. Combining event and signal processing

in the max graphical programming environment. Com-

puter music journal, 15(3):68–77, 1991. 12, 177, 277,

279, 280, 286

[232] Miller Puckette. Pure data: Another integrated com-

puter music environment. Proceedings of the Second In-

tercollege Computer Music Concerts, pages 37–41, 1996.

12, 44, 283, 286

[233] Miller Puckette. Pure data. Proceedings of the Interna-

tional Computer Music Conference, 1997. 177, 283

[234] Miller Puckette. Max at seventeen. Computer Music

Journal, 26(4):31–43, 2002. 177, 275, 283, 307

[235] Miller Puckette and MIT Experimental Music Studio.

Music 500: A new real-time digital synthesis system. In

Proceedings of the International Computer Music Confer-

ence, 1983. 275

[236] Warren Rachele. Learn Object Pascal with Delphi. Word-

ware Publishing Inc., 2000. 315

[237] Benjamin RAMSAY. Social spatialisation: Explor-

ing links within contemporary sonic art. In eCon-

tact! 14.4-Toronto Electroacoustic Symposium 2011

(TES 2011), volume 14. Canadian Electroacoustic

Community, 2013. 284

[238] JK Randall. A report from princeton. Perspectives of

New Music, 3(2):84–92, 1965. 267

[239] James Reinders. Intel threading building blocks: outfit-

ting C++ for multi-core processor parallelism. O’Reilly

Media, Inc., 2007. 301

[240] C. Roads. Introduction to granular synthesis. Computer

Music Journal, 12(2), 1988. 45

[241] C. Roads. The computer music tutorial. The MIT Press,

1996. 41, 42, 266, 267, 270, 274, 275

[242] C. Roads. Microsound. The MIT Press, 2004. ix, x,

xviii, 24, 44, 47, 48, 50, 55, 57, 130, 140, 241, 310, 311

[243] Curtis Roads and Max Mathews. Interview with max

mathews. Computer Music Journal, 4(4):15–22, 1980.

11, 266

[244] Curtis Roads and Paul Wieneke. Grammars as rep-

resentations for music. Computer Music Journal, 3(1):

48–55, 1979. 272

[245] Stewart Robinson. Simulation: The practice of model

development and use. Wiley. com, 2004. ix, 21

[246] X. Rodet. Time-domain formant-wave-function synthe-

sis. Computer Music Journal, 8(3), 1984. 45

[247] Julian Rohrhuber, Alberto de Campo, and Renate

Wieser. Algorithms today notes on language design for

just in time programming. context, 1:291, 2005. 17, 178

[248] Neil B Rolnick. A composer’s notes on the development

and implementation of software for a digital synthe-

sizer. Computer Music Journal, 2(2):13–22, 1978. 275

[249] Jean-Pierre Rosen. Is ada education important? Ada

User Journal, 29(3):208, 2008. 305

[250] Robert Rowe. Machine listening and composing with

cypher. Computer Music Journal, 16(1):43–63, 1992.

281

[251] Robert Rowe. Interactive music systems: Machine lis-

tening and composing. MIT press, 1992. 281

[252] James Rumbaugh. Controlling propagation of opera-

tions using attributes on relations. In Conference pro-

ceedings on Object-oriented programming systems, lan-

guages and applications, OOPSLA ’88, pages 285–296,

New York, NY, USA, 1988. ACM. ISBN 0-89791-284-5.

doi: 10.1145/62083.62109. URL http://doi.acm.org/10.

1145/62083.62109. 91

[253] Caitlin Sadowski and Sri Kurniawan. Heuristic evalu-

ation of programming language features: Two parallel

programming case studies. In Proceedings of the 3rd

ACM SIGPLAN workshop on Evaluation and usability

of programming languages and tools, pages 9–14. ACM,

2011. 259

[254] Kazuki Sakamoto and Tomohiko Furumoto. Grand cen-

tral dispatch. In Pro Multithreading and Memory Man-

agement for iOS and OS X, pages 139–145. Springer,

2012. 301

[255] Peter R Samson. A general-purpose digital synthesizer.

Journal of the Audio Engineering Society, 28(3):106–113,

1980. 281

252

http://doi.acm.org/10.1145/62083.62109
http://doi.acm.org/10.1145/62083.62109

REFERENCES

[256] Vijay Saraswat, George Almasi, Ganesh Bikshandi,

Calin Cascaval, David Cunningham, David Grove,

Sreedhar Kodali, Igor Peshansky, and Olivier Tardieu.

The asynchronous partitioned global address space

model. In Proceedings of The First Workshop on Ad-

vances in Message Passing, 2010. 302

[257] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier

Tardieu, and David Grove. X10 language specification,

2011. 302

[258] C. A. Scaletti and R. E. Johnson. An interactive en-

vironment for object-oriented music composition and

sound synthesis. In Conference proceedings on Object-

oriented programming systems, languages and applica-

tions, OOPSLA ’88, pages 222–233, New York, NY,

USA, 1988. ACM. ISBN 0-89791-284-5. doi: 10.1145/

62083.62103. URL http://doi.acm.org/10.1145/62083.

62103. 12, 279

[259] Carla Scaletti. The kyma/platypus computer music

workstation. Computer Music Journal, 13(2):23–38,

1989. 12, 279

[260] G Scavone and Perry Cook. Rtmidi, rtaudio, and a syn-

thesis toolkit (stk) update. In Proceedings of the 2005

International Computer Music Conference, 2005. 285

[261] Bill Schottstaedt. Pla: A composer’s idea of a language.

Computer Music Journal, 7(1):11–20, 1983. 281

[262] Bill Schottstaedt. Machine tongues xvii: Clm: Music

v meets common lisp. Computer Music Journal, 18(2):

30–37, 1994. 285

[263] Carla Schroder. The Book of Audacity. No Starch Press,

2011. 316

[264] B. Schwartz and M. Lentczner. Glyphic codeworks(tm)

scripting. Unpublished manual, 1994. 86

[265] Zack Settel and Cort Lippe. Real-time timbral trans-

formation: Fft-based resynthesis. Contemporary Music

Review, 10(2):171–179, 1994. 142

[266] Ben Shneiderman and Shneiderman Ben. Designing the

user interface: Strategies for effective human-computer

interaction, 4/e (New Edition). Pearson Education In-

dia, 2003. 18

[267] Fridtjof Siebert. Hard realtime garbage collection: In

modern object oriented programming languages. BoD-

Books on Demand, 2002. 242

[268] Julius Smith, David Jaffe, and Lee Boynton. Sound

and music on the next computer. In Audio Engineering

Society Conference: 7th International Conference: Audio

in Digital Times. Audio Engineering Society, 1989. 284

[269] Leland Smith. Score-a musician’s approach to com-

puter music. Journal of the Audio Engineering Society,

20(1):7–14, 1972. 272

[270] Randall B Smith. Prototype-based languages (panel):

Object lessons from class-free programming. In ACM

SIGPLAN Notices, volume 29, pages 102–112. ACM,

1994. 86

[271] Ronald Bruce Smith. An interview with tristan murail.

Computer Music Journal, 24(1):11–19, 2000. 275

[272] Walter R Smith. The newton application architecture.

In Compcon Spring’94, Digest of Papers., pages 156–161.

IEEE, 1994. 86

[273] Wesley Smith and Graham Wakefield. Augmenting com-

puter music with just-in-time compilation. Ann Arbor,

MI: MPublishing, University of Michigan Library, 2009.

190, 240, 317

[274] Andrew Sorensen. Impromptu: An interactive pro-

gramming environment for composition and perfor-

mance. In Proceedings of the Australasian Computer Mu-

sic Conference 2009, 2005. 30, 115, 177, 287, 288

[275] Andrew C Sorensen. A distributed memory for net-

worked livecoding performance. In Proceedings of the

ICMC2010 International Computer Music Conference,

pages 530–533, 2010. 201

[276] A. Soresen and H. Gardner. Programming with time:

Cyber-physical programming with impromptu. In Pro-

ceedings of the 2010 SPLASH/OOPSLA, 2010. xv, 30,

40, 106, 109, 110, 115, 177, 187, 194, 197, 200, 201,

202, 287

[277] A. Soresen, B. Swift, and A. Riddell. Livecoding’s many

meanings. In Compuer Music Journal, in press. 18, 189,

240, 288

[278] Michael Sperber, R Kent Dybvig, Matthew Flatt, and

Anton van Straaten. Revised6 report on the algo-

rithmic language scheme (non-normative appendices),

2007. 187, 287

[279] EBNF Syntaxt Specification Standard. Ebnf: Iso/iec

14977: 1996 (e). URL http://www. cl. cam. ac.

uk/mgk25/iso-14977. pdf, 1996. 70

[280] John Stasko. Software visualization: Programming as a

multimedia experience. MIT press, 1998. 314

[281] Guy L Steele Jr. Rabbit: A compiler for scheme. 1978.

287

[282] Daniel E Stevenson and Paul J Wagner. Developing

real-world programming assignments for cs1. In ACM

SIGCSE Bulletin, volume 38, pages 158–162. ACM,

2006. 238

[283] Bjarne Stroustrup. C++ programming language, 3/e.

Pearson Education India, 1994. 86

[284] Minyoung Sung, Soyoung Kim, Sangsoo Park, Nae-

hyuck Chang, and Heonshik Shin. Comparative per-

formance evaluation of java threads for embedded ap-

plications: Linux thread vs. green thread. Information

processing letters, 84(4):221–225, 2002. 84

[285] Tucker S Taft and Robert A Duff. Ada 95 reference man-

ual. language and standard libraries: International stan-

dard ISO/IEC 8652: 1995 (E), volume 8652. Springer,

1997. 45, 115

[286] Antero Taivalsaari. Kevo, a prototype-based object-

oriented language based on concatenation and module

operations. Report LACIR, pages 92–02, 1992. 86

[287] Antero Taivalsaari. A critical view of inheritance and

reusability in object-oriented programming. University of

Jyväskylä, 1993. 86

253

http://doi.acm.org/10.1145/62083.62103
http://doi.acm.org/10.1145/62083.62103

REFERENCES

[288] Atau Tanaka. Musical performance practice on sensor-

based instruments. Trends in Gestural Control of Music,

13:389–405, 2000. 284

[289] Atau Tanaka et al. Mapping out instruments, affor-

dances, and mobiles. NIME, 2010. 291

[290] Bruce A Tate. Seven languages in seven weeks: A prag-

matic guide to learning programming languages. 2010.

74, 91

[291] Heinrich Taube. An introduction to common music.

Computer Music Journal, 21(1):29–34, 1997. 281

[292] J.C. Tenney. Sound-generation by means of a digital

computer. Journal of Music Theory, 7(1):24–70, 1963.

267

[293] Henning Thielemann. Live music programming in

haskell. arXiv preprint arXiv:1303.5768, 2013. 290

[294] David Thomas, Chad Fowler, and Andrew Hunt. Pro-

gramming Ruby, volume 13. Pragmatic Bookshelf, 2004.

74

[295] Simon Thompson. Haskell: The craft of functional pro-

gramming, volume 2. Addison-Wesley, 1999. 290, 315

[296] Tim Thompson. Graphic editor for music. Computing

Systems, 3(2):332–358, 1990. 281

[297] Dave Topper. Rtcmix for linux (part 1). Linux J.,

2000(78es), October 2000. ISSN 1075-3583. URL http:

//dl.acm.org/citation.cfm?id=364412.364417. 12, 283

[298] George Tzanetakis. Marsyas-0.2: A case study in im-

plementing music information retrieval systems. Intel-

ligent Music Information Systems. IGI Global, 2007. 14

[299] George Tzanetakis and Perry Cook. Marsyas: A frame-

work for audio analysis. Organised sound, 4(3):169–175,

2000. 285

[300] David Ungar and Randall B Smith. Self: The power of

simplicity, volume 22. ACM, 1987. 74, 86

[301] Guido VanRossum and Fred L Drake. The Python lan-

guage reference. Python Software Foundation, 2010. 74,

91, 239, 316

[302] Barry Vercoe. Reference manual for the music 11 sound

synthesis language. Program documentation. Cambridge,

Massachusetts: MIT Experimental Music Studio, 1981.

267

[303] Barry Vercoe. Csound: A manual for the audio process-

ing system and supporting programs with tutorials. Mas-

sachusetts Institute of Technology, 1993. 267

[304] Barry Vercoe. Extended csound. In Proceedings of the

International Computer Music Conference, pages 141–

142. INTERNATIONAL COMPUTER MUSIC ACCO-

CIATION, 1996. 281

[305] Barry Vercoe and Dan Ellis. Real-time csound: Soft-

ware synthesis with sensing and control. In Proceedings

of the International Computer Music Conference, pages

209–211, 1990. 11, 12, 283

[306] G Wakefield and W Smith. Using lua for multimedia

composition. In Proceedings of the International Com-

puter Music Conference. San Francisco: International

Computer Music Association, pages 1–4, 2007. 31

[307] Graham Wakefield, Wesley Smith, and Charles

Roberts. Luaav: Extensibility and heterogeneity for

audiovisual computing. In Proceedings of the Linux Au-

dio Conference, 2010. xi, 31, 32, 105, 290

[308] Graham David Wakefield. Vessel: Interleaving sample-

accurate synthesis and control, 2007. 31, 290

[309] David C Walden, Tom Van Vleck, and FJ Corbató. The

compatible time sharing system (1961-1973): Fiftieth an-

niversary commemorative overview. IEEE Computer So-

ciety, 2011. 266

[310] Larry Wall et al. The perl programming language, 1994.

74

[311] Ge. Wang. The Cambridge companion to electronic mu-

sic., chapter A history of programming and music,

pages 103–134. Cambridge University Press, 2007. 264

[312] Ge. Wang. The chuck audio programming language. a

strongly-timed and on-the-fly environ/mentality. PhD

thesis, Princeton University, 2008. xi, 3, 14, 33, 35,

36, 44, 50, 74, 82, 105, 177, 264, 271, 286, 288

[313] Ge Wang. Designing smule’s iphone ocarina. In Pro-

ceedings of the International Conference on New Inter-

faces for Musical Expression. Pittsburgh, 2009. 291

[314] Ge Wang and Perry Cook. Chuck: A programming lan-

guage for on-the-fly, real-time audio synthesis and mul-

timedia. In Proceedings of the 12th annual ACM interna-

tional conference on Multimedia, pages 812–815. ACM,

2004. 44, 74, 177, 288

[315] Ge Wang and Perry R Cook. The audicle: A

context-sensitive, on-the-fly audio programming envi-

ron/mentality. In Proceedings of the International Com-

puter Music Conference, pages 256–263, 2004. 288

[316] Ge Wang, Rebecca Fiebrink, and Perry R Cook. Com-

bining analysis and synthesis in the chuck programming

language. In Proceedings of the International Computer

Music Conference, pages 35–42, 2007. 219, 223

[317] Ge Wang, Georg Essl, Jeff Smith, Spencer Salazar,

P Cook, Rob Hamilton, Rebecca Fiebrink, Jonathan

Berger, David Zhu, Mattias Ljungstrom, et al. Smule=

sonic media: An intersection of the mobile, musical,

and social. In Proceedings of the International Computer

Music Conference (ICMC 2009), pages 16–21, 2009. 291

[318] Adrian Ward, Julian Rohrhuber, Fredrik Olofsson,

Alex McLean, Dave Griffiths, Nick Collins, and Amy

Alexander. Live algorithm programming and a tempo-

rary organisation for its promotion. In Proceedings of

the README Software Art Conference, 2004. 289, 290

[319] Philippe Waroquiers, Stef Van Vlierberghe, Dirk

Craeynest, Andrew Hately, and Erik Duvinage. Migrat-

ing large applications from ada83 to ada95. In Reliable

SoftwareTechnologies?Ada-Europe 2001, pages 380–391.

Springer, 2001. 65, 305

[320] S. Wilson, D. Cottle, and N. Collins. The SuperCollider

book. The MIT Press, 2011. xi, xv, 4, 17, 44, 47, 177,

178, 180, 183, 184, 185, 258, 286, 307

254

http://dl.acm.org/citation.cfm?id=364412.364417
http://dl.acm.org/citation.cfm?id=364412.364417

REFERENCES

[321] Niklaus Wirth. The programming language pascal.

Acta informatica, 1(1):35–63, 1971. 75

[322] T. Wishart. Audible design. Orpheus Books, 1994. 24,

45, 47, 54

[323] T. Wishart. Audible design, appendix 2. Orpheus Books,

1994. 47, 134

[324] Matthew Wright. Open sound control-a new protocol

for communicationg with sound synthesizers. In Pro-

ceedings of the 1997 International Computer Music Con-

ference, pages 101–104, 1997. 201, 287

[325] Iannis Xenakis. Formalized music: Thought and mathe-

matics in composition. Pendragon Pr, 1992. 24, 272

[326] T. Yuasa. Real-time garbage collection on general-

purpose machines. J. Syst. Softw., 11(3):181–198,

March 1990. ISSN 0164-1212. doi: 10.1016/

0164-1212(90)90084-Y. URL http://dx.doi.org/10.

1016/0164-1212(90)90084-Y. 242, 297

[327] D. Zicarelli. An extensible real-time signal processing

environment for max. In Proceedings of the 1998 Inter-

national Computer Music Conference, 1998. 12, 44, 177,

283

[328] John Zimmerman, Jodi Forlizzi, and Shelley Evenson.

Research through design as a method for interaction de-

sign research in hci. In Proceedings of the SIGCHI con-

ference on Human factors in computing systems, pages

493–502. ACM, 2007. 259

[329] Iohannes Zmölnig and Gerhard Eckel. Live coding: An

overview. In Proceedings of the International Computer

Music Conference, 2007. 289

255

http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1016/0164-1212(90)90084-Y

REFERENCES

256

6

Appendix I: Related Publications

This section lists the papers related to this thesis published during the author’s Ph.D

study with the brief descriptions. The author is the first author of all the publications

listed. While these papers describe both the conceptual background and the early

design of LC, some of the recent improvements in its language design are still not pub-

lished in the forms of conference papers nor journal papers; the author is currently

preparing several journal papers for future submission.

Generally speaking, the first five papers in the following list describe the approach

taken during the identification of the problem of the difficulty in microsound synthesis

programming in unit-generator languages. While the HCI aspect described in these

four papers is not the central issue of this thesis, such an approach played a significant

role during the design process of LC, even though the thesis mainly focuses on the

description of the resulting design and its contributions rather than the design process.

The rest of the four papers describe the resulting language design and its benefits.

Yet, the design of LCSynth sound synthesis language, which is an early prototype of

LC, was already described in “How Can a DSL for Expert End-users be Designed for

Better Usability?: A Case Study in Computer Music” (the 4th paper in the below list).

Cognitive Issues in Computer Music Programming

This paper was presented as a short paper (with the poster presentation) at the In-

ternational Conference on New Interfaces for Musical Expression (NIME) 2011, Oslo,

Norway. The paper contextualizes the issues related in computer music programming

257

6. APPENDIX I: RELATED PUBLICATIONS

in the psychology of programming to prepare further discussion in the problems in

computer music programming.

Misfits in Abstractions: Towards User-centred Design in Domain-specific

Languages for End-user Programming

This paper was presented as a poster paper (with oral presentation) at the ACM SIG-

PLAN conference on Systems, Programming, Languages and Applications: Software

for Humanity (ACM SPLASH) 2011, Portland, Oregon, USA and also awarded the 3rd

place in the ACM SPLASH Student Research Competition 2011.

This paper describes an approach for the identification and assessment of usabil-

ity problems in domain-specific programming language design. While the paper takes

the problem in expressing single-sample feedback in SuperCollider computer music lan-

guage (320) as an example, it is the first paper that discusses the approach to assess

problems in computer music language design by identifying gaps between the concep-

tualization of musical time-scales and the abstractions applied to the sound synthesis

framework.

On Conceptual Misfits in Computer Music Programming

This paper was presented as a regular paper (with the oral presentation) at the Asian

Computer Music Conference (ACMC), Tokyo, Japan, 2011. This paper is an extended

version of “Misfits in Abstractions: Towards User-centred Design in Domain-specific

Languages for End-user Programming”. Yet, the extended discussion in this paper

suggested the problem of the difficulty in microsound synthesis programming in unit-

generator languages for the further research, for the first time in this Ph.D study.

How Can a DSL for Expert End-users be Designed for Better Usability?:

A Case Study in Computer Music

This paper was presented as a work-in-progress paper (with the poster presentation)

at the ACM CHI Conference on Human Factors in Computing Systems (ACM CHI),

Austin, Texas, 2011. This paper further discusses the issues in the difficulty involved

in computer music programming from the perspective based on the previous papers.

The paper also discusses the utilization of a HCI framework for the assessment of the

problems in computer music programming language design and the evaluation of the

258

design of a new computer music language, referring to the previous works, such as

the Cognitive Dimension of Notations framework (41)(129)(130), Sadowski’s heuris-

tics evaluation framework for additional features to the programming language (253),

Markstrum’s survey for the evaluation of the usability claims in programming lan-

guage research (199), and Blandford’s CASSM (Concept-based Analysis of Surface and

Structural Misfits) framework (44).

The paper describes both problems of single-sample feedback and microsound syn-

thesis in unit-generator computer music languages, taking the examples in SuperCol-

lider and also provides the design proposal for a new computer music language. The

assumption is also discussed that the difficulty in computer music programming can

be reduced by appropriately designing a sound synthesis framework, which can fill the

gaps between the conceptualization of musical time-scales and the abstractions in the

sound synthesis framework. The design proposal was later implemented as LCSynth,

a sound synthesis language.

Developing a New Computer Music Programming Language in the ‘Re-

search through Design’ Context

This paper was presented as a short paper (with oral presentation) in the section of

the ACM SPLASH Doctoral Symposium of the ACM SIGPLAN conference on Systems,

Programming, Languages and Applications: Software for Humanity (ACM SPLASH/OOPLSA),

Tucson, Arizona, USA, 2012. The paper describes the approach taken in the design

process of LC, which begins with the identification and assessment of the problems in

the existing computer music languages and then uses the analysis for the design of a

new computer music language, referring to the concept of the research-through design

(328). While this paper focuses on such an approach rather than the resulting language

design and its benefits, it describes the concept of mostly-strongly-timed programming

for the first time.

Mostly-strongly-timed programming

This paper was presented as a poster paper in a section of the ACM Student Research

Competition at the ACM SIGPLAN conference on Systems, Programming, Languages

and Applications: Software for Humanity (ACM SPLASH/OOPLSA), Tucson, Arizona,

259

6. APPENDIX I: RELATED PUBLICATIONS

USA, 2012. The paper briefly describes the concept of mostly-strongly-timed program-

ming, together with the motivation behind the concept and the design proposal for

the language feature to switch between the synchronous/non-preemptive context and

asynchronous/preemptive context.

LCSynth: A Strongly-timed Synthesis Language that Integrates Objects

and Manipulations for Microsounds

This paper was presented as a long paper (with oral presentation) at the Sound and

Music Computing Conference (SMC), Copenhagen, Denmark, 2012 and was also nom-

inated for best paper. This paper was co-authored by Prof. Naotoshi Osaka.

It describes the design of LCSynth, a sound synthesis language, which directly inte-

grates objects and manipulations for microsound synthesis in its language design. The

language design became the basis of the sound synthesis framework in LC.

Unit-Generator Considered Harmful (For Microsound Synthesis): A Novel

Programming Model for Microsound Synthesis in LCSynth

This paper was presented as a long paper with the oral presentation at the International

Computer Music Conference (ICMC), Perth, Australia, 2013 and was co-authored by

Prof. Ryohei Nakatsu and Prof. Naotoshi Osaka.

The paper describes a programming model for microsound synthesis in LCSynth

and the detailed examples of several different microsound synthesis techniques, to-

gether with more discussion on why the traditional unit-generator concept may not be

very appropriate for microsound synthesis and the benefits of LCSynth’s sound synthe-

sis framework design.

LC: A Strongly-timed Prototype-based Programming Language for Com-

puter Music

This paper was presented as a long paper with the oral presentation at the International

Computer Music Conference (ICMC), Perth, Australia, 2013 and was co-authored by

Prof. Ryohei Nakatsu and Prof. Naotoshi Osaka.

The paper describes an earlier prototype of LC, which was still a hosting language

for LCSynth. Yet, the idea to adopt prototype-based programming to a computer music

260

language is discussed, so to provide better support in the dynamic modification of a

computer music program for rapid-prototyping and live-coding.

261

6. APPENDIX I: RELATED PUBLICATIONS

262

7

Appendix II: A Brief History of

Computer Music Languages and

Systems - the Synergy between

Technology and Creativity

The idea that computers can open up new territories of musical creation attracted

researchers and composers, even when only the experts of the time were granted access

to huge mainframe computers installed in research institutions; as we know today, the

idea is still valid and under exploration by many researchers and artists.

Shortly after the first digital sound synthesis program was developed by Mathews

and his colleagues at the Bell laboratory (204) in the late 1950s, the researchers began

designing special-purpose languages tailored for computer music with domain-specific

abstractions. Since then, computer music languages have been continuously evolved by

researchers and engineers throughout the history, as primary tools for computer music

research and creation. A number of new computer music languages have been designed

and developed, being supported and influenced by the development of computer tech-

nology and the achievement in programming language research of the time.

This chapter briefly describes previous research in computer music languages, di-

viding it into two eras of early computer music programming languages and modern

computer music languages. This division between ‘early’ and ‘modern’ is drawn by the

263

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

capability of real-time sound synthesis and interaction, as seen in the previous surveys

described from the same perspective (175)(311)(312). While the transition between two

eras is gradual and hard to separate clearly, the capability of real-time digital signal

processing and interaction made a significant change in the design of computer music

languages and systems.

Since the development of computer music programming languages has been signifi-

cantly influenced by both the advance of computer technology and the related academic

research, we describe computer music programming languages together with the related

hardware and software in this section. However, it should be also emphasized that the

evolution of computer music languages and systems were made not just by the advance

of technology, but also through creative practices of the time; therefore, the emphasis

on the synergy between technology and creativity and how it drove the evolution of

computer music languages is also of significant interest in this chapter.

7.1 Early computer music programming languages and

systems

7.1.1 MUSIC-N languages

Mathews and his colleagues began their experiments in the domain of digital sound

synthesis with an IBM 704 mainframe computer in the 1960s. A series of computer

music languages they developed are known for the establishment of two core domain-

specific abstractions for computer music, which are the unit-generator concept and the

score-orchestra model.

While an IBM 704 was huge enough to occupy the whole room (Figure 7.1), its

capability was significantly limited (only 0.006-0.04 MIPS1 with just 4,096 words (of 36

bits) in its magnetic core memory (94, pp.47-50)), compared to the computers we have

today. Even though, it was one of the fastest mainframe computers available around

that time.

1MIPS stands for million instructions per second. So an IBM 704 could process only 6000-40,000
instructions per second.

264

7.1 Early computer music programming languages and systems

Figure 7.1: An IBM 704 computer - installed at NASA in 1957. (This image is public
domain. - NASA copyright policy states that NASA material is not protected by copyright
unless noted.)

265

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Mathews and colleagues developed the first digital sound synthesis program in his-

tory in 1957, which is now known as MUSIC-I (201)(243), on an IBM 704 at the Bell

laboratory. Yet, as it can be inferred from the specification of the IBM 704, the capa-

bility of MUSIC-I program was significantly limited; it could only play the monophonic

triangle wave sound. However, it should be noted that MUSIC-I could take an input

of a score file (94, p.47), even though only “a patient user could specify notes only in

terms of pitch, waveform, and duration” (241, p.87). Music-II, developed in 1958, was

little more advanced and introduced the concept of wave tables, but still could generate

only four independent voices with a choice of 16 different waveforms stored in memory

(243).

It took lots of effort to synthesize digital sound in those days. Mathews had to go

to IBM World Headquarters in New York for the synthesis calculation on an IBM 740

computer and then bring a digital magnetic tape back to Bell Telephone Laboratories,

New Jersey, where the tape was converted to sound by their 12 bit vacuum tube con-

verter (241, p.87)(243).

Yet, after Mathews and his colleagues obtained access to an IBM 7094, one of the

biggest, fastest computers available around that time1, they developed MUSIC-III in

1960 (94, p.26)(243). MUSIC-III significantly improved the flexibility in digital sound

synthesis compared to its predecessors; it is known as the first computer music language

that introduced the unit-generator concept (201), which performs “conceptually similar

functions to standard electronic equipment used for electronic sound synthesis” (204,

p.15). This concept of unit-generators is considered as “one of the most significant

developments in the design of digital synthesis languages” (241, p.89) even today.

While we discussed the unit-generator concept in more detail in Chapter 2, the

pictorial representation of the instrument definition of the unit-generator concept in

the early era was already almost the same as we have today, while the unit-generators

of our time are extended by the programming paradigm such as object-oriented pro-

gramming. Figure 7.2 shows a pictorial representation of an instrument built with the

unit-generators and Figure 7.3 is the definition of the instrument in MUSIC-III, as seen

1An IBM7094 was “ able to add floating numbers at a speed of about 0.35MIPS” with 32 kilowords
of 36-bit-word memory for standard 7094 (309, p.5).

266

7.1 Early computer music programming languages and systems

in their publication (201).

Thus, two core abstractions for computer music languages, the unit-generator con-

cept and the score-orchestra model, were established in the very early stage of com-

puter music history. This is remarkable when considering that these computer music

languages were developed almost right after the commercial release of FORTRAN, the

first high-level programming language, in 1957 (26).

Even after the establishment of these core abstractions, MUSIC-N series languages

were continuously updated by Mathews and other researchers. While MUSIC-IV de-

veloped by Mathews and Miller was a re-coding of MUSIC-III in a new macro assembly

language (202)(292), several variants of MUSIC-IV were developed also by the other re-

searchers; Winham and Howe developed MUSIC-IVB in 1965 for IBM 7094 with many

additions to the original MUSIC-IV (238) and MUSIC-4BF, in Fortran II and BAL as-

sembler (Basic Assembly Language) at Princeton University (148). Chowning and his

colleagues developed MUS10 for PDP-10 in PDP-10 assembler and Vercoe developed

MUSIC 360 for IBM 360 in BAL assembler (241, p.789).

The development of a high-level programming language led to machine-independent

implementations, such as MUSIC-V fully written in Fortran in 1966 (204). Together

with the popularization of fast minicomputers and Unix workstations, the researchers

and engineers began porting the MUSIC-N languages and the variants to many differ-

ent environments. These variants were ported to the minicomputers and the worksta-

tions of their time, which became fast enough to execute computer music languages;

for instance, MUSIC-4C was developed for DEC VAX-11 (Figure 7.4) as a variant of

MUSIC-IV by Beauchamp in 1985 (34)(241, p.789) in C programming language and

then ported to other Unix computers (35).

Music-11 developed by Varcoe and his colleagues in 1973 (302) was especially re-

markable among the MUSIC-N descendants. Although it was first implemented in

Macro-11 assembly languages for a PDP-11 minicomputer, Music-11 was then re-coded

in C programming language as Csound for VAX-11 minicomputers in 1986 (303), and

Csound itself is one of the most widely-used computer music language even today (52).

The improvement in computer technology has already released the researchers and

composers in this era from the tiring procedures of the last decades; with faster com-

267

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Figure 7.2: An instrument with attack, decay, and vibrato - as seen in An Acoustic
Compiler for Music and Psychological Stimuli by Mathews (201) (reproduced from Figure
2.16).

Figure 7.3: An instrument with attack, decay, and vibrato - , which is pictorially described
in Figure 7.2 (201). The definition is given to the mainframe computer as punched cards.

268

7.1 Early computer music programming languages and systems

Figure 7.4: VAX 11/750 - as exhibited in Vienna Technical Museum. (Photo by Dave
Fischer. This file is licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license.)

269

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

puters and better human-computer interfaces, such as CRT Terminals (Figure 7.5), the

process of digital sound synthesis and computer music composition was significantly

facilitated, even though the computational speed was still far from real-time sound

synthesis.

Figure 7.5: DEC VT-100 Terminal - (Photo by ClickRick. This file is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license.)

The further development of technology made it possible to port computer music

languages to personal computers around the end of 1980s. MUSIC-4C was ported to

Apple Macintosh around 1988 by Gerrard and Csound was also ported to many different

platforms such as IBM-PC, Apple Macintosh, and Amiga (241, p.790); thus, computer

music programming languages rapidly spread outside the research institution and onto

the personal desktops in this era.

270

7.1 Early computer music programming languages and systems

% cscore score.c | cmusic | filter lowpass | sndout

Figure 7.6: A commnd line example in CARL (213).

7.1.2 Other notable early computer music programming languages

and systems

7.1.2.1 Other Music-N descendant and non Music-N descendant languages

Besides MUSIC-N languages, there also existed other noteworthy computer music lan-

guages and systems in the same era.

For instance, the CARL system by Moore and Loy (192) is another remarkable

work in the 1980s. It was “a collection of small, command line programs that could

send data to each other” (312) on a UNIX system. These command line programs can

“intercommunicate via Unix pipes, which allow the output of one program to be fed

into the input of another without intermediate file storage” and “several programs that

process digital signals may be piped together, which is tantamount to connecting the

programs together in a cascade fashion” (213). Figure 7.6 describes a simple example in

CARL by Moore (213). In this example, the ‘cscore’ program generates an input score

from the file ‘score.c’. Then the score is fed into cmusic, which is a sound synthesis

program. The output sound data is then applied to the low pass filter by ‘filter’

program, cascaded to the sound output.

While it may not be a direct descendant of Music-N languages, Cmix developed

by Lansky in 1984 (169) is also a notable computer music software with a significant

influence from Music-N languages. Lansky describes Cmix as essentially a toolkit for

synthesis and analysis and “differs substantially from most synthesis packages in that

it has no scheduler and accumulates mainly by mixing to disk” (170). However, Cmix

also provides MINC, a tiny programming languages, which is sort of the subset of C

programming language, to facilitate the compositional process. Figure 7.7 shows an

example code of MINC.

7.1.2.2 Computer music programming languages and systems for algorith-

mic compositions

The use of computers for algorithmic compositions has been of significant interest

among researchers and composers since the early days of the history of computer music;

271

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

01: /* START:

02: p0=start; p1=dur; p2=pitch(oct.pc); p3=fundamental decay time

03: p4=nyquist decay time; p5 = amp; p6=squish; p7=stereo spread [optional]

04: p8=flag for deleting pluck arrays (used by FRET, BEND, etc.)[optional]

05: */

06:

07: rtsetparams(44100,2)

08: load("STRUM")

09: makegen(2, 2, 7, 7.00, 7.02, 7.05, 7.07, 7.10, 8.00, 8.07)

10:

11: srand(0)

12: for (st = 0; st < 15; st = st + 0.1) {
13: pind = random() * 7

14: pitch = samplefunc(2, pind)

15: START(st, 1.0, pitch, 1.0, 0.1, 10000.0, 1, random())

16: }

Figure 7.7: A MINC program example (taken from STRUM1.sco, which is a part of the
RTcmix 4.0 package released under GPL license).

for instance, Hiller and Isaacson composed Illiac Suite in 1956 (141), which is known

as the first algorithmic composition to involve a computer (ILLIAC I at the University

of Illinois at Urbana-Champaign). Such an interest also led to the development of

computer music programming languages for algorithmic composition.

Hiller and Baker developed MUSICOMP (142) for the ILLIAC computer between

the late 1950s and early 1960s. While it was a library of subroutines for automated

composition instead of a computer music language, it is considered to be the earliest

known example of the kind (10). Xenakis, a Greek composer, is also known for the

development of a series of computer programs for his stochastic compositions (325).

Researchers and composers developed a number of algorithmic composition lan-

guages and systems in the following years. The well-known languages include TEMPO

by Clough (75), SCORE by Smith (269), PLAY by Cadabe and Meyers (73), Tree and

Cotree by Roads (244), and GGDL by Holtzman (147).

While these languages were mostly non real-time off-line compositional program-

ming languages, the emergence of MIDI-based interfaces in the latter decade made it

possible to perform algorithmic compositions in real time. The techniques developed

for algorithmic compositions provided the basis for the establishment of interactive

272

7.2 Real-time computer music programming languages and systems

music in the later decades.

7.2 Real-time computer music programming languages and

systems

7.2.1 Early live computer music systems (before real-time digital sound

synthesis)

Although computers were still far from performing real-time digital sound synthesis in

the early era, researchers also sought for alternative means for live computer music.

In 1970s, there emerged hybrid computer music systems composed of a computer and

analogue sound synthesis hardware.

The earliest known experiment of a live computer music presentation was per-

formed even before the first digital sound synthesis program (MUSIC-I) was developed

by Mathews. The CSIR Mk1 computer, which was renamed to CSIRAC later, is known

to be the first computer that played music around 1951. The CSIR Mk1 had a build-in

loudspeaker, which was used as an output device for warning purposes, as it lacked any

device for visual feedback. Geoff Hill programmed CSIR Mk1 to send pulses to this

loud speaker so that it can produce an audible result to be heard as musical melodies.

However, this experiment by Hill didn’t influence the early computer music research

much and is considered just a one-time experiment1 (103).

The GROOVE system by Mathews and Moore is more frequently mentioned as

an example of an early live computer music system in this era. They describe the

GROOVE system as “a program to compose, store, and edit functions of time”, which

controls analogue devices such as electronic synthesizers by a small computer (DDP-

224). The system was equipped with knobs and joysticks as well as a computer screen

and a keyboard, and high-level musical control could be performed (203). This concept

to combine a microcomputer with analogue synthesizers was frequently applied to live

computer music systems in the same era. The list of the known examples of this kind

includes the Hybrid IV system (110), PIPER (120), the Yale synthesizer (117), and

1Doornbusch reported that there was likely a similar experiment on another early computer, the
Ferrati Mark I, and the tape recording is archived as No.H3942 in the British National Sound Archive.
Yet, He states that the detailed documentation for this experiment could not be found (103).

273

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

MUSYS (134).

The use of peripheral sound devices greatly reduced the necessity for the computa-

tional power for live computer music, as Buxton’s noted that “whereas digital synthesis

requires a minimum of 32,000 samples per second, hybrid systems only need approxi-

mately 100 for each device being controlled” (68) in 1977. This approach was followed

by the emergence of personal computers and MIDI (Musical Instrument Digital Inter-

face) (23), replacing analogue synthesizers with digital synthesizers in the early 1980s;

yet, while such hybrid systems composed of a small computer and separate synthesiz-

ers made it possible to control musical events in real time, it significantly limited the

exploration in the new sound materials compared to unit-generator languages. The

further advance in computational speed was still demanded for real-time digital sound

synthesis.

7.2.2 The emergence of variable-function digital signal processors

While digital synthesizers began to commercialize in the late 1970s and the following

emergence of MIDI made real-time digital sound synthesis possible, these commercial

digital synthesizers were built on application-specific, fixed-function DSPs and are still

similar to the analogue synthesizers of the 1960s in functionality (241, p.938). How-

ever, the emergence of general-purpose, programmable variable-function DSPs finally

realized the application of the unit-generator concept for real-time DSPs.

Di Giugno and his colleagues at IRCAM developed a series of variable-function

DSP hardware that work as highly-programmable digital sound synthesizers between

the late 1970s and the early 1990s. The list of such DSP platforms1 includes 4A in

1976 (229), 4B in 1977 (8), 4C in 1978 (214), and 4X in 1981 (98).

While the IRCAM 4A was still not a quite general-purpose DSP platform and just

consisted of 256 digital oscillators and matching envelope generators, which can per-

form additive synthesis under the control of a PDP-11 mini computer, its successors,

1In (229), Puckette describes at least one of the prototypes for 5A was also developed by Di
Giugno and the prototype introduced floating point arithmetic and jump instruction, however no
further information was provided in the publication.

274

7.2 Real-time computer music programming languages and systems

4B and 4C, extended the functionality and provided FM synthesis facilities(197, p.233).

As seen in the early hybrid systems for real-time computer music, in which a com-

puter controls analogue synthesizer hardware, the control programs for these IRCAM

digital synthesizers were also developed. Yet, unlike the early hybrid systems with ana-

logue synthesizers, the software packages for these digital synthesizers often included

the programming languages to describe digital sound synthesis algorithms.

For instance, Rolnick and Prevot developed SYN4B, a programming language for

4B in 1978. The SYN4B language could specify the oscillator connections to be pro-

cessed inside 4B and was capable to let a 4B play the notes with a note list (score)

or with the real-time input devices (248). 4CED is another notable example of this

kind of languages. 4CED was developed by Abbot for a PDP-11/34 computer to work

with an IRCAM 4C digital synthesizer. Its software package included a unit-generator

language for 4C and a score language, together with a command language that can

directly control the 4C synthesizer (4). Furthermore, 4CED extended the capability

of interactive computer music performance, allowing each 4CED score to act as “an

independent process that could accept input data and trigger events that caused other

scores to start playing” (241, p.806).

After the development of 4C, IRCAM developed 4X (Figure 7.8). Unlike 4A, 4B

and 4C, 4X was something more than ‘pure synthesizer’ and was capable of performing

‘signal processing’ of live instruments (229). 4X is well-known for the applications, both

to musical creation and academic research; 4X was used to realize several important

contemporary music compositions of the decade such as Répons by Pierre Boulez (54),

Désintégration by Tristan Murail (271), and Jupiter by Philippe Manoury (208), and

a series of programs written for the 4X precursor to the computer music research of

the latter decade. While there were other noteworthy programming languages for 4X

such as 4xy (a compiler of control programs by Rowe and Koechlin) and the 4X patch

language (a visual programming language for real-time sound control by Potacsek)

(109), MAX by Puckkete should be especially noted for its popularization and influence

that it gave to the design of visual computer music languages in the latter decade.

Puckette describes the first instance of what might be called ‘MAX’ was the m

orchestra language for MUSIC 500 system (235) that he developed at MIT (234). The

275

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Figure 7.8: An IRCAM/Sogitec Real-Time Digital Signal Processor 4X’s circuit boards
- A photo by Jean-Bernard Emond. This image is licensed under the Creative Commons
Attribution 2.0 Generic license.

276

7.2 Real-time computer music programming languages and systems

early version of MAX for 4X was written in 4xy language and is described as ‘a real-time

control system’ that configures control processes (or objects) and manages message-

based communications between the control processes (109). Puckette describes the

ideas for MAX “aimed at making it possible to design elements of a system which can be

combined quickly and without changing code” (109); in other words, the development

of MAX reflects the necessity for rapid-prototyping of computer music systems in this

era.

While this earliest version of MAX was configured by text files, soon after its emer-

gence, Puckette developed the Patcher (228), a visual programming language for 4X.

The visual programming environment as described in Puckette’s publication in 1988

was already quite similar to what we know as MAX today. Figure 7.9 shows the example

of a Patcher program by Puckette shown in (228).

The Patcher program and the other early versions of MAX were visual programming

languages that only interact and control the other devices such as MIDI instruments

or 4X synthesizers via MIDI interfaces (188). As seen in the previous IRCAM systems,

the digital signal processing system was separated from the language itself in these

early versions.

Following the success of 4X, IRCAM developed IRCAM Music Workstation (IMW)

(187) in the late 1980s1. An IMW system consists of “one or more NeXT host com-

puters together with between 2 and 24 i860 coprocessors (CPs) running at 40 MHz,

nominally capable of 80 million floating-point operations per second (MFLOPS) apiece.

The CoProcessor Operating System (CPOS), has been written specifically to fill the

requirements this hardware poses for real time musical synthesis and control” (230).

Figure 7.10 shows the pictures of an IRCAM Music Workstation and an I860 board.

The version of MAX developed for IMW integrates the DSP functionality and the

users could write control programs that run on the computers seamlessly with the

description of sound synthesis modules to be processed by I860 boards in one visual

programming environment (231). While a computer program called FTS (“faster than

sound”) processes DSP separately on CPOS (“CoProcessor Operating System”), an

1IRCAM Music Workstation is also often referred as IRCAM Signal Processing Workstation
(ISPW), yet in this thesis, we use ‘IRCAM Music Workstation (IMW)’ as the name appears in the
related publications by IRCAM.

277

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Figure 7.9: An example of a Patcher program - as seen in Puckette’s publication (‘The
Patcher’) (228).

278

7.2 Real-time computer music programming languages and systems

Figure 7.10: An IRCAM Signal Processing Workstation (left) and an i860 board (right)
- A photo by Jean-Bernard Emond. This file is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license.

operating system for the i860 board (230)1, the programming environment of MAX

hides this machine boundary entirely from the users. Figure 7.11 shows the example of

a Max/FTS patch appears in (231).

Besides IRCAM digital synthesizers, there also exist a few similar examples of the

hybrid systems composed of the computers and the external DSP platforms. One of

the most widely-used systems of the kind is the KYMA/Platypus Computer Music

Workstation by Scaletti and his colleagues. Kyma is a Smalltalk-based programming

environment that runs on Apple Macintosh II, which controls Platypus, a DSP periph-

eral (258). Kyma/Platypus also provided a visual programming environment for digital

sound synthesis and control (259).

The MARS workstation is another example that consists of an Atari computer and

a SM1000 sound generation board, which Di Giugno developed after returning from

IRCAM to Italy (20)(72). The MARS workstation was later refined for an IBM-PC

and a NERGAL sound generation board (223). Both versions had its dedicated visual

programming environment for sound processing and performance controls.

1As this version of Max collaborates with the FTS program as described, it is often refered as
Max/FTS today.

279

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Figure 7.11: A Max/FTS patch example - as seen in Puckette’s publication (‘Combining
Event and Signal Processing in the MAX Graphical Programming Environment)’ (231).

280

7.2 Real-time computer music programming languages and systems

Another noteworthy example is ‘a general-purpose digital synthesizer’ developed

by Samson in the late 1970s (255). The digital synthesizer is referred to by the name

‘Samson Box’ (191), and CCRAMA is particulary known for developing several lan-

guages/software, such as the Pla language (261) and MUSICBOX (190), and for its

uses in creative practices.

In addition to the examples of the development of new programming environments

and systems for computer systems with external DSP hardware as above, the re-

searchers of the time also extended the existing computer music languages with the

external DSP hardware for better DSP performance. Extended Csound developed in

1996 by Vercoe and his colleagues falls into this category. It was a real-time variant

of Csound with the custom hardware with a SHARK DSP chip (304). Yet, unlike the

IRCAM workstation, Extended Csound did not involve the development of the custom

DSP processors and made the best use of commercial DSP processors; such an idea may

be the precursor to the recent research that utilizes GPGPU (Genera Purpose Graphic

Processing Unit) for computationally expensive sound rendering. For instance, Cowan

and Kapralos used GPGPU for real-time spatial sound rendering (84).

7.2.3 MIDI-based interactive computer music systems

As the real-time sound synthesis still required expensive external hardware in this era,

the commercial digital synthesizers became rapidly affordable, and computers were

already at least fast enough to react to non-audio musical events such as MIDI messages.

Interactive algorithmic composition is made possible to perform on MIDI-based live

computer music systems, and composers began building their own interactive computer

music systems.

Some composers developed their own systems from scratch in general-purpose pro-

gramming languages, such as Cypher (250)(251) by Rowe (developed around 1990 for

Macintosh) and AUTOBUSK (32)(33) by Barlow (developed between 1986-2000 for

PDP-11, ATARI ST etc.). Figure 7.12 shows a screenshot of Autobusk. Yet, computer

music programming languages and libraries for algorithmic composition were also ea-

gerly developed for MIDI-based systems. The list includes MIDI-LISP by Boynton and

his colleagues (55), HMSL by Polansky and his colleagues (226), Keynote by Thompson

(296), Common Music by Taube (291), Moxie by Collinge (76), and the CMU MIDI

281

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Toolkit by Dannenberg (88).

Among these languages and systems, FORMULA (Forth Music Language) (15) by

Anderson and his colleagues is of particular interests. While FORMULA was based on

Forth programming language (161), the related works of FORMULA even included the

development of an operating system (16) to support precise timing behaviour for the

interaction with the external MIDI synthesizers1.

Furthermore, IRCAM also licensed the MAX programming environment to Opcode

Systems in 1989 for commercialization. After MAX became publicly available in 1990,

many computer music composers began building their own interactive computer music

systems in MAX. It was possible to explore the new domain of interactive music, even

without expert programming skills and expensive hardware.

Figure 7.12: A screenshot of AUTOBUSK - as seen in Barlow’s publication (‘AUTO-
BUSK: A REAL-TIME PITCH & RHYTHM GENERATOR’) (33).

1How FORMULA is designed regarding precise timing behaviour is described in Section 2.2.

282

7.2 Real-time computer music programming languages and systems

7.2.4 The development of standalone real-time computer music pro-

gramming languages

While real-time computer music languages and systems were first made possible by

external DSP hardware, further advance in technology made computers fast enough to

perform real-time DSP without such external hardware.

Around the beginning of the 1990s, researchers and the engineers began redesigning

the existing computer music languages for real-time sound synthesis. Vercoe and his

colleagues developed the real-time variants of Csound in 1990, one of the most popular

computer music languages around that time (305). Garton and Topper developed

RTcmix, the real-time versions of Cmix in 1995 (122)(297).

It should be noted that the development of real-time computer music languages

often led to the reconsideration of both software design and language design, as dis-

cussed in (175) and (122). While non real-time computer music languages can simply

process the input data given deterministically before execution, real-time computer

music languages must interact with the incoming musical events. It is also required to

process compositional algorithms and perform real-time sound synthesis at the same

time. Such an issue was clearly beyond what the design of non real-time computer

music languages assumed when they were developed.

Unlike these real-time computer music languages derived from their non real-time

ancestors, MAX was originally developed as a real-time interactive control for IRCAM

4X and IRCAM Music Workstation by Puckette (234). Max was also evolved into a

computer music language with stand-alone real-time for personal computers. Zicarelli

made a significant extension called MSP to MAX for the capability of real-time DSP

(327). Puckette also developed PureData (232), yet-another visual computer music

language. It was released as open source software, first for SGI IRIX and Windows NT

workstations (233) and soon ported to the other platforms such as Windows, Linux

and Mac OS X.

The development of the stand-alone real-time variants of the existing languages

also motivated new practices in computer music live performances. For instance, the

development of Max/MSP popularized live processing of instrumental sounds among

composers, which used to require the expensive DSP platfrom (e.g., IRCAM Music

283

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

Workstation1 and KYMA/Platypus); by the time Max/MSP was commercially re-

leased, even laptop computers were fast enough to perform digital signal processing.

In the late 1980s, live digital signal processing of instrumental sounds as is seen in

Jupiter by Manoury (208) or Répons by Boulez (54) was still only available for the com-

posers that can be assisted by the academic institution with a large budget. However,

the same signal processing and compositional techniques were made realizable on per-

sonal computers in this era. The end-user friendly visual programming environments

in MAX and PureData may have also helped the rapid popularization of live computer

music practices.

At the same time, as the technology became more affordable, many musicians in the

techno and noise music community began using computer music software developed in

academia on their laptop computers (43)(237). Such involvement of computer programs

in the process of musical creations had a large influence on their musical styles as

discussed by Cascone in the Aesthetic of Failure (70).

Furthermore, the popularization of real-time computer music programming envi-

ronments in this era even invoked a question among the researchers about “how to

articulate computer generated music in a concert setting” (288)2 and the research on

new interfaces began attracting considerable remarks, both from the researchers and

from the artists in the following years. It is one of the topics of significant interests in

the computer music community today3.

7.2.5 Software libraries for digital sound synthesis

The other approach taken in this era was to modularize the DSP functionality as soft-

ware libraries for general-purpose programming languages. Such modularization made

it possible to describe interactive control algorithms in hosting general-purpose pro-

gramming languages and to collaborate the algorithms with the other software libraries

(e.g., networking and graphics, provided in the programming environment).

NeXT Sound and Music Kit by Smith and his colleagues (developed around 1990) is

one of the well-known early examples of this kind (268). Common Lisp Music developed

1For instance, the original i860 board for IRCAM Music Workstation cost 12,000USD.
2Tanaka discusses this issue in together with his own practices in (288). Tanaka is also known

for being a member of Sensorband and, together with Karkowski and van der Heide, Tanaka played
sensor-based instruments in their live computer music performances (51).

3The International Conference on New Interfaces for Musical Expression (NIME) is held annually
since 2001 (http://www.nime.org).

284

7.2 Real-time computer music programming languages and systems

by Schottstaedt in 1991 for NeXT workstations (262) is another well-known early work

in this category. The list of the recent DSP frameworks and libraries for computer

music includes Synthesis Toolkit (STK) by Cook and Scavone (82)(260) for C++1,

JSyn by Phil Burk (65) for Java (written in C++ and Java), CSoundXO for Python

(176), CLAM for C++ (11) and Marsyas for C++ (299).

At the same time, it should be noted that such an idea of modularization also

influenced the real-time variants of computer music programming languages. While

the extension was also made to the original specification of non real-time languages, re-

searchers and developers often reconsidered the whole software architecture and rewrote

a significant amount of the implementation so that the DSP features could be used as

software libraries in general-purpose programming languages, or even in other computer

music programming environments. For instance, Lazzarini describes such an approach

in the development of Csound5 in (175).

Cmix was particularly notable in that sense. Even though it was equipped with

its own MINC scripting language, the design of Cmix also considered such library-use

as design criteria even in the original version (169)(170), and this design concept was

taken over into RTcmix; for instance, both CSound and RTcmix are integrated into

Max/MSP programming environment as external modules.

7.2.6 New exploration in computer music programming language de-

sign

Meanwhile, new computer music programming languages and environments that are

not based on the existing ones were also developed in this era. One of the remark-

able trends around that time is that these new languages were designed as expressive

as general-purpose programming languages, while they were still equipped with the

domain-specific features for computer music applications.

Some of these languages were developed as internal domain-specific languages (DSLs)

in the existing general-purpose languages, by providing the macros and software frame-

work/library2, while others were developed as external domain-specific languages with

1STK also provides a simple scripting language called SKINI (82).
2“An internal DSL is a DSL represented within the syntax of a general-purpose language. It’s a

stylized use of that language for a domain-specific purpose” (114, p.15). “Internal DSLs morph the
host language into a DSL itself - the Lisp tradition is the best example of this” and are “often called

285

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

own syntax and semantics1. For instance, languages like ChucK and SuperCollider are

examples of external DSLs, as they have their own syntax/semantics, together with

their own compiler/interpreter and virtual machines. Furthermore, some of the re-

cent computer music languages are even built on an existing computer music language,

rather than a general-purpose programming language. For example, the ixi language

(195) is an external DSL, as it has its own syntax and semantics, and ixi programs are

translated to SuperCollider program by its own interpreter.

Beside such expressibility, these new languages tend to remove the traditional dis-

tinction between score and orchestra, intending seamless sound synthesis control by

compositional algorithms.

While it was not a real-time interactive application, Nyquist is one of the notable

examples of this kind, which is a precursor to the language design criteria in the follow-

ing years, in that it explores the idea to integrate sound synthesis and compositional

algorithms into one environment. Nyquist was developed by Dannenberg in 1997, as

an internal DSL for sound synthesis and music composition built on LISP (89) after

exploring the ideas related to behavioural abstractions in his previous works such as

Arctic (86) and Canon (87). Nyquist is considered one of “the first computer music

programming languages that remove the distinction between the ‘orchestra’ and the

‘score’”2 (312).

McCartney developed SuperCollider (210)(211)(320), a real-time computer music

language, in 1996. SuperCollider is another example of the efforts to integrate sound

synthesis and compositional algorithms seamlessly in the language design. Figure 7.13

shows a screenshot of SuperCollider (of its first version). SuperCollider was designed as

‘embedded DSLs’” (115).
1“An external DSL is a domain-specific language represented in a separate language to the main

programming language it’s working with. This language may use a custom syntax, or it may follow the
syntax of another representation such as XML” (114, p.15). “External DSLs are written in a different
language than the main (host) language of the application and are transformed into it using some form
of compiler or interpreter” (115).

2While such an argument may be fair in that Nyquist provides sophisticated abstractions for seam-
less integration between sound synthesis and musical control, it should be emphasized that some previ-
ous works also considered similar design to integrate compositional algorithms and sound synthesis in
one language, as seen in MINC of Cmix (169) and RTcmix (122) or in Max (231) and PureData (232).

286

7.2 Real-time computer music programming languages and systems

a new object-oriented programming language with a significant influence from Smalltalk

(126).

However, in the most recent version (SuperCollider 3), the whole programming

environment of SuperCollider is divided into two different programs. One is sclang,

which executes the control algorithms, and the other is scserver, a real-time sound

rendering server. While the communication between these two programs is done by

Open Sound Control protocol (116)(324), and is usually hidden inside the class libraries,

as discussed in Section 2.2, this can cause a significant obstacle when precise timing

behaviour is required to control sound synthesis algorithms.

Figure 7.13: A screenshot of SuperCollider - as seen in McCartney’s paper ‘SuperCollider:
a new real time synthesis language’ (210).

Sorensen and his colleagues developed Impromptu (63)(274)(276) in 2005, an inter-

nal DSL built on the Scheme programming language (281)(278). Figure 7.14 shows a

screenshot of the early version of Impromptu.

Impromptu’s sound synthesis functionality depends on AIME (274), a C++ syn-

thesis/scheduling engine Sorensen developed, for its early versions, and on AudioUnits

(AUs), Apple’s sound synthesis framework (7) for the recent versions. While such soft-

287

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

ware design makes Impromptu able to utilize many commercially available AU modules,

this also led to limitation in the exploration of sound synthesis algorithms. Impromptu

does not offer the flexibility to describe various sound synthesis algorithms as much

as unit-generator languages and a user mainly can use such ready-made AUs. Yet,

the successor language, Extempore provides the features to write and compile a new

sound synthesis module within its environment and allows more flexibility at the sound

synthesis level (277).

Figure 7.14: A screenshot of Impromptu - as seen in Sorensen’s paper ‘Impromptu: An
interactive programming environment for composition and performance’ (274).

ChucK, developed by Wang and his colleagues (312)(314)(315) in 2003, is also one

of the most notable recent MUSIC-N descendant languages, especially for its strongly-

timed programming concept. Figure 7.15 shows a picture of miniAudicle, an integrated

development environment for the ChucK programming language.

Unlike many other computer music programming languages (and many general-

purpose programming languages), the strongly-timed programming concept integrates

the explicit control of the advance logical time into an imperative programming lan-

guage, as a variation of the synchronous programming concept. By such an explicit

control of logical time, a strongly-timed program can guarantee the precise timing be-

haviour in logical time with sample-rate accuracy, the lack of which is one of the most

288

7.2 Real-time computer music programming languages and systems

significant problems in computer music language design. The strongly-timed program-

ming concept is discussed in detail in Section 2.2.4.

Figure 7.15: A screenshot of miniAudcle

, an integrated development environment for ChucK

One of the most notable influences that these new computer music programming

languages made to the creative practices, would be the emergence of live-coding per-

formances. In live-coding, the performers write and modify computer music programs

on-the-fly on stage (43)(62)(77)(216). While the origin of live-coding can be found

in the earlier history of computer music1, the emergence of the new computer mu-

sic programming languages, which can interactively program compositional algorithms

and perform sound synthesis in real time, largely contributed to the recent flourish of

live-coding practices. The computer music software frameworks/libraries that can be

accessed from general-purpose scripting languages are also often involved in live-coding

1For instance, the papers such as (77)(318)(329) describe or refer to the earlier experiments in
live-coding by the Hub and Ron Kuivila.

289

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

performances(77)(318).

The list of more recent examples of real-time computer music programming envi-

ronments includes PWGL, LuaAV, Faust, Overtone, Haskore, and ixi.

PWGL (174) is yet-another visual computer music programming environment writ-

ten in LISP, which Laurson and his colleagues developed around 2002, following their

previous work called PatchWork (173). They argue that “PWGL offers the flexibility

of both a traditional text-based programming language and a visual programming lan-

guage” as it “provides a direct interface to its base languages, every Lisp function or

CLOS1 method can be automatically transformed into a box” (174).

Wakefield and his colleagues developed internal DSLs, Vessel (308), and LuaAV

(307) in the Lua programming language (152)(153)(154). LuaAV also provides sample-

rate accuracy in logical time as seen in ChucK by the scheduling framework that involves

coroutines2, together with the extension for visual expression.

Orlarey and his colleagues has been developing Faust since the early 2000s (219)(221).

Unlike the previous examples, Faust translates a program, which describes DSP algo-

rithms, to its equivalent C++ source code. The C++ source code can be then com-

piled to work as an external library in many different environments such as PureData,

Max/MSP, SuperCollider, etc (220).

Overtone (3) by Aaron is an internal DSL built on Clojure, a general-purpose

functional programming language (136)(140). Overtone depends on scserver (Super-

Collider’s sound synthesis engine) for its real-time digital signal processing capability.

Haskore (149), originally developed by Hudak in 1996, is another internal DSL

built on Haskell, a functional programming language (295). While the original version

of Haskore lacked the real-time sound synthesis capability, the extensions were made

to utilize the external real-time sound synthesis engines (e.g., CSound, SuperCollider

(scserver), etc (293)).

The ixi language is a DSL developed by Magnusson built on SuperCollider (195), a

program of which is translated to a SuperCollider program. The ixi language focuses

on live-coding improvisation in the style of techno-music like minimalism.

1CLOS stands for Common Lisp Object System(49).
2For the concept of ‘coroutine’, see (80).

290

7.3 The synergy between technology and creativity

7.2.7 The emergence of mobile platforms

The recent development of mobile devices such as iPhone and Android have also had a

large impact on computer music programming languages and systems. Many computer

music languages are being ported to mobile devices today.

For instance, Allisons and his colleagues reported that their project involved the

Android versions of SuperCollider developed by Shaw (9). Brinkmann and his col-

leagues ported Pure Data to mobile devices (58). Wang describes the development of

ChiP, the iPhone versions of ChucK and its use for their commercial applications in

(313)(317). Mailman also reported the use of iRTcmix, the iPhone port of RTcmix for

computer music applications (196).

While the development of mobile computer music languages and systems is also

contextualized in the context of locative arts (139) as described in (123), on the other

hand, many recent works place mobile devices in the context of the research of new

interfaces for musical expressions (NIME). As many mobile devices that we have today

integrate the multi-touch interface and various kinds of sensors inside, together with

the network interface, the mobile devices attract significant interests as NIME. As

the recent devices are fast enough to perform real-time DSP, the mobile devices can

host stand-alone computer music systems and often be involved in live computer music

performances1.

7.3 The synergy between technology and creativity

While computer music programming languages and systems have been continuously

evolving in parallel with the advance of computer technology, it should also be strongly

emphasized that there has existed a synergy between technological advance and creative

musical practices, throughout the history of computer music.

Even in the earliest era when computer music languages were executed on the main-

frame computers with punch cards, the researchers developed the domain-specific core

abstractions (the unit-generator concept and the score-orchestra model) so that the

composers of the time can explore the new domain of digital sounds, as end-users with-

out programming skill. The desire for live computer music in the early era led to the

research on hybrid computer music systems composed of minicomputers and external

1Tanaka discusses such an aspect of the mobile devices as NIME (289).

291

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

analogue synthesizers, the concept of which is taken over by MIDI standards for digital

synthesizers.

Both efforts were taken over into the next era when highly-programmable external

DSP hardware was developed. As computer music systems became more complex and

interactive, this raised the demands to make a computer music programming environ-

ment more end-user friendly and appropriate for rapid-prototyping in this era. This

demand led to the development of interactive visual programming environments such

as MAX and Kyma. Supported by real-time DSP capability and rapid-prototyping en-

vironments, the composers of the time explored the new territories of musical creations,

as seen in Pierre Boulez’s Répons, which involves live processing of the instrumental

sounds.

While external DSP hardware was not yet affordable to individual composers, the

emergence of MIDI and digital synthesizers also helped the exploration of the novel field

of interactive computer music, even with the significant limitation in the flexibility of

sound synthesis. The research on the hybrid computer music systems and algorithmic

compositions in the previous era founded the basis for interactive music systems. The

commercialization of the MAX programming environment also helped such practices

without solid programming skills.

In the succeeding decades, the further advance in technology made it possible to

perform real-time DSP even on personal computers. The popularization of real-time

DSP largely influenced computer music language design; interactivity and real-time

DSP became the essential criteria in new computer music languages. Two separate

efforts, the research on the language for interactive/algorithmic compositions and the

languages for real-time digital signal processing fused into one and the distinction be-

tween score and orchestra began to be reconsidered.

After interactive music with real-time sound synthesis was made possible, the com-

posers began seeking means to control digital sound synthesis more expressively. The

interests in new interfaces for live computer music systems rapidly grew and led to

the research on new interfaces for musical expression (NIME). The NIME research also

founded the basis for the recent applications of mobile devices for musical practices.

292

7.3 The synergy between technology and creativity

Furthermore, as computer music programming languages became even as expressive

as general-purpose programming languages by importing the programming concepts

such as object-oriented programming, expressiveness and interactivity in the recent

computer music languages induced the rapid growth of live-coding practices, which be-

gan significantly influencing the design of new computer music programming languages.

Thus, computer music languages and systems have evolved trough the synergy be-

tween technology and creativity. The advance of technology has often led to the emer-

gence of novel creative practices, which often motivated further research by revealing

the problems in the existing languages and systems.

293

7. APPENDIX II: A BRIEF HISTORY OF COMPUTER MUSIC
LANGUAGES AND SYSTEMS - THE SYNERGY BETWEEN
TECHNOLOGY AND CREATIVITY

294

8

Appendix III: the

Implementation of the

Proof-of-concept Prototype of LC

While the implementation issues such as performance efficiency are not a topic of

significant interest in this thesis, the implementation of the proof-of-concept prototype

is briefly described in this chapter.

8.1 System architecture

In the proof-of-concept prototype of LC, the programming environment of LC consists

of two software components: the LC Editor and the LC Virtual Machine. The overall

architecture of the proof-of-concept prototype is shown in Figure 8.1. These two are

different software and independent from each other.

8.2 LC Editor

LC Editor is a front-end application with a text editor. It is entirely written in JAVA, as

the compilation phase does not require significant performance efficiency in comparison

with the LC virtual machine. Users write programs in the text editor and the integrated

compiler compiles the selected part of a program into LC’s bytecode and writes it to

a temporary file. When the compilation is finished, the LC Editor sends a message to

the LC virtual machine to load the bytecode file via UDP socket. Other messages such

295

8. APPENDIX III: THE IMPLEMENTATION OF THE
PROOF-OF-CONCEPT PROTOTYPE OF LC

Figure 8.1: The overall system architecture of LC (the proof-of-concept prototype)

as the termination of all the active threads and patches can be also sent from this text

editor.

Figure 8.2 is a screenshot of the LC Editor. As shown, the proof-of-concept proto-

type version of the editor is still quite simple. However, even in such an editor, a user

can write a program text and immediately execute any part of the code. Any redefini-

tion made to patches, functions, or variables can be performed on-the-fly; for instance,

if a granular synthesis program is being executed, referring to a global variable ‘$p’ for

its pitch, the assignment of a new value to ‘$p’ may immediately trigger the change in

the pitch of the output sound.

8.3 LC Virtual Machine

LC Virtual Machine is a virtual machine that executes LC bytecode. When the virtual

machine received a message via UDP socket, it immediately loads the bytecode from

the file (from the path given by the message) and then its linker resolves the symbols

such as function names or variable names. After this link phase is finished, the bytecode

is passed to the stack machine. LC Virtual Machine is entirely implemented in C++.

The stack machine immediately executes the bytecode, launching a new software

thread. As the sound synthesis framework is integrated within the stack machine and

the execution of LC’s software threads are performed within the same native thread

as real-time DSP, LC’s software threads can precisely synchronize its behaviour with

real-time sound synthesis, as required for mostly-strongly-timed programming in LC.

296

8.4 Latency issues

Figure 8.2: A screenshot of LC Editor (the proof-of-concept prototype)

As LC is a programming language with automatic garbage collection, LC Virtual

Machine implements a simple incremental mark-and-sweep garbage collection, known

as Yuasa’s snapshot-at-the-beginning algorithm (326).

8.4 Latency issues

The actual latency of a computer music system highly depends on the implementaion.

In this section, we briefly describes some additional discussion on this issue, together

with the information on the current LC’s prototype.

First of all, since the latency depends on many different layers of a computer system

and can not be fully controlled by a user program (e.g., a computer music language or

application). The latencies that are not caused by a user program, such as the latencies

caused by an audio device, hardware interface, driver software, operating systems, can

hardly be improved by a user program. Thus, in the following discussion, the latencies

caused by such factors are excluded and we focus only on the latencies that can be

caused by a user program, for instance, the virtual machine and complier of LC.

297

8. APPENDIX III: THE IMPLEMENTATION OF THE
PROOF-OF-CONCEPT PROTOTYPE OF LC

When considering the response to a user program from the programming environ-

ment, there can be some delay caused by the compilation to the bytecode, sending the

path information of the bytecode to the virtual machine. The phases to load the byte-

code onto the virtual machine and to resolve the symbols (linking) also lead to some

overhead before the user program. While the latencies caused by such factors may be

improved by efficiently implementing the compiler/virtual machine and designing the

bytecode file format to be more suitable for the runtime environment, these factors can

cause some delay in interaction to users.

However, as LC is based on the ideal synchronous hypothesis1, once the virtual ma-

chine begins the execution of the user program, the program is executed with sample-

rate timing precision.

Another issue to consider is the latency between the audio input and audio output.

While this kind of latency can be caused also by an audio device, hardware interface,

driver software, and the underlying operating systems, a user program can cause some

additional overhead, depending on how it is designed.

The most typical design of the audio I/O APIs is to provide the mechanism to call

back a user-defined function when the next chunk of the samples are required for the

output (or when the required amount of the input samples are ready). There are two

widely-used strategies for how a user program provides the audio output samples (or

handle the audio input samples).

The first strategy is simply to handle everything within the callback function. In

this case, the latency caused by the user program can be minimized. However, as

there is a deadline to finish the callback so that the next chunk of the samples can

be passed for the sound output, the duration that can be used within the callback

function can be limited. The problem of this strategy is that there can be less time

for the background tasks. LC’s mostly-strongly-timed programming allows a user to

asynchronously execute the parts of a user code without synchronizing with the logical

synchronous time when enclosing them within async blocks; LC provides the feature

to execute time-consuming tasks in the background.

When handling everything within the call-back functions, because of the deadline

to provide audio samples before the next DSP cycle, the time that can be spent for such

1See Section 2.2.4 for the definition of the ideal synchronous hypothesis.

298

8.4 Latency issues

background tasks can be significantly limited; the available duration for the background

tasks in each cycle is only the duration between the timing when the required amount of

the audio samples are computed and the scheduled tasks are finished and the deadline

when the entire callback must be finished; the intervals between the driver callback

cycles are simply wasted. Figure 8.3 pictorially describes such an issue.

Figure 8.3: The implementation to handle everything within the audio callback function

The other strategy is to involve the ring buffers for the audio computation. The

callback function pops the required amount of samples from the output ring buffer and

pushes the input samples to the input ring buffer. The audio computation is performed

in another real-time thread. The thread pops the input samples from the input ring

buffer and then computes the audio output to push the output samples to the output

ring buffer. As it must be guaranteed to ensure that the callback function does not

starve for the audio output, the real-time thread must compute the audio samples

ahead of time. Thus, there can be a certain delay in the audio I/O when compared to

the other strategy described above. Figure 8.4 pictorially illustrates such a strategy.

Instead, as shown in Figure 8.5, the real-time thread have more chances to process

the background tasks when there are already enough audio samples in the ring buffer for

the audio output. By checking the number of the available samples in the ring buffer,

the high-priority thread can decide when the background tasks can be performed or

when the audio computation must be performed to supply the required amount of the

299

8. APPENDIX III: THE IMPLEMENTATION OF THE
PROOF-OF-CONCEPT PROTOTYPE OF LC

samples.

Figure 8.4: How the audio computation is triggered

Figure 8.5: The implementation to perform DSP in an real-time thread

In the current version of LC, as we took the latter strategy at the cost of a certain

latency so that the asynchronous (or background) tasks have more opportunity to be

processed. However, it may be desirable to provide the option for users to explicitly

select which strategy that the virtual machine should take, as the former strategy may

be preferable in a certain musical context, for instance, live signal processing of an

acoustic instrument. We leave such an issue for the future version, as the thesis focuses

on the language design of LC and the implementation is only to prove the concepts are

300

8.5 The issues related to the performance efficiency

realizable.

8.5 The issues related to the performance efficiency

8.5.1 Audio vectors

The use of audio vectors (53, p.467) in a unit-generator language can improve the

performance efficiency. However, if the sample-rate accuracy timing precision is re-

quired, the output must be computed sample-by-sample instead, since the state of a

unit-generator (e.g., frequency and amplitude), can be changed at sample-rate. Thus,

audio vectors can not be used in such a situation and performance efficiency can be

much worse because the audio computation is performed sample-by-sample. The code

optimization by SIMD instructions (145) can also hardly be applicable.

On the contrary, in LC’s microsound synthesis framework, because Samples is an

immutable object, no modification can be made to the samples within a Samples object

after its instantiation. Thus, the audio computation for Samples objects can be per-

formed block-by-block and the code optimization by SIMD instructions can be involved

when applicable, even with the sample-rate accurate timing behaviour.

8.5.2 Parallelism

The current proof-of-concept prototype of LC is concurrent but not parallel. LC’s multi-

threading is performed by its software threads (green thread or lightweight concurrency)

as described in Section 3.1.9 in the same native thread, to achieve the sample-rate

accurate timing precision.

However, multicore processor parallelism is a different issue from multi-threading

by lightweight concurrency. Making LC parallel requires the further consideration in

its design, since the recent APIs for multicore processor parallelism, such as Grand

Central Dispatch by Apple(254) or Intel threading building blocks (239), dispatch the

sub tasks to the threads, each of which is assigned to one of the CPU cores.

While such a model can significantly improve performance efficiency in many cases,

in the situation that sample-by-sample computation of the output samples is required,

the overhead of task dispatching can be a problem when the cost of dispatching can

be bigger than the performance efficiency obtained by multicore processor parallelism.

It was observed that the use of Grand Central Dispatch to compute the output from

301

8. APPENDIX III: THE IMPLEMENTATION OF THE
PROOF-OF-CONCEPT PROTOTYPE OF LC

the unit-generator graphs led to significant damage to overall performance efficiency

rather than to the improvement in our experiment with the proof-of-concept prototype.

Max 6 runs every top-level patcher in its own thread for better utilization of mul-

ticore CPUs, however, such an strategy can not be directly applicable to a textual

programming language. Also, multi-threading may damage the timing precision when

the synchronization between these threads are performed; thus, one of the challenges in

the parallelisation of a computer music language is to achieve the performance efficiency

by multicore processor parallelism while maintaining precise timing behaviour.

The partitioned global address space (PGAS) model(256), as seen in X10 program-

ming language (106) would be one of the suggestions in previous works for how a

programming language should be designed for better use of multicore processor paral-

lelism.

The programming languages based on PGAS model, “permit the programmer to think

of a single computation running across multiple processors, sharing a common address

space. All data resides at some processor, which is said to have affinity to the data.

Each processor may operate directly on the data it contains but must use some indirect

mechanism to access or update data at other processors. Some kind of global barriers

are used to ensure that processors remain roughly synchronized.” (257).

Such a language design that considers multicore CPUs and affinity in its program-

ming model may be also beneficial for computer music languages. For instance, by

assigning one virtual machine to each CPU core and providing some means to com-

municate between them would make it possible to maintain the sample-rate accurate

timing behaviour within each virtual machine, while making explicit that the inter

communication between the different virtual machines may be less precise in timing to

some degree.

302

9

Appendix IV: Additional

Discussion

The sections in this chapter additionally describes the issues that are less relevant to

the topics discussed in this thesis, as they may be beneficial for further investigation in

the future.

9.1 The definition of ‘abstraction inversion’ referred in

this thesis

It could be argued that the definition of ‘abstraction inversion’ is the problem that

occurs when the representation of a certain lower-level abstraction, such as an ob-

ject or an operation, is not exposed to higher-levels and that it differs from a simple

lack of a certain object or operation. In this thesis, we use abstraction inversion in a

broader sense as is seen in many previous works and also include the lack of a certain

object or operation within the underlying software framework for the following reasons.

First of all, in opening up Ada-tasking (28), which is considered the publication in

which the concept of ‘abstraction inversion’ was first introduced, the term ‘abstraction

inversion’, is used in a much broader sense. The definition found in this publication is

as follows: “abstraction inversion occurs when a programmer is forced to use a com-

bination of higher-level abstractions to express a lower-level abstraction” (28). The

example that immediately follows in this definition is the famous Ada’s rendezvous

303

9. APPENDIX IV: ADDITIONAL DISCUSSION

example, which is described in Section 2.3 in this thesis, and the problem of Adas ren-

dezvous example seems obviously caused because Ada does not expose a simple mean

directly to obtain mutual exclusion at the level of a user program; this is likely the

example referred to the most frequently when discussing ‘abstraction inversion’ and it

also seems to fit the narrower definition of abstraction inversion; the problem is caused

because of the inexposure of a lower-level object, which is implemented under the ab-

straction barrier within the same software framework.

Yet, other examples and expressions by Baker suggest his original concept of ab-

straction inversion is considered in a much broader sense beyond the problem of the

inexposure of the lower-level representations. For example, he describes another exam-

ple of buffering in Ada as follows: “Buffering. In Ada, this involves an intermediary

task, whereas for a single producer and a single consumer it can be implemented safely

at the machine level without even using a semaphore” (28)1. This is a problem of an

inappropriate abstraction rather than a problem of the inexposure of a certain repre-

sentation in the lower-level.

For example, the expression as flows can be also found in the paper: “Since an

abstraction inversion involves expressing a simple operation in terms of a combination

of higher-level operations, that inherently more complex, the end program is almost

certainly going to be inefficient. Moreover, information is lost. The resulting code will

not clearly reflect the original thinking of the programmer. Anyone reading it will be

forced to infer the programmer’s intent. The difficulty is similar to trying to infer the

underlying mathematics of a FORTRAN program by reading the code” (28).

As seen in the above expressions, Baker’s original concept of abstraction inversion

is used in a broader sense, which also includes the lack of a certain object or operation,

and both the performance inefficiency and the comprehensibility of the resulting code;

clearly, Baker didn’t intend to limit the definition of ‘abstraction inversion’ just within

the discussion on whether or not a certain object or operation in the lower-level in the

software design is exposed to the higher-levels.

1Think of the case in which a simple FIFO queue for a single write thread and single reader thread is
implemented. Such a FIFO queue can be implemented without a lock mechanism. Yet, Baker discusses
that an Ada program must involve a task unit, which is normally utilized for concurrent algorithms,
just to implement such a FIFO queue.

304

9.1 The definition of ‘abstraction inversion’ referred in this thesis

Baker even discusses abstraction inversion in the context of compiler optimization

as follows: “one partial solution to the problem of abstraction inversion is to adopt

certain tasking “euphemisms” that is, patterns of coding that recognized by compil-

ers and human readers as standard ways of expressing simple non-Ada operations in

terms of more complex Ada ones. This is analogous to vectorizing FORTRAN com-

plies, which infer the possibility of vector operations by analysing the loops. Examples

of euphemisms which may be optimized include fast interrupt handler tasks, monitor

tasks, and buffering tasks” (28).

Such a broader definition of abstraction inversion seen in the original Bakers paper

seems still accepted in Ada’s community. For instance, In ‘Ada User Journal Volume

29, No.3’ published in 2008, Rosen describes as follows.

“In C (or Fortran), there is no array assignment. Therefore, compilers are very clever

at recognizing patterns that can be optimized, like:

for (I = 0; I < N; I++)

A[I] = B[I]

Note that from a theoretical point of view, there is a real abstraction inversion here,

since the compiler recognizes a high level statement (an array assignment) from the

detailed description of its implementation” (249).

Fernandez also explains abstraction inversion as follows: “abstraction inversion ex-

ists when a simple coordination mechanism is simulated while using a complex one.

An example would be simulating a semaphore with rendezvous. Sometimes (but not

always) compiler optimizers are able to overcome the penalties of abstraction inver-

sion” (111). Waroquiers and his colleagues also explain abstraction inversion as “using

a high level structure to implement a low-level concept” in (319). It should be noted

that this expression contrasts ‘a high level structure’ to ‘a low-level concept’, not ‘a

low-level structure’; it is implied that they do not are not concerned if a certain object

that implements the ’low-level concept’ actually exists under the abstraction barrier,

when describing abstraction inversion.

305

9. APPENDIX IV: ADDITIONAL DISCUSSION

A similar explanation of abstraction inversion can be also seen in Critique of DIN

Kernel Lisp Definition Version 1.2 written by H.G. Baker in 19921. He describes ab-

straction inversion as the problem, “in which a simpler notion is defined in terms of

more complex notions.” (27). The use of the word ‘notion’ clearly suggests Baker con-

siders abstraction inversion at the conceptual level rather than at the implementation

level of a certain software framework or library.

Additionally, it seems rare to find publications that clearly limit the definition of

abstraction inversion within the inexposure of a low-level object/function to higher lev-

els in the implementation of a certain software framework/library. Many publications

seem to discuss the conceptual level issues rather than the implementation issues. On

Some Myths About Network Intelligence by Minerva is one of the rate examples that

include a narrower definition of abstraction inversion. It states that “abstraction in-

version [... arises ...] when users of a construct need functions implemented within it

but not exposed by its interface. The results that the users re-implement the required

functions in terms of the interface, which in turn uses the internal implementation of

the same functions”, this definition seen in Minerva’s paper is actually a citation from

Wikipedia, which is not very desirable for academic discussion; as described so far, the

majority of the academic publications discuss abstraction inversion in a much broader

sense.

The concept of abstraction inversion was presented in 1990 by Baker before the

notion of software anti-patterns are coined in the developer community. The earliest

known publication that mentions the idea of software anti-pattern is ‘Patterns and An-

tipatterns’ by Koenig, which was published in 1995 (165) and ‘AntiPatterns: Refactor-

ing Software, Architectures, and Projects in Crisis’ (64), one of the most widely-known

books on anti-pattern, does not seem to contain the term ‘abstraction inversion’ at

all. However, while it may be interesting to investigate how and why the narrower

definition of abstraction inversion began to be argued as seen in Minerva’s paper, such

an investigation is beyond the scope of this thesis.

1H.G. Baker should not be confused with Ted Baker, the author of the publication, to which we
are referring as the original definition of abstraction inversion (28)

306

9.1 The definition of ‘abstraction inversion’ referred in this thesis

Thus, the original concept of abstraction inversion described in (28) by Baker is

defined and used in a much broader sense, which includes more situations than the

inexposure of lower-level objects/functions in the implementation of a certain software

framework or library; what Baker and others discuss in their publications is about a

more general issue of whether the appropriate abstractions are applied to the software

and language design. In this thesis, we refer to abstraction inversion in such a broader

sense and include the problem that the lack of certain objects/functions that belongs

to the lower-level abstraction in its concept within the sound synthesis framework.

Moreover, in most cases, abstraction inversion in a narrower sense, in which ab-

straction inversion is defined only as a problem with respect to the inexposure of the

lower-level objects/functions, still can be also applied to the sound synthesis framework

design when discussing the difficulty in implementing microsound synthesis within unit-

generator languages. Many unit-generator languages provide dedicated unit-generators

for microsound synthesis techniques1, and the buffer objects that can load the sound

data2. Within a microsound synthesis unit-generator, a certain object that represents

a microsound is implemented under its interface. The buffer object can represent the

sound samples that can represent microsounds, yet it must involve a unit-generator to

read from the buffer and the samples within are not directly accessible. Such a situation

fits the concept of abstraction inversion in a narrower sense.

As above, the use of abstraction inversion in the discussion of the sound synthesis

framework design in this thesis can be considered fair both in a broader sense and a

narrower sense, as suggested by the previous publications and the actual design of the

existing sound synthesis frameworks.

1For instance, SuperCollider (320) provides TGrains, GrainSin, GrainFM, GrainBuf, GrainIn, and
similar unit-generators. Csound (52) provides grain, granule, fof, fof2, grain3, partikkel, syncgrain,
sndwarp, sndwarpst, and similar unit-generators. Max (234) also provides a number of external objects
for microsound synthesis, such as grainbuffer∼, grainstretch∼, grain.bang∼, grain.phase∼, grain.pulse∼,
grain.stream∼, provided by its user community.

2For example, SuperCollider has the Buffer object and Max has the buffer∼ object.

307

9. APPENDIX IV: ADDITIONAL DISCUSSION

9.2 The HCI related issues

The focus of this thesis is on technical aspects, rather than the HCI aspects of pro-

gramming language design. However, it would be desirable to briefly discuss the related

HCI issues. The following sections describes the topics, which are not within the scope

of this Ph.D thesis but may be beneficial to investigate for future work.

9.2.1 The expected users

The thesis does not make any particular assumption on how much expertise in pro-

gramming is expected for users, as it focuses on the technical aspects of computer music

programming language design. While such HCI-related issues are not within the scope

of this thesis, we briefly provide the additional discussion on the expected users in this

section.

Generally speaking, the skill sets of a programmer significantly depends on his/her

individual experience. This is the same in computer music programming; such an ar-

gument can be found even in ‘the technology of computer music’, one of the earliest

computer music books published in 1969: “the widely varied technical and mathe-

matical background of this audience makes it hard to select a technical level for this

presentation” (204).

Moreover, unlike the languages specifically targeting novice programmers like first

year computer science students such as BASIC1, for which it may be justifiable to limit

the available features of the language so that the students do not have to face the

advanced programming concepts from the beginning, computer music programming

languages are also expected to provide such advance features, as more sophisticated

compositional and sound synthesis algorithms can be implemented within the language

as desired2

However, even though a general assumption on what kind of users are going to use

the language can not be made, computer music languages historically have expected

users to posses some expert knowledge in the domain of computer music, or at least be

1BASIC stands for Beginner’s All purpose Symbolic Instruction Code (121).
2For instance, LC provides features such as light-weight concurrency, lexical closure, first-class

functions, etc.

308

9.2 The HCI related issues

highly motivated to acquire such knowledge. Computer music languages are designed

as domain-specific languages tailored for computer music and do not particularly expect

users to be experts in programming, while they may or may not posses such expertise in

programming; such users can be categorized as ‘expert end-user programmers’. Black-

well described expert end user programmers as follows: “end-user programmers should

not be regarded as “deficient” computer programmers, but recognised as experts in

their own right and in their own domain of work. They might only write programs oc-

casionally or casually, but it is possible that they have done so for many years, possibly

distributing their work for use by many others” (43).

Thus, it would be justifiable to claim that the expected users of LC are expert end-

user programmers, while this thesis does not make any assumption on the skill set of

users, as it focuses mainly on the technical issues in computer music language design,

rather than the HCI issues in the context of end-user programming.

9.2.2 The conceptual gap between the unit-generator concept and

microsound synthesis techniques

In the previous sections, we describe the difficulty in microsound synthesis program-

ming in the context of software anti-patterns. However, the issue is an interesting topic

also in the context of the usability problems in programming language design. While

this thesis focuses on the former context of software anti-pattern and sound synthesis

framework design, several issues with respect to usability are a briefly discussed in this

section.

As discussed in Section, 2.3, a significant conceptual gap in how a sound object

is modelled between the unit-generator concept and microsound synthesis techniques

an be observed. In fact, Gabor himself, whose idea originates microsound synthesis,

contrasted his theory to “the orthodox method of analysis”, which “starts with the

assumption that the signal is a function s(t) of time t” in (119); this ‘orthodox method’

that Gabor discussed may have a strong association with the unit-generator concept,

which is modelled after the sound synthesis by the analogue electronic equipment, as

Mathews, the inventor of the unit-generator concept, clearly mentioned in his publica-

tion (204, p.36).

309

9. APPENDIX IV: ADDITIONAL DISCUSSION

Such a conceptual gap can be also seen in derived sound synthesis techniques. In

the chapter of “A Survey of Classic Synthesis Techniques in Csound” of the Csound

Book (52, Chapter 11), Fischman classifies classic synthesis techniques into two cate-

gories: frequency-domain techniques and time-domain techniques. He describes that

frequency-domain techniques are “based on the assumption that any signal can be con-

sidered to be the sum of sines and cosines – each with its own amplitude, frequency

and phase – according to theoretical principles developed by Fourier (1768-1830)” while

time-domain techniques are “based on the construction of signals from the combination

of short sounds” (52, p.223). Figure 9.1 describes the classification of sound synthesis

techniques by Fischman.

Figure 9.1: Classic synthesis techniques classified according to their principles of realiza-
tion - by Fischman (52, p.224)

This gap in the concepts of sound synthesis techniques can be clearly reflected by

the explanations of sound synthesis techniques in many computer music textbooks.

Figure 9.2 enumerates some of the examples of the descriptions of frequency-domain

synthesis techniques found in the Csound book.

On the other hand, Microsound, the book entirely dedicated to microsound synthe-

sis techniques written by Roads (242), contains a lot of the expressions that describe

microsound synthesis techniques as the manipulations of microsound entities. For in-

stance, the expressions as in Figure 9.3 can be found.

While more examples can be found in these books and also in the other documents,

even the above short descriptions taken from the major books in computer music clearly

contrast the traditional sound synthesis techniques, such as additive synthesis and sub-

tractive synthesis, to microsound synthesis techniques; while many traditional sound

310

9.2 The HCI related issues

• “Sinewaves of various frequencies and amplitudes are added together (mixed) in order
to produce complex sounds” (52, p.224) (on additive synthesis).

• “Subtractive synthesis uses complex spectra as inputs that are shaped by enhancing or
attenuating the component sinewaves” (52, p.231) (on subtractive synthesis).

• “This nonlinear techniques consists of the use of a signal, the modulator, to modify
the amplitude of another signal, the carrier. Each samples of the modulator multiplies
a corresponding sample of the carrier, distorting the latter and creating new spectral
components” (52, p.237) (on ring modulation).

• “Another way of producing distortion consists of the creation of a dependency between
the amplification applied to a sample and its actual value” (52, p.243)(on waveshaping).

• “The use of a modulator in order to modify the frequency of a carrier, may be controlled
to produce varied dynamic spectra with relatively little computation overheads” (52,
p.249) (on frequency modulation).

Figure 9.2: The examples of the descriptions on frequency-domain synthesis techiniques
in Csound book (52).

• “A single grain serves as a building block for sound objects. By combining thousands
of grains over time, we can create animated sonic atmospheres.” (242, p.87)

• “In synchronous granular synthesis (SGS) sounds results from one or more streams of
grains. Within each stream, one grain follows another, with a delay period between
the grains. Synchronous means that the grains follow each other at regular intervals.”
(242, p.93)

• “Formant wave-function synthesis (fonction d’onde formantique or FOF) generates a
stream of grains, each separated by a quantum of time, corresnponding to the period
of the fundamental frequency. So a single note produced by this technique contains
hundreds of FOF grains.” (242, p.164).

• “To double the duration of a sampled signal, the algorithm segments it into grains,
cloning each so that two grains appear for everyone in the original. To halve the
duration, it deletes every other grain.” (242, p.197).

• “Waveset transposition substitutes N copies of a waveset in the place of M wavesets,
for example 2 in the space of 1, or 1 in the space of 4 for doubling and quartering of
frequency respectively.” (242, p.207).

Figure 9.3: The examples of the descriptions on microsound synthesis techiniques in
Microsound (242).

311

9. APPENDIX IV: ADDITIONAL DISCUSSION

synthesis techniques are conceptualized as function s(t) of time t (as Gabor discussed

as the orthodox method), microsound synthesis techniques are described as the ma-

nipulations (or algorithms) that are applied to short sound particles, which are rather

algorithmic.

This suggests the computer music language design that was developed only for the

traditional sound synthesis techniques without taking microsound synthesis into ac-

count may not be very appropriate for describing microsound synthesis techniques, as

the users’ conceptualizations of these sound synthesis techniques seem to significantly

differ between these two categories of sound synthesis techniques.

Generally speaking, a software design that is incompatible with the users’ concep-

tualization can cause a significant problem in the usability of software. As Blackwell

discusses that “even where developers are well motivated and sympathetic to user con-

cerns, incompatible abstractions are a constant challenge to user centered design” (42).

According to the previous studies in the field of psychology of programming (143),

such expressions in the documentations are considered as one of the data sources to

investigate the conceptualization of the tasks by the users (44), together with the verbal

data obtained by the other methods such as a think-aloud protocol (183), Contextual

Inquiry interviews (40), Critical Decision Method interviews (144), etc.

A series of the works by Blandford and her colleagues on the CASSM (Concept-

based Analysis of Surface and Structural Misfits) framework1 (44)(45)(46)(78) is sug-

gestive even for such a language design issue. The CASSM framework focuses on “the

identification of misfits between the way the user thinks and the representation imple-

mented within the systems” (44).

Since programming activity is considered to “use knowledge from at least two do-

mains, the application (or problem) domain and the computing domain, between which

they establish a mapping” (97, p.22), such cognitive misfits can lead to a significant

obstacle in programming activity.

However, we do not further discuss this difficulty in the context of the usability

problem in human-computer interaction, as this thesis focuses on the aspect of software

anti-pattern in the context of software design/engineering; Yet, such a perspective is

1CASSM was previously known as Ontological Sketch Modelling (79).

312

9.2 The HCI related issues

very suggestive in that the gap in the concepts between the users’ conceptualization

and the software design can lead to an obstacle in programming activity.

9.2.3 User interface design

The previous two sections briefly describes the issues that may be relevant to user-

centred design. The clarification of expected users is normaly a first phase in user

centred design and it is also considered to be in the context of HCI, especially of the

psychology of programming (143) to discuss how the conceptual gaps in the domain-

specific expert knowledge possessed by users and the programming language design can

be removed for better usability of a domain-specific programming language.

User interface design is another undiscussed topic, which is also not within the scope

of this Ph.D thesis, yet likely interesting to investigate for future work. For instance,

a unit-generator graph may be more comprehensible if represented graphically in a

visual computer music language than written as program text in a textual language.

The research on the comprehensibility in visual and textual programs already exists

(132)(131) and researchers and engineers also developed the hybrid (textual + visual)

programming languages; for instance, the recent version of Max integrates textual

languages such as JavaScript (127) and Lua (153)(150) and previous research also

exists to integrate visual programming elements into textual languages (108) and to

translates solution made by a user in a visual programming environment into a textual

program text (112). Field by OpenEndedGroup, which consists of three artists (Marc

Downie, Shellley Eshkar, and Paul Kaiser) is one of the notable recent examples. In

the programming environment in Field, one can implement graphical user interfaces

(e.g., sliders, buttons, comboboxes, etc.) directly within a program text (104).

The issue of user interface design in the context of live-coding may be also desirable

to investigate, as a programmer in such an unusual programming context may require

further assistance to reduce cognitive loads during programming; live-coders must write

and modify a program text while they must also pay a good attention to the current

sonic presentation on stage. For example, the visualization of the runtime status of

a program that is being executed may benefit so that a live-coder can easily grasp

what is going on, as it can be sometimes hard to distinguish the sonic outputs from

different threads if multi-threading is involved in live-coding. A programmer may want

313

9. APPENDIX IV: ADDITIONAL DISCUSSION

to terminate a certain thread just by clicking a corresponding icon in the programming

environment.

The visualization of programs being executed may be also beneficial to the audience.

While program texts are often projected to a screen in a live-coding performance so

that the audience can see the process of live-coding, it would be less helpful for the

people who cannot comprehend the meaning of the program texts. The visualization

of programs being executed may be beneficial for the audience to understand what is

going on during the performance, but also for the communications between live-coders

on stage.

This issue can be also considered as a topic of software visualization (99)(280) and

may benefit the field, especially in the visualization of a program structure and be-

haviour at runtime.

As above, while the topic of user interface design would be also of significant interest

in the context of creative-coding (133)(224) as seen in computer music or media-art, it

may also benefit user interface design of programming environments in general.

9.3 Other miscellaneous issues

9.3.1 Popularization

The popularization of LC is clearly out of the scope of this study. However, it may be

beneficial to discuss such an issue, as it may suggest future work for further investiga-

tion. Generally speaking, why and how a programming language acquires a significant

number of users is largely unforeseeable. The popularization of a programming lan-

guage seems to depend on many different factors and each programming language seems

to have its own reasons for why it became one of the widely-used programming lan-

guages. Moreover, there are even those programming languages, which used to be very

popular, but now have less programmers.

For instance, when the recent rapid popularization of JavaScript seems largely due

to significant demands for client-side dynamic web page development techniques/technologies,

such as Ajax (146) or HTML5 (225), which were hardly foreseen at the time when

the language was developped. Erlang was first developed and used only inside Eric-

sson, yet since its language design provides the significant benefits when developping

314

9.3 Other miscellaneous issues

conccurent/fault-tolerant/real-time/distributed systems, Erlang is rapidly gaining con-

siderable remarks after its public release (21). Haskell (first developed in 1990) is

another example of a programming language that rapidly gained attention among the

community (295).

While none of functional programming languages had ever gained significant popu-

larity in the software industry before, the recent trends of multicore programming and

distributed systems, which are largely due to the expectation that the processing speed

of CPUs may be harder than before because the physical limit (the end of Moore’s law)

(164), leads to attracting more recognitions to the benefits of functional programming

languages; their characteristics, such as immutable data structures and lazy evalua-

tions, are considered suitable for parallerisation (137) and preferable to make better

use of multi-core CPUs and distributed systems (21, Chapter 19: Multicore Prelude).

On the other hand, there exist some programming languages that have lost their

popularity. For instance, FORTH programming language (59) was once popular in the

1980s especially for micro computers of the time because of its portability and small

memory foot print, yet today it is not a major language. Object Pascal (236) was also

once popular for rapid application development on the Microsoft Windows platform,

but it seems the population of Object Pascal programmers rapidly shrank in the last

several decades; thus, it is very hard to foresee the popularization of a programming

language.

Furthermore, the popularization of a programming language may largely depend

on available support from the developers and the community. This may be especially

true when considering computer music languages. For instance, the popularity of Max

seems largely due to the fact that it is a commercial product with support from both the

developer and the large user community. SuperCollider, another widely-used computer

music language, was first developed as a commercial product by James McCartney, un-

til the developer decided to make the source code open under GPL license. Before the

open source release, SuperCollider users have been well supported by the developer and

the user community seemed to have grown large enough when it became an open-source

product. PureData has been developed as a open source project from its beginning,

yet its similarity to Max may contribute to the rapid growth of the user community;

it seems the popularization of a computer music language may require such dedication

315

9. APPENDIX IV: ADDITIONAL DISCUSSION

from the professional developers both in the development and the support. Such an

issue may be also interesting to investigate for further discussion.

Some computer music languages also survive as plug-in languages in different pro-

gramming environments. For instance, many RTCmix modules are available in Max.

Nyquist is now gaining more users than before as a plug-in language in Audicity sound

editor (263). Such a direction may be also noted as a different kind of popularization

of computer music languages.

Also, it should be noted that even if a language fails to be popular, the concept

and design that the language proposes often survives, influencing the design of new

languages. A good example is LISP (209), which is one of the oldest programming

languages first developed in the late 1950s. Such concepts as ‘lambda’ and ‘eval’ in

LISP survive in many recent programming languages today.

Additionally, the rapid growth of the community may not be always good for a

programming language, as the change of the language specification can be difficult.

For instance, while Python (301) is one of the most successful recent programming

languages, a considerable number of Python (301) programmers are still using Python

2 even long after the official release of Python 3, because Python 3 is not completely

backward compatible due to the change of the language specification. On the other

hand, HASKELL designers has an unofficial motto: “avoid success at all costs”(158),

which epitomises “a culture of agility, where new research results are integrated into

the language and library suite while the user base nimbly adapts” (83); thus, having

the rapid growth of the programmer community is sometimes considered not favourable

when considering the further development of the language.

As this thesis and project are more about contributing to the research on computer

music language design, the contribution to the academic knowledge together with the

design exemplar is considered more important than the popularization of the language

itself. Yet, it would be desirable to discuss the issues as above for further development

of LC.

316

9.3 Other miscellaneous issues

9.3.2 Musical practices that LC may be suitable for and may not be

suitable for

As described in Chapter 3, LC is a highly dynamic programming language suitable

for an interactive programming environment. LC’s features with respect to time such

as mostly-strongly-timed programming, start-time constraint, light weight concurrency,

and time-tagged inter-thread message communication can also reduce the effort required

for scheduling musical events in a user program. Mostly-strongly-timed programming

would be helpful to describe some algorithms as a task, which may be suitable for trans-

formational systems, “whose inputs are available at the beginning of the execution and

which deliver their outputs when termination” (135), within a task in an interactive

system. By giving the task a execution-time constraint, the feature of time-fault tol-

erance (timeout) in LC makes it possible to describe how to handle the violation of

the execution-time constraint in a user code. In addition, as LC’s microsound synthe-

sis framework and prototype-based programming at the sound synthesis level may be

beneficial for further investigation algorithmic compositions at the audio level, even in

live-coding. Thus, LC is designed so that it can be suitable for interactive live computer

music systems with such application domains.

However, as the current version of LC was implemented without much considera-

tion on the performance efficiency, as it is a proof-of-concept prototype for the language

design proposed in this thesis, it is not very good for some musical practices that may

require high-performance. Yet, the performance efficiency of a dynamic programming

language is a traditional topic and many techniques has been developed, as surveyed

in (167), and Just-in-Time compilation (25)(155) is also investigated in the context of

computer music programming language (218)(273); there exists a significant body of

previous research that is beneficial to improving the performance efficiency of LC in

the future.

On the other hand, as LC highly focuses on live interactive computer music ap-

plications, the language may not be beneficial for non real-time usages. For instance,

Chronic (56), an internal domain-specific built on OCaml (182) for non real-time sound

synthesis developed by Brandt and Chronic’s programming model has a problem in

causality, which is a significant obstacle to apply the programming model for interac-

317

9. APPENDIX IV: ADDITIONAL DISCUSSION

tive, real-time computer music systems, as Brandt himself admits in(56, p.77); Chronic

is acausal in that the future events or output can affect the past events or output.

However, this lack of causality in Chronic can be beneficial for some musical prac-

tices that do not require real-time and/or interactive presentation. While the majority

of the recent computer music programming languages are designed for real-time inter-

active computer music applications, how a non real-time computer music language can

be better designed and how it can support creative music practices are issues that are

worthy for further investigation but still neglected.

While LC highly focus on real-time, interactive computer music, it may be an

interesting topic to investigate how strongly-timed programming can be adopted to

non real-time usages, for instance by allowing now to be shifted to the past. Cmix’s

MINC scripting language is suggestive in this sense, as it is a non real-time computer

music language with the ability to schedule sound objects by user algorithms, written

in the style of imperative programming; however, such a topic is also beyond the scope

of this thesis.

318

	List of Tables
	List of Figures
	1 Introduction
	1.1 Problem statement
	1.2 Contribution
	1.3 Roadmap

	2 Background and Motivation: Three Problems in Today's Computer Music Programming Language Design
	2.1 The insufficient support for dynamic modification of a computer music program
	2.1.1 Rapid-prototyping
	2.1.2 Live-coding
	2.1.3 The problems in the existing computer music programming languages

	2.2 The insufficient support for precise timing behaviour and other features with respect to time
	2.2.1 Precise timing behaviour in non real-time computer music languages and systems
	2.2.2 Precise timing behaviour in the era of the hybrid computer music systems
	2.2.3 Precise timing behaviour in the era of stand-alone real-time computer music systems
	2.2.3.1 The necessity for precise timing behaviour with sample-rate accuracy
	2.2.3.2 Timing behaviour in sound synthesis libraries and frameworks
	2.2.3.3 The use of coroutines in a sound synthesis framework

	2.2.4 Strongly-timed programming
	2.2.4.1 Synchronous programming
	2.2.4.2 ChucK, a strongly-timed programming language
	2.2.4.3 Discrete event simulation in FORMULA, coroutines in LuaAV and strongly-timed programming in ChucK
	2.2.4.4 Visual computer music programming languages

	2.2.5 The problems in the existing computer music programming languages

	2.3 The difficulty in microsound synthesis programming caused by the anti-pattern of abstraction inversion
	2.3.1 The unit-generator concept and microsound synthesis techniques
	2.3.1.1 The unit-generator concept
	2.3.1.2 Microsound synthesis techniques

	2.3.2 Abstraction inversion in microsound synthesis programming
	2.3.2.1 Abstraction inversion
	2.3.2.2 The microsound synthesis examples in SuperCollider and ChucK
	2.3.2.3 The microsound synthesis examples in visual programming languages
	2.3.2.4 The lack of objects and manipulations for microsound synthesis in the sound synthesis software frameworks

	2.3.3 The problems in the existing computer music programming languages

	2.4 The problems as design opportunities

	3 Design: LC, a Mostly-strongly-timed Prototype-based Computer Music Programming Language that Integrates Objects and Manipulations for Microsound Synthesis
	3.1 The basic language features
	3.1.1 The grammar
	3.1.2 Operators and primitive types
	3.1.3 Typing and variable scope
	3.1.4 Control structure
	3.1.5 Lexical closure
	3.1.6 Exception handling
	3.1.7 Tail call optimization
	3.1.8 Strongly-timed programming
	3.1.9 Lightweight concurrency and multitasking

	3.2 The Core Language Features
	3.2.1 Prototype-based programming
	3.2.1.1 Prototype-based programming at the level of compositional algorithms
	3.2.1.2 Prototype-based programming at the level of sound synthesis

	3.2.2 Mostly-strongly-timed programming and other features with respect to time
	3.2.2.1 Mostly-strongly-timed programming
	3.2.2.2 Timed-tagged message communication
	3.2.2.3 Timing constraints

	3.2.3 The Integration of objects and manipulations for microsound synthesis
	3.2.3.1 Objects and manipulations for microsound synthesis
	3.2.3.2 Microsound synthesis in LC
	3.2.3.3 The collaboration between microsounds and unit-generators

	4 Discussion: the Necessity for the Development of LC as a New Language and the Benefits of Its Language Design
	4.1 The justification of the development of LC as a new computer music programming language
	4.1.1 The necessity to provide more suitable syntaxes for frequently performed tasks
	4.1.2 Execution time constraints
	4.1.3 Mostly-strongly-timed programming cannot be implemented as library functions
	4.1.4 The necessity for LC's own compiler and virtual machine

	4.2 Comparing LC with the existing computer music languages
	4.2.1 The support for dynamic modification of a computer music system at runtime
	4.2.1.1 Dynamic modification of a computer music system in the existing computer music languages
	4.2.1.2 The benefits of LC's language design for dynamic modification of a computer music system

	4.2.2 The support for precise timing behaviour and other features with respect to time
	4.2.2.1 Timing behaviour in the existing computer music languages
	4.2.2.2 Other features with respect to time in the existing computer music languages
	4.2.2.3 The benefits of LC's language design

	4.2.3 The difficulty in programming microsound synthesis techniques
	4.2.3.1 Abstraction inversion in the unit-generator languages
	4.2.3.2 When black-box abstractions do not benefit
	4.2.3.3 Microsound objects and manipulations in the existing computer music languages
	4.2.3.4 The benefits of LC's language design

	5 Conclusion and Future Work
	5.1 Conclusion
	5.1.1 Problems
	5.1.2 Contribution
	5.1.3 Conclusion

	5.2 Future Work
	5.2.1 Language features.
	5.2.2 Performance efficiency.
	5.2.3 Garbage collection

	References
	6 Appendix I: Related Publications
	7 Appendix II: A Brief History of Computer Music Languages and Systems - the Synergy between Technology and Creativity
	7.1 Early computer music programming languages and systems
	7.1.1 MUSIC-N languages
	7.1.2 Other notable early computer music programming languages and systems
	7.1.2.1 Other Music-N descendant and non Music-N descendant languages
	7.1.2.2 Computer music programming languages and systems for algorithmic compositions

	7.2 Real-time computer music programming languages and systems
	7.2.1 Early live computer music systems (before real-time digital sound synthesis)
	7.2.2 The emergence of variable-function digital signal processors
	7.2.3 MIDI-based interactive computer music systems
	7.2.4 The development of standalone real-time computer music programming languages
	7.2.5 Software libraries for digital sound synthesis
	7.2.6 New exploration in computer music programming language design
	7.2.7 The emergence of mobile platforms

	7.3 The synergy between technology and creativity

	8 Appendix III: the Implementation of the Proof-of-concept Prototype of LC
	8.1 System architecture
	8.2 LC Editor
	8.3 LC Virtual Machine
	8.4 Latency issues
	8.5 The issues related to the performance efficiency
	8.5.1 Audio vectors
	8.5.2 Parallelism

	9 Appendix IV: Additional Discussion
	9.1 The definition of `abstraction inversion' referred in this thesis
	9.2 The HCI related issues
	9.2.1 The expected users
	9.2.2 The conceptual gap between the unit-generator concept and microsound synthesis techniques
	9.2.3 User interface design

	9.3 Other miscellaneous issues
	9.3.1 Popularization
	9.3.2 Musical practices that LC may be suitable for and may not be suitable for

