
TECHNIQUES FOR CRAFTING

CUSTOMIZABLE MPSOCS

LIANG CHEN

(B.Eng., Xi’an Jiaotong University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

DECLARATION

I hereby declare that the thesis is my original work and it has been written by

me in its entirety.

I have duly acknowledged all the sources of information that have been used in

the thesis.

This thesis has also not been submitted for any degree in any university previ-

ously.

Liang Chen

April, 2014

i

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my super-

visor Prof. Tulika Mitra for her patience, motivation, immense knowledge and

extensive supports throughout my Ph.D. candidature.

My sincere thanks to Prof. Wong Weng Fai, Prof. Liang ZhenKai and Prof.

Kiyoung Choi for being my dissertation committee members. Their valuable

comments and recommendations help to shape this dissertation.

I would like to thank all the teachers during my Ph.D. course works. I

thank School of Computing to cover the expenses of my conference trips and the

administrative staffs there for all the helps.

I am grateful to meet all my friends in Embedded System Lab and School of

Computing. Many thanks go to Mihai Pricopi, Thannirmalai Somu Muthukarup-

pan, Sudipta Chattopadhyay, Wang Chundong, Ding Huping, Qi Dawei, Zhong

Guanwen, Tan Cheng, Yao Yuan, Huynh Phung Huynh, Pan Yu, Kaushik Mysu,

Vanchinathan Venkataramani, Alok Prakash, Lu Peng, Nie Liqiang, Zhu Minhui

and Wang Yuhui.

It is my fortune to meet so many cool guys in SoC basketball team including

Bao Zhifeng, Beng Chin Ooi, Wu Sai, Ju Lei, Liu Chen, Zhang Zhenjie, Xue

Mingqiang, Guo Long, Lin Yuting, Zhang Dongxiang, Zheng Yuxin, Lu Wei,

Li Yuchen, Zhang Jingbo, Yang Yang, Fan Ju, Huang Hao, Song Zheng, Li

Guangda, Zhou Lizhu, Zhong Qing, Guo qi, Yao Chang, Li Guoliang, Guan

Yue, Huang Zhi and many others that have not been listed.

It is my lifetime precious to have my old friends, Luo Wenxin, Cao Chengxiu,

Jiang Qunwei and Yu Zimou. Their encouragements and supports are the best

things I could ever have. I would also like to take this opportunity to thank

Prof. Qi Yong and Prof. Zheng Qinghua in Xi’an Jiaotong University.

My deepest gratitude to my parents, my sister and my family. They are

always standing as my solid backing and encouraging me to pursue my dream.

This dissertation is dedicated to them.

ii

Contents

Declaration

Contents iii

Abstract vi

List of Tables ix

List of Figures ix

1 Introduction 1

1.1 Processor Customization . 1

1.1.1 Fine-grained processor customization 2

1.1.2 Coarse-grained processor customization 3

1.2 MPSoC Customization . 4

1.2.1 MPSoC Customization Overview 4

1.2.2 Static Customized MPSoC Synthesis 5

1.2.3 Dynamic MPSoC customization 7

1.3 Organization of the Chapters . 11

2 Literature Review 13

2.1 Processor Customization . 13

2.1.1 Fine-Grained Processor Customization 13

2.1.2 Coarse-Grained Processor Customization 16

2.2 MPSoC Customization . 19

2.2.1 Mapping Strategies . 19

2.2.2 Static MPSoC customization 21

2.2.3 Dynamic MPSoC customization 22

3 Design Space Exploration for Static Customizable MPSoCs 24

3.1 Overview . 24

iii

3.2 Problem Definition . 26

3.3 Exhaustive Design Space Exploration 27

3.4 Integer Linear Programming (ILP) Formulation 28

3.5 Dynamic Programming Algorithm 30

3.5.1 Customization . 31

3.5.2 Partitioning . 32

3.6 Experiment Evaluation . 33

3.7 Chapter Summary . 37

4 S-CGRA: Customizable MPSoC design 38

4.1 Overview . 38

4.2 SFU as the Primary Processing Element 40

4.2.1 Analysis of ISEs . 40

4.2.2 SFU Design . 44

4.2.3 JITC Architecure . 46

4.2.4 Compiler Support . 48

4.2.5 Experimental Evaluation for SFU Design 52

4.3 S-CGRA Design using SFU . 57

4.4 Customizable MPSoC Architecture with Shared S-CGRA 58

4.5 Chapter summary . 59

5 Compilation of Computational Kernels on S-CGRA 60

5.1 Overview . 60

5.2 Modulo Scheduling for CGRA . 64

5.2.1 CGRA Architecture . 64

5.2.2 Modulo Scheduling . 65

5.2.3 Modulo Routing Resource Graph (MRRG) 66

5.2.4 MRRG with Wrap-Around Edges 67

5.3 CGRA Mapping Problem Formalization 67

5.3.1 Subgraph Isomorphism and Homeomorphism Mapping . . 67

5.3.2 Graph Minor . 68

5.3.3 Adaptation of Graph Minor for CGRA Mapping 69

5.4 Graph Minor Mapping Algorithm 72

5.4.1 Algorithmic Framework 72

5.4.2 DFG Node Ordering . 75

5.4.3 Mapping Example . 76

5.4.4 Pruning Constraints . 77

5.4.5 Acceleration Strategies . 80

5.4.6 Integration of Heuristics 82

iv

5.5 Clustering preprocessing for S-CGRA 83

5.5.1 Hierarchical scheduling technique 83

5.5.2 Genetic Algorithm for Clustering 84

5.5.3 A Derived Greedy Heuristic 87

5.6 Experimental Evaluation for Mapping on CGRA 89

5.7 Experimental Evaluation for Mapping on S-CGRA 95

5.8 Chapter Summary . 96

6 Mapping Multi-threaded Applications on S-CGRA 98

6.1 Overview . 98

6.2 Problem Definition . 99

6.3 Optimal Solution . 102

6.4 Iterative Refinement . 105

6.5 Experimental Evaluation . 107

6.5.1 Design Automation Tool Overview 107

6.5.2 Experimental Evaluations for MPSoCS with CGRA and

S-CGRA . 109

6.6 Chapter Summary . 112

7 Conclusion 113

7.1 Thesis Contribution . 113

7.2 Future Work . 114

Bibliography 115

v

ABSTRACT

General-purpose processors offer high flexibility in terms of supporting wide

range of applications. However, they hardly meet the high performance demands

of computationally intensive applications. A common method for bridging the

gap between flexibility and performance demands is to add customized accelera-

tors into general-purpose processors. These customized accelerators are designed

to explore the special features of different applications so that they can achieve

dramatic speedups.

On the other hand, with the inevitable transition into the multi-core era,

heterogeneity is emphasized to improve the overall efficiency of the application

executions. Rather than integrating multiple simple cores within one chip, each

of the cores could be tailored through customization techniques to meet the

specific demands of the applications.

In this thesis, we propose a customized multiprocessor system-on-chip (MP-

SoC) architecture and the associated design automation tool-chain covering com-

piler supports and design space exploration techniques.

At the beginning, we first create a static heterogeneous MPSoC system by

using custom functional units. The custom functional units are designed for

accelerating different custom instruction sets. The limited chip area budget

for customization and alternative customization choices present a challenging

optimization problem for design space exploration. A dynamic programming

algorithm is then designed to optimally retrieve the set of custom instructions

for every task of the target application so as to have the highest speedup under

the area constraint.

The rest of the thesis focuses on a reconfigurable heterogeneous MPSoC

design where the customization is achieved through a reconfigurable fabric shared

among the cores. We first focus on designing the appropriate reconfigurable

fabric for customization. We propose a novel custom functional unit design

that can be reconfigured to support most of the identified custom instructions

across multiple application domains. The efficiency of the custom functional unit

design is then evaluated by integrating it into the pipeline to form a just-in-time

vi

reconfigurable processor. We then design a coarse-grained reconfigurable array

using the proposed custom functional unit as the primary processing element.

Finally the customizable MPSoC architecture is completed by sharing the coarse-

grained reconfigurable array among multiple cores.

We then study design automation problem for the newly designed customiz-

able MPSoC architecture, in particular, the compiler support. We formulate the

problem of mapping loop kernels onto the reconfigurable fabric as a graph mi-

nor containment problem. With the formalization, we design an efficient search

algorithm adopted from the graph theory domain to solve the mapping problem.

As the final step of the design automation toolchain, we develop a design

space exploration technique for mapping multi-threaded applications on the cus-

tomizable MPSoC with shared reconfigurable fabric. In the presence of a shared

reconfigurable fabric, the complexity of the design space is dramatically increased

compared to the static approach. We propose an optimal solution based on

dynamic programming that not only selects the appropriate customization for

each core but also the appropriate reconfiguration points along the timeline to

maximize performance while satisfying the area constraints of the shared recon-

figurable fabric.

vii

List of Publications

1. Liang Chen, Tulika Mitra. Shared Reconfigurable Fabric for Multi-core Cus-

tomization. In Proceedings of the 48th Design Automation Conference, DAC’11,

pages 830-835, San Diego, California, USA, June 2011. ACM.

2. Liang Chen, Nicolas Boichat, Tulika Mitra. Customized MPSoC Synthesis

for Task Sequence. In Proceedings of the 9th Symposium on Application Specific

Processors, SASP’11, pages 16-21, San Diego, California, USA, June 2011. IEEE.

3. Liang Chen, Thomas Marconi, Tulika Mitra. Online Scheduling for Multi-

Core Shared Reconfigurable Fabric, In Proceedings of the 15th Design Automa-

tion and Test in Europe, DATE’12, pages 582-585, Dresden, Germany, March

2012. IEEE.

4. Liang Chen, Tulika Mitra. Graph Minor Approach for Application Map-

ping on CGRAs. In Proceedings of the 2012 International Conference on Field

Programmable Technology, ICFPT’12, pages 285-292, Seoul, South Korea, De-

cember 2012. IEEE.

5. Liang Chen, Joseph Tarango, Tulika Mitra, Philip Brisk. A Just-in-Time

Customizable Processor. In Proceedings of the 31st International Conference on

Computer-Aided Design, ICCAD’13, pages 524-531, San Jose, California, USA,

November 2013. ACM/IEEE.

6. Liang Chen, Tulika Mitra. Graph Minor Approach for Application Mapping

on CGRAs. Transactions on Reconfigurable Technology and Systems, TRETS’14,

2014. ACM.

viii

List of Tables

2.1 Different CGRA architectures . 16

2.2 Complexity Analysis . 20

3.1 Analysis time for exhaustive (EA), ILP, and the dynamic pro-

gramming (DP) approach . 36

4.1 Area and delay for the SFU components 45

4.2 Simulated processor configurations 54

5.1 Benchmark characterisitics . 90

5.2 Compilation time for CGRAs with different sizes 94

ix

List of Figures

1.1 Fine-grained processor customization flow 2

1.2 Coarse-grained processor customization flow 3

1.3 Overview of MPSoC customization techniques 4

1.4 Static MPSoC customization . 6

1.5 An overview of the dynamic MPSoC customization 7

1.6 MPSoC architectures supporting dynamic customization 8

1.7 Compilation technique for MPSoC customizations 9

1.8 An example for dynamic MPSoC customization with MPEG-2

application . 10

3.1 An example for MPSoC customization 25

3.2 Task graphs of MP3 encoder and MPEG-2 encoder. 34

3.3 Custom instruction sets for the tasks in MP3 and MPEG-2 . . . 34

3.4 Design space for MP3 encoder and MPEG-2 encoder 35

3.5 Minimal area cost versus period constraint for MP3 and MPEG-2

for different numbers of PEs . 35

4.1 A motivating example . 39

4.2 Dataflow Graph (DFG) of an ISE 41

4.3 Parallelism explorations for Mediabench and Mibench benchmark

suits . 42

4.4 Correlation between critical path length & speedup 42

4.5 Hot sequences in operation chaining 43

4.6 Design of the Specialized Functional Unit (SFU) 45

4.7 Just-in-Time Customizable (JITC) processor architecture: Inte-

gration of SFUs in the pipeline datapath 47

4.8 ISE encoding format . 47

4.9 Level order assignment for DFG nodes with ALAP scheduling . . 51

4.10 Routing Resource Graph (RRG) of the SFU and the final mapping

of the DFG to the RRG . 51

x

4.11 Speedup of JITC and ASIP over the baseline processor and the

theoretical speedup for ASIP with unlimited area 55

4.12 Experimental evaluation for the optimal number of SFUs in out-

of-order execution . 56

4.13 A 4×4 S-CGRA design . 57

4.14 Proposed multi-core architecture with shared CGRA 58

5.1 A 4×4 CGRA . 61

5.2 Subgraph Homeomorphism versus Graph Minor formulation of

CGRA mapping problem . 63

5.3 4×4 CGRAs with different register file configurations 65

5.4 Modeling of loop kernel mapping on CGRAs: An illustrative ex-

ample . 65

5.5 Minor relationship between DFG and MRRG 69

5.6 Invalid mapping under timing constraint 71

5.7 Mapping with recurrence edge under timing constraint 71

5.8 An example of mapping process during the restricted graph minor

test . 76

5.9 Illustrations of degree pruning constraint 77

5.10 Illustration of predecessor and successor constraints 78

5.11 Illustration of feasibility constraint 79

5.12 A motivating example for dummy node insertion 80

5.13 Examples for chromosomal representation, mutation and crossover 85

5.14 An illustrative example for non-loop constraint 86

5.15 Scheduling quality for G-Minor, EPIMap, SA, subgraph homeo-

morphism and G-Minor with re-computation 91

5.16 Compilation time for G-Minor, EPIMap, SA, subgraph homeo-

morphism and G-Minor with re-computation 92

5.17 Experimental results for fast G-Minor scheme (with acceleration

strategies) compared to slow G-Minor scheme 93

5.18 Achieved II for different CGRA configurations 94

5.19 Experimental results for genetic algorithm and proposed heuristic 96

6.1 Motivating Example . 100

6.2 An illustrative example for iterative heuristic 107

6.3 The whole design automation flow 108

6.4 Experimental results for shared S-CGRA, private S-CGRA, shared

CGRA and private CGRA, each row consists of 4 SFUs or 5 FUs 111

xi

6.5 Experimental results for shared S-CGRA, private S-CGRA, shared

CGRA and private CGRA, each row consists of 8 SFUs or 10 FUs 111

xii

Chapter 1

Introduction

Multiprocessor system-on-chips (MPSoCs) have emerged as an inevitable trend

in embedded system designs. This evolution brings tremendous challenges. First

of all, embedded system designs could be highly application specific. Rather

than simply packing several cores into a single chip, each of the cores can be

customized for the specific embedded applications to create a heterogeneous

MPSoC. The customization could be done through either instruction-set exten-

sions or much coarse-grained accelerators, both of which have been extensively

studied in single core context. However, customization techniques become more

challenging for MPSoC designs when customizable resources are shared among

multiple cores. The design complexity becomes even higher when reconfigura-

bility is brought in to increase the flexibility and programmability. Driven by

the time-to-market constraint, the MPSoC design and optimization problems

present urgent demands for design automation tools.

1.1 Processor Customization

The balance between performance and the generality or flexibility is always a

challenge for computer designs. While the general-purpose processors are de-

signed to support vast range of applications, they fail to match the increasing

demands for high throughput, fast response time and scalability required by

computationally intensive or time-sensitive applications such as image process-

ing, encryption and others. To bridge the gap, especially in embedded system, a

common method is to use application-specific accelerators added to the general-

purpose processors. For example, a math coprocessor could be integrated with a

baseline processor to perform mathematical computations, particularly floating-

point operations.

Processor customizations explicitly diverge into two categories, depending on

1

CHAPTER 1. INTRODUCTION

the granularity of the code segments to be accelerated [128]. The fine-grained

processor customization aims at accelerating very small pieces of code, while the

coarse-grained processor customization targets for much coarser-grained loops.

1.1.1 Fine-grained processor customization

Fine-grained processor customization is realized through custom instruction iden-

tification, custom instruction selection and custom functional unit implementa-

tion. All these three phases together in essence create an application specific

instruction-set processor (ASIP). Figure 1.1 shows the design and execution flow

for fine-grained processor customization. The very first step is to identify the

custom instructions. A custom instruction is formed by grouping a set of

frequently executed operations together. Hot basic blocks are perfect candidates

to be used for custom instruction identification analysis. A set of custom in-

structions will then be selected meeting the specified optimization metrics such

as speedup, area, power and etc. These custom instructions replace the original

pieces of code in the binary and they are implemented as hardwired datapaths

(custom functional units) in the existing processor core. With the extended

instruction set to support all the selected custom instructions, these custom in-

structions could be fetched and decoded as normal instructions, while they are

dispatched and executed in the custom functional units.

CI1

CI2

CI3

Binary with custom instructions

CDFG code

Instruction fetch

Normal
FUs CFUs

Instruction
decode

CI NI

Fetch

Processor

hot basic block

Figure 1.1: Fine-grained processor customization flow

The reasons why executing the custom instructions in custom functional

units can bring speedup are straightforward. The first and widely accepted

wisdom is that custom instruction can explore the instruction-level parallelism

(ILP) through sufficient and dedicated hardware resources. Inside one custom

instruction, multiple independent operations are free to be executed in parallel

rather than blocking each other. The second reason is also straightforward but

more related to hardware implementation – that is several low-latency operations

can be chained together to be executed in a single cycle of the processor. In the

2

CHAPTER 1. INTRODUCTION

normal processor design, even if an operation requires less than a cycle to execute,

it still needs to occupy the entire cycle. As an example, suppose the frequency is

determined by the multiplier in the processor; obviously, the critical path length

of one multiplier can accommodate multiple shifts, logic operations or even some

simple arithmetic operations. Another advantage of using custom instructions

is much more implicit. It relates to the register pressure and bypassing inside

the processor pipeline. As the dependent operations are grouped together in one

custom instruction and they are executed inside the custom functional unit, the

communications through the register file and the bypassing network could be

avoided. This reduces the register file pressure and improves power efficiency.

1.1.2 Coarse-grained processor customization

For coarse-grained processor customization, the acceleration candidates are usu-

ally nested-loops. These coarse-grained loops are computationally intensive ker-

nels and contain massive data/instruction parallelism, making them ideal for

accelerations. To execute large body of operations, the best way is to use a

loosely coupled coprocessor rather than tightly coupled functional units consid-

ering the area/power efficiencies and communication overheads.

Configuration/parameters for loop1

Binary with offload
custom instructions

Instruction fetch

Normal
FUs Coprocessor

Instruction decode

offload NI

Configurations and parameters
for offloading loops

Fetch

Processor

offload loop1

offload loop2

Application

Configuration/parameters for loop2
…

Figure 1.2: Coarse-grained processor customization flow

Figure 1.2 shows the design and execution flow for coarse-grained processor

customization. The loops in the application can be identified through manual

annotations or automatic design tools. A special offloading instruction is inserted

into the binary executable replacing the entire code segment for the loop body

with a call to the accelerator. In the decode stage, once an offloading instruction

is encountered, the pipeline will be stalled and the execution will be switched

to the coprocessor side through proper configuration and parameter transfers.

3

CHAPTER 1. INTRODUCTION

Once the execution in the coprocessor finishes, the results will be sent back to

the main processor and the pipeline will be resumed.

Another essential factor to be considered is the communication cost. The

communication cost includes the delays for setting up the coprocessor by reading

the necessary configurations, transferring the parameters and sending back the

results. Usually, the communication cost offsets only a fraction of the total

benefits gained from parallel execution.

1.2 MPSoC Customization

The advancement of semiconductor process technology following Moore’s Law

has enabled the chip designers to put multiple processors into one single chip.

Rather than simply including identical processors, a challenging problem is to

design heterogeneous processors to fulfill the demands of specific applications.

Intuitively, processor customization could be directly applied to each core to

create a heterogeneous MPSoC system while minimizing the cost and energy

consumptions and optimizing the performance. We call the customization for

multi-core system as multi-processor system-on-chip customization or MPSoC

customization.

1.2.1 MPSoC Customization Overview

MPSoC customization

Static MPSoC customization [27]

Dynamic MPSoC
customization

Dynamic M

Compilation Support

• Coarse-grained loop
kernel compilation [24,25]

Architectural Design [26]

• Different customization granularity
• Different coupling techniques

Design Space Exploration [23]

• Schedule tasks to different cores
• Select appropriate customization strategies
• Decide reconfiguration time points
• Other architectural/performance constraints

• Integrate multiple cores with accelerators in one chip
• Schedule tasks to different cores/accelerators
• Select appropriate customization strategies

C ill D i [26]

d e e co es/acce e a o s
e customization strategies

ti S t D i S Eti S t D i S E

Figure 1.3: Overview of MPSoC customization techniques

Figure 1.3 provides an overview of the MPSoC customization techniques to

be discussed in this thesis. Depending on whether the MPSoC system support

reconfiguration or not, the MPSoC customization techniques could be divided

4

CHAPTER 1. INTRODUCTION

into static MPSoC customization and Dynamic MPSoC customization. In our

static MPSoC customization work [27], multiple application specific instruction-

set processors (ASIPs) are integrated within one chip. Each of the ASIPs is

generated by tightly integrating custom functional units with the baseline pro-

cessor. The challenges are to schedule the tasks of the target application to dif-

ferent ASIPs and customize each of the ASIPs specifically for the tasks mapped

to it.

On the other hand, for dynamic MPSoC customization, we need to first come

up with the architectural designs. The architectural designs could vary according

to different customization granularity. Usually, fine-grained customization will

require a reconfigurable functional unit, which is tightly coupled with the pipeline

of the individual processor. One of our works [26] revisits the reconfigurable func-

tional unit design. This is followed by the design of a coprocessor consisting of a

coarse-grained reconfigurable array implemented with reconfigurable functional

units as basic processing elements. The coarse-grained reconfigurable array is

shared among multiple cores. We study the compilation problem for the compu-

tationally intensive loop kernels in [24, 25]. With the architectural specifications

and compilation supports, the design space exploration problem for dynamically

customizable MPSoC is addressed in our final work [23]. With the reconfigura-

bility, we need to consider not only the scheduling and customization strategies

but also the reconfiguration decisions during the design space exploration.

1.2.2 Static Customized MPSoC Synthesis

As all the cores are on the same die, the chip area is shared among all the cores

when customizing MPSoC. Driven by the preset throughput demand or QoS

(quality of service), each core has to compete with other cores for the chip area.

Hence, given a performance constraint imposed by the system designer (e.g.,

for MPEG-2 encoder, 30 frames per second would be the minimum throughput

to provide smooth viewing experience), we are interested in allocating the cus-

tomization resources to each core while satisfying this performance constraint.

The complexity of the problem, however, comes from task mapping and multi-

ple alternative customization choices of the tasks allocated to each of the cores.

We will illustrate the challenges in MPSoC customization through a concrete

example.

An application consists of a sequence of tasks, which could be selectively

combined to be mapped to the cores in the MPSoC. Each task is associated

with multiple alternative customization choices or custom extensions. As

shown in Figure 1.4(a), each task of MPEG2 application has multiple available

5

CHAPTER 1. INTRODUCTION

T3 custom
extension

T2 custom
extension

(c) Customized MPSoC layout

Core 2

Motion
Estimation

T2
 c

us
to

m

ex
te

ns
io

n

Core 4

Inverse
DCT

T4
 c

us
to

m

ex
te

ns
io

n Core 3

DCT
Transform

T3
 c

us
to

m

ex
te

ns
io

n

Core 1

Read
File

T1
 c

us
to

m

ex
te

ns
io

n

(b) Task schedule and customized MPSoC

buffer

T1: Read File

T2: Motion
Estimation

T3: DCT
Transformation

T4: Inverse
DCT

(a) MPEG2 task graph

Custom extension T11

Custom extension T12

Custom extension T1X

…

Custom extension T21

Custom extension T22

Custom extension T2Y

…

Custom extension T31

Custom extension T32

Custom extension T3M

…

Custom extension T41

Custom extension T42

Custom extension T4N

…

T1 custom
extension Core 2

Core 4 T4 custom
extension Core 3

Core 1

Figure 1.4: Static MPSoC customization

custom extensions. Each of the custom extensions has a different execution

time and area requirement, and is used to empower the baseline processor to

execute special code segments such as custom instructions or computationally

intensive kernels. Note that custom instruction is introduced in fine-grained

processor customizations and computationally intensive kernels are generally

used in coarse-grained processor customizations. It is the job of the compiler

to generate alternative custom extensions regarding to different architectural

specifications. MPSoC customization technique has to be aware of the existences

of the alternative designs and the area/speedup tradeoff offered by each of the

alternatives. It should produce a feasible schedule by mapping tasks to the cores

with appropriate selection of the custom alternatives. Figure 1.4(b) shows such

a schedule by creating a one-to-one mapping from the tasks to a ring-connected

four-core system. The thick arrows shown in Figure 1.4(b) represent the actual

data transfer flow. The optimization problem of scheduling and selection is

essentially brought by the resource competition among the cores. From the

layout shown in Figure 1.4(c), we can see that, the custom extensions require

different amounts of area to be instantiated. With a preset QoS constraint, the

cores compete with each other struggling to satisfy the constraint by using a

more powerful custom extension, which has less execution time but higher chip

6

CHAPTER 1. INTRODUCTION

area requirement. Meanwhile, the whole area consumption has to be kept under

the chip area budget. The exponential complexity of the problem presents a

requirement for an efficient design space exploration algorithm, which could be

used to tune the processors in a synergistic manner and create an optimal system.

1.2.3 Dynamic MPSoC customization

Dynamic MPSoC customization

Design Automation toolchain

Compilation
Support

Architectural
Design

Design Space
Exploration

Architecture
specification Alternative custom

extensions

Task graph

Customizable MPSoC

Selected custom
extensions, task
schedules,
reconfiguration info.

Figure 1.5: An overview of the dynamic MPSoC customization

In processor customization, it is highly desired that the processor could be

reconfigured for different applications or further upgrades. To achieve this flexi-

bility, a reconfigurable fabric could be adopted to accommodate custom instruc-

tions or computationally intensive loop kernels. In fact, the custom instructions

or loop kernels implemented in the fabric can be changed even within the life-

time of an application. This is especially true when reconfigurable fabric is

area constrained and reconfiguration is required for time-multiplexing resource

re-usage. Here, we will discuss how the dynamic customization techniques are

extended to MPSoC context focusing on three main aspects including the ar-

chitectural designs, compilation supports and design space explorations. Figure

1.5 shows how these three major parts interact with each other and contribute

to the final customizable MPSoC. In the architectural design, we propose a con-

crete MPSoC design which could support dynamic customization. Given the

architectural specification and the loop kernels from the input application, the

compiler generates a set of alternative custom extensions. Finally, the design

space exploration makes a selection among the alternative custom extensions,

and creates task schedules together with the necessary reconfiguration informa-

tion. All the decisions from design space exploration are used to customize the

system dynamically during the application execution. In the following, we will

give more detailed illustrations for each of these three major parts.

7

CHAPTER 1. INTRODUCTION

Architecture Overview

A straightforward approach to introduce reconfigurability to multi-core for cus-

tomization will be to couple each core with its own reconfigurable fabric as shown

in Figure 1.6(a). A runtime reconfigurable engine would be designed for each

core to control the reconfiguration and support all the communications between

the core and its dedicated reconfigurable fabric. This architectural design with

a fixed reconfigurable resource partition, however, is not an ideal solution for

multi-threaded applications, which can have pronounced imbalances in execu-

tion time and customizable resource requirements among their threads.

Core 1

Reconfigurable Fabric Configuration
Memory

Runtime Management Engine

Core 1

configure

reconfigure

Core 1

Configuration
Memory

Runtime Management Engine

configure

reconfigure

Core 1

Configuration
Memory

Runtime Management Engine

configure

reconfigure

Reconfigurable
Fabric

Reconfigurable
Fabric

(a) Private reconfigurable fabric for each core in MPSoC (b) Shared reconfigurable fabric in MPSoC

Figure 1.6: MPSoC architectures supporting dynamic customization

A much more effective architectural design is to share a reconfigurable fabric

among all the extensible cores as shown in Figure 1.6(b). By sharing among

multiple cores, the reconfigurable fabric can be more efficiently integrated and

utilized. Obviously, by combining the reconfigurable resources from individual

cores together, each core can have more resources to implement much more

powerful custom extensions. This increases the chance for the multi-core system

to provide much more efficient solutions. On the other hand, sharing could

increase the resource utilization. When one core is using less reconfigurable

resources, other cores could have more accesses to the available resources. In this

sense, we might be able to reduce the size of the reconfigurable fabric through

sharing without affecting the final performance, which eventually results in less

area and power consumption.

The reconfigurable fabric could be tightly coupled into the processor pipelines

to support fine-grained customizations. On the other hand, the reconfigurable

fabric could also be used as a shared coprocessor to execute offloaded loop ker-

nels from different cores for coarse-grained customizations. By tightly integrat-

ing the reconfigurable fabric into the processor pipelines, we essentially create

a conjoined-core chip [77]. However, the tightly coupling approach cannot scale

well with number of cores. On the other hand, using the reconfigurable fabric

8

CHAPTER 1. INTRODUCTION

as a shared coprocessor avoids the overheads of integration, and could be used

to accelerate much larger loop kernels. Thus, we will mainly focus on the archi-

tectural design for the coarse-grained reconfigurable coprocessor in Chapter 4.

More concretely, we propose a specialized functional unit design and use it as

the primary processing element of the coarse-grained reconfigurable coprocessor.

Compilation Techniques

For both static and dynamic MPSoC customization, the compiler needs to gen-

erate multiple custom extensions. Figure 1.7 depicts the entire compilation flow

for MPSoC customizations. The architectural specifications could be read after

intermediate representation is generated between the front end and the back end

of the compiler. For static MPSoC customization, the outputs of the compiler

would be the synthesis results for the custom extensions and the binary. On the

other hand, for dynamic MPSoC customization, the custom extensions would

be generated as configurations, which are used to configure the reconfigurable

fabric during the execution.

Application

Front
End

Back
End

Compiler

Intermediate
Representation

Architectural Specifications
Custom Extension 1
Custom Extension 2
Custom Extension 3

Custom Extension N

…

Binary
Configuration/Synthesis

Figure 1.7: Compilation technique for MPSoC customizations

As mentioned, our target architectural is coarse grained reconfigurable copro-

cessor. In Chapter 5, we will revisit the compilation techniques for application

mapping on coarse-grained reconfigurable arrays (CGRAs). The application

mapping problem is proved to be a graph minor containment problem. Efficient

algorithms are further proposed to solve the application mapping problem.

Design space Exploration

To exploit the customizable MPSoC architecture with shared reconfigurable fab-

ric as shown in Figure 1.6(b), all the problems presented in the static MPSoC

customization have to be dealt with, such as scheduling the tasks of the target

multi-threaded application among all the available processors, select appropri-

ate sets of custom extensions for the cores. In dynamic MPSoC customization,

however, the optimization problem is much more tricky as reconfiguration is

9

CHAPTER 1. INTRODUCTION

introduced. The design space has been dramatically increased as custom exten-

sions could be grouped into different configurations and realized in different time

during the program execution. The configurations for the reconfigurable fabric

are stored in an on-chip configuration memory, and they are loaded dynamically

in different points of time to reconfigure the fabric.

Core 1

Configuration memory

Run Time Management Engine

T2: Motion
Estimation

T1: Read File

Core 2

T4: Inverse
DCT

T3: DCT
Transform

Configured for T1 custom extension

Configured for T3 custom extension

Configured for T2 custom extension

Configured for T4 custom extension

Reconfiguration Control Signals Reconfigurable Fabric

Task in execution
Task to be executed

Figure 1.8: An example for dynamic MPSoC customization with MPEG-2 ap-
plication

Figure 1.8 shows an example for dynamic MPSoC customization using the

MPEG-2 application in Figure 1.4(a). In the example, each core executes two

tasks of the MPEG-2 application. So when the application starts execution,

there would be two threads, each of which is created in one of the two cores

executing on different task sets. More concretely, core 1 executes T1 and T2,

while core 2 executes T3 and T4. Assuming core 1 is executing T1 and core 2

is executing T3, then the reconfigurable fabric is configured for the two tasks’

custom extensions. Some time later, core 1 finishes the execution of T1 and starts

T2; meanwhile, core 2 could also finish T3 and start T4. A reconfiguration then

occurs by loading the configuration of the custom extensions for T2 and T4 into

the reconfigurable fabric. Task scheduling, appropriate customization extension

selections and reconfiguration time point decisions present a complex design

space exploration problem for dynamic MPSoC customization. In Chapter 6,

we propose a dynamic programming algorithm, which can generating optimal

solutions with all these considerations for design space exploration.

10

CHAPTER 1. INTRODUCTION

1.3 Organization of the Chapters

In this dissertation, our ultimate objective is to create a full design automation

tool chain for crafting a customizable MPSoC. At the very beginning, in Chapter

3 we highlight the resource sharing problem by considering the static MPSoC

customization. Each task of the target application to be executed in the MPSoC

is associated with a set of custom extensions with different area and speedups.

Each core could be customized by using alternative custom extensions of the

tasks mapped to it. All the cores on the same die must compete for the chip area

for customizations to meet certain QoS requirement of the target application.

With the conflicting goals of minimizing the total area consumption and meeting

the throughput requirement, we design a dynamic programming algorithm for

task mapping and identifying appropriate custom extensions given a streaming

application.

Observing the benefits of introducing reconfigurability in processor customiza-

tion, Chapter 4 proposes a novel design for the reconfigurable coprocessor, which

is used to execute computational intensive loop kernels. We first design a spe-

cialized customizable functional unit, which is used to execute the small com-

putational intensive patterns or custom instructions across multiple application

domains. To achieve this, we conduct analysis for sources of the speedup gained

from using custom instructions. The specialized functional unit (SFU) is then

instantiated regarding the design analysis results. We thoroughly evaluate the

proposed SFU by integrating it into the processor pipeline. A vast range of ap-

plications are tested for its flexibility and applicability. By using the SFU as the

primary processing element, we then take a step forward to build a novel special-

ized CGRA architecture (S-CGRA). By sharing the proposed S-CGRA among

multiple cores, we come up with a novel customizable MPSoC architecture.

As our target coprocessor is a specialized CGRA, we first revisit the compi-

lation problem for CGRA in Chapter 5. We demonstrate the CGRA mapping

problem is a restricted graph minor problem. Together with the proof of NP-

completeness, we also propose a practical tree-based search algorithm, which is

adapted from graph theory domain and could produce near-optimal solutions.

We further consider the compilation technique for the proposed S-CGRA. To

exploit the capability of mapping more than one operations to one SFU in the

S-CGRA, we design a clustering algorithm as a pre-processing step integrated

into the CGRA compilation framework.

Finally, Chapter 6 formalizes the MPSoC customization problem in the pres-

ence of a shared reconfigurable fabric. The complications of the the problem

reside in reconfigurations, task scheduling, alternative customizations and re-

11

CHAPTER 1. INTRODUCTION

source sharing. While the problem itself is NP-complete, we present a dynamic

programming solution. We now have a design automation toolchain for dynamic

customizable MPSoC, which consists of the concrete underlying architectural

specifications, the compilation supports and the design space exploration tech-

niques. In the end, we use the design automation toolchain to demonstrate the

efficiency of our proposed customizable MPSoC architecture through concrete

case studies using MP3 and JPEG encoders.

12

Chapter 2

Literature Review

In this chapter, an overview is presented of the existing research in single-core

customizations and MPSoC customizations. Processor customizations in single

cores have been extensively studied for both architectures and compiler per-

spectives. On the other hand, MPSoC customizations inherit the challenges

presented in single-core scenario, but focus more on the new open problems of

how to schedule and cooperate for multi-threaded applications. We will first give

an overview of advances in single-core customizations. Subsequently, we will dis-

cuss MPSoC customization challenges and the initial attempts to overcome the

challenges in literature.

2.1 Processor Customization

Although the thesis aims at creating an MPSoC system through customization

techniques and the focus of MPSoC customization is much more different from

single-core customization, it is still essential for us to gain a deep understanding

of how customization is done in single-cores. In fact, to create a full system and

develop a fully automated design tool chain, we have to revisit the customization

problems in single-cores. In the following subsections, we will cover both the fine-

grained and coarse-grained processor customization techniques and highlight how

our works in the corresponding research area serve as an integral part in the final

MPSoC customization framework.

2.1.1 Fine-Grained Processor Customization

In fine-grained processor customization, the accelerators are tightly integrated

into the processor pipeline as custom functional units.

13

CHAPTER 2. LITERATURE REVIEW

Static Fine-Grained Processor Customization

In ASIPs, custom instructions are implemented in application specific integrated

circuits (ASICs). Obviously, given a set of custom instructions, the best perfor-

mance can be achieved by implementing in ASICs using off-the-shell synthesis

tools. The efficiency of the ASIP designs, thus, relies on the custom instruction

identification and selection algorithms. Efficient algorithms are proposed to ac-

celerate custom instruction identifications and selections. Mircro-architectural

constraints are first introduced in custom instruction identifications and selec-

tions in [10, 103], which uses a tree-based search algorithm. The algorithm is

further improved by using ILP [8] or iteratively selecting maximal convex sub-

graphs [9]. [132] enumerates the multi-inputs and multi-outputs (MIMO) convex

subgraphs by combining subgraphs that have single-output and multi-outputs

(SIMO). The selection algorithm for MIMO custom instructions under the re-

source constraints is presented in [131]. Cross-basic block custom instruction

identification is also solved in [133]. Tensilica [64] is a company that commer-

cializes customizable processors which are customized statically during the design

time.

Dynamic Fine-Grained Processor Customization

While ASIPs suffer from limited flexibilities, reconfigurable ASIPs can support

dynamic reconfiguration but with a tradeoff from performance. For reconfig-

urable ASIPs, extensive research have been carried out for the efficient designs

of the reconfigurable fabric. Several excellent survey papers [59, 118] provide an

overview of the contributions of prior reconfigurable computing projects focusing

on a single processor core with an attached reconfigurable fabric. Theses archi-

tectures include Chimara [95] using a reconfigurable functional unit, One-chip

[20] with an integrated FPGA, and Stretch [53], which includes an instruction-

set-extension fabric.

Custom Instructions

Custom instructions can naturally cover the maximal parallelism leading to

speedup. A large body of research works [10, 8, 103, 131, 132, 133] conclude

that increasing the number of inputs or outputs can give more speedup. On

the other hand, some works identify the benefits from chaining consecutive op-

erations within the latency of one processor cycle. Interlock collapsing ALU

[124] is probably the very first work considering the chaining effects. In fact, it

was proposed to parallelize the execution of up to two interlocked consecutive

14

CHAPTER 2. LITERATURE REVIEW

instructions rather than directly chaining the operations. A follow up work in

[129] can collapse multiple instructions with up to 10 inputs and multiple out-

puts dynamically using special functional units, which are based on FPGA-like

elements requiring large number of control bits and longer latencies. In both ap-

proaches, chaining the operations is realized by exploring the parallelism of the

executions. Dynamic Strands [111] and Static Strands [112] reveal the potential

of collapsing sequential instructions using closed-loop ALUs where the output of

an ALU is forwarded to its inputs using self-bypass lines. Dataflow mini-graphs,

[17, 18] also identifies the mini sequences but executions are carried out in an

ALU pipeline, where three ALUs are chained together. These works have more

concrete architectural designs. However, the supported custom instructions such

as consecutive operations, strands and mini graphs are just a subset patterns of

the custom instructions. [10, 8, 103, 131, 132, 133] focus on identifying more

general custom instructions under certain micro-architectural constraints.

Another distinguishing feature of different customization approaches is the

identification phase of the custom instructions – whether they are identified stat-

ically by compilers or dynamically during the execution. One major drawback

of dynamic approaches such as [129, 111], is to push a large amount of overheads

to the execution engine, which can potentially drain out all the speedup brought

by using custom instructions. A different architectural design [31, 29] can relieve

the identification overhead during the execution, however, note that a dynamic

approach can hardly outperform the static compilation techniques. Additional

works have focused on dynamic reconfiguration of programmable accelerators,

including: RISPP [13], which dynamically reconfigures selected columns of an

FPGA that implement custom accelerator functions; Warp processor [89], which

transparently converts software binaries to placed-and-routed FPGA bitstreams;

and KAHRISMA [75], a hybrid fine-grained/coarse-grained accelerator.

Summary

In summary, by dynamically supporting custom instructions in an extensible pro-

cessor, one can expect its performance to match the ASIP design. In Chapter 4,

we will first fully explore the essences of the benefits brought by custom instruc-

tions through extensive experimental evaluations. A specialized reconfigurable

functional unit is then proposed following a systematic design procedure. We

discover that the performance of an extensible processor can potentially match

up with those of optimized ASIPs. More importantly, the proposed specialized

functional unit will further serve as a processing element design for the shared

reconfigurable fabric in MPSoC context.

15

CHAPTER 2. LITERATURE REVIEW

2.1.2 Coarse-Grained Processor Customization

One historic debate in processor customization involves the granularity of the

accelerator: should it be fine-grained, similar to an FPGA [20, 61, 122, 129],

should it be coarse-grained, i.e., an array of ALUs with a programmable inter-

connect [31, 29, 54], or should the granularity be even coarser at the level of

expressions [7] such as Expression Grained Reconfigurable Array (EGRA) [15].

In fact, coarse-grained accelerators are more favored by current research due to

the much smaller reconfiguration overheads, e.g., less configuration bits. While

coarse-grained accelerators could be used to execute custom instructions, they

are more promising to be used as a coprocessor to execute larger segments of

code. For coarse-grained processor customization, our targeting coprocessor ar-

chitecture is coarse-grained reconfigurable arrays (CGRAs). CGRAs have been

proposed especially for accelerating loops in multimedia and digital signal pro-

cessing (DSP) applications in embedded systems.

Architectures

Year Name of CGRA Size (Row×Column) Private register file Topology

1998 [115] MorphoSys 8×8 FUs
Loop-back connection
(4 16-bit registers)

2D mesh-plus;
row and column connections

(inside clusters);
neighbor connections

(across clusters)

1999 [90] CHESS
16×32

4-bit simple FUs
None 2D mesh-switch box

2003 [93] ADRES 8×8 FUs Loop-back connection 2D mesh-only and mesh-plus

2003 [84] DRAA 8×8 FUs Loop-back connection 2D mesh-only
2009 [83] FloRA 8×8 FUs Loop-back connection 2D mesh-plus

2010 [21] SmartCell
4×4 clusters

(4 FUs per cluster)
Input register banks 2D mesh-only

2011 [94] DR-SPE 10×10 FUs
Loop-back connection

(1 register)
2D mesh-switch box

2011 [54] DySE 8×8 FUs
Input register banks

each with 1 data register
and 1 status register

2D mesh-switch box

2011 [101] SYSCORE 8×4 or 8×8 FUs
2 registers

with dedicated input ports
2D mesh-East and West only

Table 2.1: Different CGRA architectures

In terms of architecture, some features of different CGRAs are listed in Table

2.1, including their sizes, register files and topologies. An interesting feature

to note is that even though CGRAs have the potential to be scaled, current

designs are still limited to very small architectures, e.g. an 8×8 array. Besides,

most of the architectures in Table 2.1 are arranged in a 2D mesh-like structure.

In a 2D mesh-only architecture, one functional unit is only connected to its

neighborhood functional units. In a 2D mesh-plus architecture, one functional

unit can communicate directly to other functional units in the same row or

column. By using switch box, diagonal communications are added into the 2D

mesh-only topology. For private register file design, most architectures use it

16

CHAPTER 2. LITERATURE REVIEW

for a loop-back connection, which connects the output of a functional unit to

its input ports. This enables the functional unit to use the output data for its

future execution.

Compilation of loop kernels

Mapping a compute-intensive loop kernel of an application to CGRAs using

modulo scheduling was first discussed in [92]. In this simulated annealing based

approach, the cost function is defined according to the number of over-occupied

resources. The simulated annealing approach can have long convergence time,

especially for large dataflow graphs. Routing through register files and register

allocation problems are further explored in [35], which extends the work in [92].

Register allocation is achieved by constraining the register usage during the sim-

ulated annealing place and route process. The imposed constraint is adopted

from meeting graph [41] for solving loop cyclic register allocation in VLIW pro-

cessors. In post routing phase, the registers are allocated by finding a Hamilton

circuit in the meeting graph, which is solved as a traveling salesman problem

[35]. This technique is specially designed for CGRAs with rotating register files.

[60] also follows the simulated annealing framework but aims at finding better

cost functions for over-used resources. SPR [43] is a mature CGRA mapping

tool that successfully combines the VLIW style scheduler and FPGA placement

and routing algorithms for CGRA application mapping. It consists of three in-

dividual steps namely scheduling, placement, and routing. The placement step

of SPR also uses the simulated annealing approach.

List scheduling has been adopted in [12], which analyzes priority assignment

heuristics under different network traversal strategies and delay models. The

heuristics utilize the interconnect information to ensure that data dependent op-

erations can be mapped spatially close to each other. [99] also gives priorities

for operations and resources to obtain a quality schedule. The priorities are as-

signed according to the importance of routing from producer nodes to consumer

nodes. This idea is further exploited in edge-centric modulo scheduling (EMS)

[100], where the primary objective is routing efficiency rather than operation

assignments. The quality of a mapping using specific priorities highly depends

on efficient heuristics for assigning these priority values to both operations and

resources.

There are various approaches to CGRA mapping using techniques from graph

theory domain. [30] integrates subgraph isomorphism algorithm to generate

candidate mapping between a DFG and the resource graph of a coarse-grained

accelerator. SPKM [130] adopts the split and push technique [39] for planar

17

CHAPTER 2. LITERATURE REVIEW

graph drawing and focuses on spatial mappings for CGRAs. The mapping in

SPKM starts from an initial drawing where all DFG nodes reside in the same

group. One group represents a single functional unit. The group is then split

into two and a set of nodes are pushed to the newly generated group. The split

process continues till each group contains only one node, which represents a

one-to-one mapping from DFG to the planar resource graph of CGRA.

A number of CGRA mapping approaches follow the subgraph homeomor-

phism formalizations including [119, 5, 19, 48, 49]. The mapping algorithm in

[119] is adapted from MIRS [134], a modulo scheduler capable of instruction

scheduling with register constraints. The adaptations for CGRA mapping in-

clude a cost function for routing and considerations for conditional branches. [5]

partitions the DFG into substructures called HyperOps and these HyperOps are

synthesized into hardware configurations. The synthesis is carried out through

a homeomorphic transformation of the dependency graph of each HyperOp onto

the resource graph. [19] also formalizes the CGRA mapping as a subgraph home-

omorphism problem. However, they consider general application kernels rather

than loops. Particle swarm optimization is adopted for solving CGRA mapping

problem in [48, 49]. The calculation for fitness, which is used to move particles

(DFG nodes) in particle swarm optimization, is specifically designed to optimize

multiple objectives for routing.

EPIMap [56] formalizes the CGRA mapping problem as a graph epimor-

phism problem with the additional feature of re-computations. The core of

this approach consists of a subgraph isomorphism solver, which finds the maxi-

mum common subgraph (MCS) [86] between the DFG and the resource graph of

CGRA. The idea is to transform the DFG iteratively by inserting dummy rout-

ing nodes or replicated operation nodes so that the routing requirements can be

satisfied through the subgraph isomorphism solver. EPIMap can generate better

scheduling results compared to EMS with similar compilation time. Most graph

approaches solve a subset of the epimorphism problem defined in EPIMap.

Summary

In summary, the observation of various architectures and compilation techniques

in CGRA research domain motivates us to re-consider the real difficulties of the

mapping problem. Despite its simplistic illustration such as mapping a DFG to

the resource graph of the target CGRA, the crucial features such as resource

graph generation and explicit routing handling do dramatically complicate the

mapping problem. In Chapter 5, we will sketch out the CGRA mapping problem

as a graph minor problem. We will show how the formalization, which provides

18

CHAPTER 2. LITERATURE REVIEW

a much clearer view for compiler designers can improve the performance and

compilation time. Integrating into the MPSoC customization framework, the

proposed graph-minor mapping technique will be utilized to generate alterna-

tive custom extensions for each candidate loop kernels. The generated alter-

native custom extension would be used as input data for MPSoC design space

exploration in Chapter 6.

2.2 MPSoC Customization

Similar to processor customization techniques, MPSoC customization techniques

could be divided into fine-grained or coarse-grained depending on the granularity

of the accelerating candidates. Processor customization could be done through

the compilation stage by taking all the micro-architectural constraints into con-

sideration. The customization for an MPSoC system, however, is different from

processor customization techniques, and it could involve more than just compi-

lation. Given an application with a set of tasks, each core could be customized

by mapping a subset of tasks to it. The customization problem is further com-

plicated when each task has a set of alternative custom extensions. The custom

extensions could be generated by traditional fine-grained or coarse-grained pro-

cessor customization techniques according to architectural specifications. Design

space exploration is required to decide the mapping from the tasks to the cores

and choose appropriate custom extensions regarding the constraints imposed by

the underlying MPSoC architecture. Depending on whether the MPSoC archi-

tecture support reconfiguration or not, the customizations could be divided into

static MPSoC customization and dynamic MPSoC customization.

2.2.1 Mapping Strategies

In MPSoC scheduling problem, an application is usually decomposed into several

independent and/or interdependent sets of cooperating tasks and then mapped

onto a set of available processors for parallel execution. These sets of tasks are

usually represented by a directed acyclic graph (DAG). For task mapping, Benoit

et al. [14] classify the policies to map tasks onto a fixed number of processing ele-

ments (PEs, which can be viewed as processors) into three categories: one-to-one

mapping, where each task gets its own dedicated PE; an interval-based policy,

where only tasks that are contiguous in the task graph can be mapped on a sin-

gle PE; and a fully general policy without restrictions. For complexity analysis,

[14] further analyzed the structure of the platform detailed in communications

contention and processors structure. As shown in Table 2.2, different platform

19

CHAPTER 2. LITERATURE REVIEW

structures and different mapping policies will affect the problem complexity. For

fully heterogenous processors, however, the problem is NP-complete for all the

three mapping policies. Note that customization is more than just fixed architec-

tures. In fact, customization means the processor architecture can be changed

adaptively according to the task mappings and the quality constraints. Due

to the high complexity of the problem, several works propose algorithms that

generate approximately optimal solutions: [117] proposes an iterative heuristic

approach, [120] uses evolutionary algorithms, and [114] uses heuristic approach

as well. On the other hand, [67] focuses on optimal solutions using integer linear

programming (ILP) but with restrictions to one-to-one mappings and a fixed

number of PEs.

Fully
Homogeneous

Communication
Homogeneous

Fully
Heterogeneous

One-to-One polynomial polynomial NP-complete

Interval-based polynomial NP-complete NP-complete

General polynomial NP-complete NP-complete

Table 2.2: Complexity Analysis

Interval-based Mapping Policy

As finding the optimal solution using the interval-based mapping policy for het-

erogeneous processors is NP-complete. So a good place to start might be trying

to restrict the problem to chain structured task graph. If we only consider the

chain structured task graph, the problem could be modeled as a chain-on-chain

problem (CCP) [102]. The CCP problem has been widely studied, and various

efficient polynomial time algorithms have been proposed [58, 65, 96].

An iterative refinement heuristic is proposed in [117] for interval-based map-

ping policy, where no guarantee of the optimality or near-optimality is provided.

In [69], a much more matured and well-structured heuristic is proposed using a

three phases framework including coarsening, partitioning and unpacking. By

coarsening, a relatively smaller graph is generated and K-L heuristic [70] is used

to decide the partition points. Then, in each step of unpacking, K-L refinement

is performed to ensure that the final outcome solution will be close to the op-

timal solution. This coarsening and unpacking framework is not constrained in

any particular heuristics used in any of the three phases. Any reasonable kinds

of heuristics could be used during these phases.

20

CHAPTER 2. LITERATURE REVIEW

Clustering for general mapping policy

General mapping policy corresponds to the clustering problem for scheduling

DAGs onto multiprocessors, which has been extensively studied over the last

two decades. An early paper for comparing different clustering heuristics is [47].

In the general mapping policy, a cluster could contain a set of tasks, which

will execute on the same processor. The cluster has to be created meeting the

intrinsic constraints, e.g. convexity constraint and capacity constraint. The

clustering algorithm could aims at achieving different optimization objectives,

such as communication cost [68, 104], number of processors [47], and etc. A

widely accepted approach is to adapt genetic algorithm [38, 125, 79, 63] into

multiprocessor scheduling context, due to the general applicability of genetic

algorithm.

2.2.2 Static MPSoC customization

Design automation tools have been provided in industry for single-core pro-

cessor customizations. These tools includes Tensilica Xtensa [52] and CoWare

[123] tool chain. It could be straightforward that one MPSoC could be eas-

ily designed by integrating several ASIPs generated by these tools in one chip.

However, as mentioned, MPSoC customization is a much more complex problem.

Complex interdependencies arise while exploring the design space by simultane-

ously sweeping axes like task scheduling, custom extension selections and other

constraints imposed by architectural components such as processing elements,

memory hierarchies and chip interconnect fabrics. One of the very first papers

discussing about all these design automation issues in configurable MPSoC could

refer to [2].

With regards to architectural constraints, [6] proposes an integrated open

framework for MPSoC design space exploration by combining the usage of LISATek

processor design platform with MPARM system-level architecture, where MPARM

provides extensive facilities for memory hierarchies and interconnects. In terms

of MPSoC customization, a widely recognized work is [117], where they formal-

ized the design space exploration problem of static customizations for application-

specific custom MPSoCs. It is demonstrated that the design steps of custom

extension selections and task scheduling are highly interdependent, and perform-

ing these design steps independently can significantly downgrade the quality of

the resulting architecture. Their methodology pre-synthesizes the area cost and

execution time for custom extensions and make assumption that these values

won’t be changed when combining the custom extensions with base processors.

21

CHAPTER 2. LITERATURE REVIEW

However, as mentioned, this problem is too complex so that only heuristics are

proposed without any solid guarantees provided. A widely used technique for the

optimization in MPSoC design space exploration is by formalizing the problem

using Integer Linear Programming (ILP) [33]. The static MPSoC customization

problem is formalized in [113] as a Mixed ILP (MILP) problem, which has an in-

tractable running time when the number of processors scales. Similar approaches

includes [37], which partitions the task graph onto a set of available processors;

[85], which provides an automation flow from custom instruction identification

to synthesis using ILP; and [76] that considers hardware/software partitioning

for pipelined tasks. For pipelined multimedia streaming applications, [67] gives

an optimal solution based on ILP formulas with a case study using JPEG appli-

cation. Another recent work [16] focusing on multimedia streaming applications

proposes a design space exploration technique based on dynamic programming

and worst-case execution time (WCET) analysis for instruction set customizable

MPSoC.

Summary

In summary, the design space exploration problem for static MPSoC customiza-

tion is a very complex problem. ILP is widely used to ensure the optimal so-

lutions, while it has an intractable running time when the size of the problem

scales. In chapter 3, we will expose the design issues faced in static MPSoC cus-

tomizations and give an optimal solution for pipelined streaming applications

using a hierarchical dynamic programming algorithm.

2.2.3 Dynamic MPSoC customization

Dynamic MPSoC customization can be realized by including reconfigurable fab-

rics, which are used to accommodate custom extensions. To support reconfigura-

bility, it would be much more promising by using a large reconfigurable fabric

shared among multiple processors in the system. However, there is a dearth

of prior work in addressing how reconfigurable fabric can best benefit future

MPSoCs. Many research efforts [22, 34, 45] have investigated the high level in-

tegration of a reconfigurable fabric on-chip. PRISC [106], Proteus [34], Stretch

[53], Chimaera [95], and DPGA [36] tightly integrate the fabric with the proces-

sor as a specialized execution unit. The fabric predominates in DISC [127] and

NAPA [109] with the processor serving largely to feed the reconfigurable hard-

ware. Garp [20, 62] and PipeRench [51] fall in between. All of these, however,

only investigate the integration with a single core, although Garcia and Compton

[45] state that their technique could be extended to a multi-core system.

22

CHAPTER 2. LITERATURE REVIEW

While multiple extensible cores sharing reconfigurable fabric is a relatively

unexplored research direction, there are few representative works. ReMAP (Re-

configurable Multicore Acceleration and Parallelization) [126] is such a reconfig-

urable architecture for accelerating and parallelizing applications within a hetero-

geneous chip multiprocessor. In ReMAP, clusters of cores share a common recon-

figurable fabric adaptable for individual thread computation or fine-grained com-

munication with integrated computation. It pairs a specialized programmable

logic (SPL) fabric with multiple cores of a chip multiprocessor (CMP). Cores

are partitioned into different clusters, and the cores in the same cluster can tem-

porally share the fabric in a round-robin fashion. The SPL controller can also

spatially partition the fabric as needed to reduce inter-thread contention. More-

over, ReMAP also facilitates fine-grained communication among threads sharing

the fabric, creating new opportunities for parallelization that are too costly using

conventional software-based methods.

Shared reconfigurable coprocessor has also been proposed in [46] to improve

the overall system throughput of multiple processes concurrently executing on

a multi-core system. The focus of their work is on time-multiplexed sharing of

the same physical kernel by multiple processes while maintaining process isola-

tion. Sharing loosely coupled reconfigurable fabric is also addressed in [126].

Finally, [28] investigates the synergy between multi-core processors and rISE—

an architecture where reconfigurable device is used to implement the custom

instructions. However, they use dedicated reconfigurable logic per core.

Summary

In summary, dynamic MPSoC customization problem is quite challenging in

diverse aspects due to the intrinsic problem complexity. Dynamic MPSoC cus-

tomization inherits all the complexities from static MPSoC customization, while

the new feature of reconfigurability and resource sharing further complicate this

challenging problem. Meanwhile, dynamic MPSoC customization is a very new

research topic and only few prior works have investigate this problem. In Chap-

ter 6, we will formalize the dynamic MPSoC customization problem with the

presence of a shared reconfigurable fabric. An optimal solution will then be

proposed together with an efficient heuristic.

23

Chapter 3

Design Space Exploration for

Static Customizable MPSoCs

Observing the inevitable transition to multi-core era, automation tools are ur-

gently required for MPSoC designs. On the other hand, single-core customiza-

tion techniques have been extensively studied through the last decade. At first

glance, it would be straightforward to create a heterogeneous MPSoC systems

by directly using the inherited single-core customization techniques. However,

a deep investigation shows that MPSoC customization is a much more complex

problem. It not only includes all the challenges to deal with single-cores, but

also many new aspects due to the requirements of efficient task scheduling, QoS

constraints and resource sharing. In this chapter, we will take a first step to

reveal the important factors to be considered in static MPSoC customization.

3.1 Overview

A heterogeneous MPSoC may consist of a number of extensible processor cores,

where each core has been customized according to the application requirements.

As all the processing elements (PEs) share the same base instruction set archi-

tecture (ISA) and a common core, application development on such platforms is

relatively straightforward. MPSoC platforms consisting of extensible processor

cores are an excellent match for streaming applications [67, 114]. These appli-

cations can be partitioned into multiple compute-intensive kernels or tasks and

represented in the form of an acyclic task graph.

Our initial goal is to synthesize an optimal customized MPSoC platform for a

given streaming application. This customization problem involves task schedul-

ing and customization strategy selections. For example, in Figure 3.1(a), we

24

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

T4 T3 T2 T1

(a) A streaming application with four consecutive tasks

T2

(b) Customized MPSoC

Task scheduling

System throughput

g

Core 2

T3 T4

Extra area required for custom
functional units

Total extra area required

T2
Core 1

T1 T2

Extra area required for custom
functional units

Period constraint

Area constraint

Figure 3.1: An example for MPSoC customization

have a streaming application with four consecutive tasks. Our MPSoC platform

has two extensible processors. One possible task scheduling is shown in Figure

3.1(b), where the first two tasks are mapped to core 1 and the rest are mapped to

core 2. Each core is then customized specifically according to the tasks mapped

to it. The customization is done using custom functional units. The objective of

the customization is to minimize the total extra area required for implementing

custom functional units while minimizing the pipeline period (or equivalently

maximizing the throughput). Mapping the tasks to PEs and the customization

of each PE can dramatically influence the area and period of the entire system.

Therefore, the design space exploration algorithm has to deal with task map-

ping and customization alternative selections under the area budget and period

constraints to tune the processors in a synergistic manner.

In this chapter, we will show an efficient hierarchical algorithm that sepa-

rates task mapping and custom instruction sets selections, and returns optimal

solutions. Rather than focusing on fixed architectures with a given number of

PEs [120, 117], or performing an one-to-one mapping of tasks to PEs [67, 114],

we consider different number of PEs and interval-based mapping policy. Most

importantly, rather than using a heuristic, we design a pseudo-polynomial time

algorithm that returns the optimal solution in a fraction of the time required by

an exhaustive approach.

25

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

3.2 Problem Definition

The input to our framework is a linear task graph modeling the application. Let

〈T1, T2, . . . , TN 〉 be the N tasks in a linear task graph representing a streaming

application. There are dependencies between consecutive tasks in this linear

chain. Task Ti+1 can start execution only after task Ti has completed execution

for 1 ≤ i < N . Note that our framework is not limited to applications that can

be modeled as linear task graphs. An application that is modeled with a general

task graph can be easily transformed into a linear chain while respecting all the

dependencies in the original task graph. The maximum tolerable period period

(or minimum throughput) requirement of the application is also provided as an

input.

We assume that each task in the task graph can be accelerated with the help

of custom instructions. There are multiple implementations or versions of each

task corresponding to different choices of custom instructions. We call each such

implementation a custom instruction set or CIS, which consists of a set of custom

instructions. Each CIS is associated with an area requirement and an execution

time. The area requirement captures the additional area required to implement

the specific functional units for the custom instructions. Increasing the area

available allows more flexibility for the implementation and thereby reduces the

execution time. Let {Ci,0, Ci,1, . . . , Ci,mi} denote the different custom instruction

sets corresponding to task Ti where mi + 1 is the number of CISs for Ti. Let us

also assume that ai,j is the additional area required and ti,j is the execution time

for the CIS Ci,j . Moreover, we assume that Ci,0 is the software implementation

version with ai,0 = 0 and ti,0 is the software execution time. We order the rest of

the CISs according to their area requirement. That is, ai,0 < ai,1 < · · · < ai,mi

and as we only consider Pareto-optimal CISs, ti,0 > ti,1 > · · · > ti,mi .

The application is mapped onto an underlying architecture consisting of a

linear chain of P processing elements (PE1, . . . , PEP) where P ≤ N . The PEs

form the different pipeline stages of the application. We impose the constraint

that only a consecutive sequence of tasks from the linear task graph can be

mapped to a PE. This is known as interval-based mapping. In other words, the

linear task graph is divided into P partitions (S1, . . . , SP) where each partition is

a consecutive sequence of tasks in the task graph and partition Si maps to PEi

for 1 ≤ i ≤ P . The pipeline stage with the maximum execution time determines

the period and the throughput.

We start with homogeneous multi-core architecture, that is, the base instruction-

set architecture of all the P processing elements are identical. The base area of

each PE is areaPE. However, each PE can be customized by adding CISs

26

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

according to the tasks mapped to it. So the final solution is a heterogenous mul-

tiprocessor system-on-chip (MPSoC) customized and optimized for the target

application. The goal of our optimization strategy is to minimize the total area

requirement of the MPSoC solution while satisfying the period or throughput

constraint of the application. Both the base area of the PEs as well as the se-

lected CIS versions of the tasks determine the area requirement of an MPSoC

solution. In other words, our design space exploration need to explore (a) the

number of PEs P , (b) the partitioning of the task graph into P partitions, and

(c) the CIS choice for each of the N tasks.

So our problem definition can be formally stated as follows: Given a linear

task graph consisting of N tasks with multiple CIS versions for each task and

period constraint period, find the number of PEs P , the CIS version for each

of the N tasks, and P partitions of the linear task graph so that the maximum

execution time of each PE is less than period and the total area (the base area for

P PEs and the additional area for all the selected CIS versions) for the MPSoC

solution is minimized.

3.3 Exhaustive Design Space Exploration

We first start with a simple algorithm that exhaustively enumerates the entire

design space. This helps us to visualize the complex tradeoff between area and

performance. We will follow it up with more efficient approaches that can identify

the resource-optimal solution under period constraint.

The exhaustive algorithm recursively enumerates all possible choices for each

task. It processes the tasks in their linear order starting with task T1. For task

Ti, we enumerate all possible choices for CIS. For each such choice of CIS, we

consider two alternative mapping choices for Ti. The first choice is to map Ti to

the current PE. The other alternative is to map Ti to a new PE, in which case

we add the base area of a PE areaPE to our cumulative area variable area. At

each point, we keep track of the period of the application, that is, the processing

element with the maximum execution time. Once we have reached the last task,

we simply plot the area requirement and the period of the solution.

Note that it is trivial to modify Algorithm 1 to compute the area-optimal

solution under the a particular period constraint. In this case, we have to make

sure that the execution time of any PE is always under the period constraint. If

the constraint is violated at some point, we can simply prune away the rest of

the recursions for that partial solution. We also need to keep track of the global

optimal solution obtained so far. Once we have reached the last task, we check

27

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

Algorithm 1: Exhaustive Algorithm

1 P = 1;
2 area = areaPE;
3 time = 0;
4 period = 0;
5 Traverse(1,P ,area,time, period);

6 procedure Traverse(i, P , area, time, period)
7 for j = 1 to mi do
8 /* map task Ti to old PE */
9 tempArea = area+ ai,j ;

10 tempT ime = time+ ti,j ;
11 if tempT ime > period then
12 tempPeriod = tempT ime;
13 if i < N then
14 Traverse(i+ 1, P , tempArea, tempT ime, tempPeriod);
15 else
16 plot {tempPeriod, tempArea};
17 /* map task Ti to new PE */
18 if i �= 1 then
19 tempArea = area+ ai,j + areaPE;
20 tempT ime = ti,j ;
21 if tempT ime > period then
22 tempPeriod = tempT ime;
23 if i < N then
24 Traverse(i+ 1, P + 1, tempArea, tempT ime,

tempPeriod);
25 else
26 plot {tempPeriod, tempArea};

if the area requirement of the solution is better than the optimal solution and

update the optimal area accordingly.

The complexity of the exhaustive design space algorithm is O(mN × 2N−1)
where m is the average number of CIS versions per task.

3.4 Integer Linear Programming (ILP) Formulation

We now present an Integer Linear Programming (ILP) formulation of the prob-

lem so that we can obtain an optimal solution with the help of an off-the-shelf

ILP solver. However, as we will observe in the experimental evaluation section,

ILP formulation does not scale well with the number of tasks N . So we will

present an alternative scalable approach next.

28

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

Let xi,j be a binary variable that denotes whether CIS version Ci,j is selected

for task Ti.

xi,j =

{
1, ifCi,j is selected

0, otherwise

For each task Ti, only one CIS version can be selected.

mi∑
j=0

xi,j = 1

Let yi,k be a binary variable that denotes whether task Ti is mapped to PEk.

yi,k =

{
1, if Ti is mapped toPEk

0, otherwise

Each task is mapped to exactly one PE.

N∑
k=1

yi,k = 1

In the summation term we have implicitly defined the number of processing

elements to be N . This is necessary to keep the formulation linear. The solution

may contain processing elements which have no tasks mapped to them and have

to be eliminated. The number of valid processing elements P can be defined as

N∑
i=1

yi,k − U × zk ≤ 0;

N∑
i=1

yi,k + 1− zk > 0

P =
N∑
k=1

zk

where U is a large constant greater than N. zk is a binary variable which is equal

to 1 if there is any task mapped to PEk and 0 otherwise.

There is one important constraint that is imposed by interval-based mapping

approach adopted in our framework. Two consecutive tasks Ti and Ti+1 should

either be mapped to the same PE or mapped to two adjacent PEs. In other

words, if task Ti is mapped to PEk, then task Ti+1 can only be mapped to either

PEk or PEk+1.
N∑
k=1

k · yi+1,k ≥
N∑
k=1

k · yi,k

29

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

N∑
k=1

k · yi+1,k ≤ 1 +

N∑
k=1

k · yi,k

The period constraint can be imposed as follows.

N∑
i=1

mi∑
j=0

ti,j · xi,j · yi,k ≤ period

This is a non-linear constraint. To linearize this constraint, we define a new

binary variable vi,j,k where

vi,j,k = 1⇔ (xi,j = 1) AND (yi,k = 1)

This condition can be expressed in linear form as follows.

vi,j,k ≤ xi,j ; vi,j,k ≤ yi,k; vi,j,k ≥ xi,j + yi,k − 1

Now the period constraint can be re-written as

N∑
i=1

mi∑
j=0

ti,j · vi,j,k ≤ period

Our objective function is to minimize the total area required

Total area=
N∑
i=1

mi∑
j=0

ai,j · xi,j + P · areaPE

The most area-efficient solution can be obtained by minimizing the objective

function under the constraints.

3.5 Dynamic Programming Algorithm

We now proceed to present a dynamic-programming based efficient algorithm

that can compute, in pseudo-polynomial time, the area-optimal solution under

a period constraint. The algorithm proceeds in two stages. In the first stage,

we compute the minimal area required to map a subsequence of tasks on a PE

such that the period constraint is not violated. In the second stage, we choose

the best partitioning of the tasks.

30

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

3.5.1 Customization

The goal of this stage is to compute the area-optimal solution for a sequence

of tasks mapping to a single PE under the period constraint. In other words,

the total execution time of the tasks should be less than period while the area

requirement of their selected CIS versions should be minimal.

Algorithm 2: Compute areas,e for all s, e

1 for s← 0 to N do
2 for e← s+ 1 to N do
3 found = FALSE;
4 for A← 0 to AREA do
5 for j ← 0 to me do
6 if (ae,j ≤ A) then
7 times,e(A) = min(times,e(A), times,e−1(A− ae,j) + te,j)
8 end

9 end
10 if (times,e(A) ≤ period AND !found) then
11 areas,e = A;
12 found = TRUE;

13 end

14 end

15 end

16 end

Algorithm 2 computes the area-optimal solution for each possible subse-

quence Ts+1, . . . , Te mapped to a PE under the period constraint. The execution

time of the subsequence mapped to a PE can be defined as

times,e =
e∑

i=s+1

mi∑
j=0

ti,j · xi,j

Note that according to our definition, times,e corresponds to the execution

time of the task subsequence [Ts+1, Ts+2, . . . , Te]. We assume that times,s = 0,

which means that there is no task mapped to the PE. Similarly, we have areas,s =

0. We can compute the minimum value of times,e for all possible values of s, e

under different area constraints through dynamic programming. The recursive

equation is given as

times,e(A) = min
j=0,...,me
ae,j≤A

(times,e−1(A− ae,j) + te,j)

Basically, the dynamic programming algorithm works as follows. When we

31

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

are computing times,e(A), we go through all the CIS versions of task Te. For

each CIS version Ce,j that requires an area not more than A, we pre-allocate

the required area and put the rest of the tasks Ts+1 to Te−1 in the remaining

area A − ae,j . The execution time for this allocation is computed as te,j +

times,e−1(A − ae,j). We then choose the CIS version of task Te with minimal

resulting execution time value and record it as times,e(A).

We now know how to compute the minimal execution time for the task se-

quence Ts+1 . . . Te under various area constraints. For each task sequence, the

algorithm increases the area budget at every iteration, and the execution time

decreases correspondingly. Hence, the area budget of the very first iteration

where the execution time falls below the period constraint defines the mini-

mal area. The constant AREA is set at a large value such that all the tasks

can select their best possible CIS version. The complexity of the algorithm is

O(N2 ×AREA×m), where m is the average number of CIS versions per task.

We do not take into account the communication cost between the PEs. How-

ever, it is fairly straightforward to include communication cost into our frame-

work. We simply need to add area and performance overhead of communication

while computing areas,e in Algorithm 2.

3.5.2 Partitioning

Algorithm 3: Compute AreaN |P
1 for e← 1 to N do
2 Areae|1 = area0,e;
3 end
4 for p← 2 to N do
5 for e← 1 to N do
6 Areae|p = min

k=1,...,e
(Areak|(p− 1) + areak,e + areaPE)

7 end

8 end

Now we focus on partitioning the tasks. We define AreaN |P as the minimal

area required to execute tasks T1, . . . , TN on P processing elements such that the

period constraint is not violated. Again we employ dynamic programming algo-

rithm to compute this value. Clearly, min
p=1,...,N

AreaN |p denotes the minimal area

required to execute the entire task sequence T1, . . . , TN on at most N processing

elements.

Algorithm 3 returns the values of AreaN |P . The algorithm iterates over the

number of processing elements p. Given a fixed number of processing elements p,

32

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

we iterate over the number of tasks e. Note that Areae|p computes the minimal

area required to execute tasks T1, . . . , Te on p PEs such that the period constraint

is not violated. We need to create p partitions such that each partition will be

mapped to one PE. The recursive equation is defined as

Areae|p = min
k=1,...,e

(Areak|(p− 1) + areak,e) + areaPE

When there is only one PE, all tasks are simply mapped to it, which is the

initialization statement for Areae|1. The basic idea of the recursive step is to

check all possible partition points for the last PE. A partition point k partitions

the task chain into two parts: task subsequence [T1, . . . , Tk] and task subsequence

[Tk+1, . . . , Te]. The second task subsequence [Tk+1, . . . , Te] is mapped to the

last PE and the first task subsequence is mapped to p− 1 processing elements.

In that case, the minimal area requirement for the last PE will be areak,e +

areaPE where areak,e is the area corresponding to CIS versions computed using

Algorithm 2. As we are computing our solutions iteratively, we have already

computed Areak|(p − 1) which corresponds to the minimal area solution for

the first task sequence on p − 1 PEs. The summation of the two returns the

minimal area with last partitioning point at Tk. Among all the partitioning

points (k = 1, . . . , e), we select the one with the minimal area requirement.

Notice that when k = e, the second task subsequence will be empty and

areae,e = 0. This will essentially create additional idle PE in the end, which

will increase the area by areaPE without any performance benefit. Hence this

solution will be eliminated. Similarly, if e < p, that is, the number of tasks is

less than the number of PEs, we will also get some idle PEs. These idle PEs will

add to area without contributing to performance. Again these partial solutions

with idle PEs will not be part of the optimal solution.

The complexity of Algorithm 3 is O(N3).

3.6 Experiment Evaluation

For the experiment evaluation, we use two popular streaming applications, an

MP3 encoder and an MPEG-2 encoder. As shown in Figure 3.2, each application

consists of a number of tasks, which are the compute-intensive kernels.

The base processing elements used in our experiments are the extensible

Tensilica Xtensa LX2 processor cores that can be configured for applications-

specific instruction set extension. Together with a hardware multiplier, 32KB of

data caches, and 4KB of instruction cache, each Xtensa LX2 processor requires

about 231K gates, and can run at 326MHz using 0.13μm LV manufacturing

33

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

•Read input audio
•Split channelsT1

•FilteringT2

•MDCTT3

•QuantizationT4

•Huffman
•Write outputT5

•Read input frame
•Compute activityT1

•Motion estimation
•Frame predictionT2

•DCT transformT3

•Write outputT4

•Inverse DCT
transformT5

a) Tasks of MP3 b) Tasks of MPEG

Figure 3.2: Task graphs of MP3 encoder and MPEG-2 encoder.

process.

��

���

����

����

����

����

�� ��� ���� ���� ����

�
�	

�
��
�
�	
�	

�
��

�������������

��� ��
��
��
��
��

��

����

����

����

�����

�����

�����

�� ��� ���� ���� ���� ���� ����

�
�	

�
��
�
�	
�	

�
��

�������������

����� ��
��
��
��
��

Figure 3.3: Custom instruction sets for the tasks in MP3 and MPEG-2

For each task, we use XPRES compiler provided by Tensilica to generate

a number of different configurations with varying trade-offs between area and

performance. The CIS versions for each task are shown in Figure 3.3. The X-

axis represents the area (in gates) and the Y-axis represents the execution time

of the task. Some of the CIS versions require almost the same area as the base

PE.

34

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

MP3 MPEG2
A

re
a

(K
 g

at
es

)

Period

0

800

1200

1600

400

0 0.2 0.4 0.6 0.8 1
0

1000

1500

2000

500

0 0.2 0.4 0.6 0.8 1

1PE
2PE

3PE
4PE

5PE

Figure 3.4: Design space for MP3 encoder and MPEG-2 encoder

We first plot the result of the exhaustive design space exploration shown in

Figure 3.4. There are 14,400 points in the MP3 encoder design space and 387,072

points in the MPEG-2 encoder design space. The X-axis represents the period

normalized with respect to the completely software based implementation on a

single PE. The Y-axis represents the total area required by the MPSoC solution.

Each color corresponds to the number of PEs in the solution. As can be seen

from the figure, the design space is quite complex. It is possible to meet the same

period constraint either with a small number of PEs each customized heavily or

with a larger number of PEs devoid of customization.

MP3 MPEG2

0

800

1200

1600

400

0 0.2 0.4 0.6 0.8 1

1PE
2PE

3PE
4PE

5PE

0

800

1200

1600

400

0 0.2 0.4 0.6 0.8 1

A
re

a
(K

 g
at

es
)

Period

Figure 3.5: Minimal area cost versus period constraint for MP3 and MPEG-2
for different numbers of PEs

Now we focus on generating the area-optimal solution under a given period

constraint. For each application, we vary the period constraints from 0 to 1.0

(in steps of 0.01) of the period with pure software implementation on a single

PE without any customization. The software execution on a single PE without

customization is the solution with minimum area. For clarity, we plot the results

35

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

Number of tasks EA ILP DP

5 0.01 sec 1 sec 0.01 sec

7 1.18 sec 5 min 0.01 sec

10 12 min 9 min 0.03 sec

12 18 hour 2 hour 0.05 sec

15 - - 0.09 sec

20 - - 0.20 sec

Table 3.1: Analysis time for exhaustive (EA), ILP, and the dynamic program-
ming (DP) approach

for different number of PEs though our algorithm can easily identify the optimal

number of PEs.

Figure 3.5 plots the results for the two applications. The light blue region

in the left of each graph corresponds to the infeasible region where the period

constraint is too small. The white region under the curves corresponds to the

infeasible design space due to tight area budget. The third region, in light green,

is the feasible design space. The Pareto-optimal solutions in this feasible design

space are highlighted in the figure. Given a period constraint, the corresponding

optimal point tells us how many PEs should be used and the minimal area cost.

The vertical dashed lines indicate the maximum accelerations that can be gained

for different numbers of PEs.

Finally, we compare the analysis time for exhaustive algorithm (EA), ILP

solver and our proposed dynamic programming algorithm (DP) on Intel Xeon

2.53GHz processor with 16GB memory. We used LINGO, a commercial ILP

solver [87] for our experimental evaluation. For this set of experiments, we

generate synthetic task graphs with number of tasks varying from 5 to 20. The

average number of CIS version per task is set at 5. The performance gain of

each CIS version ranges between 1,000 to 10,000 time units. The hardware area

is between 1 to 100 units. The performance gain increases with hardware area.

Table 3.1 shows the analysis time for the three methods. The analysis time

corresponds to finding the area-optimal solutions given a fixed period constraint.

Given an application and a fixed period constraint, the analysis time remains

unchanged for different runs of exhaustive algorithm and dynamic programming

approach. However, for the ILP solver, analysis time can vary; so we report the

average analysis time.

As shown in the table, dynamic programming approach improves the analysis

time dramatically and still produces the optimal solution. With 15 tasks and

more, exhaustive algorithm and ILP solver fail to return optimal solutions within

a reasonable time. However, dynamic programming approach still manages to

36

CHAPTER 3. DESIGN SPACE EXPLORATION FOR STATIC CUSTOMIZABLE MPSOCS

identify the optimal solution within short time.

The exhaustive algorithm is more powerful than ILP solver if the designer is

interested in all the Pareto-optimal solutions, that is, the tradeoff between area

and period. The exhaustive algorithm can explore the entire design space in one

go. The ILP solver, on the other hand, needs to be invoked with different pe-

riod constraints. Even the dynamic programming approach needs to be invoked

with different period constraints. However, our experiments show that dynamic

programming approach is way faster than exhaustive algorithm for a task graph

with 12 tasks and 100 different period constraints.

3.7 Chapter Summary

In this chapter, we expose the challenges of customizing the MPSoC system stat-

ically using hardwired circuits. This first step towards the MPSoC customiza-

tion problem highlights complexity of the design space exploration technique,

which should consider multiple design factors such as task mapping, selections

of alternative custom instruction sets, resource competition among the cores

and others. An efficient hierarchical algorithm is then proposed to design the

most resource-efficiently customized MPSoC platform for mapping linear task

graphs of streaming applications under all the constraints. The proposed dy-

namic programming algorithm achieves optimal solutions while decoupling the

task mapping and the customizations. Using two popular streaming applications

(MP3 encoder and MPEG-2 encoder) with Tensilica extensible processors, the

experimental validation confirms the efficiency of our approach.

37

Chapter 4

S-CGRA: Customizable

MPSoC design

In the previous chapter, we have highlighted the challenges in static MPSoC

customization. When reconfigurability is taken into consideration, the MPSoC

customization becomes a much more complicated problem. Our main goal in this

dissertation is to propose a full design automation tool chain for dynamic MPSoC

customization, covering the three major topics including architectural designs,

compilation supports and design space exploration. In this chapter, we will focus

on the first topic, architectural design. In order to provide reconfigurability,

the MPSoC system should include a shared reconfigurable fabric. The fabric

could either be tightly coupled within multiple processor pipeline or used as a

coprocessor. The tightly coupling approach will essentially create a conjoined-

core chip [77], which is not scalable with number of cores. Thus, in our design, we

will mainly focus on coprocessor design, which could be shared among multiple

cores without introducing large overheads.

4.1 Overview

A widely adopted reconfigurable coprocessor is the coarse-grained reconfigurable

array (CGRA), which is used to accelerate computational intensive loop ker-

nels. A CGRA is basically formed by arranging a set of functional units in

a two-dimensional topology. In order to design the reconfigurable coprocessor,

we have to first focus on the design of the primary processing element in the

CGRA, the functional unit. Normally, one functional unit is designed to execute

one operation each cycle. However, the cycle time of the functional unit is long

enough to accommodate multiple operations within one cycle. In this context,

38

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

FU1 FU2

FU3 FU4

Op1

Op2 Op4

Op5 Op6

Op8

Op3 Op3

Op5 Op7

Op9 OOp9Op9

FU1 FU3 FU2 FU4

Op8

Op1

Op2 Op4

Op5 Op7

O 2 O 4

7

8OO 8

Op3 O 3

O 5O 5 Op6 OOO 6

Op9 Op9O 9

(a) DFG of a loop kernel (b) 2×2 CGRA (c) Mapping result
t

cycle 1

cycle 2

cycle 3

cycle 4

Op3 Op2

Op5 OOp5Op5

ISE 1

Op6

Op4

Op7 Op7 Op6

ISE 2

Op8 Op9 Op9

Op1

Op2, Op3,
Op5

Op4, Op7,
Op6

C1

C2 C3

C4 C5

(f) New mapping result

FU1 FU3 FU2 FU4

C1

C2 C3

C4 C5

C2 C3

C4 C5
t

cycle 1

cycle 2

cycle 3

(e) New DFG with clustered operations (d) Identified ISEs

Figure 4.1: A motivating example

each functional unit can be specialized to execute one pattern of the compu-

tational intensive loop kernels every cycle. Recall that an ISE is generated by

encapsulating a computational intensive pattern, which share the similarity of

the function defined here for functional unit in CGRA. Thus, we can potentially

use ISEs from the context of fine-grained customization in the functional unit

design for our CGRA coprocessor. This also enables us to view the entire loop

kernel as a DFG consisting of multiple clusters, where each cluster could be ei-

ther a operation or an ISE containing a group of operations. Figure 4.1 shows a

motivating example. Figure 4.1(a) shows the DFG of a loop kernel. With a one

to one mapping strategy, Figure 4.1(c) shows the mapping result by mapping

the DFG to a 2×2 CGRA, which is shown in Figure 4.1(b). Figure 4.1(d) gives

the ISEs identified from the given loop kernel. These ISEs are represented as

clustered nodes in the clustered graph shown in Figure 4.1(e). The final mapping

result is presented in Figure 4.1(f). In this example, enabling multi-operation

execution saves one cycle execution time for one loop iteration, which highlights

the potential benefits of using a complex functional unit design.

Thus, a promising approach for the functional unit design is to support ISEs

across multiple application domains. In the following, we first perform an empiri-

cal ISE analysis of a set of representative embedded applications. The application

analysis classifies commonly occurring sequences of arithmetic and logical oper-

39

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

ations, which are essentially candidates for selection as ISEs. To support these

sequences, we identify several smaller functional units that can be combined to

form a reconfigurable multi-stage ALU (arithmetic logic unit). This accelera-

tor, which we call a Specialized Functional Unit (SFU), can execute ISEs from

a variety of applications. The efficiency of the proposed SFU is evaluated by

integrating into the processor pipeline in parallel with the ALU. The SFU is

accessed using a non-traditional instruction fetch and decode mechanism, which

we call a Just-in-Time Customizable (JITC) core. When an opcode matching an

accelerator function is read from the instruction cache, the traditional fetch-and-

decode mechanism is suppressed, enabling execution of an ISE on the SFU. After

the evaluation of the SFU, we will propose a novel specialized CGRA (S-CGRA)

design using the SFU as its primary processing element. The proposed S-CGRA

is further coupled with multiple cores to complete our final customizable MPSoC

system design.

4.2 SFU as the Primary Processing Element

As mentioned, our first step is to propose an efficient design for the primary

processing element in the reconfigurable coprocessor. The processing element is

used to accelerate commonly occurring expressions encapsulated as ISEs.

4.2.1 Analysis of ISEs

We first analyze the ISEs found across a range of applications to identify the

characteristics that lead to performance acceleration. With the analysis results

Section 4.2.5 describes the experimental setup used for this analysis.

Figure 4.2 shows the dataflow graph (DFG) representing an ISE with four

inputs, two outputs, and six arithmetic and logical operations. The ISE obtains

speedup by either exploiting instruction- level parallelism (ILP), or chaining

consecutive operations in a single-cycle. The out-of-order processors with dy-

namic instruction scheduling can extract ILP automatically, but with high area

overhead and energy consumption; alternatively, a compiler can extract ILP and

schedule operations statically as in a VLIW architecture. Operation chaining,

in contrast, depends on the frequency of the processor; for the DFG in Figure

4.2, a multiply-accumulator could execute the multiply-add portion of the ISE

in one cycle, while a chain of arithmetic and logic operators could execute the

shift and logical-AND operations in a second cycle. The fundamental question

that we answer in this section is whether parallelism or operation chaining has

a stronger correlation with the speedup obtained by an ISE.

40

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

*

Input: R1

+ >>

&

>>

Output: r4

Output: r5

Input: Imm 3 Input: R2 Input: R4

>>

Figure 4.2: Dataflow Graph (DFG) of an ISE

Exploring Inter-Operation Parallelism

ILP extraction and exploitation is fundamental to computer architecture re-

search. In terms of ISE identification, increasing the I/O bandwidth to/from

an ISE leads to wider dataflow graphs with higher ILP [10, 8, 9, 131]; however,

prior work [31, 29, 131] has reported that up to four inputs and two outputs are

sufficient to achieve near-optimal speedup for ISEs in most cases. Therefore, we

study ISEs with at most four input and two output operands in this work. The

average parallelism of an ISE is defined as

avarage parallelism =
of total operations

critical path length

where the critical path length is the number of operations along the longest path

in the DFG. For example, in Figure 4.2, the critical path length is 5 and the aver-

age parallelism is 6/5 = 1.2. The average parallelism captures the ILP available

within ISEs, i.e., the average number of operations that can execute in parallel

per cycle. The maximal parallelism is the maximum number of DFG operations

executing concurrently using the As Late As Possible (ALAP) scheduling pol-

icy. For example, in Figure 4.2, with an ALAP scheduling, the ADD operation

executes in parallel with the first shift, so the maximal parallelism for the ISE

is 2.

We analyzed the average and maximal parallelism of ISEs found in 21 Mibench

and Mediabench applications. The average parallelism is close to 1, and the

maximum parallelism never exceeds 2, across all of the applications as shown

in Figure 4.3. This confirms that ISEs with up to 4 inputs and 2 outputs have

limited ILP, and at most two parallel functional units should suffice to exploit

this limited parallelism.

41

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

0
0.5

1
1.5

2
2.5

M
ax

im
al

 p
ar

al
le

lis
m

0
0.2
0.4
0.6
0.8

1
1.2

Av
er

ag
e

pa
ra

lle
lis

m
 Mediabench Mibench

Mediabench Mibench
(a) Average parallelism

(b) Maximal parallelism

Figure 4.3: Parallelism explorations for Mediabench and Mibench benchmark
suits

Exploring Critical Path Length

0.0

0.4

0.8

1.2

1.6

2.0

2 2.2 2.4 2.6 2.8 3 Sp
ee

du
p

pe
r

cu
st

om
 in

st
ru

ct
io

n

Average critical path length (No. of operators)

Figure 4.4: Correlation between critical path length & speedup

Impact of operation chaining on speedup To investigate the impact of op-

eration chaining on the speedup of ISE, we measure and report the ISE’s average

critical path length. This metric is closely related to the number of dependent

operators that could be chained and executed in one cycle. Figure 4.4 shows the

correlation between the average critical path length and the average speedup per

ISE. Each point in the graph corresponds to one particular application from the

set of 21 Mibench and Mediabench applications. The linear trend line establishes

42

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

a linear correlation between the two variables. Thus, ISEs with a longer critical

path tend to achieve the highest speedups.

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

(a) Two -operator chain

(b) Three -operator chain

Hot sequence

Cold sequence

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Figure 4.5: Hot sequences in operation chaining

Hot sequences in operation chaining Our objective is to design an SFU

that exploits operation chaining; however, the SFU cannot possibly support

every possible operation sequence. Thus, the first step is to identify “hot” se-

quences, i.e., those that appear frequently in ISEs across a wide variety of ap-

plications. The primary objective of the SFU is to execute the hot sequences

efficiently.

First, we classify the operations into five groups: arithmetic operations (A

type), logical operations (L type), shift (S type), wire (W type), and multiplica-

tion operations (M type). W type operations are essentially move instructions

that are converted to wiring when synthesized as part of an ISE. All operations

belonging to each class have approximately equal latencies, and can be imple-

mented using a single physical execution block. A sequence is hot if it occurs

above a certain threshold; we use a threshold value of 5%, which captures the

most frequent sequences. We restrict the number of operators per sequence to

3, as the average critical path length does not exceed 3 (see Figure 4.4).

Figure 4.5 shows the hot sequences from an analysis of the 21 Mibench and

Mediabench applications. Only a handful of operator chains (bars filled in black)

appear frequently: there are five hot two-operator sequences and six hot three-

43

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

operator sequences. The frequency of occurrence of each sequence is averaged

across the benchmarks; certain sequences may occur frequently in some, but not

all, of the applications. For example, the sequence MWA has a frequency of 66%

in the Tiff2bw application; however it only has 5% frequency averaged across

all benchmarks.

4.2.2 SFU Design

The SFU is designed to support the 11 hot sequences that appear frequently in

ISEs across the 21 MiBench and MediaBench applications that we analyzed in

the preceding section. The hot sequences are: AA, AS, LL, SA, SL, ASA, LLS,

LSA, SAS, MWA, WMW. The SFU is designed to execute each of these hot

sequences in one clock cycle. We build up the SFU incrementally, starting from

a basic functional unit, described next.

Basic functional unit (BFU) Figure 4.6(a) illustrates a basic functional

unit, which is an ALU followed by a shifter. The BFU supports five operation

sequences: A, L, S, AS, and LS. To support sequences A and L, the shift length is

set to zero; to support sequence S, the ALU performs an identity operation (e.g.,

OR identical inputs) on the input operand. A regular expression that enumerates

all possible sequences supported by the basic functional unit is (A | L | ε)(S | ε)
where ε is the empty string.

Fused basic functional units The basic functional unit can only support

one (AS) out of eleven hot sequences. The fused basic functional unit chains

two basic functional units sequentially along with a bypass line, as shown in

Figure 4.6(b). Using regular expression notation, the fused basic functional unit

supports sequences ((A | L | ε)(S | ε))2, which encompasses all hot sequences

that do not include a multiplier.

Complex functional unit The two remaining sequences are MWA, WMW,

where W selects the upper- or lower 32-bit portions of the 64-bit output of a

32 × 32-bit multiplier; this is done using multiplexers and control signals. The

remaining subsequence, M(A | ε), is a fused multiply-addition operation that

can be implemented using an MAC unit. We refer to this operator as a complex

functional unit, as shown in Figure 4.6(c). The rationale for including the ALU

and the shifter in the complex functional unit is to provide additional parallelism

in the SFU as explained next.

44

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

(a) Basic Functional Unit
Register

Shift

ALU
Fused

Multiply
Add

(c) Complex functional unit
with fused multiplication-addition

BFU
with

Bypass

(d) Complete specialized functional unit
(SFU)

Complex
FU

BFU

Inputs from Register File

Outputs to Register File

Dout

I3I1 I2 I4

O1 O2

RcontrolInputs Inputs Inputs

Shift

ALU

Register

Shift

ALU

Register

RcontrolInputs Inputs Inputs

Basic Functional Unit
with

Bypass

Basic Functional Unit

Routing through
for sequences, which

start with 'S'

Routing through
with

0 shift

Routing through
for '(A|L)(A|L)', 'S(A|L)'

and '(A|L)S(A|L)'

Exit 1 for '(A|L)S'

Exit 2 for others

(b) Fused basic functional units
with enriched routes

Bypass line for
functional unit fusion

Shift

Register

Dout

ALU

RcontrolInputs Inputs Inputs

Routing through
with

identity operation

Routing through
for '(A|L)(A|L)',

and '(A|L)(A|L)S'

Sequencer

Control
register #1

C
o
n

tr
o
l
S

ig
n

a
ls

Control
register #2

Control
register #M

...

Configuration

Configuration

Configuration

Figure 4.6: Design of the Specialized Functional Unit (SFU)

Component Area(μm2) delay(ns)

Basic Functional Unit 9856.7078 0.7231

Fused Basic Functional Unit 27913.4943 1.5424

Complex Functional Unit 49780.5275 1.6379

SFU 80502.7823 1.6499

Table 4.1: Area and delay for the SFU components

45

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

Specialized functional unit (SFU) We synthesized the different compo-

nents of the SFU in Synopsys Design Compiler with PDK 45nm standard cell

library. Table 4.1 provides the area and delay values for the components. We

observe that the fused basic functional unit in Figure 4.6(b) has a latency of

0.7231ns while the complex functional unit supporting multiplication in Figure

4.6(c) has a latency of 1.6379ns. Therefore, we form the SFU by placing a

complex functional unit in parallel with a fused basic functional unit, without

extending the critical path. This dual-path architecture supports the maximum

parallelism of 2 that is present in the ISEs. Functional units within the SFU are

fully connected, and each internal functional unit has access to four input and

two output registers. Fig. 4.6(d) shows the SFU architecture, which supports

single-cycle execution of all eleven hot sequences at 606MHz clock frequency and

0.08mm2 area.

The SFU requires 62 bits for control signals. The fused basic functional

unit has six 8-input multiplexers, and the complex functional unit has three

8-input multiplexers; as each 8-input multiplexer requires 3 control bits, the

SFU requires 27 bits to select the inputs to the various internal functional units.

With two 4-input multiplexers at the output, 4 additional bits are required for

output register selection. The SFU has three shifters, each of which has a 2-

input multiplexer driving one of its inputs, so 3 additional bits are required to

control these multiplexers. 15 bits are required for register storage (5 bits per

functional unit), 12 bits for operation control (each ALU and MAC supports up

to 16 operations, so 4 control bits for each are required), and 1 bit is required

for bypass selection within the fused basic functional unit. This adds up to 62

control bits in total.

Multi-cycle execution of ISE on SFU The SFU supports single-cycle ex-

ecution of most ISEs whose critical paths consist of up to 3 operators. Indeed,

almost 90% of the ISEs can be executed in one cycle on the SFU. But the SFU

can also support multi-cycle execution of ISEs with longer critical paths through

reconfigurations. Reconfiguring the SFU involves changing the values of the 62

control bits each cycle. The compiler has to exploit the reconfiguration ability

of SFU, which we will detail in Section 4.2.4. We observe that almost 99.77% of

the ISEs can be executed within 4 cycles.

4.2.3 JITC Architecure

This section describes how to integrate one or more SFUs into a processor

pipeline to achieve Just-in-Time Customization. To simplify discussion, we as-

46

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

sume a simple 5-stage, single-issue in-order RISC pipeline. Figure 4.7 shows the

modified pipeline structure.

Instruction Decode Execute Memory
Write
Back

Instruction
Cache

ISE #1 configuration cycle 1
ISE #2 configuration cycle 1

...
ISE #N configuration cycle 1

...

Control Memory

Sequencer

Inputs

Write
Back

Values

Data Forwarding Path

ISE #1 configuration cycle 2
ISE #2 configuration cycle 2

...
ISE #N configuration cycle 2

ISE #1 configuration cycle M
ISE #2 configuration cycle M

...
ISE #N configuration cycle M

ISE ID
(IID)

FU
with
Skip

Complex
FU FU

with
Partial
Skip

Input Register
Values

Output Register
Values

SFU
Selection

C
o

n
tr

o
l
S

ig
n

a
ls

Instruction
Fetch

.

.

.

Control Register
#1

2-entry
Instruction Buffer

Control Register
#2

Control Register
#M

Figure 4.7: Just-in-Time Customizable (JITC) processor architecture: Integra-
tion of SFUs in the pipeline datapath

ISE Encoding and Decoding We assume 32-bit ISA with 4-bits per register

encoding corresponding to a 16-entry register file. As shown in Figure 4.8(a), 12

bits are required to encode two source and one destination registers and 8-bit

opcode supports 256 instructions.

0
RS3/Imm3 RS4 RS2/Imm2 RS1/Imm1

31 23 15 7
First 32-bit encoding format Second 32-bit encoding format

(a) Regular instruction format

(b) ISE format

0 3 15 23 31 7
RD RS2 RS1 Opcode Imm

11

IID Opcode

0 31 23 7 3

RD2 RD1
17

Figure 4.8: ISE encoding format

With a 32-bit instruction format, it is necessary to encode ISEs using two

consecutive 32-bit words, as shown in Figure 4.8(b). The first 32-bit is used to

encode 8-bit Opcode and two 4-bit destination registers. We can support at most

one ISE if one of the opcodes (out of 256) is reserved for custom instructions.

To extend the number of ISEs, we use 10 unused bits to encode the IID or

ISE ID. When the opcode signifies a ISE, the IID field indicates which ISE it

is. This allows us to encode at most 1024 ISEs. The second 32-bit encodes

the source registers and/or immediate values. Note that we support ISEs with

different addressing modes. For example, an input operand can be a register

47

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

index or an immediate value. As at least one input operand should be a register,

we assume the first input operand is always a register index; the other three

are either registers or immediate. So we have four addressing modes: RRRR

(all registers), RRRI (one immediate), RRII (two immediates), and RIII (three

immediates), which can be supported by reserving four opcodes in the ISA.

To support ISE decoding, we require a 2-entry instruction buffer between the

fetch and the decode stage so that the decoder has access to the entire 64-bit

custom instruction. When the decoder detects a ISE opcode, it decodes the

second half of the ISE in the buffer for the source operands.

Multi-banked control memory ISEs that execute on the SFU require more

control signals than regular instructions that access the ALU and/or memory.

We store the control signals for each ISE in an on-chip control memory that

is accessed in parallel with the instruction decode phase of the pipeline when

an ISE is decoded. The IID field is used as an index into the control memory.

The control memory consists of M banks. where the ith bank stores the control

signals required for the execution of an ISE on the SFU in the ith cycle (M = 4 in

our design). The banks are accessed in parallel to retrieve all the control signals

of an ISE. With 10-bit IID field, storage space for 1024 entries is required, where

each entry holds 62 bits; the approximate size of the control memory is 32KB.

Additionally, the control memory needs to store the number of cycles required to

execute each ISE. The number of cycles and the control bits read from the control

memory are written into the SFU’s sequence and control registers, respectively.

Execution of ISEs on SFU Only one SFU needs to be integrated into a

single-issue in-order pipeline; however, for multi-issue out-of-order execution, our

experiments confirm that four SFUs achieve near-optimal acceleration. When

all of the input operands to an ISE are ready, the ISE can start execution on the

SFU. When the ISE execution inside the SFU completes, the output operands

are written to the register file and the SFU becomes free to execute another ISE.

4.2.4 Compiler Support

ISE identification and selection Our JITC architecture needs compiler sup-

port to automate the process of identifying the ISEs and mapping them onto the

SFU.

Given an application, we first detect the ”hot” basic blocks through profiling.

The DFGs of these hot basic blocks are then analyzed to identify all the ISE

candidate patterns [132]. We impose the restriction of at most 4 input operands

48

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

and 2 output operands per candidate pattern as noted earlier [31, 29, 131]. We

also do not allow memory accesses and control flow operations within an ISE.

Once all the candidate patterns have been identified, we select a subset of these

patterns such that (a) each node in the DFG of a basic block is covered by

at most one candidate pattern, and (b) the cumulative speedup of the selected

patterns is maximized. The speedup of a pattern is defined as tsw
tcustom

, where tsw

is execution cycles on the base processor core and tcustom is the execution cycles

when the pattern is implemented in ASIC.

Mapping algorithm We employ a greedy heuristic for mapping of an ISE on

the SFU. Our objective is to minimize the number of cycles required to execute

the ISE on the SFU. We borrow the notion of Routing Resource Graph (RRG)

[91] from the FPGA domain to represent the resources of SFU in different cycles

and the connections among them. The connections are generated such that the

components of the SFU in one cycle are connected to the components of the

SFU in the next cycle. For example, the RRG in Figure 4.10(a) shows how

the components of the SFU in cycle 1 are connected to the SFU in cycle 2.

Basically, each of the three functional units in cycle 1 is connected to any one of

the three functional units and the output registers in cycle 2, which means that

the value generated by one functional unit could be read by any functional unit

or stored in the output registers in the next cycle. Note that the input registers

are connected to the functional units in the same cycle as their values could be

read within the period of one cycle. Similarly, the connection between two fused

functional units also appears in the same cycle.

Algorithm 4 presents the pseudo-code of our mapping algorithm. We first

assign level values to each of the nodes in the DFG according to an As Late As

Possible (ALAP) scheduling policy. Note that any advanced scheduling policy

that helps to align the predecessors close to their successors can be adopted

here. However, choosing the best policy is not the main focus here. The nodes

(functional units) in the RRG are also ordered according to their time cycle.

We also ensure that the two basic functional units (BFU) have higher priorities

compared to the complex functional unit within a cycle.

The greedy heuristic maps the nodes of the DFG to the RRG in the level

order. Consider a node u in the DFG. Suppose we are mapping a node u in the

DFG that has predecessors v1, v2, . . . vx. We identify the closest common free

successor functional unit of Map(v1),Map(v2), . . . ,Map(vx). Map(v) stands

for the functional unit to which operator v has been mapped to. We simply

map u to this free functional unit. If u has no predecessors, then the chosen free

49

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

Algorithm 4: Mapping algorithm
Input: The data flow graph (DFG) of the ISE and the routing resource graph (RRG) of the

SFU.
Output: The generated configuration if mapping is successful.

1 Begin
2 max level = Assign level ALAP(DFG);
3 Initialize(RRG);
4 For i ← 1 to max level do
5 For All each operator u in DFG do
6 If u→level == i then
7 successful = 0;
8 If u has only one immediate predecessor v then
9 If u is v’s only immediate successor then

10 If Map(v)→Res(u) == Available and Map(v)→Res(v) is
connected to Map(v)→Res(u) then

11 Map(v)→component(Res(v)) = Occupied ;
12 successful = 1;

13 Endif

14 Endif

15 Endif
16 If successful == 0 then
17 For cycle = 1 to 4 do
18 If successful == 1 then
19 break;
20 Endif
21 For all functional unit n in RRG(cycle) do
22 If n→status == Free and n→component(Res(v)) ==

Available then
23 Feasible = 1;
24 For each immediate predecessor v of u do
25 If Map(v) is not connected to n in RRG then
26 Feasible = 0;
27 Endif

28 Endfor
29 If Feasible == 1 then
30 n→status = Mapped ; n→component(Res(v)) =

Occupied ;
31 successful = 1;
32 break;

33 Endif

34 Endif

35 Endfor

36 Endfor

37 Endif
38 If successful == 0 then
39 Return FAIL;
40 Endif

41 Endif

42 Endfor

43 Endfor
44 Return Gen conf(DFG, RRG);

45 End

functional unit would be the one with minimal cycle time stamp.

The only special case we need to take care of is when u has only one immediate

predecessor v and v has u as its only immediate successor. In this case, we have

to explore the components within the functional unit Map(v). Suppose Res(u)

stands for the component resource u requires. If in functional unit Map(v),

50

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

there is an available component Res(u) and its component Res(v) is connected

to component Res(u), then we can directly map u to functional unit Map(v).

This takes care of operator chaining.

The process ends once all the nodes of the DFG have been mapped to the

RRG. In the rare event that the mapping fails because a pattern requires more

than 4 cycles, the pattern cannot be accelerated using our SFU and is eliminated

from further consideration. Once the mapping has been finalized, we generate

control signals corresponding to each cycle of execution of the DFG on the SFU.

*

Input: R1

+ >>

&

>>

Output: r4

Output: r5

Input: Imm 3 Input: R2 Input: R4

>>

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 4.9: Level order assignment for DFG nodes with ALAP scheduling

(b) Final mapping (a) Routing Resource Graph (RRG) of SFU

… t (cycle)

Cycle 1

Cycle 2

ycle 1
Imm3

Imm3 R3 R2 R1

R4

Output1: R4 Output2: R5 t (cycle)

Cycle 1

Cycle 2 &
>>

>>

>>

R3 R2 R1

*
+

Imm33

ycle 1 >>

3 R3R33 R22R22 R11

*
+

Imm333 R3R3 R2R2 R1R

R44

ycle 2 &&
>>

>>

Figure 4.10: Routing Resource Graph (RRG) of the SFU and the final mapping
of the DFG to the RRG

Mapping Example We now show an example of how the DFG in Figure 4.2

is mapped to the RRG of SFU. First, we assign level order to the DFG nodes

using ALAP scheduling policy; the results are shown in Figure 4.9. Then, we

try to map all the operators in DFG level by level from level 1 to level 5. The

51

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

first operator we encountered is a multiplication; so we find the first free complex

functional unit with the lowest cycle time, which is the complex functional unit

in cycle 1 and map this multiplication to the multiplier component of it.

We continue the mapping in level 2 and find an addition operator to be

mapped. The addition has only one immediate predecessor, which is the mul-

tiplication we just mapped and the multiplication has this addition as its only

immediate successor. So we can try to map this addition to the same complex

functional unit. Fortunately, we find the MAC inside the complex functional

unit can support this mapping with the connection requirement satisfied.

The next operator in level 2 is a shift. We simply find the first free functional

unit in cycle 1 and map it there. Now we continue to map the and operator in

level 3. The and operator has two predecessors; so the earliest common successor

should be a functional unit in cycle 2. So we pick the first basic functional unit

in cycle 2 as it has higher priority. In the next level, the operator shift can be

mapped to the same functional unit as the and operator. Finally, another shift

operator in level 5 is mapped to the second basic functional unit in cycle 2 as it

is the closest one. The final mapping is shown in Figure 4.10(b).

Binary executable and configuration generation Once the compiler de-

cides on the mapping of an ISE to the SFU, it generates the corresponding

control signals for the ISE. The compiler then generates the binary executable

that replaces, for each occurrence of a candidate pattern, a sequence of instruc-

tions from the base ISA with the corresponding custom instruction. Finally, the

control signals are loaded into the control memory before the application initi-

ates execution. Note that as the subset of ISEs selected is different for different

applications, the content of the control memory is different for each application.

In other words, the JITC architecture achieves flexibility by changing the content

of the control memory and thereby instantiating different custom instructions

per application.

4.2.5 Experimental Evaluation for SFU Design

Experimental Setup We evaluate the performance of JITC core compared to

ASIPs [10, 8, 64, 103, 131, 132]. As mentioned earlier, we selected 21 benchmark

applications from MiBench [55] and MediaBench [82] to derive the design of the

SFU. Here we use 14 additional applications from SPECInt, HPEC, Olden, and

Encrypt benchmark suites to perform cross validation of the SFU design.

For a fair comparison, we design both the ASIP and the JITC core by aug-

menting a RISC-like baseline core [11] with no accelerator. For each of the 35

52

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

applications, we custom design an ASIP following the standard ISEs identifica-

tion and selection methodology [10, 8, 103, 131, 132]. That is, we design a total

of 35 individual ASIPs, where each ASIP is capable of accelerating the specific

application it is design for.

We assume that the clock period of the baseline core is determined by the

latency of the MAC unit [10, 131], which also has roughly the same latency as a

multiplier [116]. All the designs are synthesized using Synopsys Design Compiler

version E-2010.12-SP4 with Free PDK 45nm standard cell library. The MAC unit

has a latency 1.58ns; thus the frequency of the baseline core and all the ASIPs

are set at 633MHz. JITC core, however, has a frequency of 606MHz constrained

by the SFU latency as shown in Table 4.1. Further optimizations could lead to

higher frequency of JITC core.

Following prior works [31, 29, 131], we assume that each ASIP can support

ISEs with at most 4 input and 2 output operands, and cannot include any

memory or control operations. The latency of an ISE in ASIP is obtained by

dividing the latency along the critical path by the clock period of the baseline

core. The area of each individual ASIP is restricted to the area of the JITC

core. This area restriction leads to only 1.5% average performance degradation

compared to the theoretical speedup of an ASIP with unlimited area.

We modified the SimpleScalar simulator [11] to integrate the SFUs and corre-

sponding control memory in the pipelined datapath. We modeled both in-order

and out-of-order pipelines for JITC core and the ASIPs. For the ASIPs, we as-

sume that all ISEs are implemented as dedicated functional units in the pipeline.

We extended the instruction set to support the ISE formats, and modified the

gcc cross-compiler for SimpleScalar to identify the ISEs for each application and

to generate binary executables that include calls to the ISEs. Table 4.2 shows

the configurations for both in-order and out-of-order micro-architecture in Sim-

pleScalar simulator setup. The configuration parameters are chosen to closely

match realistic in-order (ARM Cortex-A7) and out-of-order (ARM Cortex-A15)

embedded processors.

Results for profiling benchmarks Let us fist focus on performance com-

parison with profiling benchmarks (MiBench, MediaBench) used to derive the

design of the JITC core (left of Figure 4.11). For in-order pipeline, Figure 4.11(a)

shows the performance of JITC core and the ASIPs compared to the baseline

core with no accelerator. The speedup is defined as tsw
tcustom

where tsw is execution

cycles on the baseline core and tcustom is the execution cycles on ASIP or JITC

core. We also plot the theoretical speedup for ASIPs — the speedup achievable

53

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

In-order architecture Out-of-order architecture

Pipeline 1 way 4 ways

RUU size 2 entries 128 entries

IFQ size 4 entries 16 entries

LSQ size 2 entries 16 entries

L1 I-Cache 32KB, 2-way, 1 cycle hit

L1 D-Cache 32KB, 2-way, 1 cycle hit

Unified L2 512KB, 4-way, 10 cycle hit

Control memory 32KB

Table 4.2: Simulated processor configurations

for an ASIP without any area constraint. JITC architecture achieves an average

speedup of 1.184X, which is 97.40% of the speedup achieved by ASIPs (1.216X)

and 94.93% of the theoretical speedup (1.234X). The slight loss in performance

of the JITC core comes from two sources: the reduced clock frequency and multi-

cycle execution of 10% ISEs on the SFU. The remaining 90% ISEs can execute in

single-cycle on the SFU. More importantly, JITC has huge advantage in terms of

flexibility: we need a different ASIP to accelerate each application, while a single

JITC core can accelerate all the different applications with minimal performance

loss.

For out-of-order pipeline, we use 4-way decode, issue, execute, and commit.

As expected, we need at most 4 SFUs in this case to achieve maximal speedup.

For out-of-order pipeline, Figure 4.11(a) shows the performance of JITC core

and ASIP compared to the baseline processor with no accelerator. Here JITC

achieves an average speedup of approximately 1.230X across all benchmarks in

Mediabench and Mibench, which is 97.54% of the speedup achieved by the ASIP

(1.262X) and 95.98% of the theoretical speedup (1.282X).

Results for validation benchmarks The benchmarks from MiBench and

MediaBench were used to derive the design of JITC core. Our objective, how-

ever, is to design a flexible architecture that can support any contemporary

or emerging application domains. In order to stress test the design of our ar-

chitecture, we attempt to accelerate applications from benchmark suites with

completely different characteristics compared to the embedded space. We chose

SPECInt [98], Encryption, Olden, and HPEC [110] benchmark suits for this

evaluation. HPEC is derived from HPCC [88, 40] and PCA [81] both targeting

general-purpose high-performance computing.

These validation results are shown in the right of Figure 4.11. JITC still

achieves similar speedup to ASIPs, around 96% on an average for both in-order

54

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

��

����

����

����

����

����

����

���	

���

����
����

�����

�����

���������

���������

������

������

�������

�������

����� ��

! �"�
#�$$�%�

#�$$�&�%"

#�$$����"�

����'�&"(��"))

����'"()"&��

�)��$��*

+����"�)

!*"
�&���

,-�&"��

!
��
�
�
./
�0
�&
��
&1

."1�/�0�&��&�"&�*����� &�

��������	
 �����	

��������	
���������

2/#�
34�����%)�0&������&
�"4��")0����

��
����
����
����
����
����
����
���	
���

�����5�

�	��-&

�
����$

����-���4

�� �" 6�$�&
�����&�

���
��&�����&

����
���

+��
���

,-�&"��

!
��
�
�
./
�0
�&
��
&1

������ ��� ����� �	��
����������
���������

2/#�
34�����%)�0&������&
�"4��")0����

��

����

����

����

����

����

����

���	

���

����
����

�����

�����

���������

���������

������

������

�������

�������

����� ��

! �"�
#�$$�%�

#�$$�&�%"

#�$$����"�

����'�&"(��"))

����'"()"&��

�)��$��*

+����"�)

!*"
�&���

,-�&"��

!
��
�
�
.7

 �
0�
$0
�&
��
&1

.%1�7 �0�$0�&��&�"&�*����� &�

��������	
 �����	

��������	
���������

2/#�
34�����%)�0&������&
�"4��")0����

��
����
����
����
����
����
����
���	
���

�����5�

�	��-&

�
����$

����-���4

�� �" 6�$�&
�����&�

���
��&�����&

����
���

+��
���

,-�&"��

!
��
�
�
.7

 �
0�
$0
�&
��
&1

������ ��� ����� �	��
����������
���������

2/#�
34�����%)�0&������&
�"4��")0����

Figure 4.11: Speedup of JITC and ASIP over the baseline processor and the
theoretical speedup for ASIP with unlimited area

55

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

��

����

����

����

����

����

����

���	

� � � � � � 	

��
��
��
�

��	��
����

��������	

�����

�����

������

������

�����

�����

���������

���������

�������

��������

��

��	�

��	�

��	�

��	

��	!

��	�

��	"

� � � ! � " #

��
��
��
�

��	��
����

�����	

$�������

��%�

&�

�'�

&�

�(�'%

&�

����%�

���)�(%*�%++

���)�(%*+%(��

$+��
�,

-����%�+

�,%

�-���

��

��	�

��	�

��	�

��	

��	!

��	�

� � � ! � " #

��
��
��
�

��	��
����

����������	��	
���
$��(�./+���1

��./+���1

��(�����(./+���1

���.0��(11

���.0��(11

-� .0��(11

��!.0��(11

��

��	�

��	�

��	�

��	

��	!

� � � ! � " #

��
��
��
�

��	��
����

������
�������
�� 	�2��.����1

�"!	3�(.����1

�#�	��
.����1

��.����1

�%.����1

��
�(.����1

Figure 4.12: Experimental evaluation for the optimal number of SFUs in out-of-
order execution

56

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

and out-of-order executions. This confirms that even though the JITC core

was designed to accelerate embedded applications, the design is flexible enough

to support a completely different application domain, e.g., SPEC and HPEC.

However, for these benchmarks, the speedup achieved using customization (ASIP

or JITC) is limited to around 1.10X. This is because these benchmarks have lower

ratio of ALU operations and smaller basic blocks [17], characteristics that are

not ideal for customization.

Optimal number of SFUs in out-of-order execution As mentioned, in

our experimental evaluations, four SFUs are used in the out-of-order execution.

We elaborate the setup by varying the number of SFUs to be integrated into

the out-of-order processor pipeline. Figure 4.12 shows the experimental results

for the performances when different number of SFUs are used. It is shown that

performance will increase when number of SFUs is increased. Peak performance

will be achieved when four SFUs are used. In fact, for most of the applications

we evaluated, 2 to 3 SFUs are sufficient to achieve 99% of the maximal speedup.

This is because there is only limited amount of parallelism to exploit across

multiple ISEs.

4.3 S-CGRA Design using SFU

Bus arbitrator

4x4 S-CGRA

SFU

62
 c

on
tro

l b
its

North
2 sources

West
2 sources

East
2 inputs

South
2 sources

Bus
2 sources

Data bus

Figure 4.13: A 4×4 S-CGRA design

We have evaluated the efficiency of the SFU design and now we use the

proposed design to build the reconfigurable coprocessor. We propose our novel

specialized CGRA or S-CGRA by arranging a set of SFU in a two-dimensional

57

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

topology. A 4×4 S-CGRA is shown in Figure 4.13. As mentioned in Section

4.2.2, each SFU has four inputs and two outputs. The four inputs are selected

from ten sources produced by its four neighbors and the data bus. The data bus

in each row is shared among all the SFUs in that row through an arbitration

policy. The arbitrator requires two bits for four SFUs in each row. The data bus

is designed to be capable of carrying both the two outputs from a single SFU.

Assuming each output is 32-bit, then the width of the data bus is 64-bit. To

select ten sources as four inputs, a 16×4 multiplexer with 20 configuration bits

is required. So, we have

#Network conf bits = 20 ∗#SFUs+ 2 ∗#Rows

where #Netowrk conf bits is the number of bits required for network config-

uration, #SFUs is the total number of SFUs, and #Rows is the total number of

rows in the S-CGRA. For a 4×4 S-CGRA, the number of extra bits is 328 bits.

The total number of configuration bits would be the extra bits plus the

number of bits required for functional configurations.

4.4 Customizable MPSoC Architecture with Shared

S-CGRA

By sharing the proposed S-CGRA with multiple cores, we come up with our

novel customizable MPSoC architecture.

S-CGRA

Runtime Management Engine

DM
A

co
nt

ro
lle

r On-chip
cofiguration

memory y
On-chip data

memory

Core1 Core2

SFU

62
 c

on
tro

l b
its

North
2 sources

West
2 sources

East
2 inputs

South
2 sources

Bus
2 sources

Figure 4.14: Proposed multi-core architecture with shared CGRA

The full system overview is shown in Figure 4.14. A runtime management

engine is designed to synchronize the communications between the cores and

the CGRA coprocessor. At runtime, different computationally intensive loop

kernels could be executed by offloading to the CGRA. In sequential execution

mode, the core will be suspended and listening on the acknowledgement sockets.

58

CHAPTER 4. S-CGRA: CUSTOMIZABLE MPSOC DESIGN

An on-chip configuration memory is used to store all the configurations required

for the loop kernels. Any local data to be processed by the loop kernels would

be stored in an on-chip data memory if necessary. Once a core offloads loop to

CGRA by sending an execution request to the runtime management engine, the

engine will trigger the DMA controller to load the corresponding configurations

from the on-chip configuration memory and start the execution in CGRA. The

configuration loading is done by writing each context register of the functional

unit in the CGRA. When the execution in CGRA is finished, the management

engine will acknowledge the completion to the requesting core, which will be

resumed afterwards.

4.5 Chapter summary

In this chapter, we first propose a specialized functional unit design by revisiting

the processor customization problem in the presence of reconfigurability. We

conduct extensive experiments to investigate the intrinsic properties of the ISEs.

It is revealed that the ISEs exploit limited parallelism, and there exist many

common hot sequences of operations within custom instructions from multiple

application domains. The specialized functional unit is then designed to fully

explore the speedup benefits by supporting the required parallelism and the hot

sequences. We confirm the efficiency of the proposed specialized functional unit

by integrating it into the processor pipeline to create a just-in-time configurable

processor. The instrumented processor is then proved to be able to provide

ASIP-like performance. By using the proposed SFU as the primary process-

ing elements, we create a specialized CGRA, namely S-CGRA, to support the

efficient executions of the computational intensive loop kernels. Finally, the S-

CGGA is further shared among multiple cores to create a customizable MPSoC

system.

59

Chapter 5

Compilation of Computational

Kernels on S-CGRA

In the previous chapter, we have designed a dynamic customizable MPSoC archi-

tecture called S-CGRA. In this chapter, we will detail the compilation supports

in the MPSoC design automation tool. Thus, in this chapter, we will focus

on the compilation technique for the S-CGRA. However, as S-CGRA is a spe-

cialized version of CGRA, we first revisit the application mapping problem on

CGRAs. Then we consider the specialized functional units (SFUs) of S-CGRA

by developing a pre-processing step, which helps to cluster operations that could

be executed in the SFUs.

5.1 Overview

CGRAs are promising alternatives between ASICs and FPGAs. Traditionally in

embedded systems, compute intensive kernels of an application are implemented

as ASICs, which have high efficiency but limited flexibility. Current generation

embedded systems demand flexibility to support diverse applications. FPGAs

provide high flexibility, but may suffer from low efficiency [78]. To bridge this

gap, CGRA architectures, such as CHESS [90], MorphoSys [115], ADRES [93],

DRAA [84], FloRA [83] etc., have been proposed. Typically these architectures

arrange coarse-grained functional units (FUs) in a mesh structure. The FUs

can be reconfigured by writing to a control (context) register on per cycle basis.

Figure 5.1 shows a 4×4 CGRA with FUs connected in a mesh topology; each

FU has a local register file and a configuration cache.

The compute-intensive loop kernels are perfect candidates to be mapped

to CGRAs containing multiple FUs targeting high instruction-level parallelism.

60

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

FU

ALU RF

Reg

Read from neighbors

Write to neighbors

MUX MUX

C
on

te
xt

 R
eg

is
te

r

D
at

a
m

em
or

y

configuration cache

Figure 5.1: A 4×4 CGRA

Some CGRA mapping algorithms [92, 12, 60, 43, 35, 48] are inspired by com-

pilation techniques for VLIW architectures as well as FPGA synthesis. For

example, CGRA mapping algorithms adopt placement and routing techniques

from FPGA synthesis domain and software pipelining based techniques such

as modulo scheduling from VLIW compilation process. Note that the inherent

structure of the CGRAs is very different from both FPGAs and VLIW architec-

tures. More concretely, the connectivity among the functional units in CGRAs

is usually fixed unlike FPGAs where the interconnections can be reconfigured.

Thus, the mapping algorithms based on FPGA place and route techniques may

find it challenging to identify feasible routing paths in fixed interconnect struc-

ture of CGRAs. Similarly, unlike VLIW architectures where all the FUs typically

share a common register file, the FUs in most CGRAs have limited and explicit

connections to the register files. Thus, it is not prudent to perform register

allocation as a post-processing step as is commonly done in VLIW scheduling.

Instead, register allocation should be integrated in the early stage with schedul-

ing (place and route) to achieve quality mapping.

In this work, we focus on developing an efficient CGRA mapping algorithm

that generates high quality solution with fast compilation time. To first for-

malize the CGRA mapping problem, we notice that many recent works [119,

5, 19, 48, 49] follow subgraph homeomorphism [42] formalization. The idea is

to test if the data flow graph (DFG) representing the loop kernel is subgraph

homeomorphic to the modulo routing resource graph (MRRG) representing the

CGRA resources and their interconnects. Homeomorphism formulation allows

subdivision of the DFG edges when being mapped onto the MRRG, i.e., a DFG

edge can be mapped as a chain of edges (path) on the MRRG. Alternatively,

additional vertices on a path consisting of a chain of edges on the MRRG can

61

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

be smoothed out to create a single DFG edge. The additional nodes by sub-

divisions model the routing of data from the source to the target FUs if they

are not connected directly. However, subgraph homeomorphism requires the

edge mappings to be node-disjoint (except at end points) or edge-disjoint [42].

While subgraph homeomorphism provides an elegant formulation of the CGRA

mapping problem, it excludes the possibility of sharing the routing nodes among

single source multiple target edges [100] (also called multi-net [35]) leading to

possible wastage of precious routing resources.

Figure 5.2 illustrates the subgraph homeomorphism formulation. Figure

5.2(a) shows a simple DFG (for simplicity we have removed the loop back edge)

being mapped onto a 2x2 homogeneous mesh CGRA shown in Figure 5.2(b). The

DFG is homeomorphic to the subgraph of the MRRG shown in Figure 5.2(c) and

thus the subgraph represents a valid mapping (again for simplicity we have re-

moved additional nodes of the MRRG). In this homeomorphic mapping, edges

(1,3) and (1,4) have been routed through three additional routing nodes marked

by R. Notice that each routing node has degree 2 and has been added through

edge subdivision (marked by dashed edges). Alternatively, the routing nodes

in the MRRG subgraph can be smoothed out to obtain the original DFG. As

mentioned earlier, by definition, edge subdivision cannot support route sharing.

In contrast, we model the CGRA mapping problem as graph minor contain-

ment problem, which can explicitly model route sharing. A graph H is a minor

of graph G if H can be obtained from a subgraph of G by a (possibly empty) se-

quence of edge contractions [107]. In graph theory, an edge contraction removes

an edge from a graph while simultaneously merging the two vertices it previously

connected. In our context, we need to test if the DFG is a minor of the MRRG,

where the edges to be contracted represent the routing paths in the MRRG. Un-

like edge subdivision (or its reverse operation smoothing), edge contractions are

not restricted to simple paths. Thus, graph minor formalism naturally allows

for route sharing. Figure 5.2(d) shows a mapping under graph minor approach.

It is a subgraph of the MRRG, from which the DFG can be derived through

two edge contractions as shown in Figure 5.2(e)-(f). In this example, we reduce

the number of routing nodes from 3 (in subgraph homeomorphism mapping) to

2 (in graph minor mapping). While it is possible to support route sharing in

[100, 35], we provide a formalization of the CGRA mapping problem under route

sharing. This formalization enables us to design a customized exact graph minor

testing approach that fully exploits the structure of the DFG and the CGRA

interconnects to effectively navigate and prune the mapping alternatives.

In parallel to our graph minor formalization [24] for CGRAmapping problem,

62

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

(b) CGRA

(a) DFG

4

2

1

2

3

44

F0 F1

F3 F2

(c) Subgraph homeomorphism mapping (d) Graph minor mapping (e) Contract edge (R1, R2) (f) Contract edge (1, R)

F0 F1 F3

1

2 R R

R

4

3

2 RR

33 R

44

R

RRR

cycle0

cycle1

cycle2

cycle3

F0 F1 F3

1

2

4

3

2

44

33

R1

R2

cycle0

cycle1

cycle2

cycle3

F0 F1 F3

1

2 R

4

3

2 RR

4

33

4

F0 F1 F3

1

2

4

3

2

4

33

4

Figure 5.2: Subgraph Homeomorphism versus Graph Minor formulation of
CGRA mapping problem

[56] proposed graph epimorphism formalization for the same problem. Their

approach, called EPIMap, is quite elegant and models the novel concept of re-

computation in addition to route sharing. Re-computation allows for the same

operation to be performed on multiple FUs if it leads to better routing. In

EPIMap approach, the DFG H is morphed into another graph H ′ (through
introduction of routing/re-computation nodes and other transformations) such

that there exists subgraph epimorphism from H ′ to H (many to one mapping of

vertices from H ′ to H and adjacent vertices in H ′ map to adjacent vertices in H).

Then, EPImap attempts to find the maximal common subgraph (MCS) between

H ′ and the MRRG graph G using standard MCS identification procedure. If

the resulting MCS is isomorphic to H ′, then a valid mapping has been obtained;

otherwise H is morphed differently in the next iteration and the process repeats.

The key difference with our approach is that while we develop a customized

graph minor testing procedure that exploits structural properties of our graphs,

EPIMap relies on off-the-shelf MCS identification algorithm. This can poten-

tially lead to faster compilation time for graph minor approach. Both approaches

introduce heuristics to manage the computational complexity; the transforma-

tion of the DFG as well as MCS identification require heuristics in EPIMap,

while graph minor approach restricts the subgraph mapping choices. Thus, the

quality of the solutions in both approaches depend on the loop kernel and the un-

derlying CGRA architecture. On the other hand, the re-computation concept in

EPIMap enables additional scheduling and routing options that can potentially

generate better quality solutions for certain kernels. Finally, graph epimorphism

and graph minor are quite unrelated concepts even though a detailed discussion

on this topic is out of scope here. Instead, we provide quantitative comparison

of the two approaches in Section 5.6.

The concrete contributions of this work are as follows. We observe that the

63

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

CGRA mapping problem in the presence of route sharing can be formulated as

a graph minor containment problem. This allows us to develop a systematic

and customized mapping algorithm that directly works on the input DFG and

MRRG to explore the inherent structural properties of the two graphs during the

mapping process. Experimental results confirm that our graph minor approach

can achieve high quality schedules with minimal compilation time.

In this chapter, we will first provide backgrounds on modulo scheduling in

CGRA mapping problem in Section 5.2. We then formalize the CGRA mapping

problem as a graph minor containment problem in Section 5.3. The proposed

graph minor testing algorithm will be detailed in Section 5.4. Experimental eval-

uations comparing graph minor approach with different techniques are presented

in Section 5.6.

5.2 Modulo Scheduling for CGRA

Given a loop from an application and a CGRA architecture, the goal of mapping

is to generate a schedule such that the application throughput is maximized.

The loop is represented as a data flow graph (DFG) where the nodes represent

the operations and the edges represent the dependency among the operations.

Figure 5.4(a) shows the DFG of a simple loop. Figure 5.4(b) shows a 2x2 CGRA

consisting of four functional units (FUs) where the loop should be mapped to.

The mapping problem consists of (a) scheduling the operations in space and

time so as to satisfy the dependency constraints, and (b) explicit routing of the

operands from the producers to the consumers.

5.2.1 CGRA Architecture

For simplicity of exposition, in the algorithm description we assume a homoge-

neous CGRA architecture with comprehensive FUs that can support all possible

operations. However, our mapping approach can support diverse CGRA archi-

tectures through parameterizations. Our register file modeling approach can

also support many different register file configurations such as NORF (architec-

ture with no RF shown in Figure 5.3(a)), LRF (architecture with local shared

RF shown in Figure 5.3(b)) and CRF (the architecture with central shared RF

shown in Figure 5.3(c)). Heterogeneities for functional units are also supported

in our framework. Experimental evaluations for different CGRA architectures

will be presented in Section 5.6.

64

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

(a) No shared RF (b) Local RF (c) Central RF

FU

ALU RF

Reg

Read from neighbors

Write to neighbors

MUX MUX

C
on

te
xt

 R
eg

is
te

r
Central register file

Figure 5.3: 4×4 CGRAs with different register file configurations

4

3

1
e1 e2

e3

e4

2

(a) DFG

F0 F1

F2 F3

(b) 2x2 CGRA

(c) Modulo scheduling for CGRA

…

Cycle 0

Cycle 1

Cycle 2

Cycle 3
Steady state
Kernel: II = 2

Prologue

Time

Epilogue

Cycle 2*N-2

Cycle 2*N-1

F0 F1 F3 F2

R, i=0

1, i=0 2, i=0

3, i=0

1, i=1 2, i=1

3, i=1 R, i=1

3, i=N

4, i=N

R, i=N

4, i=0

(f) Schedule and route graph

(e) Wrap-around MRRG with II = 2

1

 IS op3

2 4

 ISS R pop3pp3

F3 F0 F1 F2

F3 F0 F1 F2

…
…

 Time

Cycle 0

Cycle 1

Cycle 2

(d) MRRG

F3 F0 F1 F2

F3 F0 F1 F2

F3 F0 F1 F2

Figure 5.4: Modeling of loop kernel mapping on CGRAs: An illustrative example

5.2.2 Modulo Scheduling

Modulo scheduling is a software pipelining technique used to exploit instruction-

level-parallelism in the loops by overlapping consecutive iterations [105]. The

schedule produced includes three phases: the prologue, the kernel, and the epi-

logue. The kernel corresponds to the steady state execution of the loop and

comprises of operations from consecutive iterations. The schedule length of the

kernel, which is also the interval between successive iterations, is called the ini-

tiation interval (II). If the number of loop iterations is high, then the execution

time in the kernel is dominant compared to the prologue and the epilogue. Thus,

the goal for modulo scheduling is to minimize the II value. Initially, the scheduler

selects the minimal II (MII) value between resource-minimal II and recurrence-

minimal II, and attempts to find a feasible schedule with that II value. If the

scheduling fails, then the process is repeated with an increased II value.

Figure 5.4(c) shows the modulo-scheduled version of the loop in Figure 5.4(a)

65

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

to the CGRA architecture in Figure 5.4(b) with prologue, kernel, and epilogue

where II=2. Notice that operation 4 from the ith iteration is executing in the

same cycle with operation 1 and operation 2 from the (i+1)th iteration in the

steady state. Also, we need to hold the output of operation 2 in a routing

node (R) till it gets consumed by operation 4. This explicit routing between

FUs is what sets apart modulo scheduling in CGRAs from conventional modulo

scheduling, where FUs are fully connected through the central register file (RF)

and routing is guaranteed. In CGRAs, the modulo scheduler has to be aware of

the underlying interconnect among the FUs and the RFs to route data.

5.2.3 Modulo Routing Resource Graph (MRRG)

Mei et al. [92] defined a resource management graph for CGRA mapping, called

Modulo Routing resource graph (MRRG), which has been used extensively in

subsequent studies. In MRRG, the resources are presented in a time-space view.

The nodes represent the ports of the FUs and the RFs, and the edges repre-

sent the connectivity among the ports. We adopt a simplified form of MRRG

proposed in [99] where a node corresponds to FU or RF rather than the ports.

Our mapping technique integrates register allocation with scheduling. We model

each RF as one node per cycle in the MRRG. The individual registers within RF

are treated as identical elements and represented by the capacity of the RF as in

compact register file model [35]. The usage of registers is tracked and constrained

during the mapping procedure. The number of read and write ports per RF is

also included as a constraint.

The MRRG is a directed graph GII where II corresponds to the initiation

interval. Given a graph G, we denote the vertex set and the edge set of G by

V (G) and E(G), respectively. Each node v ∈ V (GII) is a tuple (n, t), where n

refers to the resource (FU or RF) and t is the cycle. Let e = (u, v) ∈ E(GII)

be an edge where u = (m, t) and v = (n, t+1). Then the edge e represents a

connection from resource m in cycle t to resource n in cycle t+1. Generally, if

resource m is connected to resource n in the CGRA, then node u = (m, t) is

connected to node v = (n, t+1), t ≥ 0.

For example, Figure 5.4(d) shows the MRRG corresponding to the CGRA

shown in Figure 5.4(b). The resources of the CGRA are replicated every cy-

cle along the time axis, and the edges point forward in time. During modulo

scheduling, when a node v=(n, t) in the MRRG becomes occupied, then all the

nodes v’=(n, t+k×II) (where k > 0) are also marked occupied. For example,

in the modulo schedule with II=2 shown in Figure 5.4(c), as F1 is occupied by

operation 2 in cycle 0, it is also occupied by operation 2 every 2 × k cycle. In

66

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

most CGRA mapping techniques, this modulo reservation for occupied resources

is done through a modulo reservation table [92].

5.2.4 MRRG with Wrap-Around Edges

The goal of CGRA modulo scheduler is to generate II different configurations

for the CGRA where each configuration corresponds to a particular cycle in the

kernel. These configurations are stored in the configuration caches and provide

configuration contexts to FUs every cycle. As these configurations are repeated

every II cycles, the output from the resources involved in the last configuration

cycle are consumed by the resources involved in the first configuration cycle.

Thus, instead of using MRRG where the time axis grows indefinitely till the

steady state is achieved, we could restrict the time axis to the target II. We

then need to add wrap around edges from the last cycle to the first cycle as

shown in Figure 5.4(e) (similar graph is used in [43]). The modulo scheduled

kernel in Figure 5.4(c) can now be simplified to the graph in Figure 5.4(f). We

refer to this simplified graph as schedule and route graph (SRG), which captures

the scheduling plus routing information and is a subgraph of the MRRG. So

instead of using a modulo reservation table, we can directly use MRRG with

wrap around edges, which provides us an integrated view during mapping. In

the following sections, the term MRRG will be used to refer to MRRG with wrap

around edges.

5.3 CGRA Mapping Problem Formalization

We first present the formalization of the CGRA mapping problem in the form

of subgraph isomorphism when no data routing is required and subgraph home-

omorphism when routes are not shared. We then model the CGRA mapping as

a graph minor problem [107] between the DFG and the MRRG in the presence

of route sharing. Meanwhile, we point out the necessary restrictions imposed in

the formalization. We also provide the NP-completeness proof for the CGRA

mapping problem under our graph minor formalization.

5.3.1 Subgraph Isomorphism and Homeomorphism Mapping

Let H be a directed graph representing the DFG and GII be a directed graph

representing the MRRG with initiation interval II. We are looking for a map-

ping from the input graph H to the target graph G. In the ideal scenario of

full connectivity among the FUs, all the data dependencies in the DFG can be

mapped to direct edges in the MRRG. That is, for any edge e = (u, v) ∈ E(H),

67

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

there is an edge e = (f(u), f(v)) ∈ E(G) where f represents the vertex mapping

function from the DFG to the MRRG. This matches the definition of subgraph

isomorphism in graph theory. Thus, the CGRA application mapping problem

can be solved using techniques for subgraph isomorphism from the graph theory

domain [121, 32].

In reality, data may need to be routed through a series of nodes rather than

direct links. For example, the edges (1, 3) and (1, 4) in Figure 5.2(a) are routed

through additional nodes. If an edge e = (u, v) ∈ E(H) in the DFG can be

mapped to a path from f(u) to f(v) in the MRRG G, it matches the subgraph

homeomorphism definition [42]. The subgraph homeomorphism techniques for

CGRA mapping problem has been adopted in [119, 5, 19, 48, 49]. Subgraph

homeomorphism, however, requires the edge mappings to be node-disjoint (or

edge-disjoint), which means the nodes (or the edges) in the mapping paths for

the edges carrying the same data cannot be shared.

5.3.2 Graph Minor

We now present graph minor [107] based formulation of the application mapping

problem on CGRAs with route sharing. In graph theory, an undirected graph H

is called a minor of the graphG if H is isomorphic to a graph that can be obtained

by zero or more edge contractions on a subgraph of G. An edge contraction is

an operation that removes an edge from a graph while simultaneously merging

together the two vertices it used to connect. More formally, a graph H is a

minor of another graph G if a graph isomorphic to H can be obtained from

G by contracting some edges, deleting some edges, and deleting some isolated

vertices. The order in which a sequence such operations are performed on G

does not affect the resulting graph H.

A model of H in G is a mapping φ that assigns to every edge e ∈ E(H) an

edge φ(e) ∈ E(G), and to every vertex v ∈ V (H) a non-empty connected tree

subgraph φ(v) ⊆ G such that

1. the graphs {φ(v)|v ∈ V (H)} are mutually vertex-disjoint and the edges

{φ(e)|e ∈ E(H)} are pairwise distinct; and

2. for e = {u, v} ∈ E(H), the edge φ(e) connects subgraph φ(u) with sub-

graph φ(v).

H is isomorphic to a minor of G if and only if there exists a model of H in G

[4].

68

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

5.3.3 Adaptation of Graph Minor for CGRA Mapping

We need to adapt and restrict the definition of graph minor. Graph minor is

usually defined for undirected graphs. For directed graphs, the definition of

edge contraction is similar to the undirected case [108]. Figure 5.2(e)-(f) show

examples of directed edge contractions.

We call the subgraph M ⊆ G defined by the union of {φ(v)|v ∈ V (H)} and

{φ(e)|e ∈ E(H)} as the schedule and route graph (SRG) of H in G. The SRG

M is essentially the model of H in G. The edge set of M is partitioned into

the contraction edges (the edges in {φ(v)|v ∈ V (H)}) and the minor edges (the

edges in {φ(e)|e ∈ E(H)}). The minor edges support the data dependencies in

the dataflow graph, while the contraction edges represent data routing through

additional nodes. For example, in Figure 5.2(d), φ(1) is the subgraph inside the

dashed region rooted at node 1. The dashed edges are the contraction edges,

while the solid edges are the minor edges.

1

2 3 4 43

5 6

e

5 6

cycle0

cycle1

cycle2

cycle3

cycle4

time

F0 F1 F3
�(1)

�(2)

�(4)
root

�(e)

�(3)

�(5) �(6)

root

F0 F1

F3 F2

F1

F3

0 FFF0

F2

0

F2 F2

(a) DFG

(b) 2×2 CGRA (c) Schedule and route graph

Figure 5.5: Minor relationship between DFG and MRRG

Minor edge constraint In graph minor definition, for e = (u, v) ∈ E(H), the

minor edge φ(e) connects φ(u) with φ(v). In other words, it is sufficient for φ(e)

to connect any node in the subgraph φ(u) with any node in the subgraph φ(v).

However, for our problem, we need to define one particular node in the subgraph

φ(v) where the actual operation φ(v) takes place and it has to receive all the

required inputs. The remaining nodes in φ(v) are used to route the result of the

operation. More concretely, for our mapping, each subgraph φ(v) ⊆ G is a tree

rooted at the node where the computation takes place. Let root(φ(v)) be the root

69

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

of the tree φ(v). Then, we introduce the restriction that for e = (u, v) ∈ E(H),

the minor edge φ(e) connects φ(u) with root(φ(v)). For example, the DFG in

Figure 5.5(a) has an edge e that connects the DFG nodes 1 and 4, and it is

mapped to a 2×2 CGRA shown in Figure 5.5(b). Then, in the SRG, φ(1) has to

connect to the root of φ(4) through a direct link φ(e) as shown in Figure 5.5(c).

Timing constraint The wrap-around nature of the MRRG introduces another

restriction. For SGR M to be a valid mapping, it has to satisfy the timing

constraints as follows. For simplicity, let us first ignore the recurrence edges in

the DFG. Then the DFG H is a directed acyclic graph. Let u ∈ V (H) be a

node in the DFG without any predecessor and root(φ(u)) = (m, t) ∈ M where

0 ≤ t < II and M is the SRG, a subgraph of the MRRG. That is, u has been

mapped to FU m in configuration t in the MRRG. We define the timestamp of u

as cycle(u) = t, assuming u is executed in cycle t. Let v ∈ V (H) be a DFG node

with u as its predecessor node and route(u, v) be the number of nodes (possibly

zero) in the connecting path between root(φ(u)) and root(φ(v)) in the SRG M .

For a mapping M to be valid, the following timing constraint, which ensures

identical cycle along all input edges of v, must be satisfied for each internal DFG

node v.

∀u, u′ ∈ pred(v) : cycle(u) + route(u, v) = cycle(u′) + route(u′, v)

We also define

∀u ∈ pred(v) : cycle(v) = cycle(u) + route(u, v) + 1

where pred(v) is the set of all predecessors of v in the DFG. Note that we are

not doing modulo operation (w.r.t. II) while computing the cycle values. Figure

5.6 shows this timing computation. In the SRG, root(φ(2)) is in cycle 0 and

root(φ(3)) is in cycle 1. However, root(φ(2)) has to go through three routing

nodes to reach root(φ(4)); and root(φ(3)) can directly pass the data to root(φ(4))

in the next cycle. The timing constraint is then violated, leading to an invalid

mapping.

For a recurrence edge e = (u, v) ∈ V (H) in the DFG, we introduce additional

timing constraint

route(u, v) = II × d+ cycle(v)− cycle(u)− 1

where d is the recurrence distance of e. Figure 5.7 shows how this timing con-

straint is used. Suppose root(φ(1)) is executed in cycle 0; then it will receive the

70

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

1 2

3

4 4

3

(a) DFG (b) Invalid schedule and route graph

3

t2=4

t=1

conflict

t=0
t1=2

 R

 R R

t=0
root(�(1)) root(�(2)) root(�(4))

root(�(3))
Cycle 1

Cycle 0

Figure 5.6: Invalid mapping under timing constraint

(b) Schedule and route graph with route for recurrence edge

3

t=1

t=0
 R

 R R

root(�(1)) root(�(2)) root(�(4))

root(�(3))

1 2

3

4 4

3

(a) DFG

d = 3
 R

t=6 t=2

t=0

Figure 5.7: Mapping with recurrence edge under timing constraint

output of root(φ(4)) 6 cycles (3 iterations) later. As root(φ(4)) is executed in cy-

cle 2 (cycle(4) = 2), the length of the route from root(φ(1)) to root(φ(4)) should

be 2*3+0-2-1 = 3, which means the route contains three routing nodes. In fact,

the timing constraint of normal edges are just special cases where distance d is

equal to 0.

Attribute constraint Each node in the DFG and the MRRG has an attribute

that specifies the functionality of the node. For example, a node in the DFG can

have memory operation as its attribute, while a node in the MRRG can have

an attribute that signifies that it can support memory operations. Attribute

constraint ensures that a DFG node is mapped to an MRRG tree subgraph whose

root has a matching attribute. For example, the root of the tree subgraph for

mapping a memory operation can only be a functional unit supporting memory

accesses. However, other nodes in the tree subgraph can be any type of functional

unit or register file.

Register file constraint The mapping must ensure availability of register file

read/write ports and capacity in the corresponding cycle if a link from/to the

register file is used.

71

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

Restricted Graph Minor We can now define application mapping on CGRAs

as finding a valid subgraph (schedule and route graph) M of the MRRG such

that the DFG can be obtained through repeated edge contractions of M. We call

the DFG a restricted minor of the MRRG and the subgraph M represents the

mapping. Alternatively, the DFG H is a minor of G if and only if there exists a

model of H, represented by the schedule and route graph M , in G.

lemma 1. The restricted graph minor problem for directed graphs is NP-complete.

Proof. We first show that the restricted graph minor problem for directed graphs

is in the set of NP. Given a mapping in the form of SRG M ⊆ G, we can

check in polynomial time (a) the graphs {φ(v)|v ∈ V (H)} are mutually vertex-

disjoint and the edges {φ(e)|e ∈ E(H)} are pairwise distinct, (b) for e = (u, v) ∈
E(H), the edge φ(e) connects subgraph φ(u) with root(φ(v)), and (c) the timing

constraints as defined earlier are satisfied. That is DFG H is a minor of the G.

We now show that for general directed graphs, the restricted graph minor

problem can be reduced to the Hamiltonian cycle problem, which is an NP-

complete problem. The Hamiltonian cycle problem is to find a cycle in a directed

graph G visiting each node exactly once. We can construct a graph H, which

is a directed cycle with |V (G)| nodes. Finding the Hamiltonian cycle in G

can now be reduced to finding a restricted graph minor between H and G. As

|V (G)| = |V (H)|, each subgraph φ(v) can only consist of a single vertex and

each edge mapping φ(e) where e = (u, v) ∈ E(H) directly connects vertex φ(u)

to vertex φ(v). This matches the exact definition of Hamiltonian cycle. Thus,

the restricted graph minor problem for directed graphs is NP-complete.

5.4 Graph Minor Mapping Algorithm

Our solution for restricted graph minor containment problem is inspired by the

tree search method (also called state space search) widely used to solve a variety

of graph matching problems [97]. The contribution of our solution is the intro-

duction of customized and effective pruning constraints in the search method

that exploit the inherent properties of the data flow graph and the CGRA archi-

tecture. We first present the exact restricted graph minor containment algorithm

followed by description of additional strategies to accelerate the search process.

5.4.1 Algorithmic Framework

Our goal is to map a DFG H to the CGRA architecture. Similar to the tradi-

tional modulo scheduling, we start with the minimum possible II, which is the

72

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

maximum of the resource constrained II and the recurrence constrained II, that

is, II = max(ResMII, recMII). Given this II value, we create the MRRG GII

corresponding to the CGRA architecture. If H is a minor of GII , then the DFG

can be mapped with initiation interval II. To check graph minor containment,

we check if there exists a model or mapping of H in the form of a valid SRG

M ⊆ GII . If such SRG M does not exist, we increment the II value by one,

create the MRRG corresponding to this new II value, and perform graph minor

testing for this new MRRG. This process is repeated till we have generated an

MRRG with sufficiently large value of II so that the DFG can satisfy the graph

minor test. Algorithm 5 provides a high-level view of our mapping framework.

The core routine of the mapping algorithm Minor() performs graph minor

testing. We consider all possible mapping between the DFG and the MRRG; thus

our algorithm is guaranteed to generate a valid mapping if it exists. Clearly, the

number of possible mappings between the DFG and the MRRG is exponential in

the number of nodes of the DFG. That is, our search space is large. Our goal is

to either (a) quickly identify a mapping such that the DFG passes the restricted

minor test, or (b) establish that no such mapping exists. As mentioned earlier,

we employ powerful pruning strategies to efficiently navigate this search space.

We also carefully choose the order in which we attempt to map the nodes and

the edges so as to achieve quick success in finding a valid mapping or substantial

pruning that helps establish the absence of any valid mapping.

The procedure Minor() starts with an empty mapping. As mentioned earlier,

restricted graph minor mapping for our problem requires mapping each vertex

v ∈ V (H) in the DFG to a tree φ(v) ⊆ G in the MRRG. Each edge e = (u, v) ∈
E(H) is simply mapped to an edge φ(e) ∈ E(G) that connects some node in

φ(u) to root(φ(v)). Following this definition, we attempt to map the nodes one

at a time in some pre-defined priority order, which will be detailed in Section

5.4.2.

There exist many possibilities to map a node v ∈ H to a tree subgraph

φ(v) ⊆ G. However, the min map() function in Algorithm 5 returns a set Γ of

minimal valid mappings φ(v). Each minimal valid mapping contains minimal

number of nodes and satisfies various constraints, including minor edge, timing,

attribute and pruning constraints. The minor edge constraint ensures that all

the edges connecting the mapped direct predecessors and successors of v can be

mapped. More specifically, while mapping node v, we identify all its mapped

direct predecessors P and successors S. We ensure that minor edge constraint

can be satisfied between each node p ∈ P and v as well as between v and each

node s ∈ S. In other words, if node v has mapped direct successors, then

73

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

Algorithm 5: Graph Minor Mapping Algorithm

1 begin
33 order list := DFG node ordering(H);
55 II := max(resMII, recMII);
77 while do
8 /*Create MRRG with II*/;

1010 GII := Create MRRG(G, II); M := ⊥;
1212 for all v ∈ V (H) and e ∈ E(H) do
1414 φ(v) := ⊥; φ(e) := ⊥;
15 end
1717 add all φ(v), φ(e) to M ; /* empty mapping */
1919 if Minor(H, GII , M) then
2121 return(M);
22 end
2424 II++;

25 end

26 end

27 Function Minor(H,G,M)

1 begin
33 if no unmapped node in H then
55 return(success);
6 end
88 v := next unmapped node in H according to order list;

1010 P := {p |p ∈ pred(v) ∧ φ(p) �= ⊥}; /*mapped predecessors of v */
1212 S := {s |s ∈ succ(v) ∧ φ(s) �= ⊥}; /*mapped successors of v */
13 /*All candidate mappings are generated satisfying minor edge, timing,

attribute, pruning constraints */
1515 Γ := min map(v, P, S);
1717 for each φ(v) ∈ Γ do
1919 update M with φ(v);
2121 if Minor(H,G,M) then
2323 return(success); /* mapping completed */
24 end

25 end
2727 if Γ = ⊥ then
28 /* No feasible node mapping; expand predecessors */
3030 for each possible expansion do
3232 expand map(v, P,M);
33 /* attempt mapping v again */
3535 if Minor(H,G,M) then
3737 return(success);
38 end

39 end

40 end
41 /* No node mapping; backtrack to the predecessor */
42 return(failure);

43 end

74

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

we attempt to generate φ(v) containing additional routing nodes to ensure that

root(φ(s)), s ∈ S, can be reached from some node in φ(v). Meanwhile, root(φ(v))

should be linked from every φ(p), p ∈ P . If node v does not have any mapped

direct successor, φ(v) is generated containing a single node. Through min map()

function, edge mapping is automatically performed under minor edge constraint

checking and we do not need to explicitly map the edges.

In addition, we check for timing constraint between v and its predeces-

sors/successors to ensure that the data is routed correctly. Attribute compati-

bilities are checked between the DFG node v and the root of the candidate tree

subgraph root(φ(v)). If the target CGRA contains register files, the register con-

straint is used to check for available ports and capacity. Finally, we also apply

aggressive pruning constraints to eliminate mappings that are guaranteed to fail

in the future.

If we get non-empty Γ for each node v, then we will eventually obtain a

complete feasible solution. However, Γ could be empty if there is no minimal

valid mappings. In this case, we have to explore more elaborate tree subgraph

mappings for the candidate node v. This is done through expand map() function.

In expand map() function, we add one extra node in φ(p) for each p ∈ P , which

helps to enhance the routing path from φ(p) to φ(v). If we cannot map v even

after all the possible expansions, then we backtrack and attempt a different

mapping.

The mapping process continues till we have either mapped all the DFG nodes

(i.e., the DFG is a restricted minor of the MRRG) or we have discovered that no

such mapping is possible (i.e., the DFG is not a restricted minor of the MRRG)

and we have to increment the II value.

5.4.2 DFG Node Ordering

An appropriate ordering of the DFG nodes during mapping is crucial to quickly

find a feasible solution. We impose the constraint that the nodes along the

critical path have higher priority, i.e., they appear earlier. This is because if the

critical path cannot be mapped with the current II value, then we can terminate

the search process and move on to the next II value.

In addition, we employ an ordering that helps us validate the timing con-

straints as discussed in Section 5.3.3. A node v is mapped only when at least

one of its direct predecessor or successor has been mapped. That is v should

appear in the ordering after at least one of its direct predecessor or successor

nodes. The only exception is the first node in the ordering. The advantage of

this ordering is that the timestamps cycle(v) are generated appropriately for the

75

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

nodes so that timing conflicts can be avoided early. When the DFG contains

disjoint parts, a new timestamp is regenerated and propagated for every disjoint

component during the mapping process.

Figure 5.8(b) shows a DFG and the ordering of the nodes through the arrow

signs. We start with the input node 1 on the critical path. We proceed along the

critical path to node 3 and node 4. Notice that we could not include node 2 after

node 1 because none of its direct predecessors or successors would have appeared

in the ordering by then. After node 4, we include node 2 in the ordering.

5.4.3 Mapping Example

Suppose we have a DFG as shown in Figure 5.8(b) and we are attempting to map

it to a 2×2 CGRA array. Let us assume that we are currently considering II=2.

For simplicity of exposition, we only draw the occupied edges in the MRRG. The

entire mapping process is illustrated in Figures 5.8(c-g).

(b) DFG

4

1

3

2

F0 F1

F2 F3

0 F

F3F22 FF2

(a) 2×2 CGRA (c) Map DFG node 1 to (C0, F0)

Cycle 0

Cycle 1

F0 F1 F3 F2

1

(d) Map DFG node 2 to (C1, F0)

Cycle 0

Cycle 1

F0 F1 F3 F2

1

3

(e) All node mapping fails, expand

Cycle 0

Cycle 1

F0 F1 F3 F2

1

3 1

(f) Map DFG node 4 to (C0, F1)

Cycle 0

Cycle 1

F0 F1 F3 F2

1

3 1

4

(g) Map DFG node 2 to a tree
containing (C0, F2) and (C1, F3)

Cycle 0

Cycle 1

F0 F1 F3 F2

1

3 1

4 2

2

Figure 5.8: An example of mapping process during the restricted graph minor
test

The process starts with mapping node 1. Node 1 is the initial node and it has

no mapped direct successor. So the first tree subgraph generated by min map()

function contains only one node as shown in Fig 5.8(c): F1 in cycle 0 denoted

as (C0, F0). Then, we pick the next node in the priority list, which is node

3. Again, this node has no mapped direct successors; so its tree mapping also

contains only one node. However, we need to make sure that φ(1) is directly

connected with root(φ(3)) according to the edge constraint imposed by the edge

e = (1, 3) in DFG. Mapping node 3 to (C1, F0), as shown in Figure 5.8(d), can

satisfy the constraint.

The next node in the priority list to be mapped is node 4. However, this time

we fail to find any feasible node directly connected to the mapped direct prede-

cessors φ(1) and φ(3). As mapping for node 4 fails, we expand its predecessor’s

mapping. An extra node (C1, F1) is added to φ(1) in Figure 5.8(e). Notice that

76

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

to distinguish between root nodes and other nodes, the root nodes have been

shadowed. Now node 4 can be mapped to (C0, F1) in Figure 5.8(f).

The final node in the list is node 2. This time, node 2 has two mapped

successors, node 3 and node 4. Thus, we find a tree subgraph φ(2) containing

(C0, F2) and (C1, F3) (see Figure 5.8(g)) that satisfy both the minor edge

constraint (direct links to root nodes of φ(3) and φ(4)) and the timing constraints

at node 3 and 4. As all the nodes and the minor edges have been mapped

successfully, DFG is a minor of MRRG with II = 2.

5.4.4 Pruning Constraints

Pruning constraints are important to reduce the compilation time. Pruning con-

straints look ahead and quickly identify if the current mapping can be extended

to a successful final mapping. This lookahead helps to eliminate mappings that

are guaranteed to fail in the future. Note that the pruning constraints do not

affect the optimality of the solution.

Available resource constraint This constraint simply checks that the num-

ber of available FUs of each type in the MRRG is larger than or equal to the

number of unmapped DFG nodes of the same type. For example, the number

of remaining available memory FUs must be larger or at least equal to the num-

ber of unmapped memory operations in the DFG. Global variables are used to

record information about the available FUs and the unmapped DFG nodes and

are updated every time the partial mapping changes. Thus, both time and space

complexity of this constraint are O(1).

Unmapped
DFG node

Mapped
DFG node

Available
MRRG node

Occupied
MRRG node

Available direct
predecessor/successor

 p1 � Map

s1� Map s2 � Map

n � Map

 p2 � Map

�(n)
root

root A tree subgraph
in MRRG

Figure 5.9: Illustrations of degree pruning constraint

Degree constraint This constraint considers the local structures between the

DFG H and the MRRG G. Let φ(n) ⊆ G be the tree subgraph representing the

mapping of node n ∈ V (H). The number of unmapped direct predecessors of

n in the DFG must be smaller than or equal to the number of available direct

predecessors of root(φ(n)) in the MRRG.

77

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

On the other hand, if n has any unmapped direct successors, then the number

of available direct successors of φ(n) must be at least one. This is because the

data from φ(n) can be routed through any available outgoing node. For example,

in Figure 5.9, DFG node n is mapped to φ(n) in the MRRG. It has two unmapped

direct predecessors and two unmapped direct successors. So root(φ(n)) must

have at least two available direct predecessors and there must be at least one

available direct successor of φ(n) in the MRRG. Notice that the available direct

successors of φ(n) are those available MRRG nodes directly connected from any

node in φ(n).

The degree pruning constraint checks for all the DFG nodes in the current

mapping. The time complexity for this pruning constraint is O(cN), where N

is the number of DFG nodes and c is the average number of producer nodes in

φ(n) across all mapped DFG nodes n.

…

…

p2 � Pred(n)
� p2 � Map

s2� Succ(n)
� s2� Map

n � Map
…

…

p1 � Pred(n)
� p1 � Map

s1 � Succ(n)
� s1 � Map

series of
unmapped DFG nodes

…

…

…
…

…

series of
available MRRG nodes

series of
available MRRG nodes

shortest unmapped path

shortest available path

shortest unmapped path

shortest available path

available
predecessor

available
successor

�(n)

root

x

root

root

series of
unmapped DFG nodes

�(p1)

�(s1)

Unmapped
DFG node

Mapped
DFG node

Available
MRRG node

Occupied
MRRG node

root A tree subgraph in
MRRG

Figure 5.10: Illustration of predecessor and successor constraints

Predecessor and successor constraint We further exploit structural pat-

terns formed by each mapped DFG node n and its predecessors/successors as

shown in Figure 5.10. We check the timing constraint inherently imposed by

these patterns. We first calculate the shortest path lengths in both DFG and

MRRG. The shortest paths defined here only consists of unmapped DFG nodes

or available MRRG nodes except the two end nodes. For any mapped prede-

cessor p of n, if p and n are connected through the shortest unmapped path

r = (p � n), then φ(p) and φ(n) should also be connected by a shortest avail-

able path R = (x� root(φ(n))), x ∈ φ(p), in MRRG. Thus, we have

cycle(root(φ(n)) − cycle(x) ≥ max(length(R), length(r)), which uses the fact

that the timestamp differences must be at least equal to the length of the short-

est path connecting the corresponding nodes either in the MRRG or in the DFG.

Similar constraints are applied to the patterns formed by n and its successors.

78

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

We also consider the relationships between a mapped DFG node n and its

unmapped predecessors/successors. However, as these predecessors/successors

have not been mapped yet, there is no explicit structural information to be used

for pruning purpose. Instead, we calculate the number of available MRRG nodes

those could be connected to root(φ(n)) (or reached from φ(n)) through available

MRRG paths. The number must be at least equal to the number of unmapped

predecessors (or successors) of n, which can be connected to (or from) n through

unmapped DFG paths.

To obtain the reachability information in both the DFG and the MRRG dur-

ing the mapping, two reachability matrices are built using an efficient algorithm

by Italiano et al. [66]. The algorithm has a time complexity O(K) with O(K2)

space overhead, where K is the number of nodes in the input graph. Each ele-

ment (u, v) in the matrix represents the shortest path length between the node

u and node v. To build the reachability matrix for M MRRG nodes, the time

complexity is O(M2). As the computation for reachability matrices is the most

time consuming step, the overall time complexity for the pruning constraint is

O(M2).

unmapped path
(a series of unmapped DFG nodes)

n � Map

p � Pred(n)
� p � Map

s � Succ(n)
� s � Map

…
 available path

(a series of available MRRG nodes)

feasible m � Map

…

…

…

…

root

((

…

root r

…

�(s)

�(p)
Unmapped
DFG node

Mapped
DFG node

Available
MRRG node

Occupied
MRRG node

root A tree subgraph in
MRRG

available path
(a series of available MRRG nodes) unmapped path

(a series of unmapped DFG nodes)

Figure 5.11: Illustration of feasibility constraint

Feasibility constraint In the final pruning constraint, we exploit the struc-

tural patterns of the unmapped DFG nodes. As shown in Figure 5.11, for each

unmapped DFG node, we find all its mapped predecessors and successors reach-

able through unmapped paths. There must be at least one MRRG node that has

the same connectivity to all the subgraphs the corresponding predecessors and

successors have been mapped to. More specifically, let n is such an unmapped

DFG node, p is a mapped predecessor of n and p is connected to n through an

unmapped path. Then, in the MRRG, there must be at least one available node

m such that m could be connected from φ(p) through an available path. As this

79

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

pruning constraint also depends on the reachability matrices, the complexity is

O(M2).

5.4.5 Acceleration Strategies

We now introduce additional strategies to further accelerate the compilation

time. These strategies are integrated in the preprocessing step and the con-

straints in the algorithm infrastructure. All the strategies are designed in such

a way that they do not impact the optimality of the mapping.

Step Action Progress
1 Map 1 to (C0, F0). Mapping succeed.
2 Map 2 to (C1, F0). Mapping succeed.
3 Map 3 to (C0, F1). Mapping succeed.
4 Expand ϕ(1) to (C1, F1). Mapping fails;

expansion is carried out.
5 Expand ϕ(1) to (C0, F3). Mapping fails;

expansion is carried out.
6 Map 4 to (C1, F3). Mapping succeed.

(a) DFG

1

2

3

4

(d) DFG with padding

1

2

3

4

P1

P2

Step Action Progress
1 Map 1 to (C0, F0). Mapping succeed.
2 Map 2 to (C1, F0). Mapping succeed.
3 Map 3 to (C0, F1). Mapping succeed.
4 Map P1 to (C1, F1). Mapping succeed.
5 Map P2 to (C0, F3). Mapping succeed.
6 Map 4 to (C1, F3). Mapping succeed.

Cycle 0

Cycle 1

F0 F1 F3 F2

Time

1

2

3

4

(b) Schedule and route graph for mapping the
DFG to a 2 2 CGRA (c) Detailed information of the mapping process

(f) Detailed information of the mapping process for the padded DFG

Cycle 0

Cycle 1

F0 F1 F3 F2

Time

1

2

3

P1

P2

4

(e) Schedule and route graph for mapping the
padded DFG to a 2 2 CGRA

E1

E1

Figure 5.12: A motivating example for dummy node insertion

Dummy nodes in the DFG

We introduce dummy nodes in the DFG during the preprocessing step. These

dummy nodes are only used for routing, which means they can be mapped to non-

computation nodes in the MRRG, e.g., register file nodes. Basically, the idea is

based on the observation that expanding the tree mapping φ(v) for any node v is

quite expensive. This is because φ(v) is expanded only after all attempts to map

subsequent nodes have failed. Also the expansion is carried out incrementally,

i.e., φ(v) is expanded one node at a time. The goal of introducing dummy nodes

is to avoid the expansions as much as possible without affecting the quality of

the solution.

Figure 5.12 shows an example of how dummy nodes can avoid expansion of

node mapping. We want to map the DFG in Figure 5.12(a) to 2×2 CGRA.

The mapping order is 1 → 2 → 3 → 4. The first three nodes 1, 2, and 3 can

be mapped successfully. However, when we try to map node 4, the mapping

attempt fails (Γ is empty) and we have to expand φ(1) twice in order to find the

80

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

final feasible mapping for node 4. The final schedule and route graph is shown

in Figure 5.12(b) with the expansion nodes for φ(1) denoted as E1. The detailed

search process is also listed in Figure 5.12(c).

To avoid the mapping failures and expansions, we can add two dummy nodes

P1 and P2, as shown in Figure 5.12(d). Suppose the mapping order for the new

DFG is 1 → 2 → 3 → P1 → P2 → 4. After mapping the three nodes 1, 2 and

3, we will continue to map P1 and P2 without any failure. Finally, node 4 will

be mapped successfully at the first attempt. The final schedule and route graph

is shown in Figure 5.12(e) and the detailed mapping process is listed in Figure

5.12(f).

Clearly, dummy node insertion is useful in guiding the mapping process.

So we add dummy nodes as part of DFG pre-processing step. We first assign

scheduling levels to each DFG node using as soon as possible (ASAP) scheduling

policy and as late as possible (ALAP) scheduling policy. The number of dummy

nodes inserted to a DFG edge e = (u, v) ∈ E(H) is equal to the difference

between the ASAP level of v and the ALAP level of u. This is somewhat similar

in concept to node balancing in [56]. However, the difference is that we insert

dummy nodes to accelerate the search process to obtain a feasible schedule. In

the previous approach [56], adding more balancing nodes is a requirement to

obtain a valid schedule.

Fast implementation of pruning constraints

For large DFGs, the pruning constraints can increase the compilation time. The

most expensive part is the reachability matrices computation. To reduce this

overhead, we bypass updating the reachability matrix of the MRRG at each

step. We do, however, generate the reachability information for the DFG stati-

cally in the beginning and for the MRRG at its generation step for each II value.

We believe that the two static matrices provide limited but enough informa-

tion for the pruning purposes. The static reachability matrices now record the

reachability information between any two arbitrary nodes in the absence of any

mapping, e.g., the element (x, y) in the MRRG matrix records the static shortest

path length between nodes x and y. With only static reachability matrix, the

pruning constraints have to be redesigned as follows.

Fast implementation of predecessor and successor constraints Unlike

the original constraint, the fast implementation only focuses on the structural

patterns related to current mapping. Suppose the candidate DFG node n is

mapped to φ(n) in the MRRG. For every mapped predecessor p of n, we can

81

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

have the length value for the static shortest path rs = (p� n), from static DFG

matrix. Let RS = (x� φ(n)), x ∈ φ(p), be the static shortest path between φ(p)

and φ(n) in MRRG. x can be identified by checking the static MRRG matrix

for all the nodes in φ(p). Utilizing the same fact used in the original constraint,

we have cycle(root(φ(n)))− cycle(x) ≥ max(length(RS), length(rs))

Similarly, constraints are also imposed for the structural patterns formed by

the candidate node and its mapped successors. The fast implementation reduces

the runtime complexity from O(M2) to O(cN) where c is the average number of

nodes in φ(n) for each DFG node n.

Fast implementation of feasibility constraint The basic idea for designing

fast implementation of feasibility constraint is to consider the local effects of

consuming one MRRG node for the remaining unmapped DFG nodes. Suppose

the candidate MRRG node to be used for mapping is m, then the consumption

will affect the potential mappings of those who also require m. If m is directly

linked from any node in φ(p), p is a mapped DFG node, then the consumption

of m can affect the mapping for the unmapped child child p of p. In other

words, we need to ensure that apart from m, there is another available MRRG

node m′ that can be used to map child p satisfying certain timing constraints.

For every mapped successor s of child p, we can have the static shortest path

rs = (child p � s). Let RS be the static shortest path connecting m′ and
root(φ(s)), RS = (m′ � root(φ(s))). Following the same reasoning used before,

we have

cycle(root(φ(s)))− cycle(m′) ≥ max(length(RS), length(rs))

If m is a direct predecessor of the root node of φ(s′), where s′ is a mapped

DFG node, similar constraints are used for the unmapped parent node of s′. The
time complexity is also O(cN).

5.4.6 Integration of Heuristics

Our modulo scheduling algorithm (Algorithm 5) can achieve the optimal II by

definition. This is because it checks if the DFG is a minor of the MRRG for each

value of II, starting with the minimum possible value. However, even with the

pruning and acceleration strategies, the runtime of the optimal algorithm can

be prohibitive when both the number of DFG nodes and the number of CGRA

functional units are quite large. Therefore, we integrate some heuristics in the

algorithm to speed up the search process. This may introduce sub-optimality,

82

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

i.e., the search process may miss a valid mapping at lower II value even though

it exists. But the compilation time improves significantly.

The first heuristic avoids backtracking between two unrelated nodes. In the

optimal search process, if a node m cannot be mapped, then we backtrack to the

node n, which appears just before m in the DFG node ordering. However, node

n may not be a predecessor or successor of node m in the DFG and hence may

not be able to steer the search towards a successful mapping to m. Instead, we

directly backtrack to the last predecessor or successor of node m in the ordering.

The second heuristic is motivated by the edge-centric mapping [100]. In

graph minor testing, instead of enumerating all possible tree subgraphs for node

n, the procedure aims to find limited number of feasible subgraphs. The feasible

subgraphs are chosen to be those with minimal number of nodes. After all the

specified subgraphs have been explored, the node mapping fails.

The final heuristic makes it possible to escape from extensive subgraph ex-

pansions. We put a counter for each node mapping. The counter is increased

every time an expansion is carried out. Once the counter reaches a pre-defined

threshold value, we eliminate current mapping and backtrack to previous map-

pings. Our experimental evaluation reveals that this is the only heuristic that

sometimes prevent us from reaching a feasible solution even if one exists.

5.5 Clustering preprocessing for S-CGRA

Till here, we have fully presented our G-Minor CGRA mapping algorithm. We

now consider the compilation support for the S-CGRA architecture presented in

Chapter 4, which contains SFU as its fundamental element.

5.5.1 Hierarchical scheduling technique

The compilation technique for CGRA mapping proposed so far requires to cre-

ate a one-to-one mapping from the nodes in the DFG to the resource nodes in

the MRRG. For S-CGRA, however, each SFU in it could perform multiple op-

erations each cycle as depicted in Chapter 4. To fully exploit the capability of

multi-operation execution, we will present a clustering algorithm, which is to be

adopted as a pre-processing step in our G-Minor framework.

In literature, a clustering preprocessing step followed by task scheduling is

called a hierarchical scheduling technique [71], which is well accepted in MP-

SoC mapping and scheduling context. Our problem presented here, while shar-

ing many similarities of MPSoC mapping and scheduling problems, does have

its own unique properties. Although it is not entirely fit for our context, we

83

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

do acknowledge that the widely adopted GA clustering algorithm for solving

the MPSoC mapping and scheduling problem could be adapted due to its gen-

eral applicability. In the following subsections, we will present the adapted GA

heuristic and then propose our greedy heuristic. A simplistic greedy heuristic

has been presented in Chapter 4 for mapping custom instruction to one SFU.

Here, the greedy heuristic will be further extended for the clustering purpose.

5.5.2 Genetic Algorithm for Clustering

Genetic algorithm (GA) [50], well known for its robustness, is a technique that

starts from an initial population of randomly generated potential solutions to

a problem, and gradually evolves towards better solutions through a repetitive

application of genetic operations such as selection, crossover and mutation. The

evolution process proceeds through generations. Each next generation is created

by producing offsprings from the current population through a crossover opera-

tor. Evolution is ensured by selecting appropriate offsprings according to preset

fitness functions. The evolution process is repeated until certain criteria are

met. GA has been successfully deployed for task matching/scheduling problem

in multiprocessor computing environments [38, 125, 79, 63].

Algorithm 6: Genetic algorithm

1 Begin
2 population = Initialize population(N);
3 Evaluation(population);
4 while Stop criteria not met do
5 new population = empty;
6 /*Generate new generation.*/
7 For i = 1 to N do
8 parents = Selection(population);
9 crossover offsprings = Crossover(parents, cross rate);

10 mutation offsrpings = Mutation(crossover offsprings);
11 Evaluation(mutation offsrpings);
12 Insert(new population, mutation offsprings);

13 Endfor

14 end
15 Return Best solution found;

16 End

To adapt the genetic algorithm in our S-CGRA context, the very first step

is to define a proper chromosomal representation. Two functions, crossover and

mutation, have to be modeled to generate the new population. Moreover, the

fitness criteria has to be formulated for the selection in each evolution step.

84

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

1

2

4

3

5 6

SFU 5

SFU 4

SFU 3

SFU 2

SFU 1 1

2

4

3

6

5

(b) A chromosome

Gene:
SFU1 ~ SFU6

SFU 5

SFU 4

SFU 6

SFU 6

SFU 1 1

2

4

3

6

5

(c) Mutation example

SFU 3

SFU 5

SFU 6

SFU 1

SFU 4

SFU 2 1

2

4

3

6

5

SFU 1

SFU 4

SFU 6

SFU 3

SFU 2

SFU 5 1

2

4

3

6

5

SFU 1

SFU 4

SFU 6

SFU 3

SFU 4

SFU 2 1

2

4

3

6

5

SFU 3

SFU 5

SFU 6

SFU 1

SFU 2

SFU 5 1

2

4

3

6

5

Crossover

(a) DFG

(d) Crossover example

Figure 5.13: Examples for chromosomal representation, mutation and crossover

Chromosomal representation For the chromosomal representation , we spec-

ify the gene pool as the available SFUs. The DFG is linearized to constitute the

main structure of the chromosome, and in each of the position, one gene is

combined to each DFG node. The combination in each position stands for the

mapping relationship from the DFG node to the SFU. For example, for the DFG

shown in Figure 5.13(a), one of its chromosome is shown in Figure 5.13(b) with

each gene representing one particular SFU. One DFG node could be mapped to

one SFU, e.g. DFG node 1 is mapped to SFU1; more than one DFG nodes could

be mapped to the same SFU, e.g. DFG node 2 and 3 are mapped to SFU2; and

there could be SFU with no nodes mapping to it, e.g. SFU6 is not mapped by

any DFG nodes.

Initial population The initial population is generated randomly. The popu-

lation generator assigns a random SFU to each DFG node. The number of the

population N is set as 1000 in our experimental evaluation.

Selection The selection is to fetch two parent chromosomes from the popula-

tion according to their fitness. The fitness metric is defined as the following.

fitness =

M∑
g

(Convexg ∗Non-loopg ∗ Feasibleg) (5.1)

Convexg =

{
1, if mapping of gene g satisfies DFG convexity constraint

0, else

}
(5.2)

Non-loopg =

{
1, ifmapping of gene g satisfies DFG non-loop constraint

0, else

}
(5.3)

Feasibleg =

{
1, if mapping of gene g satisfies SFU architectural constraint

0, else

}
(5.4)

So the fitness metric is defined according to the convexity, non-loop and

feasibility constraints for each of the M SFUs, M is the total number of SFUs.

85

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

The convexity and non-loop constraints are imposed by the structure of the DFG

graph, while the feasibility constraint is imposed by the architecture of the SFU.

Notice that the each gene g stands for one SFU. The set of DFG nodes mapped

to an SFU g satisfies convexity constraint if the immediate nodes along all

of the paths between any two nodes in the set are also contained inside the set.

For the feasibility constraint, if the set of DFG nodes is mapped to an SFU

g in GA, then there should be a feasible mapping from this set of DFG nodes

to the underlying architecture of SFU g. The non-loop constraint is imposed

for the DFG nodes mapped to two genes. For any two paths p connecting the

node u to the node v in the DFG, p = <u�v>, and p’ = <u’�v’> connecting

u’ and v’, if u and v’ is mapped to gene g1, then u’ and v should not mapped

to the same gene g2 other than g1. The illustrated example is given in Figure

5.14. Assuming that u’ is mapped to gene g2, we can see that mapping u and v

to the same gene g1 will generate a data dependency from gene g2 to gene g1

shown in Figure 5.14(a). If we continue to map v’ to gene g2, which u’ has been

mapped to, another data dependency from gene g1 to gene g2 is created. This

will generate a data dependency loop leading to a dead lock as shown in Figure

5.14(b). Notice that convexity constraint is to avoid dead lock within one gene,

while non-loop constraint is to avoid dead lock across genes.
…

…

g2 u'

g1

u

v v'

Path connecting
u and v

Path connecting
u’ and v’

…

…

g2

u'

g1

u

v v'

Path connecting
u and v

Path connecting
u’ and v’

g2 g1 g2 g1
dead lock data dependence

(a) Data dependence created between the
nodes in two paths.

(b) Dead lock created between the nodes in
two paths.

Figure 5.14: An illustrative example for non-loop constraint

Each chromosome is associated with a fitness value after it is generated. In

the selection phase, the higher the fitness score of one chromosome is, the higher

chance the chromosome will be selected.

86

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

Crossover In crossover, two chromosomes exchange their genes from a certain

position. For the mapping, this stands for exchanging the mapping information

from that position. For example, in Figure 5.13(d), the two chromosomes in

the left exchange genes from the third position. Consequently, all the mapping

information from DFG node 3 are exchanged between the two chromosomes. For

crossover rate, we practically choose this value as 0.7.

Mutation In mutation, one gene in a certain position in the chromosome could

be changed to another gene. In the mapping context, this means that the DFG

node in that position, originally mapped to a particular SFU, now is mapped to a

different SFU. Figure 5.13(c) shows an example where the fourth position of the

chromosome in Figure 5.13(b) is mutated from SFU3 to SFU4. The mutation

rate is chosen as 0.01 in our experimental evaluation.

Termination criteria When GA finds a feasible mapping, it will terminate

the evolving procedure. The feasible mapping is defined as satisfying both con-

vexity and feasibility constraints. So every time after one new population is

generated, the chromosome with the highest fitness value is checked. If the

value is equal to the total number of SFUs, then GA will report it as the final

feasible solution. On the other hand, if GA could not find a feasible solution

when it comes to a sufficient large number of generations, it will also terminate

the procedure. The stopping bound is set as 1000 generations.

Optimal number of SFUs To find the optimal number of SFUs, the generic

algorithm could be iterated n times by setting the number of SFUs from 1

to n, where n is the total number of DFG nodes serving as an upper bound.

To restrict the number of iterations, the lower bound could be identified by

examine the underlying architecture of SFU. As there are only 6 components

inside one SFU, so the lower bound could be set as n/6. This could be further

refined specifically according to the numbers of each type of operations and

components. The searching for optimal number of SFUs start from the lower

bound of available SFUs and increase the value in each step until it finds the

GA returns a feasible chromosome.

5.5.3 A Derived Greedy Heuristic

Our greedy heuristic is derived from the mapping heuristic proposed in Chap-

ter 4. In Chapter 4, the heuristic is designed to synthesize the ISEs onto one

SFU in multiple cycles. Here, however, the algorithm is designed to cluster the

87

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

Algorithm 7: Clustering heuristic

Input: The data flow graph (DFG) of the nested loop and the resource
routing graph (RRG) of the SFU.

Output: The generated configuration if mapping is successful.
1 Begin
2 max level = Assign level ALAP(DFG);
3 For i ← 1 to max level do
4 For All each operator u in DFG do
5 If u→level == i then
6 successful = 0;
7 For Each of u’s predecessor v do
8 If u has only one immediate predecessor v and u is v’s

only immediate successor then
9 If SFU(v)→FU(v)→component(Res(u)) ==

Available and SFU(v)→FU(v)→Res(v) is connected
to SFU(v)→FU(v)→Res(u) then

10 SFU(v)→FU(v)→component(Res(v)) =
Occupied ;

11 successful = 1;

12 Endif

13 Endif
14 Else
15 If ∃ FU n ∈ SFU(v), n→status = Free and

n→component(Res(u)) == Available then
16 n→status = Mapped ;
17 n→component(Res(u)) = Occupied ;
18 successful = 1;

19 Endif

20 Endif

21 Endfor
22 If successful == 0 then
23 Assign a new SFU s;
24 Get the first available FU n in SFU s;
25 n→status = Mapped ;
26 n→component(Res(u)) = Occupied ;

27 Endif

28 Endif

29 Endfor

30 Endfor
31 Return Build cluster graph();

32 End

DFG nodes under the architectural constraints. The architectural constraints is

imposed by using the resource routing graph (RRG) of the SFU. The basic idea

88

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

of the greedy heuristic is to place each operation within the same cluster that

one of its previous predecessors has been mapped to. Intuitively, this would lead

to less number of clusters or SFUs as the mapping become more compact. The

detailed algorithm is shown in Algorithm 7. We assign operations according to

their as late as possible (ALAP) order. For each operation u, we find the cluster

that one of its predecessors v has been mapped to. If v is u’s only immediate

predecessor and v has u as its only immediate successor, then we map u to the

available component component(Res(u)) corresponding to the required resource

Res(u) in the SFU SFU(v). Otherwise, we map u to one free functional unit

inside SFU(v), where v is one of its predecessor. If we cannot cluster u with

any of its predecessors, we allocate a new cluster/SFU and map it there. The

output of the algorithm will give the clustering graph with data dependencies

among the clusters generated according to the data dependencies in the input

DFG. This is done by calling the function Build cluster graph().

The algorithm has a linear running time complexity O(N), N is the total

number of nodes in the input DFG. The deadlock presented in the non-loop

constraint will not occur as the greedy heuristic simply assigns a new cluster/SFU

to the unsuccessful clustering with candidate operation’s predecessors. The final

mapping solution will always be feasible as the architectural constraints are

considered during the clustering process.

5.6 Experimental Evaluation for Mapping on CGRA

We now proceed to evaluate the quality and the efficiency of our mapping algo-

rithm. We initially target a 4×4 CGRA with 2D mesh network architecture and

no shared or central register file. The 4×4 array is the basic structure in many

CGRA architectures and has been widely used to evaluate various mapping al-

gorithms [99, 100, 80, 60, 72, 12]. For our initial experiments that compare

against previous approaches, we assume each functional unit is comprehensive

and is capable of handling any operation including memory operations. Later,

we evaluate the versatility of graph minor mapping approach in supporting di-

verse CGRA architectures, such as heterogeneous functional units and various

register file configurations. We also evaluate the scalability issue by mapping to

4×8, 8×8, 8×16 and 16×16 CGRAs.

We select loop kernels from MiBench benchmark suite [55], SPEC2006 bench-

mark suite, and the benchmarks used in the EPIMap approach [56]. Most of the

benchmarks have an easily identifiable compute-intensive loop that performs the

main functionality of the application and we select that loop for our experiments.

89

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

Benchmark #ops #MEM ops #edges Benchmark #ops #MEM ops #edges
SOR 17 6 11 osmesa 16 9 17

swim cal1 59 23 39 texture 29 7 31
swim cal2 62 26 44 quantize 21 8 24

sobel 27 7 34 rgb2ycc 41 15 44
lowpass 23 9 19 rijndael 32 13 35
laplace 20 8 16 fft 40 20 42
wavelet 12 4 6 tiff2bw 42 20 50
sjeng 36 13 21 fdctfst 59 16 80
scissor 12 4 13 idctflt 87 25 114

Table 5.1: Benchmark characterisitics

For the few benchmarks with multiple loop kernels, we choose the representa-

tive one of them. Rijndael implements the AES standard where we choose the

nested loop in its encryption subroutine. Tiff2bw converts a color TIFF image

to greyscale image where we choose the nested loop in the first step that con-

verts 16-bit color map to 8-bit. The benchmarks Wavelet, Fdctfst, Idctfst have

multiple identical or similar loops and we choose one of them.

The DFGs for the loop kernels are generated from Trimaran [1] back-end

using Elcor intermediate representation [3]. Benchmark characteristics are listed

in Table 5.1 including the number of operations and the number of load/store

operations. We assume that the memory operation includes both the address

generation and the actual load/store operation.

Comparison with different techniques There exist a number of approaches

to CGRA mapping in the literature. We compare our graph minor approach (ab-

breviated as G-Minor here) with two previous techniques: simulated annealing

based approaches and EPIMap [56]. Simulated annealing (SA) based approaches

[92] are widely considered to provide high-quality mapping solutions with (pos-

sibly) longer compilation time. EMS, the edge-centric mapping approach [100],

provides significantly reduced compilation time with some degradation in the

quality of the schedule compared to SA. As mentioned in Section 5.1, in parallel

to G-Minor approach, [56] have proposed graph epimorphism based mapping

approach EPIMap that produces better quality solutions than EMS with similar

compilation time. We compare G-Minor with EPIMap as it represents state-of-

the-art CGRA mapping approach. For the comparison, we have re-implemented

the EPIMap approach [56] and the simulated annealing (SA) algorithm [92] for

4×4 mesh CGRA with comprehensive functional units and no shared/central

register file similar to the setup in [56]. Our implementations of these two

approaches allow route sharing. To demonstrate the benefits gained from us-

ing route sharing, we also create a subgraph homeomorphism mapping kernel.

Moreover, we also integrate re-computation methodology introduced in EPIMap

90

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

as a DFG pre-processing step in our G-Minor framework.

Figure 5.15 compares the scheduling quality for 18 benchmarks. The Y-

axis represents the achieved II value. The first bar represents the minimal II

value achievable considering only recurrence minimal and resource minimal II

for each kernel. The remaining bars from left to right represent the II achieved

for G-Minor, EPIMap, simulated annealing (SA), subgraph homeomorphism,

and G-Minor with re-computation pre-processing (Rec-G-Minor), respectively.

��
��
��
��
��
���
���
���
���

��	
�
������

�
������

�����
��
����

�������

������

�����
�������

������

�������

��������

�������

��������

$$� ��$$��

$���$��

����$��
 ������

!!

�"#
$"%
�"$$"�

$"�

&!! '(&����)*!&�� � +��������,��� 	��('(&����

Figure 5.15: Scheduling quality for G-Minor, EPIMap, SA, subgraph homeo-
morphism and G-Minor with re-computation

We first observe that the scheduling quality generated by EPIMap and G-

Minor are quite similar. The achieved II value is different between the two for

only 4 out of 18 benchmarks. For example, G-Minor produces better schedul-

ing results for rijndael and fdctfst, while EPIMap performs better for fft and

idctflt. Even for these benchmarks, the difference is only one cycle. The two

reasons for the competitive results between G-Minor and EPIMap are the follow-

ing. G-Minor exhaustively searches for minor with all routing possibilities, while

EPIMap restricts the number of routing nodes. On the other hand, EPIMap pro-

vides extra choices for mapping the DFGs such as replication (or re-computation)

for high fan-out nodes. An interesting possible future research direction would

be to combine the relative strengths of G-Minor and EPIMap. We conduct pre-

liminary evaluation by integrating re-computation with our G-Minor framework.

It is shown in Figure 5.15 that in most cases, Rec-G-Minor can generate better

scheduling results than G-Minor and EPIMap.

We observe that for a large subset of benchmarks (11 out of 18), both G-

Minor and EPIMap achieve Minimal II (MII). SA, on the other hand, achieves

minimal II value for 6 benchmarks. In general, G-Minor and EPIMap provide

better schedules compared to SA. A possible reason is that in SA, a random op-

eration is picked, replaced and routed in each step. It is inefficient in considering

the placement and routing impacts among operations. This inefficiency gets

91

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

worse when the routing resources are limited such as in a 4×4 mesh CGRA. G-

Minor and EPIMap, on the other hand, directly explore the structural properties

of the graphs and hence the relationships among operations.

We carry out additional experiments to demonstrate the benefits of route

sharing. We disable route sharing in our G-Minor algorithm to create a subgraph

homeomorphism kernel. As shown in Figure 5.15, subgraph homeomorphism

generates far worse schedules compared to G-Minor.

��	���
��	��
��	�
��
���
����
�����
������
�������

���
����	
���

����	
��

�����
�������

�����
�

�������

�����
�
�����

������

�������

��������

����

��������

��� ������
��
����

��
����
�������

��
��
��
���
��
���
��
!�
" #$%���� &'(%�� ��)��������*��� ��
$#$%����

Figure 5.16: Compilation time for G-Minor, EPIMap, SA, subgraph homeomor-
phism and G-Minor with re-computation

The runtime of the different approaches for all the benchmarks are shown in

Figure 5.16, which is reported based on an Intel Quad-Core running at 2.83GHz

with 3GB memory. It is well known that SA approaches require longer com-

pilation time [100] specially for large kernels. Similar compilation time has

been reported in [57]. G-Minor and EPIMap reduce compilation time signifi-

cantly using more guided approach to mapping. The average compilation time

for EPIMap is 34.26 sec, which is consistent with the timing reported in [56].

G-Minor provides extremely fast compilation time of only 0.27 sec on an average.

This is because the graph minor testing algorithm in G-Minor has been highly

optimized using various pruning constraints and different acceleration strategies.

EPIMap transforms the DFG and uses it as an input to an off-the-shelf maximal

common subgraph (MCS) kernel [86]. Thus, the compilation time for EPIMap

depends on the efficiency of the chosen MCS kernel. Besides, EPIMap might

need to transform the DFG and repeat the MCS kernel computation multiple

times when the mapping fails. This potentially leads to longer compilation time.

Impact of acceleration strategies and heuristics We evaluate reduction

in compilation time using the acceleration strategies presented in Section 5.4.5.

We compare compilation time for two different versions of G-Minor: the slow

mode and the fast mode in Figure 5.17. The fast mode uses the acceleration

strategies. Both modes achieve identical II for all the benchmarks because the

acceleration strategies are designed such that they do not impact the quality

92

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

0

0.1

0.2

0.3

0.4

0.5
C

om
pi

la
tio

n
tim

e
ra

tio

0

0.4

0.8

1.2

1.6

2

R
ou

tin
g

no
de

 r
at

io

(a) Compilation time comparison for two G-Minor schemes

(b) Number of routing node comparison of two G-Minor schemes

Figure 5.17: Experimental results for fast G-Minor scheme (with acceleration
strategies) compared to slow G-Minor scheme

of the solutions, but provide better guidance for the search process. In Figure

5.17(a), the compilation time of the fast mode is normalized w.r.t. the slow

mode. The fast mode can effectively reduce the compilation time by more than

50%. The penalty for the fast mode is in the form of using more routing nodes.

Figure 5.17(b) compares the number of routing nodes for the two schemes. The

average ratio is around 1.15, which means there are 15% extra routing nodes

used in fast mode because the fast pruning constraints using static shortest path

connectivity information can lead to more node expansions. The heuristics play

crucial roles in achieving reasonable compilation time. In our experiments, 9

out of the 17 benchmarks will fail to return a feasible solution within 10 hours

without the heuristics. Meanwhile, the II values of the remaining benchmarks

match the results generated with heuristics.

Different CGRA configurations As mentioned in Section 5.2.1, our ap-

proach can support different CGRA configurations. The experiment results for

4×4 CGRAs with different number of memory units and different register file

configurations are shown in Figure 5.18. MxC denotes the availability of x

columns of memory FUs in the array; and y is the number of registers in a

register file. So an architectural configuration MxC-LRF-yR corresponds to an

array with x columns of memory units and locally shared register files, each of

93

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

which contains y registers. Each register file is associated with two read ports

and one write port. The results indicate that memory units are the most critical

resources. Adding more memory units brings substantial benefit by reducing

the achieved II. However, adding more registers may not necessarily improve II.

This is because the intelligent exploration of the search space can find mappings

within limited routing resources. Adding more routing resources such as increas-

ing the size of local/global register files can reduce the mapping efforts but could

also end up with resource wastage. We notice that starting from M2C-LRF-1R

configuration, increasing the number of registers and providing more connec-

tivity through registers for routing do not reduce the value of the achieved II.

��

�+

�,

��

��

���

��+

��,

���

���

�������	

����
�	���

����
�	���

������	���

������	���

������	���

������	��

�������	

����
�	���

����
�	���

������	���

������	���

������	���

������	��

�
��
��
��
��
��

���
������
� ������
� %�!��
��"����#
�������
��$� ��
�����%%

�����
�����#�

Figure 5.18: Achieved II for different CGRA configurations

Scalability Our G-Minor fast mode can dramatically accelerate the compila-

tion time. We test the scalability by configuring the size of NORF CGRA to 4×8,
8×8, 8×16 and 16×16 2D-mesh. To further stress the scalability, we generate

100 random DFGs where number of nodes is uniformly distributed in the range

(0, 100]. We present the average compilation time for G-Minor and EPIMap with

different CGRA sizes in Table 5.2. The results confirm that G-Minor provides

better scalability to map kernels on large CGRAs. We do not report compila-

tion time for SA approaches as it takes too long to generate solutions for large

CGRAs.

4×4 CGRA 4×8 CGRA 8×8 CGRA 8×16 CGRA 16×16 CGRA
Avg. compilation time (s)

of G-Minor
0.23 0.61 1.51 3.12 7.08

Avg. compilation time (s)
of EPIMap

54.78 570.72 837.92 1235.18 1385.27

Table 5.2: Compilation time for CGRAs with different sizes

94

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

5.7 Experimental Evaluation for Mapping on S-CGRA

We now conduct experimental evaluation for the mapping on S-CGRA. We

demonstrate the efficiency of our proposed heuristic by comparing to the adapted

GA algorithm. Besides, to show the efficiency of the S-CGRA architecture, we

also compare the schedules generated by the S-CGRA and the normal CGRA.

We choose a set of loop kernels from DSP applications, Mediabench [82] and

Mibench [55]. The DFGs of the loop kernels are generated at the back-end of

the gcc cross compiler for simplescalar [11]. These loop kernels are then mapped

to both S-CGRA and the normal CGRA through our graph minor framework

with/without clustering pre-processing step.

As mentioned, the adapted genetic algorithm and the proposed heuristic both

aim at optimizing the computation resource usages by minimizing the number

of clusters. Interestingly, although genetic algorithm is well-known to converge

to near-optimal solutions, when adapting to our clustering context with the

considerations of underlying architectural constraints and DFG constraints, the

genetic algorithm in fact performs worse than our greedy heuristic. From the

experimental results shown in Figure 5.19(a), the greedy heuristic consistently

outperforms genetic algorithm (GA) in terms of number of clustering nodes

generated across all the benchmarks. The smaller the number is, the better

clustering effect would be. This number is reported as the node ratio to the

number of nodes in the original DFG in Figure 5.19(a). In average, by clustering,

the greedy heuristic can reduce the DFG size to 65.7% of its original, while

GA can only achieve reduction to 76%. A possible reason for why our heuristic

outperforms GA is that the evolution process in GA can randomly map unrelated

DFG nodes to one gene, which still satisfy all the constraints used to calculate

the fitness value. However, grouping unrelated DFG nodes together would lead

to inefficient resource usage as the resources in the SFU are occupied and could

not be used for mapping the direct successors. Our heuristic exactly solves this

problem and its efficiency is confirmed.

Then we compare the the schedules generated by using the S-CGRA and

the normal CGRA. The schedules for the S-CGRA are generated by passing

the clustered DFGs to our G-Minor mapper proposed in Chapter 5. And the

schedules for the normal CGRA are generated by mapping the original DFGs

to the normal CGRA using the G-Minor mapper. The schedules generated for

the normal CGRA also represent the schedules generated for the S-CGRA with-

out a pre-processing step. Thus, the comparison results also demonstrate the

importance of using a pre-processing for the S-CGRA. With the clustering pre-

processing step, the size of one DFG is reduced through clustering. The number

95

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

0

1

2

3

4

5

6

II

Original DFG (CGRA/S-CGRA)

GA (S-CGRA)

Heuristic (S-CGRA)

(a) Clustering results

(b) Scheduling results

0

0.2

0.4

0.6

0.8

1

N
od

e r
at

io
 (o

f o
ri

gi
na

l D
FG

) GA (S-CGRA)

Heuristic (S-CGRA)

Figure 5.19: Experimental results for genetic algorithm and proposed heuristic

of nodes in the new DFG is smaller than the original DFG. So it is expected that

the schedules could be much more effective for mapping DFGs into the S-CGRA

comparing to the schedules generated for the normal CGRA. The experimen-

tal results for the comparisons are shown in Figure 5.19(b). As expected, the

schedules generated for the S-CGRA with a clustering pre-processing step using

either the GA or the heuristic are better than the schedules generated for the

normal CGRA or the S-CGRA without a pre-processing step. Also notice that,

less computational nodes does not mean an absolute reduction in II. It is possible

that even though a clustering pre-processing step using GA or greedy heuristic

reduces the number of required computational nodes, the II values would still

not improved, e.g. FFT benchmark shows three identical IIs. The quality of

the schedules are highly dependent on how many available resources could be

utilized and the efficiency of the mapper.

5.8 Chapter Summary

In this chapter, we establish the compilation techniques to be used in the MPSoC

customizations for architectures with shared CGRA and S-CGRA. We formalize

the CGRA mapping problem as a restricted graph minor containment with the

data flow graph representing the computation kernel and the modulo routing re-

source graph representing the CGRA architecture. We design a customized and

96

CHAPTER 5. COMPILATION OF COMPUTATIONAL KERNELS ON S-CGRA

efficient graph minor search algorithm for our problem that employs aggressive

pruning and acceleration strategies. We conduct extensive experimental evalua-

tions of our approach and show that it achieves quality schedule with minimal

compilation time. The graph minor compilation framework is then integrated

with a pre-processing step to support the compilation for the S-CGRA. The

proposed CGRA and S-CGRA compilation techniques are essential parts of the

whole MPSoC design automation tool chain. They will serve to provide alter-

native custom extensions, which would be used in the design space exploration

step in the next chapter.

97

Chapter 6

Mapping Multi-threaded

Applications on S-CGRA

In Chapter 4, we have proposed our novel customizable MPSoC architecture.

The compiler support is then designed for mapping loop kernels into S-CGRA

in Chapter 5. This chapter covers designs space exploration for mapping multi-

threaded applications on the dynamic customizable MPSoC. The design space

exploration algorithm has to be aware of the architectural specifications and

takes in the deign alternatives generated from the compiler. Recall that we have

already discussed design space exploration in static MPSoC customization in

Chapter 3. The high complexity resides in the interdependent task mappings,

resource sharing and individual customizations. By further involving the recon-

figurability, the design space could be drastically increased. We do, however, set

our objective as finding out the optimal or near optimal customization solutions

with the considerations of all the design factors.

6.1 Overview

In the MPSoC system that could be dynamically customized using a shared

reconfigurable fabric, other than all the design challenges presented in static

MPSoC customizations depicted in Chapter 3, one needs to consider reconfigura-

tions by selecting the appropriate set of custom extensions and partitioning them

into different configurations to maximize the performance of a multi-threaded

application. In this chapter, we provide an optimal solution for temporal and

spatial partitioning of the custom extensions. The optimal solution has lim-

ited scalability due to its high computational complexity. Hence we propose an

iterative refinement algorithm that quickly attains good quality solution. We

98

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

evaluate our technique with real embedded applications for the customizable

MPSoC architecture presented in Chapter 4. The evaluations confirm that shar-

ing reconfigurable fabric among the cores leads to better solutions compared to

per-core dedicated fabric. Moreover, a recommendation is given for the archi-

tecture preference between MPSoC architectures with CGRA and S-CGRA.

6.2 Problem Definition

Our architecture is a multi-core system with N cores where all the cores share

a reconfigurable fabric (RF). Let AREA be the area of the shared RF and ρ be

the reconfiguration latency.

We assume a multi-threaded application with at most N threads running

on this multi-core system, i.e., at most one thread is mapped to each core. A

thread Ti is modeled as a sequence of ni tasks Ti,1 . . . Ti,j . . . Ti,ni . Note that

our technique is not restricted to linear chain of tasks per thread. If a thread

is modeled as a task graph, the tasks can be scheduled through a topological

sort of the task graph that respects the dependencies among the tasks. The

resulting linear schedule is used as input to our technique. Moreover, it is easy

to model applications with pipelined parallelism (e.g., streaming application).

Each pipeline stage of the application can be modeled as a thread that maps

to a core. All the tasks corresponding to a pipeline stage can be scheduled to

create a sequence of tasks for that thread.

Each task is associated with multiple custom extensions (CEs). A CE could

consist of a set of custom instruction or loop kernel configurations depending on

the architectural specifications. The CEs are generated according to the tradeoff

between area and execution time. Let {c0i,j , . . . , cmi,j

i,j } denote the set of possible

CEs for task Ti,j . In addition, let tki,j and aki,j denote the execution time and

area requirement of the CE cki,j . We assume c0i,j corresponds to the completely

software implementation of the task, i.e., a0i,j = 0. That is, for each task Ti,j ,

we have a choice of one software implementation and mi,j implementations ac-

celerated with custom extensions. In addition, a0i,j < . . . aki,j < . . . < a
mi,j

i,j and

t0i,j > . . . tki,j > . . . > t
mi,j

i,j . The CE of a task must fit into the available area, i.e.,

aki,j ≤ AREA.

Example Figure 6.1(a) shows an example of two threads with CEs. We assume

AREA = 10. The first thread has 4 tasks while the second thread has 5 tasks.

Each task has multiple CEs. For example, task T1,1 has 3 CEs with 0 (software),

1 and 4 area units. The corresponding execution times are 300, 50, and 30 time

units.

99

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

T1,1
{0,200}
{1,120}

{0,220}
{4,150}
{5,80}

{0,220}
{2,90}

{0,250}
{2,230}
{5,150}
{6,120}

{0,180}
{2,50}

{0,300}
{1,50}
{4,30}

{0,180}
{2,120}
{4,90}
{5,80}

{0,450}
{1,200}
{2,50}

{0,120}
{1,100}
{3,80}
{5,60}

}
}

T1,2

}
} T1,3

}
}

T1,4

{
{

T2,1

{
{
{

T2,2

{
{T2,3

{
{
{
{

T2,4

{
{T2,5

�=50

��= 25

��= 25 ��= 25

��= 25

��= 25

(a) 2 threads with CEs

(b) shared RF = 10; time = 710 (c) private RF = 2x5; time = 730

(d) shared RF = 10; time = 510 (e) private RF = 2x5; time = 590

{0,120} } T1,4

{1,200} } T1,3

{0,180} } T1,2

{1,50} T1,1

{2,50} {T2,5

{2,230} {T2,4

{2,90} {T2,3

{0,220} {T2,2

{1,120} {T2,1

{2,50} {T2,5

{0,250} {T2,4

{2,90} {T2,3

{0,220} {T2,2

{1,120} {T2,1

{0,120} } T1,4

{2,50} T1,3

{2,120} } T1,2

{1,50} T1,1

{1,120} {T2,1

{2,50} T1,3

{1,50} T1,1

{0,180} } T1,2

{0,120} } T1,4

{5,80} {T2,2

{2,90} {T2,3

{6,120} {T2,4

{2,50} {T2,5

{4,30} T1,1 {1,120} {T2,1

{5,80} T1,2

{2,50} T1,3

{3,80} T1,4

{5,80} {T2,2

{2,90} {T2,3

{5,150} {T2,4

{2,50} {T2,5

��= 25

{area,time}

Figure 6.1: Motivating Example

Our objective is to select a CE for each task and appropriate reconfiguration

points so as to minimize the execution time of the multi-threaded application,

i.e., minimize the execution time of the critical thread.

Static configuration Let us first concentrate on a restricted version of the

problem where we do not allow any dynamic reconfiguration of the fabric. Let

xki,j be a binary variable that is set to 1 if the CE cki,j is chosen corresponding to

task Ti,j and 0 otherwise. Then, our goal is to minimize the following objective

function:

max
i=1,...,N

ni∑
j=1

mi,j∑
k=0

xki,j × tki,j

subject to the following constraints

N∑
i=1

ni∑
j=1

mi,j∑
k=0

xki,j × aki,j ≤ AREA; ∀i, j
mi,j∑
k=0

xki,j = 1

100

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

This is 0-1 Integer Linear Programming (ILP) problem.

Example Figure 6.1(b) and 6.1(c) show the optimal solutions with shared and

private RFs, respectively. In case of private RF per core, we assume each core

has access to 10/2 = 5 units of RF. It is easy to prove that shared RF will always

lead to better execution time than private RFs. In our example, we get 710 units

of execution time with shared RF compared to 730 units of execution time with

private RFs.

Dynamic reconfiguration Allowing dynamic reconfiguration of the fabric

adds significant complexity to the problem. Let P be the total number of config-

urations. In the worst case, each task can have its exclusive configuration, i.e.,

P ≤ ∑N
i=1 ni. Let p(Ti,j) be the configuration that Ti,j belongs to. Then, we

have the constraint p(Ti,j) ≤ p(Ti,j+1) as partitions contain consecutive tasks.

Clearly, each configuration must satisfy area constraint. Therefore

∑
∀i,j s.t. p(Ti,j)=q

mi,j∑
k=0

xki,j × aki,j ≤ AREA q ∈ {1 . . . P} (6.1)

The execution time of the application is the summation of the execution time of

each configuration plus the reconfiguration latency. The execution time in each

configuration corresponds to the critical thread in that configuration. So our

goal is to minimize the following objective function:

ρ× (P − 1) +
P∑

q=1

max
i=1,...,N

⎛
⎝ ∑
∀j p(Ti,j)=q

mi,j∑
k=0

xki,j × tki,j

⎞
⎠ (6.2)

Concretely, our goal is to select the CE of each task (i.e., assign the xki,j binary

variables) and assign the configuration for each task p(Ti,j) such that the total

execution time specified by Equation 6.2 is minimized.

Example Figure 6.1(d) and 6.1(e) show the optimal solutions for shared and

private RFs with dynamic reconfiguration. Reconfiguration latency (ρ) is 50 and

25 corresponding to shared and private RFs, respectively. For shared RF, the

application has been partitioned into 2 configurations with execution times 290

unit and 170 unit, respectively. Hence the total execution time is (290+170+50

= 510) unit. Shared RF allows flexibility in terms of allocating area to each

thread. However, the reconfiguration for all the threads have to be synchronized

assuming no partial reconfiguration is supported for the reconfigurable fabric.

Thus, load-imbalance among the threads can have a negative impact. If the

101

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

threads have private RFs as in 6.1(e), each thread can reconfigure its own fab-

ric independently and asynchronously. In our example, T1 reconfigures 2 times

while T2 reconfigures 4 times. Still the optimal solution with private RFs re-

quires 590 time units compared to 510 unit for shared RF. This is because T2

has inherently more requirement of CEs that can be satisfied with shared RF.

Therefore, the design space exploration algorithm needs to carefully take into

account the tradeoff between imbalance in load and area requirement among the

threads.

The presence of both the partition variables and the CE selection variables in

the objective function introduces non-linearity making ILP solution infeasible.

A much simpler version of the partitioning problem where all the threads have

identical number of tasks and the same partitioning is applied to all the threads

(there is no reconfiguration delay and CEs) is known as the multistage linear

array assignment problem (MLAA) [74]. The MLAA problem has been shown

to be NP-complete. We now present an optimal solution to our problem followed

by an efficient iterative refinement algorithm that achieves close to the optimal

solution.

6.3 Optimal Solution

The optimal solution is constructed in a bottom-up fashion by first comput-

ing the solutions per thread, then combining them for multi-threading without

reconfiguration before finally proceeding to incorporate multiple configurations.

Algorithm 8: Compute timei,s,e(A) for all i, s, e, A

1 for i ← 1 to N do
2 for s ← 0 to ni do
3 for e ← s+ 1 to ni do
4 for A ← 0 to AREA do
5 for k ← 0 to mi,j do

6 if (ak
i,e ≤ A) then

7 timei,s,e(A) = min(timei,s,e(A), timei,s,e−1(A− ak
i,e) + tki,e)

8 end

9 end

10 end

11 end

12 end

13 end

Single thread The term
∑
∀j p(Ti,j)=q

∑mi,j

k=0 x
k
i,j × tki,j in Equation 6.2 defines

the execution time of thread Ti in configuration q. Only a consecutive subse-

quence of tasks from Ti can be mapped to a configuration. Let Ti,s+1 and Ti,e

102

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

(s ≤e) be the start and end task of the subsequence of tasks from Ti mapped to

a particular configuration. Then the execution time of the subsequence can be

defined as

timei,s,e =
e∑

j=s+1

mi,j∑
k=0

xki,j × tki,j

Note that according to our definition timei,0,ni corresponds to the execution

time of the entire thread from task Ti,1 to task Ti,ni . Moreover, we assume that

timei,s,s = 0 corresponds to the execution time of an empty sequence of tasks.

We first pre-compute the minimum value of timei,s,e for all possible values

of i, s, e under different area constraints. We design a dynamic programming

algorithm to compute these values. The recursive equation is

timei,s,j(A) = min
k=0,...,mi,j

aki,j≤A

(timei,s,j−1(A− aki,j) + tki,j)

where timei,s,j(A) (with s < j) is the minimum execution time of the subse-

quence Ti,s+1 . . . Ti,j under area constraint A. Basically, we start with the task

Ti,s+1 and add one task at a time till we reach the task Ti,e. For the task

Ti,j , we go through all its CEs that can fit in the area A. For each such CE

cki,j , we allocate its area aki,j and the remaining area A−aki,j is given to the tasks

Ti,s+1 . . . Ti,j−1. The execution time under this allocation is the execution time of

the task Ti,j with CE cki,j and the minimum execution time of the previous tasks

under the remaining area constraint timei,s,j−1(A − aki,j). Then, we choose the

CE that produces minimum execution time under this scenario. In other words,

we set xki,j = 1 for that CE and 0 for all the other CEs. Algorithm 8 illustrates

this computation. The complexity of the algorithm is O(N × n2 ×m×AREA)

where n is the average number of tasks per thread and m is the average number

of CEs per task.

Algorithm 9: Compute time〈s1,e1〉...〈sN,eN〉
1 for i ← 1 to N do Ai = 0;
2 for A ← 0 to AREA do
3 critical = 0; maxTime = 0;
4 for i ← 1 to N do
5 if timei,si,ei(Ai) >= maxTime then
6 maxTime = timei,si,ei(Ai); critical = i;
7 end

8 end
9 Acritical = Acritical + 1;

10 end
11 return maxTime;

103

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

Multi-threading with Static Configuration Let us suppose subsequences

[T1,s1+1 . . . T1,e1] . . . [TN,sN+1 . . . TN,eN] have been mapped to a particular con-

figuration. The execution time of this configuration will be determined by the

subsequence with maximum execution time. We also need to satisfy the area

constraint of the configuration (see Equation 6.1). We define time〈s1,e1〉...〈sN,eN〉
as the execution time of the subsequences [T1,s1+1 . . . T1,e1] . . . [TN,sN+1 . . . TN,eN]

mapped to a configuration. We propose Algorithm 9 to efficiently compute the

minimum value of time〈s1,e1〉...〈sN,eN〉.

Our goal is to partition AREA among all the threads to minimize the execu-

tion time of the critical thread. Initially, we set the area assigned to each thread

(Ai) to 0. In each step, we allocate unit area to the critical thread to reduce its

execution time. The correctness of the algorithm can be easily proved through

induction on area A, as the execution time can be potentially decreased only by

assigning the area increment to the critical thread.

Note that time〈0,n1〉...〈0,nN 〉 corresponds to the minimum execution time of the

entire application with single configuration. That is, Algorithm 9 can generate

the optimal solution for N threads with shared RF without reconfiguration. The

complexity of this algorithm is O(N ×AREA).

Algorithm 10: Optimal Algorithm

1 P = 1;
2 repeat
3 P = P + 1;
4 improve = false;
5 for all combinations of ei (0 ≤ ei ≤ ni) do
6 min = time〈0,e1〉...〈0,eN 〉|(P − 1);

7 for all combinations of vi (0 ≤ vi ≤ ei) do
8 temp = time〈0,v1〉...〈0,vN 〉|(P − 1) + ρ+ time〈v1,e1〉...〈vN ,eN 〉;
9 if temp < min then

10 min = temp;
11 improve = true;

12 end

13 end
14 time〈0,e1〉...〈0,eN 〉|P = min;

15 end

16 until !improve;
17 opt = time〈0,n1〉...〈0,nN 〉|P ;

18 return opt;

104

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

Multi-threading with Dynamic Reconfiguration We now proceed to in-

troduce reconfiguration. Let us define time〈s1,e1〉...〈sN ,eN 〉|P as the minimum

execution time of the task subsequences [T1,s1+1 . . . T1,e1] . . . [TN,sN+1 . . . TN,eN]

with P configurations including reconfiguration overhead of ρ× (P −1). For one

configuration, time〈s1,e1〉...〈sN ,eN 〉|1 = time〈s1,e1〉...〈sN ,eN 〉. We define a recursive

equation to compute the execution time for P configurations given the execution

times for P − 1 configurations as follows.

time〈s1,e1〉...〈sN ,eN 〉|P = min
∀i si≤vi≤ei

(time〈v1,e1〉...〈vN ,eN 〉

+ρ+ time〈s1,v1〉...〈sN ,vN 〉|(P − 1))

The equation states that we need to explore all possible combination of start-

ing points in each thread for the P th configuration. This is achieved by set-

ting vi (starting points of P th configuration) between si and ei for each thread

Ti. Then, time〈v1,e1〉...〈vN ,eN 〉 denotes the execution time of the P th config-

uration. The remaining tasks are assigned to the P − 1 configurations and

time〈s1,v1〉...〈sN ,vN 〉|(P − 1) denotes the corresponding execution time. We add

the reconfiguration overhead. The combination of starting points that provides

the minimum execution time is the optimal solution.

Algorithm 10 describes the dynamic programming algorithm to find the op-

timal solution. We start with P = 1 configuration and increment the number

of configurations by one in each step. We compute the execution time for all

possible partitions and then select the one with the minimum execution time.

If the execution time improves with the additional configuration, we continue.

Otherwise, the algorithm terminates. Clearly, the algorithm has exponential

complexity of O(nN) where n is the number of tasks per thread. However, this

algorithm produces the optimal solution and provides a solid reference point.

6.4 Iterative Refinement

Now we present an iterative refinement technique (see Algorithm 11) that avoids

the exponential complexity of the optimal algorithm while achieving close to op-

timal solution. The basic idea is to start with the static configuration and par-

tition one of the configurations in each step. Suppose we have P configurations

(represented by SetP) after P − 1 partitioning steps. Corresponding to each

configuration, we maintain the start and end tasks of each thread (Start, End),

the area required by each thread (Area), and the execution time (T ime). We

then choose the configuration p with the maximum execution time and attempt

105

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

Algorithm 11: Iterative Refinement (IR) Algorithm

1 add static configuration to SetP ; min = time〈0,n1〉,...〈0,nN 〉;
2 while SetP �= φ do
3 choose config p from SetP with max execution time;
4 for i← 1 to N do
5 si = Start[p][i]; ei = End[p][i];A = Area[p][i];
6 find vi with min |timei,si,vi(A)− timei,vi,ei(A)|;
7 end
8 temp = time〈s1,v1〉...〈sN ,vN 〉 + time〈v1,e1〉...〈vN ,eN 〉 + ρ;

9 if temp < Time[p] then
10 min = min− (T ime[p]− temp);
11 replace p with partitions of p in SetP ;
12 update Start, End, Area, T ime;

13 end
14 else
15 remove p from SetP ;
16 end

17 end
18 return min;

to partition it. The heuristic partitions each thread independently as follows. If

in configuration p, thread Ti was allocated area Area[p][i], then we allocate the

same area to each of its partition. We then select the point vi to maximize the

balance between the two partitions of Ti. Once the partitioning points for all the

threads have been selected, we compute the actual execution time per partition

by invoking Algorithm 9 and add the reconfiguration overhead. If the execution

time of p reduces with partitioning, then we add the new configurations to SetP .

Otherwise, we remove p from further consideration. The algorithm terminates

when we cannot optimize any configuration through partitioning. The complex-

ity per iteration is O(N × n+N × AREA). As the number of reconfigurations

is typically quite small, the algorithm terminates quickly.

Example We illustrate the algorithm with the same example used in Figure

6.1. The threads and their CE information are shown in Figure 6.2(a). We start

with the static configuration, i.e., the solution in Figure 6.2(b) with execution

time 710. Here T1 occupies 2 units of area, whereas T2 occupies 7 units of

area. We try to partition each thread independently as shown in Figure 6.2(c).

Each partition of T1 is assigned 2 units of area. With this constraint, the best

partitioning point is after task T1,2. As T2 is the critical thread, 1 unit of

unassigned area is added to its allocated 7 units of area. With area 8, the best

106

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

A = 2
time = 230

A = 2
time = 170

A = 8
time = 290

A = 8
time = 170

(c) Partitioning heuristic in IR

{1,50} T1,1 {1,120} {T2,1

{0,180} } T1,2

{2,50} T1,3

{0,120} } T1,4

{5,80} {T2,2

{2,90} {T2,3

{6,120} {T2,4

{2,50} {T2,5

T1,1
{0,200}
{1,120}

{0,220}
{4,150}
{5,80}

{0,220}
{2,90}

{0,250}
{2,230}
{5,150}
{6,120}

{0,180}
{2,50}

{0,300}
{1,50}
{4,30}

{0,180}
{2,120}
{4,90}
{5,80}

{0,450}
{1,200}
{2,50}

{0,120}
{1,100}
{3,80}
{5,60}

}
}

T1,2

}
} T1,3

}
}

T1,4

{
{

T2,1

{
{
{

T2,2

{
{T2,3

{
{
{
{

T2,4

{
{T2,5

(a) 2 threads with CIS versions

{area,time}

A = 2
time = 550 A = 7

time = 710

(b) Static configuration

{1,50} T1,1 {1,120} {T2,1

{0,180} } T1,2

{1,200} } T1,3

{0,120} } T1,4

{0,220} {T2,2

{2,90} {T2,3

{2,230} {T2,4

{2,50} {T2,5

Figure 6.2: An illustrative example for iterative heuristic

partitioning point of T2 is after task T2,3. Now we determine the execution time of

the configuration {〈T1,1T1,2〉, 〈T2,1T2,2T2,3〉}, which is 290. The execution time

of the other configuration {〈T1,3T1,4〉, 〈T2,4T2,5〉} is 170. Hence the execution

time of 2-configuration solution is (290+170+50=510), which is better than 1-

configuration solution. Next we try to partition each of the configurations. But

further partitioning does not improve execution time. So the algorithm returns

the 2-configuration solution, which is also the optimal solution as shown in Figure

6.1(d).

6.5 Experimental Evaluation

6.5.1 Design Automation Tool Overview

Combining the architectural specifications depicted in Chapter 4, compilation

supports detailed in Chapter 5 and the design space exploration techniques ex-

plained in this chapter, we have a full design automation tool chain to support

dynamic MPSoC customization. The whole design automation flow is shown in

Figure 6.3.

At the first step, the source code is fed into a profile tool to extract compu-

tationally intensive kernels. In our experimental evaluations, computationally

intensive kernels are identified as hot basic blocks. We adopt the profile tool

107

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

• Computationally intensive kernels identification
• Hot basic block identification
• Task graph generation

Source code (e.g. c, cpp)

1. Profile tool

Hot basic block
(computationally
intensive kernel)

BB1 BB2

BB3

BB4

Task 1 Task 2

Task 3

Task 4 Task 5

• S-CGRA compilation
 – G-Minor compilation framework with preprocessor step

Custom extension 1

Alternative custom
extensions

2. Compilation supports

• CGRA compilation
 – G-Minor compilation framework

• S-CGRA compilation
 – G-Minor compilation framework
with preprocessor step

Architectural specification
with CGRA

Architectural specification
with S-CGRA

Custom extension 2

…

Custom extension N

3. Design Space Explorations

Executable binary
• Unified framework taking design alternatives
• Task scheduling
• Custom extensions selections
• Reconfiguration decisions
• Other architectural/performance constraints

Configurations for the
reconfigurable fabric

Figure 6.3: The whole design automation flow

from [132], which is originally used to identify custom instructions. Beside hot

basic block identification, the application is also partitioned and represented as

a task graph. Each task could either be a function or a set of functions. The

task graph generation could also be done manually by experienced designer.

The generated task graphs together with hot basic blocks are then fed into

compilers regarding the different architectural specifications. For shared CGRA,

we use our G-Minor compilation framework to generate different configurations

for computationally intensive loop kernels as custom extensions. If the S-CGRA

is used as the shared reconfigurable fabric, then we use the modified G-Minor

framework, which is integrated with a pre-processing step as detailed in Chapter

5.

108

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

The alternative custom extensions generated from the compilers will be used

in our final design space exploration step. The unified design space exploration

framework is able to take in all the architectural specifications and custom ex-

tensions to produce feasible customization solutions. The exploration process

should be able to perform task scheduling, select custom extensions, and make

reconfiguration decisions with the considerations of various architectural and

performance constraints. The final outputs would be an executable binary to

be run in the MPSoC system and a configurable file containing all the runtime

configuration information for the reconfigurable fabric.

6.5.2 Experimental Evaluations for MPSoCS with CGRA and

S-CGRA

We now study the dynamic MPSoC customization techniques. As S-CGRA

is just a derivative of CGRA and the MPSoC architectures are very similar, we

combine the experimental evaluations for the two architectures. The experiments

are designed in the first place to verify the benefits brought by resource sharing.

This is done through the comparisons between the architecture with a shared

coprocessor and the architecture with private coprocessors. Experiments are also

conducted to evaluate the advantages of using the proposed architecture with

the S-CGRA comparing to the architecture with the normal CGRA.

Experimental Setup

Compiler modification The back-end of SimpleScalar-gcc cross compiler is

modified to extract the DFGs for the computation intensive kernels. These

DFGs are fed into G-Minor compilation framework with/without the proposed

clustering algorithm as a pre-processing step. The G-Minor mapper will generate

multiple versions of solutions or CEs by varying the number of available rows in

the CGRA or S-CGRA.

Frequency The frequency of the baseline processor is set as 2GHz, and the

frequency for S-CGRA achieves 606MHz according to the synthesis results pre-

sented in Chapter 4. For the normal CGRA, we assume each functional unit is

comprehensive to support all the operations and consists of one basic functional

unit and one complex functional unit as referred in Chapter 4. The frequencies

of the S-CGRA and normal CGRA are, however, roughly the same, as they are

both constrained by the critical path length of the complex functional unit.

109

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

Area Each functional unit in the normal CGRA consumes roughly 74% of

the area consumed by the specialized functional unit in S-CGRA. Thus, using

the area for one row consisting of 4 SFUs, we are able to create a row of 5

comprehensive FUs in the normal CGRA. Similarly, the area of 8 SFUs is similar

to the area for creating 10 comprehensive FUs. Notice that in both S-CGRA

and CGRA, about 35% of the total area is used for networking, which matches

the results reported in [73, 44, 21].

Reconfiguration time The reconfiguration time is set according to the num-

ber of configuration bits and the DMA transfer rate. It is the time consumed to

transfer all the II configurations for the target loop kernel from on-chip configu-

ration memory to the configuration caches. Recall that each SFU needs 62 bits

for functional configuration per cycle. Then, for a 4X4 S-CGRA that contains 16

SFUs arranged in a 2D mesh topology, we need 992 bits per cycle to configure the

functionalities of the SFUs. As referred in 4, the network configuration requires

328 bits. If the maximum depth of the configuration cache is 10 (max II = 10),

then the total number of the configuration bits is 13,200. Assuming a 2MB/s

DMA transfer rate, the reconfiguration time in terms of baseline processor cycles

is 1,573,563 cycles.

Comparisons between MPSoCs with CGRA and S-CGRA

We evaluate the efficiency of the proposed architecture using JPEG encoder

and MP3 encoder applications. Our proposed architecture consists of two cores

with a shared S-CGRA, named as Shared S-CGRA for the convenience. The

architectures to compare with includes a two-core system with private S-CGRAs

(Private S-CGRA), a two-core system with a shared CGRA (Shared CGRA),

and a two-core system with private CGRAs (Private CGRA). Five hot kernels

are identified for each of the applications. Each application is partitioned into

two pipeline stages and each stage is mapped to one core. We will examine the

efficiencies of the architectures by checking the execution time of the critical

pipeline stage.

We first constrained the number of SFUs in one S-CGRA row to 4 and the

number of FUs in one CGRA row to 5. The experimental results are shown in

Figure 6.4. Clearly, sharing technique could bring significant speedup for both

architectures with S-CGRA and normal CGRA when the area budget is limited.

It is also shown that using S-CGRA as the shared coprocessor is more promising

than the normal CGRA. In both the applications, around 5% speedup is observed

for Shared S-CGRA comparing to Shared CGRA. Finally, for the streaming

110

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

No. of Rows

JPEG

Shared S-CGRA (Optimal) Private S-CGRA Shared CGRA Private CGRA Shared S-CGRA (IR)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

No. of Rows

MP3

Figure 6.4: Experimental results for shared S-CGRA, private S-CGRA, shared
CGRA and private CGRA, each row consists of 4 SFUs or 5 FUs

applications such as JPEG and MP3, we conclude that 4×6 S-CGRA is the

optimal architecture, which has least number of rows and is sufficient to achieve

most of the speedup. In the experiments, we also demonstrate the efficiency of

our iterative refinement heuristic by comparing it to the optimal solution. The

iterative refinement heuristic, denoted as Shared S-CGRA (IR), consistently

generates similar results as the optimal solution, shown as Shared S-CGRA

(optimal) in the figure.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

No. of Rows

JPEG

Shared S-CGRA Private S-CGRA Shared CGRA Private CGRA

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

No. of Rows

MP3

Figure 6.5: Experimental results for shared S-CGRA, private S-CGRA, shared
CGRA and private CGRA, each row consists of 8 SFUs or 10 FUs

Another factor that impacts the final speedup is the number of functional

111

CHAPTER 6. MAPPING MULTI-THREADED APPLICATIONS ON S-CGRA

units in one row. We now change the number of SFUs in one S-CGRA row to

8 and the number of FUs in one CGRA row to 10. The experimental results in

Figure 6.5 show that the extra accelerations brought by using S-CGRA become

negligible when the number of available rows increases. This is true as a suffi-

ciently large CGRA will give the same II as one S-CGRA for a particular loop

kernel. However, the architectures with S-CGRAs outperform the architectures

with CGRAs when the area budget is constrained. Obviously, sharing is pre-

ferred to achieve significant speedups. Again, we conclude that S-CGRA with 6

rows is also a good architecture for streaming applications.

6.6 Chapter Summary

In this chapter, we cover the design space exploration technique, which is the

final step in the design automation tool for MPSoC customization. We formalize

the design space exploration problem in dynamic MPSoC customization with the

considerations of task scheduling, customization alternatives selections, resource

sharing, reconfigurations and architectural/performance constraints. An optimal

algorithm is then proposed to solve the problem. Considering the high complex-

ity of the optimal algorithm, an iterative heuristic is designed to reduce the design

space exploration time. With the efficient design space exploration technique,

we have a full design automation tool. The design automation tool contains

different architectural specifications, compiler supports to generate custom ex-

tension alternatives for the different architectures, and a unified design space

exploration framework that can efficiently generate final MPSoC customization

solutions. Through our experimental evaluations, we confirm the efficiency of

the whole design automation tool and give feedbacks for the preferences of the

architectures.

112

Chapter 7

Conclusion

7.1 Thesis Contribution

This thesis exposes and tackles the challenges in MPSoC customization problems.

The thesis presents a unified framework for crafting a heterogenous MPSoC

through customization techniques.

The main contributions of this thesis are as follow:

• We formalize the static MPSoC customization problem with the consider-

ations of task scheduling, chip area sharing, alternative custom instruction

sets selections and QoS constraints. An efficient hierarchical algorithm is

proposed to locate the most resource-efficient customized MPSoC designs

in the vast design space dealing with streaming applications.

• We propose a novel customizable MPSoC architecture with a shared coarse-

grained reconfigurable fabric, S-CGRA. The heart of our innovation is

a specialized functional unit (SFU) that can execute most application-

specific instructions at ASIP-like efficiency through fast reconfiguration.

Using SFU as the primary processing element of the S-CGRA, the S-CGRA

is able to explore massive speedups of the computational intensive kernels.

• A graph minor approach is proposed by us to solve CGRA mapping prob-

lems. The graph minor formalization for the CGRA mapping problem

serves as a bridge between the graph theory and the practical CGRA com-

pilation problem. We design a customized and efficient graph minor search

algorithm that employs aggressive pruning and acceleration strategies. Ex-

tensive experimental evaluations show that our approach achieves quality

schedule with minimal compilation time.

113

CHAPTER 7. CONCLUSION

• We formalize the problem of dynamic MPSoC customization with a shared

reconfigurable fabric. With the considerations of reconfigurations and all

the other challenges found in static MPSoC customization, we have suc-

cessfully developed an efficient algorithm that can minimize the execu-

tion time for multi-threaded applications by selecting appropriate custom

instructions and reconfiguration points. We demonstrate the benefits of

sharing the reconfigurable fabric as opposed to independent reconfigurable

fabric per core.

7.2 Future Work

MPSoC customization problem is highly complex. Despite our extensive de-

sign efforts, we only tackle a small portion of the whole MPSoC customization

problem. Some of the possible future research directions include:

• Power management for the customizable MPSoC. As power consumption

becomes a more and more important topic in embedded system design,

it is valuable to evaluate the impacts of power consumption in MPSoC

customizations. As different custom extensions could have different power

consumptions, one potential topic could be efficient runtime MPSoC cus-

tomization under the thermal constraints.

• A combination of fine-grained and coarse-grained architectures. We have

investigated the MPSoC customization techniques individually for both

the fine-grained and coarse-grained architectures. As different applications

might require different customization granularity, a study on the hybrid

architectures is desired.

• Many-core system customization with clustered reconfigurable fabrics. The

many-core era will turn the processor customization problem into a pros-

perous research area. We can expect that the overhead of sharing a cen-

tralized reconfigurable fabric would be too expensive and clustered recon-

figurable fabrics could be introduced to solve the scalability problem. How-

ever, the run-time application demands would complicate the architectural

designs and scheduling mechanisms.

These are only some preliminary thoughts and they require comprehensive

investigations. We believe that the multi-processor customization will benefit

significantly from the continued research in this domain.

114

Bibliography

[1] The trimaran compiler infrastructure. http://www.trimaran.org.

[2] In conversation with tensilica ceo chris rowen. IEEE Design Test of Com-

puters, 25(1):88–95, 2008.

[3] Shail Aditya, Vinod Kathail, and B Ramakrishna Rau. Elcor’s machine

description system: Version 3.0. Hewlett Packard Laboratories, 1998.

[4] Isolde Adler, Frederic Dorn, Fedor V Fomin, Ignasi Sau, and Dimitrios M

Thilikos. Fast minor testing in planar graphs. Algorithmica, 64(1):69–84,

2012.

[5] Mythri Alle, Keshavan Varadarajan, Reddy C Ramesh, Joseph Nimmy,

Alexander Fell, Adarsha Rao, SK Nandy, and Ranjani Narayan. Synthesis

of application accelerators on runtime reconfigurable hardware. In Proceed-

ings of the 2008 International Conference on Application-Specific Systems,

Architectures and Processors, pages 13–18. IEEE, 2008.

[6] Federico Angiolini, Jianjiang Ceng, Rainer Leupers, Federico Ferrari, Ce-

sare Ferri, and Luca Benini. An integrated open framework for heteroge-

neous mpsoc design space exploration. In Proceedings of the 2006 confer-

ence on Design, Automation and Test in Europe, pages 1–6. IEEE, 2006.

[7] Giovanni Ansaloni, Paolo Bonzini, and Laura Pozzi. Design and archi-

tectural exploration of expression-grained reconfigurable arrays. In Pro-

ceedings of the 2008 Symposium on Application Specific Processors, pages

26–33. IEEE, 2008.

[8] Kubilay Atasu, Günhan Dündar, and Can Özturan. An integer linear

programming approach for identifying instruction-set extensions. In Pro-

ceedings of the 3rd IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis, pages 172–177. ACM, 2005.

115

BIBLIOGRAPHY

[9] Kubilay Atasu, Oskar Mencer, Wayne Luk, Can Ozturan, and Gun-

han Dundar. Fast custom instruction identification by convex subgraph

enumeration. In Proceedings of the 2008 International Conference on

Application-Specific Systems, Architectures and Processors, pages 1–6.

IEEE, 2008.

[10] Kubilay Atasu, Laura Pozzi, and Paolo Ienne. Automatic application-

specific instruction-set extensions under microarchitectural constraints. In

Proceedings of the 40th annual Design Automation Conference, pages 256–

261. ACM, 2003.

[11] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure

for computer system modeling. Computer, 35(2):59–67, 2002.

[12] Nikhil Bansal, Sumit Gupta, Nikil Dutt, and Alexandru Nicolau. Anal-

ysis of the performance of coarse-grain reconfigurable architectures with

different processing element configurations. In Workshop on Application

Specific Processors, held in conjunction with the International Symposium

on Microarchitecture (MICRO), 2003.

[13] Lars Bauer, Muhammad Shafique, Simon Kramer, and Jörg Henkel. Rispp:

rotating instruction set processing platform. In Proceedings of the 44th

annual Design Automation Conference, pages 791–796. ACM, 2007.

[14] Anne Benoit and Yves Robert. Mapping pipeline skeletons onto het-

erogeneous platforms. Journal of Parallel and Distributed Computing,

68(6):790–808, 2008.

[15] Paolo Bonzini, Giovanni Ansaloni, and Laura Pozzi. Compiling custom

instructions onto expression-grained reconfigurable architectures. In Pro-

ceedings of the 2008 International Conference on Compilers, Architecture

and Synthesis for Embedded Systems, pages 51–60. ACM, 2008.

[16] Unmesh D Bordoloi, Huynh Phung Huynh, Tulika Mitra, and Samarjit

Chakraborty. Design space exploration of instruction set customizable

mpsocs for multimedia applications. In Proceedings of the 2010 Interna-

tional Conference on Embedded Computer Systems, pages 170–177. IEEE,

2010.

[17] Anne Bracy, Prashant Prahlad, and Amir Roth. Dataflow mini-graphs:

Amplifying superscalar capacity and bandwidth. In Proceedings of the

37th International Symposium on Microarchitecture, pages 18–29. IEEE,

2004.

116

BIBLIOGRAPHY

[18] Anne Bracy and Amir Roth. Serialization-aware mini-graphs: Performance

with fewer resources. In Proceedings of the 39th International Symposium

on Microarchitecture, pages 171–184. IEEE, 2006.

[19] Janina A Brenner, Sándor P Fekete, and Jan C van der Veen. A minimiza-

tion version of a directed subgraph homeomorphism problem. Mathemat-

ical Methods of Operations Research, 69(2):281–296, 2009.

[20] Timothy J Callahan, John R Hauser, and John Wawrzynek. The garp

architecture and c compiler. Computer, 33(4):62–69, 2000.

[21] Liang Cao and Huang Xinming. SmartCell: An energy efficient

coarse-grained reconfigurable architecture for stream-based applications.

EURASIP Journal on Embedded Systems, 2009, 2009.

[22] Jorge E Carrillo and Paul Chow. The effect of reconfigurable units in

superscalar processors. In Proceedings of the 9th annual ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 141–

150. ACM, 2001.

[23] Liang Chen and Tulika Mitra. Shared Reconfigurable Fabric for Multi-core

Customization. In Proceedings of the 48th Design Automation Conference,

pages 830–835. ACM, 2011.

[24] Liang Chen and Tulika Mitra. Graph minor approach for application map-

ping on CGRAs. In Proceedings of the 2012 International Conference on

Field Programmable Technology, pages 285–292. IEEE, 2012.

[25] Liang Chen and Tulika Mitra. Graph minor approach for application map-

ping on CGRAs. ACM Transactions on Reconfigurable Technology and

Systems, 2014.

[26] Liang Chen, Joseph Tarango, Philip Brisk, and Tulika Mitra. A Just-in-

Time Customizable Processor. In Proceedings of the 48th Design Automa-

tion Conference, pages 524–531. ACM, 2011.

[27] Linag Chen, Nicolas Boichat, and Tulika Mitra. Customized MPSoC Syn-

thesis for Task Sequences. In Proceedings of the 9th Symposium on Appli-

cation Specific Processors, pages 16–22. IEEE, 2011.

[28] Zhimin Chen, Richard Neil Pittman, and Alessandro Forin. Combining

multicore and reconfigurable instruction set extensions. In Proceedings

of the 18th annual ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 33–36. ACM, 2010.

117

BIBLIOGRAPHY

[29] N Clark, J Blome, M Chu, S Mahlke, S Biles, and K Flautner. An architec-

ture framework for transparent instruction set customization in embedded

processors. In Computer Architecture, 2005. ISCA\’05. Proceedings. 32nd
International Symposium on, pages 272–283, 2005.

[30] Nathan Clark, Amir Hormati, Scott Mahlke, and Sami Yehia. Scalable

subgraph mapping for acyclic computation accelerators. In Proceedings of

the 2006 International Conference on Compilers, Architecture and Synthe-

sis for Embedded Systems, pages 147–157. ACM, 2006.

[31] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and

Krisztian Flautner. Application-specific processing on a general-purpose

core via transparent instruction set customization. In Proceedings of the

37th International Symposium on Microarchitecture, pages 30–40. IEEE,

2004.

[32] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A

(sub) graph isomorphism algorithm for matching large graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(10):1367–

1372, 2004.

[33] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein,

et al. Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

[34] Michael Dales. Managing a reconfigurable processor in a general purpose

workstation environment. In Proceedings of the 2003 conference on Design,

Automation and Test in Europe, pages 980–985. IEEE, 2003.

[35] Bjorn De Sutter, Paul Coene, Tom Vander Aa, and Bingfeng Mei.

Placement-and-routing-based register allocation for coarse-grained recon-

figurable arrays. In Proceedings of the 2008 ACM SIGPLAN-SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems,

pages 151–160. ACM, 2008.

[36] André DeHon. Dpga utilization and application. In Proceedings of the

4th annual ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pages 115–121. ACM, 1996.

[37] JC DeSouza-Batista and Alice C Parker. Optimal synthesis of application

specific heterogeneous pipelined multiprocessors. In Proceedings of the

1994 International Conference on Application Specific Array Processors,

pages 99–110. IEEE, 1994.

118

BIBLIOGRAPHY

[38] Muhammad K Dhodhi, Imtiaz Ahmad, Anwar Yatama, and Ishfaq Ahmad.

An integrated technique for task matching and scheduling onto distributed

heterogeneous computing systems. Journal of parallel and distributed com-

puting, 62(9):1338–1361, 2002.

[39] Giuseppe Di Battista, Maurizio Patrignani, and Francesco Vargiu. A split

& push approach to 3d orthogonal drawing. Journal of Graph Algorithms

and Applications, 4(3):105–133, 2000.

[40] Jack J Dongarra and Piotr Luszczek. Introduction to the HPCChallenge

benchmark suite. Technical report, DTIC Document, 2004.

[41] Christine Eisenbeis, Sylvain Lelait, and Bruno Marmol. The meeting

graph: a new model for loop cyclic register allocation. In Proceedings

of the IFIP WG, pages 264–267, 1995.

[42] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph

homeomorphism problem. Theoretical Computer Science, 10(2):111–121,

1980.

[43] Stephen Friedman, Allan Carroll, Brian Van Essen, Benjamin Ylvisaker,

Carl Ebeling, and Scott Hauck. Spr: an architecture-adaptive cgra map-

ping tool. In Proceedings of the 17th annual ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pages 191–200. ACM,

2009.

[44] Anup Gangwar, M Balakrishnan, Preeti R Panda, and Anshul Kumar.

Evaluation of bus based interconnect mechanisms in clustered VLIW ar-

chitectures. In Proceedings of the 2005 Conference on Design, Automation

and Test in Europe, pages 730–735. IEEE Computer Society, 2005.

[45] Philip Garcia and Katherine Compton. A reconfigurable hardware inter-

face for a modern computing system. In Proceedings of 15th annual IEEE

Symposium on Field-Programmable Custom Computing Machines, pages

73–84. IEEE, 2007.

[46] Philip Garcia and Katherine Compton. Kernel sharing on reconfigurable

multiprocessor systems. In Proceedings of the 2008 International Confer-

ence on Field Programming Technology, pages 225–232. IEEE, 2008.

[47] Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuris-

tics for scheduling directed acyclic graphs on multiprocessors. Journal of

Parallel and Distributed Computing, 16(4):276–291, 1992.

119

BIBLIOGRAPHY

[48] Rani Gnanaolivu, Theodore S Norvell, and Ramachandran Venkatesan.

Mapping loops onto coarse-grained reconfigurable architectures using par-

ticle swarm optimization. In Proceedings of the 2010 International Con-

ference on Soft Computing and Pattern Recognition, pages 145–151. IEEE,

2010.

[49] Rani Gnanaolivu, Theodore S Norvell, and Ramachandran Venkatesan.

Analysis of inner-loop mapping onto coarse-grained reconfigurable archi-

tectures using hybrid particle swarm optimization. International Journal

of Organizational and Collective Intelligence, 2(2):17–35, 2011.

[50] David Edward Goldberg et al. Genetic algorithms in search, optimization,

and machine learning, volume 412. Addison-wesley Reading Menlo Park,

1989.

[51] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Sri-

hari Cadambi, R Reed Taylor, and Ronald Laufer. Piperench: a copro-

cessor for streaming multimedia acceleration. ACM SIGARCH Computer

Architecture News, 27(2):28–39, 1999.

[52] Ricardo E Gonzalez. Xtensa: A configurable and extensible processor.

IEEE micro, 20(2):60–70, 2000.

[53] Ricardo E Gonzalez. A software-configurable processor architecture. IEEE

Micro, 26(5):42–51, 2006.

[54] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankar-

alingam. Dynamically specialized datapaths for energy efficient computing.

In Proceedings of the 17th International Symposium on High Performance

Computer Architecture, pages 503–514. IEEE, 2011.

[55] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,

Trevor Mudge, and Richard B Brown. Mibench: A free, commercially

representative embedded benchmark suite. In Proceedings of the 2001 In-

ternational Workshop on Workload Characterization, pages 3–14. IEEE,

2001.

[56] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. EPIMap: using

epimorphism to map applications on CGRAs. In Proceedings of the 49th

annual Design Automation Conference, pages 1284–1291. ACM, 2012.

[57] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. REGIMap:

Register-Aware Application Mapping on Coarse-Grained Reconfigurable

120

BIBLIOGRAPHY

Architectures (CGRAs). In Proceedings of the 50th Annual Design Au-

tomation Conference, pages 18:1–18:10. ACM, 2013.

[58] Pierre Hansen and Keh-Wei Lih. Improved Algorithms for Partitioning

Problems in Parallel, Pipelined, and Distributed Computing. IEEE Trans-

actions on Computers, 41(6), 1992.

[59] Reiner Hartenstein. A decade of reconfigurable computing: a visionary

retrospective. In Proceedings of the 2001 conference on Design, automation

and test in Europe, pages 642–649. IEEE Press, 2001.

[60] Akira Hatanaka and Nader Bagherzadeh. A modulo scheduling algorithm

for a coarse-grain reconfigurable array template. In Proceedings of 2007

International Parallel and Distributed Processing Symposium, pages 1–8.

IEEE, 2007.

[61] Scott Hauck, Thomas W Fry, Matthew M Hosler, and Jeffrey P Kao. The

chimaera reconfigurable functional unit. IEEE Transactions on Very Large

Scale Integration Systems, 12(2):206–217, 2004.

[62] John R Hauser and John Wawrzynek. Garp: A MIPS processor with a

reconfigurable coprocessor. In Proceedings of the 5th annual IEEE Sympo-

sium on Field-Programmable Custom Computing Machines, pages 12–21.

IEEE, 1997.

[63] Edwin SH Hou, Nirwan Ansari, and Hong Ren. A genetic algorithm for

multiprocessor scheduling. IEEE Transactions on Parallel and Distributed

Systems, 5(2):113–120, 1994.

[64] Tensilica Inc. http://www.tensilica.com.

[65] Mohammad Ashraf Iqbal and Shahid H. Bokhari. Efficient algorithms for a

class of partitioning problems. IEEE Transactions Parallel and Distributed

Systems, 6(2):170–175, 1995.

[66] Giuseppe F. Italiano. Amortized efficiency of a path retrieval data struc-

ture. Theoretical Computer Science, 48:273–281, 1986.

[67] Haris Javaid and Sri Parameswaran. Synthesis of heterogeneous pipelined

multiprocessor systems using ILP: JPEG case study. In Proceedings of

the 6th IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, pages 1–6. ACM, 2008.

121

BIBLIOGRAPHY

[68] Muhammad Kafil and Ishfaq Ahmad. Optimal task assignment in hetero-

geneous distributed computing systems. IEEE Concurrency, 6(3):42–50,

1998.

[69] George Karypis and Vipin Kumar. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM Journal on scientific Com-

puting, 20(1):359–392, 1998.

[70] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for

partitioning graphs. Bell system technical journal, 49(2):291–307, 1970.

[71] Vida Kianzad and Shuvra S Bhattacharyya. Efficient techniques for clus-

tering and scheduling onto embedded multiprocessors. IEEE Transactions

on Parallel and Distributed Systems, 17(7):667–680, 2006.

[72] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Jonghee W Yoon, Doosan

Cho, and Yunheung Paek. High throughput data mapping for coarse-

grained reconfigurable architectures. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 30(11):1599–1609, 2011.

[73] Yoonjin Kim. Reconfigurable multi-array architecture for low-power and

high-speed embedded systems. Journal of Semiconductor Technology and

Science, 11(3):207–220, 2011.

[74] RK Kincaid, DM Nicol, DR Shier, and D Richards. A multistage linear

array assignment problem. Operations research, 38(6):993–1005, 1990.

[75] Ralf Koenig, Lars Bauer, Timo Stripf, Muhammad Shafique, Waheed

Ahmed, Juergen Becker, and Jörg Henkel. KAHRISMA: a novel hyper-

morphic reconfigurable-instruction-set multi-grained-array architecture. In

Proceedings of the 2010 Conference on Design, Automation and Test in Eu-

rope, pages 819–824. European Design and Automation Association, 2010.

[76] Shiann-Rong Kuang, Chin-Yang Chen, and Ren-Zheng Liao. Partitioning

and pipelined scheduling of embedded system using integer linear program-

ming. In Proceedings of the 11th International Conference on Parallel and

Distributed Systems, volume 2, pages 37–41. IEEE, 2005.

[77] Rakesh Kumar, Norman P Jouppi, and Dean M Tullsen. Conjoined-core

chip multiprocessing. In Proceedings of the 37th International Symposium

on Microarchitecture, pages 195–206. IEEE, 2004.

122

BIBLIOGRAPHY

[78] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 26(2):203–215, 2007.

[79] Yu-Kwong Kwok and Ishfaq Ahmad. Efficient scheduling of arbitrary task

graphs to multiprocessors using a parallel genetic algorithm. Journal of

Parallel and Distributed Computing, 47(1):58–77, 1997.

[80] Zion Kwok and Steven JE Wilton. Register file architecture optimiza-

tion in a coarse-grained reconfigurable architecture. In Proceedings of the

13th annual IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 35–44. IEEE, 2005.

[81] James Lebak, Albert Reuther, and Edmund Wong. Polymorphous com-

puting architecture (pca) kernel-level benchmarks. Technical report, DTIC

Document, 2005.

[82] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. Me-

diabench: a tool for evaluating and synthesizing multimedia and commu-

nicatons systems. In Proceedings of the 30th International Symposium on

Microarchitecture, pages 330–335. IEEE, 1997.

[83] Dongwook Lee, Manhwee Jo, Kyuseung Han, and Kiyoung Choi. Flora:

Coarse-grained reconfigurable architecture with floating-point operation

capability. In Proceedings of the 2009 International Conference on Field-

Programmable Technology, pages 376–379, 2009.

[84] Jong-eun Lee, Kiyoung Choi, and Nikil D Dutt. Compilation approach

for coarse-grained reconfigurable architectures. IEEE Design & Test of

Computers, 20(1):26–33, 2003.

[85] Rainer Leupers, Kingshuk Karuri, Stefan Kraemer, and M Pandey. A

design flow for configurable embedded processors based on optimized in-

struction set extension synthesis. In Proceedings of the 2006 Conference

on Design, Automation and Test in Europe, volume 1, pages 6–pp. IEEE,

2006.

[86] Giorgio Levi. A note on the derivation of maximal common subgraphs of

two directed or undirected graphs. Calcolo, 9(4):341–352, 1973.

[87] Lindo System Inc. Lingo. http://www.lindo.com.

123

BIBLIOGRAPHY

[88] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner,

Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The hpc

challenge (hpcc) benchmark suite. In Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, page 213. IEEE, 2006.

[89] Roman Lysecky, Greg Stitt, and Frank Vahid. Warp processors. ACM

Transactions on Design Automation of Electronic Systems, 11(3):659–681,

2004.

[90] Alan Marshall, Tony Stansfield, Igor Kostarnov, Jean Vuillemin, and Brad

Hutchings. A reconfigurable arithmetic array for multimedia applications.

In Proceedings of the 7th annual ACM/SIGDA International Symposium

on Field programmable Gate Arrays, pages 135–143. ACM, 1999.

[91] Larry McMurchie and Carl Ebeling. PathFinder: a negotiation-based

performance-driven router for FPGAs. In Proceedings of the 3rd annual

ACM/SIGDA International Symposium on Field programmable Gate Ar-

rays, pages 111–117. ACM, 1995.

[92] Bingfeng Mei, S Vernalde, D Verkest, H De Man, and R Lauwereins. Ex-

ploiting loop-level parallelism on coarse-grained reconfigurable architec-

tures using modulo scheduling. In Proceedings of the 2003 Conference on

Design, Automation and Test in Europe, pages 296–301. IEEE, 2003.

[93] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy

Lauwereins. Adres: An architecture with tightly coupled vliw processor

and coarse-grained reconfigurable matrix. In Proceedings of the 2003 Inter-

national Conference on Field Programmable Logic and Application, pages

61–70. Springer, 2003.

[94] T. Miyoshi et al. A coarse grain reconfigurable processor architecture for

stream processing engine. In FPL, 2011.

[95] Andreas Moshovos, Zhi Alex Ye, Prithviraj Banerjee, and Scott Hauck.

CHIMAERA: A High-Performance Architecture with a Tightly-Coupled

Reconfigurable Functional Unit. In Proceedings of the 27th International

Symposium on Computer Architecture, pages 225–225. ACM Press, 2000.

[96] David M. Nicol and David R. O’Hallaron. Improved algorithms for map-

ping pipelined and parallel computations. IEEE Transactions on Comput-

ers, 40(3):295–306, 1991.

[97] Nils J Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.

124

BIBLIOGRAPHY

[98] Spec org. SPEC CPU Benchmark Suits. http://www.spec.org/cpu.

[99] Hyunchul Park, Kevin Fan, Manjunath Kudlur, and Scott Mahlke. Mod-

ulo graph embedding: mapping applications onto coarse-grained reconfig-

urable architectures. In Proceedings of the 2006 International Conference

on Compilers, Architecture and Synthesis for Embedded Systems, pages

136–146. ACM, 2006.

[100] Hyunchul Park, Kevin Fan, Scott A Mahlke, Taewook Oh, Heeseok Kim,

and Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained

reconfigurable architectures. In Proceedings of the 17th International Con-

ference on Parallel Architectures and Compilation Techniques, pages 166–

176. ACM, 2008.

[101] K. Patel et al. SYSCORE: a coarse grained reconfigurable array architec-

ture for low energy biosignal processing. In FCCM, 2011.

[102] Ali Pınar and Cevdet Aykanat. Fast optimal load balancing algorithms for

1D partitioning. Journal of Parallel and Distributed Computing, 64(8):974–

996, 2004.

[103] Laura Pozzi, Kubilay Atasu, and Paolo Ienne. Exact and approximate

algorithms for the extension of embedded processor instruction sets. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 25(7):1209–1229, 2006.

[104] Samantha Ranaweera and Dharma P Agrawal. A task duplication based

scheduling algorithm for heterogeneous systems. In Proceedings of the 2000

International Parallel and Distributed Processing Symposium, pages 445–

450. IEEE, 2000.

[105] B Ramakrishna Rau. Iterative modulo scheduling: An algorithm for soft-

ware pipelining loops. In Proceedings of the 27th International Symposium

on Microarchitecture, pages 63–74. ACM, 1994.

[106] Rahul Razdan and Michael D Smith. A high-performance microarchitec-

ture with hardware-programmable functional units. In Proceedings of the

27th International Symposium on Microarchitecture, pages 172–180. ACM,

1994.

[107] N Robertson and P Seymour Graph Minors. Graph minors. Journal of

Combinatorial Theory, Series B, 77(1), 1999.

125

BIBLIOGRAPHY

[108] Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s con-

jecture. Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004.

[109] Charle R Rupp, Mark Landguth, Tim Garverick, Edson Gomersall, Harry

Holt, Jeffrey M Arnold, and Maya Gokhale. The NAPA adaptive process-

ing architecture. In Proceedings of the 1998 IEEE Symposium on FPGAs

for Custom Computing Machines, pages 28–37. IEEE, 1998.

[110] Jeremy Kepner Ryan Haney, Theresa Meuse and James Lebak. The high

performance embedded computing (HPEC) challenge benchmark suite.

In Proceedings of the 9th annual High-Performance Embedded Computing

Workshop, 2005.

[111] Peter G Sassone and D Scott Wills. Dynamic strands: Collapsing specula-

tive dependence chains for reducing pipeline communication. In Proceed-

ings of 37th International Symposium on Microarchitecture, pages 7–17.

IEEE, 2004.

[112] Peter G Sassone, D Scott Wills, and Gabriel H Loh. Static strands: safely

collapsing dependence chains for increasing embedded power efficiency.

ACM SIGPLAN Notices, 40(7):127–136, 2005.

[113] Markus Schwiegershausen and Peter Pirsch. A formal approach for the op-

timization of heterogeneous multiprocessors for complex image processing

schemes. In Proceedings of the 1995 European Design Automation Confer-

ence, pages 8–13. IEEE, 1995.

[114] Seng Lin Shee and Sri Parameswaran. Design methodology for pipelined

heterogeneous multiprocessor system. In Proceedings of the 44th annual

Design Automation Conference, pages 811–816. ACM, 2007.

[115] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader

Bagherzadeh, and Eliseu M Chaves Filho. Morphosys: an integrated recon-

figurable system for data-parallel and computation-intensive applications.

IEEE Transactions on Computers, 49(5):465–481, 2000.

[116] Paul F Stelling and Vojin G Oklobdzija. Implementing multiply-

accumulate operation in multiplication time. In Proceedings of 13th IEEE

Symposium on Computer Arithmetic, pages 99–106. IEEE, 1997.

[117] Fei Sun, Srivaths Ravi, Anand Raghunathan, and Niraj K Jha.

Application-specific heterogeneous multiprocessor synthesis using exten-

126

BIBLIOGRAPHY

sible processors. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 25(9):1589–1602, 2006.

[118] Timothy J Todman, George A Constantinides, Steven JE Wilton, Oskar

Mencer, Wayne Luk, and Peter YK Cheung. Reconfigurable computing:

architectures and design methods. IEE Proceedings-Computers and Digital

Techniques, 152(2):193–207, 2005.

[119] Mohammed Ashraful Alam Tuhin and Theodore S Norvell. Compiling par-

allel applications to coarse-grained reconfigurable architectures. In Pro-

ceedings of the 2008 Canadian Conference on Electrical and Computer

Engineering, pages 001723–001728. IEEE, 2008.

[120] Antonino Tumeo, Marco Branca, Lorenzo Camerini, Christian Pilato,

Pier Luca Lanzi, Fabrizio Ferrandi, and Donatella Sciuto. Mapping

pipelined applications onto heterogeneous embedded systems: a bayesian

optimization algorithm based approach. In Proceedings of the 7th

IEEE/ACM International Conference on Hardware/Software Codesign

and System Synthesis, pages 443–452. ACM, 2009.

[121] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of

the ACM, 23(1):31–42, 1976.

[122] Frank Vahid, Greg Stitt, and Roman L Lysecky. Warp Processing:

Dynamic Translation of Binaries to FPGA Circuits. IEEE Computer,

41(7):40–46, 2008.

[123] K Van Rompaey, H de Man, D Verkest, and I Bolsens. CoWare-A design

environment for heterogeneous hardware/software systems. In Proceedings

of the 1996 European Design Automation Conference, pages 0252–0252.

IEEE, 1996.

[124] Stamatis Vassiliadis, James Phillips, and Bart Blaner. Interlock collapsing

ALU’s. IEEE Transactions on Computers, 42(7):825–839, 1993.

[125] Lee Wang, Howard Jay Siegel, Vwani P Roychowdhury, and Anthony A

Maciejewski. Task matching and scheduling in heterogeneous computing

environments using a genetic-algorithm-based approach. Journal of Par-

allel and Distributed Computing, 47(1):8–22, 1997.

[126] Matthew AWatkins and David H Albonesi. ReMAP: A reconfigurable het-

erogeneous multicore architecture. In Proceedings of the 43rd International

Symposium on Microarchitecture, pages 497–508. IEEE, 2010.

127

BIBLIOGRAPHY

[127] Michael J Wirthlin and Brad L Hutchings. A dynamic instruction set

computer. In Proceedings of the 1995 IEEE Symposium on FPGAs for

Custom Computing Machines, pages 99–107. IEEE, 1995.

[128] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. Multiprocessor

system-on-chip (MPSoC) technology. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(10):1701–1713, 2008.

[129] Sami Yehia and Olivier Temam. From sequences of dependent instructions

to functions: An approach for improving performance without ilp or spec-

ulation. In Proceedings of the 31st International Symposium on Computer

Architecture, pages 238–249. IEEE, 2004.

[130] Jonghee W Yoon, Aviral Shrivastava, Sanghyun Park, Minwook Ahn, and

Yunheung Paek. A graph drawing based spatial mapping algorithm for

coarse-grained reconfigurable architectures. IEEE Transactions on Very

Large Scale Integrated Circuits, 17(11):1565–1578, 2009.

[131] Pan Yu and Tulika Mitra. Characterizing embedded applications for

instruction-set extensible processors. In Proceedings of the 41st annual

Design Automation Conference, pages 723–728. ACM, 2004.

[132] Pan Yu and Tulika Mitra. Scalable custom instructions identification for

instruction-set extensible processors. In Proceedings of the 2004 Interna-

tional Conference on Compilers, Architecture and Synthesis for Embedded

Systems, pages 69–78. ACM, 2004.

[133] Pan Yu and Tulika Mitra. Disjoint pattern enumeration for custom instruc-

tions identification. In Proceedings of the 2007 International Conference

on Field Programmable Logic and Application, pages 273–278. IEEE, 2007.

[134] Javier Zalamea, Josep Llosa, Eduard Ayguadé, and Mateo Valero. MIRS:

modulo scheduling with integrated register spilling. In Proceedings of the

14th International Conference on Languages and Compilers for Parallel

Computing, pages 239–253. Springer-Verlag, 2001.

128

