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SUMMARY 

 

The paradigm of context aware computing has been the focus of extensive research 

interest over the recent years. Context aware computing uses the concept of “context” to 

realize computing processes that can react and adapt to the changes in their environment. In 

order to facilitate the development of context aware applications, a number of context aware 

middleware systems have been proposed. The traditional deployment scope of such systems 

has been restricted to lab based deployments. However, there is an increasing demand for 

middleware systems that can efficiently manage context sources over wide area networks 

thereby making them suitable for real world deployments. Context aware applications need 

to retrieve context data from different context sources to drive their behavior. This is a 

challenging problem as context data is usually dynamic and distributed across multiple 

context sources that may be spread across a large scale area. Also, as applications may need 

to discover context sources during runtime as a result of changes in user requirements or the 

operating context, a standard and ubiquitous data discovery and acquisition method is 

required.  

In this thesis, we address the problem of designing and developing a context data 

management system to manage context data as well as support lookups efficiently over 

context data. In the first part of the thesis, we propose a range clustering technique to 

partition the context sources into a set of clusters according to their data values to facilitate 

the context lookup process. This is a preliminary solution to establish an ordering among the 

context sources to reduce the search space for a context lookup. We then address the problem 

of dynamic context data management using a mean-variance based indexing technique which 

is an extension of the range clustering approach that utilizes the statistical properties of data 

to design an index that can handle the update overhead due to dynamic data. The next part of 

the thesis addresses the problem of designing an index structure for string based context data.  

Since the mean-variance indexing approach is restricted to numeric values, we propose the 

concept an incremental tree based index structure for string attributes using the concept of 

radix sort and ternary search trees. In the final part of the thesis, we present the detailed 

design structure of a hierarchical context data management system that can be used to 

support context lookup requests with different scopes. 
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1.1 Context-aware computing 

The paradigm of ubiquitous computing has been the focus of extensive study and 

research over a significant period of time. The notion of ubiquitous computing strives to 

elevate the desktop based computing model to a more advanced scenario where computing 

can appear anywhere and everywhere. As per this idea, a computing process can occur in any 

location, using any available device and in any possible format. In other words, the process 

of computing becomes more pervasive.  An important component of the ubiquitous 

computing paradigm is the context-aware computing model. This model adds the idea of 

‘context-awareness’ to the traditional computing model thereby enabling computing 

processes to sense their environment, react to the changes in the environment and adapt their 

behavior according to these changes [1, 2]. While the notion of context was initially 

restricted to mean the user location, several definitions of context have since been put 

forward by the research community. In this thesis, we choose to use the following definition 

of context as proposed in [3] 

“Context is any information that can be used to characterize the situation of an entity. 

An entity is a person, place, or object that is considered relevant to the interaction between a 

user and an application, including the user and applications themselves.” 

The term ‘information’ in this definition can either refer to either the physical 

environment that includes the location, infrastructural details and physical conditions or it 

can denote the human factors such as the user information, social environment and the tasks 

carried out by a user. This context information is usually retrieved from different context 

sources. These sources can be of two types – physical (sensors, actuators) and virtual 

(software tools, programs). Context-aware systems and applications are designed to utilize 

this information to enhance the end-user experience by delivering the most relevant 

information and services as dictated by the current context. In order to illustrate this idea, 

consider the example of a personal shopping application residing in the phone of a person 

that has the knowledge of the user’s preferences. A shopping mall is also assumed to be 

equipped with an application that contains the information about the current deals in the mall. 

When the user walks into the mall, the application can use the preference information and 

match it with the context information provided by the mall to notify the user about the deals 

on the products he’s interested in. Similarly, the idea of context-awareness can also be 
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utilized to develop life-support applications as part of the healthcare sector. Such applications 

can be designed to monitor the different vital signs (heartbeat, blood pressure etc) of an 

individual using the appropriate body sensors and take appropriate action in case of any 

fluctuations in them. These actions can involve informing a medical personnel and making an 

emergency call to an ambulance service. These are just some of the examples that 

demonstrate the usability of the notion of context-awareness across a wide spectrum of 

application domains. Depending on the application requirements, context-aware systems may 

need to utilize both local as well as remote context information to dictate the application 

behavior. Considering the example of the healthcare application discussed earlier, one of the 

actions that the application can take is to call for an ambulance in case of an emergency. In 

the ideal scenario, an ambulance that is close to the victims’ location should be summoned 

(local context). However, in case a nearby ambulance is not available, the application should 

be able to locate another ambulance from the pool of ambulances available in other locations 

(remote context). This simple example illustrates the fact that applications can require to use 

context information produced locally as well as available beyond its spatial-proximity. 

 A number of context-aware systems have been proposed in order to support context-

aware application development. Earlier versions of such systems provided a tight coupling 

between the application logic and the underlying context sources thereby leading to a vertical 

software structure which was rigid and difficult to reuse. In order to alleviate this problem, 

the recent focus has been on developing context-aware middleware [4-7] that provide an 

abstraction between the context sources and application logic. In spite of being the focus of 

intensive research efforts for nearly two decades, the idea of context-awareness has not yet 

taken off in a big way. The main reason behind this can be attributed to the fact that as 

technology has progressed, a number of new  design requirements have arisen that need to be 

met to popularize the use of context-aware systems. One of these requirements is to increase 

the operating scope of these systems. Early context-aware systems were usually deployed 

within a small experimental environment in a lab or a university. Currently, there is a 

growing requirement for context-awareness to be available everywhere and any-time due to 

increased user mobility, availability of wireless sensors and global network connectivity. 

Such systems should also be able to look-up and locate the desirable context sources from 

potentially large number of heterogeneous sources. This calls for a suitable organizational 
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technique that can establish an ordering amongst a set of diverse context sources thereby 

facilitating the task of identifying the context sources with the required information. This 

problem serves as the key issue being addressed as part of this thesis. 

There are a number of other requirements that pose a challenge to the development of 

context-aware systems. Even though those problems are beyond the scope of this thesis, we 

still discuss them here for the sake of completeness. One of these challenges includes the 

acquisition and processing of context dynamically. Context data related to the physical 

conditions are acquired through heterogeneous physical devices and a standardized 

representation of these devices is needed to ensure interoperability [8]. However, acquiring 

context data related to human factors can be challenging due to the in-precision nature of 

wireless sensors and the non-intrusive requirement of data acquisition. An important aspect 

of context pertaining to the human factor is detecting determining the tasks and activities 

carried out by a person (i.e. reasoning) and use them to drive application behavior [9]. Also, 

as applications can be driven by context data changes occurring in different places, the 

context reasoning process needs to be distributed across all the involved context sources at 

different spatial proximities to make an informed decision. Context-aware systems should 

also possess suitable security and privacy mechanisms [4]. As certain context data like the 

health records of an individual are deemed confidential, the security mechanism should 

ensure that the dissemination of such data is restricted according to the credentials of the 

requestor. Finally, context-aware systems should provide the necessary software engineering 

tools for developers. These requirements are essential for a context-aware system to make 

their transition from a lab based experimental setup to a wide scale real world setting. 

In recent times, the paradigm of the Internet of Things (IoT) has been the subject of 

widespread attention in the research community. Initially proposed in 1998 [10], the IoT 

computing model envisions a world where different objects are connected to the internet and 

that can communicate and collaborate with each other. These objects can refer to any of the 

following - people connected to the internet via social networks, conventional computing 

devices like desktops and laptops, and “smart” version of everyday devices. These devices 

can be phones, cars, refrigerators or even smart houses and offices. The objective of the IoT 

paradigm is to use these interconnected objects to create a working environment where these 

objects are aware of the user requirements and preferences and they are able to fulfill these 
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requirements without explicit instructions. Although this idea might have seemed like a 

distant dream when it was first proposed, the emergence of affordable smart phones with 

highly evolved sensing capabilities and significant processing power has already started 

paving the way for this vision to become a reality. The idea of interconnected and 

communicating objects leads to the applicability of IoT across different application domains 

ranging from industry (supply chain management, transport and logistics, aviation etc.), 

environment (disaster management, agriculture, environmental monitoring etc.) and society 

(healthcare, telecommunication etc.)[11-15]. The use of different enabling technologies has 

been proposed in order to realize the IoT vision. The two most important of these 

technologies are – sensor networks and middleware systems. Sensor networks are integral to 

IoT as they perform the essential task of collecting and processing the data that is needed to 

drive the decision making process. The presence of middleware systems for IoT is required 

to facilitate the development of IoT applications by exempting the developers from the 

underlying details that are not the primary focus of application development. According to 

the survey conducted in [16], middleware systems for IoT need to possess the following 

functionalities – effective device management, interoperation, platform portability, context 

awareness and security/privacy mechanisms. An assessment of the leading IoT middleware 

solutions against these parameters in [16] reveals that most of them do not provide the 

functionality of context awareness. The importance of context-awareness within the IoT 

paradigm is related to the IoT vision of an environment where there are large number of 

sensors and other data sources generating huge volumes of data. In order to make this data 

more useful, it needs to be analyzed, reasoned, interpreted and understood. As context-aware 

computing deals with this challenge in the pervasive and mobile computing paradigms, it is 

expected to tackle this issue successfully within the IoT scenario as well. As a result, context-

aware computing is being envisioned as an important enabling technology for IoT [17]. The 

design principles required to adapt context-aware systems to an IoT scenario are mostly in 

line with the requirements for context-aware systems as discussed previously. Some of the 

additional requirements that are introduced due to the properties of IoT are increased support 

for mobile devices and handling disruptions due to mobility, resource optimization in large 

scale networks and an extended and comprehensive context modeling technique [14, 17]. 

This association of context-aware systems with the IoT scenario can prove to be instrumental 
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for context-aware systems to make the transition from lab based deployments to a large scale 

real world setting. 

1.2 Data management in context-aware systems 

As the primary function of context-aware systems is to react to the changes in 

context, one of the main requirements of these systems is to manage context data and provide 

reliable access to the relevant data with minimal delays. Therefore, it is important for such 

systems to have an effective context data management system. The essential functions of a 

context data management system are – acquiring context data, processing the acquired data to 

generate higher order context information, storing the context data and supporting context 

lookup operations over the data. Context lookup can be defined as the process of identifying 

the context sources holding the required data and the retrieval of the data from these sources. 

This operation is usually carried out using queries containing the list of data items to be 

retrieved along with the constraints and conditions to filter the data. To cite an example, 

consider the example of the shopping application discussed earlier. A typical context lookup 

request for that application could be to find the set of shops stocking a certain type of product 

within a 5 km radius from the user’s current location. The constraints on the requested 

context information (the shops) in this case are the type of products carried by the shops and 

the distance of the shops from the user. The usefulness of the application will depend on the 

timely delivery of the correct context information.  Another strong justification for this 

requirement is the fact that context-awareness is being proposed as an enabling technology 

for a large scale system like IoT, the task of locating context data from the large number of 

sensors and other smart objects efficiently will become absolutely crucial for the functioning 

of the system. 

An efficient context data management system is important in a context-aware system 

as it is an important prerequisite for most of the other system components. In the previous 

section we discussed some of the new system requirements that have emerged for context-

aware systems. As part of our ongoing research project, we are developing the Coalition 

middleware [18-20] to develop a context-aware system to meet all these requirements 

satisfactorily. The research problems being addressed in this project are related to five main 

functional requirements of context-aware systems and each of them represents a different 

aspect of the system design. These requirements include the following: 
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1. Context data management – This component needs to manage the context data from 

the different sources and support the lookup operations over the context data. 

2. Context data aggregation – As applications can specify conditions that require data 

in a summarized form, appropriate data aggregation mechanisms need to be put in 

place.  

3. Context reasoning – The main aim of a reasoning module is to deduce relevant 

information that is of importance to users and applications by making use of the 

currently available context data 

4. Context data security and privacy – The security and privacy subsystem provides a 

basic authentication and access control mechanism leaving applications free to tailor 

their own security requirements and inform it to the system. 

5. Programming support for developers – As the Coalition middleware is intended to 

support context-aware application development, adequate programming support in 

the form of APIs and interfaces need to be developed. 

 

We now examine the role played by the data management component in the 

aforementioned system design issues. The context reasoning component is dependent on the 

context lookup process as it relies on context data retrieved from one or more sources in 

order to infer knowledge about a situation. In case the context lookup process is erroneous, it 

can have a serious bearing on the reasoning process especially if they are associated with 

mission or life critical applications. Also, since the reasoning component may need to work 

with data distributed across multiple context sources, the context lookup must be able to 

locate the relevant context information from all the context sources. A similar argument 

holds true for the context data aggregation component as well as it needs to summarize 

context data belonging to different context sources. It is the responsibility of the context 

lookup process important to ensure that the data to be aggregated is delivered in time and 

accurate. The relationship of the context data management component with the security and 

privacy subsystem may not be too obvious. As per our middleware design scheme, only a 

basic security and authentication mechanism is provided by the system while allowing 

applications to design their own security/privacy mechanisms. The application specific 
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security/privacy mechanisms usually make access control decisions based on the context 

information of the data requestor. For example, the healthcare records of a person should 

only be accessed by his authorized doctors. If a lookup request for this data is received, we 

need to retrieve the context information of the requestor to allow or deny the request. As far 

as the programming support aspect is concerned, there is no direct role of the data 

management component in it and is limited to redirecting the data retrieval requests to the 

data management system while designing the APIs. This discussion clearly highlights the 

importance of an efficient context data management system within a context-aware system. 

As we shall see in detail in Chapter 2, the design of a context data management system and 

especially the context lookup operation incorporates a lot of challenging issues. The key 

issues to be dealt with in this thesis are how to handle the look up of context data in large 

search spaces as well as to handle the dynamicity of the context data. We outline and 

elaborate the key issues as follows: 

1. The system should ensure that the context lookup process is scalable with 

respect to the query response time and a classification mechanism like an 

index is present to partition the context sources. 

2. As context data is usually dynamic in nature, the index should be capable of 

working with large volumes of dynamic data and handle the associated update 

overhead efficiently. 

3.  The system should be able to handle the variations in the query requirements 

depending on the data types. Also, the system should be able to support 

multiple query scopes to meet different application requirements. 

1.3 Motivation 

The previous section clearly establishes the fact that the design and development of a 

context data management sub-system is critical for the successful operations of context-

aware systems and is a non-trivial task. As part of the research efforts focused towards 

developing context-aware systems, the problem of managing and supporting lookups over 

context data has been addressed using different strategies by the research community. We 

will discuss these systems and their associated features in detail as part of our literature 

survey in Chapter 2 but we briefly highlight the key features of the data management 

techniques of these systems and their shortcomings as follows. One of the initial approaches 
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adopted for context lookup was the direct retrieval of the required data from the 

corresponding sensors [21-23]. This approach is easy to implement but as we shall observe in 

Section 2.2, the retrieval of data from multiple sensors for every lookup request may lead to 

higher delay due to transmission delay and complexity in processing of raw context data.  

Another class of context-aware systems relies on using relational database systems to create a 

context data repository that stores context information [24-26]. The lookups are now carried 

out by querying this repository. These systems assume that the problem of acquiring, storing, 

indexing and updating dynamic context data can be handled by databases but there are no 

experimental results provided to support this claim [27, 28]. Another class of context-aware 

systems disseminates lookup requests to only the context sources that exist within a fixed 

area to minimize the query scope [29-31]. The usefulness of this approach is restricted to 

applications that require data just from nearby sources. The usefulness of this approach is 

restricted to applications that require data just from sources of the designated area. For 

instance, anytime-anywhere applications that require context data from a wider spatial scope 

will not be able to benefit from this type of organizational technique. In order to enable 

relational databases to store context information, a number of techniques have been proposed 

that augment traditional databases with context-aware heuristics [27, 32, 33]. These 

techniques mostly focus on the formal specification of a context model and the associated 

query language. The low level details of actually acquiring context data for the database are 

not discussed in these techniques. Some of these techniques acknowledge the dynamicity of 

context data as part of their design requirements but the implication that this property can 

cause an index update overhead is not considered. Existing context data management 

strategies look at the context lookup operation from a higher level of abstraction in which the 

factors that constitute the query context are given more importance than the low level data 

handling aspect. This brief discussion highlights the fact that existing context-aware systems 

do not satisfactorily address all the issues associated with context data management and 

lookup.  Especially, the critical issue of managing dynamic context data and minimizing the 

overhead due to the data dynamicity is not addressed by any of the existing context data 

management techniques. This serves as the primary motivation for our research project as 

described in this thesis.  
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1.4 Problem statement and research objectives 

In this thesis, we address the problem of designing and developing a context data 

management system to manage context data as well as provide an indexing scheme to 

support lookups efficiently over pervasive context data. These works are developed as an 

extension of the data management component of the Coalition middleware system. We can 

formally define the goal of this thesis with the following problem statement:  

To develop an efficient and reliable context data management system capable of 

managing and supporting lookups over different types of context information distributed 

across multiple spatial proximities (also known as physical spaces). 

As part of our objectives to achieve this goal, we try to ensure that the three key 

design issues associated with managing context data as outlined in page 8 are handled 

satisfactorily as part of the proposed system. In brief, one of the main focuses of the thesis 

work is to develop an indexing scheme that can address the index update overhead problem 

associated with dynamic data as well as classify the context sources according to their data 

values. As we shall observe in Section 2.1, the use of conventional database indexes with 

dynamic data leads to frequent updating of the index structure leading to the unavailability of 

the index during the update periods. Further, as a context-aware system operates in a 

dynamic environment, we need to ensure that the index structure be able to adapt itself as 

context sources leave and join the system and adapt its structure accordingly to reflect the 

data distribution accurately.  

Another important issue that we aim to address as part of this thesis is the scalability 

concerns arising due to a large number of context sources. In the absence of a suitable 

organizational structure, the response time required for retrieving the required context data 

can increase rapidly with the increase in the number of context data sources. Another 

challenge that we aim to address as part of this thesis is to make provisions for the different 

query requirements for different context data types (such as numeric and strings) and the 

need to tailor the indexing and lookup schemes accordingly. This issue will be discussed in 

detail in Section 2.1. The contributions of this thesis can be outlined as follows: 
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1. Indexing context data using range clusters – In the first part of the thesis, 

we propose a range clustering technique to partition the context sources into a 

set of clusters according to their data values. This is a preliminary solution to 

establish an ordering among the context sources. This range clustering 

technique is integrated with the Coalition middleware and experiments are 

conducted to compare the response times for processing queries using the 

proposed scheme compared to the flooding approach. The experimental 

results indicate that proposed index succeeds in minimizing the response time 

for queries by reducing the search space for a query as compared to the 

flooding. However, it is also observed that the index is not equipped to handle 

the problem of managing dynamic data satisfactorily and can lead to errors in 

the query processing operation. 

2. Mean-Variance based Indexing scheme for dynamic context data – The 

second part of the thesis addresses the problem of dynamic data management 

using a mean-variance based indexing technique. This is an extension of the 

range clustering approach which utilizes the statistical properties of numeric 

data to design an index that can handle the update overhead due to the 

dynamicity of data. The dynamicity of data in this case refers to the fact that 

certain context attributes keep changing in value frequently. This indexing 

scheme is primarily designed for handling numeric data. A set of experiments 

is conducted to evaluate the index performance using a set of dynamic data 

values. These experiments assess the index performance based on different 

parameters that include the query response time, the number of answers 

received for a given query the number of index updates occurring during a 

given period as well as the variations in the system performance with the 

change in the dynamicity of data. The results indicate that the index 

performance is satisfactory especially with respect to the query response time 

as well as handling the update overhead due to dynamic data. 

3. An incremental tree based string index structure – Since the use of the 

mean-variance index structure is restricted to numeric values, we propose an 

index structure for string attributes using the concept of radix sort and ternary 
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search trees. We also use the idea of longest common prefix to improve the 

indexing process by identifying a set of strings sharing a large common prefix. 

The index structure provides a grouping amongst the context sources 

according to the shared common prefixes of their string attribute values. The 

length of the shared prefix is not predefined and is varied according to the data 

being indexed. This index structure is designed to support exact matching, 

prefix search and range queries on string attributes. The performance of the 

index is evaluated through a set of experiments that evaluate the variation of 

query response time for different network sizes, the handling of dynamic 

strings and the variations in the index size with the number of strings. The 

experimental results indicated that the index structure was able to handle 

queries efficiently over different network sizes as well as small amounts of 

dynamism. Also, the variations in the index size were observed to be slow 

with respect to the number of strings being indexed as well as the length of 

these strings. 

1.5 Thesis outline 

The remainder of the thesis is organized as follows – In Chapter 2, we discuss the 

existing work in the field of context data management systems and assess them critically 

using the design issues identified previously. This is followed by an overview of the 

Coalition middleware system in Chapter 3 where we establish the need to provide an efficient 

data management system from the system perspective. Chapter 4 describes the initial range 

clustering based indexing scheme that is proposed to simplify the context lookup problem. 

Since the initial indexing scheme still has some drawbacks especially when the context data 

is dynamic, we discuss a mean-variance based indexing scheme in Chapter 5. This indexing 

scheme is designed to work with dynamic context data and provide a scalable lookup 

mechanism over such data. Since the indexing scheme discussed in Chapter 5 is primarily 

geared towards handling numeric data, we discuss an incremental tree based indexing 

approach for string context attributes in Chapter 6. Chapter 7 discusses the future direction of 

R&D for the proposed data management system and concludes this thesis.     
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CHAPTER 2 

BACKGROUND AND RELATED WORK 
 

 

 

In this chapter, we discuss and critically review the current approaches adopted 

towards solving the problem of context data management. We assess the existing context 

data management strategies within the context of the functional requirements for such 

systems as identified in the Introduction section of Chapter 1. The chapter is organized as 

follows:  Section 2.1 presents the design requirements for a context data management system. 

We discuss the current approaches of managing and querying context data and identify the 

gaps in the current methods in Section 2.2. We conclude this chapter in Section 2.3 by 

summarizing the observations from the survey of the related work and justify the motivation 

for the work carried out in this thesis.   

 

 

  



14 

 

2.1 Design requirements for context data management systems 

Before we review the existing work carried out in the field of context data 

management, the design requirements for context data management systems need to be 

examined. As we shall see in Section 3.2, our proposed middleware delegates the tasks 

related to context data generation, processing and storage to the context sources. Hence, we 

focus on the context lookup aspect as our main design concern for a context data 

management system. The simplest form of a context source is the raw context data source, 

such as a smart sensor or a more complex smart object. However, the context sources 

referred in this thesis have a broader functional scope. As we shall observe in Section 3.2.1, 

we use the concept of a physical space gateway (PSG) to represent a set of related raw 

context sources as a single aggregated context data source. The processed outcome of context 

data is known as ‘context information’, which is a kind of ‘higher level’ context data.  Unless 

otherwise stated, the use of the term ‘context sources’ refers to a collection of aggregated 

context sources and treat context information as context data from hereon.  We focus on the 

context lookup aspect among large number of PSGs as our main design concern for a context 

data management system within the environment of the Coalition system. 

An important requirement associated with the context lookup operation is to ensure 

that the variations in the query response time are minimal as the number of context sources is 

increased. The response time for a query depends on the capability of the system to identify 

the context sources relevant to a query among all the context sources. Clearly, the data 

management system needs to have a classification scheme like an index. However, contrary 

to the design requirements of conventional database indexes, an index for a context-aware 

system should be able to manage dynamic data as context information can be static or 

dynamic. Static context data usually indicates information that changes infrequently. 

Comparatively, dynamic context data changes asynchronously and frequently. There are 

several examples of dynamic context data including the current location of a moving object, 

the crowd level of a locality, atmospheric conditions at a given place and the vital 

physiological signs of a person.  

As context aware applications operate by reacting to context changes, the 

management of dynamic context data is essential. The problem with using a traditional 

database index with dynamic data is the high update overhead involved. The update overhead 
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depends on the number of indexed data items as well as the update frequency. Since the 

index will need to be updated and rebuilt each time there is a change in the indexed data, the 

overhead can become significant if all the indexed data items keep changing frequently. 

Since a database index is usually unavailable during the index rebuild, frequent updates can 

lead to delay in processing queries and become a major performance bottleneck. The frequent 

updates also contribute to large amounts of network traffic which can also cause a drop in the 

system performance. Hence, it is essential to ensure that an index structure designed for 

context data is able to handle the dynamicity of the data and the number of index update 

operations is minimized. Since a context-aware system is expected to operate in a dynamic 

environment where context sources can appear and leave randomly, this index should be built 

incrementally and adapt itself to the movement of the context sources. 

As context-aware applications usually require that the data being retrieved is up to 

date, it is important to ensure that a context data management system delivers the most recent 

copy of the data to the applications. The consequences of not receiving fresh data can be 

severe especially for applications that are life or mission critical. This issue is related to the 

previously discussed problem of updating an index when the associated data is dynamic. If 

the change in the value of a context data item is not reflected promptly in the index, there 

might be inconsistencies between the received and current data value. The system should also 

ensure that the effect of the mobility of context data sources causes minimal disturbance to 

the data retrieval process. Context sources like houses, shops, offices are static i.e. they do 

not shift locations frequently and retrieving data from them is straightforward. However, with 

the advent of wearable body sensors, smart phones and smart cars, there is an increase in 

mobile context sources like transporters and robots, in addition to people. This mobility can 

cause a problem with context data retrieval as the network connections are now expected to 

be intermittent which can lead to incomplete data retrievals. The system should make 

adequate provisions for handling the mobility and resuming an interrupted data retrieval 

process when the network connectivity is available again. 

As context-aware systems are expected to deal with a wide variety of context 

information, the data management system should be able to handle different data types and 

data representation formats. Also, as the query requirements can differ according to the data 

type, the system should be able to support a diverse set of queries. The basic query types for 



16 

 

numeric context attributes are exact matching and range queries. As far as string attributes 

are concerned, the standard query types are – exact match, prefix/suffix match, wildcard 

match and range queries. The design of an indexing and organization scheme for context data 

should take these query requirements into account. Also, the notion of context required by an 

application can differ according to its specific requirements. For example, a personal 

shopping application might need to find all the shops in the vicinity of the user having a 

product within a certain price range. On the other hand, an application advertising the best 

deals in a city will require a list of all shops (irrespective of location) that have that same 

product with a particular price. In the first case, a location based classification of the context 

sources will be useful whereas a classification based on the product type as well as the price 

range will enable the processing of the query faster in the second case. This example 

illustrates that for the same set of context spaces (the shops in this case) different applications 

define the scope of their context data requirements using different perspectives. An effective 

context data management system should be able to support multiple query scopes as part of 

its lookup mechanism. The scope for a context data query request can either refer to a system 

wide scope (the queries are processed against all the context sources in the system to retrieve 

all the matching data) or a selective scope (the queries are processed against a subset of 

context sources) [8]. In the previously discussed example, the first scenario refers to a limited 

scope query (only shops close to the user are queried) whereas the second scenario refers to a 

query with a system wide scope. All further references to the term ‘query scope’ in this thesis 

shall refer to these two query models. These design requirements will be utilized as 

guidelines to assess the existing context data management strategies in Section 2.2. 

In order to study the different approaches adopted towards designing context data 

management systems, we use the data storage architecture adopted by these approaches as a 

primary criteria to classify them. The main techniques used to store and retrieve context data 

include the use of a single centralized repository, a distributed storage model comprising of 

multiple repositories or storing the data at the individual context sources. Apart from the data 

storage model, another criteria that we use to classify these data management systems is 

based on the context data retrieval and indexing strategies used by them. These indexing 

strategies refer to the techniques utilized by the data management systems to establish an 

ordering amongst the context sources to facilitate the propagation of context queries. For 
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example, context sources can be ordered according to the type as well as the value of the 

context data provided by them. Additionally, context sources can also be ordered according 

to their physical proximity relative to each other. The technique used to establish the ordering 

amongst the context sources by a given context data management system will also have an 

impact on the type of queries that can be supported by that system.  

2.2 Review of data management in context-aware systems 

In this section, we review some of the existing strategies adopted towards managing 

context data especially with regard to the context lookup process. The context lookup 

operation comprises of acquiring the context data from the relevant context sources for a 

query. In the initial part of the survey, we classify the context data management strategies 

based on their approach towards storing and querying context data. These include direct data 

access from the raw context sources as well as the middleware based approaches that utilize 

data repositories. The later part of the survey focusses on the different techniques used by the 

context-aware systems to establish an ordering among the context sources in order to process 

queries efficiently. We also discuss some of the techniques that discuss the augmentation of 

relational database systems with context-aware heuristics thereby enabling them to store and 

process queries on context data. 

One of the approaches proposed to carry out the process of context lookup is the 

direct data retrieval strategy in which the relevant data are retrieved directly from the 

individual raw context sources. The Cooltown project [21] introduces a software layer to 

integrate the physical environment with the Web and uses web servers to directly access the 

data stored in sensors. The COSINE framework [22] also utilizes a web-service based 

architecture and provides separate web-services to access data from sensors, aggregate sensor 

data and manage the availability of context services. The RCSM middleware [34] handles 

data acquisition from both local as well as remote sensors. A context discovery protocol is 

utilized to search for remote sensors and all data is directly retrieved from the sensors. The 

problem of context lookup is handled using different strategies that include the 

publish/subscribe model, XML/XPath queries and web service based data retrieval.  

The lookup strategies are usually query driven to minimize the power load on the 

sensors. The direct data retrieval strategy is straightforward and the freshness of the received 

data is always ensured. Also, since the sensor data generation and storage is handled locally, 



18 

 

these schemes do not need to handle the problem of dynamic data management. However, 

since sensor data usually needs to be processed before use, a query requesting multiple 

attribute values can affect the query response time as multiple data items need to be retrieved 

from the individual sensors and processed. These schemes usually utilize an entity model to 

represent collections of different correlated sensor and the classification among the context 

sources is based on the different entity types modeled by the system and the types of 

information supplied by them. These schemes do not provide any ordering on the actual data 

values of the attributes which makes the processing of queries having constraints on the data 

values difficult.  

As retrieving data from individual sensors can prove to be challenging to 

programmers, context-aware middleware usually try to keep the data acquisition process 

transparent to the applications. These systems usually abstract collections of related context 

sources as a single entity. For example, a set of sensors providing information about a house 

are visualized as a collective entity representing the house. We define these entities as 

context spaces. The CASS middleware [35] which is primarily designed to support context-

awareness for mobile devices uses a centralized data repository to store the context 

information and uses database queries to carry out the context lookup. The Contory 

middleware [24] also utilizes a central repository to store and query context data retrieved 

from infrastructure based systems. The CAMUS middleware system [25] uses two separate 

data repositories to store the current context data and the historical context data. The 

rationale behind using two repositories is to improve the query processing performance by 

keeping the current context data separate from the historical data.  

The C-CAST context management framework [36] uses the concept of context 

providers and consumers to differentiate between the context data sources and the 

applications interested in the data. The context providers derive context information from 

sensors and actuators and store them in a context repository. The interaction between the 

providers and consumers is mediated using a set of context brokers that maintain a directory 

of the context providers. The SOCAM middleware [18] also uses a centralized context 

database and an ontology based model to represent context entities in different domains and 

to model context data. The context data retrieval operation supports direct context queries as 

well as event subscriptions. The context lookup strategies for these systems involve the 
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context data from different context sources being stored in the repository where it is available 

for retrieval by the interested applications/consumers. The context data providers periodically 

update the repository either directly or using an intermediary like a context broker. The 

classification of the context information is usually based on the value, type and scope of the 

context information. As opposed to the use of a centralized context data repository, the 

Nexus middleware system [37] uses a distributed data storage system where each data 

storage server stores a specific class of context data and caters to the specific requirements of 

that class. The different classes of context data are obtained by classifying context data items 

according to the following factors – the update rate of the data item and the importance of a 

data item as a selection criterion. As part of the system design, the following classes of data 

storage servers are identified – location data, static spatial data, indoor spatial data, 

embedded system data, data from a smart home and dynamic sensor data. The last class of 

storage server is intended to store and process queries on frequently changing sensor data 

values. Although the requirements for designing a storage system for dynamic data is 

discussed in detail that include the need to minimize the index update overhead, the actual 

implementation details as well as the mechanisms used to manage dynamic data are not 

mentioned. 

Although the technique of using context data repositories to store and query context 

data as discussed in the previous systems is easy to implement, there are a number of 

problems associated with this approach. Since a context aware system will need to manage a 

large number of context sources each having multiple attributes, the database will need to 

store and manage an enormous amount of data. This cost can be deferred to a certain extent 

by using a collection of repositories instead of a centralized one [37]. Additionally, the 

storage and indexing of dynamic context data poses a significant challenge in terms of large 

update costs. This issue is not addressed by any of these techniques explicitly. Although the 

data management system discussed in [37] acknowledges the special requirements of having 

a separate storage system for dynamic data, the actual problem of designing such a system is 

not addressed in detail. The use of a data repository will also affect the network load as large 

amounts of data will need to be transferred in order to store them in the repositories. Also, 

the raw data will need to be processed before it can be stored in the databases which can 

again cause an overload at the central repository due to the large volumes of data that need to 
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be preprocessed. The freshness of the context data being retrieved is also an important 

concern as these schemes rely on the periodic update of the repositories to refresh the data. 

This can lead to obsolete data being read in the middle of the update cycles. One of the main 

aims of this thesis is to devise an organization scheme that avoids these problems associated 

with managing large volumes of dynamic data in a centralized location. 

Context-aware systems that do not use a centralized data repository utilize different 

techniques to organize the context spaces and define the scope for a context lookup request. 

This section of the survey discusses a set of context data management strategies classified 

according to their strategies for organizing the context sources. One of these approaches 

includes a classification based on the type of context information provided by a context 

source. The COPAL middleware [38] uses the concept of context types to represent the 

context information and a broker based approach similar to the one described in [36] to 

mediate the context lookup process where a context type corresponds to a unique name and a 

set of attributes. The context providers register with the broker along with their context types 

and the delivery of context data is done through events using the publish/subscribe model. 

The idea of using brokers to mediate the context lookup process is also discussed in [39]. 

This system uses an overlay network of distributed brokers to manage the context consumers 

and providers. The context providers register with the broker using an attribute-value and the 

context lookup operation is carried out using direct query invocations of queries as well as 

the publish/subscribe event notification model. The Solar middleware [40] provides a 

programming model with a set of operators that can be utilized by applications to customize 

the use of context data. It uses an overlay of hosts called Planets that manage these operators 

and handle the context data dissemination process. The context data lookup is done using a 

publish/subscribe model and the context data distribution is carried out using application-

level multicast trees where each Planet refines data according to the application 

requirements. The Coalition middleware [18, 20, 41] classifies context sources belonging to a 

particular domain class together and uses p2p networks to connect context sources sharing a 

common attribute type within the particular domain. The context data is locally stored at each 

context source and the context lookup is done via SQL queries by flooding the p2p networks. 

The Coalition system forms the basis of the work carried out in this thesis and will be 

discussed in detail in Chapter 3. 



21 

 

An important observation that can be made here is that context-aware systems 

without a data repository don’t need to address the problem of indexing dynamic data as the 

data is stored and managed locally at the context sources. However, this same reason 

prevents the creation of an organizational structure on the attribute values. Since there is no 

value based classification, queries looking for context data within a certain range of values or 

having a particular value cannot be processed efficiently. Further, the context lookup is 

usually restricted to publish/subscribe based event notification model. Although event 

notification is an important aspect of context-aware applications, it usually requires an 

application to be aware of the context sources involved in an event. In this thesis, we are 

more interested in solving the problem of locating the context sources that have the relevant 

data for a context query as per the constraints mentioned in the query. Since these constraints 

are evaluated on the values of the context attributes and should be addressed in the design of 

the query processing language, we focus on developing an indexing scheme that can establish 

an ordering amongst the context sources according to their data values. 

A location based organization is also a popular technique used by context-aware 

systems to limit the scope of context queries. The Pervaho middleware [29] uses a location 

based publish/subscribe service to organize the context sources and carry out the context 

lookup process. Each context publisher and subscriber is associated with a location area 

scope and an event is delivered from the publisher to a subscriber only if both their location 

scopes intersect. A similar approach to limit a query scope is used in the CORTEX system 

[42] as well. The SALES middleware [30] uses a combination of data repositories and a 

locality principle to distribute context data only to devices in a physical/logical vicinity, 

thereby attempting to reduce the context data traffic. The system has a hierarchical structure 

where the top level contains a centralized repository for historical context data storage and 

the lower level nodes comprise of the context sources and the manager modules. The 

EgoSpaces system [31] uses the concept of views to represent and query context data 

together with a locality based organization. The context data is stored in the form of tuples 

containing the information about a context attribute. Each context provider contains a set of 

tuples that describe its properties and a view is used to specify the query constraints. The 

context lookup is done through agents that disseminate the query among providers in its 
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immediate physical locality. The use of the physical location to limit the query scope is also 

discussed with different variations in [43-51].  

The use of a location scope to limit query scopes for context aware systems seems to 

be intuitive as context-aware applications are usually interested in events happening in their 

vicinity. However, this organization is only useful to applications requiring location aware 

information. As we observed in Section 2.1, depending on the application requirement, a 

query may need to be processed against the entire system scope in which case a location 

based organization will not be useful. Further, as location is the only classification constraint 

used in these systems, the processing of queries having constraints on the data values will be 

inefficient. As part of our initial thesis work, we consider the problem of optimizing the 

processing of queries with data value based constraints across a system wide scope. Since it 

is important for a middleware to support multiple query scopes, we discuss the design of a 

multi-level data organization scheme in the later part of the thesis to solve this problem. 

A different class of context data management techniques proposes the augmentation 

of existing relational database systems with certain heuristics to make them “context-aware”. 

These context-aware databases can now be used to store context data. The X-RAY scheme 

[27] is based on the assumption that context data is stored using XML schemata. A generic 

mapping scheme is proposed that can map XML schemata to relational schemata and enable 

the storage of context data in a relational database. The problem of handling dynamic data 

updates is addressed as part of the requirements of managing context data. However, it is 

assumed that a database is equipped to handle concurrent and high frequency updates using 

transaction processing mechanisms but no experimental data is provided to support this 

claim. A context relational model (CR model) is discussed in [52] which uses the concept of 

a multi-facet entity that is an information entity having different facets when viewed from 

different perspectives. This idea is used to build a context-relation cube that forms the basic 

unit of storage in a context-relational database. The main focus is on the formal specification 

of a context data model and the indexing part is not addressed. A context query language 

designed as an extension of a SQL based language is described in [53] that proposes a set of 

predicates to add ‘context-awareness’ into the query language itself. A similar approach is 

discussed in [54] which uses the notion of dimensions to represent context and formulates a 

query language based on this idea. An alternative approach to devise a context-query 
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language using ontology is discussed in [55] that identifies a set of requirements for querying 

context information and presents a query language designed to support them. The dynamicity 

of context data is described as part of the requirements and the implication of this issue is 

taken to be the fact that there will be a set of historical values that can be queried. The 

support for dynamic data retrieval is restricted to processing queries over historical data. 

 These techniques focus on the development of a formal query language and 

extending the conventional relational algebra model with context specific operators. They 

look at the problem of context data acquisition from the query issuers’ perspective which is 

quite an important issue in its own right. However, these techniques do not consider the 

problems associated with the actual process of the data retrieval from the databases and 

consequently do not address the problems associated with managing dynamic data. The 

management of dynamic context data is one of the important issues that we aim to address as 

part of this thesis. An important point to be noted here is that although the existing context-

aware systems do not handle the problem of managing dynamic data satisfactorily, this 

problem has been independently addressed as part of the research work in several other 

application domains that include dynamic documents, spatial data management systems, 

sensor networks etc. We review some of these techniques separately in Chapter 5 and 

evaluate their applicability for indexing context data while satisfying the design and 

organizational constraints of our context-aware middleware system. 

2.3 Summary 

As is clear from the preceding survey, the problem of context data management and 

providing appropriate context lookup mechanisms has emerged as a significant research 

challenge given the rising importance of the context-aware computing paradigm. We 

summarize the observations made in the previous section in Table 1 which evaluates the 

surveyed approaches using the following criterion – context data storage technique, context 

lookup technique, and support for dynamic data management.  
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Table 1. Summary of the surveyed approaches 

System Data Storage Lookup technique 
Dynamic data 

management 

[21, 22, 34] 

Data stored at context source 

and classified according to the 

data type 

Direct access from sensors 

using web services and XML 

queries 

Not applicable 

[24, 35] 
Centralized context data 

repository  

Querying the repository using 

database queries 
Not handled 

[25] 

Distributed set of context data 

repositories. Historical data 

stored separately 

Querying the repository using 

database queries Not handled 

[36] 

Centralized context data 

repository according to data 

type and context scope 

Querying mediated by context 

broker, direct queries and 

event notifications  

Not handled 

[37] 

Distributed data storage 

servers with each server 

tailored to a specific class of 

context data 

Queries issued to storage 

servers and processed using 

access paths  

Separate server provided 

for dynamic data storage. 

The implications of 

storing dynamic data not 

discussed 

[38, 39] 

Data stored at publishers as 

well as cached in a repository 

Broker mediated 

publish/subscribe queries   
Cached data updated 

periodically 

[29, 40, 42-51] 
Data stored at context 

provider  

Location scope restricted 

publish/subscribe model 
Not handled 

[30] 

Data stored locally as well as 

in a persistent centralized 

repository for rapid access 

Location scope and multi-

level organization to route 

queries, ad hoc networks used 

for query propagation 

Not handled 

[31] 

Data stored at context 

provider in tuple form 

Views used to restrict query 

scope along with physical 

locality 

Not applicable 
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[41] 

Data stored locally and 

represented using ontology 

model 

Direct queries and event 

subscriptions Not applicable 

[18, 20] 

Data stored at context 

provider and grouped using 

domain/attribute combination 

Direct queries and event 

subscriptions 
Not applicable 

 

Based on the information in the table, we highlight the current trends and 

observations regarding the design of a context data management system as follows 

1. The direct retrieval of the context data from the individual raw context sources 

ensures the freshness of the retrieved data. This technique has the drawback of 

being inefficient for queries requiring values from multiple context sources as 

each source needs to be individually contacted that can have an impact on the 

response time. Also, the preprocessing required for sensor data can result in 

the increase in response time for a query.  

2. A popular technique to store and query context data is to use a centralized data 

repository for persistent data storage. However, the problem of managing the 

update overhead due to the dynamic nature of context data is not addressed 

satisfactorily by any of these schemes. Also, these schemes do not address the 

concern of data freshness as they rely on periodic updates to update the 

context data. This can result in obsolete data values being read by applications 

in the middle of update cycles. 

3. Although the problem of managing dynamic data is discussed by some of the 

schemes as a design requirement [27, 55], it is either considered to be handled 

by the underlying database system or the implications are taken to be the 

support of queries over historical data. There are no experimental results 

provided to support the claims of the database being able to handle the 

dynamic data update overhead. 

4. Context-aware systems that do not use a data repository do not need to handle 

the problem of managing dynamic data. On the other hand, these schemes 
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cannot provide a classification on the context data values which restricts the 

processing of queries having conditional constraints on the values of the data. 

Since context queries can be effectively translated to some kind of range or 

point queries, it is important to optimize the processing of these queries. 

5. The context lookup operation in context-aware systems is carried out using 

different approaches that include directly invoking queries on the context 

sources, querying context information stored in repositories, event based 

publish/subscribe notification and location based filtering of queries. The type 

of queries that can be supported by a context-aware system depends on the 

technique used by that system to establish an ordering amongst the context 

sources. Since applications may need to use different query scopes based on 

their specific requirements, a context-aware system should be able to support 

multiple application scopes.  

Based on these observations as well as the summary of the surveyed approaches in 

Table 1, we can conclude that the problem of handling the update overhead as well as the 

freshness concerns associated with managing and updating large volumes of dynamic context 

data is not addressed satisfactorily by any of the existing schemes. Further, existing systems 

usually provide a restricted querying model and are applicable to a particular class of 

applications. Clearly, there is a lack of a context data management system that is capable of 

managing large volumes of dynamic context data and handling different types of data and 

data representations formats. Also, as we observed in Section 2.1, the query requirements 

vary according to the data type and a context data management system should support 

different types of queries including exact/range queries for numeric attributes and 

prefix/suffix/keyword matching queries for strings. As part of the survey, it was also 

observed that existing context data management systems usually support a single query 

scope. The importance of supporting different query scopes in Section 2.1. The fact that the 

current context data management systems do not handle these requirements effectively serves 

as the primary motivation for the research work carried out in this thesis. As we shall see in 

the subsequent chapters, we will use the observations and conclusions gleaned as part of the 

literature survey to serve as the initial design guidelines for the development of our proposed 

context data management system. 
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CHAPTER 3 

COALITION SYSTEM OVERVIEW 

 

 

In this chapter, we present an overview of the Coalition system. Coalition is a context 

aware middleware that has been developed as part of our ongoing research project. Since the 

work carried out as in this thesis is developed as an extension of the Coalition system, it is 

important to have a clear understanding of the system. The chapter is organized as follows: 

Section 3.1 describes the design philosophy and guidelines followed in the development of 

the Coalition middleware system. We discuss the system architecture along with the details 

of the context data management layer in Section 3.2.  Section 3.3 describes the details of the 

context data retrieval operation in Coalition together with its limitations and provides the 

motivation for the thesis work. The chapter is summarized in Section 3.4. 
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3.1 Design philosophy and guidelines 

Coalition [18, 20] is a context-aware middleware being developed as part of our 

ongoing research project to manage and process context information pertaining to context 

sources distributed across large scale networks. We outlined the research problems being 

addressed as part of this project in Chapter 1. Prior to the discussion of the Coalition system 

architecture, we briefly highlight some of the important design guidelines utilized as part of 

the development process of the Coalition middleware as follows: 

1. Supporting scalable context data acquisition and processing – Based on 

our discussion about the features of context-aware systems in Section 1.2, we 

aim to develop a system that can manage, process and disseminate context 

data across context sources distributed using a wide area network. Since the 

number of context sources can be large, these tasks must be highly scalable.  

Also, in order to prevent performance bottlenecks during the context 

processing (i.e. reasoning), the data processing functions should be 

distributed. The system should also make provisions for the mobility of 

context sources and the implications of the same on the data retrieval process. 

In order to make the data retrieval process uniform, a consistent high level 

naming of the different types of context information should be adopted. Since 

every context source can refer to its local context data using different 

terminologies, it is important to standardize the naming at the high level. As 

we shall see in the subsequent sections, the Coalition middleware utilizes a 

schema matching algorithm to achieve this requirement. 

2. Moving the context processing task closer to the context sources – The 

majority of the processing operations are delegated to the individual 

aggregated context sources (PSGs in Coalition) as a way to decentralize the 

context processing operation. This approach spreads the processing load to 

distributed components of the middleware and eliminates the performance 

bottleneck of the centralized data depository and processing approach as 

discussed in Section 2.3. As mentioned before in design of Coalition, we use 

the concepts of a physical space (i.e. spatial proximity) and a physical space 

gateway (PSG) for each physical space to act as an aggregated context source 
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for  acquiring, aggregating, storing and reasoning context data available 

within that space. Also, the processing outcomes of physical spaces may 

further be aggregated and/or processed by using a configurable context data 

aggregation method,  that involves the desirable aggregated context sources 

interoperable to each other to further perform inter physical-space context 

exchange and processing.  

3. Service oriented design approach – Since the Coalition middleware is 

intended to support the development of context-aware applications, we follow 

a service oriented approach to design the system. The different functionalities 

of the middleware viz. data retrieval, reasoning and aggregation are exposed 

as middleware services. Application developers can integrate these services 

into their application design. 

In this thesis, we mainly focus on the problem of ensuring the efficient retrieval of 

context data from multiple aggregated context sources. As established in Section 1.2, the 

performance of the context data retrieval process has a direct bearing on the performance of 

the other data related operations like aggregation and reasoning. We discuss the system 

architecture of the Coalition in Section 3.2.1 and the details of the data management system 

in Section 3.2.2. 

3.2 Coalition System Overview 

3.2.1 System architecture 

The high level system architecture of the Coalition system is illustrated in Figure 1. 

As is evident from the figure, Coalition has a layered architecture. The uppermost layer is the 

application layer that contains context aware applications. The application layer is followed 

by the service management layer. We follow a service oriented system design approach 

wherein the middleware functionalities are exposed as services. This layer handles the tasks 

related to service registration and discovery, as well as supporting orchestration of different 

services for application integration [56]. These services usually perform context-aware tasks 

involving context data retrieval, context processing, reasoning and aggregation. Also, a set of 

specialized services can be defined that provides the functionalities that are commonly 
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required by a wide class of applications. An example of such services can be a location 

service that returns the current location of an object.   

 

  

                                      Figure 1. Coalition System architecture 

 

The layer following the service management layer is the context data management 

layer which is responsible for managing all the operations related to the retrieval and 

processing of context data. The individual aggregated context sources interact with this layer 

and it provides an organizational scheme to group these context sources and the context 

information provided by them. In this thesis, we shall be focusing on improving the 

organizational scheme in the context data management layer to facilitate the faster lookup of 

the relevant context information.  

3.2.2 Coalition – Context data management layer 

Prior to the discussion about the organizational structure of the context data 

management layer, it is important to discuss the context model used in Coalition to represent 

and model the different context sources and the types of context information provided by 
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them. As part of our system design process, we utilize the concepts of physical spaces and 

context domains to provide an abstract representation of context data. A physical space is 

defined as a person, place or object in the real or virtual world and can encompass multiple 

raw context sources that provide information that describes that particular space. For 

example, a physical space like a home can contain light, temperature and humidity sensors. 

Figure 2 provides an illustration of the concept of a physical space using the examples of a 

person and a house.  

 

 

             Figure 2. Illustration of the concept of physical space 

 

The context data provided by a physical space can be termed as a context attribute. In 

order to manage the context data that is obtained from all of these raw data sources, each 

physical space contains a physical space gateway (PSG). A PSG is a software module that 

manages all the data pertaining to a particular physical space [57, 58]. This involves the 

retrieval of data from raw context sources, aggregates and processes the data and providing 

the relevant data (including raw data if is desirable) to the interested parties. The PSG 

provides a single point of interaction between a physical space and external applications as 

well as other physical spaces.  For example, the PSG for a person can reside in a smartphone 



32 

 

whereas it can reside in a desktop computer for a home. Although the residency of PSG is 

location independent, it is preferred to be in the physical proximity of the corresponding 

physical space to minimize the network transmission overhead. In order to provide an 

ordering amongst the physical spaces, Coalition categorizes and clusters these spaces into 

multiple domain classes.  These domain classes are defined as context domains and each of 

them represent a real world entity like shops, houses, people etc. Every context domain is 

associated with a set of attributes that provide a conceptual description of the domain and 

indicates the types of information that can be retrieved from that domain. In this way, each 

PSG can be mapped into one or less commonly more than one context domain (e.g. a home 

operating as an office).  This forms the basis of the context model used in Coalition to 

represent the different context sources and context data values [59]. We now proceed to 

discuss the detailed structure of the context data management layer as illustrated in Figure 3.  

            

Figure 3. Overview of Coalition data management layer 
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A physical space belonging to a particular context domain may contain all or a subset 

of the attributes associated with that domain. In order to group these physical spaces 

according to the type of attributes provided by them, Coalition introduces the concept of 

semantic clusters. A semantic cluster represents a single attribute in a context domain and is 

modeled as a peer-to-peer network where the peers comprise of the physical spaces sharing 

the corresponding context-domain and attribute combination. All the semantic clusters 

belonging to a context domain are connected using a network topology such as a ring to form 

a semantic peer-to-peer overlay. As a context-aware environment is expected to be dynamic 

wherein physical spaces can leave and join semantic clusters, a peer-to-peer model is adopted 

to minimize the disruptions due to these movements. Each context domain is also equipped 

with a context domain gateway (CDG) that manages the semantic overlay and also acts as the 

entry point for data retrieval requests from the middleware server to the overlay. 

A physical space can associate with Coalition by sending a registration request to the 

middleware through their physical space gateway. Figure 4 illustrates the process of a PSG 

joining the Coalition middleware system. The registration request contains the local context 

schema of the physical space that comprises the name of the relevant context domain and a 

list of attributes that the space wishes to make available through the middleware.  

The context information at a physical space is modeled using a simple key-value 

model. A set of global context schemas are maintained at the middleware server where each 

schema corresponds to a particular context domain. These schemas are incrementally updated 

using the local context schemas submitted by the physical spaces during their registrations. 

The process of integrating the local schemas with the global schemas is carried out using a 

context schema matcher [60] developed as part of the middleware project. After the relevant 

context domain has been identified, the PSG of the physical space joins the peer-to-peer 

networks of the semantic clusters corresponding to the attributes in its context schema. An 

important point to be noted here is that the physical space can choose the set of attributes to 

be exposed to the middleware and is not obliged to reveal its entire attribute set. For example, 

a physical space corresponding to a person may choose to reveal only the name and personal 

preference attributes whereas keep confidential information like medical records private. As 

part of the network joining process, each PSG is assigned a random number of PSG 

neighbors from the semantic cluster. 
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                                       Figure 4. Registering a PSG with the Coalition middleware 

 

The network connections between a PSG and its neighbors are not maintained 

persistently. Instead, the PSG stores the network information of all its neighbors and uses 

them to build a one-off connection as and when required. Similarly, a PSG leaving Coalition 

deletes all the neighbor tables corresponding to the semantic clusters it joined. The PSG also 

sends a message to all its neighbors informing them of its removal from the system following 

which the neighbors delete the PSG from their neighbor tables.  

The Coalition system is intended to be generic and is not designed with a particular 

application domain in mind. The main purpose of Coalition is to provide an organizational 

structure that indicates the different types of information that can be retrieved from the 

physical spaces associated with it. The only restriction placed by Coalition is that 

applications are required to conform to the context domain and semantic cluster based data 

model.  Also, Coalition does not store any of the context data belonging to the physical 

spaces associated with it and forwards all context data retrieval requests to the relevant PSGs 
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which then evaluate these requests against their local context data. Since a data retrieval 

request is processed locally at a PSG, the most up to date value of a context attribute is used 

to process the request. This alleviates the concerns about the freshness of the retrieved data as 

discussed in the introduction. Also, this is in line with our design philosophy of delegating 

the tasks related to context data processing to the context sources. Further, as we observed in 

Section 2.3, context-aware systems that do not store context data do not face the overhead 

corresponding to updating large volumes of dynamic data. The decision of responding to a 

data retrieval request lies solely with the PSG and is not enforced by the middleware. This 

feature is important because it helps to address the concerns related to data privacy up to a 

certain extent.  For example, consider a PSG of a person that has exposed the attribute 

indicating the person’s name. A healthcare application can now search for this particular 

person using Coalition and request to see their medical records. When this request is 

forwarded to the PSG, the PSG can check the sender information and respond to the request 

accordingly. In this case, if the PSG deems that the sender application is trustworthy, it can 

proceed to send the requested information. This is a key aspect where the Coalition 

middleware differs from traditional database systems as well as the different context aware 

systems discussed in Chapter 2. 

3.3 Context data retrieval in Coalition 

Since Coalition does not store any context data in the middleware, the main task of 

the data management component in Coalition is to receive the data retrieval requests from 

applications and redirect them to the physical spaces that are most likely to provide the 

required answer(s) [59, 61]. Coalition provides a SQL-like declarative interface that can be 

used by applications to issue queries to the middleware. The basic query format supported by 

Coalition is as follows 

SELECT < attribute > FROM < domain > WHERE ( predicate ) [AND|OR predicate .. ] 

The query processor component of Coalition parses the received queries to identify 

the required context domain/semantic cluster combination to which the query needs to be 

forwarded. The FROM clause identifies the context domain whereas the semantic cluster can 

be identified from either the SELECT or the WHERE clause. The query is then passed to 

the corresponding context domain gateway which then forwards the query to the relevant 
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semantic cluster. The query is now disseminated in the p2p network representing the cluster 

using a controlled flooding operation. A random PSG peer from the cluster is selected as the 

starting point for the query. This peer evaluates the query against its local context data and 

forwards the query to its neighboring peers each of which repeats this process. A one-time 

network connection is setup between a peer and its neighbors for this purpose. Depending on 

the type of query, the PSGs can either report the answers directly to the query issuer or send 

them to the query processor where the answers are aggregated and reported to the issuer.  

Although the flooding based technique of query dissemination is straightforward and 

can be easily implemented, it is restricted by the fact that it is not scalable when the semantic 

cluster size is very high. The semantic cluster size refers to the number of PSGs within the 

semantic cluster. A large semantic cluster size can result in an increased query response time 

using the flooding approach. Context-aware applications are usually interested in retrieving 

context data that satisfies certain conditions (such as data within a particular range of values, 

data from sources in a particular location etc). A flooding technique is not very efficient in 

this case especially in the case when only a small percentage of the PSGs contain the relevant 

data as a lot of time is now spent in querying PSGs that do not contain the required data.  

Clearly, the current classification scheme using the context domain and semantic 

clusters is not sophisticated enough to handle the context lookup operation efficiently. A 

possible solution is to provide an additional level of classification that partitions the PSGs 

according to their data values. As we observed in Section 2.3, this problem is also present in 

context-aware systems that do not store the context data. This is the primary challenge we 

wish to address as part of this thesis – implementing a classification scheme to reduce the 

search space for a context lookup operation that satisfies the constraint of not having a 

persistent storage for context data. The effectiveness of the classification technique will 

depend on its ability to represent the data distribution pattern in a semantic cluster as 

uniformly as possible. Also, this classification scheme will need to adapt to the dynamics of 

the context data values as well as the movement of the PSGs as they join and leave the 

middleware.  
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3.4 Summary 

In this chapter, we provided an overview of the Coalition middleware system wherein 

we highlighted the design principles behind the middleware. We also discussed the overall 

Coalition system architecture as well as the organizational scheme of the context data 

management layer which is the focus of this thesis work. As part of our study of the current 

data management and context data retrieval techniques followed in Coalition, we observed 

that the current organizational scheme comprising of context domains and semantic clusters 

is not sufficient to carry out lookups over large network sizes in a scalable fashion. This 

served as the motivation to augment the current organization by adding another layer of 

classification based on the data values of the attributes. This is a challenging problem due to 

the fact that the Coalition middleware does not store any context data and any classification 

technique used will need to satisfy this constraint. As part of our initial solution to this 

problem, we propose the idea of a range clustering technique to create an index structure on 

the context attribute values to facilitate the processing of context lookup queries. 
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CHAPTER 4 

 RANGE CLUSTERING BASED ORGANIZATION FOR 

CONTEXT LOOKUP 

 

 

 

This chapter presents the detailed design of the range cluster based index structure 

that is introduced to facilitate the context lookup process as an initial alternative to the 

flooding based approach. The main issue addressed in this chapter is to improve the problem 

related to the scalability of the context lookup process. The chapter is organized as follows – 

Section 4.1 discusses the motivation behind the range cluster based indexing approach and an 

overview of the indexing scheme. We discuss the details of the indexing process and the 

associated maintenance operations in Section 4.2. Section 4.3 discusses the preliminary 

experimental results achieved using the proposed index structure. We summarize and 

conclude the chapter in Section 4.4. 
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4.1 Overview  

As discussed in the previous chapter, the current classification followed in Coalition 

using context domains and semantic clusters is not sufficient to conduct lookups efficiently 

over a large number of PSGs. Considering the fact that context-aware applications usually 

require context data satisfying a set of conditions, the primary requirement is to have an 

additional classification scheme like an index that can process queries having conditional 

constraints effectively. Indexes in traditional database systems usually contain a single value 

or a range of values as the index key along with the associated addresses where the data 

corresponding to those values is stored. Since Coalition does not store any context data 

belonging to the PSGs, the direct adoption of the database index technique is not feasible. 

Also, the classification mechanism will need to take into account the fact that the data being 

indexed changes frequently and adapt to the changes as PSGs leave and join the system.  

In view of the constraints placed by the organizational structure of the Coalition 

middleware system and the requirements for designing an index structure for context data, 

we propose the use of a range cluster based classification scheme to address the problem of 

context lookup [62]. As we saw in Chapter 2, the query requirements for context attributes 

vary according to their data type and a classification scheme needs to take these requirements 

into account as part of their design process. Since providing a single indexing scheme that 

can handle different data types is difficult, we adopt separate indexing mechanisms for 

numeric and string data types. The indexing schemes discussed in this chapter as well as 

Chapter 5 are designed to handle numeric context attributes. The problem of classifying 

string attributes is addressed at a later part in the thesis. The basic idea behind the range 

clustering based indexing scheme is to further classify the PSGs within a single semantic 

cluster according to their data values as illustrated in Figure 5.  
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               Figure 5. The proposed range cluster based index structure 

 

As per the new organizational scheme, each semantic cluster is now further 

subdivided into a series of range clusters. Each of these range clusters correspond to a range 

of data values and contain the corresponding PSGs that possess the data values belonging to 

that range. These range clusters now serve as the index structure for that semantic cluster and 

can be used to process context lookup requests. We discuss the details of the indexing 

process in the subsequent sections.   

4.2 Range cluster based index structure for context data  

4.2.1 Index structure generation using range clusters 

The scope of the index structure discussed in this section is within a single semantic 

cluster belonging to a particular context domain. This structure can be replicated for different 

semantic cluster to manage multiple attributes. The main idea involved in creating the index 

structure is to use a clustering technique to partition the PSGs into multiple clusters. Since 

the index structure is required to work within a dynamic context environment, one of the 

primary requirements is that the clustering process should be incremental. One of the most 

well-known incremental clustering algorithms is the sequential leader clustering algorithm 

[63]. This algorithm compares each new value against the set of existing cluster leaders by 
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using a distance metric to assign the value to a cluster. If the value cannot be assigned to any 

existing cluster, a new cluster is generated with the new value as its leader. One of the main 

drawbacks associated with this algorithm is that it can result in the generation of a large 

number of small sized clusters. We attempt to address this issue as part of our proposed 

clustering technique.  In the initial phase of our index construction, all the PSGs are part of a 

single P2P network and are assigned to a single range cluster having no fixed bounds. The 

clustering process is initiated when the number of PSGs in this cluster exceeds a predefined 

system threshold for the maximum cluster size. The cluster size in this discussion refers to 

the number of PSG members in a cluster.  This threshold value should be chosen with a view 

to ensure that the response time for processing a query in a single range cluster when it is at 

its maximum capacity is within a reasonable bound. It can be chosen by progressively 

varying the maximum threshold size and observing the corresponding fluctuations in the 

response time. The threshold can be chosen in accordance with the network conditions in the 

deployment environment.  

Since each PSG contains the data value for the attribute corresponding to the 

semantic cluster, they are treated as the data points over which the clustering process is 

applied. Since no context data is stored in Coalition, the first step of the clustering process 

involves the retrieval of the data values of the relevant attribute from the PSGs. After the data 

values are received, they are inserted in a sorted list in increasing order of magnitude. In 

order to generate the clusters, the sorted list is then partitioned from the middle to obtain two 

sorted lists that are used to generate the range clusters. Figure 6 provides a detailed 

illustration of the process of generating the clusters. In the next step of the clustering process, 

the existing cluster is now replaced by two clusters each of which corresponds to one half of 

the initial sorted list. The minimum and maximum values of the two sorted lists represent the 

cluster bounds. The main idea involved in this step is to utilize the retrieved data values to 

create a set of clusters that provide an approximate representation of the data distribution 

within the original cluster. Once the clusters have been generated, each PSG is instructed to 

join the range cluster that corresponds to its current value.  
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Figure 6. The cluster generation process 

 

With the introduction of the range cluster based index structure, the single P2P network is 

now replaced by several P2P networks each of which corresponds to a range cluster. The P2P 

network corresponding to a range cluster is composed of the PSGs that possess an attribute 

with a data value in the range denoted by the cluster. As can be seen in the figure, the initial 

P2P network is composed of the four PSGs – PSG 1, PSG 2, PSG 3 and PSG 4. After the 

clusters have been formed, PSG 1 and PSG 4 form a P2P network whereas another separate 

network is formed by PSG 2 and PSG 3. This index structure satisfies the constraints of the 

Coalition middleware of not storing any context information as the index construction 

process only involves a one-time retrieval of the context data from the PSGs. 
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4.2.2 Index structure maintenance operations 

After the initial clusters have been formed, subsequent PSGs registering with 

Coalition are assigned to the proper cluster based on the cluster bounds and the data value of 

the PSG at the time of registration. A PSG assigned to a range cluster becomes a part of the 

P2P network corresponding to that cluster. If the size of a range cluster exceeds the 

predefined threshold for the maximum cluster size, it is split using the previously described 

clustering process. In this way, the number of range clusters as well as their range bounds 

keeps evolving as PSGs join the system. The splitting of the clusters also keeps the range 

clusters balanced by preventing a single cluster from containing a large number of members. 

The clusters formed as a result of a cluster split are expected to have a range bound that is 

tighter than the original cluster bound.   

As PSGs can leave as well as join the middleware, there can be a case where a range 

cluster contains either no members or very few members. In order to prevent this, the 

minimum number of members that need to be present in a cluster is defined using a 

threshold. When the size of a range cluster falls below this threshold, it is merged with an 

existing cluster to keep the total number of clusters low. The merging of two clusters results 

in a new cluster with a range bound obtained by merging the corresponding range bounds. It 

is important to ensure that the merging of two clusters does not disrupt the existing order of 

the range clusters. The detail of the cluster merging process is illustrated in Figure 7.  

The first step of the merging process involves the ordering of the range clusters 

according to their cluster bounds. Following this, the position of the cluster selected for 

merging is identified. This cluster can be merged with any of its adjacent clusters as per the 

ordered list. As observed in the figure, there can be either a single adjacent cluster or two 

adjacent clusters. If there is only a single adjacent cluster, a new cluster is created by merging 

these two clusters. Also, the P2P networks corresponding to these two clusters are 

deconstructed and a single P2P network is created with the members of both the clusters. If 

the merging process creates a cluster with a size greater than the maximum cluster size, then 

a subsequent splitting operation is required. In order to minimize the chance of this event, a 

cluster having two adjacent clusters is merged with the cluster having the lower size. 
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Figure 7. The cluster merge process 

 

A range cluster having no members is removed from the index. The split and merge 

operations play an important part in adapting the index structure according to the movement 

of the PSGs and ensure that the index reflects the continuously changing data distribution 

within the semantic cluster as accurately as possible. Apart from the leave and join 

operations, a PSG can also shift between the different range clusters due to the dynamic 

nature of context data.  Since the initial assignment of a PSG to a range cluster is done on the 

basis of the value of the context attribute at that instant, subsequent changes in the attribute 

value need to be accounted for.  

In order to handle this issue, each PSG periodically checks its data values against the 

bounds of the cluster which it has been assigned to. In case the new value is inconsistent with 

the current cluster bounds, the PSG leaves this cluster and joins a new one. The movement of 

PSGs between the range clusters can also result in a cluster split/merge operation. The 

frequency with which a PSG moves between different range clusters depends on the cluster 

bounds as well as the data change pattern of the context attribute within the PSG. The storage 
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space requirements for the proposed index structure are minimal as the index does not store 

any of the data being indexed. The information required by Coalition to represent the index 

structure comprises of the cluster bounds of each of the range clusters and the list of 

members present in each range cluster.  

4.2.3 Context lookup using the index structure  

The context lookup operation involves the identification of the context sources having 

the relevant data for a query and the retrieval of the data from these sources. As per the 

previous scheme, a query was redirected to the appropriate context domain/semantic cluster 

combination following which the query was flooded to all the members of the semantic 

cluster. The range cluster based indexing scheme now introduces an additional layer of 

ordering within a semantic cluster. Context queries in Coalition are modeled using the SQL 

syntax and specify the data to be retrieved along with the necessary constraints. Figure 8 

illustrates the details of the context lookup operation using the range clusters.  

The constraints specified in the context queries are in the form of a range condition or 

a set of logical conditions on the value of a context attribute. As can be seen from the figure, 

the proposed index structure can be used to process these context queries by evaluating the 

constraints against the range cluster bounds and identifying the set of range clusters that 

satisfy those constraints. This reduces the search space for a query and forwards it to only the 

relevant subset of PSGs expected to have a valid answer for the query. Once the relevant set 

of range clusters have been identified for a given context query, the query is disseminated in 

each of these clusters using a controlled flooding based technique as discussed in section 3.3. 

Although flooding is still used to process the query within a range cluster, the 

associated overhead is expected to be less as compared to a system wide flooding as the 

flooding scope is now reduced to a subset of the system. In other words, the number of PSGs 

involved in the flooding operation is reduced. Also, the introduction of the proposed index 

structure does not require any modifications in the context lookup operation from the 

perspective of a PSG. The primary function of an index is to provide an efficient and fast 

way to access data. The effectiveness of an index thus depends on its partitioning ability and 

the accuracy of its representation of the distribution of the indexed data. 
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Figure 8. Context lookup using the range clusters 

 

Since the indexed data is dynamic, the proposed index can only provide an 

approximate representation of the data distribution. When a query is forwarded to a range 

cluster, the number of answers received depends on two factors – the number of PSGs with 

data satisfying the query conditions as well as the PSGs that respond to the query. Since the 

decision to respond to a query rests with a PSG, it may not respond to a query in spite of 

having a valid answer. This is one of the aspects in which Coalition as well as the proposed 

index differs from the conventional notion of indexes in database systems. The interval size 

of the cluster bounds of the range clusters also play an important part in determining the 

efficiency of the query processing operation. The interval size of a cluster refers to the 

difference between the upper and lower cluster bounds. To cite an example, a cluster bound 

of 10 – 11 represents a short interval as compared to that of a cluster bound of 20 – 30. If all 

the clusters have low interval sizes, the query processing performance can become more 

efficient as queries can be directed to the relevant set of data sources quite accurately. Also, 
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this property can lead to the formation of a large number of clusters as each cluster can only 

accommodate values in a narrow range. Conversely, if the clusters have large interval sizes, 

the total number of range clusters is reduced as each cluster can now accommodate a larger 

range of values. However, this might affect the query performance due to the looseness of the 

index.  

Since the cluster bounds are not predefined in our proposed indexing scheme, the 

interval sizes of the clusters keep changing as PSGs join and leave the system. When a 

cluster splits, the resulting clusters have a smaller interval size as compared to the original 

cluster. Similarly, the merge operation creates a cluster with a larger interval. The threshold 

values that dictate the minimum and maximum number of members in a single cluster try to 

alleviate the problems associated with both the types of interval sizes. The minimum size 

threshold tries to keep the total number of range clusters low by merging clusters. On the 

other hand, the maximum size threshold is used to address the issue of the degradation of 

query performance with larger interval sizes. Taking the example of the clusters in Figure 8, 

consider four queries each searching for one of the following values (30, 31, 32, 34). 

Assuming that none of these values are currently possessed by any PSG in the system, the 

query processor will still redirect all these queries to the last cluster that has a relatively 

larger interval size. The query will be disseminated among all the members of the cluster and 

a result set comprising of zero answers will be returned after all the members have been 

probed. This example is used to illustrate the impact that clusters with larger interval sizes 

can have on the query processing performance. If such a range cluster contains a large 

number of members, the time taken to report that a valid answer is not present can increase 

proportionately. We attempt to address this problem in our index structure by restricting the 

membership size of a range cluster using the minimum and maximum thresholds.   

4.3 Experimental analysis  

4.3.1 Experimental setup 

The proposed index structure was implemented and integrated with the prototype of 

the Coalition middleware. The Coalition middleware was then deployed on a Dell 

PowerEdge T300 server with four 2.83 GHz quad-core Intel Xeon CPU and this machine 

was designated as the server. A set of desktop machines each running the Windows XP 
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operating system and having an Intel Core 2 Duo 2.83 GHz CPU is used to simulate the 

PSGs. Since a PSG is designed as a software module, a single desktop can be used to 

simulate multiple instances of the PSG. The data values used for testing were derived from 

the Intel lab sensor data set [64]. This data set comprises of temperature, humidity, light and 

voltage values from 54 sensors collected over a period of time. Each sensor contains ~55,000 

data values for each of the four aforementioned attributes. As discussed in Section 1.1, 

context can be defined as any information that can be used to describe an entity. This 

information can refer to the physical environment as well as the human factors. In this case, 

the sensor data set used to derive the testing data for the experimental results contains a set of 

environmental data values that provide information about a particular place (the deployment 

environment of the sensors). In other words, the data values represented by the Intel lab 

sensor data set can be designated as a valid set of real-world dynamic context information. 

This justifies the selection of the Intel lab sensor data set as a valid source to generate the 

testing data for our proposed indexing structure. 

In order to generate the test data set, we first extracted all the data values 

corresponding to a particular sensor and attribute combination. This step resulted in a 

collection of 54 data files for a given attribute type. Since the proposed index is implemented 

within the scope of a single semantic cluster, we used different attribute values as per the 

requirement of the experiment. The set of data values generated at a particular PSG was 

simulated by taking a random sample comprising of a fixed number of values from one of the 

data files obtained previously. For example, to model a set of temperature values at a PSG, a 

data file corresponding to the temperature attribute was randomly chosen and a fixed number 

of values was selected from that file. Each of the simulated PSG instances was assigned a set 

of these data values. The process of a PSG periodically receiving a new value for a data 

attribute was simulated by reading these values one by one after a fixed time interval. The 

maximum and minimum cluster size thresholds are fixed at 50 and 10 respectively. All 

experimental results are represented using a 95% confidence interval of the results by 

assuming a normal distribution wherever applicable. 

It needs to be noted here that all the experimental results in this chapter as well as the 

subsequent chapters evaluate the performance of the proposed context data management 

system as a component of the Coalition system and the performance comparisons with other 
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data management schemes is minimal. Since the proposed data management system is 

developed as part of a context-aware middleware system, it is not feasible to evaluate the 

data management system as an isolated system and compare it with other data management 

techniques. Also, the fundamental constraint of Coalition that prevents any data from being 

stored in the system differentiates the proposed data management system from techniques 

that optimize the management of data values stored in memory. The only viable way to do a 

performance comparison of the proposed system is to compare it against the data 

management systems of other context-aware middleware systems. However, the lack of a 

standardized performance benchmark for context-aware systems combined with the fact that 

such middleware systems are usually proprietary software and not freely available make this 

type of comparisons infeasible. The only comparison that can be done in this case is to 

provide a feature-wise comparison of our proposed system with existing systems. 

4.3.2 Query response time 

Since the primary motivation for developing the proposed index structure is to 

facilitate the context lookup, the preliminary sets of experiments are conducted to assess the 

index with respect to the query response time. The response time of a query is measured as 

the time interval between the issuing of a query from an application and the reception of the 

query result. The response time measurements were carried out in a stable test environment 

wherein a fixed no of PSGs are present, no PSG enters or leaves the system and after a PSG 

is assigned to a cluster it does not move to another cluster. In each round of this experiment, 

the number of PSGs having a valid answer for the query was fixed to be 50. We compared 

the query response time achieved by two P2P schemes: the normal flooding based scheme as 

well as the proposed index structure. Both the P2P schemes were implemented using the 

UDP protocol. The results are shown in Figure 9 which shows the variations in the query 

response time plotted against different network sizes.  
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     Figure 9. Query response time with different network sizes 

 

The network size refers to the total number of PSGs registered with the middleware. 

The results indicate that the response time shows an increase as the network size increases 

for both the schemes. This observation is based on the fact that the increase in the number of 

PSGs in a system has an impact on the total search space for a query. We also observe that 

the performance of both the schemes is similar when the network size is small. However, the 

response times for the flooding based scheme increase sharply with the increase in the 

network size as opposed to the comparatively slower increase observed with the proposed 

indexing scheme. The slow increase in the response time can be attributed to the ordering 

established by the indexing scheme which helps to reduce the search space for a query. This 

is illustrative of the fact that the introduction of the proposed indexing scheme is an 

important first step towards realizing an efficient context lookup mechanism. An important 

point to be noted here is that all the experimental results discussed in this section as well as 

the subsequent chapters are carried out in a controlled test environment. When a real world 

deployment is considered, it is expected that the end to end network delays will contribute to 

the response time as well. While this is an important issue to be considered in its own right, 

we do not consider the impact of the network delay in these experimental results as we are 

more interested in optimizing the process of organizing the context sources to facilitate the 
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retrieval of context data from these sources. Since the main focus of this thesis is to develop a 

context data management system and assess the performance of this system with respect to 

its ability to partition and query context data, we choose to emphasize this aspect of the 

system in our studies and do not consider the network latency. We further examined the 

response time of different schemes by varying the number of PSGs with the required results 

for a query in a semantic cluster. The network size of the semantic cluster was fixed to be 

1000 PSGs in this experiment. The results are illustrated in Figure 10.  

 

 

            Figure 10. Query response time with different number of PSGs with valid answers 

 

As can be observed, there is an increase in the query response time for both the 

schemes with a corresponding increase in the number of PSGs with valid answers which is 

expected. However, it can also be observed that the proposed index structure achieves a 

query response time that is faster by 35% - 45% than that achieved using the flooding based 

scheme especially when a smaller percentage of PSGs contain the valid answers. This can be 

explained by the fact that the proposed index structure enables a faster localization of PSGs 

with valid answers due to the value based partitioning imposed by it. Also, the results 

indicate that the performance of both the schemes is comparable when the percentage of the 

PSGs in the network containing the valid answers is quite large (80% and above). In this 

case, the presence of an index does not offer any additional advantage over the flooding 
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approach. Based on these preliminary experimental results, we can conclude that the 

presence of the indexing scheme is effective in improving the context lookup process 

especially when the number of context sources is large and only a small percentage of them 

contain the required context information.  

4.3.3 Index performance with dynamic context data 

One of the primary design requirements of a context lookup mechanism is the ability 

to manage dynamic context data.  We do not handle this problem directly as part of our index 

design and rely on the PSGs to periodically check their attribute values and update to a 

different cluster in case of an inconsistency. Although this approach is straightforward, it can 

affect the query accuracy. Since the consistency checking is done periodically by the PSG, a 

situation can arise wherein a PSG is a member of a cluster even though its local data value 

has moved out of the cluster bounds. This can interfere with query correctness as the query 

processor could redirect a query to a range cluster(s) containing PSGs that have data values 

that are inconsistent with the cluster bounds. In order to verify this observation, we conduct a 

series of experiments to check the inconsistencies between the local data of a PSG and the 

cluster bounds.  

As discussed previously, a data file is associated with every PSG instance to simulate 

the set of attribute values generated at the PSG. In each run of the experiment, a PSG reads a 

new value from the file at intervals of one second thereby simulating the periodic generation 

of context data and conducts the consistency checking at intervals of 1 minute. We 

deliberately choose the frequency of data checking to be higher than the data generation 

frequency in order to observe the inconsistencies occurring as a reason of the same. The 

experimental setup is as follows – After a PSG is assigned to a range cluster, the 

compatibility of the new value and the cluster bounds is checked with every new value that is 

generated. In case of an inconsistency, the details of the PSG are recorded. We first identify 

the percentage of PSGs that exhibit this inconsistent behavior within a fixed network size 

during a time period of 1 hour. After the completion of the experiment, the list of unique 

PSGs that exhibited this inconsistency (one or more times) was compiled. Figure 11 

illustrates the results of this experiment.  The results demonstrate that for a given network 

size, a significantly high percentage of PSGs ranging from 50% to 70% are part of a range 

cluster whose bounds are incompatible with their current data value. Also, as each of these 
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PSGs would have exhibited this behavior multiple times, the risk of not receiving accurate 

answers for a query increases.  Clearly, the proposed index is not equipped to handle the 

dynamic nature of context data. 

 

 

            Figure 11. Identifying PSGs having data inconsistent with cluster bounds 

 

There are two aspects where the design of the index should be modified in order to improve 

the dynamic data management. Firstly, the checking of the data values and the cluster bounds 

should not be carried out arbitrarily. The second aspect that needs to be improved is the 

classification process so that the clusters reflect the data distribution more accurately. The 

current practice of cluster generation of splitting the sorted list of the cluster members can 

lead to clusters being generated that reflect an unbalanced view of the data members in the 

semantic cluster. If we consider the following sorted list [20, 21, 21, 23, 24, 45, 46, 47], the 

clusters generated using this list will be [20 – 23] and [24 – 47]. In this case, a better 

distribution would be achieved by shifting the PSG corresponding to the value 24 to the first 

cluster. Also, the current clustering scheme always splits an existing cluster into two clusters 

which cannot always guarantee a fair data distribution. Ideally, the number of clusters a 

single cluster is split into should not be restricted to a fixed number and should be based on 

the data distribution of the PSGs. The implementation of these two features would help to 

ensure that the index structure can efficiently manage context data. 



54 

 

4.3.4 Time breakdown for cluster maintenance operations 

Since the cluster maintenance operations of splitting and merging play an important 

role in adapting the index structure according to the movement of the PSGs, we briefly 

discuss the time breakdown required for these operations in Tables 2-3.  It is observed that 

the cluster splitting and merging operations require a similar maintenance overhead with the 

merging requiring slightly more. 

      Table 2. Time breakdown for cluster splitting      

 

 

Table 3. Time breakdown for cluster merging 

 
 

The regrouping costs of PSGs in the newly merged/split clusters dominate the total 

time taken for these operations. Unless the dynamism of the context data and the 

memberships of PSGs are high, the frequency of merging/splitting will be low and hence the 

latency of the operation will not affect the overall system performance. Again, the inability of 

the index to cope with the dynamic data values can lead to repeated cluster splitting and 

merging operations as PSGs can rapidly join and leave the range clusters. Since this can have 

an impact on the system performance, it is another strong motivation to improve the system 

performance with respect to dynamic data. 
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4.4 Summary 

We discussed our initial approach for developing a context data management system 

in this chapter in the form of a range cluster based indexing scheme. This scheme utilizes the 

data values contained within the context sources i.e. the PSGs to generate an approximate 

ordering over these PSGs and partition them into a set of range clusters to facilitate the 

context lookup process. A set of maintenance operations are also defined to keep the index 

structure balanced as well as adapt to the movements of the PSGs. The initial experimental 

results indicate that the proposed indexing scheme succeeds in minimizing the response time 

for context queries by reducing the search space for a query and offers a better alternative 

than the flooding based approach. Also, the time breakdown of the cluster maintenance 

operations suggest that frequent invocations of these operations can have an impact on the 

system performance. Further, it is also observed that the index is not equipped to handle the 

problem of managing dynamic data satisfactorily and can lead to errors in the query 

processing operation. Since this is an important design requirement for a context data 

management system, We address this issue in the subsequent chapter that utilizes the 

statistical data properties of context data to create an index structure that can efficiently 

handle the problem of managing dynamic context data and carrying out lookups over them. 
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CHAPTER 5 

A MEAN-VARIANCE BASED INDEX FOR DYNAMIC 

CONTEXT DATA LOOKUP 

 

 

This chapter discusses the design and implementation details of a mean-variance 

based indexing scheme to manage and carry out lookups over dynamic context data. The 

chapter is organized as follows – Section 5.1 gives an overview of the problem of dynamic 

data management. This is followed by a survey of the current techniques/approaches used to 

solve this problem in Section 5.2. The use of the statistical properties of data i.e. the mean 

and variance to create an index structure is discussed in Section 5.3. This section also gives 

the details of the mean-variance calculation process within a PSG using the dynamic queuing 

approach. The details of the index creation process using the mean-variance values are 

discussed in Section 5.4. Section 5.5 discusses the process of context lookup using the 

proposed indexing scheme as well the factors that influence the number of answers received. 

The detailed experimental results are discussed in Section 5.6. The chapter is summarized 

and concluded in Section 5.7.  
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5.1 Overview 

We have already established the need to incorporate the efficient management of 

dynamic context data as an important design requirement for context data management 

systems. In the previous chapter, we observed that the range clustering based index was not 

able to satisfactorily handle the dynamicity of context data. The experimental results carried 

out previously also indicated that an inadequate handling of dynamic data can lead to query 

inaccuracies. In this chapter, we discuss an extension of the previously mentioned indexing 

scheme that aims to address these issues. This new scheme utilizes the statistical properties 

of the data values namely mean and variance to build an index that can handle the problem of 

frequent index updates occurring due to dynamic data.  

5.2 Dynamic data management 

We observed in Chapter 2 that the existing context data management strategies do not 

address the problem of managing dynamic data satisfactorily. However, this problem has 

been addressed as part of the research efforts in other application domains and we review 

some of these techniques in this section.  

Inverted indexes are an important class of indexes designed for documents and store a 

mapping from content, such as words or numbers to their locations in a document or a 

database file. With the rapid growth of the Internet and web applications, the management of 

dynamic web documents has become a primary concern. One approach towards reducing the 

update cost by minimizing the memory accesses for the index rebuilding is to carry out this 

process selectively [65]. This is done by buffering new documents and sequentially 

integrating them into the main index. The concept of forward indexing and the use of 

landmarks to encode the positions of words in a document is proposed in [66] to handle the 

index update problem for dynamic documents. A hierarchical index for managing dynamic 

structured documents (like XML and SGML) is discussed in [67]. This index structure keeps 

the indexing information only at the lowest levels and the information at intermediate levels 

is obtained by accumulating the corresponding leaf node frequencies thereby minimizing the 

update overhead. Although these techniques are effective in managing the index updates 

occurring in dynamic documents, the design principles involved are tightly coupled with the 

application domain. In other words, it is difficult to extend these data management strategies 

for use in a context-aware system. 
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Another application domain that needs to manage large volumes of dynamic data 

involves spatial data systems and indexes for moving objects. Most of these techniques 

involve augmenting the R-tree index [68] to support dynamic data indexing. The RUM tree 

variation [69] attempts to reduce the update costs by allowing the updated entries to co-exist 

with the current entries and reduce the cost of an update operation to that of an insertion one. 

As moving objects over an area often share some information, the FT-Quadtree [70] attempts 

to minimize the redundant information to be indexed by using shared trajectory segments. 

These segments are used to build a reduced size index thereby making it more efficient for 

indexing large volumes of spatial data. The CNG index structure [71] uses a two level 

topography-aware grid structure as an in-memory index for moving objects. The update 

procedure is carried out with each object reporting their new positions to the cluster nodes 

performing the task of index updating by checking if the positions fall within their covering 

ranges. The CT-R-tree (change tolerant R-tree) [72] builds an index based on the observation 

that most indexes inherently tolerate some changes in the data being indexed. This tolerance 

is exploited by identifying quasi-static regions denoting the ranges of the domain enclosing a 

large number of updates and minimizing inter-region updates. The idea of minimizing index 

updates using the trajectory information to predict the path of moving objects is also 

discussed with different variations in [73-77]. Similar to the case observed with the inverted 

indexes, the indexing schemes for spatial databases and moving object systems utilize the 

special properties of the application domain like the motion trajectories as part of the index 

construction process. This dependence on the system properties makes these index structures 

unsuitable for indexing generic context data.  

Sensor networks are also an important area where support for dynamic data 

management is required. Indexes designed for sensor networks [78-81] need to be distributed 

and energy efficient. These indexes attempt to minimize the update overhead by making the 

index query driven and fix the operating mode of the sensors to be either proactive or 

reactive depending on the query frequency. Alternatively, the sensor network is visualized as 

a database where a query is directed to specific sensors in accordance with the query issued. 

In order to store this dynamic sensor data in databases where the value might differ from the 

actual sensor value, database systems are augmented with uncertainty management 

components [82]. A data value is associated with an interval and probability distributions 
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functions and queries are handled using probabilistic operators that define the answer quality. 

The sensor network indexes operate at the individual sensor level and are designed for 

applications interacting directly with sensors as compared to our case where we consider 

context sources encompassing multiple types of sensors. Also, the technique of storing the 

sensor data in databases is different from our middleware scenario where all the data is stored 

locally at the PSGs.  

Since the frequent updating of data lends a temporal aspect to the static data, time 

based partitioning can be used to minimize the update overhead. Dynamic data can be 

visualized as data that is valid only for a certain amount of time. The use of traditional 

indexes in this case is difficult as new data needs to be inserted continuously whereas old 

data has to be deleted once its lifetime expires. The problem of indexing a time evolving set 

of data items is addressed in [83] and proposes a sliding window index that divides the 

window chronologically into a set of equal partitions (based on insertion or expiration times), 

each of which is then indexed by search key. The advantage of this approach is that only one 

sub-index is affected by an update at a given time as these sub-indices are partitioned on the 

insertion (or expiration) times and the updates fall within the range of a single sub-index. The 

prerequisite here is that each data item needs to be associated with a time duration denoting 

its validity period. The MVtree (mean-variance tree) [84] index structure is based on the idea 

that statistical attributes like the mean and variance are more resistant to change than the 

actual data value. This idea is used to create a modified R-tree structure that builds an index 

by visualizing data items as points on a 2-d mean-variance grid. Both these schemes are 

fairly generic and do not make any prior assumptions about the properties of the data.  

Since we utilize P2P networks to organize the context sources and carry out lookups 

over them, we review some of the techniques used to process range queries over P2P 

networks. A popular class of distributed indexes designed for P2P networks is the DHT 

(distributed hash table) based data lookup techniques described in Chord, CAN, Pastry and 

Tapestry that use hash functions to assign data to nodes and lookup data [85-88]. Although 

the basic capability of DHTs is to support exact matching queries, there have been efforts to 

support range queries using DHTs [89-93]. The range query support for DHTs can either be 

provided as an independent functionality without modifying the existing overlay structure or 

can be incorporated as part of the overlay structure. A variety of techniques are employed in 



60 

 

order to support the processing of range queries. Space filling curves can be utilized to map 

objects with multiple attributes to peers and then process range queries by searching the 

clusters generated by the curve. Alternatively, tree based index structures based on the binary 

values of the object keys can be constructed to facilitate single and multi-attribute range 

queries over DHTs. Apart from these, there exist a number of customized DHT techniques 

that make structural changes to existing DHTs to achieve delay-bounded range query 

response times. Since DHTs utilize hash functions to store and lookup data, the use of these 

algorithms with dynamic data will prove to be difficult as the hash value will need to be 

continuously updated. Also, the basic DHT model involving a set of nodes which store data 

according to the key-node mapping is structurally different from our middleware architecture 

where we consider multiple autonomous context sources that do not store any information 

about the type of data stored in any other context sources. Thus, there is a difficulty in 

adapting these techniques to create an index structure over context data. 

Based on the design principles of the surveyed techniques, we identify the following 

two indexing schemes that are not associated with any particular application domain – the 

index built using the temporal aspect of data and the R-tree based index built using the 

statistical properties of data. Since the second scheme does not require any prior assumptions 

about the data being indexed and provides a partitioning based on the data values, we use it 

as the basis to refine and redesign the range clustering process in our middleware. 

5.3 Using mean and variance to index dynamic data 

In order to manage and carry out lookups over dynamic context data, we propose a 

mean-variance based index structure as a refined version of the previous index structure [94]. 

The principle behind this indexing scheme is partly based on the idea discussed in [84] which 

states that even though a data value may be dynamic, the associated mean and variance 

values are relatively stable. For example, sensory data like temperature changes continuously 

but the changes are confined within a range for a significant period of time. In other words, 

even though the data value keeps changing frequently, the magnitude of the change is low. 

Hence, an index constructed using these statistical properties are expected to have a lower 

index update cost. The index structure proposed in [84] is based on building an R-tree by 

visualizing the initial data set as points on a 2-d mean-variance grid and constructing MBRs 

around this data. One of the key assumptions in the R-tree construction process is the 
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presence of a certain number of data points to facilitate the initial construction of the index 

structure following which the index is adapted as new data values are added to it. Clearly, 

this assumption is not feasible in our scenario as the index is expected to operate in a 

dynamic context-aware environment where context sources (PSGs) are expected to 

frequently leave and join the system. The use of an R-tree in this case will lead to frequent 

maintenance operations on the index thereby reducing its usefulness. Based on the 

requirements and constraints of the Coalition middleware system, we propose a refined 

version of the incremental clustering algorithm discussed in Section 4.2.1 that strives to use 

the mean-variance values in a novel way to establish a better ordering amongst the context 

data values within the PSGs and is also able to withstand the inherent dynamism of a context-

aware environment.  

Since the index construction is based on the mean and variance values, one of the key 

requirements is to keep track of these values for every attribute. Since a PSG is responsible 

for its own local data, these calculations must be carried out within the PSG. If a data 

attribute A is dynamic and has a set of historical values A1, A2, A3, …, An, the mean value of 

A is denoted by μA and is calculated as the sum of the values divided by the sample size. The 

variance for attribute A is denoted by δA and the formula for calculating the bias-corrected 

sample variance is given by 

 

 

 

 Since a dynamic data attribute results in a continuous stream of values, attempting to 

calculate the mean and variance over the entire set of historical values can be expensive in 

terms of both processing and storage. In order to address this issue, a sliding window 

technique is used in [84] where a fixed size queue holds the values used to calculate the mean 

and variance. When the queue is full and a new value arrives, the oldest value in the queue is 

deleted and the new value is inserted. Since there are no fixed guidelines to determine an 

optimal queue size, we propose a dynamic queue structure that adapts according to the 

sequence of values. The modified mean-variance calculation process is illustrated in Figure 

12. At any given time, the interaction between the queue and the new value can be described 

using three distinct states. In the first state, the queue is empty when a new value is 
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generated. In this case, the queue is initialized with the new value as its member. The mean is 

initialized as the value itself and the variance is set to zero. In case the queue is non-empty 

and a new data value is received, this new value is checked with the current mean and 

variance. This basically involves checking whether the data value lies in the interval given by 

(μ – δ, μ + δ).  This interval is used to approximately predict the range that the future data 

values are expected to fall into. If the new data value is found to be within this range, the 

mean and variance values are not changed and the new value is not added to the queue. The 

fact that the new data value lies within the interval is taken to be an indication that the data is 

still changing according to the expected pattern which is the range of values given by the 

mean-variance interval. This comprises the second state of the queue.  

 

Figure 12. The mean-variance calculation process 

 

Even though the latest data value is not added to the queue, it is still available for 

retrieval for any application that requires it. Finally, if the new data value is observed to lie 

outside the current mean-variance interval, the mean and variance values are recalculated 
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taking the new data value into account. The change in the variance values are then compared 

against a pre-defined threshold to assert whether the data pattern is changing. A change in the 

data pattern in this context indicates a sharp increase or decrease in the magnitude of the 

generated data values. A large change in the variance is taken to be indicative of a shift in the 

data change pattern and results in the queue being reinitialized and restarting the mean-

variance calculation process. In case the variance change is still within the threshold, the new 

data value is added to the queue (as it contributes to the new mean and variance calculations) 

and the mean-variance values are updated accordingly. 

Since the mean-variance calculations are done on a subset of the data, the processing 

and storage load is reduced. The threshold value used to check the change in variance values 

needs to be chosen carefully. In case the threshold value is high, large changes in variance 

will be tolerated and consequently, the mean and variance values may not be truly reflective 

of the current data distribution pattern. Conversely, choosing a very low threshold value will 

result in frequent updating of the mean and variance. The threshold value can be customized 

according to the type of data attribute being indexed and needs to be consistent for all 

occurrences of that attribute. As we shall see in the subsequent sections, this mean-variance 

calculation process is used in the cluster construction process as well as by the PSGs to 

determine if an index update operation is required. 

5.4 Constructing an index based on the mean and variance value 

5.4.1 The index creation process 

The proposed index structure utilizes the mean and variance values calculated within 

each PSG to partition the PSGs into multiple range clusters. The basic idea of the indexing 

process is similar to the previously discussed range clustering scheme. Again, the scope of 

this indexing scheme is within a single semantic cluster within a particular context domain. 

Initially, all the PSGs are assigned to a single cluster when no clusters have been defined. 

This process is continued till the size of the cluster exceeds a system-defined threshold for 

the maximum cluster size which is when the clustering algorithm is invoked. The first step in 

the clustering process consists of the middleware retrieving the current value from every PSG 

within the cluster for the following parameters: the mean-variance intervals ([μ-δ, μ+δ]), the 

data value for the context attribute and a unique identifier. This identifier is assigned by the 
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middleware to the PSG during registration. These values are stored in separate tables and are 

indexed using the identifier. The first step in the clustering process involves the partitioning 

of the PSGs into a set of initial clusters. This step is illustrated in detail in Figure 13.  

In order to identify the initial clusters, the mean-variance intervals are used to 

represent the cluster bounds and the data values falling within a particular mean-variance 

range are assigned to the same cluster. Since these intervals represent the pattern of data 

change within a PSG, they are used as the cluster bounds to ensure that the PSGs with similar 

data distribution patterns are clustered together. As we observed, the previous indexing 

scheme was not able to always reflect the data distribution within a semantic cluster 

accurately. We attempt to address this problem by choosing the mean-variance intervals to 

form the clusters instead of the data values. Also, we try to minimize the index updates 

occurring due to the dynamicity of data by clustering PSGs with similar data change patterns. 

 

      

           Figure 13. The identification of the initial clusters 

 

The main step in the clustering process is as follows – a mean-variance interval is 

selected from the table and a cluster having a range bound equal to this interval is initialized. 

Subsequently, all the PSGs having a data value falling within this range are selected from the 
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data value table and assigned to this cluster. In order to increase the efficiency of this 

operation, the interval table is sorted in decreasing order of the interval sizes. Since the larger 

sized intervals are expected to accommodate more values, the use of the sorted list can lead 

to a faster matching of the data values to the corresponding clusters. Similarly, the table 

containing the data values is sorted in increasing order so that the subset of the table that 

needs to be checked against a given interval can be easily identified. Once a data value is 

assigned to a cluster, the identifier is used to delete the corresponding entries from both the 

tables so that these entries are not considered during further iterations. This process is 

continued until both the tables are empty. If the only data value falling within a particular 

interval is found to be the one corresponding to the same PSG, the PSG is added to a separate 

list denoted as the single member cluster list. This case is illustrated in Figure 13 using the 

PSG with identifier ‘ID46’. 

After the initial clusters have been identified, the next step involves the generation of 

the final range clusters. Since there can be a large number of small sized clusters generated 

during the initial phase, some of these clusters are merged to keep the total number of 

clusters low. After the initial clusters have been identified, they are arranged in order of their 

cluster bounds. The final cluster generation process is described in Figure 14.  

 

        

Figure 14. The generation of the final clusters 
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The figure shows a sample set of initial clusters and single member clusters obtained 

from the first round of clustering. The first step in the cluster generation process is to identify 

the clusters for merging from the initial cluster list. A cluster is merged with its adjacent one 

only if the following two conditions are satisfied – both the size of the cluster being merged 

as well the size of the cluster after merging stay below 50% of the maximum cluster size. 

This heuristic is utilized to keep the clusters lightly loaded and minimize the chance of a 

subsequent cluster split. After the final clusters are generated, the extent of the merged 

cluster bounds will increase and some of the PSGs in the single member cluster list can be 

allotted to the generated clusters. If the single member cluster list still contains some 

members after this operation, these indicate data values that cannot be assigned to any of the 

clusters. In a typical clustering scenario, these values would be considered as outliers. 

However, as they still represent valid values in our case that cannot be discarded, we need to 

make provisions to account for these values as well. In order to handle these values, we 

designate a special cluster known as an outlier cluster which is used to store the values that 

cannot be currently assigned to any of the existing clusters. After all the clusters have been 

finalized, the corresponding PSGs register with their allotted clusters and each of these 

clusters forms a separate P2P network.  

5.4.2 Analyzing the clustering process 

The main step in the clustering process involves the assignment of the data values to 

the mean-variance ranges and generating the initial set of clusters. An iteration of the initial 

cluster identification process picks the first range from the mean-variance range table and 

assigns matching data values to it from the data value table until a mismatch occurs. The 

matching entries are removed from the corresponding tables and the next iteration is initiated. 

Thus, the size of the table keeps decreasing after each iteration. Since the data value table is 

sorted in increasing order, a variation of binary search can be used to find the starting point in 

the table to initiate the matching process. Since the performance of the algorithm depends on 

the number of matches happening in an iteration, we assume this parameter to be a fixed 

constant for our analysis purpose. We fix the number of values matched during each iteration 

as n and assume it to be a finite multiple of the total size of the data value table N. In other 

words, we fix N = k . n where k is an arbitrary constant. The running time for the first 

iteration can now be written as log N + n where the first term refers to the time to locate the 
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starting point for the match and the second term refers to the comparison operations needed 

to assign the n values to the cluster. Since the table sizes change after each iteration the total 

running time can be written as 

 

(log N + n) + (log (N-n) + n) + (log (N-2n) + n) + …. + (log (n) + n) 

=  log N + log (N-n) + … + log n + k . n 

=  log n + log 2n + log 3n + … + log kn + k . n (Replacing N by k.n) 

=  log (k! . nk ) + k . n 

=  log k! + k log n + k . n  

 

The final running time can be taken to be the order of log k! assuming k > n. Since 

log k! is known to have a tight bound of k log k, we can infer that the  runtime complexity of 

the clustering process is θ ((N/n) log (N/n)) by replacing k with (N/n). In reality, the 

complexity depends on the values matched during each iteration. Although we considered 

this number to be a fixed constant for our analysis, this can vary during an actual execution 

of the clustering process. The worst case scenario for the clustering process occurs when 

each value in the mean-variance range table matches only a single value in the data value 

table where both these values correspond to the same PSG. In this case, the value of n is 1and 

the total running time can be written as log N + log (N – 1) + … + log1 which can be 

simplified to log (N!).  Based on the previous analysis, the runtime complexity for the worst 

case scenario can be taken to be θ (N log N) and the running time in this case is dependent on 

the size of the data value table. 

5.4.3 Index maintenance operations 

In order to maintain the index structure, the following information needs to be stored 

in the middleware – a list of the current range clusters with their range bounds and the list of 

members present in each range cluster. This information is maintained and updated at the 

corresponding context domain gateways (CDG). After the initial clusters have been 

identified, subsequent PSGs are assigned to a cluster depending on their attribute values and 

the current range clusters. Since there can be an overlap between the cluster bounds, it may 

be possible to assign a PSG to multiple clusters. In this case, the PSG is assigned to the 

cluster with the lower membership size. If a PSG cannot be assigned to any existing cluster, 
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it is assigned to the outlier cluster. The outlier cluster is similar to a normal range cluster but 

does not have any fixed range bounds. 

 Whenever the membership size of a cluster or an outlier cluster exceeds the 

maximum size threshold, the clustering process is invoked within that cluster and a new set 

of range clusters is generated. Similar to the indexing scheme discussed in Chapter 3, this 

process ensures that the index structure adapts itself as PSGs join and leave the system. The 

clustering process is slightly modified when invoked on the outlier cluster. Since the outlier 

cluster has no range bounds, PSGs assigned to an outlier cluster will remain there is no way 

to detect an inconsistency between their current data value and the cluster bounds. As context 

data is dynamic, there is a possibility that a member of the outlier cluster can be later 

assigned to an existing cluster. Hence, we perform this check prior to the initiation of the 

clustering process and assign a PSG to an existing cluster whenever possible. Even though 

the initial cluster bounds may not be very fine-grained, the clustering performance is 

expected to improve as more data values are received. Similar to the previous scheme, 

clusters with low membership sizes are merged to keep the number of clusters low and 

clusters with no members are removed from the system.  

After a PSG has been assigned to a cluster, it is possible for it to move to a different 

cluster if its data pattern changes. The mean-variance calculation process is utilized to make 

the decision of switching to a different cluster instead of an arbitrary periodic checking. In 

case a large change in the variance value is detected, this is taken to be indicative of the fact 

that the data pattern is changing. Subsequently, a PSG checks if a cluster update operation is 

needed. If the data change pattern is gradual, such large shifts in variance will be infrequent. 

It needs to be noted here that depending on the range cluster bounds, even a large shift in the 

variance values may not necessitate the movement of a PSG to another cluster. As long as 

there are no updates required to the mean-variance values or the variance change is within 

the threshold, we assume that the PSG is still within the correct range cluster. This is a 

reasonable assumption as the clustering process is carried out based on the mean-variance 

values. This is again an improvement as compared to the previous range clustering scheme 

which could result in query inaccuracies due to a mismatch between the data value of a PSG 

and its range cluster bounds. 
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5.4.4 Handling the special cases during the cluster creation process 

As we saw in the previous section, the first phase of the clustering process involves 

the identification of the initial clusters. The subsequent step of generating the final clusters is 

based on the assumption that the first phase generates at least two separate clusters. However, 

depending on the data values, this may not always be possible. One of the possible scenarios 

is that either all or a large percentage of the data values are assigned to a single cluster. 

Conversely, the second scenario refers to the case when the majority of the data values are 

part of the single member cluster list. We briefly discuss the process of handling these two 

special cases in this section. The first scenario occurs when the first mean-variance interval 

selected as part of the clustering process is capable of accommodating a large percentage of 

the data values. This can happen due to two reasons – either all the PSGs within the cluster 

have very similar data distribution patterns or the size of the selected interval is extremely 

large. In this case, we restart the clustering process and select a different interval with a lower 

interval size to begin the clustering. This new interval is usually selected from the middle of 

the interval table and promoted to be the first value of the interval table. The previously 

selected interval is assigned to the single member cluster list. The rest of the clustering 

process is carried out as usual. However, if the use of the new interval also leads to the 

formation of a single cluster, we utilize our previously discussed technique of partitioning the 

sorted list of data values to generate the final clusters.  

Similarly, the second case occurs when the PSGs have rather varying data distribution 

patterns and most of them end up being part of the single member cluster list. In this case, we 

can either use the partitioning of the data values to generate the clusters or assign all the 

PSGs to the outlier cluster. If the partitioning technique is used, the interval size of the cluster 

bounds of the resulting clusters is expected to be large due to the variation in the data 

distribution. However, if we assign all the values to the outlier cluster, it can result in an 

immediate cluster split operation due to the increase in the membership size of the outlier 

cluster. In order to avoid this situation, we choose to use the partitioning technique to 

generate the new clusters.  
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5.5 Context lookup using the index structure 

As discussed previously, the context lookup operation in Coalition is carried out by 

issuing SQL style queries that specify the data to be acquired using range-search conditions. 

Since the query issuer is not expected to know the number of PSGs satisfying the query 

condition, we allow each application to submit the number of answers expected by it for a 

query. When a context lookup query is received by the middleware, the query processor 

parses the query and redirects the query to the appropriate context domain and semantic 

cluster. The query parameters are compared against the range clusters to generate a set of 

candidate clusters that are expected to have the answer. In case the query is not confined in a 

single cluster, the outlier cluster is included as part of the candidate cluster set. As an outlier 

cluster does not have any defined range bounds, it is necessary to include it in the candidate 

cluster list for the sake of completeness. The query processing operation is depicted in detail 

in Figure 12.  

 

 

         Figure 15. Context lookup using the index 
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The processing of a query within a single range cluster is controlled using the number 

of answers received and a system-defined timeout that controls the duration for which a 

query is processed within the cluster. Since the query processing within a single cluster is 

carried out by flooding, the time taken to lookup a query will depend on the cluster size. The 

response time for a query (single attribute) will hence depend on both the number of clusters 

being queried as well as their size. The query is processed by flooding it in every cluster in 

the candidate set. For each cluster, the number of expected answers is compared with the 

cluster size and the number of answers received is compared with the lesser of the two 

values. This ensures that the number of answers to be searched within a cluster takes the 

current cluster size into account. This operation is then repeated in the next cluster in the 

candidate cluster list with all the parameters suitably updated as observed in Figure 15. The 

context lookup operation terminates either when all the requested number of answers have 

been received or when the timeout value expires for the last cluster in the candidate cluster 

list. The answers for a query can either be returned to the query issuer directly or to the query 

processor. Currently, we choose to report all the answers to the query processor component 

which aggregates all the responses and forwards to them the query issuer as per our current 

design.  

As discussed in Section 4.2.3, the set of answers received for a context lookup query 

depends on the number of PSGs that have the valid answer and the PSGs among this set that 

choose to respond to the query. Additionally, the dynamicity of the context data can also 

affect the number of responses received by a query. For example, consider a PSG member of 

a range cluster that is a part of the candidate cluster list for a given query. If this PSG moves 

to another cluster while the query is being propagated in the original cluster, there is a 

possibility that the query will not be received by this PSG. Also, the P2P network 

corresponding to a range cluster will need to be updated when a PSG leaves or joins the 

cluster. In case the leave/join operation is very frequent, the PSGs will be occupied in the 

network updating operation which can also affect the propagation of a query within the 

cluster.  

The frequent leave/join operation will usually be exhibited by PSGs whose data 

distribution pattern can be characterized as bursty or uneven wherein the change in the 

generated data values is not gradual. Rather, these changes happen abruptly and the 
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magnitude of the change is also large. The mean-variance calculation process in such PSGs 

will be characterized by the frequent re-initialization of the queue and the mean/variance 

values. One approach that can be used to minimize the disruptions caused due to such PSGs 

is to assign them to the outlier cluster. Since the outlier cluster is always included as part of 

the candidate cluster set during query processing, the query correctness is maintained. In 

order to give applications an idea about the quality of the received answers, the query 

processor can return the size of the candidate cluster set along with the answers. The 

application can compare these two values to make an informed decision about the received 

answers and determine if the query should be reissued.   

5.6 Experimental analysis  

5.6.1 Experimental setup 

The experimental setup followed here is similar to the one discussed in Section 4.3.1 

which we reiterate here for clarity. The augmented version of the index structure is integrated 

with the prototype of the Coalition middleware which was deployed on a Dell PowerEdge 

T300 server with four 2.83 GHz quad-core Intel Xeon CPU. A set of desktop machines each 

running the Windows XP operating system and having an Intel Core 2 Duo 2.83 GHz CPU is 

used to simulate the PSGs. Since a PSG is designed as a software module, a single desktop 

can be used to simulate multiple instances of the PSG. The maximum and minimum cluster 

size thresholds are fixed at 50 and 10 respectively.  

As discussed in Section 4.3.1, the data values used for testing were derived from the 

Intel lab sensor data set [64] and the same technique discussed therein was utilized to 

generate a set of data files that simulated the set of data values produced at a PSG. We briefly 

reiterate the data file generation process here. Since the test data set contained different types 

of sensor data from 54 sensors, the first step involved the generation of 54 data files for each 

type of data present in the set. The test data files were generated by taking a random sample 

comprising of a fixed number of values from one of the files obtained in the previous step.  

For example, to model a set of temperature values at a PSG, a data file corresponding 

to the temperature attribute was randomly chosen and a fixed number of values was 

randomly selected from that file. The generation of the test data values was carried out in a 

random fashion to minimize the chances of data replication as well as reduce the impact of 
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data correlation on the experimental results. Each of the simulated PSG instances was 

assigned a set of these data values. The process of a PSG periodically receiving a new value 

for a data attribute was simulated by reading these values one by one after a fixed time 

interval. The mean and variance calculations were carried out within each PSG on the set of 

its assigned data values. All the experimental results are represented using a 95% confidence 

interval wherever applicable. 

5.6.2 Query response time 

We conduct the initial set of experiments to measure the performance of the proposed 

index structure with respect to the query response time. The experiments for the query 

response times were carried by varying the network size as well as the valid answer set size. 

The network size refers to the total number of PSGs registered with the middleware whereas 

the valid answer set size refers to the number of PSGs having the valid answer for a 

particular query. The first set of results provide a comparison of the query response times 

achieved using the three organizational schemes – flooding, range clustering and mean-

variance based indexing. The results are illustrated in Figure 16. This set of experiments was 

conducted in a stable system state where a set of PSGs were partitioned into a set of range 

clusters using the different techniques and there was no movement of the PSGs between the 

clusters. Also, the value used to assign the PSGs to the clusters remained constant. In order to 

simulate the mean and variance values required to build the index, a random sample of a 

sequence of data values was taken from the data file associated with the PSG. The mean and 

variance values were calculated over this sample set using the algorithm discussed earlier and 

the last value in the set was taken to be the current data value of the attribute. 

Each PSG instance was assigned a triad of values in the form of [mean, variance, data 

value] which was used for the clustering process. The previously discussed range clustering 

scheme was constructed using the same set of data. The valid answer set size in this case was 

fixed to be 150 and the response time measurements were averaged over 300 query runs. 

Each query issued was a range query with range bounds (A, B) where the bounds were 

randomly chosen from the test data set. The response time of a query is measured as the time 

interval between the issuing of a query from an application and the reception of the results.  
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            Figure 16. Comparison of query response time for the different schemes 

As we can see from the response time measurements, the mean-variance based 

clustering scheme achieves a reduction of 40% to 60% in the response time as compared to 

the flooding approach which is an expected observation due to the classification imposed by 

the indexing scheme. Interestingly, it can also be observed that the mean-variance based 

index scheme fares better than the previously discussed range clustering approach by 

providing a reduction of 10% to 35% in the response time. As discussed in Section 4.3.3, one 

of the drawbacks of the range clustering scheme was that it was not always able to reflect the 

data distribution within a semantic cluster accurately. Since the mean-variance index uses the 

mean-variance range values to classify the PSGs, it can generate a set of clusters that portray 

the data distribution within the semantic cluster more accurately. This in turn enables a faster 

localization of queries thereby leading to a decrease in the query response time. We further 

examined the variation in the query response times by varying the network sizes for a 

particular query window size. The results are illustrated in Figure 17.  
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            Figure 17. Comparison of query response time with different answer set sizes 

The results achieved show that the response time increases with an increase in the 

query window sizes which is expected. Also, the variations observed in the response time to 

search for a fixed number of answers when the network size is increased are quite low. As we 

discussed earlier, the response time for a query depends on the number of range clusters to be 

looked up as well as the size of each of these range clusters. The minimal variations in the 

query response time indicate that the localization performance of the index remains 

consistent with the increase in the network size and it is able to redirect the context query to 

the relevant set of PSGs. These preliminary results highlight the fact that the mean-variance 

based index structure provides a better performance with respect to the query response time 

as compared to the previous range clustering scheme and the change in the response time is 

stable with an increase in the network size. We proceed to discuss the performance of the 

mean-variance index with dynamic data values in the subsequent sections. 

5.6.3 Query response time with dynamic data 

In this section, we examine the system performance when the data values 

corresponding to the PSGs are dynamic. The change in the data values at a PSG is simulated 

by reading a new data value periodically from the data files associated with each PSG 

instance. Each PSG carries out the mean-variance calculation process when a new data value 
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is received and the time interval for the data generation is chosen to be 1 second. We initially 

study the effect of the dynamicity of the context data on the query response time. Figure 18 

compares the response times achieved using a stable system state and a dynamic system 

environment. The results are averaged over 300 query runs where each query is a range query 

of the form (A, B). We vary the number of PSGs that have the valid answers as well as the 

network size. 

 

   

                     (a) Valid answers – 10                                                          (b) Valid answers – 50  

  

                   (c) Valid answers – 100                                                          (d) Valid answers – 150 

             Figure 18. Comparison of query response times for stable and dynamic system states 

The experiment setup is similar to the one described previously with the only 

exception being that the data values within the PSG are dynamic and the PSGs can leave 

their current cluster and join a new cluster. As the results indicate, the response times 
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achieved using both the schemes are mostly comparable and differ by a margin of 2% to 8%. 

In order to understand the implications of this observation, we need to examine the effects of 

the dynamicity of data on the index. Since the context data is not stored in the middleware, 

each change in the underlying data values does not need to be communicated to the index. 

Rather, the updating operation of the index is restricted to the leave/join operations of a PSG 

when its local data value is inconsistent with its assigned cluster bounds. The range cluster 

splitting and merging operations that occur due to the movement of the PSGs are also 

considered as part of the updating operation of the index.  

The update operations of the proposed index structure can affect the query operation 

if they occur in a range cluster when a query is being processed in that cluster. For example, 

if some PSGs leave a range cluster during the query processing, it can result in a set of 

missed answers for the query. Also, the P2P network of the range cluster will need to be 

updated in case of a PSG leave/join which can also result in missed answers. As discussed in 

Section 5.5, we use the number of matching answers found in a particular range cluster as 

one of the factors to limit the query propagation. So, if a PSG(s) leave the cluster during 

query processing, the query processor can keep looking for matching answers based on the 

previous size of the range cluster. Also, depending on the query parameters and the set of 

clusters, a set of missed answers in a cluster can cause the query processor to look for 

answers in other clusters. Both these cases can increase the query response time. So, if the 

frequency of PSGs leaving/joining a range cluster as well as that of cluster split/merge 

operations is low, there will not be a significant impact on the query response time even 

when the underlying data is dynamic. We now study the effect of the variation of the data 

generation frequency in the PSGs on the response time. The data generation frequency refers 

to the periodic interval after which a new data value for an attribute is received by a PSG. In 

this set of experiments, we vary this frequency from 200 ms – 1 second and study the 

response time over different network sizes for a valid answer set size of 100. We also study 

the total number of cluster split/merge operations occurring for a given network size and data 

generation frequency combination. The obtained results are illustrated in Figure 19 and 20.  
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              Figure 19. Variation of query response time with data change frequency 

   

 The main observation from the results is that the query response time is 

higher when the time interval between the generation of successive new data values is 

low. This variation is more noticeable in the larger network sizes. To cite an example, 

for the network size of 1000, the response time achieved with a data change 

frequency of 1 second is around 27% faster than with a frequency of 200 ms.  

 

 

                 Figure 20. Variation of cluster splits/merges with data change frequency 
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Further, as we can observe in Figure 20, the variation in the number of cluster 

split/merge operations along with the data change interval also exhibit a change pattern 

similar to that observed for the query response times. This indicates that the number of 

cluster maintenance operations are higher when the frequency of data change is high (we 

only consider the time interval between the data value change and not the actual magnitude 

of the change) which affect the query response time. A high frequency of data change can 

also result in queries not receiving matching answers from certain PSGs (depending on the 

query parameters) as the local data values at a PSG become outdated very soon which can 

also cause an increase in the query response time. 

Based on the experimental results in this section, we can conclude that the dynamicity 

of the underlying data does not have a significant effect on the index performance with 

respect to the query response time if the data change frequency as well as the number of 

cluster maintenance operations is low. Also, the variations observed in the response time 

with the increase in the network size are also consistent with the results achieved using a 

stable system state. The effect of a high data change frequency on the response time is 

noticeable especially for the larger network size. Since the occurrence of a cluster split/merge 

is linked to the data change happening within a PSG, we can solve this problem by using the 

PSG of a physical space to enforce a uniform and suitable data change frequency for the 

different context sources affiliated with it. The experimental results also indicate that the 

proposed indexing structure is fairly scalable with respect to the query response time for 

small to moderate network sizes even when the underlying data is dynamic. Based on the 

trends observed in the variations of the query response times, we can expect that the changes 

in the query response time when the network size is further increased will be minimal 

provided that the percentage of PSGs having uneven data distributions is low. However, if 

we consider extremely large network sizes associated with wide area network scale 

deployments, the proposed index structure would result in the formation of a large number of 

range clusters. In this case, the maintenance overhead of these clusters can outweigh the 

indexing benefits achieved due to the clustering process. This problem will occur when the 

indexing is applied across the system scope i.e. all PSGs are associated with a single index 
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structure. We shall discuss the possible techniques to avoid this situation and impose 

additional indexing scopes in Chapter 7. 

5.6.4 Index performance with respect to update operations  

One of the primary constraints in designing an index structure for dynamic data is to 

minimize the number of update operations occurring due to the frequent changes in the data. 

The index update in our proposed index comprises of PSGs leaving their current range 

cluster and joining a new one due to the inconsistency of their data values with their assigned 

cluster bounds. In this section, we study the number of update operations occurring in our 

proposed index over a period of time. The experimental setup is as follows – a fixed number 

of PSGs were registered with the Coalition system and observed for the period of 1 hour. 

Each time a PSG leaves a range cluster and joins a new one, it is recorded as a single update 

operation along with the unique identifier of the PSG. We carry out the experiments using the 

temperature, humidity and light attribute values derived from the Intel lab test data set. Since 

the results obtained are comparable, we only illustrate the results corresponding to the 

temperature attribute here for the sake of brevity. In the first set of results we measure the 

number of times each PSG executes an update operation and then group the PSGs according 

to the number of update operations. The results are illustrated in Figure 21 for the different 

network sizes ranging from 400 – 1400 and plot the percentage of PSGs executing a certain 

number of update operations.  

 

 

      (a) Network size 400                                                  (b) Network size 600 
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    (c) Network size 800                                                     (d) Network size 1000 

 

    (e) Network size 1200                                                  (f) Network size 1400 

Figure 21. PSG update operations for different network sizes 

 A clear observation from the results is that a large percentage of PSGs ranging from 

35% to 60% of the total network size do not execute an update operation during the entire 

duration of the experiment and this observation is consistent across all the network sizes. 

This indicates that the index performance with respect to the update operations is fairly 

stable. It can also be observed that a sizeable percentage of PSGs carry out a small number (< 

10) of update operations which is expected given the dynamic nature of the context data. 

However, since the total number of updates executed by a PSG is still low, it highlights the 

capability of the proposed index structure to manage dynamic data and minimize the update 
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operations. The main reason behind this can be attributed to the fact that we utilize the mean-

variance range values to build the index which enables PSGs with similar data change 

patterns to be grouped together. This in turn helps minimize the number of update operations 

as well. The number of update operations is also dependent on the actual pattern of data 

change within the individual PSGs. As can be seen from the figure, there is a very small 

percentage of PSGs that exhibit a very large number of update operations that range between 

100 and 700. These indicate the PSGs which have a very uneven or bursty data distribution 

and the magnitude of data change is large. Since the data distribution pattern is uneven, such 

PSGs keep shifting between the range clusters. As long as such PSGs constitute a small 

percentage of the total network size, their presence will not affect the query processing 

operations with respect to the response time as well as the number of query answers received.  

 We next proceed to analyze the contributions of the cumulative values of the updates 

in a given update range to the total number of update operations observed for a given 

network size. The contribution of a given update range is given by the ratio of the cumulative 

values of the updates in that range to the total number of updates. The results are illustrated 

in Figure 22 and are based on the experimental results obtained for the analysis of the update 

operations.  

 

  

      (a) Network size 400                                                  (b) Network size 600 
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    (c) Network size 800                                                     (d) Network size 1000 

 

    (e) Network size 1200                                                  (f) Network size 1400 

Figure 22. Contribution of cumulative updates in different ranges to the total updates 

 

The results clearly indicate that the cumulative update of the higher valued update 

ranges have a larger contribution to the total number of updates whereas the lower valued 

update ranges have a proportionately lower contribution. As we observed in the previous set 

of results, the number of PSGs belonging to the higher update ranges constitutes a minor 

percentage of the total network size. So, even though the total number of update operations is 

high, the major part of those operations can be attributed to a small percentage of PSGs. We 

have already discussed the impact of the update operations on the query processing if the 
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number of PSGs involved in the updates are high. In this case, since only a small percentage 

of PSGs are involved in the frequent update operations, the effect on the index performance 

will be minimal. The experimental results in this section indicate that the proposed index is 

stable with respect to the update operations of the PSGs and this behavior is consistent across 

network sizes. In a real world deployment, the index performance will depend on the 

dynamicity of the underlying data in each individual PSG. The test data used in this case 

corresponds to a set of environmental sensor data most of which changes rapidly but the 

magnitude of the change is small. If the majority of the data being indexed exhibits this kind 

of behavior, the number of index update operations will be low as is evident from the 

experimental results. This fact also forms the basic assumption behind the design of the 

proposed indexing structure. However, it was also observed from the experimental results 

that there are some PSGs that register a very large number of updates which in turn indicates 

a bursty data distribution pattern. The presence of a large number of PSGs with such bursty 

and uneven data distributions can lead to a degradation in the index performance. In the 

subsequent section, we evaluate the performance of the proposed index structure by varying 

the number of PSGs having uneven data distributions. 

5.6.4 Query accuracy measurement with different PSG compositions  

In this section, we evaluate the proposed index structure with respect to the query 

accuracy which is measured by the number of answers received for a query. For the initial 

part of evaluating the query accuracy, we issue a set of queries having a known number of 

valid answers and then compare the actual answers received. The results are obtained by 

issuing 300 random queries where each query is a range query of the form (A, B) and the 

number of PSGs having the valid answers as well as the network size (the total number of 

PSGs registered with the system) is varied. The number of answers received for each query is 

then measured against the expected answers. For the sake of brevity, we only highlight the 

results for a network size of 1400 in Table 4. The results indicate that the accuracy of the 

proposed index structure is quite satisfactory as a majority of the answers received fall in the 

high accuracy range. However, there are some instances where the query accuracy falls 

below 90% especially where the number of valid answers for a query increases. 
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Table 4. Query accuracy results 

 

 

Since the query is propagated in a P2P network, there are a number of factors that can 

contribute to the missing out of valid answers that include routing errors, message delivery 

failures with UDP or due to query results being received after the timeout which is used to 

control the processing of a query. Also, the PSG update operation as well as the cluster 

maintenance operations can contribute to the missing of valid answers depending on the 

frequency with which they occur.  

We now proceed to investigate the effect on the query accuracy with the variation of 

the number of PSGs having uneven or bursty data distributions for a given network size. As 

discussed in the previous section, the index performance is dependent on the data change 

patterns of the underlying PSGs. The main aim of this study is to introduce a fixed 

percentage of PSGs that exhibit frequent updates in a given network size and study the 

corresponding impact on the index performance especially with respect to the query 

accuracy.  

In order to simulate this set of PSGs, we utilize the results achieved in Section 5.6.3 

where we obtained a list of PSGs for each network size along with their number of update 

operations. We identify the PSGs from this list that register more than 80 updates in one hour 

as the ones having uneven data distribution and use the data files associated with them to 

generate PSGs with uneven data distributions. The creation process of these PSGs is as 

follows – we randomly select a PSG from the ones obtained in the previous step and retrieve 

its corresponding data file. The contents of this file are copied in random order to another 

data file which now represents the data values of a new PSG. The contents are copied in 



86 

 

random order to prevent multiple PSGs from having the exact same sequence of data values. 

For a given network size, we use this technique to create a set of PSGs exhibiting frequent 

updates that vary from 10% to 100% of the total network size. For a given network size and 

percentage of PSGs with frequent update combination, we issue 300 queries with a valid 

answer set size of 100. For each issued query, we register the number of answers received 

and average it over the entire set of query runs. As part of our experiment, we try to focus the 

queries on the range clusters that are more involved in the leave/join operations. The results 

obtained are illustrated in Figure 23. 

 

 

 

           Figure 23. Variation of query accuracy with PSGs having uneven data distribution 

 

We can see from the results that the introduction of PSGs that exhibit frequent update 

operations has a direct effect on the number of answers received for a query which is 

consistent with our observation that this operation affects the query processing operation. 

Also, the depreciation in the performance with respect to the number of answers received 

increases with an increase in the network size as the number of PSGs with uneven data 

distribution also increases proportionately. For a given network size, it is observed that the 

query accuracy performance initially deteriorates when the percentage of the PSGs with 
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uneven data distribution is increased which is expected. However, it is interesting to note that 

the depreciation in the performance is not as drastic as expected with the increase in this 

percentage. On the contrary, the accuracy performance seems to marginally improve as 

compared to the initial cases where the percentage is low. This behavior seems to be 

counterintuitive as we expect the performance to worsen when the number of PSGs 

exhibiting frequent updates is increased. Clearly, the proposed index structure is providing 

some kind of adaptation technique to compensate for the increase in the number of PSGs.  

As we can recall from the index construction process in Section 5.4.1, the cluster 

bounds of the range clusters generated as part of the index are dependent on the data change 

patterns of the underlying PSGs. This observation regarding the range clusters and the cluster 

bounds offers a clue regarding the index performance behavior seen for the larger percentage 

of PSGs with uneven data distributions. In order to understand this phenomenon, we analyze 

the range cluster compositions for the different combinations of network size and PSGs with 

bursty data.  

This study involves repeating the previous experimental setup PSGs, observing the 

clusters formed with regard to their interval sizes and grouping the range clusters according 

to the interval sizes. As discussed in Section 4.2.3, the interval size of a range cluster is the 

difference between the cluster bounds. Figure 24 highlights the variation of the interval sizes 

of the range cluster bounds for different network sizes. 

 

 

    (a) Network size 400                                                       (b) Network size 600 
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    (c) Network size 800                                                       (d) Network size 1000 

 

 

    (e) Network size 1200                                                       (f) Network size 1400 

Figure 24. Variation of range cluster interval sizes for different network sizes 

 

The results indicate that the range clusters with lower interval sizes dominate the total 

cluster composition when the percentage of the PSGs with uneven data distributions is low. 

This behavior is consistent across all the network sizes. However, when this percentage is 

higher, it can be seen that the clusters with the larger interval sizes constitute the bulk of the 

overall cluster composition. In other words, as the percentage of PSGs with uneven data 

distributions increases, there is a corresponding increase in the formation of range clusters 
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with comparatively larger interval sizes. In order to understand the reason behind this 

occurrence, we need to reiterate the details of the range cluster formation. As we observed in 

Section 5.4.1, the cluster bounds of the range clusters are generated using the mean-variance 

ranges of the underlying PSGs and if there are a large number of clusters formed with small 

membership sizes, they are merged to keep the total number of clusters low. The merging of 

two clusters effectively increases the interval size of the resultant cluster.  

When the percentage of PSGs having uneven data distributions is large, the range 

cluster formation is mostly dependent on the mean-variance ranges of these PSGs.  Since the 

mean-variance ranges of such PSGs will usually have a very low interval size, the cluster 

generation process will rely on the merging of the initial clusters formed to generate the final 

clusters which in turn will result in an increase in the interval size of the formed clusters. 

Consequently, the increase in the number of clusters having larger interval sizes will enable 

more values to be accommodated in them which compensates for the increase in the number 

of PSGs with uneven data distributions. However, the depreciation in the query accuracy 

performance is still present. This provides an explanation for the stabilization of the index 

accuracy performance for the larger percentage of the PSGs with uneven data. In reality, a 

case where all the PSGs associated with the middleware have very uneven data distributions 

is unlikely to occur. However, it is interesting to note that our proposed index structure is 

capable of handling such extreme cases and adapts itself according to the data change 

patterns of the underlying PSGs. This indicates that the proposed index structure is equipped 

to manage dynamic context data.  

5.6.5 Index localization performance 

As part of our evaluations of the index structure, we now analyze the localization 

performance of the index. The localization performance is measured by measuring the size of 

the candidate cluster set generated for a query that has a known set of answers. To cite an 

example, consider a query that has 30 valid answers. When the proposed index is used to 

evaluate this query, it identifies three clusters having 10, 20 and 25 members respectively 

that can have the possible answers. In this case, the total size of the candidate cluster set is 

55. This metric gives an idea about the ability of the index to minimize the search space for a 

query. Table 5 gives an overview of the localization performance of the index for different 

combinations of the valid answers for a query and network sizes. Although the actual 
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localization performance will vary in practice depending on the set of values and the ensuing 

range clusters, we highlight these results as an illustrative example. The results indicate that 

the localization performance of the index is reasonably good and the index can significantly 

reduce the search space even when the network size is large. 

Since the candidate cluster set for a given query will always include the outlier cluster 

if the query range bounds are not contained within a single range cluster, it might cause the 

size of the candidate cluster set to be large as compared to the actual number of valid 

answers. However, the inclusion of the outlier cluster in the candidate cluster set is essential 

for the purpose of query completeness. Since the outlier cluster may or may not be queried 

depending upon the actual query parameters as well as the answers received, its inclusion is 

not always expected to have a significant bearing on the query response time.  

Table 5. Index localization performance 

 

 

5.6.6 Time breakdown for clustering process and PSG leave/join operations 

In this section we first analyze the time required to carry out the operations involved 

in the clustering process when a single cluster is split into multiple range clusters as this 

process is the main step required for our index generation. Table 5 shows the time required 
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for the different steps in the clustering process. It is observed that the time required for the 

clustering process is dominated by the re-registration process that assigns all the PSGs to 

their respective range clusters as compared to the cluster generation process. 

Table 6. Time breakdown for clustering process 

 

 

Similar to the case observed with the range clustering scheme, the re- registration of 

PSGs dominates the overall time for the clustering process. If the frequency of the clustering 

process is low, the latency will not affect the overall system performance. However, this 

cannot always be guaranteed and depends on the actual deployment environment, the data 

change patterns of the underlying PSGs and the frequency with which the data changes in 

each registered PSG. For the next part of the evaluation of the performance of the proposed 

index structure, we study the impact of the variations of the data distribution patterns of the 

PSGs on the time taken by a single PSG to complete an update operation. As discussed 

previously, the update operation comprises of a PSG leaving a range cluster and joining a 

new one.  Since the accuracy of the index in terms of the answers received for a query also 

depends on the efficiency of the update operation, it is important to study the variations in the 

same with different network sizes as well as the number of PSGs having uneven data 

distributions. In order to measure the variations in the PSG leave/join times, the experimental 

setup from Section 5.6.4 is repeated and the leave/join times are measured for a given 

network size and percentage of PSGs with uneven data. Since the results obtained across the 

different network sizes are comparable, we highlight the results achieved for a network size 

of 1400 in Figure 25.  
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          Figure 25. Variations of PSG leave/join operation times 

The results indicate that the leave and join times for a PSG shows minimal variations 

with the changes in the data distributions of the underlying PSGs. From the perspective of a 

PSG, these operations just involve the removal of its old neighbors and updating its neighbor 

table with a new set of neighbors. Also, the leave operation happens faster than the join 

because the latter involves the location of a matching cluster and the retrieval of the new 

neighbor information. Based on these results, we can conclude that the time taken for the 

update operation for a single PSG is mostly independent of the data change patterns of the 

PSGs registered with the system. This also indicates that the update operation of a single 

PSG will not have a major impact on the index performance with respect to the query 

accuracy. However, as illustrated in Table 6, the re-registration of multiple PSGs to their 

respective clusters dominates the total time taken for the clustering process. This leads to the 

conclusion that the index performance will vary according to the total number of PSGs 

executing an update operation concurrently.  
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5.7 Summary 

In this chapter, we proposed an improved version of the previously discussed range 

clustering scheme and utilized the mean and variance values of a data attribute to build an 

index structure that can manage dynamic data and support lookups over them. The 

experimental results indicate that the proposed index is able to achieve satisfactory query 

response times over different network sizes and localize queries efficiently. It is also 

observed to be stable with respect to the number of update operations and is able to adapt 

itself to the changes in the data distribution patterns of the underlying PSGs effectively even 

in the extreme cases. The current index structure is designed to handle single valued numeric 

attributes and needs to be suitably extended to support multidimensional data (e.g. location 

coordinates) attributes. Also, the effectiveness of the index structure to partition the data 

values depends on the data change patterns of the underlying PSGs which may vary 

according to attribute type and deployment environment and the use of this index will not be 

effective if all the PSGs have extremely similar data change patterns. Although this index can 

be used to index string attributes by hashing them to a numeric representation, the hashing 

results in the loss of the original string thereby restricting the type of queries that can be 

processed on them. Since context data attributes can be of either string or numeric data types, 

it is important to provide an organizational scheme for strings. This problem is addressed in 

the subsequent chapter that proposes an incremental indexing scheme for strings.  
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CHAPTER 6 

AN INCREMENTAL TREE BASED INDEX 

STRUCTURE FOR STRING CONTEXT DATA 

 

 

This chapter discusses the design and implementation details of our proposed 

indexing scheme for organizing and carrying out lookups over string context data. Since the 

query requirements for string attributes are different than that for numeric attributes, we 

develop a separate indexing mechanism for string attributes. The chapter is organized as 

follows – Section 6.1 discusses the general query requirements for strings as well as the 

index requirements. This section also highlights the constraints that need to be observed 

while designing a string index structure in our middleware system. Section 6.3 discusses the 

details of the construction and maintenance process of the string index structure. The 

experimental results are discussed in Section 6.4. The chapter is summarized in Section 6.5. 
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6.1 Overview 

In Chapter 4 and 5, we discussed a range clustering based index structure and a 

refined version of the same using the mean-variance values that was able to handle the 

problem of managing dynamic context data and supporting lookup requests over it 

satisfactorily. The proposed indexing techniques were primarily designed for numeric 

attributes as they utilized the statistical properties of data to create the index structure. 

However, since context attributes can be of both numeric and string data types, it is important 

to provide a similar organizational scheme for string attributes as well. As we observed in 

Section 2.1, the query requirements vary according to the type of the data being queried and 

the standard query types for strings include exact match, prefix/suffix match, wildcard match 

and range queries. The existing index structure can be used to index strings by converting the 

strings to a numeric representation using a hash function and constructing the index on these 

numbers. In order to preserve the string ordering, lexicographic hash functions can be used as 

these functions create a hashed representation that is consistent with the alphabetical ordering 

of the strings.  

Although this technique is straightforward, the use of a hashing technique can restrict 

the types of queries that can be performed on the strings. Since the hashing process replaces 

the original string value with a numeric representation, only exact string matching queries 

can be supported. In order to address this limitation of the hashing based approach, we need 

to devise an alternative indexing scheme that can support a wider variety of queries on string 

attributes. One of the key challenges involved in the index design is its ability to support the 

different types of query requirements associated with strings effectively. Also, since there is 

no prior knowledge about the set of strings to be indexed, the index will need to adapt itself 

as strings are received and removed corresponding to the movement of the PSGs. We attempt 

to address these issues as effectively as possible as part of our index structure for string 

attributes. 

6.2 String indexing in Coalition – Requirements and constraints 

 The problem of indexing and querying a set of strings has been widely studied in the 

research community and a wide variety of techniques have been proposed to handle this 

problem in different application domains like speech detection, text analysis, image 

comparison, signal processing, data mining, DNA sequence alignment, pattern recognition 
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etc [95-101]. One class of these techniques focuses on finding common and recurring 

patterns between strings in a document according to a particular kind of similarity metric and 

grouping strings that are close according to this metric. The similarity metric is chosen in 

accordance with the application domain for which the string classification technique is 

proposed. Variations of this technique are also utilized in text processing applications to 

search for spelling errors as well as to extrapolate strings from damaged and imperfect 

strings. The idea of the similarity metric is also used for the technique of approximate string 

matching. A separate class of approaches focus on the problem of creating an index structure 

to organize a set of strings stored in a memory space and optimizing the index with respect to 

the storage required for the index as well as the memory accesses needed to query the strings. 

These techniques are usually developed for database systems where the index as well as the 

strings is stored in a disk based memory system. The optimization of the space and memory 

access requirements becomes essential in this case to improve the system performance.  

We now examine the problem of building an index structure for strings from the 

perspective of Coalition along with the associated constraints. Similar to the case with 

numeric attributes, the primary constraint for the index design is the fact that the strings 

themselves are not stored in Coalition. Consequently, the management of the issues regarding 

the storage of the strings in memory and the optimization of the disk access times is not very 

important in this case as compared to a database system. As was the case with the index 

structure for numeric attributes, a string indexing mechanism for organizing the strings in 

Coalition should provide an approximate ordering amongst these strings so that queries can 

be redirected to the relevant PSGs. The final step of the query processing will still be carried 

out in each individual PSG. This requirement again varies from the standard database based 

approach of using a tree structure for organizing strings stored in memory and storing the 

memory locations in the tree nodes. Further, as the Coalition middleware is expected to 

handle a wide variety of strings including names, addresses, locations, preferences etc. it is 

important that the indexing scheme utilized is fairly generic and makes minimal assumptions 

about the type of strings being indexed. 

An important decision that needs to be made prior to the design of the index structure 

is the choice of the similarity metric to be used in order to partition the strings into groups. 

As discussed earlier, the choice of this metric is dependent on the types of strings being 
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indexed as well as the type of queries that need to be processed. The main choice between the 

similarity metrics is the selection of either an exact matching or an approximate matching 

technique. Approximate matching metrics are utilized in applications where the requirement 

is to find strings that may not match exactly but rather match a given pattern approximately. 

We have discussed some of these applications previously that include DNA sequence 

matching, searching for spelling mistakes in a document, identifying imperfect strings from a 

string collection etc. Approximate string matching techniques also require all the strings to be 

present in the memory during the querying process which violates the data storage 

constraints of Coalition. Further, the query requirements for strings in Coalition is slightly 

different than these applications. Since the string attributes are generated and maintained at 

the individual PSGs, it is reasonable to assume that these strings will be mostly error free and 

properly formatted. Thus, the key requirement for a string index structure for the Coalition 

middleware system is to reduce the search space for applications looking for a particular 

string or a set of strings using exact matching queries. These queries can be invoked by 

applications searching for a particular name or a set of names that begin with a given prefix, 

address or preference information contained within a PSG. With this requirement in mind, an 

obvious technique would be to group all PSGs with the same string information in a cluster 

and representing the index as a collection of such clusters. However, as there is no prior 

information about the strings to be indexed, the grouping of strings based on an exact 

matching may not be feasible as it can give rise to a large number of clusters. The other 

alternative in this case is to cluster the strings based on their shared common prefixes as this 

would enable more strings to be grouped together. The use of the prefix to group the strings 

is preferred as it would enable both string and exact matching queries. Since the strings are 

not stored in memory, the length of the prefix that is used to group the strings will need to be 

varied according to the current set of strings being indexed. Also, since PSGs can join and 

leave the Coalition system, the common prefix length will need to be changed accordingly to 

accurately reflect the set of strings contained in the PSGs. In light of these observations, we 

propose an incremental tree based indexing structure constructed using the ideas of radix sort 

and ternary search trees to generate an approximate prefix based ordering amongst the 

strings. The proposed index structure differs from existing string indexing structures in one 
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key aspect – the strings to be indexed are not stored in persistent storage and strings can be 

added as well as removed frequently. 

6.3 Indexing strings incrementally using radix sort and ternary search trees 

6.3.1 Radix sort and Ternary Search Trees 

Since our proposed index structure for strings is designed using radix sort and ternary 

search trees, we provide a brief overview of these two concepts. Radix sort is a sorting 

algorithm primarily used for sorting data with integer keys by grouping keys by the 

individual digits sharing the same significant position and value. The initiation of the radix 

sort procedure is done from the least significant digit position for integer values. Radix sort 

can also be used to sort strings in the lexicographic order by using a most significant digit 

(MSD) version of radix sort. This variation partitions the total set of strings into a set of 

initial buckets according to their first character and then recursively sorts the contents of each 

bucket on the subsequent characters. The final sorted list is generated by listing the bucket 

contents in order. The advantages of the MSD radix sort include the fact that depending on 

the composition of the strings to be sorted, all the key values need not be examined and it can 

be utilized for variable length strings.  

A ternary search tree is a type of prefix tree where the nodes are arranged according 

to a binary search tree arrangement. Each node in a ternary search tree contains a single key 

character and pointers to three child nodes. While inserting a string in an empty ternary 

search tree, all the string characters are inserted in separate nodes and each node is linked to 

its predecessor using the middle node pointer. Subsequent string insertions are done character 

by character and the insertion process is initiated by comparing the first character with the 

root node. If this character is less than the character denoted by the root node, it is inserted as 

a left child of the root and correspondingly, it is inserted as the right child if it is greater. In 

case the characters are the same, the tree is traversed along the middle child and the previous 

process is initiated with the next character of the string. This process is carried out until the 

entire string is inserted. The lookup of a string in the tree can also be carried out similarly. 

Figure 26 provides an example of a ternary search tree constructed from a set of strings.  
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                   Figure 26. Example of ternary search tree 

 

The average case running times of the insertion and the lookup operations of the 

ternary tree run in O (log n) where n is the total tree size. However, if the strings are inserted 

in lexicographic order, the tree is constructed in only one direction thereby giving rise to a 

worst case running time of O (n). Although the concepts of the radix sort and ternary search 

trees are well known and have been used in different application scenarios, we use a 

combination of these two concepts in a novel way to provide an ordering among string 

attributes in our middleware system. 

6.3.2 Creating an index structure for strings 

 As discussed previously, the main aim of the proposed index structure is to provide 

an approximate classification of the strings stored in the PSGs that can be used to redirect 

queries to the relevant PSGs. In the discussion in Section 6.2, we identified a prefix based 

grouping of the strings as a suitable indexing technique for strings in Coalition that satisfied 

the constraints and requirements of the Coalition system. In light of this observation, we use 

the idea of the MSD radix sort to group strings based on their shared prefixes. However, the 

prefix length used to group the strings is not predefined and is adaptively varied according to 

the composition of the strings. Initially, all the PSGs are assigned to a single cluster until the 
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cluster size exceeds the maximum cluster size threshold following which the indexing 

process is initiated. Since no strings are stored in the middleware, the first step involves the 

retrieval of the strings from the corresponding PSGs. Figure 27 illustrates the pseudocode for 

the first step of the indexing process. 

 

 

           Figure 27. Initial indexing step pseudocode 

 

The initial indexing step involves carrying out the MSD radix sort on the set of 

strings retrieved from the corresponding PSGs until we get at least two distinct clusters. 

Compared to the usual radix sort, the objective in our case is to provide a preliminary 

classification of the strings based on the shortest prefix length needed to achieve this 

classification. This step results in a set of clusters each of which represents a set of PSGs 

having strings sharing a common prefix. The common prefixes are taken to be the cluster 

bounds. A radix sort for strings runs in O (nk) time where n is the number of keys and k is 

the average key length. Since we use the radix sort to provide a preliminary classification, we 

may not need to compare all the string characters. In the best case scenario, a single pass of 

the sorting process would suffice to provide this classification which would indicate a 

running time of O (n). The average case running time would depend on the composition of 

the strings being indexed.   

In case a single cluster contains more than 90% of the size of the total string set, we 

carry out another iteration of the radix sort to further divide the members of this cluster. This 

process is continued until a single cluster does not contain more than 90% of the total string 

set size. If the end of a string is encountered during this indexing step, that string is removed 
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from the string set and the corresponding PSG is assigned to a cluster whose cluster bound is 

this particular string. The process of identifying the initial clusters is illustrated in Figure 28 

for two different types of data sets. 

         

 

 

Figure 28. Identifying the initial string clusters 

 

After the initial clusters have been identified, the set of clusters representing the index 

structure need to be generated. Similar to the indexing process discussed for numeric 

attributes, we arrange the initial clusters according to the lexicographic order of their cluster 

bounds. This is followed by the cluster merging process to minimize the total number of 

clusters. Two clusters are merged if and only if their corresponding cluster bounds differ only 

in the last character. This constraint is introduced in order to facilitate the storage of the 
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cluster bounds using the ternary tree. Figure 29 illustrates the process of the generation of the 

final clusters using two different sample set of initial string clusters. 

  

 

 

Figure 29. The string cluster generation process 

The index now comprises of a set of range clusters with the cluster bounds being 

either a single prefix or a prefix range. A cluster having a prefix range as its cluster bounds 

denotes a set of strings whose prefix lies lexicographically between the bounds. For example, 

a cluster with bounds [Ab, Ae] can accommodate strings starting with the following prefixes 

[Ab, Ac, Ad, Ae]. The PSGs corresponding to the strings register with their allotted clusters 

and form the corresponding P2P networks. The proposed index construction technique 

achieves our aim of providing an approximate ordering among the strings while satisfying 

the constraint pertaining to the storage of the attribute values. Also, we do not make any 
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assumptions regarding the length of the prefix used to group the strings. After the initial set 

of clusters has been formed, an organizational structure for the cluster bounds is needed so 

that subsequent insertions and lookups can be carried out efficiently. The cluster bounds are 

organized using a modified version of the ternary search tree that allows both prefixes as well 

as prefix ranges to be stored. A TST node usually contains the key character represented by it 

and the three child pointers. One of the key augmentations that we propose in our version of 

the TST is the ability to store prefix ranges. Figure 30 illustrates our augmented version of 

the standard TST node. The child node pointers are omitted in the figure for clarity.  

 

 

           Figure 30. TST node structure 

We introduce an additional field denoted by cluster bound that stores the key 

character denoting the upper bound of a prefix. Since the prefixes that are part of a prefix 

range differ only in the last character, this field stores the corresponding upper bound. We 

also introduce two additional fields cluster number and external node reference. The first 

field is used to indicate the number of the cluster corresponding to the prefix represented by 

that node and uniquely identify that cluster number. We shall discuss the use of the second 

field in the subsequent sections.  

After the range cluster bounds have been identified, they need to be inserted into the 

TST to generate the index structure. In order to minimize the chances of the tree becoming 

unbalanced due to the insertion of the cluster bounds in sorted order, we insert the cluster 

bounds into the TST in random order. Figure 31 illustrates an example of a TST constructed 

from a sample set of cluster bounds. When the last character corresponding to a cluster bound 

is inserted, the cluster number field is suitably updated. Similarly, the insertion of a cluster 

bound in the form of a prefix range entails the updating of the cluster bound field of the last 

character node. For example, the insertion of the range cluster [Af, Ah] results in the cluster 

bound field of the node corresponding to f being populated with h. As PSGs join and leave 
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the system, this index structure will be updated accordingly. Subsequent PSGs are assigned 

to the correct range cluster according to their local data attribute value using the insertion 

process discussed in Section 6.4.1. This clustering operation is invoked whenever the 

membership size of a range cluster exceeds the maximum size threshold which entails the 

updating of the index structure. We shall discuss the details of this operation in Section 6.4.2.  

 

 

            Figure 31. Creating a TST to organize the cluster bounds 

 

Since the indexing step uses the MSD radix sort, we need to ensure that string 

attributes composed of multiple strings are aligned in the correct order prior to the start of 

indexing. For example, name attributes can either be arranged either in a first name-last name 

or last name-first name format but this ordering has to be consistent throughout all the PSGs 

sharing this attribute. This ordering can be enforced during the PSG registration process by 

having PSGs provide the attribute value in the desired format. Alternatively, the middleware 

can carry out the ordering process after the retrieval of the string attributes from the PSGs 
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prior to the indexing process. The same argument holds true for other string attributes 

composed of multiple strings like location information, address etc.  

6.3.3 Identifying keywords based on longest common prefix 

As we observed in the previous section, the total number of passes of the radix sort 

depends on the string set composition. In the event that the string set comprises of strings 

sharing a long prefix, the sort process will need to make multiple passes to generate the 

clusters. This phenomenon can occur when the string set comprises of a set of names with a 

common first name or a set of addresses in a particular location. The normal usage of the 

radix sort in this case will result in a long prefix being inserted into the TST and subsequent 

queries for strings with that prefix will be evaluated against this prefix chain. In order to 

avoid this issue and prevent the size of the main TST index from becoming too large, we 

propose a longest common prefix (LCP) based keyword identification technique to provide a 

separate organization structure for such strings. 

The usual application of the LCP technique may not always be suitable for our 

intended purpose. For example, considering a set of strings [Amelia, Amanda, Amanda, 

Amanda], the normal LCP of these strings is [Am] which does not achieve our desired aim to 

group all the strings corresponding to [Amanda] separately. As part of our efforts to address 

this issue, we need to devise a technique to adjust the matched prefixes for the best match. 

The idea that we propose for the same is to visualize a string attribute value as a collection of 

individual keywords. To cite an example, a name attribute can be taken as a combination of a 

first name and last name keyword. Similarly, an address/location attribute can be defined as a 

combination of area, locality and street number keywords. Each string attribute can be 

associated with a set of boundary markers (usually in terms of the string length) that indicate 

the end position of each individual keyword within that string 

We can now utilize this idea to determine if a matched prefix satisfies our 

requirement and change the usual LCP calculation technique. Figure 32 illustrates the main 

idea behind our modified LCP calculation technique between two strings A and B. As can be 

observed, we only qualify a LCP match as a valid match if the matching occurs at a keyword 

boundary. Again, the consistency of the ordering of the individual keywords within a given 

string attribute is an important prerequisite that needs to be fulfilled in order for this 



106 

 

technique to work. Further, we currently only support exact string matches while evaluating 

the LCP.  

 

Figure 32. Modified LCP matching process 

The clustering process is now modified to incorporate this technique to identify 

groups of PSGs having strings with long common prefixes. After the first round of radix sort 

is completed, the sizes of the buckets formed are checked. In case a single bucket is found to 

contain more than 90% of the total string set size, the LCP based prefix matching process is 

initiated with the contents of this bucket. The strings in the bucket are sorted in alphabetical 

order prior to the initiation of the matching process. The details of the LCP matching process 

is illustrated in Figure 33.  

The basic idea of the matching process involves comparing the strings to identify the 

LCP as per our modified technique and assigning the corresponding PSGs to the clusters thus 

identified. Since the strings are pre-sorted, each string just needs to be compared to the most 

recently inserted LCP bound. In case a matching like case 3 in Figure 32 occurs, the prefix 

entry is updated to the newly obtained prefix. The running time of the matching process is 

linear and proportional to the total number of strings being compared. After the process is 
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completed, the number of PSGs associated with each of the resulting prefixes is checked and 

a prefix is promoted to a cluster if its size is greater than the minimum cluster size threshold. 

Any strings that remain unassigned after this process are classified according to the normal 

clustering process discussed earlier.  

 

             Figure 33. Clustering PSGs based on modified LCP technique 

 

The outcome of the LCP matching process is a list of long prefix bounds that denote a 

cluster as well as the PSGs associated with each of them. We use a secondary tree structure 

to organize these bounds that we denote as the keyword tree. This tree is a binary search tree 

where each node corresponds to one of the prefixes obtained in the previous step. Each node 

in this tree is assigned a unique cluster number and they follow the usual rules associated 

with the normal string range clusters. Subsequent PSGs that have string attributes with a 

prefix equal to any of the keyword tree nodes are assigned to the corresponding cluster. 

Figure 34 illustrates the organization of the keyword tree. In order to link the keyword tree 

with the main TST index, we utilize the external node reference field of the TST nodes. This 

link is useful as we can explore the two trees simultaneously while carrying out insertion and 

lookup operations.  
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Figure 34. Generating the keyword tree 

 

Whenever a cluster split operation results in the formation of such keyword clusters, 

this field of the node corresponding to the bounds of the cluster being split and add a 

reference to the first. When the size of a cluster corresponding to the keyword tree exceeds 

the maximum size threshold, it is split according to our usual radix sort based clustering 

process. The only difference in this case is since the strings are already known to share a 

common prefix; we start the matching process on the substring of the string beginning after 

the prefix. The resulting TST is attached to the keyword tree node that serves as the root node 

for that TST. Figure 35 highlights the result of a split operation occurring in a keyword tree 

node.  
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                    Figure 35. Splitting of a keyword tree node 

This completes the discussion of the proposed index structure for strings. This index 

uses the standard techniques of radix sort as well as ternary search trees in a novel way to 

provide an adaptive index structure that provides an approximate representation of the string 

composition in a given semantic cluster. The radix sort is used to group the strings according 

to their shared common prefixes using the standard MST sort. However, the sort process is 

not carried out on the entire length of the strings. Rather, the sorting is carried out until the 

minimum prefix length that can be used to group the strings is achieved. This prefix length is 

not predefined and varies according to the set of strings being indexed. Also, in order to keep 

the total number of clusters manageable, we extend the idea of range clusters to string 

attributes as well by merging small sized clusters. The ternary search tree is designed to 

organize the cluster bounds to facilitate the lookup as well as the insertions of subsequent 

cluster bounds. The basic structure of the tree is kept intact but we make certain 

modifications to the tree node structure to represent the range cluster bounds as well as make 

the insertion/deletion of cluster bounds efficient. We also introduce the idea of keyword trees 

to minimize the size of the main tree and link the two trees in order to process string queries 
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efficiently. As discussed previously, this index structure is different from the existing string 

indexing techniques due to the unique constraints and requirements imposed by the Coalition 

system. 

6.4 Index maintenance operations 

6.4.1 Assigning a PSG to a range cluster 

When a PSG registers a string attribute with Coalition, it needs to be assigned to the 

appropriate cluster. The pseudocode for identifying the range cluster for a PSG with a 

particular string attribute is illustrated in Figure 36.  

 

 

        Figure 36. Identifying the range cluster for a given string value 
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The algorithm is based on the standard TST search procedure and involves comparing 

the input string with the existing tree index until there are no more nodes to continue the 

comparison or the string is finished. The comparison is carried out using the normal string 

comparison procedures. Whenever a character is found to match against the key character of 

a node (direct or range), the cluster number (if valid) of the node is added to a stack.  If a 

node contains a reference to a keyword tree node, the string is forwarded to that node where 

it is evaluated in the keyword tree. The PSG is either assigned to a normal range cluster or a 

keyword cluster depending on the matching clusters found.  

Depending on the cluster composition, the string value of a PSG can match multiple 

clusters. In this case, the PSG is assigned to the cluster which has the longest prefix matching 

its string attribute value. The running time of the range cluster identification process depends 

on the size of the TST as well as the keyword tree. The average case time to identify a 

matching cluster is log N + log n where N and n correspond to the size of the TST and the 

keyword tree respectively.  In case there is no matching cluster found, we can utilize the 

previously discussed concept of using an outlier cluster having no fixed range bounds to 

accommodate this value. Similar to the case with numeric attributes, the outlier cluster does 

not have any cluster bounds and is thereby not incorporated into the main index structure. 

The PSGs belonging to the outlier cluster just form a separate P2P network and there is no 

additional overhead required to maintain the same. After the relevant cluster number has 

been identified, the PSG registers with the corresponding P2P network. 

6.4.2 Cluster splitting and merging operations  

The cluster splitting operation is invoked whenever the membership size of a cluster 

exceeds the maximum threshold size and involves the execution of the indexing process 

described in Section 6.3.2 within the members of that cluster. The rationale behind the 

selection of the maximum threshold is same as discussed in Section 4.2.1. This applies to an 

outlier cluster as well. The splitting of a cluster can result in either a set of normal range 

clusters, a set of keyword clusters or a combination of both. After the new clusters have been 

generated, we need to update the index structure accordingly. When a cluster is split, the 

resulting cluster bounds are a more refined version of the original cluster bounds. In light of 

this observation, we do not delete the nodes corresponding to the original cluster bounds 
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from the tree. Rather, we remove the cluster information from those nodes by resetting their 

cluster numbers.  

The newly formed clusters are now assigned a unique cluster number. This operation 

is followed by inserting the new cluster bounds and updating the cluster numbers for all the 

affected cluster bounds. Figure 37 illustrates the updating operation carried out on the TST as 

a result of a cluster split.  

 

 

Figure 37. String cluster split operation 
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In case the splitting of a cluster results in the formation of one or more keyword 

clusters, these clusters are inserted in the keyword tree as described in Section 6.3.3. The 

cluster information corresponding to the node being split is removed from the TST and the 

other cluster numbers are updated accordingly. The TST and the keyword trees are then 

linked using the external reference field of the TST node. We have already discussed the 

splitting operation in a keyword tree node. 

The merge operation is invoked when the size of a particular range cluster falls below 

the minimum cluster size threshold. In this case, the cluster bounds are sorted alphabetically 

to identify the candidate clusters for merging. The usual constraints for the merging process 

discussed in Section 6.3.2 apply. In case a cluster cannot be merged, the members are 

assigned to the outlier cluster and the cluster information is removed from the TST nodes. 

Since a keyword tree is organized as a binary search tree, the members of a node with a low 

membership size are directly assigned to the outlier cluster. In order to update the tree, the 

corresponding node from the keyword tree needs to be deleted. Since the deleting of the node 

will require the keyword tree to be updated, we choose to defer the deletion temporarily and 

instead reset the cluster number of the node to preserve the correctness of the index. The 

keyword tree can be periodically rebuilt to remove the nodes with no members.  

6.4.3 Index update in case of string value change 

Compared to numeric attributes, the handling of changes in string values is different 

as there is no set distribution pattern followed for the changes. The concept of edit distances 

can be used to determine the degree of string change but they are only useful when the whole 

strings are considered as opposed to the prefix based classification followed in our approach. 

Since the index structure uses the prefixes to organize strings into clusters, we can use this 

information to deem whether a PSG needs to move to a different range cluster. The details of 

the index update operation for string attributes is illustrated in Figure 38. When a PSG having 

a string value is associated with a cluster, a copy of the cluster bounds are passed to the PSG. 

Since the PSGs are grouped according to their shared prefixes, subsequent changes in the 

string values need to be checked only against the necessary prefix length. Consequently, each 

PSG maintains a copy of the prefix of length l of its local string value where l is the length of 

its assigned cluster bounds. 
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Figure 38. Cluster update operation for string attributes 

   As can be observed in Figure 38, all further changes in the string value are 

compared against this prefix. Any changes that affect only the characters beyond the 

designated prefix length need not be considered. The different scenarios that can occur as 

part of the index update operation for string values are illustrated in detail in Figure 38. As 

can be observed from case 3 in the figure, one possibility of deferring an index update 

operation is to check if the PSG can be accommodated in its current cluster by extending the 

cluster bounds. Although the cluster bound extension can result in a degradation of the query 

localization performance of the index, the tradeoff achieved is the minimization of the update 

overhead associated with joining and leaving the P2P networks. 

6.5 Processing string queries using the index structure 

6.5.1 Exact and prefix matching queries 

Since the proposed index structure organizes the strings using prefixes, the following 

types of queries can be accurately supported – prefix matching, exact matching and range 

queries. The organizational structure of the index prevents it from addressing wildcard 
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matching queries where no prefix information is present which is a limitation of our index 

structure. In order to satisfy wildcard queries, it is necessary to maintain the full strings in the 

memory which violates one of the primary data storage constraints of the Coalition system.  

The processing of an exact string matching query follows the same procedure used to 

assign a PSG to a range cluster as discussed in Section 6.4.1. Since the index provides only 

an approximate ordering of the string attributes, the query processor locates the range cluster 

corresponding to the longest prefix matching the search string. In case no matching cluster is 

found, the query is redirected to the outlier cluster. The query is now flooded to all the PSG 

members of the cluster and locally evaluated at the PSGs. Although we cannot guarantee that 

a matching answer will be found, we can ensure that if a matching answer(s) exists, it will be 

found in the range cluster(s) located using the search process. 

The second type of queries that can be supported by the index is to find strings 

beginning with a particular prefix. The pseudocode for identifying the candidate clusters for a 

prefix search is illustrated in Figure 39. Based on the composition of the index structure as 

well as the prefix to search for, there can be two distinct cases that can arise during the 

processing of such queries. In the first case, a range cluster (or a keyword cluster) exists with 

a cluster bound that exactly matches the prefix to be searched or has a cluster bound with a 

length less than that of the searched prefix. The second case occurs when the index contains 

range clusters with cluster bounds having a length greater than the prefix to be searched. In 

this case, all the matching clusters need to be added to the candidate list.  

To understand the implications of the second case, consider the following set of range 

clusters in the index [Ab], [Alf] and [Ale] and a prefix search using “Al” as the search key. 

Since there is no range cluster that exactly matches the search key, a simple search would 

yield no matching answers. In order to handle this case, we perform the checking of the 

prefix length and the current character being compared. When the character being compared 

is the last character of the search key and it matches the key character of a node, we carry out 

an inorder traversal of the tree rooted at the middle child of the node and add the cluster 

numbers of all the nodes thus encountered. In the previous example, this check would happen 

when the search reaches the node corresponding to “Al”. 
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                Figure 39. Prefix search process 

The inorder traversal at the middle child would result in the addition of the cluster 

numbers corresponding to [Alf] and [Ale] which satisfies the query conditions. The outlier 

cluster is also included in the cluster list for the sake of completeness. When multiple clusters 

are involved in the query, the query processing is carried out using the technique discussed in 

Section 5.5 that involves the use of the expected answers values and the membership size of 

the range clusters to minimize the response time. 

6.5.2 Range queries 

The third type of queries that can be supported by the index structure comprise of 

range queries. The range query format for strings is usually [Range A, Range B] and the 
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objective of the query is to look for all matching strings that lie lexicographically between 

these two strings. For example, consider a string set [Aaron, Amelia, Bobby, Nicole, Nancy] 

and a range query bound of [Al, Nc]. The matching strings in this case would be [Amelia, 

Bobby, Nicole]. Compared to numeric attributes, the processing of range queries for strings 

is slightly more complicated as it depends on the lengths of the query bounds as well as the 

index composition. The pseudocode for this process is illustrated in Figure 40.  

 

 

Figure 40. Searching for strings greater than a given string 
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The initial step in the range query process involves searching for all the range clusters 

corresponding to strings that are greater than the lower range bound. The search process 

basically involves searching the TST for the lower range bound and doing an inorder 

traversal on the sub-tree rooted at a node from which the query is forwarded to the left child 

node. Due to the organizational structure of the TST, this step ensures that the range clusters 

corresponding to strings greater than the range bound are added to the cluster list. After the 

completion of this step, the range clusters and their cluster bounds thus obtained need to be 

checked against the upper range bound to generate the final cluster list. The straightforward 

way to carry out this operation is to process each range bound individually against the upper 

bound and remove all the non-qualifying entries. 

Alternatively, we can use a symmetric version of the pseudocode in Figure 40 to 

generate a list of the range clusters corresponding to strings that are less than the upper 

bound. An intersection of the two lists can now be carried out to generate the final cluster 

list. The processing of range queries in the keyword tree is carried out in a single pass by 

performing an inorder traversal of the tree and adding all the matching nodes. The processing 

of the range query in the keyword tree has a running time proportional to the size of the 

keyword tree. After the final cluster list has been obtained, the query is forwarded to all the 

PSGs that are the members of the clusters and is processed according to our standard 

procedure discussed in Section 5.5. 

The processing of the range query is the most complicated among the different types 

of queries discussed here as it involves making two passes over the index (search for lower 

bound and upper bound). The running time of a single pass is O (log N) + O (n) where the 

log N factor corresponds to locating the range bound in the TST whereas the inorder 

traversals happening as a result of the search contribute to the linear time where n is the size 

of the sub-tree traversed due to the search. In the worst case scenario, n is equal to the TST 

size (N) when there is a range query that encompasses the entire set of range clusters present 

in the index. Since our proposed index is constructed on a set of shared prefixes and prefix 

ranges, we expect the size of the resulting TST to be smaller than that of one constructed 

over the entire set of strings. This is expected to minimize the impact of the tree size on the 

overall running time. 
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6.6 Experimental results 

6.6.1 Index performance with respect to query response time 

The experimental setup to evaluate the string index is similar to the one discussed in 

Section 5.6.1. The proposed index for strings was developed and integrated with the 

Coalition system. For the first part of our evaluation, we study the index performance with 

respect to the query response time. All the results in this section refer to the query processing 

in a single semantic cluster and in a stable system state. The maximum and minimum cluster 

size thresholds were fixed at 50 and 10 respectively.  All the experimental results are 

represented using a 95% confidence interval wherever applicable. We use a random set of 

names retrieved from the DBLP data set [102] as the input data for the first phase of testing 

and assign each name attribute to a single PSG instance. Similar to our previous experiments, 

the response time is measured as the time interval between the issuing of a query and the 

reception of the answers. Figure 41 illustrates the variation in the response times along with 

the network size achieved for an exact matching query where only a single PSG contains the 

valid answer.  The string to be searched for was randomly selected from the data set. The 

response times are taken as the average of 300 query runs.  

 

 

          Figure 41. Query response time for exact string match 
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As can be observed from the results, the variations in the response time with the 

increase in the network size are minimal which indicates that the index is able to localize 

queries effectively even when the total number of PSGs is large. Since this is a simulation 

based study, the actual response times may vary when a real-world deployment is concerned. 

In that case, there can be an increase in the response time due to the end to end network 

communication delays between the PSGs and the query processor. However, the presence of 

the index will still be useful as the network delays will be confined to a subset of all the 

PSGs present in the system.  

We next examine the index performance for range queries. As discussed in Section 

6.5.2, the processing of range queries involves making multiple passes over the index 

structure and the running time depends on the size of the TST as well as the keyword tree. In 

order to incorporate the keyword tree as part of the experimental run, we incorporate a set of 

names sharing a common first name as part of the data set. The range query evaluation is 

carried out by varying the network size as well as the number of valid answers for a given 

query. The range query bounds are randomly selected from the set of input strings. Figure 42 

illustrates the variation in the query response times for different network sizes and number of 

PSGs with valid answers.  

 

 

Figure 42. Query response times for range queries 
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The results clearly indicate that for a given number of PSGs with valid answers, there 

is an increase in the response time when the network size is increased. This behavior is 

expected as the size of the index increases with the increase in network size. The effect of the 

index size on the processing of range queries has been discussed in Section 6.5.2.However, 

the increase curve is observed to be smooth as opposed to a steep increase. This indicates that 

the index is still able to localize queries effectively even with the increase in the network 

size.  As the index is constructed using a set of prefixes rather than the entire set of strings, 

the increase in the index size is expected to be gradual which compensates for the increase in 

the overall network size.  

The initial results indicate that the index performance is satisfactory with respect to 

the query response time when a stable system state is considered. The variations in the query 

response time along with the increase in the network size are also observed to be gradual. 

Since the formation of the index structure is dependent on the actual set of strings being 

indexed as well as their sequence of insertion, the set of results discussed here are 

representative and intended to highlight the index performance with an average set of test 

data values.  

6.6.2 Index performance with dynamic string data 

As observed in Section 6.4.3, the problem of dealing with dynamic string values is 

challenging as there is no well-defined way to predict the patterns of string data change. 

Nevertheless, we have a provision in our index structure to handle the updates of string 

values. In this section, we evaluate the index with respect to its capability to handle dynamic 

string values. We use the data file based technique discussed in Section 5.6.3 to simulate the 

set of string values generated at a PSG. As part of the evaluation of the index performance 

with dynamic data, two types of data files need to be generated – one representing static data 

and the other representing dynamic data. In order to represent the static data files, we 

randomly select a name from the DBLP data set discussed earlier and populate a file with 

multiple instances (3600) of this name. This data file is associated with a PSG instance and 

represents a PSG with static data. The generation of the dynamic data files is a bit more 

complicated. As we saw in Section 6.4.3, an update operation by a PSG occurs only if the 

string change affects its prefix of length l where l is the length of its currently assigned 

cluster bounds. This observation is utilized while generating the dynamic data files. For the 
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first phase of testing, the dynamicity is introduced by generating a set of strings that share the 

same starting character but may differ in the rest of the string. For example, consider a static 

data file corresponding to the name “Alan”. In order to add dynamicity to this file, we replace 

40% of the total number of entries in this file with other distinct names starting with “A”. 

These names are derived from the DBLP data set as well. The dynamicity is simulated by 

inserting these names into the data file at random positions. This data file can now be 

associated with a PSG instance to represent a PSG with dynamic data. We generate multiple 

such files with different name values and associate them with multiple PSG instances to 

create a randomized data set for testing. 

 The setup for the experiment is as follows – for a given network size, we introduce a 

fixed percentage of PSGs having dynamic data values whereas the remaining have static 

data. The percentage is varied from 10% - 50%. We then proceed to evaluate the query 

response times achieved for a range query with 100 valid answers and compare it with that 

the results achieved for a stable system state. The network size is varied from 800 – 1800 and 

we read a new data value from the file at intervals of 1 second to simulate the change of 

dynamic data. The results are illustrated in Figure 43. The entries corresponding to the 0% of 

dynamic PSGs refer to a stable system state. 

 

 

                 Figure 43. Query response time with dynamic string data – Case 1  
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The results indicate that for a given network size, the variations in the query response 

time with the increase in the percentage of PSGs having dynamic data is minimal especially 

for the lower network sizes as well as when the number of PSGs with dynamic data is low. 

We have already discussed the implications of the dynamicity of data on the query response 

time in detail in Section 5.6.3 where we observed that the frequent leave/join operations as 

well as the occurrence of cluster split/merge operations can cause an increase in the query 

response time. Based on the results obtained, we can infer that the dynamicity of data does 

not cause a major impact on the query response time if the change in data values only affects 

part of the prefix without changing the starting character of the string value.  

For example, if the current classification level for strings starting with “A” is a cluster 

with bounds [A – B], any changes in the string after the first character will not cause an 

update. Further, as observed in Section 6.4.3, updates for string values that differ only in the 

last character with their current cluster bounds can be deferred by extending the cluster 

bounds. This technique is useful when the network size increases and the prefix length used 

to classify strings increases beyond a single character and plays a part in minimizing the 

effect of the data dynamicity on the query response time.  

For the second part of the experiment, we follow the same experimental setup and 

execution process with a different approach in generating the dynamic data files. In this case, 

the dynamicity is introduced by randomly replacing 40% of the total entries in a static data 

files by any randomly selected string. There is no constraint imposed wherein the chosen 

strings should share the same starting character. In other words, each data file representing a 

set of dynamic string data now comprises of truly random string values. The results achieved 

with this data set are illustrated in Figure 44. As can be observed, there is a marked increase 

in the query response time for a given network size when the percentage of PSGs with 

dynamic data increases beyond 30%. This increase is especially noticeable for larger network 

sizes where the corresponding number of PSGs with dynamic data is high. If we consider the 

network sizes of 1400 – 1800, there is a 49% - 52% increase in the response time when the 

percentage of PSGs with dynamic data is increased from 10% to 50%.   
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              Figure 44. Query response time with dynamic string data – Case 2 

 

Since the data change pattern is completely random now and cannot be deferred using 

the techniques discussed in Section 6.4.3, the PSGs exhibit frequent leave/join operations 

which increases the index update overhead thereby affecting the query response time. This 

indicates that the proposed string index structure falls short of handling a large number of 

string values that exhibit very rapid and random changes. Although the chance of occurrence 

of this kind of behavior is rare in reality, we need to provide a fail-safe in case this issue 

arises. A possible approach to handle this issue would be to have each PSG keep track of its 

update frequency i.e. the number of update operations executed by it over the period of time 

elapsed since its initial assignment to a range cluster. If this frequency is observed to be very 

high, the PSG can be shifted to the outlier cluster which can contain the updates due to its 

property of having no fixed cluster bounds. The implementation of this technique to handle 

the update overhead issue is found to resolve the problem for the lower network sizes. 

However, in order to handle this problem for the larger network sizes, we observe that the 

maximum cluster size threshold for the outlier cluster needs to be extended as the number of 

PSGs with random data change patterns increases proportionately and they need to be 

accommodated as part of the outlier cluster.  
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6.6.3 Evaluation of index size and construction times 

In the final part of the evaluation of our proposed index structure, we examine the 

variation in the size of the index along with the increase in network size. The size of our 

proposed index involves the total number of nodes in the TST as well as the keyword tree. As 

we discussed in Section 6.5.2, the processing of range queries is dependent on the size of the 

tree. We highlight the change pattern of the tree size growth using our proposed index 

structure vs a standard TST constructed using the same set of string values used to register to 

Coalition by the PSGs. The strings are derived from the test data set discussed in Section 

6.6.1. The results are illustrated in Figure 45. 

 

   

Figure 45. Variations of tree size with increase in network size 

The figures clearly illustrate that the tree size change using our proposed index 

structure is much more gradual as compared to that of the tree constructed over the entire set 

of strings. The main reason behind this is the fact that we utilize the shortest prefix length 

that can impose an approximate ordering amongst the strings to construct our index. Also, the 

size of our index structure is significantly smaller when the total number of strings being 

indexed is considered. This reinforces our argument that the tree size will not have a 

significant impact on the running time. Again, the tree size depends on multiple factors 

including the set of strings being indexed as well as their insertion order in the tree. We 

believe that unless the string set comprises of exactly similar strings and possesses a 
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reasonable amount of randomness, the index will exhibit a similar string size growth patterns 

as observed here.  

We now proceed to highlight the time measurement breakdown required for the index 

maintenance operations. These include the measurements for the cluster splitting operation as 

well as the keyword identification process. The results are highlighted in Tables 7 – 8. The 

results are consistent with the previously observed time measurement schemes in Chapter 4 

and Chapter 5 wherein the registration of PSGs to their respective range clusters dominates 

the overall time for the clustering process. Again, the frequency of occurrence of the cluster 

maintenance operations will depend on the actual data being indexed, the sequence of 

insertion of the data values as well as the dynamicity of the data. If the indexed data is stable 

and does not exhibit a high degree of dynamism, these operations will not affect the overall 

index performance. 

           Table 7. Time breakdown for cluster splitting 

 

 

           Table 8. Time breakdown for keyword cluster generation 
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6.7 Summary 

In this chapter, we discussed the design of an incremental tree based indexing 

structure for string context attributes. The index was designed using the concepts of radix 

sort and ternary search trees and provided a prefix based classification of the string attributes. 

The main idea was to use the radix sort technique to classify the strings according to the 

prefixes and organizing these prefixes through an augmented version of a ternary search tree. 

Although the use of a prefix based classification technique restricts the type of queries that 

can be supported on string attributes, we choose to use this technique as it satisfies our 

requirement of providing an approximate ordering on string attributes as well as provide a 

generic technique to query different types of context string attributes. The length of the prefix 

used to classify the strings is not predetermined and is chosen according to the string 

compositions. The index structure was designed to be adaptive and modify itself according to 

the movement of the PSGs. We also proposed a LCP based keyword identification technique 

to identify strings having shared long prefixes and provided a separate organizational 

structure for them to keep the size of the main index low. The experimental results indicated 

that the index structure was able to handle queries efficiently over different network sizes as 

well as small amounts of dynamism. Also, the variations in the tree size were observed to be 

slow with respect to the number of strings being indexed. However, it was also observed that 

the index performance suffers when subjected to extremely random dynamic data change 

patterns and we provided a preliminary technique to address the same. Similar to the numeric 

attribute index discussed in Chapter 5, the effectiveness of this index depends on the 

composition of the string data being indexed. As part of our future work in this direction, we 

would like to improve the LCP based keyword matching process to work with imperfect 

strings and reduce the reliance on the existing exact string matching technique. 

  



128 

 

 

CHAPTER 7 

FUTURE WORK AND CONCLUSION 

 

 

In this chapter, we present a future vision for our proposed data management system 

and propose the initial design idea of a multi-level indexing scheme capable of supporting 

queries over different scopes. The chapter is organized as follows – Section 7.1 highlights the 

problems and restrictions with regards to the context lookup operation in the current index 

structure. We also discuss the different options that can be used to augment the existing data 

management system. The initial system design as well as the proposed changes in the 

organizational scheme is discussed in Section 7.2. We also briefly highlight the implications 

on the context lookup operation due to the changes in the index organization. We summarize 

the contributions of this thesis and conclude it in Section 7.3. 
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7.1 Limitations of the proposed context data management system 

In the previous chapters, we have proposed a context data management system that 

provides an incremental indexing scheme for numeric and string attributes as a preliminary 

solution to the problem of carrying out lookups efficiently over context data distributed 

across multiple context spaces (PSGs). These indexing schemes include – a range clustering 

approach to index numeric data, a mean-variance based indexing technique that improves 

upon the range clustering approach to provide an indexing scheme that can manage dynamic 

context data and an incremental radix sort and ternary tree based indexing scheme for string 

context attributes. The basic structure of these index structures comprises of a set of range 

clusters that provide an approximate ordering among the PSGs according to their data values. 

The proposed index structures are capable of handling different types of queries and are 

adaptive to the movements of the PSGs due to the leave/join operations as well as the updates 

occurring due to dynamic data changes. The experimental results also indicate that the index 

structures are able to provide access to the desired context information with reasonable query 

access times and can manage dynamic context data as well (primarily for numeric attributes). 

However, if we consider extremely large scale deployments such as beyond the size of a 

metropolis, the proposed indexing scheme may not be sufficient since it processes all queries 

with a larger search space (to be elaborated in the next paragraph) at a centralized query 

processor Further, the number of range clusters will also increase with an increase in the 

number of PSGs and the maintenance overhead of these clusters can outweigh the indexing 

benefits achieved due to the clusters. 

We discussed the importance of a context-aware system to have the provision to 

support different query scopes in Section 2.1. The survey of the existing context data 

management systems in Section 2.2 revealed the fact that most of them support only a single 

query scope as part of their organizational scheme. Our proposed data management system 

currently supports a context search according to the domain/attribute/range of organization. 

This organizational scheme may not be sufficient (a) when the size of the domain is very 

large, such as the ‘home’ domain on the global scale, and (b) if we wish to support an 

extensive set of context lookup options that can be used by different types of applications.  
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7.2 Selecting additional indexing levels  

Prior to the discussion about the design of the extended version of data management 

scheme, we need to explore the different alternatives that can be used to impose an additional 

ordering amongst the context sources based on the current organizational structure of 

Coalition. As discussed in Section 2.2, using the location of the context sources is a popular 

technique to enforce a selective query scope [29, 45, 48]. For example, a personal shopping 

application might need to retrieve a list of nearby shops that have a certain crowd level. In 

this case, a querying utility that allows filtering by location as well as attribute values will not 

only be useful but more efficient in the presence of a location-based indexing of the context 

attributes Hence, a location based ordering can be considered as one of the potential options 

for an additional indexing level. Hence, a location based ordering can be considered as one of 

the potential options for an additional indexing level.  

Another approach towards providing an additional indexing level by further 

partitioning the context sources of a context domain into sub-domains as follow. For 

example, a shop can be classified into multiple categories like malls, bookstores, grocery 

shops and a home can further be classified as private apartments, landed houses, service 

apartments and so on. A detailed classification of the context domains would enable queries 

requiring information from a particular category of domains to be redirected to the relevant 

and yet smaller set of context sources easily.  

The classification process of a high-level context domain into multiple sub-domains 

is challenging as there can be different classification parameters. For example, shops can be 

classified either on their type (stand-alone, part of shopping center etc) or based on the 

products stocked (bookstores, flower shops etc). These are just two of the possible 

classification techniques. Even if a generic technique to impose an ordering amongst the 

different context domains can be devised, it can result in a large number of sub-domains that 

need to be managed individually. Comparatively, a location based ordering can be carried out 

in a generic manner that is independent of the context domains. However, the imposition of a 

location based ordering may prove restrictive to support system scope queries. As part of our 

future work on the context data management system, we propose an organizational scheme 

that can support selective as well as system scope of queries. 
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7.3 Extending the current data management system 

7.3.1 Overview of the proposed system architecture 

Based on the discussion in the previous section, we propose an extension of our 

indexing scheme that imposes a location based ordering amongst the PSGs along with the 

current indexing technique. The initial system architecture is illustrated in Figure 46. As 

compared to the original Coalition architecture where a single context space manager was 

used to manage all the context domains and their associated PSGs, we use a collection of 

location specific context space manager (LCSM) that perform the same task at a location 

level(s). 

 

 

       Figure 46. Overview of the proposed system architecture 

 

Each of these LCSMs is associated with a set of locations and is responsible for 

managing all the PSGs in those locations. Basically, a LCSM performs the same tasks as the 
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context space manager but over a limited location based subset of the system. These LCSMs 

are managed by a master context space manager that handles the PSG registrations at the 

highest level. This master context space manager also contains a list of all the context 

domains together with the information of the LCSMs associated with them. For example, the 

list can contain an entry for the shop context domain and the contact information of the 

LCSMs having a shop domain associated with them.  To facilitate the location-wise grouping 

of the PSGs, we can partition the deployment area into a grid comprising of individual 

location units. The organization of the location units can be carried out using a space filling 

curve technique like the Hilbert curve [103, 104].  The scale of the location units can be 

chosen in accordance with the deployment area and each LCSM is now associated with a 

location unit. A PSG registering with the middleware now submits its location information 

along with its context schema which is used to redirect the PSG to the corresponding LCSM 

where it is registered with the system in the usual manner.  

. This scheme is useful when an extremely large scale deployment is considered as it 

avoids the management of all the PSGs at a single place. Further, since the set of range 

clusters corresponding to a semantic cluster is now built over PSGs in close physical 

proximity, the link maintenance of the P2P network will be more efficient. Consequently, the 

flooding operation within a single range cluster is also expected to be faster. However, this 

location based organization will affect mobile PSGs as they will need to update their P2P 

links as they move between location areas belonging to different LCSMs. This is an 

important issue that will need to be addressed as part of the design of this scheme.  

7.3.2 Supporting multiple query scopes 

As part of the proposed organizational scheme, the cluster domain/semantic 

cluster/range clusters based classification scheme will now be ported to every LCSM. While 

this approach will be useful in handling location based queries, it will be difficult to handle 

queries that are interested in a range of values irrespective of their location, such as ‘the 

number of homes that are vacant’. Also, as the answers to such queries are now spread across 

the location grid, the query response time can increase. In order to support these queries, we 

need to provide a location independent view of the different value ranges. This objective can 

be partly achieved by using a secondary range indexing consists of interval trees to organize 

the range cluster values from the different locations into a single place. Figure 47 illustrates 
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the basic concept behind this idea. Each LCSM keeps track of its range cluster bounds and 

can update this information with the master context space manager that inserts this 

information into the global interval tree (a separate tree is present for a given context 

domain/semantic cluster combination). Each tree node is augmented to contain the contact 

information of the LCSM being represented by the interval. The indexing for string attributes 

can be similarly supported by maintaining a global ternary search tree composed from the 

corresponding ternary search trees present in each LCSM. 

 

 

                   Figure 47. Using interval trees to support multiple query scopes 

 

This global tree can now be utilized to process location-independent queries. Since 

this tree is composed of the cluster bounds distributed across multiple locations, it will need 

to be updated periodically. Since the range cluster bounds keep changing as PSGs join/leave 

the system, the notification of every update to the global tree may not be feasible due to the 



134 

 

overhead. Some of the update operations can be deferred to minimize this overhead. The 

update corresponding to an existing range cluster split can be deferred as the resulting cluster 

bounds are a fine grained version of the original bounds. Although this results in a loss of the 

localization performance of the global tree, the notification of this update is not essential. On 

the other hand, whenever a cluster split occurs to define the initial clusters or an outlier 

cluster splits, the resulting cluster bounds must be compulsorily updated with the global tree. 

Since these two operations represent the formation of range clusters having cluster bounds 

that were not previously part of the index, they need to be updated with the global tree to 

preserve the correctness of the range cluster composition in a location. A potential issue that 

will need to be resolved is accounting for the outlier clusters. Since outlier clusters do not 

have any fixed range cluster bounds, it will be difficult to account for them in the global tree.  

The query processing operation also needs to be modified with the inclusion of the 

location based organization scheme. As queries can now specify the location constraints 

along with the usual value based constraints, the query plan will need to be modified 

accordingly. If a query does not specify a location constraint, the global interval tree can be 

used to process the query. An interval in the global tree can be checked for its compatibility 

with the specified value constraints and the query can be forwarded to the corresponding 

LCSM for further processing. Location dependent queries can either be directly forwarded to 

the relevant LCSMs or preprocessed using the global tree to identify if there is a matching 

interval in the locations specified. It is intuitive that location independent queries will take a 

longer response time than location specific queries as the former case will entail answers to 

be aggregated from all the location areas and then reported to the query issuer. The current 

query processing model uses the query processor to aggregate all the matching answers. In 

order to speed up the response time for location independent queries, we need to use 

appropriate context data aggregation techniques that can distribute the aggregation process 

and avoid the performance bottleneck of a central aggregation point. 

7.3.3 Directions for future work 

We briefly discussed our vision and initial design plans for the enhanced version of 

the context data management system discussed in Section 7.3.2. We identified the use of 

location as an additional indexing level and proposed the use of interval trees to support 

multiple query scopes. One of the key issues that will need to be addressed as part of the 
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introduction of the location based organization is defining the scale of the location grid and 

ensure that the scale is manageable from a processing standpoint. The selection of the scale 

of the location grid as well as the scale of the individual location units is an important issue 

as they will dictate the density of the PSGs in each location unit. The location grid can be 

either be pre-divided into a set of location units or can be incrementally partitioned 

depending on the number of PSGs in each location. The imposition of a single location grid 

structure to classify PSGs belonging to multiple context domains may not be a very efficient 

solution. For example, considering the deployment area as a city, the distribution of official 

and residential spaces may be quite different from each other and the use of a single location 

grid may lead to a particular domain being unevenly distributed. All these factors should be 

taken into account while designing the location grid based organization. An important 

concern that needs to be taken into account when a large scale deployment is considered is to 

ensure that the system is scalable globally as well as locally [105]. As applications may need 

to work with local as well as remote context information, it becomes essential to ensure that 

the response time incurred in retrieving data from remote PSGs is minimized. The context 

management system discussed in [105] uses a replication and caching based technique to 

store the data of interest near the relevant application. The direct adoption of this strategy 

may not be feasible in our scenario as there is no context data stored in our system. However, 

a variation of this technique can be utilized in this case wherein ranges of values along with 

the set of PSGs possessing them are replicated and stored in the different LCSMs. This 

would give an approximation of the data values of the PSGs and be used to process some of 

the queries locally instead of propagating them to the remote LCSMs. Further, as the location 

based partitioning may cause mobile PSGs to switch rapidly from one LCSM to another, we 

need to ensure that this handover is smooth and causes minimal disruption to the data 

retrieval process. This problem is similar to what the mobile IP protocol is designed to solve. 

However, the main difference here is that a mobile PSG is associated with other mobile PSGs 

in a P2P network corresponding to its participation in the semantic clusters. The movement 

of a mobile PSG between LCSMs will necessitate in the updating of these neighbor links 

which can cause a significant overhead when this updating is frequent. The handling of 

mobile PSGs is an important problem that will need to be addressed by the future work. As 

part of our initial work in this direction, we have developed a callback based mechanism to 
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handle the disruptions occurring in the data transfer process due to mobility [106, 107]. The 

main idea involved in this technique is to represent mobile PSGs using a separate model 

known as the mobile space that distinguish them from other PSGs. Further, the concept of 

callbacks to provide an idea about the availability of a mobile PSG is introduced as a part of 

this technique. Applications can now use these callbacks to monitor the availability of the 

mobile PSGs and handle the disruptions in the data delivery process accordingly. 

Another major part of the future work will be concerned with the improvement of the 

querying functionalities at the lower levels of data acquisition. In this thesis, we have 

proposed the design of an indexing scheme that can handle the management and lookup of 

single valued attributes. However, we need to extend these indexing schemes to be able to 

support the indexing of multi-dimensional attributes. A common example of a multi-

dimensional attribute is the use of (x, y) coordinate pairs to represent the location of a 

moving object. Since these coordinate values cannot be indexed separately from each other, 

we need to provide a technique to organize these attributes. Also, the proposed string 

indexing technique relies on the ability of the PSGs to provide correct and orderly data. As 

part of the future work, this reliance needs to be reduced and the string matching process 

needs to be enhanced to work with imperfect data. Also, the proposed indexing structure 

needs to be augmented with regards to processing multi-attribute queries. The current index 

is designed to handle exact matching and range queries on a single attribute. A 

straightforward way to extend this system to handle multi-attribute queries would be to select 

a single attribute from the set of attributes in the query and forward the query to the PSGs 

that satisfy the constraint specified for that particular attribute. The complete query can now 

be processed individually at each of these PSGs.  In order for this technique to work 

efficiently, prior knowledge of the number of PSGs that satisfy the query constraints for each 

attribute value is required. This information can now be used to select the attribute that has 

the minimal number of matching values and process the query against that attribute to 

minimize the processing time. Since it is difficult to maintain this information in a dynamic 

context-aware system, it is important to consider other sophisticated techniques to resolve 

this issue. This is an important research problem in its own right and is being independently 

addressed as part of our middleware design. As part of the initial research efforts in this 

direction, a distributed binary tree based query processing structure has been proposed [108]. 
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The main idea behind this technique is to convert the query clause into a binary tree wherein 

the root and intermediate nodes refer to the AND/OR operations and the leaf nodes refer to 

the different predicates or attributes. This is followed by translating the query into a binary 

tree of simple queries based on the tree obtained in the first step. The query is now processed 

in this tree in a bottom up manner where the leaf nodes process the query against the 

individual attributes and the results are aggregated at the intermediate nodes until the final 

result is available at the root node. This query processing approach for complex queries also 

improves the data aggregation process by distributing the processing and aggregation tasks 

across multiple nodes instead of the single point centralized aggregation used in the current 

indexing approach. This approach can also be extended to support the processing of queries 

involving PSGs in multiple locations. This also forms an important part of the future work to 

improve the performance of the proposed context data management system. 

7.4 Conclusion 

The paradigm of context-aware computing has been the focus of concentrated 

research efforts for over two decades. The basic idea of context-aware computing to make 

computing processes available anywhere and everywhere might have seemed like a distant 

dream when it was initially proposed. However, the recent emergence of handheld devices 

with powerful processing capabilities as well as the proliferation of internet availability is all 

set to transform this vision into a reality. Consequently, the system requirements to realize an 

efficient context-aware system have also seen a large change over the passage of time. The 

initial small scale lab based deployment model for context-aware systems has given way to 

wide area deployments in real world settings that place additional constraints on the system 

design issues. Further, the identification of context-awareness as an important enabling 

technology for the IoT (Internet of Things) scenario is indicative of the fact that the paradigm 

of context-aware computing is going to be extremely important in the near future. 

In order to provide an abstraction between the context aware applications and the 

underlying context sources, a context-aware middleware is required to mediate the 

application-context source interactions. The essential design requirements for such 

middleware systems include the following – acquire, process and query context information 

from multiple context sources, provide context reasoning and aggregation mechanisms, 

ensure the security and privacy of the context information and provide the necessary 
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programming tools for application developers. Since context-aware applications primarily 

operate by reacting to the changes in context information, the issues related to the 

management and retrieval of context data become essential. Further, the association of 

context-awareness with technologies like the IoT makes the collection and querying of 

context information from multiple sources absolutely essential. The problem of acquiring, 

processing and querying context data is compounded due to the following facts – context 

data can be distributed across multiple context sources, context sources can be mobile, the 

data can have different representation formats, context data is usually dynamic in nature and 

changes frequently and the scope and requirement of a context query may vary according to 

application requirements. The Coalition context-aware middleware system which is being 

developed as part of our ongoing research project is intended to support large scale context-

aware operations and forms the basis for the work carried out in this thesis.    

As managing and querying context data is an important prerequisite for operations 

like context reasoning and aggregation, the presence of an efficient context data management 

system is essential in a context-aware middleware. The main focus of this thesis is to design 

and develop a context data management system capable of managing and supporting lookups 

efficiently over different types of context data. This data management system is developed as 

a component of the Coalition context-aware middleware system. The technical contributions 

of this thesis can be summarized as follows: 

1. Range cluster based indexing to facilitate context lookup – One of the 

primary constraints in designing a lookup mechanism for context data in the 

Coalition system is the fact that no context data is stored in the middleware. In 

order to design an indexing technique that satisfies this constraint, we propose 

a range clustering technique that provides an approximate partitioning of the 

context sources according to their data values at a particular instant of time. 

The basic idea involved in the creation of this index structure is to replace the 

single p2p network used to connect the context sources together by a series of 

p2p networks where each network corresponds to a range of data values. This 

set of range clusters constitute the index structure which can then be used to 

facilitate the context lookup process by redirecting a query to the set of 

relevant clusters. The index structure is equipped with a set of maintenance 
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operations that perform the task of adapting the index according to the 

leave/join operations of the context sources. The experimental analysis carried 

out on the index structure indicates that the lookup time achieved using this 

scheme is significantly better than that achieved using a flooding based 

approach. The variations in the response time observed with the change in the 

network size are also found to be stable. However, the evaluation of the index 

with dynamic data values reveals the fact that it is not well equipped to handle 

this property of data and can lead to a situation where context sources are 

assigned to range clusters that are inconsistent with their current data values. 

2. Indexing dynamic context data using a mean-variance index – The range 

cluster based indexing technique served as the basic blueprint for designing an 

index structure for a system not storing any context information. Since this 

index was not equipped to handle the dynamic nature of context data, we 

developed an augmentation of this index structure by using the mean and 

variance values to construct an index instead of the actual data values. This 

index structure is primarily designed for single value numeric context 

attributes. The main advantage of using the mean and variance values to build 

an index is that they are relatively stable as compared to the actual data value 

that keeps changing. This index structure is also able to represent the data 

distribution more accurately as well as handle the dynamicity of context data 

and minimize the number of update operations. The experimental analysis 

indicates that the index performance is satisfactory with respect to the query 

response time, query localization, accuracy as well as stability towards the 

index update operations. The effect of the dynamicity of the underlying data 

on the query response time is also observed to be minimal. Also, the index is 

observed to be able to adapt itself and manage PSGs with extremely uneven 

data change patterns. This indicates the usability of the index to manage and 

lookup dynamic context data distributed across multiple context sources.  
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3. Incremental tree based index structure for string context data –The mean-

variance based index structure was observed to handle the problem of 

managing dynamic data satisfactorily. However, the use of the index was 

restricted to numeric attributes. In order to facilitate the lookup of string 

context attributes, we proposed the construction of an index structure based on 

the concepts of radix sort and ternary search trees. This index structure 

provided an approximate partitioning on a set of strings based on their shared 

prefixes. The length of the prefix to be matched was not fixed and was chosen 

based on the current composition of the strings in a semantic cluster. In order 

to organize the index structure, a modified version of the ternary search tree 

was proposed. Additionally, a longest prefix matching based keyword 

identification technique was also proposed to identify semantics based 

grouping among strings. The experimental analysis indicated that the index 

structure performs well with respect to the query response time for different 

types of string related queries and is able to provide an ordering among the 

strings effectively. It was also observed that the growth rate of the index 

structure i.e. the change in the size of the ternary search tree was significantly 

less than that observed in the case when all the strings were inserted directly 

into the tree. The performance of the index structure with dynamic string data 

was also examined with respect to two different types of data change patterns 

– keeping the starting character unchanged and the occurrence of random 

strings. The impact on the performance of the index in the first case was 

observed to be minimal. However, the impact was more severe in the second 

case. Although the presence of such a volatile set of dynamic strings is 

unlikely in a real world scenario, we proposed an outlier cluster based 

technique to handle this eventuality. The time required for the maintenance 

operations of the index were also observed to be minimal. This indicated that 

the proposed index structure is able to handle the problem of establishing an 

ordering among string context attributes effectively.  
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The technical contributions of this thesis partly fulfilled our goal of realizing a 

context data management system that is capable of managing context data and supporting 

lookups over them effectively. However, there are some research issues that need to be 

resolved in order to further improve the performance of the proposed data management 

system especially with respect to the support for different types of query scopes. Through 

this thesis, we believe that we have been able to make an important contribution to the field 

of context-aware research especially in the field of context data management and provided a 

future roadmap for the work to be carried out in order to augment the existing data 

management system that will help us realize our long term research objective.  
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