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Abstract. Let f be a real rational function with all critical points on the extended real axis
and of even order. Then:
(1) f carries no invariant line field on the Julia set unless it is doubly covered by an

integral torus endomorphism (a Lattés example); and
(2) f |J (f ) has only finitely many ergodic components.

1. Introduction
In this paper, we study the measurable dynamics of a real rational function f , which
satisfies the following two conditions:
(C1) any critical point c of f is contained in S1 = R̂ = R ∪ {∞};
(C2) any critical point c of f is of even order.

Let F denote the set of all real rational functions satisfying these two conditions.
Our main result is the following theorem.

THEOREM 1. Any f ∈ F carries no invariant line field on the Julia set J (f ) unless it is
a Lattés example.

THEOREM 2. Let f ∈ F . f |J (f ) has only finitely many ergodic components.

It is conjectured that these theorems hold for all rational functions, see [16, 18, 22].
The question in the first main theorem is closely related to the well-known Fatou
conjecture: in the space Ratd of all rational maps (and in the space Polyd of all poly-
nomials) of degree d ≥ 2, hyperbolic ones form an open and dense subset. Our first main
theorem implies the following corollary.

COROLLARY 3. Let f be a real rational map of degree d ≥ 2 for which all critical points
are on the real axis. Suppose that f is structurally stable in the space Ratd . Then f is
hyperbolic.
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Proof of Corollary 3. Since f is structurally stable, the Teichmüller space of f has
dimension 2d − 2. In particular, all the critical points are non-degenerate which implies
that condition (C2) holds. Thus f ∈ F . It follows from Theorem 1 that f carries no
invariant line field on the Julia set. By Theorem 9.4 of [22], f is hyperbolic. ✷

Some progress in the direction of this work had been made by several authors, mostly
on the case that f is a quadratic polynomial. For a non-renormalizable polynomial,
the absence of an invariant line field follows from the work of Yoccoz (see [9]),
while McMullen [20] proved this for infinitely renormalizable quadratic polynomials
which are ‘robust’, including all real ones. McMullen’s method has been refined by
Levin and van Strien [12] who generalized the result to all real unimodal polynomials.
For polynomials with more critical points, the only result, to my knowledge, is in [7, 8],
where the authors prove the absence of invariant line fields for a real polynomial with
only real critical points and such that f is infinitely renormalizable and of bounded type.
The ergodic decomposition was proved by Lyubich [14] for a smooth one-dimensional
dynamics with non-flat critical points and in the category of holomorphic dynamics, by
Prado [25] for a real unimodal polynomial. In the proof of all these results, some kind of
‘bound’ plays a crucial role.

In this paper, Theorems 1 and 2 will be proved using the same method and the real
bounds developed in [26] play a crucial role in our proof.

The main difficulty is to study the measurable dynamics on the part Jc = {z ∈ J (f ) :
ω(z) = ω(c)} for a recurrent critical point c with a minimal ω-limit set. It will be done in
the same outline as in McMullen [20]. If a large real bound exists, then we shall transfer
it to a ‘complex bound’ for a quasi-polynomial-like mapping, as in [12]. In the converse
case, our argument will depend heavily on the essentially bounded geometry of the Cantor
set ω(c). Comparing this work with that in [20], a new ingredient is the fact that the
absence of a large real bound implies that c is ‘uniformly persistently recurrent’ in some
sense, which is also proved in [26].

Let us briefly outline the structure of this paper. Section 2 contains some technical
preliminaries, including some distortion lemmas. In §3, we recall the definition and give
some sufficient condition for the absence of invariant line fields. In §4, the notions of real
box mappings and quasi-polynomial-like mappings are recalled. Section 5 is devoted to
the study of the measurable dynamics on the subset of the Julia set consisting of points
accumulating on a reluctantly recurrent critical point. It turns out that we will only need to
consider the part Jc for a persistently recurrent critical point. In §6, we study the dynamics
of f |Jc when a large bound exists for c. In §7, we shall study the converse case and then
complete the proof of the main theorems.

2. Preliminaries

2.1. Distortion lemmas. We state some well-known distortion lemmas. Let 
(r) =
{z ∈ C : |z| < r} and let 
 = 
(1).

LEMMA 2.1. For any δ > 0 and N ∈ N, there is a constant ε = ε(N, δ) such that the
following holds.
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If h : U → V is a proper map of degree N between two hyperbolic topological
disks U,V , then for any z0 ∈ U , we have h({z ∈ U : dU(z, z0) < ε}) ⊃ {w ∈ V :
dV (h(z0),w) < δ}, where dU and dV are the hyperbolic metric of U and V respectively.

Moreover, ε → 0 as δ→ 0 for a fixed N .

LEMMA 2.2. For any 0 < r < 1 and N ∈ N, there is a constant C = C(r,N) > 1 with
the following property.

If U ⊂ C is a topological disk and h : U → 
 is a proper map of degree≤ N , then for
any component U0 of h−1(
(r)), we have diam(U0)

2/area(U0) ≤ C, where the diameter
and area are measured in the Euclidean metric of U .

LEMMA 2.3. For any δ > 0 and N ∈ N, there is a constant ε = ε(N, δ) > 0 with the
following property.

Let U be a simply connected subset of Ĉ and h : U → 
 be a proper map of degree
≤ N . Let X ⊂ 
 be a measurable set with m(
(1/2) ∩X)/m(
(1/2)) ≤ 1− δ, then for
any component U0 of h−1(
(1/2)), we have m(U0 ∩ h−1(X))/m(U0) ≤ 1 − ε, where m

denotes the Lebesgue measure on Ĉ.

All these lemmas follow easily from the following fact:

{h : 
→ 
; h is holomorphic and proper of degree ≤ d, h(0) = 0}
is a compact set in the topology of uniform convergence on compact sets. We leave the
(easy) proofs of this fact and the lemmas to the readers.

2.2. Real rational functions. Let f be a real rational function satisfying the
condition (C1).

We shall use S1 to denote the extended real line R̂ = R∪ {∞} and use Par(f ), C(f ) to
denote the set of parabolic periodic points and the set of critical points of f , respectively.
All the metrics in this section are the spherical metric on Ĉ. Let P(f ) denote the post-
critical set of f , that is,

P(f ) =
⋃

c∈C(f )

∞⋃
n=1

{f n(c)}.

The map f |S1 : S1 → S1 can be considered as a one-dimensional dynamical system,
which has no wandering interval, due to [19].

PROPOSITION 2.1. Let y ∈ J (f ) ∩ S1 − Par(f ). For any ε > 0, there is a δ > 0 such
that for any interval I ⊂ S1 and any n ∈ N, if f n(I) ⊂ B(y, δ), then |I | ≤ ε.

Proof. Otherwise, there is a positive integer ε0 > 0, and for any k ∈ N, there is an interval
Ik ⊂ S1 with |Ik| ≥ ε0, and a positive integer nk such that

f nk (Ik) ⊂ B(y, 1/k).

After passing to a subsequence, we may assume that there is a non-degenerate interval
I ⊂ Ik for all k. Then, lim infn |f n(I)| = 0. Thus, there is an attracting or parabolic
periodic point p of f , such that supx∈I d(f n(x), f n(p))→ 0 as n→∞.

Since y ∈ ω(x) for all x ∈ I , we have that y is contained in the orbit of p, and so y is
an attracting or parabolic periodic point of f , which is impossible. ✷
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For any critical point c, there is a unique involution τc defined by f (τc(x)) = f (x) on
a neighbourhood Uc in S1. We shall fix for any critical point such a neighbourhood Uc

such that they are pairwise disjoint. An interval I ⊂ S1 is called symmetric if it contains a
critical point, say c and if I ⊂ Uc and τc(I) = I .

For any open interval I ⊂ S1, let ĈI denote the hyperbolic surface Ĉ − (S1 − I).
Let D(I) denote the disk such that D(I) ∩ S1 = I and the boundary ∂D(I) intersects S1

orthogonally. The following is an observation of Sullivan, see [29].

LEMMA 2.4. There is a universal constant θ > 0 such that D(I) = {z ∈ ĈI : d(z, I)
< θ}, where d denotes the hyperbolic distance in ĈI .

PROPOSITION 2.2. Let f ∈ F . Then either of the following holds:

(i) J (f ) = Ĉ and f is ergodic; or
(ii) for a.e. z ∈ J (f ), and any y ∈ ω(z) − Par(f ), there is a recurrent critical point c

such that ω(z) � c and ω(c) � y.

Proof. Let E ⊂ J (f ) be a measurable set of positive measure such that f (E) ⊂ E (mod 0)
and m(Ĉ− E) > 0. Let z ∈ E be an arbitrary Lebesgue density point of E. Let y ∈ ω(z)

be an arbitrary point which is not a parabolic periodic point. We claim that there is some
recurrent critical point c of f such that c ∈ ω(z) and y ∈ ω(c).

First of all, we choose a small positive number ε > 0 so that

(1) for any c ∈ C(f ) which is not recurrent, we have f n(c) �∈ B(c, ε) for any n ∈ N;
and

(2) for any c ∈ C(f )− ω(z), we have f n(z) �∈ B(c, ε) for any n ∈ N.

Let δ > 0 be a small positive number. Let D0 = B(y, δ/2) ⊂ D = B(y, δ) be small
disks centred at y. There exists a sequence of positive integers n1 < n2 < · · · such that
f nk (z) → y as k → ∞. Let Ak (A0

k, respectively) denote the component of f−nk (D)

(f−nk (D0), respectively) containing z.

If f nk : Ak → D has a uniformly bounded degree, then since z is a Lebesgue density
point of E, by Lemmas 2.2 and 2.3, m(D0 − E) = 0. Since E ⊂ J (f ), we then have
D0 ⊂ J (f ). So f n(D0) = Ĉ for some n ∈ N and hence E = Ĉ (mod 0), which is a
contradiction. So after passing to a subsequence we may assume that f nk |Ak has a degree
which tends to infinity as k →∞. For the same reason, we may assume that f nk |A0

k also
has a large degree.

Thus, there are 0 ≤ pk < qk < nk such that f pk (Ak) and f qk (Ak) contain the same
critical point ck and f nk−pk |f pk (Ak) has a uniformly bounded degree. By Lemma 2.1, the
hyperbolic diameter of f pk (A0

k) in f pk (Ak) is uniformly bounded from above. By passing
to a further subsequence, we may assume that ck = c for all k.

If δ was chosen small, then it follows from Proposition 2.1 that max{|f n(Ak) ∩ S1| :
pk ≤ n ≤ nk} < ε. Since the forward orbit of c enters f qk (Ak)∩S1, which is contained in
B(c, ε), it follows from (1) that c is a recurrent critical point. Since f pk (A0

k)∩S1 �= ∅, and

f pk (Ak) ⊂ Ĉf pk (Ak)∩S1 , and since the hyperbolic diameter of f pk (A0
k) in the hyperbolic

surface f pk (Ak) is bounded from above, we have that the spherical diameter of f pk (A0
k)

is less than ε (provided that δ is sufficiently small), which implies that c ∈ ω(z) by (2).
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Since δ can be taken arbitrarily small, the claim follows. The proposition easily follows
from the claim. ✷

Let Cr(f ) ⊂ C(f ) denote the set of non-periodic recurrent critical points. For any
c, d ∈ Cr(f ), we say c ∼ d if ω(c) � d and ω(d) � c. An order is defined on the set of
equivalence classes as follows: [c] ≺ [d] if ω(c) � d but ω(d) �� c. Let

Jc = {z ∈ J (f ) : ω(z) � c but ω(z) �� d for any [d] ≺ [c]}.
It follows from Proposition 2.2 that either J (f ) = Ĉ and f is ergodic or

J (f ) ⊂
⋃

c∈Cr(f )

Jc (mod 0).

3. Invariant line fields
Recall that a line field µ is a measurable Beltrami differential on Ĉ such that |µ| = 1 on a
set E of positive measure and µ vanishes elsewhere. The set E is the support of µ. A line
field is holomorphic on an open set U if µ = φ̄/|φ| a.e. for φ a holomorphic quadratic
differential on U . A line field µ is called (f-)invariant if f ∗(µ) = µ a.e. We say that f
carries an invariant line field on the Julia set if there is an f -invariant line field µ with a
support contained in its Julia set (up to a set of measure zero).

A rational map f is called a Lattés example if it is doubly covered by an integral torus
endomorphism. Such a rational map carries an invariant line field on its Julia set, which
is Ĉ. It is a conjecture that Lattés examples are the only rational maps which carry an
invariant line field on the Julia set, see [18, 22].

It is useful to remember the following, which is Lemma 3.16 in [20].

LEMMA 3.1. Let µ be an f -invariant line field which is holomorphic on a non-empty open
set contained in the Julia set. Then f is a Lattés example.

PROPOSITION 3.1. Let f ∈ F . Assume that f carries an invariant line field µ with
support E ⊂ J (f ). Then either
(i) for a.e. z ∈ E and for any y ∈ ω(z) which is not a parabolic periodic point, there

exists c ∈ Cr(f ) such that c ∈ ω(z) and ω(c) � y; or
(ii) f is a Lattés example.

Proof. Take a Lebesgue density point z of E and let y ∈ ω(z) − Par(f ). If there is no
c ∈ Cr(f ) ∩ ω(z) such that ω(c) � y, then by the same argument as that in the proof
of Proposition 2.2, we will obtain a sequence of proper mappings f nk : Ak → B(y, δ)

for some δ > 0 such that x ∈ Ak and f nk |Ak has a uniformly bounded degree, and
f nk (x)→ y as k →∞. It then easily follows that µ is holomorphic on some non-empty
open set and hence f is doubly covered by an integral torus endomorphism. ✷

We shall give more criteria for the non-existence of invariant line fields. The idea is
taken from [20] and [21]: Uniformly nonlinearity implies the absence of invariant line
fields.
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An invariant line field µ is called almost continuous at a point x if for any ε > 0,

m({z ∈ B(x, r) : |µ(z)− µ(x)| ≥ ε})
m(B(x, r))

→ 0

as r → 0, where µ = µ(z) dz̄/dz on a conformal coordinate around x. Note that the
definition does not depend on the choice of the coordinate.

Given a rational function f , consider the collection H(f ) of all holomorphic maps
h : U → V , where U,V are open sets such that there exist i, j ∈ N such that f i ◦ h = f j

on U . Obviously for any element h : U → V in H(f ), h∗(µ|V ) = µ|U , i.e.

µ(z) = µ(h(z))h′(z)/h′(z) a.e. on U.

PROPOSITION 3.2. Let f be a rational function of degree ≥ 2 and x be a point in J (f ).
If there is a positive constant C > 1 and a positive integer N ≥ 2 and a sequence
hn : Un → Vn of elements of H(f ) with the following properties:
(i) Un, Vn are topological disks and

diam(Un)→ 0, diam(Vn)→ 0

as n→∞;
(ii) hn is a proper map with degree between 2 and N;
(iii) for some u ∈ Un such that h′n(u) = 0 and for v = hn(u) we have

max
z∈∂Un

d(z, u) ≤ Cd(u, ∂Un)

and
max
z∈∂Vn

d(z, v) ≤ Cd(v, ∂Vn);
(iv)

d(Un, x) ≤ C diam(Un), d(Vn, x) ≤ C diam(Vn),

where diam and, d denote the diameter and the distance in the spherical metric
respectively.

Then for any f -invariant line field µ, x �∈ supp(µ) or µ is not almost continuous at x.

Proof. By changing the coordinates using a Möbius transformation, we can assume that
x ∈ C. The conditions in (i), (iii) and (iv) also hold for the Euclidean metric by changing
the constant C. Here, all distances, diameters and areas are measured in the Euclidean
metric on C unless otherwise stated.

Fix any un ∈ Un such that h′n(un) = 0 and let vn = hn(un). Denote by αn and βn the
linear transformation of C such that α′n > 0, β ′n > 0 and

αn(un) = βn(vn) = 0, diam(αnUn) = diam(βnVn) = 1.

Denote Xn = αnUn and Yn = βnVn. And denote by Hn the function βn ◦ hn ◦ α−1
n :

Xn → Yn. By condition (iii), we have

min
z∈∂Xn

|z| ≥ max
z∈∂Xn

|z|/C ≥ 1/(2C),

min
z∈∂Yn

|z| ≥ max
z∈∂Yn

|z|/C ≥ 1/(2C).
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Thus Xn, Yn ⊃ B(0, 1/(2C)). So after passing to a subsequence we may assume that
(Xn, 0)→ (X, 0) and (Yn, 0)→ (Y, 0) as n→∞ in the Caratheodory topology for some
topological disk X,Y and there is a holomorphic function H : (X, 0)→ (Y, 0) such that
for any compact set K in X, Hn|K → H |K uniformly as n→∞.

CLAIM. The function H is not a constant function.

Indeed, since Xn ⊂ B(0, 1), for some δ = δ(C) > 0, in the hyperbolic surface Xn, the
hyperbolic ball BXn(0, δ) is contained in the Euclidean ball B(0, 1/(4C)). By Lemma 2.1,
there is a constant ε > 0 which depends only on C and N , such that Hn(B(0, 1/(4C)))

contains the hyperbolic ball BYn(0, ε) in the hyperbolic surface Yn. Since Yn ⊃
B(0, 1/(2C)), BYn(0, ε) ⊃ B(0, ε′) for some ε′ > 0. For any n ∈ N, let zn ∈ B(0, 1/(4C))

be a point such that |Hn(zn)| = ε′. After passing to a further subsequence, we may assume
that zn → z as n→∞. Thus |H(z)| = ε′. Note H(0) = 0, and hence the claim follows. ✷

Consequently, H is a proper map of degree between 2 and N .
Assume now that |µ(x)| = 1 and that µ is almost continuous at x. Without loss of

generality we can assume that µ(x) = 1. Let us prove that for any δ > 0, we have

m({z ∈ Un : |µ(z)− 1| ≥ δ})
m(Un)

→ 0, (1)

as n→∞.
Let rn = maxz∈Un d(x, z) and sn = d(un, ∂Un). Then rn → 0 as n→∞. Thus, by the

definition of almost continuity, we have

m({z ∈ B(x, rn) : |µ(z)− 1| ≥ δ})
m(B(x, rn))

→ 0.

Note that by (iii) and (iv), we have

m(B(x, rn)) � r2
n � s2

n � m(Un).

Thus, statement (1) holds.
Similarly, we can prove that for any δ > 0,

m({z ∈ Vn : |µ(z)− 1| ≥ δ})
m(Vn)

→ 0, (2)

as n→∞.
Let µn = (α−1

n )∗(µ|Un) be a Beltrami differential on Xn and νn = (β−1
n )∗(µ|Vn) be

a Beltrami differential on Yn. Obviously H ∗n νn = µn. It follows from (1) and (2) that for
any δ > 0

m({z ∈ Xn : |µn(z)− 1| ≥ δ})→ 0, (3)

and
m({z ∈ Yn : |νn(z)− 1| ≥ δ})→ 0, (4)

as n→∞.
Let L be a small Euclidean ball whose closure is contained in X such that H is univalent

on a neighbourhood of L̄. Let η > 0 be a constant such that |H ′(z)| ≥ 2η for any z ∈ L.
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Since Hn|L→ H |L uniformly, we have that for n sufficiently large, Hn|L is univalent and
also |H ′n(z)| ≥ η on L.

By (3) and (4), for any δ > 0, we have

m{z ∈ L : |µn(z)− 1| ≥ δ} → 0

and
m{w ∈ Hn(L) : |νn(z)− 1| ≥ δ} → 0

as n→∞. Note that

m{z ∈ L : |νn(Hn(z))− 1| ≥ δ} ≤ η−2m{w ∈ Hn(L) : |νn(w)− 1| ≥ δ} → 0

as n→∞.
For any δ ∈ (0, 1), let

An(δ) =
{
z ∈ L :

∣∣∣∣H
′
n(z)

H ′n(z)
− 1

∣∣∣∣ ≥ δ

}

as n→∞. For a.e. z ∈ An(δ), we have µn(z) = νn(Hn(z))H ′n(z)/H ′n(z). Thus, for such
a z, either |νn(Hn(z))− 1| > δ/10, or |νn(z)− 1| > δ/10. Thus, we have

m(An(δ))→ 0

as n→∞. Consequently, we have that, for any δ > 0,

m

{
z ∈ L :

∣∣∣∣H
′(z)

H ′(z)
− 1

∣∣∣∣ > δ

}
= 0.

Since δ can be taken to be arbitrarily small, we know that for a.e. z ∈ L, H ′(z) = H ′(z).
But then H ′ is a constant function, and hence it is equal to 0, i.e. H is a constant function,
which is a contradiction. ✷

To construct the family {hn} we usually first construct a sequence of restrictions of
forward iterates of f , then try to pull them back to the neighbourhood of x.

For any annulus A with a finite modulus, we define the core curve of A to be the unique
simple geodesic in A. In other words, if φ : A → {z ∈ C : 1 < |z| < R} is a conformal
map, then the core curve is φ−1({z ∈ C : |z| = √R}). For any topological disk U , and
any compact set K ⊂ U , we use mod(K,U) to denote the supremum of the modulus of an
annulus which is contained in U and surrounds K .

COROLLARY 3.3. Let f be a rational function of degree d ≥ 2 and x be a point in the
Julia set J (f ). If there exists a positive constant δ, a positive integer N ≥ 2, sequences
{sn}, {pn}, {qn} of positive integers, sequences {An}, {Bn} of topological disks with the
following properties:
(i) f sn : An → Bn is a proper map whose degree is between 2 and N;
(ii) diam(Bn)→ 0 as n→∞;
(iii) f pn(x) ∈ An, f

qn(x) ∈ Bn and

mod({f pn(u) : u ∈ An, (f
pn)′(u) = 0} ∪ {f pn+sn(x), f qn(x)}, Bn) > δ;
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(iv) for any n ∈ N, there exists gAn : An → C and gBn : Bn → C such that

f pn ◦ gAn = idAn, gAn (f
p
n (x)) = x

and
f qn ◦ gBn = idBn, gBn (f

qn(x)) = x;
(v) sn →∞, pn →∞, qn →∞ as n→∞;
then for any f -invariant line field µ, µ(x) = 0 or µ is not almost continuous at x.

Proof. By condition (iii) there is an annulus ;n ⊂ Bn surrounding {f pn(u) : u ∈ An,

(f pn)′(u) = 0} ∪ {f pn+sn(x), f qn(x)} such that mod(;n) = δ. Let γn be the core curve
of ;n and B ′n be the topological disk bounded by this curve. There is a constant C(δ) > 1
such that for any b ∈ {f sn(u) : (f sn)′(u) = 0} ∪ {f pn+sn(x), f qn(x)},

max
z∈γn

d(z, b) ≤ C(δ)d(b, γn).

Let A′n be the component of f−sn(B ′n) contained in An. Let Un = gAn A
′
n, Vn = gBn B

′
n and

hn = gBn ◦ f sn ◦ gAn : Un → Vn.

Then {hn : Un → Vn} is a sequence satisfying the hypothesis of Proposition 3.2. ✷

4. Quasi-polynomial-like mappings
In this section, we recall two notions: one is ‘a real box mapping’ which we used in [26];
and the other is ‘a quasi-polynomial-like mapping’, used by Levin and van Strien in [12],
which turns out to be the complex counterpart of the first notion.

Fix an f ∈ F . A (real) maximal chain is a sequence of open intervals {Gi}ni=0 such that
f (Gi) ⊂ Gi+1 and Gi is the maximal interval with this property, for any 0 ≤ i ≤ n − 1.
The order is the number of Gis containing a critical point. If {Gi}ni=0 is a maximal chain
we shall say that G0 is a pull-back of Gn. If Gi does not contain a critical point for any
0 ≤ i ≤ n− 1, then the chain is called monotone and G0 is called a monotone pull-back of
Gn. If Gi does not contain a critical point for any 0 < i < n but G0 contains exactly one,
we shall say that the chain is unimodal, and G0 is a unimodal pull-back of Gn.

Recall that an open interval T is called nice if f n(∂T ) ∩ T = ∅ for any n ∈ N.
Clearly, if G and G′ are two pull-backs of T then either they are disjoint or one is contained
in the other. We call an interval T properly periodic if there is a positive integer s ≥ 1,
such that the interiors of T , f (T ), . . . , f s−1(T ) are pairwise disjoint and f s(T ) ⊂ T ,
f s(∂T ) ⊂ ∂T . In this case s is called the period of T and f s : T → T will be called a
renormalization of f . Let us say that f is renormalizable at c if there is a properly periodic
interval containing c and that f is infinitely renormalizable at c if there are a sequence of
properly periodic intervals {Tn} containing c with periods sn →∞ as n→∞. If f is not
infinitely renormalizable at c, we shall say that f is only finitely renormalizable at c.

Let c ∈ Cr(f ) and let c1, c2, . . . , cb be the critical points in [c]. Let Ii � ci be small
nice intervals, i = 1, 2, . . . , b. Let J j

i , 0 ≤ j < ri + 1 be pairwise disjoint intervals
contained in Ii such that J 0

i � ci , where ri ∈ N ∪ {0,∞}. A mapping

B :
b⋃

i=1

ri⋃
j=0

J
j
i →

b⋃
i=1

Ii (5)
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is called a (real) box mapping (induced by f ) corresponding to c if for each 1 ≤ i ≤ b and
each 0 ≤ j < ri + 1 there is a k(i, j) ∈ {1, 2, . . . , b} and p(i, j) ∈ N with the following
properties:

(B1) B|J j

i = f pi,j |J j

i ;

(B2) there is a maximal chain {Gk}pi,j

k=0 with Gpi,j = Iki,j and G0 = J
j
i , moreover the

chain is unimodal if j = 0 and monotone otherwise;
(B3) J

j
i ∩ orb([c]) �= ∅;

(B4) orb([c]) ∩ Ii ⊂⋃ri
j=0 J

j
i ;

(B5) for any x ∈ orb([c]) ∩ J
j

i , we have f (x), f 2(x), . . . , f pi,j−1(x) �∈⋃b
i=1 Ii .

Remark 4.1. In the language of [26], (5) is a box mapping of type II which is the first return
map to its image.

The following is a natural way to construct box mappings. For any small nice interval
I � c and any c′ ∈ [c], c′ �= c, let I (c′) be the component containing c′ of the domain
of the first return map (of f ) to I . Denote these intervals I (c′) by I2, I3, . . . , Ib and put
I1 = I . For any 2 ≤ i ≤ b let ri = 0 and let J 0

i = Ii . For any x ∈ orb([c]) ∩ I , let J (x)
denote the component of the domain of the first return map to I containing x. Let r1+1 be
the number of these intervals J (x) and let J 0

1 � c, J 1
1 , . . . be these intervals. Finally define

BI : ⋃b
i=1

⋃ri
j=0 J

j
i →

⋃b
i=1 Ii to be the first return map of f to

⋃b
i=1 Ii . We shall call

BI the box mapping associated to I . Note that if ω(c) is a minimal set, then r1 is finite.

Let Vi, be topological disks containing ci , i = 1, 2, . . . , b, such that Vi1 ∩ Vi2 ∩
orb([c]) = ∅ for any 1 ≤ i1 < i2 ≤ b. For each 1 ≤ i ≤ b, let Uj

i be topological
disks contained in Vi , 0 ≤ j < ri + 1, for some ri ∈ N ∪ {0,∞} such that for any
0 ≤ j1 < j2 < ri + 1, we have U

j1
i ∩ U

j2
i ∩ orb([c]) = ∅.

A collection
{
Fi,j : Uj

i →
⋃b

i=1 Vi

∣∣ 1 ≤ i ≤ b, 0 ≤ j < ri + 1
}

is called a quasi-
polynomial-like mapping (induced by f ) corresponding to c if the following holds. For any
1 ≤ i ≤ b and any 0 ≤ j < ri + 1, we have 1 ≤ ki,j ≤ b and pi,j ∈ N, such that:

(H1) Fi,j = f pi,j |Uj
i ;

(H2) Fi,j (U
j
i ) = Vki,j and the map Fi,j is a branched covering with a unique critical point

ci for j = 0 and is conformal otherwise;
(H3) for any 1 ≤ i ≤ b and 0 ≤ j < ri + 1, orb([c])∩ U

j

i �= ∅;

(H4) for any 1 ≤ i ≤ b, we have orb([c])∩ Vi ⊂ orb([c]) ∩ (⋃ri
j=0 U

j

i

)
;

(H5) for any 1 ≤ i ≤ b and 0 ≤ j < ri + 1 and any x ∈ orb([c])∩U
j
i , if Fi,j = f p, then

f (x), f 2(x), . . . , f p−1(x) �∈ ⋃b
i=1 Vi .

Remark. Quasi-polynomial-like mappings are not mappings in the classical sense.
They naturally appear as appropriate holomorphic extensions of real box mappings.
We allow intersection of these domains Uj

i in order to obtain an advantage in constructing
extensions. Note that we even allow the real traces of U

j

i to intersect each other, which
was excluded in [12].
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A quasi-polynomial-like mapping F = {Fi,j } determines a map

F :
⋃
i,j

(
U

j
i −

⋃
(i′,j ′) �=(i,j)

U
j ′
i′

)
→

⋃
i

Vi

in a natural way. Let K(F) be the set of points z such that Fn(z) is well defined for any
n ∈ N. We shall call K(F) the Julia set of {Fi,j }, which is always a measurable set. By the
definition, orb([c])∩ ( ⋃

i Vi

)
belongs to the set K(F).

For any x ∈ K(F), and any n ≥ 0, there is a unique (in, jn) such that Fn(x) ∈ U
jn
in

.
So for any topological disk Fn(x) ∈ A ⊂ Vin , we can consider the pull-back of A
under F along the orbit x, F (x), . . . , F n(x), which is defined to be the topological disk P

containing x, such that Fim−1,jm−1 ◦ Fim−2,jm−2 ◦ · · · ◦ Fi0,j0(P ) ⊂ U
jm
im

for all 0 ≤ m < n

and Fin−1,jn−1 ◦Fin−2,jn−2 ◦ · · ·◦Fi0,j0(P ) = A. Note that such a topological disk P always
exists. We shall write P = Compx(F, n,A) and sometimes we will use Fn : P → A to
denote the map Fin−1,jn−1 ◦ · · · ◦ Fi0,j0 |P . Similarly, we shall use V (F, x) to denote the

topological disk Vi containing x, and U(F, x) the topological disk U
j
i containing x. We

shall sometimes omit the quasi-polynomial-like mapping F in these notations, provided
that it is clear from the context which F is referred to.

LEMMA 4.1. If 0 ≤ m < n are two integers and x ∈ K(F), then we have

Compx(n, V (Fn(x))) ⊂ Compx(m, V (Fm(x))).

Given a real box mapping as in (5), we can construct a quasi-polynomial-like mapping
in the following way. For any 1 ≤ i ≤ b, let Vi = ĈIi . For any 0 ≤ j < ri + 1, let Uj

i be

the component of f−pi,j (Vi) containing J
j

i , where pi,j is as in (B1). Let Fi,j = f pi,j |Uj

i .
Then {Fi,j } is a quasi-polynomial-like mapping. This construction can always be done but
the extended map may not possess any geometric property.

5. The measurable dynamics of f |Jc for a recurrent critical point c with a non-minimal
ω-limit set

The purpose of this section is to consider the dynamics of f |Jc for a recurrent critical point
c such that ω(c) is not minimal. (Jc is defined at the end of §2.) The result is as follows.

THEOREM 5.1. Let f ∈ F , and c ∈ Cr(f ) be such that ω(c) is not minimal. Then
(i) m(Jc) = 0 or J (f ) = Ĉ and f is ergodic; and
(ii) f carries no invariant line field on Jc.

We shall use the real bound developed in [26] to construct a quasi-polynomial-like
mapping corresponding to c. Theorem 5.1 will be shown by a combinatorial argument.

The following is Proposition 6.2 in [26].

PROPOSITION 5.2. For any ρ > 0 and any ε > 0, there is a real box mapping
B : ⋃b

i=1
⋃ri

j=0 J
j
i →

⋃b
i=1 Ii corresponding to c such that maxbi=1 |Ii | ≤ ε; and for

any 1 ≤ i ≤ b, there exists a symmetric interval Ti containing the ρ-neighbourhood of Ii ,
with the following properties:

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 03 Jun 2009 IP address: 137.205.202.8

968 W. Shen

(i) if B|J j
i = f p and B(J

j
i ) ⊂ Ik , then the maximal chain {Gn}pn=1 with Gp = Tk and

G1 ⊃ f (J
j
i ) is a monotone chain; and

(ii) if G0 is the component of f−1(G1) containing J
j

i , then J
j

i ⊂ Ti; moreover,

(iii) if J j

i �= Ii , then G0 ⊂ Ii .

COROLLARY 5.3. There is a quasi-polynomial-like mapping F = {
F

j
i : U

j
i →⋃b

i=1 Vi

∣∣ 1 ≤ i ≤ b, 0 ≤ j < ri + 1
}

corresponding to c, such that
∑b

i=1 ri = ∞
and for some C > 0 and N ∈ N, we have:

(i) for each 1 ≤ i ≤ b, there is a topological disk Wi ⊃⊃ Vi , such that mod(Wi − Vi)

≥ C;
(ii) for any 1 ≤ i ≤ b and 0 ≤ j < ri +1, if Fi,j = f pi,j and Fi,j (U

j
i ) = Vk , then there

is a topological disk X
j
i ⊃ U

j
i such that f pi,j : Xj

i → Wk is a proper map of degree

≤ N . Moreover, if Uj
i �= Vi , then X

j
i ⊂ Vi .

Proof. Let B : ⋃b
i=1

⋃ri
j=0 J

j

i → ⋃b
i=1 Ii be a real box mapping satisfying the

requirements in Proposition 5.2 for a large ρ and small ε. Since ω(c) is not minimal,∑
i ri = ∞ if ε is sufficiently small. We shall extend this box mapping to a quasi-

polynomial-like mapping. To fix the notation, we assume that J 0
i = Ii if and only if

b′ + 1 ≤ i ≤ b for some 1 ≤ i ≤ b′. By possibly interchanging the indices, we can always
assume this to be so. For each 1 ≤ i ≤ b, let Si ⊃ Ii be the symmetric interval such
that Ti is the ρ/2-neighbourhood of Si and let Wi = D(Si). For any 1 ≤ i ≤ b′, define
Vi = D(Ii).

For any b′+1 ≤ i ≤ b, let s = si be the minimal positive integer such that Bsi (Ii ) ⊂ Ii′
for some 1 ≤ i ′ ≤ b′. Such a positive integer always exists and is no more than b − b′.
If Bsi |Ii = f ki |Ii , then let Vi be the component of f−ki (D(Ii′ )) containing Ii . Let Ṽi ⊃ Vi

be a component of f−ki (D(Ti′ )), then f ki : Ṽi → DTi′ is a proper map of degree uniformly
bounded from above. Since Vi′ has a small diameter in the hyperbolic Riemann surfaceWi′ ,
Vi has a small diameter in the hyperbolic Riemann surface Ṽi . Thus Vi is compactly
contained in Wi and the annulus Wi − Vi has a large modulus.

For any 1 ≤ i ≤ b and 0 ≤ j < ri + 1, let m = m(i, j) be such that B(J
j

i ) ⊂ Im and

let Uj

i (Xj

i , Y j

i , respectively) be the component of f−pi,j (Vm) (f−pi,j (Wm), f−pi,j (ĈTm),

respectively) containing J
j
i , where pi,j ∈ N is such that B|J j

i = f pi,j |J j
i . Then f pi,j :

Y
j
i → ĈTm is a proper map of a degree uniformly bounded from above. Since Wm has

a small diameter in the hyperbolic Riemann surface ĈTm , by Lemma 2.1, Xj
i has a small

diameter in the hyperbolic Riemann surface Y
j
i . Thus Xj

i ⊂ Vi if 1 ≤ i ≤ b′, since in that

case, the real trace of Y j

i is contained in Ii .

Define Fi,j |Uj
i = f pi,j |Uj

i . Then {Fi,j } becomes a quasi-polynomial-like mapping as
desired. ✷

PROPOSITION 5.4. Assume that ω(c) is not minimal. Then for some N ∈ N, and for any
x ∈ Jc, there are some d ∈ [c] and some neighbourhoodsU ⊂⊂ U ′ of d with the following
property: for infinitely many positive integers n, there is a neighbourhood P of x such that
f n : P → U ′ is a proper map of degree ≤ N , and f n(x) ∈ U .
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Proof. Let F = {
Fi,j : Uj

i →
⋃b

i=1 Vi

∣∣ 1 ≤ i ≤ b, 0 ≤ j < ri + 1
}

be the quasi-
polynomial-like mapping as in the previous proposition. The real trace of F is a real box
mapping. Let pi,j , ki,j ∈ N be such that Fi,j = f pi,j |Uj

i , Fi,j (U
j
i ) ⊂ Vki,j . We may

assume that r1 = ∞ and that for some 1 ≤ b′ ≤ b, U0
i = Vi if and only if b′ + 1 ≤ i ≤ b.

Let F be the map determined by F as described at the top of page 967.
For any 1 ≤ i ≤ b, let ti be the minimal non-negative number such that

F ti (ci) ⊂
b′⋃
i=1

Vi,

and let si be the non-negative integer such that F ti = f si on a neighbourhood of ci .
(In particular, ti = si = 0 for 1 ≤ i ≤ b′.)

For any 0 ≤ h < ∞, and any c′ ∈ [c], let ah(c
′) be the minimal non-negative

integer such that f ah(c
′)(c′) ∈ Uh

1 and let Ph(c
′) be the component of f−ah(c′)(Uh

1 )

containing c′. Then f ah(c
′) : Ph(c

′)→ Uh
1 is a proper map of a uniformly bounded degree.

Write qh = p1,h + sk1,h . Then for some 1 ≤ ih ≤ b′, f ah(c
′)+qh : Ph(c

′) → Vih is also
a proper map of a uniformly bounded degree. For each c′ ∈ [c], if f ah(c

′)+qh(c′) ∈ U
jh
ih

,
then let Qh(c

′) be the component of f−(ah(c′)+qh)(Ujh
ih
) which contains c′.

LEMMA 5.1. For any x ∈ Jc and any large h, if nh is the minimal non-negative
integer such that f nh(x) ∈ ⋃

d∈[c]Qh(d), and if c′ = c′h is the critical point such that
f nh(x) ∈ Qh(c

′
h), and if Ah(x) is the component of f−nh(Ph(c

′)) containing x, then the
proper map f nh : Ah(x)→ Ph(c

′) has a degree uniformly bounded from above.

Proof. Let Eh
k = f k(Ah(x)) for 0 ≤ k ≤ nh. We need to count the number of times a

critical point appears in some Eh
k . Let T h

k = Eh
k ∩ S1. Then {T h

k }nhk=0 is a (real) maximal
chain. (We admit the situation that T h

k = ∅ for some k.) Since all critical points of f

are contained in S1, it suffices to show that the maximal chain {T h
k }nhk=0 has a uniformly

bounded order. Note that for h sufficiently large maxnh−1
k=0 |T h

k | is small since f |S1 has no
wandering interval. So each Eh

k contains, at most, one critical point. For the same reason,
any d ∈ C(f )− Cr(f ) appears in, at most, one of the domains Eh

k .
Assume that the maximal chain has order larger than 2#C(f ). Then there exists some

d ∈ Cr(f ) such that d ∈ T h
k1
, T h

k2
for some 0 ≤ k1 < k2 ≤ nh and the maximal chain

{T h
k }nhk=k1

has order ≤2#C(f ). Since f nh−k1 : Eh
k1
→ Ph(c

′) has a degree bounded from
above and Qh(c

′) has a small diameter in the hyperbolic Riemann surface Ph(c
′), and since

|T h
k1
| has a small diameter, f k1(x) is close to d . If such a d appears for infinitely many hs,

then it is contained in ω(x). Since x ∈ Jc, we must have d ∈ [c]. So there are positive
integers m1 > m2 such that f nh−k1 = Fm1 , f nh−k2 = Fm2 holds in a neighbourhood
of d . It is then easy to see that Eh

k2
⊂ Ph(d) and Eh

k1
⊂ Qh(d). Since f k1(x) ∈ Eh

k1
, this

contradicts the minimality of nh. Thus the maximal chain {T h
k }nhk=0 has order ≤ 2#C(f ).

The proof of the lemma is then completed. ✷

We continue the proof of Proposition 5.4. By now, we have, for each h large, a
proper map f nh+ah(c′h)+qh : Ah(x) → Vih of a uniformly bounded degree such that

f nh+aj (c′h)+qh(x) is contained in U
jh
ih

for some 1 ≤ ih ≤ b′ and 0 ≤ jh < rih + 1. By the
previous proposition, for each h, there is a topological disk X

jh
ih
⊂ Vih such that f pih,jh :

X
jh
ih
→ Wkih,jh

is a proper map of a uniformly bounded degree. The proposition follows. ✷
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Proof of Theorem 5.1. Let X ⊂ Jc be a measurable set of positive measure such that
f (X) ⊂ X (mod 0). Let x ∈ X be a Lebesgue density point. Let d ∈ [c], and U ⊂⊂ U ′
be neighbourhoods of d as in the previous proposition. There exist n1 < n2 < · · ·
neighbourhoods Aj of x, such that f nj : Aj → U ′ has a uniformly bounded degree
and f nj (x) ∈ U . Hence by Lemma 2.2 and 2.3, m(U − X) = 0. Since f n(U) = Ĉ

(mod 0) for some n ∈ N, we have that X = Ĉ (mod 0). Therefore J (f ) = Ĉ and f is
ergodic.

If f carries an invariant line field µ on Jc, let x be an almost continuous point of µ.
One can construct a sequence of proper mappings f nj : Aj → U ′ as in the previous proof,
which then implies that µ is holomorphic on a non-empty open set. Thus f is doubly
covered by an integral torus endomorphism. In particular, f has no recurrent critical point.
Contradiction! ✷

Reduction. From now on, we shall assume that for any c ∈ Cr(f ) with ω(c) non-minimal,
the set Jc has measure zero. It follows from a similar argument as in the proof of
Proposition 2.2 that for a.e. z ∈ J (f ), ω(z) ⊂ Par(f ) ∪ (⋃

c∈Cr(f ),ω(c) minimal ω(c)
)
.

The last set is a disjoint union of finitely many minimal sets. Since the set {z ∈ J (f ) :
ω(z) ⊂ Par(f )} is countable, we may assume that:
(1) J (f ) =⋃

c∈Cr(f ),ω(c) minimal Jc (mod 0); and
(2) Jc = {z ∈ J (f ) : ω(z) = ω(c)} (mod 0) for any c ∈ Cr(f ) such that ω(c) is

minimal.

6. Large real bound implies the non-existence of an invariant line field
We begin the study of the measurable dynamics of f |Jc in the case that ω(c) � c is a
minimal set. We shall assume the following throughout this section.

Assumption. There exists a sequence of symmetric nice intervals I (n) � c, n = 1, 2, . . . ,
such that |I (n)| → 0 and d(ω(c)∩I (n), ω(c)−In)/diam(ω(c)∩I (n))→∞ as n→∞.

Let b = #[c], and c1 = c, c2, . . . , cb be the critical points contained in [c].
PROPOSITION 6.1. There is a constant ρ0 such that for any ρ ≥ ρ0 the following holds.

Let I � c be a symmetric nice interval interval. Suppose that |I | is very small and
satisfies d(ω(c) ∩ I, ω(c) − I) ≥ ρ diam(ω(c) ∩ I), let BI :

(⋃r
j=0 J

j
) ∪ (⋃b

i=2 Ii
)→⋃b

i=1 Ii be the real box mapping associated to I . Then there is a quasi-polynomial-like

mapping F = {
F : Uj

i →
⋃b

i=1 Vi

∣∣ 1 ≤ i ≤ b, 0 ≤ j < ri + 1
}

corresponding to c such
that:
(i) r1 = r , r2 = r3 = · · · = rb = 0 and U0

i = Vi for any 2 ≤ i ≤ b;

(ii) Vi ∩ ω(c) = Ii ∩ ω(c),U
j

1 ∩ ω(c) = J
j

1 ∩ ω(c), for any 1 ≤ i ≤ b and any
0 ≤ j ≤ r;

(iii) F |(Vi ∩ Ii) = BI |(Vi ∩ Ii), F |(Uj ∩ J j ) = BI |(Uj ∩ J j), for any 2 ≤ i ≤ b and
any 0 ≤ j ≤ r;

(iv) there is topological disk D containing V1 such that D ∩ ω(c) = V1 ∩ ω(c), and

mod(D − V1) ≥ m(ρ) > 0,

where m(ρ)→∞ as ρ →∞.
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Proof. We first assume that r �= 0.
Since d(ω(c) ∩ I, ω(c) − I)/diam(ω(c) ∩ I) is very large, there is a round annulus X

in Ĉ−ω(c) centred at c separating ω(c)∩ I from ω(c)− I with a large modulus. Take the
core curve γ of X. It is a round circle centred at c. Let E1 denote the topological disk
bounded by γ . Let kj (0 ≤ j ≤ r), mi (2 ≤ i ≤ b) be the positive integers such that
BI |Ii = fmi and BI |J j = f kj . Let m′i (2 ≤ i ≤ b) and k′j (0 ≤ j ≤ r) be the first

return time of Ii , J j to I , i.e. the minimal positive integers such that fm′i (Ii ) ⊂ I and

f
k′j (J j ) ⊂ I . Let Ei be the component of f−m′i (E1) containing ci , 2 ≤ i ≤ b, where ci is

the critical point of f which is contained in Ii . For 0 ≤ j ≤ r , let Dj be the component of

f
−k′j (E1) containing ω(c) ∩ J j . It is easy to see that if BI (Ii) ⊂ Ii′ , then fmi (Ei) = Ei′

and that if BI (J
j ) ⊂ Ii′ , then f kj (Dj ) = Ei′ .

We claim that Dj ⊂ E1 for any 0 ≤ j ≤ r .
Indeed, since X−E1 is an annulus with a large modulus (= mod(X)/2) which is disjoint

from ω(c), it is easy to show by Koebe’s distortion theorem that any ; ∈ {Ei,D
j : 1 ≤

i ≤ b, 0 ≤ j ≤ r} is an ‘almost round’ disk as seen from any x ∈ ; ∩ ω(c), that is

max
z∈∂; d(z, x) ≤ (1+ ε)d(x, ∂;),

where ε > 0 can be taken close to 0 if ρ is large. Since r ≥ 1, we have diam(Dj ) ≤
2(1+ ε) diam(ω(c)∩ I). Since E1 ∩ S1 is an interval containing a large neighbourhood of
ω(c) ∩ I , it follows that Dj ⊂ E1.{

F1,j : Uj → ⋃
i Vi, Fk : Vk → ⋃

i Vi

∣∣ 0 ≤ j ≤ r, 2 ≤ k ≤ b
}

is a quasi-polynomial-
like mapping satisfying the required conditions.

We now turn to the case that r = 0.
In this case there is a permutation σ : {1, 2, . . . , b} → {1, 2, . . . , b} such that

BI (Ii) ⊂ Iσ(i), where BI is the real box mapping associated to I , for otherwise the forward
orbit of c will not enter some of the intervals Ii , which contradicts the hypothesis that ω(c)

contains all critical points in
⋃b

i=1 Ii . By possibly changing the subscript i, we may assume
that σ(i) = i + 1 for any 1 ≤ i ≤ b − 1 and σ(b) = 1. Let ki be the positive integer such
that BI |Ii = f ki . Let m = k1 + k2 + · · · + kb.

Construct X, E1 as in the case r �= 0. LetD0 be the pre-image of f−m(E1) containing c.
G = fm : D0 → E1 is a proper map. For any u ∈ D0 such that G′(u) = 0,

Gn(u) never escapes the domain D0. Write P = {Gn(u) : G′(u) = 0, n ∈ N}, then
mod(P,E1) ≥ mod(ω(c) ∩ I,E1) ≥ mod(X)/2 is large. By Theorem 5.12 in [20],
there is a domain U ′ ⊂ D0 such that f m : U ′ → V ′ = fm(U ′) is a polynomial-like map
with the same degree as G and mod(V ′ −U ′) is large since f has no attracting cycle in D0.
Define U0 = U ′, V1 = V ′ and Vs = f k1+k2+···+ks−1(U0). Then {f k1 : U0 → V1, f

ki :
Vi → Vi+1, f

kb : Vb → V1 | 2 ≤ i ≤ b − 1} is a quasi-polynomial-like mapping as
required. ✷

For δ > 0 let Eδ be the collection of quasi-polynomial-like mappings
{
Fi,j : Uj

i →⋃b
i=1 Vi

∣∣ 1 ≤ i ≤ b, 0 ≤ j ≤ ri
}

corresponding to c induced by f such that
ri = 0, U0

i = Vi for all 2 ≤ i ≤ b and such that there is a topological disk D containing
V1 such that D ∩ ω(c) = V1 ∩ ω(c) and mod(D − V1) ≥ δ.
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For each quasi-polynomial-like mapping F in Eδ , and each 2 ≤ i0 ≤ b, we can associate
to it another quasi-polynomial-like mapping F̃ in the following way. Let c1 ∈ U0, ci ∈ Vi

be the critical points of f . Denote Ṽ1 = Vi0 . For each 1 ≤ i ′ ≤ b, i ′ �= i0, let k(i ′) be
the minimal positive integer such that Fk(i′)(ci′) ∈ Ṽ1 and let Ṽi′ = Compci′ (F, k(i

′), Ṽ1).

For each x ∈ ω(c) ∩ Ṽ1, let k(x) be the minimal positive integer such that Fk(x)(x) ∈ Ṽi

for some 1 ≤ i ≤ b, and let Ũ(x) = Compx(F, k(x), Ṽi). Then define

F̃ =
{
Fk(x) : Ũ(x))→

b⋃
i=1

Ṽi , F k(i′) : Ṽi′ →
b⋃

i=1

Ṽi

∣∣∣∣ x ∈ ω(c)∩ Ṽ1, 1 ≤ i ′ ≤ b, i ′ �= i

}
.

Note that there is a constant δ̃ > 0 depending only on δ (and f ) such that F̃ ∈ E δ̃ .
Moreover, we can take δ̃ arbitrarily large if δ is sufficiently large.

THEOREM 6.2. If there is a sequence of symmetric nice intervals In � c such that
(1) |In| → 0 as n→∞; and
(2) d(ω(c) ∩ In, ω(c)− In)/diam(ω(c) ∩ In)→∞ as n→∞, then

(i) if m(Jc) > 0, then f |Jc is ergodic; and
(ii) Jc carries no f -invariant line field.

Proof. By Proposition 6.1, there is a sequence of quasi-polynomial-like mappings

F(n) =
{
F(n)1,j : Uj(n)→

b⋃
i=1

Vi(n);F(n)k,0 : Vk(n)

→
b⋃

i=1

Vi(n)

∣∣∣∣ 0 ≤ j ≤ r(n), 1 ≤ k ≤ b

}

corresponding to c (induced by f ) which are contained in the class Eδn for δn → ∞ as
n→∞ such that diam(V1(n))→ 0 as n→∞. Let W(n) ⊃ V1(n) be a topological disk
such that W(n) ∩ ω(c) = V1(n) ∩ ω(c) and mod(W(n) − V1(n)) ≥ δn.

(i) Let E ⊂ Jc be a measurable set of positive measure with f (E) ⊂ E (mod 0) and
let x be a Lebesgue density point of E such that ω(x) = ω(c) and f n(x) �∈ C(f ) for any
n ≥ 0.

For any n ∈ N, let k(n) be the minimal non-negative integer such that f k(n)(x) ∈
U0(n) ∪ (⋃n

i=2 Vi(n)
)

and let 1 ≤ i(n) ≤ b be such that f k(n) ∈ Vi(n)(n).

Then k(n) → ∞ as n → ∞ since maxbi=1 diam(Vi(n)) → 0. Let A(n) be the
component of f−k(n)(Vi(n)(n)) containing x. Let p(n) be the positive integer such that
f p(n)(Vi(n)(n)) = V1(n) if i(n) �= 1 and let p(n) = 0 otherwise. Let X(n) be
the component of f−p(n)(W(n)) containing Vi(n)(n) and let A′(n) be the component of
f−k(n)(X(n)) containing A(n). Then f p(n) : X(n) → W(n) is a proper map of a
uniformly bounded degree, and X(n) ∩ ω(c) = Vi(n)(n) ∩ ω(c). We claim that for n

sufficiently large, f kn : A′(n)→ X(n) is also a conformal map.
Assume that the claim fails. Let k < k(n) be the maximal number such that f k(A′(n))

contains a critical point d of f . First let us show that d ∈ ω(c). Since f (d) ∈ f k+1(A′(n)),
f k+1(A′(n)) ∩ S1 �= ∅. Since f k(n)−k−1|f k+1(A′(n)) is a conformal map, f k(n)−k−1 :
f k+1(A′(n))∩S1 → X(n)∩S1 is a diffeomorphism. In particular, f k+1(A(n))∩S1 �= ∅.
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Since diam(f k+1(A(n))) and |f k+1(A′(n))∩ S1| are small, we have that f k+1(x) is close
to f (d), and hence f k(x) is close to d . So we have d ∈ ω(x) = ω(c) if n is large.
Since X(n) ∩ ω(c) = Vi(n)(n) ∩ ω(c), d ∈ f k(A(n)). Since f k(n)−k(d) ∈ ⋃b

i=1 Vi(n),
there is some positive integer t such that F(n)t is well defined in a neighbourhood of d

and coincides with f k(n)−k. Then it is easy to see that f k(A(n)) ⊂ U0(n) ∪⋃b
i=2 Vi(n).

Since f k(x) ∈ f k(A(n)), this contradicts the minimality of k(n).

Thus f k(n)+p(n) : A′(n) → W(n) is a proper map of a uniformly bounded degree.
Since x is a Lebesgue density point and f k(n)+p(n)(x) ∈ V (n), it follows that m(E ∩
V (n))/m(V (n))→ 1 as n→∞.

If m(Jc) > 0 and f |Jc is not ergodic, then there is a measurable set E ⊂ Jc such
that f−1(E) = E (mod 0) and m(E) > 0, m(Jc − E) > 0. Then it follows that
m(E ∩ V (n))/m(Vn)→ 1 and m((Jc − E) ∩ V (n))/m(V (n))→ 1 as n→∞, which is
obviously absurd.

(ii) Assume that f carries an invariant line field µ with support E ⊂ Jc. We need to
show a contradiction.

Let x ∈ E be an almost continuous point of µ such that µ(x) �= 0 and f n(x) �∈ C(f )

for any n ≥ 0. By the same argument as in the previous proof, for each n large, there are
k(n) ∈ N, 1 ≤ i(n) ≤ b such that f k(n)(x) ∈ Vi(n)(n) and there is a univalent branch h(n)

of f−k(n), defined on Vi(n)(n), mapping f k(n)(x) to x.

Case 1. There are infinitely many n such that i(n) = 1.

By passing to a subsequence, we may assume that i(n) = 1 for all n ∈ N. Let s(n) be
the first return time of U0(n) to V1(n). Then f sn : U0(n)→ V1(n) is a proper map whose
degree is no less than 2 and bounded uniformly from above.

Since f k(n)(x) ∈ U0(n) ⊂ V1(n), it follows from Corollary 3.3 that this is impossible.

Case 2. For n# 1, i(n) > 1.

Let

F̃ (n) :
( r̃ (n)⋃

j=0

Ũ j (n)

)
∪

( b⋃
i=2

Ṽi (n)

)
→

b⋃
i=1

Ṽi(n)

be the holomorphic box mapping associated to F(n) and i(n) as in the remark before
Corollary 7.3. Then F̃ (n) belongs to the class E δ̃n with δ̃n →∞. Let k̃(n) be the minimal
non-negative integer such that

f k̃(n)(x) ∈ Ũ0(n) ∪
( b⋃

i=2

Ṽi(n)

)

and let 1 ≤ ĩ(n) ≤ b be such that f k̃(n)(x) ∈ Ṽĩ(n)
(n).

If there are infinitely many n such that ĩ(n) = 1, then we return to case 1 and the proof
is completed. So let us assume that for n # 1, ĩ(n) �= 1. So there is a univalent branch of
h̃(n) : Ṽĩ(n)(n)→ Ĉ of f−k̃(n) such that h̃(n)(f k̃(n)(x)) = x. Let s̃(n) be the first return

time of Ṽĩ(n)(n) to Ṽ1(n). Then f s̃(n) : Ṽĩ(n)(n) → Ṽ1(n) is a proper map whose degree
is no less than 2 and bounded from above uniformly. A contradiction again follows from
Corollary 3.3. ✷
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7. Bounded geometry implies the non-existence of an invariant line field on the Julia set
We fix an f ∈ F and c ∈ Cr(f ) with ω(c) minimal. Assume that there is a constant
M > 0 such that for any symmetric nice interval I containing c, we have

d(ω(c) ∩ I, ω(c)− I)

diam(ω(c) ∩ I)
≤ M. (6)

By taking M larger, we may assume that the inequality (6) holds for any small nice
interval intersecting ω(c).

To conclude the proof of Theorem 1 and 2, it suffices to prove the following theorem.

THEOREM 7.1. In the previous situation, we have:
(1) m(Jc) = 0 or f |Jc is ergodic;
(2) f carries no invariant line field on Jc.

Since f has a recurrent critical point, it has infinitely many periodic points on the
extended real axis S1. Using conjugacy by real Möbius transformation, we may assume
that∞ is a periodic point of f .

Take an arbitrarily small symmetric interval T � c and let BT : ( ⋃r
j=0 S

j
) ∪(⋃b

i=2 Ti
) → ⋃b

i=1 Ti be the real box mapping associated to T . As described in §4, this

real box mapping can be extended to a quasi-polynomial-like mapping F = {
F1,j : Uj

i →⋃b
k=1 Vk

∣∣ 1 ≤ i ≤ b, 0 ≤ j ≤ ri
}

with Vi = ĈTi and r1 = r , r2 = r3 = · · · = rb = 0.
We shall fix F from now on. Let F be the map determined by F as described at the top of
page 967.

From now on, all metrics are the Euclidean metric in C unless otherwise stated.
All intervals are assumed to be contained in

⋃b
i=1 Ti . For any two disjoint open intervals

A1, A2, we shall use (A1, A2) to denote the maximal bounded open interval which is
disjoint from A1 ∪ A2, and similarly use (A1, A2] to denote the minimal open interval
which contains (A1, A2) ∪ A2.

For any δ > 0, let Iδ be the collection of intervals I satisfying the following
conditions: I is a symmetric nice interval I containing a critical point in ω(c) such
that the δ-neighbourhood of I is disjoint from ω(c) − I ; moreover, if f is only finitely
renormalizable at c, I is a δ-nice interval and if f is infinitely renormalizable at c, I is a
properly periodic interval. By Proposition 3.1 and Corollary 4.7 in [26], for some δ0 > 0,
Iδ0 contains an arbitrarily small interval containing c. (By saying that I is a δ-nice interval,
we mean that for any x ∈ ω(c) ∩ I , if J is the component of the domain of the first return
map to I , then I contains the δ-neighbourhood of J .)

Let I be a small interval in Iδ0 and let Ji, i = 1, . . . , n be the components of the domain
of the first return map to I which (are contained in

⋃
k Tk and) intersect ω(c) − I and let

J0 = I .

LEMMA 7.1. There is a constant δ1 > 0 such that for any 0 ≤ i ≤ n,

d(Ji, ω(c)− Ji)

|Ji | ≥ δ1.

Proof. For any i �= 0, let r = ri be the minimal positive integer such that f r(Ji) ⊂ I .
Let I ′ denote the δ0-neighbourhood of I and let D = D(I ′). Let U be the component of
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f−r (D) which contains Ji . Then f k : U → D is a proper map with uniformly bounded
degree. Obviously, U ∩ R contains a definite neighbourhood of Ji , and is disjoint from
ω(c)− Ji . ✷

For any 0 ≤ i ≤ n, let 1 ≤ ki ≤ b be such that Ji ⊂ Tki .

LEMMA 7.2. There exists 0 ≤ i, j ≤ n with i �= j , ki = kj , such that there is no point in
ω(c) between Ji and Jj , and such that

d(Ji, Jj ) ≤ C1 min(|Ji |, |Jj |), C−1
1 |Jj | < |Ji | < C1|Jj |,

where C1 is a constant depending only on δ1 and f .

Proof. Take 0 ≤ i ≤ n be such that

|Ji | =
n

min
m=0

|Jm|.

First assume that both components of Tki − Ji contain an interval of the form Jj .
Let j1 �= j2 be such that Jj1, Jj2 ⊂ Tki and such that (Ji, Jj1) and (Ji, Jj2) are disjoint
from

⋃
m Jm. It cannot happen that both (Ji , Jj1] and (Ji, Jj2 ] are much larger than |Ji ,

for otherwise, a large neighbourhood of Ji is disjoint from ω(c) − Ji , which contradicts
assumption (6). Thus the lemma holds. Now let us consider the case that only a component,
say L, of Tki − Ji intersects

⋃
m Jm. Let j be such that Jj ⊂ L is closest to Ji . When I is

small, Ji is also small, and hence the other component of Tki − Ji is much larger than Ji .
Similarly as before, we must have (Ji , Jj ] is not too large compared to Ji . So the lemma
holds in this case as well. ✷

We shall say that a topological disk P is admissible if ∂P is a smooth curve disjoint
from ω(c), and if one of the following holds:
(A1) P ∩ ω(c) = ∅; or
(A2) there exists a nice interval A ⊂ P such that P ∩ ω(c) = A ∩ ω(c).

Let C > 1 be a constant and let P be a admissible topological disk. We say that P is
C-bounded if the following hold:
(D1) l(∂P )2 ≤ C area (P );
(D2) for x ∈ ω(c) ∩ Pi , and each z ∈ Pi , we have

d(x, z) ≤ Cd(x, ∂Pi);
(D3) mod(ω(c) ∩ P,P ) ≥ C−1;
(D4) there is a topological disk Q ⊃ P , such that (Q− P) ∩ ω(c) = ∅, and

mod(Q− P ) ≥ C−1.

We shall often consider a couple (P1, P2) of admissible topological disks. We shall say
that the couple (P1, P2) is C-bounded if the following hold:
(T1) P1 ∩ P2 ∩ ω(c) = ∅;
(T2) both of P1 and P2 are C-bounded;
(T3) C−1 diam(P2) ≤ diam(P1) ≤ C diam(P2); and
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(T4) there is a piecewise smooth curve γ which joins P1 and P2, such that

l(γ ) ≤ C diam(P1),

and for each p ∈ γ , we have

B(p,C−1 diam(P1)) ∩ ω(c) = ∅.
For instance, for any 0 ≤ i ≤ n, the Poincaré disk D((1 + δ1/2)Ji) is a C-bounded

admissible disk for some C > 1. For i, j as in Lemma 7.2 (D((1 + δ1/2)Ji),D((1 +
δ1/2)Jj )) is C-bounded for some C > 1.

LEMMA 7.3. Let P be a C-bounded admissible topological disk, and let p be a positive
integer. Let P ′ be a pull-back of P under F and assume that the corresponding map
Fn : P ′ → P has degree at most p. Then P ′ is a C′-bounded admissible topological disk,
where C′ = C′(C, p) is a constant.

Proof. First of all, it is easy to check that P ′ is admissible.
Let Q be a topological disk with Q∩ω(c) = P ∩ω(c) such that mod(Q−P) ≥ 1/C.

Let Q′ ⊃ P ′ be the corresponding pull-back of Q. Then Fn : Q′ → Q obviously has the
same degree as Fn|P ′. The lemma follows easily. ✷

Now let i, j be as in Lemma 7.2. Let pi be minimal non-negative integers such that
Fpi (Ji) ⊂ I , and let pj be similarly defined. Let

E1 = CompJi (pi,D((1 + δ1/2)I)),

E2 = CompJj (pj ,D((1 + δ1/2)I)).

We can easily show that (E1, E2) is a C2-bounded couple of admissible topological disks.
Indeed, we can take the interval (Ji , Jj ) to be the curve joining E1 and E2. Moreover,
E1 ∪ E2 is contained in a C3-bounded topological disk D with D ∩ ω(c) ⊂ E1 ∪ E2.

Let k be the minimal non-negative integer such that Fk(d) ∈ E1 ∪ E2 for some critical
point d ∈ ω(c). To fix the notation, we assume that Fk(d) ∈ E1.

Let D′ = Compd (k,D), and ;1 = Compd(k,E1). Then ;1 is a C3-bounded
topological disk by Lemma 7.3. Write (ak, bk) = (Ji, Jj ) such that ak ∈ E1. Let a ∈ ;1

be a point such that Fk(a) = ak. Let γ ′ ⊂ D′ be an arbitrary lift with initial point a of the
curve γ = (ak, bk) under Fk , and let b be the endpoint of γ ′. Let ;2 be the topological
disk in D′ such that b ∈ ;2 and such that Fk(;2) = E2.

Let K be the real pull-back of Ji along the orbit {d, F (d), . . . , F k(d)}. This is a
symmetric nice interval contained in ;1. Let 0 ≤ p′j ≤ pj be minimal such that

L = F
p′j (Jj ) contains a critical point. Note that L is also a symmetric nice interval

and is of the form Jj ′ for some 0 ≤ j ′ ≤ n. Let ;′2 = F
p′j+k(;2) = F

p′j (E2). Note that
for some δ2 > 0, K,L ∈ Iδ2 .

Note that Fk|D′ has a bounded distortion outside a small neighbourhood of ω(c)∩;1.

LEMMA 7.4. The couple (;1,;2) of admissible topological disks is C4-bounded for some
C4 > 1.
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Let K and L be the symmetric nice intervals constructed as before. In the case that f
is only finitely renormalizable at c, since both of K and L are in Iδ2 , by Theorem 1.4 in
[26] and by assumption (6), each of K and L has, at most, N = N(δ) children. (If {Gi}pi=0
is a unimodal chain such that both Gp and G0 are symmetric nice intervals containing a
critical point in ω(c), then we say that G0 is a child of Gp.) This holds in the case that f
is infinitely renormalizable at c as well: in fact, K,L, I are then all periodic intervals and
hence each of them has only one child.

Let

BK :
( r⋃

j=0

K
j

1

)
∪

( b⋃
i=2

Ki

)
→

b⋃
i=1

Ki

denote the real box mapping associated to K . And let

R = RK :
( r⋃

j=0

K
j

1

)
∪

( b⋃
i=2

Ki

)
→ K1 = K

denote the first return map to K . Write R|Kj

1 = f s
j

1 and denote by Dj the components
of f−s

j

1 (;1) containing K
j

1 . For 2 ≤ i ≤ b, write R|Ki = f si |Ki and let ;̃i be the
component of f−si (;1) containing Ki . Let s′i ≤ si be the positive integer such that

BK |Ki = f s ′i .

PROPOSITION 7.2. Let x ∈ Jc ∩K(F) be a point such that Fm(x) �∈ ω(c) for any m ≥ 0.
Assume that I is sufficiently small. Then there is a constant C5 > 1 depending only on f ,
a domain ; ∈ {;̃i, 2 ≤ i ≤ b;;1;;2} and a non-negative integer k such that there is a
univalent branch h of f−k defined on ; and

d(x, h(;)) ≤ C5 diam(h(;)).

Since the proof of this proposition is relatively long, we first show how it implies
Theorem 7.1.

Proof of Theorem 7.1. (1) Assume that Xi ⊂ Jc are two measurable sets of positive
measure such that f (Xi) ⊂ Xi (mod 0), i = 1, 2. Assume that m(X1 ∩ X2) = 0, and
we shall deduce a contradiction.

Let I ∈ Iδ0 be a small interval as before. Let y ∈ X1 be a Lebesgue density point
of X1 such that f m(y) �∈ ω(c) for all m ≥ 0. We also assume that f m(y) are all
Lebesgue density points of X1. Then it is not difficult to show that x = f m(y) ∈ K(F)
for some positive integer m. Let ; and h be as desired by Proposition 7.2 for I and x.
Note that there is a positive integer p, such that f p : h(;) → D = D((1 + δ1/2)I) is
a proper map of uniformly bounded degree. When I is sufficiently small, we have that
m(h(;) ∩ X1)/m(h(;)) is close to 1 and hence so is m(D ∩ X1)/m(D). Similarly, we
can prove that m(D ∩X2)/m(D) is close to 1, which is obviously absurd.

(2) If f carries an invariant line field µ on Jc, then there is a point x ∈ K(F) such
that fm(x) �∈ ω(c) for all m, and such that µ(x) �= 0, and µ is almost continuous at x.
Given any small interval I ∈ Iδ0 as before, again let ; be the domain as desired by
Proposition 7.2 for I and x.
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Note that there is a non-negative integer p, and a symmetric interval A ∈ Iδ′ for some
δ′ > 0 which is uniformly bounded from zero, such that f p|; is a conformal map onto
a C-bounded admissible topological disk Q with A ⊂ Q and Q ∩ ω(c) ⊂ A. Indeed, if
; �= ;2, then we just take p = 0. In ; = ;2, then by the previous construction, the
statement is still true with A = L.

Thus, there is a univalent branch g of f k+p, defined on Q, such that d(x,Q)/diam(Q)

is uniformly bounded. Obviously, such a map g extends to a univalent map defined on
D = CA′ , where A′ is the maximal open interval with A′ ∩ ω(c) = A ∩ ω(c).

Let e be the critical point in A, and let A0 � e be the component of the domain of the
first return map to A. Then by Proposition 6.3 in [26], we have that |A0|/|A| is uniformly
bounded from zero. Let s be the return time of A0 to A. Let Y = D((1 + δ′/2)A) and let
X be the component of f−s (Y ) which contains A0. Then f s : X → Y is a proper map
which has a critical point and is of uniformly bounded degree. Note that mod(D−X ∪ Y )

is uniformly bounded from zero, and hence g has a uniformly bounded distortion on X∪Y .
Let U = g(X) and V = g(Y ), and let h = g ◦ f s ◦ g−1 : U → V . Then h ∈ H(f ) is

a proper map with a critical point and of bounded degree. Since maxz∈Y d(e, z)/d(e, ∂Y )

is uniformly bounded, so is maxz∈U d(g(e), z)/d(g(e), ∂U). Similarly, we have a uniform
upper bound on maxz∈V d(z, g(f s(e)))/d(g(f s(e)), ∂V ). Also, since d(U, x), d(V, x)

are not so large compared to diam(g(Q)), and since diam(Q) � diam(Y ) � diam(X), we
have a uniform bound on d(U, x)/diam(U) and on d(x, V )/diam(V ).

Choose a sequence of intervals Im ∈ Iδ0 such that |Im| → 0 as m → ∞. Define Dm,
Xm, Ym, sm, gm, hm as before, and apply Proposition 3.2, we obtain a contradiction. ✷

Proof of Proposition 7.2. The proof will be divided in two cases. Case 1 will be proved
similarly to the case with decay geometry (a large real bound), while case 2 has to be
proved differently.

LEMMA 7.5. For any x ∈ ⋃r
j=0 Dj −;1, there is a piecewise smooth curve γ joining x

to ∂;1, such that
(1) l(γ ) ≤ δ−1

3 diam(;1);
(2) for any z ∈ γ , we have

B(z, δ3 diam(;1)) ∩ ω(c) = ∅,
where δ3 > 0 is a constant.

Proof. Let K ′ be the maximal open symmetric interval such that K ′ ∩ ω(c) = K ∩ ω(c).
By (6), we know that the diameter of K ′ is comparable to the diameter of ;1. Let A = ĈK ′ .

For any 0 ≤ j ≤ r , let Aj be the component of f−s
j

1 (A) which contains Kj

1 . Then f s
j

1 :
Aj → A has the same degree as f s

j
1 : Dj → ;1 and hence is uniformly bounded from

above. Since the hyperbolic diameter of ;1 in A is uniformly bounded, so is the hyperbolic
diameter of Dj in Aj , by Lemma 2.1.

We claim that Aj ⊂ A for any 0 ≤ j ≤ r . Let τ : K → K be the involution

such that f ◦ τ = f . Consider the chain {G′m}s
j
1
m=0 and also the chain {Gm}s

j
1
m=0 with

G′
s
j
1

= K ′, G
s
j

1
= K and G′0 ⊃ G0 ⊃ K

j

1 . Since K ′ − K is disjoint from ω(c), so is
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G′1 − G1. Thus both G′0 − G0 and τ (G′0) − τ (G0) are disjoint from ω(c). So G′0 ⊂ K ′.
Since Aj ∩ R = G′0, we have Aj ⊂ ĈG′0 ⊂ A.

Thus, the hyperbolic diameter of Dj in A is uniformly bounded from above. The lemma
follows easily. ✷

Continuation of proof of Proposition 7.2.
Case 1. For any non-negative integer k, we have

Fk(x) �∈
r⋃

j=0

Dj −;1.

Let ;̃1 = ;1. Let
ki = min{k ∈ N ∪ {0} : Fk(x) ∈ ;̃i}

for 1 ≤ i ≤ b. Let 1 ≤ i0 ≤ b be such that ki0 ≤ ki for any 1 ≤ i ≤ b. We claim that
Fki0 : Compx(ki0, ;̃i0) → ;̃i0 is a conformal map, and hence we can take ; = ;̃i0 to
complete the proof of the proposition.

We prove the claim by contradiction. Assume that such a map is not conformal.
Let Am = CompFm(x)(ki0 −m, ;̃i0) for 0 ≤ m ≤ ki0 . Then there will be a maximal m0 <

ki0 such that Am0 contains a critical point e ∈ ω(c). Then Fki0−m0(e) ∈ ;̃i0 . So there is
a positive integer p such that Fki0−m0(c) = B

p

K(c). Let m0 < m1 < · · · < mp = ki0 be

the integers such that Bj

K(c) = Fmj−m0(c) for any 0 ≤ j ≤ p. Let 0 ≤ i1 ≤ b be such

that Bp−1
I (c) = Fmp−1−m0(c) ⊂ ;̃i1 . If i1 �= 1, then Fmp−1(x) ∈ ;̃i1 , this contradicts the

minimality of ki0 . So i1 = 1 and hence Fmp−1(x) ∈ ⋃r
j=0 Dj . Since there is no point in

the forward orbit of x which is contained in
⋃r

j=0 Dj−;1, we have Fmp−1(x) ∈ ;̃1 = ;1,
which contradicts the minimality of ki0 again.

Case 2. There is a non-negative integer k such that

Fk(x) ∈
r⋃

j=0

Dj −;1.

In this case we shall show that there is a univalent branch h of f−k′ defined on ; = ;1

or ;2 such that d(x, h(;)) ≤ C5 diam(h(;)), where k′ is the non-negative integer such
that Fk = f k′ in a neighbourhood of x.

Let P1, P2 be admissible topological disks, we say that the triplet (m, P1, P2) is
bounded by a constant C > 1 if (P1, P2) is a C-bounded couple and if there is a piecewise
smooth curve γ , joining Fm(x) to P1, such that

l(γ ) ≤ C diam(P1)

and such that for any z ∈ γ , we have

B(z,C−1 diam(P1)) ∩ ω(c) = ∅.

Remark 7.1. Let (m, P1, P2) be a C-bounded triplet as before. Then (m, P2, P1) is
C′-bounded for some C′ > 1 depending only on C. Indeed, there is a curve ρ joining
∂P1 and ∂P2, with l(ρ)/diam(P1) uniformly bounded, such that for each point z ∈ ρ,
B(z,C−1 diam(P1)) is disjoint from ω(c). Let γ ′ = γ ∗ ∂P1 ∗ ρ. This is a piecewise
smooth curve joining Fm(x) to ∂P2, with similar properties as γ .
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Convention. For a Jordan curve we always give it an anti-clockwise orientation.

LEMMA 7.6. Let m be a non-negative integer and P ⊂ V (Fm(x)) be a C-bounded
admissible topological disk. Let ρ ⊂ V (Fm(x))−ω(c) be a path with initial point Fm(x)

and endpoint w ∈ ∂P with l(ρ) ≤ C diam(P ). Assume that for any y ∈ ρ, we have
B(y,C−1 diam(P ))∩ω(c) = ∅. Let ρ′ be the lift of ρ under Fm with initial point x and z

the endpoint of ρ′. Assume that the lift of ∂P , considered as a loop based at w, with initial
point z is a closed Jordan curve. Then there is a constant C′ depending only on C, and a
topological disk Q ⊂ Ux(m) such that Fm : Q→ P is a well-defined conformal map and

d(x,Q) ≤ C′ diam(Q).

Remark. There is a well-defined proper map Fm : Ux(m) → V (Fm(x)) and the lifts
should be considered under the map.

Proof. Let γ denote the lift of ∂P with initial point z and let Q denote the topological disk
bounded by γ , then Fm : Q→ P is a conformal mapping. Let h denote the inverse of this
conformal mapping. The function h has an analytic continuation along the path ρ−1.

By the assumption, there is a uniformly bounded integer p, and round disks Bi =
B(yi, ri ), 1 ≤ i ≤ p which are disjoint from ω(c), such that

γ ∪ ∂P ⊂
p⋃

i=1

B
(
yi,

ri

2

)
.

From Koebe’s principle, it follows that h has a uniformly bounded distortion on γ ∪ ∂P .
Since h is conformal on P , it also has uniformly bounded distortion on P . Thus the lemma
holds. ✷

COROLLARY 7.3. Let Pi , i = 1, 2 be admissible topological disks and let m be a non-
negative integer. Assume that for i = 1, 2, there is a nice interval Ai ⊂ Pi such that
Pi ∩ ω(c) = Ai ∩ ω(c). Assume also that the triplet (m, P1, P2) is bounded by a constant
C > 0. If diam(P1) is sufficiently small, then there is a constant C′ depending only on C

and an integer i ∈ {1, 2} such that either of the following holds.
(1) There exists a topological disk Q ⊂ Ux(m) such that Fm : Q→ Pi is a conformal

map and d(x, h(Q)) ≤ C′ diam(Q).
(2) There is a positive integer m′ < m, two admissible topological disks Pi,1, Pi,2, such

that the triplet (m′, Pi,1, Pi,2) is C′-bounded. Moreover, there are nice intervals
Ai,j ⊂ Pi,j , j = 1, 2 with the following properties:
(2.i) Ai,j ⊃ Pi,j ∩ ω(c) �= ∅, j = 1, 2;
(2.ii) f (Ai,1) = f (Ai,2), f (Pi,1) = f (Pi,2), Fm−m′(Pi,1) = Pi;
(2.iii)Fm−m′ |Ai,1 is monotone and Fm−m′ (Ai,1) = Ai .
Moreover, diam(Pi,1) is also very small.

Proof. The proof is a modification of McMullen’s argument in his approach to the absence
of a line field, see [20, 21]. Let ξi be a piecewise smooth curve from Fm(x) to ∂Pi ,
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i = 1, 2, such that for some η > 0, some C′ > 1, and each y ∈ ξi , we have

B(y, η diam(P1)) ∩ ω(c) = ∅,
and such that

l(ξi ) ≤ C′ diam(P1).

By the definition of boundedness, such constants η,C′ exist.
Let ξ ′i denote the lift of ξi with initial point x under Fm, i = 1, 2. Let zi denote the

endpoint of ξ ′i and ζi denote the lift of ∂Pi under Fm with initial point zi .
If either of ζ1 and ζ2 is a Jordan curve then we are in case 1 by Lemma 7.6. Assume we

are not in this case. Let mi be the maximal integer such that Fmi (ζi) is not a closed curve.
Without loss of generality, assume that m1 ≥ m2. Let 
i denote the domain bounded by
Fmi+1(ζi), then both 
1 and 
2 intersect ω(c).

CLAIM. The set Fm1+1(ζ1 ∪ ζ2 ∪ ξ ′1 ∪ ξ ′2) has a small diameter provided that diam(P1) is
small.

Indeed, by construction, the map

Fm−m1−1 : Fm1+1(ζ1 ∪ ζ2 ∪ ξ ′1 ∪ ξ ′2)→ ∂P1 ∪ ∂P2 ∪ ξ1 ∪ ξ2

is a conformal map. Since (m, P1, P2) is bounded, the map has a uniformly bounded
distortion. Thus, to prove this claim, it suffices to show the real trace of 
1 is small when
diam(P1) is also small. But 
1 ∩ R is an interval intersecting ω(c), and it is mapped
diffeomorphically to a small interval P1 ∩R, and so it must be small due to the absence of
a wandering interval.

So we may assume that m1 > m2. By the same reasoning, the set Fm1(ζ1∪ζ2∪ξ ′1∪ξ ′2)
is close to a critical point, say e, which is contained in the set ω(x) = ω(c).

Let U be a definite neighbourhood of e such that f |U : U → f (U) is a branched
covering with a unique critical point e and let φ : U → U be the prime transformation
of the branched covering such that the lift of ∂f (U), considered as a loop based at
f (z)(z ∈ ∂U), with initial point z under f is ended by φ(z).

Let

ρ = ξ2 ∗ ξ−1
1 ∗ ∂P1 ∗ ξ1.

Then ρ is a piecewise smooth curve from Fm(x) to ∂P2. By choosing η > 0 smaller, and
C′ larger, we may assume that

l(ρ) ≤ C′ diam(P2)

and also that for any y ∈ ρ, we have

B(y, η diam(P2)) ∩ ω(c) = ∅.
Let ρ′ be the lift of ρ with initial point x under Fm and z′ the endpoint of ρ′.

Observation. The endpoint Fm1(z′) of Fm1(ρ′) is φ(Fm1(z2)).
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In fact, since the pull-back of ξi with initial point Fm1(x) under Fm−m1 is ended
by Fm1(zi), the pull-back of ξi with initial point φ(Fm1(x)) is ended by φ(Fm1(zi)),
i = 1, 2. So the pull-back of ξ−1

1 with initial point φ(Fm1(z1)) is φ(Fm1(x)). The pull-
back of ∂P1 with initial point Fm1(z) is ended by φ(Fm1(z)) again by the definition of φ.
The observation follows.

Note also that the lift of ∂P2 under Fm−m1 with initial point φ(Fm1(z2)) is the Jordan
curve φ(Fm1(ζ2)), which bounds the topological disk φ(Fm1−m2−1(
2)). Let P2,1 =
Fm1−m2−1(
2) and P2,2 = φ(P2,1). Then f (P2,1) = f (P2,2). If P2,2 ∩ ω(c) = ∅, then
the lift of ∂P2 under Fk with initial point z′ is obviously a Jordan curve and hence by
Lemma 7.6, we are in case 1. So let us assume P2,2 ∩ ω(c) �= ∅. Obviously both P2,1 and
P2,2 are admissible topological disks. Let m′ = m1. Then it is easy to check that the triple
(m′, P2,1, P2,1) is uniformly bounded using Koebe’s Distortion Theorem. For j = 1, 2, let
A2,j ⊂ P2,j be the interval such that Fm−m1(A2,j ) = A2. It is easy to check properties
(2.i)–(2.iii) for i = 2. ✷

We can complete the proof of Proposition 7.2 now.

Continuation of proof of Proposition 7.2. If ;2 ∩ ω(c) = ∅, then it follows from
Lemma 7.6 that we can take ; = ;2 to conclude the proof. So assume that ;2∩ω(c) �= ∅.
Let Ai ⊂ ;i be the nice interval intersecting ω(c) such that Ai ⊃ ;i ∩ ω(c). The triplet
(k,;1,;2) is uniformly bounded. Recall that A1 = K and A2 is a monotone pull-back
of L.

Applying Corollary 7.3 to the triplet (k,;1,;2), we have two possibilities. If we are
in case 1 in that corollary, then the proof is completed. Assume that we are in case 2.
Then we have i0 ∈ {1, 2} and another triplet (k1,;i01,;i02) which is also uniformly
bounded. Let Ai0j be the nice interval as in that corollary, j = 1, 2. Remember that
both Ai01 and Ai02 are monotone pull-backs of Ai0 and intersect ω(c).

Apply Corollary 7.3 to the triple (k1,;i01,;i02), and so on. Either we complete the
proof within N + 1 steps, or we will have i0, i1, . . . , iN ∈ {1, 2} and nice intervals

Aj ,Ai0j , Ai0i1j , . . . , Ai0i1···iN j , (j = 1, 2),

intersecting ω(c) such that for any 0 ≤ s ≤ N , Ai0i1···is1 and Ai0i1...is2 are monotone pull-
backs of Ai0i1···is which are symmetric with respect to a critical point in ω(c). For any
i ∈ {1, 2}, let i ′ denote the element of {1, 2} − {i}. Let

S = {Ai0i
′
1
, . . . , Ai0i1···i′N ,Ai0i1···iN 1, Ai0i1···iN 2}.

Then S has N + 1 elements, which are all monotone pull-backs of Ai0 . For each S ∈ S,
let k(S) be the minimal positive integer such that f k(S)(c(S)) ∈ S for some c(S) ∈ ω(c)

and let A(S) be the pull-back of S along the orbit {f j (c(S))}k(S)j=0. Then A(S) is a child of
A1 = K (if i0 = 1) or L (if i0 = 2). It is easy to see that for S, S′ ∈ S with S �= S′, A(S)

and A(S′) are different. So we know that either K or L has at least N + 1 children, which
is a contradiction. ✷
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