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SUMMARY

Transforming growth factor β1 (TGF-β1) is one of the key cytokines involved 

in liver fibrosis. The level of TGF-β1 is significantly increased during liver 

fibrogenesis, and TGF-β1 is capable of increasing the deposition extracellular 

matrix (ECM) through different mechanisms. The importance of TGF-β1 in 

liver fibrosis makes it a potential target of anti-fibrotic therapies. Recently 

systems biology has been introduced to study TGF-β1 regulation in liver 

fibrosis [1,2]. A bistable model of the TGF-β1 activation network with 

multiple activators was built and validated in an in vitro model of liver 

fibrosis. 

The TGF-β1 bistable activation model has explained the ability of PLS to 

negatively regulate TGF-β1 in a network system and cause a bistable switch of 

the level of TGF-β1. Understanding the TGF-β1 bistability and mechanisms of 

controlling the switch between its two steady  states is important for designing 

anti-TGF-β1 therapies in liver fibrosis and other TGF-β1 related diseases. In 

this thesis, we use computational modeling and simulation to analyze the 

dynamics of TGF-β1 bistability. We aim to understand the mechanisms of how 

different factors could influence the steady states of TGF-β1 and the 

mechanisms of the switching of the bistable system.

In our first  study of bistable TGF-β1 activation, we studied factors that could 

influence the switching of the steady states of TGF-β1. We extended the TGF-

β1 bistable activation model to include calcium and Krüppel-like factor 2 
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(KLF2). We showed that increased levels of extracellular calcium would cause 

high levels of TGF-β1, resembling a fibrotic state, and increased levels of 

KLF2 would eradicate bistability  and preclude the fibrotic steady-state. 

Simulations have also shown that activation of KLF2 was able to change the 

sign of feedback in the PLS − TGF-β1 − PAI1 loop. 

The study of calcium and KLF2 revealed that the regulation of bistable 

systems should be considered on a system level. To achieve a general 

understanding of mechanisms of TGF-β1 bistable switch, in our second study, 

we used perturbation analysis to study  the switch of the TGF-β1 bistable 

system under single and combination species perturbation. We perturbed 

individual and pairwise species to survey the additive and synergistic 

combinations in the TGF-β1 activation network model, and identified pairs of 

targets with strong synergistic effects. To account for the model uncertainty 

and parameter uncertainty in our predictions, we performed parameter 

perturbation analysis of combination species perturbation. Parameter 

perturbation analysis revealed positive correlation between synergism and 

relative robustness throughout the TGF-β1 activation network. Correlation 

between synergism and relative robustness was also seen when repeating the 

perturbation analysis on multiple bistable models from different areas of 

biology. 

Overall, through computational modeling and analysis of network dynamics  

we achieved a deeper understanding of TGF-β1 bistability and the synergism 
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and robustness of TGF-β1 regulation. The insights generated from TGF-β1 

bistable model in liver fibrosis contexts could have potential applicability to 

other TGF-β1 related diseases and other bistable systems. 
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CHAPTER 1: INTRODUCTION

1.1 Towards Systems Level Understanding of Biology

       1.1.1 Systems biology

        The remarkable contribution of molecular biology in the 20th century 

was the identification of the  functions of numerous individual genes and 

proteins on the molecular level. However, it  has long been known that 

biological systems are much more complex than the sum of their individual 

components. Aiming at  systems level understanding of biology with molecular 

level resolution, the field of “systems biology” emerged around the year 2000 

[3]. Since then, systems biology has become an active inter-disciplinary 

research area. It integrates genomics, molecular biology, high throughput 

experimental technology, computational modeling and simulation, and starts 

to reveal biological structures and functions at a new level.

To reach systems level understanding, the focus of systems biology has 

included (1) identification of structures of biological systems (e.g. identifying 

gene regulatory relationships, protein-protein interactions in signal 

transduction pathways, and gene regulatory networks); (2) analysis of 

behaviors of biological systems (e.g. the sensitivity  of a system to perturbation 

of its components, and the transient behavior after perturbation); and (3) 

designing methods to control biological systems (e.g. controlling the level of 

important proteins in different  diseases, and controlling the status of cells 

including apoptosis, differentiation). Due to the complexity of the problems 
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and the amount of data being generated, mathematical and computational 

methods have become an essential component of systems biology. To integrate 

and interpret data generated from different sources, mathematical and 

computational methods that have been developed and under development 

include but are not limited to, database integration methods, bioinformatics 

methods, dynamical systems methods, network analysis methods.

Ordinary differential equation (ODE) based chemical reaction networks 

(CRN) represents one of the most important computational methods in 

systems biology [4]. ODE-CRN translates a diagram of regulatory 

relationships between genes or proteins into a quantitative dynamic model. It 

not only enables the investigation of the dynamic behavior of biological 

systems based on previously  discovered individual components, but also 

enables designing of in silico experiments to study the system behaviors under 

different conditions, which allows identification of methods to control the 

system. In the areas where individual components of complex networks were 

well studied, such as signal transduction cascades, metabolism pathways, and 

gene regulatory networks, ODE-CRN methods have been intensively applied. 

        1.1.2 Chemical reaction networks

        A chemical reaction network is composed of a set of chemical reactions 

(Figure 1.1A). Chemical reaction networks typically  contains three essential 

parts, species (or “nodes”, sometimes “components”),  interactions (or 
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“structure”, “topography”) and parameters (including “reaction rate 

constants”, “initial conditions”, and other constants). The species of a 

chemical reaction network are usually represented by its biological name 

(gene name, protein name). For each chemical reaction, the direction of 

reaction is represented by an arrow pointing from reactants to products. The 

reactions rates are usually described by the mass-action law.

(a) (b) (c) (d)

reactions

ODEs

A kd

kp
⎯ →⎯← ⎯⎯ ∅;

d [A]
dt

= kp − kd  [A];
A kd

kp
⎯ →⎯← ⎯⎯ ∅;

d [A]
dt

= kp − kd  [A];

B kp⎯ →⎯ A;
A kd⎯ →⎯ ∅;

d [A]
dt

= kp [B]− kd  [A];B kp⎯ →⎯ A;
A kd⎯ →⎯ ∅;

d [A]
dt

= kp [B]− kd  [A];

C +D kb⎯ →⎯ E;

d [E]
dt

= kb [C] [D];

d [C]
dt

= −kb [C] [D];

d [D]
dt

= −kb [C] [D];

C +D kb⎯ →⎯ E;

d [E]
dt

= kb [C] [D];

d [C]
dt

= −kb [C] [D];

d [D]
dt

= −kb [C] [D];

C +D kb

k _b
⎯ →⎯⎯← ⎯⎯⎯ F;

d [F ]
dt

= kb [C][D]− k _d  [F ];

d [C]
dt

= −kb [C][D]+ k _d  [F ];

d [D]
dt

= −kb [C][D]+ k _d  [F ];

C +D kb

k _b
⎯ →⎯⎯← ⎯⎯⎯ F;

d [F ]
dt

= kb [C][D]− k _d  [F ];

d [C]
dt

= −kb [C][D]+ k _d  [F ];

d [D]
dt

= −kb [C][D]+ k _d  [F ];

A B
(i)        r = k1 [A]
(ii)       r = k2 [A]
(iii)      r = k3 [B]
(iv )      r = k4 [C] [D]
(v )       rf = k5 [C] [D],  rr = k _5 [F ]

∅ k1⎯ →⎯ A                  (i)
A k2⎯ →⎯ B                   (ii)
B k3⎯ →⎯ ∅                  (iii)
C +D k4⎯ →⎯ E             (iv )

C +D k5

k _5
⎯ →⎯⎯← ⎯⎯⎯ F           (v )

C

Figure 1.1: Chemical reaction networks and their ODE form. (A) An 
example chemical reactions network with six species (i.e. [A,B,C,D,E,F]), 
five reactions (i.e. i-v) and six rate constants (i.e. [k1,k2,k3,k4,k5,k_5]. (B) 
The mass-action reaction rate (r) of the network in (A), rf means “forward” 
rate, and rb means backward rate. (C) Several simple network models and 
their ODE forms. (a) degradation and constant production. (b) degradation and 
production by  upstream molecules. (c) irreversible binding reaction between 
two substrates. (d) reversible biding reaction between two substrates.

The mass-action law assumes reactions happen in a confined space (i.e. the 

volume of the reaction is fixed), and the number of molecules for each species 

is large enough so that the concentration can be treated as a continuous 
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variable. The mass-action law states that  “the rate of a chemical reaction is 

proportional to the product of the concentration of the reactants”. For example, 

in Figure 1.1B, the reaction rate of reaction (ii) can denoted as k2[A]; and the 

reaction rate of reaction (iv) can be denoted as k4[C]*[D]. In these terms, k2 

and k4 are constants of proportionality, and are also called (mass action) rate 

constants. Depending upon the number of reactants, the reaction rates can be 

of zero order, first order, or second order. 

The mass-action law allows us to build mathematical models of chemical 

reaction networks in the form of ordinary differential equations (ODEs). A 

chemical reaction network composed of N species can generate a system of N 

ordinary  differential equations, with each equation describing the temporal 

dynamics of the concentration of one species. The time derivative of the 

concentration of each species equals to the sum of the mass-action-law 

reaction rates from all reactions this species is involved in. With a set of initial 

concentrations of all species, the dynamics of a network can be simulated.

Figure 1.1C shows several simplest chemical reaction networks, and their 

ODE forms. These simplest networks are basic modules of much more 

complicated networks. For example, in signaling transduction network 

models, the production and degradation of proteins are mainly  modeled in 

forms of model (a) if there is a constant production rate, or equation (b) if it is 

dependent upon some upstream species. The equation (c) and (d) are the 

general form of two substrate reactions, either reversible (c) or irreversible (d). 
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        1.1.3 Analysis of dynamics of network models

        The ODE form of chemical reaction networks makes complex dynamic 

analysis possible. With an ODE model of a network, one can analyze the 

steady  state behavior and the transient dynamics of the system. ODE models 

also allows us to analyze the dependence of the behavior of the system on 

certain rate constants (i.e. bifurcation analysis) and the behavior of the systems 

when there is random change in the whole set of rate constants (i.e. sensitivity/

robustness analysis).

Steady State Analysis:

Steady  state behavior is an important type of long term asymptotic behavior of 

biological network models.  A network model reaches a steady state when the 

concentrations of all species make the overall reactions rates (time derivative) 

of each species zero (Figure 1.2A-B). The list of concentrations of all species 

is called a steady state (vector) of the system. A long term reachable steady 

state is called a stable steady state. When a system is at its stable steady state, 

small perturbations can cause some transient effects but won’t change the long 

term steady state of the system. The other type of steady state is an unstable 

steady  state. Although concentrations of unstable steady  states also generate 

zero net reaction rates, tiny  perturbations from it would lead the system further 

away. Therefore, an unstable steady state is long term unreachable.
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Figure 4.18: Continuation diagram. The steady state of species S1, from model (4.1), is shown as a function
of the value of parameter k1. In an experimental context, this would be called a dose-response curve. Other
parameter values as in Figure 4.2.

Exercise 4.4.1 Consider the differential equation

d

dt
x(t) = (a− 1)x(t).

By determining the sign of the rate of change dx
dt for positive and negative values of x, verify that

the steady state at x = 0 is stable if a < 1, and unstable if a > 1. The parameter value a = 1 is
thus a bifurcation point for this system. !

Figure 4.19, shows a bifurcation diagram for the symmetric reaction network modelled by (4.2).
The phase plots in Figure 4.19A show the nullclines at four different values of parameter k1. As k1

varies, the s1-nullcline (gray curve) shifts, changing the number of points at which the nullclines
intersect. The bifurcation diagram in Figure 4.19B shows the steady-state behaviour of [S1] as k1

varies. The points corresponding to each subplot in Panel A are marked. This S-shaped bifurcation
curve is characteristic of bistable systems. The points where the bifurcations occur (at k1 = 16.1
and k1 = 29.0) are called saddle-node bifurcations (because they occur when an unstable saddle
point and a stable node come together). Between these bifurcation points, three steady states
co-exist.

Figure 4.19B reflects the ability of this bistable system to act as a switch: an input that pushes
parameter k1 back and forth past the saddle-node bifurcations will toggle the system between low-
and high-[S1] states. The intermediate bistable range introduces a lag into this switching action;
over this interval, the state is not uniquely determined by the value of k1, it also depends on the
previous condition. The sketch in Figure 4.20A illustrates this behaviour. If the bistable range
is entered from the high state, then the system remains in the high state over this interval. The
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Figure 4.19: Bifurcation diagram for model (4.2). A. Nullclines at various values of k1. As k1 increases,
the s1-nullcline (gray curve) shifts: (i) at low k1 there is a single steady state (low [S1], high [S2]); (ii)
at a higher value of k1, a new steady state appears when a new intersection appears; (iii) at still higher
values, three intersection points are exhibited—the system is bistable; (iv) finally, at high k1 values, there
is again a single intersection point (high [S1], low [S2]). B. Bifurcation diagram showing the S1 steady
state concentration as a function of the value of parameter k1. At low and high k1 values, the system is
monostable and exhibits a single stable steady state (solid curves). Over a mid-range interval, the two stable
steady states co-exist, separated by an unstable steady state (dashed curve). The k1 values at which steady
states appear or disappear are saddle-node bifurcations. The k1 values represented in Panel A are indicated.
Parameter values: k2 = 20 (concentration · time−1), K1 = K2 = 1 (concentration), k3 = k4 = 5 (time−1),
n1 = n2 = 2. Units are arbitrary.

opposite holds if the bistable region is entered from the low state. This ‘path-dependent’ property
is referred to as hysteresis. As the system cycles back and forth between the two states, it follows a
hysteresis loop, in which transitions between the two states occur at two separate threshold values
(i.e. at the two bifurcation points). Some switches are irreversible. As shown in Figure 4.20B, if
one of the two saddle-node bifurcations is outside the range of relevant parameter values, then the
system executes a one-way transition between the two states.

Next, we turn to the oscillatory model (4.10). Recall that for this model, oscillatory behaviour
is dependent on the degree of cooperativity n. A bifurcation diagram for this system is shown in
Figure 4.21. For small values of n, a single stable steady state is shown. At n = 2.4 a change
occurs—the steady state becomes unstable, and a limit cycle appears. The bifurcation diagram
shows both the change in stability and the upper and lower bounds of the limit cycle oscillations.

The bifurcation in Figure 4.21 occurs when the stability of the steady state changes. From our
discussion of linearized stability analysis (Section 4.2.2), we know that this change occurs when
eigenvalues of the Jacobian at the steady state transition from having negative real part (stable)
to positive real part (unstable). This steady state in model (4.10) is a spiral point, and so the
eigenvalues are complex numbers. The bifurcation in Figure 4.21, in which a pair of complex-
valued eigenvalues transition between negative and positive real part, is called a Hopf bifurcation.

Bifurcation diagrams provide insight into the robustness of system behaviour. A behaviour is
called robust if it is not significantly affected by disturbances. This is indicated by a bifurcation
diagram: if a system is operating far from any bifurcation points, then perturbations are unlikely
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D

Figure 1.2: Dynamics of network models. (A) Illustration of the 
concentration of one species approaching steady state in monostable system 
[5]. (B) Illustration of the concentrations of one species approaching steady 
states in bistable system [5]. (C) Illustration of continuation diagram [6]. (D) 
Illustration of bifurcation diagram [6].

Systems that  have only  one stable steady state are called monostable systems 

(Figure 1.2A), while systems with more than one stable steady states are 

called multistable systems. Specifically, systems with two stable steady  states 

are called bistable systems (Figure 1.2B). Bistability  is of great importance in 

systems biology since many  biological systems show bistable behavior.         

Bistability produces important biological behaviors such as allowing diverse 

inputs to converge toward a single binary (yes/no) decision, “remembering” a 

previously  chosen steady state over time, remaining at the same steady state in 
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the presence of random noise, and switching between two states with 

ultrasensitive response to a particular stimulus.  Some biological effects are 

binary  at the level of single cells but graded-response for a population of cells, 

and some bistable effects have binary output even for a population of cells [1].  

Biological implications of bistability will be discussed in detail in Chapter 3. 

Bifurcation Analysis:

The steady  state concentrations of a system usually changes when there is a 

change in the rate constants. The diagram that depicts a steady state 

concentration versus the value of a rate constant is called a continuation 

diagram (Figure 1.2C). Sometimes, the variation in model parameters can 

cause a qualitative change in the model behavior, for example the number of 

steady  states.  The values of the parameters where such qualitative changes 

occur are called bifurcation points. A continuation diagram containing 

bifurcation points is called bifurcation diagram (Figure 1.2D).

Bifurcation analysis suggests the robustness of the behavior of the system. 

Systems with parameter values far from bifurcation points are less likely to 

have qualitative change in behaviors upon perturbation. While systems near 

the bifurcation points tend to have dramatic change in their behaviors.

Robustness Analysis:

Robustness is a ubiquitous property  of biological systems, which means the 

ability  of maintaining functions under external disturbances. When building a 
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network model of a certain biological system, robustness analysis is necessary 

for evaluating the model’s validity and investigation of the robustness of the 

real biological system.

Parameter sensitivity  analysis is a widely  used method of robustness analysis. 

Parameter sensitivity analysis evaluates the dependence of system behavior on 

the whole parameter set. Parameter sensitivity analysis can be divided into two 

types, global sensitivity  analysis and local sensitivity  analysis. Global 

sensitivity analysis deals with parameter variations in a wide range. It usually 

applies a sampling strategy  to the whole parameter space and use statistics for 

analysis. Local sensitivity analysis deals with small parameter variations, and 

it  usually  employs analytical or numerical methods for sensitivity 

quantification. 

        1.1.4 Network models for disease and therapy

        ODE based network models have been used to study  various biological 

systems, including Epidermal Growth Factor (EGFR) signaling [7], 

Extracellular-signal-regulated kinase (ERK) signaling [8], Akt signaling [9]. 

Many of these biological networks are involved in disease contexts and are 

becoming an important tool for drug target identification. For example, Wnt 

signaling and the MAPK signaling pathway have been used to identify 

potential drug targets for embryonic development, cancer [10,11].
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Another important potential value of network models is the designing of 

combination therapy [10,12]. Due to the large number of nodes in many 

biological networks, and the lack of proper chemical reagents to target them, it 

is often impossible to evaluate all possible target combinations experimentally. 

Even in cases when experimental exploration is possible, the cost can be 

extremely high. However, when a mathematical network model has been 

validated in a disease context, it  can be used for virtual screening of all types 

of combination targeting strategies. The dose effect of each drug and their 

combination effect (synergy, additivity, antagonism) can be evaluated 

computationally with much lower cost (see Chapter 3 and Figure 3.S1 for 

more details on the definition of synergy, additivity and antagonisms). 

Recently, mathematical models have been applied to the field of liver fibrosis 

[1,2]. These studies applied the dynamic systems modeling method to study 

the molecular networks underlying liver fibrosis. These studies identified an 

important activation network of a key regulator of liver fibrosis, transforming 

growth factor β1 (TGF-β1). These studies laid the foundation for network 

level analysis of TGF-β1 regulation, and create opportunity for in silico 

exploration of combination targeting of TGF-β1 for the treatment of liver 

fibrosis.
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1.2 Towards Systems Level Understanding of TGF-β1 regulation in liver 

fibrosis

        1.2.1 Liver fibrosis and TGF-β1

        Liver fibrosis is characterized by the accumulation of extracellular matrix 

(ECM), especially  collagen caused by various chronic injuries, including 

hepatic B virus (HBV), hepatic C virus (HCV), alcoholic liver disease and 

NASH [13]. The late stage of liver fibrosis is called cirrhosis. Hepatic stellate 

cells (HSCs) are the main producers of ECM during liver fibrosis. In a normal 

state, HSCs store vitamin A and reside in the space of Disse. HSCs get 

activated during liver injury and activated HSCs show high rate of 

proliferation, and ECM production (Figure 1.3) [14].

′
α

′

α

α
α

× α

×

Figure 1.3: Changes of liver during liver fibrosis. (A) Normal liver. (B) 
Fibrotic liver. [13].
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Many cytokines and growth factors are involved in the process of liver fibrosis 

[13]. TGF-β1 is one of the most important of them (Figure 1.4) [15]. It has 

been shown that TGF-β1 can increase ECM  protein levels by both enhancing 

their production through cell signaling and reducing their degradation through 

the regulation of the level of MMPs and TIMPs. TGF-β1 has been shown to be 

able to activate HSCs and enhance their ECM production level. In the liver, 

TGF-β1 is able to down-regulate proliferation of hepatocyte and induce 

apoptosis of hepatocytes. These properties make TGF-β1 a potential target of 

anti-fibrotic therapy [16]. Several anti-TGF-β1 strategies have been designed 

for the treatment of liver fibrosis, including hindering TGF-β1’s binding to 

receptors, block extracellular activation of TGF-β1, interfering downstream 

TGF-β1 signaling. 
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higher TGF-!1 expression in activated HSC; (ii) potency of
TGF-!1 to upregulate ECM expression; (iii) higher expres-
sion of TGF-! receptors on HSC; (iv) TGF-!1 increases the
expression of TIMP-1.5-7 TGF-!1 in the liver is secreted
by hepatocytes, kupffer cells, stellate cells, endothelial cells
and infiltrating mononuclear cells.5

Strategies aimed at disrupting TGF-!1 expression or
signaling pathways are extensively being investigated be-
cause blocking this cytokine may not only inhibit matrix
production but also accelerate its degradation.8 Animal
experiments using different strategies to block TGF-!1 have
demonstrated significant antifibrotic effect for liver fibrosis.6,9-14

RNA interference (RNAi) is the phenomenon in which
siRNA of 21-23 nt in length silences a target gene by
binding to its complementary mRNA and triggering its
degradation. Potent knockdown of the target gene with high
sequence specificity makes siRNA a promising therapeutic
strategy.2 Compared to antisense oligonucleotides, neutral-
izing antibodies and soluble TGF-! receptor strategies,
siRNA targeting TGF-!1 has the potent knockdown of the
target gene with high sequence specificity. siRNAs targeting
other pathways have been proven effective in treating liver
fibrosis15-18 and renal fibrosis.19 There are three ways to
deliver siRNA: synthetic duplex, plasmid and viral vectors.
While viral vectors give high transduction efficiency, their
immune reactions limit their application in therapeutics. On
the other hand, plasmid DNA complexes with cationic
liposomes may not pass through the sinusoidal gaps, because
these fenestrae get lost during liver fibrosis. In contrast, low
molecular weight synthetic duplex siRNA is expected to pass
through the sinusoidal gaps in fibrotic liver, and thus it may
be an ideal candidate for treating liver fibrosis.

In this study, we designed and screened ten chemically
synthesized siRNAs targeting different regions of TGF-!1
mRNA and then converted the most potent siRNA sequences
into shRNA via cloning into pSilencer1.0 vector. Both
synthetic siRNAs and shRNA expression plasmids were
tested in HSC-T6 cells for gene silencing and therapeutic
efficacy.

Materials and Methods
Materials. Dulbecco’s modified Eagle’s medium (DMEM),

penicillin G (5000 U/mL), trypsin-EDTA, Trizol, DNase I,

(7) Knittel, T.; Mehde, M.; Kobold, D.; Saile, B.; Dinter, C.;
Ramadori, G. Expression patterns of matrix metalloproteinases
and their inhibitors in parenchymal and non-parenchymal cells
of rat liver: regulation by TNF-alpha and TGF-beta1. J. Hepatol.
1999, 30 (1), 48–60.

(8) Friedman, S. L. Liver fibrosissfrom bench to bedside. J. Hepatol.
2003, 38 (Suppl. 1), S38–53.

(9) Qi, Z.; Atsuchi, N.; Ooshima, A.; Takeshita, A.; Ueno, H.
Blockade of type beta transforming growth factor signaling
prevents liver fibrosis and dysfunction in the rat. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96 (5), 2345–9.

(10) de Gouville, A. C.; Boullay, V.; Krysa, G.; Pilot, J.; Brusq, J. M.;
Loriolle, F.; Gauthier, J. M.; Papworth, S. A.; Laroze, A.;
Gellibert, F.; Huet, S. Inhibition of TGF-beta signaling by an
ALK5 inhibitor protects rats from dimethylnitrosamine-induced
liver fibrosis. Br. J. Pharmacol. 2005, 145 (2), 166–77.

(11) George, J.; Roulot, D.; Koteliansky, V. E.; Bissell, D. M. In vivo
inhibition of rat stellate cell activation by soluble transforming
growth factor beta type II receptor: a potential new therapy for
hepatic fibrosis. Proc. Natl. Acad. Sci. U.S.A. 1999, 96 (22),
12719–24.

(12) Okuno, M.; Akita, K.; Moriwaki, H.; Kawada, N.; Ikeda, K.;
Kaneda, K.; Suzuki, Y.; Kojima, S. Prevention of rat hepatic
fibrosis by the protease inhibitor, camostat mesilate, via reduced
generation of active TGF-beta. Gastroenterology 2001, 120 (7),
1784–800.

(13) Arias, E.; Anderson, R. N.; Kung, H. C.; Murphy, S. L.; Kochanek,
K. D. Deaths: final data for 2001. Natl. Vital Stat. Rep. 2003, 52
(3), 1–115.

(14) Kim, K. H.; Kim, H. C.; Hwang, M. Y.; Oh, H. K.; Lee, T. S.;
Chang, Y. C.; Song, H. J.; Won, N. H.; Park, K. K. The antifibrotic
effect of TGF-beta1 siRNAs in murine model of liver cirrhosis.
Biochem. Biophys. Res. Commun. 2006, 343 (4), 1072–8.

(15) Li, G. M.; Shi, Y.; Li, D. G.; Xie, Q.; Guo, Q.; Jin, Y. X. [Effect
of small interfering RNA targeting connective tissue growth factor
on the synthesis and secretion of extracellular matrix in hepatic
stellate cells]. Zhonghua Gan Zang Bing Za Zhi 2004, 12 (9),
526–9.

(16) Zhou, X.; Murphy, F. R.; Gehdu, N.; Zhang, J.; Iredale, J. P.;
Benyon, R. C. Engagement of alphavbeta3 integrin regulates
proliferation and apoptosis of hepatic stellate cells. J. Biol. Chem.
2004, 279 (23), 23996–4006.

(17) Lindquist, J. N.; Parsons, C. J.; Stefanovic, B.; Brenner, D. A.
Regulation of alpha1(I) collagen messenger RNA decay by
interactions with alphaCP at the 3′-untranslated region. J. Biol.
Chem. 2004, 279 (22), 23822–9.

(18) Song, E.; Lee, S. K.; Wang, J.; Ince, N.; Ouyang, N.; Min, J.;
Chen, J.; Shankar, P.; Lieberman, J. RNA interference targeting
Fas protects mice from fulminant hepatitis. Nat. Med. 2003, 9
(3), 347–51.
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Tabata, Y. Delivery of plasmid DNA expressing small interference
RNA for TGF-beta type II receptor by cationized gelatin to prevent
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Figure 1. Role of TGF-!1 in liver fibrosis. TGF-!1 is the
most potent single profibrogenic factor involved in
initiation and maintenance of fibrogenesis in the liver.
TGF-!1 accelerates activation of quiescent hepatic
stellate cells (HSCs), upregulates collagen expression,
and decreases collagen degradation.

TGF-!1 Gene Silencing for Treating LiVer Fibrosis articles
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Figure 1.4: Roles of TGF-β1 in liver fibrosis. [17].

TGF-β1 is secreted and stored in extracellular space in an inactive form, called 

latent-TGF-β1 (LTGF-β1) [18]. LTGF-β1 is prevented from binding to TGF-

β1 receptors by  the Latency Associated Peptide (LAP). TGF-β1 latency gives 

opportunity for regulation of TGF-β1 activity in different cellular conditions. 

A number of activators of TGF-β1 have been identified, including integrin, 

pH, reactive oxygen species (ROS), proteases and metalloprotease, and 

thrombospondin-1 (TSP1) (Figure 1.5).
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Figure 1.5: TGF-β1 latency and its activation by a number of activators.

        1.2.2 Activation of TGF-β1 by plasmin (PLS) and thrombospondin-1 

(TSP1)

        Plasmin (PLS) and TSP1 are two major activators of TGF-β1 in the liver. 

TSP1 is a matrix glycoprotein produced by many cell types. In a fibrotic liver, 

TSP1 is mainly produced by activated HSCs. TSP1 activates TGF-β1 by 

conformational change of LTGF-β1 and releasing active TGF-β1. It has been 

shown that TSP1 is able to activate TGF-β1 in various contexts [19,20]. In 

liver fibrosis, TSP1 is used as a marker of fibrosis due to the strong correlation 

of TSP1 level and fibrosis progression in vivo. Furthermore, blocking the 

TSP1 and TGF-β1 interaction has been shown to be able to prevent liver 

fibrosis in animal studies [21]. 
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Plasmin is a serine protease that degrades many  proteins. In the liver, plasmin 

is mainly produced by hepatocytes. Plasmin activates TGF-β1 by cleavage of 

LAP in the LTGF-β1 complex [22]. However, despite the evidence of 

activation of TGF-β1 by plasmin in a cell free system, plasmin has been 

shown to down-regulate TGF-β1 activation in vitro and in vivo. A number of 

studies showed plasmin has anti-fibrotic effects, partly  due to its anti-TGF-β1 

activation property [23,24]. 

        1.2.3 Bistable TGF-β1 activation by PLS and TSP1 in liver fibrosis

        The controversial effect  of PLS on TGF-β1 in a cell free system and in 

vivo suggests that TGF-β1 activation should be discussed on a system level, 

taking into account the effects of multiple regulators. Venkatraman et al have 

studied TGF-β1 activation in an in vitro model of liver fibrosis by  considering 

both the PLS and TSP1 activation pathway [1]. A mathematical model of 

TGF-β1 activation by PLS and TSP1 was built to help understand the effect of 

anti-TGF-β1 effect  of PLS. This model includes the activation of TGF-β1 by 

PLS and TSP1, and also includes the feedback from TGF-β1 to PLS and 

TSP1. The feedback from TGF-β1 to PLS is a negative feedback since TGF-

β1 can increase the expression of plasminogen activator inhibitor-1 (PAI1). 

The feedback from TGF-β1 to TSP1 is a positive feedback since TGF-β1 can 

increase the expression of TSP1. This model includes the mutual antagonism 
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between PLS and TSP1 as well, meaning PLS can cleave TSP1 and TSP1 can 

inhibit the activity of PLS (Figure 1.6A). 

PLS has a very short half-life (poor stability), and the
precursor form of PLG is more stable, we administered
PLG instead of PLS in the coculture. In these cocultures
(which start with high levels of active TGF-b1), adminis-
tering PLG caused the level of TGF-b1 to decrease
(Fig. 5 A). Low doses of PLG (0–0.125 mg/mL) were not
effective at decreasing TGF-b1, doses above the threshold
of 0.125 mg/mL were capable of decreasing TGF-b1, and
very high doses above 3 mg/mL caused no further decrease.
Corresponding to the decrease in TGF-b1, there was also an
increase in the cleavage of TSP1 (Fig. 5 B). The dose
response of TGF-b1 to PLG was cooperative (with a Hill
coefficient of 1.7), consistent with the ultrasensitivity seen
in simulations. The decrease in TGF-b1 activation was
due to PLS enzymatic activity, because inhibition of PLS
activity using 1 mg/mL aprotinin in an HSC-predominant
coculture (Fig. 5 C) was able to rescue the high activation
state of TGF-b1.

Hysteresis in TGF-b1 activation in coculture

Given that the coculture experiments with addition of PLG
showed an overall ultrasensitive decrease in TGF-b1 acti-
vation, we next sought to test the model predictions of bist-
ability in TGF-b1. A robust indication of bistability is

hysteresis, or the dependence of a system on its history
(46). We tested whether the TGF-b1 levels depended on
the previous system state, but instead of varying a reaction
rate parameter as done in silico, we varied the PLS concen-
tration in vitro (Supporting Material). To increase PLS, we
added purified protein, and to decrease PLS, we inhibited
UPA with anti-UPA mAB. Fig. S3 shows that addition of
anti-UPA mAB into the HSC-predominant coculture
caused PLS levels to drop to a lower steady state within
3 hr.

To test for hysteresis, we initiated the experimental model
at different states by giving two treatments in an opposite
order. One batch of HSC-predominant cocultures first
received anti-UPA mAB to drive down PLS levels
(Fig. S4 and Fig. S5), followed by addition of exogenous
PLS (Fig. 6 A). The other batch of HSC-predominant cocul-
tures received PLS first (Fig. S6), followed by anti-UPA
treatment (Fig. 6 B). In both cases, we measured the final
TGF-b1 levels for different doses of PLS.

If the system is monostable, then the steady-state level of
TGF-b1 will depend only on the dose of PLS and not on the
going-up or coming-down initialization of the system.
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Fig. 4C, the parameter of interest was fixed while all others parameters were
randomly perturbed by520% or550% from the nominal values.

RESULTS

Construction of the computational model

We constructed a computational model of PLS- and TSP1-
mediated activation of TGF-b1 based on findings in the
literature (Fig. 1). PLS activates TGF-b1 from LTGF-b1
through cleavage (15), whereas TSP1 activates TGF-b1 by
binding to LTGF-b1 and causing a conformational change
(7,36). Active TGF-b1 exerts regulation over PLS and
TSP1 through gene expression. TGF-b1 is known to posi-
tively regulate TSP1 synthesis (13,14). TSP1 and TGF-b1
have an autocrine mechanism in which active TGF-b1
increases TSP1 expression, and more TSP1 protein
increases the activation of LTGF-b1. TGF-b1 also maintains
a negative regulation over PLS by gene expression of PAI-1
(37). PAI-1 is an inhibitor of both single-chain urokinase
plasminogen activator (scUPA) and two-chain urokinase
plasminogen activator (tcUPA) (38,39). Production of PLS
from the inactive precursor PLG is initiated by scUPA,
which nicks at the Arg560-Val561 bond of PLG (30,40).

scUPA is a zymogenic precursor with little enzymatic
activity, but once it activates PLS, PLS can cleave scUPA
to the fully active tcUPA, which has higher catalytic effi-
ciency. Also included in the computational model is a-2-
macroglobulin (A2M), which is a specific inhibitor of PLS
activity (41). Finally, interactions of mutual antagonism
occur between PLS and TSP1, in which PLS degrades
TSP1 (22), and TSP1 inhibits PLS (23,42). When PLS
and TSP1 form a complex, two reactions are possible: the
complex may be degraded or PLS may cleave TSP1 (equiv-
alent in the model to degrading TSP1). Activation of TGF-
b1 by integrins and all other mechanisms was treated as
a single pooled reaction labeled ‘‘other’’. Synthesis of
precursor proteins and inactive LTGF-b1 was provided at
a constant rate. All of these known phenomena were incor-
porated to form the interaction network in Fig. 1 A. The
reaction equations are shown in Table 1. Rate parameters
were adapted from the literature when available, and
unknown rates were estimated as shown in Table 2. The
ordinary differential equations are listed in Table S1.
Fig. 1 B shows a simplified schematic highlighting the inter-
play between the activators (i.e., TSP1 and PLS).

PLS negatively regulates TGF-b1 activation

To explore model steady states for different initial condi-
tions, the model was simulated from 100 random initial
conditions of all species. PLS concentrations, followed

TABLE 2 Parameters and references for the PLS-TSP1-
mediated TGF-b1 activation model

Reaction equation terms Parameters References

v1 ¼ keff1*[scUPA]*[PLG] keff1 ¼ 0.035 mM"1s"1 (30)
v2 ¼ keff2*[PLS]*[scUPA] keff2 ¼ 0.35 mM"1s"1 (30)
v3 ¼ keff3*[tcUPA]*[PLG] keff3 ¼ 1.4 mM"1s"1 (30)
v4 ¼ k1*[PLS]*[LTGFb1] k1 ¼ 0.035 mM"1s"1 (55)
v5 ¼ k2*[TSP1]*[LTGFb1] k2 ¼ 24.5 mM"1s"1 (55)
v6 ¼ kothers*[LTGFb1] kothers ¼ 0.005 s"1 Variable
v7 ¼ kp1*[TGFb1] kp1 ¼ 0.35 s"1 Variable
v8 ¼ kp2*[TGFb1] kp2 ¼ 1.05 s"1 Variable
v9 ¼ k3*[TSP1]*[PLS] k3 ¼ 17.5 mM"1s"1 (23)
v10 ¼ k-3*[TSP:PLS] k-3 ¼ 0.0245 s"1 (23)
v11 ¼ k4*[TSP:PLS] k4 ¼ 0.35 mM"1s"1 (23)
v12 ¼ k5*[A2M]*[PLS] k5 ¼ 24.5 mM"1s"1 (56)
v13 ¼ k-5*[A2M:PLS] k-5 ¼ 0.0105 s"1 (56)
v14 ¼ k6*[tcUPA]*[PAI1] k6 ¼ 0.035 mM"1s"1 (39)
v15 ¼ k-6*[tcUPA:PAI1] k-6 ¼ 0.0035 s"1 (39)
v16 ¼ k7*[scUPA]*[PAI1] k7 ¼ 0.07 mM"1s"1 (39)
v17 ¼ k-7*[scUPA:PAI1] k-7 ¼ 0.0035 s"1 (39)
v18 ¼ k8*[TSP:PLS] k8 ¼ 24.5 s"1 Variable
v19 ¼ k9*[TGFb1] k9 ¼ 0.21 s"1 (24)
medeg medeg ¼ 0.0525 s"1 (57,58)
mpdeg mpdeg ¼ 0.0175 s"1 (56,59)
a1 a1 ¼ 0.0035 s"1 (58,60)
a2 a2 ¼ 0.035 s"1 (58,60)
[scUPA, PLG, A2M,

LTGFb1]
[1 nM, 3 nM, 5 nM, 1 nM];

all other species had an
initial concentration of 0 nM

(61,62)

Term vi denotes the velocity of the reaction corresponding to the arrow
labeled i in Fig. 1 A. Complete differential equations appear in Table S1.
Parameters listed as variable were not available from the literature, so we
instead provide values that are capable of inducing bistability in the system.
The last row indicates the initial concentrations used for simulations.
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terms in Table 2 and Table S1. (B) Schematic of the interactions between
the main species of the model.
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over time, revealed convergence to two steady states, de-
pending on the starting concentration of the species
(Fig. 2 A). To test whether transition between the two steady
states was ultrasensitive, simulations were performed with
different values of PLS catalytic efficiency (keff2) but
with constant initial conditions. With increasing keff2 values
(i.e., increased proteolytic activity of PLS), PLS steady-state
levels were seen to switch from a lower to a higher concen-
tration (Fig. S2), whereas TGF-b1 (Fig. 2 B) and TSP1
(Fig. 2 C) decreased from higher to lower steady states.
The change of steady states was ultrasensitive, meaning
that small changes in keff2 were able to cause abrupt shifts
between protein steady states. Increasing PLS keff2 caused
a decrease in the steady-state level of TSP1 (Fig. 2 C).
The inverse correlation between TSP1 and PLS can be ex-
plained by the antagonistic interaction between these two
proteins (Fig. 1 A). However, increasing PLS efficiency
also caused a decrease in active TGF-b1 levels (Fig. 2 B),
and this inverse relationship is interesting because it
suggests that although PLS is an activator of TGF-b1,
increased PLS activity can cause a counterintuitive decrease
in active TGF-b1 levels. These results indicate the presence
of a threshold in PLS-mediated TSP1 inhibition, because
only keff2 values > 0.6 mM!1s!1 were capable of inhibiting
TSP1. Once over this threshold, PLS could inhibit TSP1 and
break the positive feedback between TSP1 and TGF-b1,
causing a net decrease in active TGF-b1 levels.

Bistability and bifurcation analysis of the model

Preliminary simulations (Fig. 2) indicated that the param-
eter perturbations were capable of inducing a switch-like
transition of system species. To test whether the ultrasensi-
tive model is capable of displaying bistability, we conducted
simulations to determine whether the steady state of the
system depended on the initial conditions, with going-up
and coming-down simulations (33,34) performed using the
parameter keff2. The model was initialized with high TGF-
b1 (coming-down; dashed line in Fig. 3 A), and simulated
with different values of keff2. As expected, a rate of keff2 >
0.6 mM!1s!1 caused a switch in TGF-b1 levels from a higher
to a lower steady state. Next, the model was initialized with
low concentrations of TGF-b1 (going-up; solid line in
Fig. 3 A) and simulated with different values of keff2. Inter-
estingly, the system retained the low steady state of TGF-
b1 for values of keff2 significantly > 0.6 mM!1s!1. Models
with keff2 between 0.15 mM!1s!1 and 0.65 mM!1s!1 ex-
hibited two different steady states of TGF-b1, depending
on whether they had been initialized with low or high levels
of TGF-b1. This indicates hysteresis, because the system
retains a memory of its state despite changes in the stimulus
(i.e., keff2). The simulations therefore show that the TGF-b1
activation model is capable of displaying bistability, depend-
ing on the rate parameters.
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FIGURE 2 Model simulations. (A) The computational model was simu-
lated in MATLAB using random values (0.2 nM to 0.2 mM) for all species,
and PLS concentration was plotted over time. (B and C) The steady-state
values of (B) TGF-b1 and (C) TSP1 are plotted as a function of keff2.
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FIGURE 3 Bistability and bifurcation analysis. (A) Going-up and
coming-down simulations were done for a range of keff2 parameter values,
and TGF-b1 steady-state levels are plotted. The dashed line indicates the
coming-down curve with high initial concentrations of TGF-b1. The solid
line indicates the going-up curve with low initial concentrations of TGF-
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liver repair. High TGF-b1 also causes further apoptosis of
hepatocytes, reducing the regeneration potential of the liver
(Bataller and Brenner, 2005). TGF-b1 is thus implicated in
multiple causal mechanisms of liver fibrosis progression, and is
an important target in the development of anti-fibrotic
therapies (Border and Noble, 1994), but therapies seeking a
broad block against TGF-b1 signaling could be problematic
because TGF-b1 also has beneficial effects in other contexts
(Franklin, 1997).

Hepatocyte growth factor (HGF) facilitates hepatocyte
regeneration following liver injury and has multiple
functionalities including potent hepatotrophic effects (Stella and
Comoglio, 1999). HGF levels are abnormally low during fibrosis
(Inoue et al., 2006), and therapeutic interventions to
overexpress HGF have shown remarkably effective anti-
fibrotic effects in liver (Li et al., 2008; Horiguchi et al., 2009),
lung, kidney, and heart (Taniyama et al., 2002; Inoue et al., 2003;
Kim et al., 2005). Attempting to understand why HGF is so
effective, previous studies of liver fibrosis found that HGF
causes suppression of hepatocyte apoptosis (Nishino et al.,
2008), suppression of TGF-b1 gene expression (Horiguchi
et al., 2009); inhibition of a-SMA production, stimulation of
apoptosis in activated HSCs (Jiang et al., 2008; Li et al., 2008),
and inhibition of Collagen I, III synthesis and promotion of
collagen fiber digestion (Jiang et al., 2008; Li et al., 2008). Even
though there are many downstream effects, gene expression
changes and multiple antagonistic effects on TGF-b1 (Florquin
and Rouschop, 2003) that can be influenced by HGF, we
hypothesize here that HGF also has an upstream effect on
controlling the activation of TGF-b1 (Fig. 1).

TGF-b1 activation occurs in the ECM when stimulated by
thrombospondin-1 (TSP-1), integrins, cathepsins, plasmin,
reactive oxygen species, heat, and pH changes (Munger et al.,
1997; Wipff and Hinz, 2008). In liver fibrosis, activated HSCs
secrete high levels of TSP-1, which is a key activator of TGF-b1
(Kondou et al., 2003). TSP-1 participates in a positive feedback
loop of fibrosis perpetuation: TSP-1 leads to activation of
LTGF-b1, high active TGF-b1 causes an increase in the

activation of HSCs, activated HSCs produce more TSP-1,
leading to over-activation of TGF-b1 (Breitkopf et al., 2005).
Therapies targeting TSP-1 have been effective in experimental
models of liver fibrosis (Kondou et al., 2003). Antagonism of
hepatic regeneration by elevated levels of TSP-1 in partial
hepatectomy models (Hayashi et al., 2012) and suppression of
TSP-1 gene expression levels by HGF in thyroid carcinoma cells
(Scarpino et al., 2005), suggest potential crosstalk between
HGF and TSP-1. We therefore investigated whether the
anti-fibrotic effects of HGF in liver cells are mediated in part by
inhibition of TSP-1-dependent activation of TGF-b1.

We also investigated the effects of HGF on another
important regulator of TGF-b1 activation, plasmin. Plasmin is
secreted predominantly by hepatocytes, and during liver
fibrosis, there is high degree of hepatocyte apoptosis and a
drastic decrease in plasmin levels (Bezerra et al., 1999;
Waisman, 2003; Bueno et al., 2006; Wang et al., 2007). Plasmin
has a variety of anti-fibrotic effects, aiding the degradation of
ECM proteins (Bueno et al., 2006; Martinez-Rizo et al., 2010),
and activating matrixmetalloproteinases. The effects of plasmin
on TGF-b1 activation has been controversial mainly because of
its role in TGF-b1 activation observed in vitro while in vivo it
inhibits liver fibrosis (Pedrozo et al., 1999; Zheng and Harris,
2004; Hu et al., 2009; Ghosh and Vaughan, 2012); recent work
suggests that plasmin might decrease liver fibrosis by inhibiting
TGF-b1 signaling (Martinez-Rizo et al., 2010). In animal models
of fibrosis, therapies that up-regulate plasmin indirectly,
through the plasminogen activation system, have shown
improvement of fibrosis markers, and increased clearance of
fibrotic matrix proteins (Bueno et al., 2006; Hu et al., 2009). In
this study, we investigated whether the anti-fibrotic effects of
HGF aremediated by plasmin-dependent regulation of TGF-b1
activation.

One possible strategy to restore normal plasmin levels
during liver fibrosis might be hepatocyte transplantation, which
is a successful treatment in some clinical studies for liver failure
(Hughes et al., 2012), but hepatocytes from healthy donors
have poor availability, and hepatocytes derived from stem
cells are not yet ready for therapeutic use (Ochiya et al., 2010).
Since HGF is known to induce proliferation of endogenous
hepatocytes, our study investigated whether HGF could
increase the levels of plasmin enough to have significant
anti-fibrotic effects, on TGF-b1 activation and fibrotic matrix
proteins. Importantly, we combined our study of HGF in
hepatocytes with study of HGF in fibrogenic HSCs, to test
whether anti-fibrotic effects of HGF in hepatocytes were
negated or strengthened by simultaneous effects of HGF in
HSCs.

Our study investigated a twofold mechanism of HGF-
induced regulation of TGF-b1 activation by plasmin (from
hepatocytes) and TSP-1 (from HSCs). In order to simulate
liver fibrosis in vitro, we established cell culture models
using primary rat hepatocytes and an HSC cell line, HSC-T6,
exhibiting high levels of active TGF-b1 and Collagen I. Using
these in vitro fibrotic models, we examined the role of HGF
in regulating TGF-b1 activation and the expression of
downstream fibrotic markers such as Collagen I.

Methods
Cell culture models

Primary rat hepatocyteswere isolated frommaleWistar rats (250–
300 g) by a two-step collagenase perfusion method as described
previously (Seglen, 1976). The isolation procedure was approved
by the IACUC of National University of Singapore. The isolated
hepatocytes were seeded at 2! 105 cells per 35mm collagen-
coated dishes (IWAKI) inWilliams E (Sigma) with 10% fetal bovine
serum (FBS; Sigma). After 4 h, media change was carried out with
Williams E without serum. After overnight serum starvation, the

Hepatocyte Growth Factor

Plasmin

LTGF- β I

TSP- I

TGF-β I

Collagen I deposition 
by myofibroblasts 

Hepatocytes

Fig. 1. Schematic diagram of the possible anti-fibrotic effects of
HGF on active TGF-b1 during liver fibrosis. HGF is known to act in
manywaysduring liver fibrosis regression in controlling theactivation
of HSCs, deposition, and accumulation of ECM proteins like
Collagens. In this study, we investigated a possible mechanism of
HGF-induced fibrosis regression through regulation of the TGF-b1
activation pathway, via the proteins plasmin and TSP-1.
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Figure 1.6: Bistable TGF-β1 activation by PLS and TSP1 in liver fibrosis. 
(A) Schematics of the main interactions between species of the model [1]. (B) 
Bistable behavior of the computational model [1]. (C) Bistability of TGF-β1 in 
hepatocyte-HSC co-culture model [1]. (D) Schematic diagram of possible 
anti-fibrotic effects of HGF on TGF-β1 activation [2].

The model shows bistability of TGF-β1 activation, which means the system 

can be stabilized at two distinct steady statea, a steady  state with high TGF-β1 

activation, and a steady state with low TGF-β1 activation. The bistability  of 
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TGF-β1 activation has been shown in both computer simulation and in vitro 

experiments (Figure 1.6B-C).

The model of TGF-β1 activation by PLS and TSP1 has also been used to 

explain the anti-fibrotic effect of the hepatocyte growth factor (HGF) [2]. HGF 

is a growth factor that regulate multiple cellular behaviors, including cell 

growth, motility, morphogenesis. HGF has been shown to be abnormally low 

in liver fibrosis [25] and over-expressing HGF showed remarkable anti-

fibrotic effect in the liver [26,27]. In Narmada et al’s work, HGF was shown to 

be able to increase the level of PLS and inhibit the activity  of TSP1 (Figure 

1.6D). According to the model built by Venkatraman et al, both of these two 

effects can trigger the down-regulation of TGF-β1 activity. Indeed, Narmada 

et al have shown that  HGF can down-regulate the level of active TGF-β1 and 

also collagen type I (the major component of ECM in fibrotic liver) in a 

hepatocyte-HSC co-culture system.

1.3 Thesis Overview

        Previous work on modeling of TGF-β1 activation and the regulation of 

TGF-β1 by  HGF laid the foundation of studying TGF-β1 regulation on a 

system level. Based on the TGF-β1 activation model, it is possible to study the 

regulation of TGF-β1 on a system level. Analysis of the dynamics of the TGF-

β1 activation network model would help us identify regulatory mechanisms of 
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TGF-β1 by different regulators, and direct  the design of methods to control the 

level of  TGF-β1.

One interesting problem would be how different regulators beyond PLS, 

TSP1, and HGF would affect the TGF-β1 bistability and its network level 

behavior. Another interesting problem would be how to design and select 

combination targeting strategies of anti-TGF-β1 therapy. In this thesis, we first 

investigated how different regulators can affect the bistability of the model, 

and how the environment can change the sign of the feedback loops within the 

network. We then discussed strategies of controlling the level of TGF-β1, 

focusing on the combination targeting strategy to induce a bistable switch of 

the TGF-β1 network model. 

Chapter 2 will discuss how literature mining, computational modeling, and 

experimental validation yields deeper understanding of the regulation of 

bistable TGF-β1 activation, with implications for potential anti-TGF-β1 

strategies and network level feedback behaviors.

Chapter 3 will discuss combination perturbation problem of bistable networks 

in general. When studying the combination targeting problem of the TGF-β1 

network model, a qualitative correlation between synergy  and robustness of 

drug doses was observed. Further investigation on multiple bistable models 

suggests that this property could be a general property of many bistable 

models.

Chapter 4 will conclude the work in chapter2 and chapter 3.
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Chapter 5 will discuss some potential future work, including non-monotonic 

transition behavior as an important property of bistable systems, and the 

experimental study of combination targeting of TGF-β1 activation. 
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CHAPTER 2 : COMPUTATIONAL MODELING OF BISTABLE TGF-

β1 ACTIVATION: CASE STUDIES WITH CALCIUM AND KLF2 

SHOW REGULATION OF TGF-β1 AND A SWITCH BETWEEN 

POSITIVE AND NEGATIVE FEEDBACK

2.1 Overview

        This chapter focuses on how different regulators beyond PLS, TSP1, and 

HGF would affect the TGF-β1 bistability and its network behavior. We will 

see how literature mining can suggest potential regulators of our TGF-β1  

activation model. We will expand our TGF-β1 model to incorporate the effects 

of those regulators outside the scope of the model. Analysis of the dynamics of 

the model through simulation will suggest important properties of TGF-β1 

regulation networks. 

2.2 Abstract

        A bistable switch has recently been found to regulate the activation of 

transforming growth factor-β1 (TGF-β1). An ordinary differential equation 

(ODE) model was published showing that the net activation of TGF-β1 

depends on the balance between two antagonistic sub-pathways. Here we 

model perturbations that affect both sub-pathways, and simulate how their 

propagated effects impact the TGF-β1 system.

        We extended the model to include calcium and Krüppel-like factor 2 
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(KLF2), both regulators of Thrombospondin-1 (TSP1) and Plasmin (PLS). 

Increased levels of extracellular calcium, which alters the TSP1-PLS balance, 

would cause high levels of TGF-β1, resembling a fibrotic state. KLF2, which 

suppresses production of TSP1 and plasminogen activator inhibitor-1 (PAI1), 

would eradicate bistability and preclude the fibrotic steady-state. Finally, the 

loop PLS − TGF-β1 − PAI1 had previously been reported as negative 

feedback, but the model suggested a stronger indirect effect of PLS down-

regulating PAI1 to produce positive (double-negative) feedback at fibrotic 

state. Further simulations showed that activation of KLF2 was able to restore 

negative feedback in the PLS − TGF-β1 − PAI1 loop. 

We conclude that factors such as calcium or KLF2, that can affect both the 

TSP1 sub-pathway and PLS sub-pathway, could have a greatly amplified 

effect on the feedback behavior.

2.3 Background

        Transforming growth factor-β1 (TGF-β1) is a cytokine with broad 

importance for cancer, liver cirrhosis, and other diseases. We previously 

developed a model of TGF-β1 activation, and the model successfully predicted 

that TGF-β1would exhibit bistability in cells [1]. The model captures multiple 

pathways with positive and negative effects towards TGF-β1 and its 

activators. The full model is described in Figure 2.1 (Figure 2.1, black 

arrows). To summarize this model, TGF-β1 is activated by plasmin (PLS) or 
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thrombospondin-1 (TSP1), each having its own feedback mechanisms [1]. 

PLS feedback occurs because PLS activates TGF-β1 [18,22], and then TGF-

β1 upregulates plasminogen activator inhibitor-1 (PAI1), which is an inhibitor 

of plasminogen activation [28,29]. These effects form a negative feedback 

loop between TGF-β1 and PLS. In contrast, TSP1 feedback occurs because 

TSP1 activates TGF-β1, and TGF-β1 upregulates TSP1 [19,30,31], creating a 

positive feedback loop between TGF-β1 and TSP1. There is also mutual 

antagonism between PLS and TSP1 [32,33], which pushes the system towards 

either a “PLS-predominant” steady state, or “TSP1-predominant” steady  state. 

The “PLS-predominant” steady state (ssP) has moderate levels of TGF-β1 due 

to negative feedback [1]. In contrast, the TSP1-predominant steady state (ssT) 

achieves a higher level of TGF-β1 activation due to positive feedback [1]. 

Venkatraman et al. have shown that introducing extra PLS into a TSP1 

dominant system would switch the balance between PLS and TSP1, thus 

inducing a decrease in the level of active TGF-β1.
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PLS TSP1

TGF-β1

uPA

PAI1

PLG

Ca2+

KLF2

Figure 2.1: TGF-β1 bistable activation model. Black arrows represent the 
reactions from [1]. Red arrows represent the effects of calcium on the PLS-
TSP1 interaction. Blue arrows represent the effects of KLF2 on PAI1 and 
TSP1 production. uPA is urokinase plasminogen activator, and PLG is 
plasminogen.

In the current study, we explore some possible triggers that could influence the 

bistable transition, and we discover that the bistable transition is correlated 

with a transition in the feedback behavior of the network. A literature search 

yielded two factors that could regulate both PLS and TSP1, calcium [34,35] 

and Krüppel-like factor 2 (KLF2) [36-38]. Calcium has been found to 

enhance the inhibition of the activity of PLS by TSP1, and suppress the 

cleavage of TSP1 by PLS [34,35]. KLF2 have been found to cause significant 

suppression of TSP1 and PAI1 [37,38], meaning that KLF2 could regulate 

both PLS and TSP1 sub-pathways of TGF-β1 activation. Simulation showed 

how calcium and KLF2 could alter the activation of TGF-β1 by influencing 

the PLS-TSP1 interplay. Simulation of the KLF2 also revealed that there could 
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be a qualitative change in the behavior of some feedback loops in the network.

2.4 Results

       2.4.1 Calcium would promote the steady state with high TGF-β1 

activation

        We built the low and high calcium variants of the model by  considering 

the potential effects of calcium on the PLS-TSP1 interaction (see Methods, 

Figure 2.1 red arrows). Three parameters for the calcium effect were not 

known quantitatively and were estimated (see Methods). In Figure 2.2A-B, we 

simulated the low calcium model and the high calcium model over time with 

27 total initial configurations. These 27 configurations were combinations of 3 

initial concentrations for each of TGF-β1, TSP1, and plasmin, the ssT level, 

ssP level, and the mean level of ssT and ssP (27 = 33). The initial 

concentrations of other species were set to the average of their two steady state 

levels, (i.e., 0.5ssT + 0.5ssP). In the low-calcium model, all trajectories 

converged to ssP with low TGF-β1, but in the high-calcium model, several of 

the initial configurations converged to ssT with high TGF-β1. To generalize 

our understanding of this effect, we plotted the boundary (the separatrix, 

Figure 2.2C) between the initial configurations that caused convergence 

toward ssT (red) and the initial conditions that caused convergence toward 

ssP (blue). Initial concentrations were constants for all species other than PLS 

and TSP1. By comparing the separatrix of the low calcium model (dot) and 

the high calcium model (circle), we observe a shift  of the separatrix toward the 
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blue (ssP) region. This means the red (ssT) region is enlarged in a high 

calcium environment (arrow 3). As expected, calcium tips the balance between 

PLS and TSP1 to achieve a significant effect on steady state of TGF-β1 

activation.
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Figure 2.2: Calcium and KLF2 have potential influence on the steady 
state of TGF-β1 activation.  (A) Time dependent curves of TGF-β1 with a 
given set of initial conditions, under low calcium condition. Blue represents 
that the system converges to the low TGF-β1 activation steady state (ssP). (B) 
Time dependent curves with the same set of initial conditions as in (A) under 
high calcium condition. Red represents that the system converges to the high 
TGF-β1 activation steady state (ssT). (C) The steady state of the system with 
different combinations of TSP1 initial concentration and Plasmin initial 
concentration. Red color represents a high TGF-β1 activation steady state 
(ssT), while blue color represents a low TGF-β1 activation steady state. Dot 
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represents a low calcium condition, while circle represents a high calcium 
condition. (D) Two steady states of TGF-β1 and PAI1 under different levels of 
KLF2. The red square represents the high TGF-β1 activation steady state, 
while the blue dot represents the low TGF-β1 activation steady  state. (E) 
Bifurcation analysis under KLF2 low and KLF2 high conditions. Solid 
sections represent the stable steady states. Dotted sections represent the 
unstable steady state. Black dots represent the bifurcation point of the system. 

       2.4.2 KLF2 would eliminate the steady state with high TGF-β1 

activation

        KLF2 is a transcription factor studied extensively  in atherosclerosis and 

fibrosis, and previous studies of KLF2 signaling showed TSP1 and PAI1 

(plasminogen activator inhibitor-1) to be two of its most strongly affected 

targets [37,38].  To study how KLF2 would affect bistable activation of TGF-

β1, variants of the TGF-β1 activation model were built as described in 

methods (Figure 2.1 blue arrows). We built a model called “100% KLF2” that 

downregulated the TSP1 production and PAI1 production rates, proportional 

to the published effects of KLF2 on the mRNA levels of TSP1 (-7.8 fold) and 

PAI1 (-7.4 fold). This is a strong effect, so we also built models with 90%, 

80%, … 10%, and 0% of the KLF2 effects on the TSP1 and the PAI1 

production rates. Each model in the series was simulated to obtain the steady 

state concentrations. When a dynamical system is bistable, its two steady 

states are commonly  obtained by simulating the model twice, once starting 

from each side of the separatrix boundary (for example, initializing the system 

with opposite extreme levels of TGF-β1). For our series of models, the steady 

states obtained after initialization with high TGF-β1 (resembling ssT) were 
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plotted with open red boxes, and the steady states obtained after initialization 

with low TGF-β1 (resembling ssP) were plotted with solid blue circles (Figure 

2.2D). Models for each level of KLF2 were plotted in terms of PAI1 and TGF-

β1 steady  states (with KLF2 levels decreasing from left to right). For models 

with KLF2 ≥ 40%, the open red boxes fell at the same points as the solid blue 

circles, indicating they  are monostable. For models with KLF2 ≤ 30%, the red 

open boxes were distinct from the blue circles, indicating two steady states. 

For KLF2 levels from 0% to 100% (right to left), the low TGF-β1 steady state 

(blue dots) remained almost constant, while the high TGF-β1 steady state (red 

boxes) merged with the low TGF-β1 steady state in an ultrasensitive manner 

when the KLF2 effect increased from 30% to 40%. 

Bifurcation analysis studies  how parameter change affects the qualitative 

behavior and the steady states of a system [39]. A bifurcation plot allows us to 

see all the equilibria of the system and how the equilibria vary with change of 

KLF2 levels and other rate parameters. We chose one parameter named 

“keff2” to show the steady state behavior of the low KLF2 and high KLF2 

system. “Keff2”, the enzymatic efficiency of plasmin, is one of many rate 

parameters that affect the overall bistability of the system. Figure 2.2E shows 

the bifurcation plot for the 0% KLF2 model and the 100% KLF2 model with 

respect to the parameter “keff2”. Solid lines represent the stable steady states 

of the system (ssP or ssT). Dotted lines represent one unstable steady state 

between the two stable steady states, which is not achievable through 
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simulation. Black circles represent two limit points in the bifurcation curve, 

which separates the monostable regime and bistable regime. Bifurcation 

analysis confirmed that the system with 0% KLF2 retained bistability (an “S-

shaped” curve in Figure 2.2E) while the system with 100% KLF2 was 

monostable. 

       2.4.3 The bistability of the system correlates with the sign of the PLS-

PAI1 feedback loop

        Positive and negative feedback loops are ubiquitous in biological systems 

[40], and necessary for many functions [41,42].  The TGF-β1 activation 

network is composed of multiple overlapping feedback loops, including two 

feedback loops between PLS and PAI1. One obvious loop is the negative 

feedback loop PLS→TGF-β1→PAI1⊣PLS, which is frequently cited [43-47]. 

A less obvious loop is PLS⊣TSP1→TGF-β1→PAI1⊣PLS, with two inhibitory 

effects, meaning positive feedback (See Figure 2.3A-B).   Interestingly, 

experiments have already  observed two opposite behaviors of PLS towards 

TGF-β1 and PAI1 [48-50], giving indirect evidence for the possibility of both 

positive and negative feedback loops involving PLS, TGF-β1, and PAI1.
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Figure 2.3: The bistability of the system correlates with the sign of the 
PLS-PAI1 feedback loop. (A) We designed an exogenous addition of PLS 
into the system using a step function for the level of PLS over time (top curve 
panel in black). Stimulating the TGF-β1 activation model with exogenous PLS 
caused two different effects in silico, depending on the KLF1 status. In the 
absence of KLF2 (red curve on left), the stimulus caused positive (double-
negative) feedback between PAI1 and Plasmin, which can occur via the red 
arrows shown. In the presence of KLF2 (blue curve on right), exogenous PLS 
treatment caused a positive effect on PAI1 and the negative feedback loop 
(blue arrows) was restored. (B) kp2-bifurcation diagram for a series of kp1 
values. Solid blue represents stable steady states. Dotted red represents 
unstable steady  state. Black dots represent limit points on bifurcation curves. 
Intervals between the kp2 values of two limit points on bifurcations curves 
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with continuous kp1 will indicate the bistable regions on kp1-kp2 plane (i.e. 
combinations of kp1 and kp2 values that make the system bistable). (C) 
Bistable region and KLF2 levels on kp1-kp2 plane. White color indicates the 
monostable region. Gray color indicates the bistable region. Different levels of 
KLF2 are represented by  black squares. System with 0% KLF2 lies within 
bistable region, while as the level of KLF2 increases, the system gradually 
shifts towards a monostable region. (D) Bistable regions, PAI1-PLS positive 
feedback region and KLF2 levels on kp1-kp2 plane. Light gray  dots indicate 
the region in which the system has positive feedback behavior between PAI1 
and PLS. Dark gray represents the bistable region. System with 0% KLF2 lies 
in the region with both bistability  and PAI1-PLS positive feedback. As the 
level of KLF2 increases, the system gradually  shifts towards a monostable 
region with PAI1-PLS negative feedback. Notice that the large overlap 
between bistability  and PAI1-PLS positive feedback could suggest potential 
correlation between bistability and PAI1-PLS positive feedback. (E) 
Experimental testing of the PAI1-PLS feedback in a bistable system. Different 
levels of PLS were added into a co-culture model of hepatocytes and HSC-T6, 
where bistability has been verified [1]. Level of PAI1 mRNA were measured 
through RT-PCR. Data showed that PLS could down-regulate PAI1 gene 
expression, indicating a positive (double-negative) feedback between PLS and 
PAI1. 

To characterize the feedback between PLS and PAI1 in this network, we 

plotted feedback behavior in both low KLF2 (0%) and high KLF2 (100%) 

models (Figure 2.3A). Since PAI1 (plasminogen activator inhibitor-1) is 

antagonistic towards PLS, the sign of the PLS-PAI1 feedback loop is 

determined by  the response of PAI1 to PLS. We used a stepwise PLS input 

(black curve) to perturb both the low (%0) KLF2 model and the high (100%) 

KLF2 model and we simulated the response of PAI1. The low KLF2 model 

showed a decrease in the level of PAI1, which means that the overall PLS-

PAI1 feedback is dominated by the PLS⊣TSP1→TGF-β1→PAI1⊣PLS double 

negative (positive) feedback loop. The high KLF2 model showed an increase 

in the level of PAI1, which means that the overall PLS-PAI1 feedback is 
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dominated by the PLS⊣TSP1→TGF-β1→PAI1⊣PLS negative feedback loop. 

It was interesting to observe in simulation that KLF2 not  only was able to 

eliminate one of the steady states and turned the system into monostable, but 

also able to change the sign of the PLS-PAI1 feedback loop. To further 

characterize the effect  of KLF2 on the system and discuss the reason behind it, 

we plotted the 2d bistable region of the system in the kp1-kp2 phase plane 

(Figure 2.3C). We did this through equilibrium continuation of kp2 for a series 

of kp1 values (Figure 2.3B). In our model, KLF2 is represented as a 

combination of fold changes of kp1 and kp2, therefore, KLF2 levels can be 

represented as a series of points in the kp1-kp2 phase plane (Figure 2.3C).  It 

can be seen on Figure 2.3C that the KLF2 point  is moving out of the bistable 

region when KLF2 increases from 0 to 100%. We then analyzed the sign of 

PLS-PAI1 feedback in this kp1-kp2 phase plane. Interestingly, there is a large 

overlap between the bistable region of the system and positive feedback region 

of the PLS-PAI1 feedback loop (Figure 2.3D). KLF2 = 0 point lies in the 

overlapping area of the bistable region and PLS-PAI1 positive feedback 

region, while KLF2 = 100% lies in the overlapping area of the non-bistable 

region and PLS-PAI1 negative feedback region. This explains why  the change 

of KLF2 level can have two different effects on the system. 

The large overlap  (Figure 2.3D) between the bistable region and the PLS-PAI1 

positive feedback region is also an interesting property of the system, since it 
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suggests that  in reality, a bistable TGF-β1 activation system most likely also 

has positive PLS-PAI1 feedback. Although a negative feedback loop between 

PLS-PAI1 has been observed repeatedly  and is well accepted [48,49], positive 

feedback would be novel. We tested the sign of the feedback from PLS to 

PAI1 using an experimental system known to exhibit TGF-β1 bistability [1], a 

cell culture model of liver fibrosis. In this co-culture with primary hepatocytes 

and HSC-T6 cell lines, we added different  levels of PLS and we measured 

PAI1 mRNA levels using RT-PCR (Figure 2.3B).  Increasing PLS was found 

to cause decreased expression of PAI1 in this bistable system, implying that 

PLS and PAI1 can indeed exhibit positive feedback.

2.5 Discussion

       We used computational modeling to explore the implications of a bistable 

TGF-β1 activation network, and we found (a) upstream factors like calcium 

and KLF2 could affect the steady  state behavior of this bistable system, and 

(b) the steady  state behavior of the system correlates with the sign of a 

feedback loop in the network.

For the first part, we modeled known effects of calcium on the balance 

between TSP1 and PLS [33,35,51-54], and known effects of KLF2 on the 

gene expression of PAI1 and TSP1 [37].  We then used modeling to show how 

these effects would propagate through the system. Specifically, the model 

predicted that calcium would significantly  promote TGF-β1 activation, 
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shifting the bistable threshold of the system. The calcium-induced increase in 

TSP1 would lie within the physiological range of TSP1 [55]. A literature 

search reveals that extracellular calcium may be relatively easy to perturb via 

biomaterials of bandages. Therefore, the effect of extracellular calcium on 

TGF-β1 might have important therapeutic implications for fibrotic or 

inflammatory diseases where abnormal TGF-β1 contributes to disease. For 

example, fibrotic diseases are driven by high levels of TGF-β1 [56], and 

therapeutic studies in animals have achieved significant access by increasing 

the PLS pathway [57] or decreasing the TSP1 pathway [58]. In our model, if 

we take the ssP state to be healthy and the ssT state to be fibrotic, then a 

fibrotic system with high calcium could transition toward health through an 

increase of PLS (Figure 2.2C, arrow 1), through a decrease of TSP1 (Figure 

2.2C, arrow 2), or a combination of both (Figure 2.2C, arrow 3).  

In contrast, KLF2 was simulated to increase PLS activity  and decrease the 

levels of TGF-β1, by suppressing PAI1 and TSP1 expression. This is 

consistent with previous work with statin drugs on liver fibrosis [36], where 

KLF2 upregulation was observed after treatment with simvastatin. Our model 

predicts that one of the ways KLF2 may contribute to improvement of liver 

fibrosis may be by decreasing the activation of TGF-β1 through reduction of 

the TSP1 and PAI feedback effects.

While modeling KLF2 effects, we noticed that loss of bistability  also caused a 
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change in the sign of the PLS - PAI1 feedback loop. Without KLF2, the PLS-

PAI1 feedback loop was positive (double negative), but with KLF2 (100% 

KLF2) and with the destruction of bistability, the PLS-PAI1 feedback loop 

was negative.   Additional bifurcation analysis revealed that  high KLF2 is a 

special case of the general observation, that the bistability of the system is 

correlated with the sign of the PLS-PAI1 feedback loop.    

Finally, an in vitro experiment validated the positive feedback behavior 

between PLS and PAI1 in a bistable TGF-β1 system. Experiments have 

already seen two opposite behaviors of PLS towards TGF-β1 and PAI1 

[48-50], providing indirect evidence for the possibility of both positive and 

negative feedback loops. Some aspects of the feedback loop are relatively 

unambiguous. For example, PAI1 is a specific and potent inhibitor of plasmin 

activation. PAI1 production follows TGF-β1 signaling so closely  that, in 

practice, PAI1 levels are commonly measured as a readout of TGF-β1 

activation [59]. The behavior of the feedback loop thus boils down to the 

behavior of the PLS – TGF-β1 relationship. In isolation, PLS clearly is able to 

activate TGF-β1. The same effect has frequently been observed in more 

physiological contexts, and there is considerable published evidence that PLS 

and/or plasminogen activators can cause an increase in TGF-β1 and/or PAI1 

levels [43-47]. This positive effect of PLS on TGF-β1 or PAI1 serves as 

evidence that the loop between PLS and PAI1 can have negative feedback.  

Although the activating ability of PLS toward TGF-β1 is well known and 
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accepted, some studies also suggest the opposite effect. For example, PLS 

caused TGF-β2 levels to decline in breast cysts [60]. Furthermore, one 

unconventional finding by Seo et al., showed a positive feedback effect 

between PAI1 and TGF-β1 [50], suggesting that PLS can cause a decrease in 

TGF-β1. In sum, we conclude there is some support in the published literature 

for our prediction that the relationship between PLS and PAI can show either 

negative feedback or positive feedback, depending on context. 

There are several caveats that should temper the interpretation of our modeling 

results. Firstly, the model used kinetics rate constants that were not known 

experimentally. Thus the behavior of the model should be taken as a 

qualitative prediction of trends rather than a quantitative prediction of absolute 

magnitude. Secondly, parameters taken from previous publications may be 

incorrect for our context, even if they were correct for the original context in 

which they were published. Thirdly, we have simplified complex processes 

into simplistic scalar variables. Even the effect of calcium on TSP1 has been 

greatly simplified, relative to the true effect, which is a change in the 

equilibrium between different conformations of TSP1. The simplified nature 

of our model implies that its predictions are low-resolution trends, not  detailed 

molecular concentrations. 

Another important consideration in interpreting this model is the redundancy 

of proteases and matrix factors that play  roles similar to PLS or TSP1. 
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Actually, PLS is only one of many proteases (including elastase, MMP-2, 

MMP-9, ADAMTS1 and others) that can both activate TGF-β1 and cleave 

TSP1 [61-64]. Meanwhile TSP1 can inhibit many of these proteases 

[33,65-67]. Extracellular proteases often function interdependently by 

activating each other (e.g. PLS activates several MMPs, which activate other 

MMPs [68,69]), and some proteases may have partially redundant effects. 

Likewise TSP1 may  represent a larger class of matrix proteins and mechanical 

factors with redundant roles in this model. Fibrillin and LTBP1 can promote 

TGF-β1 activation [70-73], as can factors that create mechanical tension in the 

matrix [74,75]. Fibrillin and LTBP1 can be cleaved by PLS [45,76], and even 

mechanical tension would be antagonized by PLS cleavage. In other words, 

PLS and TSP1 are archetypes of two larger classes of effects, a protease 

category and a matrix category, that may be capable of antagonizing the effect 

of each other, even as they contribute individually  to TGF-β1 activation. The 

redundancy of the protease-versus-matrix competition suggests that this 

antagonism may be an organizing principle of TGF-β1 regulation, with 

evolutionary  importance to the organism. On the other hand, this redundancy 

also creates many complexities that could perturb the phenomena we 

simulated. For example, the effects we attribute to PLS itself may actually 

result from the indirect effects of PLS-activated proteases.  The low-resolution 

nature of our theoretical model necessitates a speculative outlook, but we 

believe it points to important considerations of system-level coordination.
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2.6 Methods

       2.6.1 TGF-β1 bistable activation model

        We used the model built by Venkatraman et al. as the base model of TGF-

β1 regulation. We increased the “kothers” parameter relative to the published 

model, to allow for higher basal activation of TGF-β1 by other activators such 

as integrins [18,70,77]. Simulations were performed using kroneckerbio 

toolbox [78] and the ode15s solver in MATLAB (Mathworks, Natick, MA).

       2.6.2 Calcium model

        Calcium can affect the structure of TSP1 [51-54], the enzymatic activity 

of PLS cleaving TSP1 [33], and the ability of TSP1 to inhibit serine protease 

activity [35]. These effects were represented by  the rate constants k3, k_3 and 

k4 in the TGF-β1 activation model. We used the original parameter settings as 

the low calcium settings. To reflect high calcium conditions, we increased k3 

by 10 fold, decreased k_3 by 0.1 fold, and k4 by 0.0001 fold, in order to 

reflect a high level of calcium in the environment. Details of the model can be 

found in Table 2.1 and Table 2.2.
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TABLE 1 List of equations and parameters used for model construction 
 

Reaction equation Reaction equation 

scUPA + PLG keff1⎯ →⎯⎯ PLS + scUPA  A2M + PLS k5

k−5
⎯ →⎯← ⎯⎯ A2M :PLS  

PLS + scUPA keff2⎯ →⎯⎯ tcUPA + PLS  PAI1+ tcUPA k6

k−6
⎯ →⎯← ⎯⎯ PAI1: tcUPA  

tcUPA + PLG keff3⎯ →⎯⎯ PLS + tcUPA  PAI1+ scUPA k7

k7
⎯ →⎯← ⎯⎯ PAI1: scUPA  

PLS + LTGFβ1 k1⎯ →⎯ TGFβ1+ PLS  PLS + scUPA keff2⎯ →⎯⎯ tcUPA + PLS  

TSP1+ LTGFβ1 k2⎯ →⎯ TGFβ1+ PLS  PLS + scUPA keff2⎯ →⎯⎯ tcUPA + PLS  

LTGFβ1 kothers⎯ →⎯⎯ TGFβ1  TSP1:PLS k8⎯ →⎯  

TGFβ1 kp1⎯ →⎯ TSP1  TGFβ1 k9⎯ →⎯  

TGFβ1 kp2⎯ →⎯ PAI1  α1⎯ →⎯ {scUPA;  LTGFβ1;  A2M};  α2⎯ →⎯ {PLG}  

TSP1+ PLS k3

k−3
⎯ →⎯← ⎯⎯ TSP1:PLS  {scUPA;  LTGFβ1;  A2M} µedeg⎯ →⎯⎯ ;

{all other protein species} µpdeg⎯ →⎯⎯
 

TSP1:PLS k4⎯ →⎯ PLS   

 
Reactions of TGF-β1 activation model as described in [1]. Ordinary differential equations are  
generated(from(these(reactions(using(mass1action(law.((
 

Table 2.1: List of equations and parameters used for model construction. 
Reactions of TGF-β1 activation model as described in [1]. Ordinary 
differential equations are generated from these equations using mass-action 
law.
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TABLE 2 Parameters settings for different models 
 
 
Parameters low calcium, 

[KLF2] = 0% 
high calcium, 
[KLF2] = 0% 

low calcium 
[KLF2] = 
100% 

keff1 0.035 µM-1s-1 0.035 µM-1s-1 0.035 µM-1s-1 
keff2 0.35 µM-1s-1 0.35 µM-1s-1 0.35 µM-1s-1 
keff3 1.4 µM-1s-1 1.4 µM-1s-1 1.4 µM-1s-1 
k1 0.035 µM-1s-1 0.035 µM-1s-1 0.035 µM-1s-1 
k2 24.5 µM-1s-1 24.5 µM-1s-1 24.5 µM-1s-1 
kothers 0.35 s-1 0.35 s-1 0.35 s-1 
kp1 0.35 s-1 0.35 s-1 0.35/7.8 s-1 
kp2 1.05 s-1 1.05 s-1 1.05/7.4 s-1 
k3 17.5 µM-1s-1 175 µM-1s-1 17.5 µM-1s-1 
k-3 0.0245 s-1 0.00245 s-1 0.0245 s-1 
k4 0.35 µM-1s-1 3.5×10-5 µM-1s-1 0.35 µM-1s-1 
k5 24.5 µM-1s-1 24.5 µM-1s-1 24.5 µM-1s-1 
k-5 0.0105 s-1 0.0105 s-1 0.0105 s-1 
k6 0.035 µM-1s-1 0.035 µM-1s-1 0.035 µM-1s-1 
k-6 0.0035 s-1 0.0035 s-1 0.0035 s-1 
k7 0.07 µM-1s-1 0.07 µM-1s-1 0.07 µM-1s-1 
k-7 0.0035 s-1 0.0035 s-1 0.0035 s-1 
k8 24.5 s-1 24.5 s-1 24.5 s-1 
k9 0.21 s-1 0.21 s-1 0.21 s-1 
µedeg 0.0525 s-1 0.0525 s-1 0.0525 s-1 
µpdeg 0.0175 s-1 0.0175 s-1 0.0175 s-1 
α1 0.0035 s-1 0.0035 s-1 0.0035 s-1 
α2 0.035 s-1 0.035 s-1 0.035 s-1 
 
Reaction rates for TGF-β1 activation model. Parameters in the second column are the 
same as described in [1]. Red colored parameters are modified parameters to reflect 
the calcium effects. Blue colored parameters are modified parameters to reflect the 
KLF2 effects (kp1 reduced by 7.8 fold, kp2 reduced by 7.4 fold). 

Table 2.2: Parameters settings for different models. Reaction rates for 
TGF-β1 activation model. Parameters in the second column are the same as 
described in [1]. Red colored parameters are modified parameters to reflect the 
calcium effects. Blue colored parameters are modified parameters to reflect 
the KLF2 effects (kp1 reduced by 7.8 fold, kp2 reduced by 7.4 fold).

       2.6.3 KLF2 model

        It has been shown that KLF2 can decrease TSP1 expression by  7.8 fold 

and PAI1 expression by  7.4 fold [37,38]. We simulated the TGF-β1 activation 

model with no change (0% of the KLF2 effect, original parameter settings), 
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with 100% of the KLF2 effect  (7.4 fold decrease of PAI1 synthesis parameter 

kp2 and 7.8 fold decrease of TSP1 synthesis parameter kp1), as well as a series 

of intermediate models with 10%, 20%, … 90% of the KLF2 effect, causing 

intermediate levels of decrease in the PAI1 and TSP1 synthesis rates. 

       2.6.4 Bifurcation analysis

        Bifurcation analysis was performed using MATCONT (http://

www.matcont.ugent.be). Equilibrium continuation function was called to 

generate the bifurcation curves in Figure 2.2E and Figure 2.3B. 

       2.6.5 Experimental methods

        Isolation of primary hepatocytes was performed on male Wistar rats 

(250-300g), via a two-step  collagenase perfusion method as described 

previously  [79]. A co-culture model of primary  rat hepatocytes and hepatic 

stellate cell line T6 (HSC-T6) was established as described in [1]. Briefly, 

primary rat  hepatocytes were first  seeded at a density of 2 x 105 cells on 35 

mm collagen-coated dishes (IWAKI) using Williams’s E media with 10% 

FBS. After 4 hours, hepatic stellate cell line T6 (HSC-T6) was seeded at a 

density  of 1.4 x 106 cells. The cells were cultured overnight in 35°C, and 5% 

CO2 in William’s E media with 2% FBS to facilitate HSC activation. The next 

day media was changed to Williams’s E without serum, along with different 

doses of PLS. After 24 hours, the cells were collected.
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RT-PCR was performed as described in [2]. Briefly, mRNA was isolated from 

the cells using RNeasy  mini kit (Qiagen), and its concentration was quantified 

using a Nanodrop 2000 UV-Vis Spectrophotometer. One microgram of 

mRNA from each sample was converted to cDNA (Invitrogen, Superscript 

Reverse Transcriptase III) and real-time PCR reaction (Roche, Sybr Green 

Master mix) was carried out for plasminogen activator inhibitor-1 (PAI1) and 

β-actin, with in-house primers shown in Table 2.3. The gene expression values 

were determined by the Del-Del CT relative quantitation method; the target CT 

values were normalized to the endogeneous reference β-actin, and the 

normalized mRNA was expressed as a fold-change relative to the untreated 

control. 
TABLE 3 List of primer sequences for genes probed on quantitative real time PCR 
 
 

Gene name Primer sequences (5’-3’)!
β#actin!
      Sense 

Antisense 

 
ACCCACACTGTGCCCATCTA 
GCCACAGGATTCCATACCCA 

PAI1 
      Sense 

Antisense 

 
TGGTGAACGCCCTCTATTTC 
GAGGGGCACATCTTTTTCAA 

 

Table 2.3: List of primer sequences for genes probed on quantitative real 
time PCR.

       2.6.6 Ethics statement

        The rat cell isolation procedure was approved by the IACUC of National 

University of Singapore. 
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2.7 Conclusions

        By integrating information from different modeling and literature 

sources, we predicted systems-level regulatory mechanisms and identified 

correlations between different qualitative behaviors.   Specifically, our 

modeling illustrated how the balance between upstream factors could 

influence a bistable TGF-β activation system, and demonstrated a correlation 

between the bistability of the system and the sign of the feedback loop. 
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CHAPTER 3: THE RELATIVE ROBUSTNESS OF COMBINATION 

THERAPY IS CORRELATED WITH THE SYNERGY, FOR 

TRIGGERING SWITCHES OF BISTABLE SYSTEMS

3.1 Overview

       This chapter focuses on the problem of combination targeting of the TGF-

β1 bistable model. We will develop computational methods to study the 

combination targeting problem, and to estimate the level of synergy through 

simulation. We will study  how parameter variations would affect the 

combination targeting. We will also see how analysis of the TGF-β1 bistable 

model led us to some general properties of many other bistable network 

models.

3.2 Abstract

        Computational modeling of biochemical networks can be particularly 

useful for predicting which pairs of drugs will have synergistic versus additive 

effects. However, the success of prediction can be threatened by model 

uncertainty and parameter uncertainty. Additional challenges arise when 

models are bistable, due to the binary nature of the output. Bistability is an 

important aspect of biological regulation and it presents unique opportunities 

for therapeutic intervention, but little is known about the fragility  of 

therapeutic predictions in such systems.
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Using a model of bistable TGF-β1 activation, we perturbed individual and 

pairwise species to survey the additive and synergistic combinations. When 

model parameters were varied, we observed a biased pattern of change in the 

additive and synergistic curves for combination treatments. Parameter 

perturbation analysis revealed positive correlation between synergism and 

relative robustness throughout the TGF-β1 activation network. Correlation 

between synergism and relative robustness was also seen when repeating the 

perturbation analysis on multiple bistable models from different areas of 

biology. 

A positive correlation between the synergy of a combination therapy, and the 

relative robustness of the combination doses, could be a general property  of 

many bistable networks.

3.3 Background

        Bistability  is the ability of a system to converge to either of two stable 

steady  states [5,80].  Bistability produces important biological behaviors such 

as allowing diverse inputs to converge toward a single binary (yes/no) 

decision, “remembering” a previously  chosen steady state over time, 

remaining at the same steady state in the presence of random noise [81,82] and 

switching between two states with ultrasensitive response to a particular 

stimulus [83].  Some biological effects are binary  at the level of single cells 

but graded-response for a population of cells [83], and some bistable effects 
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have binary output even for a population of cells [1].  A binary  output presents 

novel challenges for drug design or target identification, because many design 

approaches rely on a graded dose-response curve.

Bistable network models have been built to study cell cycle progression [84], 

apoptosis [85-87], memory and plasticity  control in cell differentiation 

[88,89], and enzyme activation networks [90,91].  For example in apoptosis, 

bistability enables many influences of cell stress and survival to induce a 

single decision whether to digest the cell’s DNA and undergo apoptosis 

[85-87].  Bistability can also arise from genetic circuits.  For example, a 

synthetic genetic network has been built in E. coli, showing bistability of a 

mutually  inhibitory network composed of two repressible promoters [92].  

Many previous studies of biological network bistability  have characterized the 

determinants of bistability or the conditions that cause bistability to break 

down.  In these studies, bifurcation analysis is often used to identify  the 

boundaries of parameters that allow bistability  of a network.  Previous work 

has also focused on input-output models where an input stimulus triggers a 

bistable switch in an output.  However, few bistable modeling projects have 

emphasized questions of drug targeting or therapeutic dosing.

Bistable systems may be particularly  attractive to target with therapeutic 

interventions because they  might permit a short-term treatment to cause a 

long-term switching effect.  In a monostable system, drugs must be provided 
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continually to have a sustained effect; but in a bistable system, a compound 

could cause a switch to a stable steady state.  In that case, endogenous network 

effects could maintain the system in the new steady state over time, even if the 

drug is withdrawn. 

The use of computational models during drug targeting allows for efficient 

exploration of combination therapies and identification of synergistic 

combinations.  Synergistic drugs provide greater efficacy  than the individual 

component drugs, and there has been great interest in synergistic drugs 

because they can amplify efficacy without necessarily amplifying toxicity and 

side-effects [93-95].  A more precise formalization of synergism is quantified 

using the combination index (CI) [96].  Drugs with additive effect have CI = 1 

and synergistic combinations have CI < 1 (Figure 3.S1A). To the best  of our 

knowledge, previous studies of combination treatments have studied graded 

responses and continuous outputs, rather than bistable systems with discrete 

outputs.   For example, in [95,97], the synergy  is evaluated by the temporal 

profile of an output node in the network.  In [98], Loewe additivity 

isobologram analysis was used to evaluate combination effects. 

A significant  challenge for computational modeling in drug target 

identification is due to the uncertainty  of parameters in the model.  Many of 

the qualitative relationships (e.g., Mek activates Erk) are well established, but 

the quantitative rate parameters are often unknown, even for a single cell line, 
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and certainly unknown for a population of patients.  Modest differences in 

model parameters or expression levels can sometimes cause dramatic changes 

in behavior.  In a network model, the required dose of a drug/perturbation to 

achieve the desired therapeutic intervention can be strongly dependent on 

variation in the model parameters.  Robustness of a biological system is the 

ability  to maintain its function in the presence of noise and fluctuation.  We 

apply  the concept of robustness to the drug design problem as follows: a 

robust therapy can achieve functional goals even when the targeted pathway 

exhibits patient diversity or uncertain parameters.  Therapies with low 

robustness may be undesirable since the system has a higher chance of over-

reacting or under-reacting when there is change in parameters. 

In this work, we study how bistable systems respond to combination 

perturbations, with or without parameter variation.  First, we study  the 

transition between two steady states induced by  perturbing one or more nodes 

of a bistable system.  We use a model of bistable TGF-β1 activation [1] as a 

case study for the effects of combination perturbations in a bistable system.  

Single species perturbation analysis computes the minimum threshold 

perturbation (critical dose) that can induce state switch, and also gives a list of 

species/nodes that have infinite critical doses (unable to switch the system).  

Combination perturbation analysis evaluates the effects of different 

combination pairs, to see which are additive or synergistic.  Using the results 

from large-scale repetition of the perturbation analysis, we discovered a trend 
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in the robustness of combination drug doses.  Under parameter perturbation, 

even when there was a dramatic change in the critical doses for single-species 

perturbations, synergistic combinations showed little change in critical dose. 

In other words, for synergistic pairs, the combination doses have higher 

relative robustness under parameter perturbation, than additive or antagonistic 

pairs.  The correlation between robustness and synergy was very intriguing 

and we asked whether it was specific to the TGF-β1 system.  We tested a 

range of previously published bistable models including cell differentiation 

[88,89], apoptosis [85], cell cycle entry  [84], and robust motifs of bistability 

[99].  In every case, we found a correlation between dose robustness and 

synergy, suggesting that the correlation between robustness and synergy is a 

general property  of many  bistable networks. Our result suggests that 

perturbations (i.e., drug therapies) to modify a bistable system will have more 

robust functional effects if the perturbations target  synergistic nodes of the 

network.  Finally we discuss the implications for targeting and dosing in drug 

design.

3.4 Results

       3.4.1 Single species and combination species perturbation of a 

bistable TGF-β1 activation network

        For comparing the effects of single perturbations and combination 

perturbations on the steady states of a bistable system, we needed a mid-sized 

model of a bistable biochemical network.  We selected our previously 
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published model of TGF-β1 activation by Thrombospondin (TSP) and plasmin 

(PLS) [1].  In this model, TGF-β1 had a positive feedback loop with one 

activator, TSP, and a negative feedback loop with the other activator, PLS.  

Because TSP and PLS were mutually antagonistic, this system showed 

bistable behavior, with one steady state having high levels of TGF-β1 

(activated primarily by  TSP while PLS was off) and one steady state having 

lower levels of TGF-β1 (activated predominantly  by PLS, while TSP was off).  

These two steady  states showed a qualitative resemblance to normal and 

fibrotic modes of behavior in liver cells. A simplified reaction diagram appears 

in Figure 3.1A.
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Figure 3.1: Combination species perturbation of a bistable TGF-β1 
activation model. (A) Reaction diagram of the TGF-β1 activation network. 
Arrow means “activates” or “enhance”. Arrow with bar end means “inhibits”. 
(B) Polygonogram [100] of the combination index (CI) for all pairs of species 
in the target lists capable of switching the system from ssHigh to ssLow (left) 
and from ssLow to ssHigh (right).  A negative sign (-) indicates a negative 
perturbation of the species (i.e., adding inhibitors), and a positive sign (+) 
indicates a positive perturbation of species (i.e., adding more of the species). 
There are 36 possible combinations for each polygonogram. Synergistic 
combinations are represented by red lines. Nearly additive combinations are 
represented by light pink lines. Antagonist combinations are represented by 
cyan lines. The level of synergism and antagonism are reflected from the 
thickness of the lines. (C) A combination diagram showing system 
convergence to ssHigh or ssLow for different combined doses of TSP1 
inhibitor and A2M  inhibitor. (D) A combination diagram showing system 
convergence to ssHigh or ssLow for different combined doses of PAI1 
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inhibitor and PLS. (E) A combination diagram showing system convergence to 
ssLow or ssHigh for different combined doses of scUPA inhibitor and TSP1. 
In (C) and (D), the system was initialized to ssHigh and so convergence to 
ssHigh means failure to switch the steady state, while convergence to ssLow 
means succeeding to switch the steady state. In (E), the system was initialized 
to ssLow and so convergence to ssLow means failture to switch the steady 
state, while convergence to sHigh means being able to switch the steady  state. 
In (C)-(E), gray dots represent dose combinations that fail to switch steady 
states, and black circles represent dose combinations that are able to switch 
steady  states. In (C)-(E), the separatrix (boundary  between gray dots and black 
circles) are highlighted with red, pink and cyan colors for synergism, 
additivity and antagonism respectively.

We used this model to study combinations of anti-TGF-β1 and pro-TGF-β1 

perturbations.  To identify potential targets for switching the steady state of the 

system, we performed single species perturbation analysis.  Briefly, for anti-

TGF-β1 perturbations, we initialized the system in the steady state with high 

TGF-β1 (SShigh), then every species in the system was perturbed up or down 

individually, to test whether the system would re-converge to the SShigh state, 

or converge instead to the steady state with low TGF-β1 (SSlow). Table 3.S1C 

shows the minimum perturbation magnitude (the critical dose) for each 

species to switch the bistable TGF-β1 network from SShigh to SSlow. For pro-

TGF-β1 perturbation, the system was initialized with SSlow instead.

Based on the critical doses obtained from single species perturbation analysis, 

we performed combination species perturbation analysis (Figure 3.1B-E).  Full 

details of all perturbation studies appear under Methods. Briefly, we 

discretized the intervals from zero to the estimated critical doses of each 

perturbation, and applied the combination of each pair of doses to the system 
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in SShigh (or SSlow) and simulate the effect.  If a dose combination was able 

to switch the system to SSlow (or SShigh), we plotted a black circle at the 

dose combination point, if not, we plotted a gray dot (Figure 3.1C-E). In this 

plot, which we call a “combination diagram”, the boundary  (separatrix) 

between the switch and non-switch regions represents the “critical 

combination doses” for switching the steady state of the system. The 

separatrix is analogous to the ED50 isobologram in the evaluation of 

combination therapy, therefore we apply the Combination Index (CI) [96] 

method to evaluate the combination effect for the dose combinations on the 

separatrix (Figure 3.S1A-B).  A representative CI (See Methods) is selected 

for each pair of target combination, and is plotted on a polygonogram [100] 

(Figure 3.1B).

Figure 3.1C shows the combination diagram of a synergistic combination with 

anti-TGF-β1, TSP1 inhibitor with A2M inhibitor. The shape of the synergistic 

separatrix is bending towards the origin. Figure 3.1D shows the combination 

diagram of an additive combination with anti-TGF-β1 effect, PLS and PAI1 

inhibitor, in which the separatrix is a straight line. Figure 3.1E shows the 

combination diagram of an antagonistic combination with pro-TGF-β1 effect, 

TSP1 and scUPA inhibitor, in which the separatrix is bending outward. The 

method to estimate separatrix by numerical simulation is provided in Methods 

Section 4.
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       3.4.2 Parameter perturbation analysis of combination species 

perturbation of TGF-β1 activation network

        We started our analysis by  using the published parameters of the model, 

but since many of the parameters were uncertain or estimated, we performed 

parameter perturbation analysis (see Methods) to test the robustness of each 

synergistic combination to parameter variation.  Interestingly, we found that 

the critical combination doses of the synergistic combinations varied in a 

much less sensitive manner (Figure 3.2A) than the individual critical doses of 

each of each components of the combination (for the same amount of 

parameter perturbation). In contrast, for additive combinations, the critical 

combination doses varied in parallel with the critical doses of the components 

(Figure 3.2B), and for antagonistic combinations, the critical combination 

doses varied in an even more sensitive manner than the critical doses of the 

components (Figure 3.2C). 
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Figure 3.2: Different responses of synergistic and additive combinations 
to parameter variation. Shifts in the separatrix when the system has three 
different values for parameter k8 (called kothers in [1]). The green separatrix 
represents the system with k8 = 0.1. The brown dotted separatrix represents k8 
= 0.3, and the orange dotted separatrix represents k8 = 0.5. Arrow 1 (with 
length δD1) depicts the change of critical dose for the first species in the 
combination, when k8 is increased from 0.1 to 0.5. Arrow 2 (with length δD2) 
depicts the change of critical dose of second species in the combination, when 
k8 is increased from 0.1 to 0.5.  Arrow 3 (with horizontal length δD1comb and 
vertical length δD2comb ) depicts the change in the representative dose 
combination (See Methods). (A) The shift in separatrix for a synergistic 
combination (negative perturbation of TSP1 and negative perturbation of 
A2M). (B) The shift in separatrix for an additive combination (positive 
perturbation of PLS and negative perturbation of PAI1, plasminogen activator 
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inhibitor-1). (C) The shift in inparatrix for an antagonistic combination 
(negative perturbation of scUPA and positive perturbation of TSP1).

Figure 3.2A-C shows the change of critical combination doses (i.e., the change 

in separatrix) for the combination diagrams of a synergistic pair (“-TSP1, -

A2M”), an additive pair (“-PAI1, +PLS”) and an antagonistic pair (“-scUPA, 

+TSP1”) when we vary one parameter “k8”. k8 (called k_others in the previous 

publication) was chosen first because we believed k8 is particularly  likely to 

vary with the context. k8 describes the activation of TGF-β1 by “other” 

activators not explicitly included in the model.  We set 3 values for “k8”, i.e. 

0.1, 0.3, and 0.5 (Figure 3.2A-C)  The green, dark green, orange color in 

Figure 3.2A-B represent the critical combination doses (i.e., the separatrix) 

when “k8” equals 0.1, 0.3, 0.5, respectively.  We observed that  for combination 

perturbation with strong synergy (Figure 3.2A), comparing with the dramatic 

change of critical dose of each of its components (Figure 3.2A, arrow 1 and 2), 

the combination doses just change a small amount (Figure 3.2A arrow 3).  For 

additive combinations, the combination dose change (Figure 3.2B, arrow 3) is 

approximately the linear combination of single component dose change 

(Figure 3.2B arrow 1 and 2). While for antagonistic combinations, the 

combination dose change is even more than additive combinations (Figure 

3.2C).

To quantify  how the separatrix and the critical dose combinations would 

change in response to perturbation of individual parameters, we used the 
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relative robustness (RR) method. The variables are depicted graphically in 

Figure 3.2 and defined in the following formula (see Methods for details).

!
ΔCI = δD1_ comb

δD1
+ δD2_ comb

δD2
;

!
RR =1− ΔCI;

ΔCI measures the relative advantage of combination perturbation over single 

component perturbation of either of its components, in terms of dose variation 

due to parameter uncertainty.  A combination with a small ΔCI can have more 

robust critical combination doses than a combination with large ΔCI if the 

robustness of the critical doses of their components are on similar levels. We 

therefore defined relative robustness to be the inverse of the ΔCI, i.e. RR = 1-

ΔCI. 

       3.4.3 Relative dose robustness is positively correlated with synergy in 

the model of bistable TGF-β1 activation

        The stark difference in RR of the synergistic combination (“TSP1 and -

A2M”), the additive combination (“-PAI1 and PLS”) and antagonistic 

combination (“-scUPA, +TSP1”) in Fig2, and similar trend we observed from 

other pairs of species under different parameter perturbations (Figure 3.S2A-

D) motivated us to compute the RR of other synergistic combinations due to 

perturbation of other parameters, and compare against the RR of other additive 

combinations, in the same TGF-β1 model.  All 36 pairs of perturbations for 
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switching the TGF-β1 system from SShigh to SSlow were considered (Table 

3.S1D).  In addition to repeating the single parameter perturbation method 

(Figure 3.3A,C), we also performed multiple parameter perturbation (Figure 

3.3B,D). We used the mean CI value between the unperturbed system and the 

perturbed system (CImid, see equation (5) in Methods) to represent the synergy 

level of a species combination. In Figure 3.3A-B, the RR and Cmid 

distributions are shown as box plots for each of the 36 pairs of species.  

Regardless of how the parameters were perturbed, we observed a negative 

correlation between the RR and CImid distributions, which was quantified by 

plotting the mean RR versus the mean CImid for each of the 36 pairs (Figure 

3.3C-D). 
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relative robustness of the combination critical dose and the CImid combination 
index, computed by (A) single parameter or (B) multiple parameter 
perturbation analysis. (C-D) A scatterplot of the mean CImid, versus the mean 
RR, for each species combination, resulting from (C) single parameter or (D) 
multiple parameter perturbation analysis. 

Through parameter perturbation analysis, we confirmed that the relative 

robustness (RR) of critical combination doses is indeed positively  correlated 

with synergy (negatively correlated with CImid), for switching the TGF-β1 

activation system from SShigh to SSlow (i.e., anti-TGF-β1 therapies).

We repeated the entire procedure for the opposite switch of the same system 

(i.e., pro-TGF-β1 therapies).  We considered all possible combination 

perturbations for switching the TGF-β1 steady  state from SSlow to SShigh.  

An opposite switch of the same system is not expected to give the same trends 

because if one method (e.g. –TSP1 and –A2M) is relatively  easy or synergistic 

to perturb the system in one direction, its opposite method (e.g. TSP1 and 

A2M) might be relatively hard or antagonistic to perturb the system in the 

other direction. With such intuition, we think it is necessary  to study both 

directions of the switch to check whether the correlation between RR and CI is 

direction relevant. Figure 3.4A shows the species combinations for two 

directions of switching for the TGF-β1 bistable model. The blue dots represent 

anti-TGF-β1 activation combinations while the red dots represent  pro-TGF-β1 

activation combinations.  We observed that the anti-TGF-β1 treatments were 

synergistic on average, while the pro-TGF-β1 treatments were antagonistic on 
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average. Nonetheless, the correlation between RR and CI followed the same 

trend.

       3.4.4 The correlation between relative robustness and synergy is a 

general property of many bistable biological networks.

To test the generality of the correlation between RR and CI, we analyzed 

several additional bistable networks.  The entire multiple parameter 

perturbation analysis was repeated for bistable biological network models of 

apoptosis (Figure 3.4B), hematopoietic cell fate (Figure 3.4C), the ETT 

regulatory motif (Figure 3.4D), cell cycle entry (Supplementary Figure 

3.S3A), and cell differentiation (Supplementary Figure 3.S3B). The details of 

the steady states, parameter settings, critical doses and species combinations 

of the models can be found in Supplementary Tables 3.S1-6. A significant 

positive correlation between RR and synergy (a negative correlation between 

RR and CI) was observed for all bistable systems tested. We conclude that 

bistable models often display a significant positive correlation between 

synergy and relative robustness, under parameter uncertainty.
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Figure 3.4: Multiple parameter perturbation analysis of bistable models 
of different biological systems. A list of positive and negative species 
perturbations, capable of switching the system from either direction was 
generated through single species perturbation analysis (see Methods). For each 
pair of species, multiple parameter perturbation analysis was performed, 
which yields mean Cmid (see Methods) and mean RR. The RR v.s. CImid for 
each pair of species was shown in a scatter plot. (A) TGF-β1 activation model 
with both directions of switch considered [1]. (B) Bcl2 apoptosis model [85]. 
(C) Hematopoietic cell fate model [89]. (D) EET bistable motif [99]. 
Additional cases are shown in Supplementary Figure 3.S3.

3.5 Discussion

       Network models have played an increasing role in drug target selection, 

but bistable models have rarely been used for target selection. Drug 

development efforts sometimes need to target biological phenomena that are 

inherently  bistable (e.g., apoptosis). At the same time, a growing number of 

biological events have been understood to possess bistability [84-88,90,91], 
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accompanied by a growth in the number of bistable network models.  It is 

therefore timely to explore drug targeting in computational models of bistable 

systems.  In this work, we used a TGF-β1 bistable activation model to study 

the problem of combination targeting of bistable systems.  As expected, we 

found that different target combinations yielded different levels of synergism.  

More interestingly, we found that  the synergism of a combination was related 

to the robustness.  To be precise, when model parameters underwent modest 

fluctuations (within the bistable regime of the system), the relative robustness 

of the combination doses was positively correlated with the combination 

index.  The parameter fluctuations were performed by applying single-

parameter and multiple-parameter perturbation method.  The relative 

robustness was defined by the sum of relative changes of combination doses 

over single doses as defined by equations (3)-(4) in the Methods section, and 

the synergy  was defined by  the combination index (CI) methods.  After 

repeating the same analysis on several other bistable network models, all cases 

exhibited some degree of positive correlation between RR (relative 

robustness) and synergy (negative correlation between RR and CI).  This 

suggests that a correlation between robustness and synergism may be a general 

property of combination dosing for many bistable network models. 

We used RR (relative robustness) to characterize the dose variation of 

combination perturbation, for different levels of synergy. RR (a derivative of 

ΔCI) is a geometrical measurement of the change of separatrix in its shape and 
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position in combination diagram (Figure 3.5). Figure 5 lists several 

geometrically possible patterns of separatrix change when there is parameter 

perturbation. Our study identified that, in bistable systems two patterns 

(Figure 3.5 first row) are preferred for synergistic combinations and 

antagonistic combinations respectively, which reflect a positive correlation 

between RR and synergy. The correlation between RR and synergy can be 

understood by  considering a Boolean simplification of the distinction between 

additive and synergistic pairs.  With an additive pair, either species is capable 

of causing the downstream effect, and any amount of one species can be 

substituted by the other species.  The switch depends on whether there is 

enough of species A OR species B, so an additive combination is like an OR 

operation.  With a synergistic pair, the combination of both species is highly 

effective at causing the switch, but either single species alone is much less 

effective.  The switch depends on the co-existence of species A AND species 

B.  The RR (relative robustness) of switches caused by additive pairs is 

moderate because the switch depends on the doses of the two triggers, and any 

perturbation in the effectiveness of one species will have a linear effect on the 

necessary  compensatory dose for the other species.  The RR (relative 

robustness) of synergistic pairs is better because the switch depends strongly 

on whether A and B are both present, and weakly on the exact amount of each 

component.  A perturbation of the effectiveness of one species will have less 

than linear effect on the necessary compensatory dose of the other species, 

provided neither species is near zero, meaning the combination remains near 
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the elbow of the curve in Figure 3.2A. It is worthwhile to note that the positive 

correlation between RR and synergy is not equivalent to the positive 

correlation between the robustness of critical combination doses and synergy, 

due to the fact that RR is a measurement of relative dose-variation. Two 

extreme cases (Figure 3.S4) demonstrate that  in practice, dose robustness 

could be roughly the same (Figure 3.S4A) or dramatically different  (Figure 

3.S4B) for synergistic and antagonistic combinations. Figure 3.S4 also shows 

that information of the dose robustness of individual components, and their 

absolute dose value would be useful in evaluating the robustness of 

combination doses.
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Figure 3.5: Preferred and non-preferred separatrix shift in bistable 
systems. Geometrically possible shift of separatrix for synergistic 
combinations and antagonistic combinations. Green and black curves 
represent the separatrix of two conditions of a bistable biological system 
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differing their parameters.  Green arrows depict the change in critical doses of 
each component, and critical combination doses. 

Uncertainty  is a ubiquitous problem in network modeling of biological 

systems.  Network models are composed of chemical reactions based on 

previous results from cell free assays or in vitro assays. Usually, most of the 

reaction rates have never been measured directly, and often they  are estimated 

by fitting the global behavior of the system to observed dynamics [101], or by 

analogy with homologous systems.  Even if reaction rates could be determined 

comprehensively and accurately, there will always be parameter uncertainty 

due to the differences between in vitro and in vivo, and due to patient-to-

patient variation.  The practical use of computational models can be facilitated 

by robustness analysis, even when the models have considerable uncertainty 

[102].  Robustness analysis quantifies how the model behavior changes in 

response to the uncertain variables, so the practical use of the model can be 

based on its robust behaviors (and conversely, so conclusions won’t be drawn 

from its fragile behaviors).  This traditional use of robustness analysis is 

complemented by  our use of robustness analysis to study dose robustness.  

Dose robustness is the robustness of effective doses to change the state of the 

system when there is uncertainty/variation in the system parameters.  Our 

discovery  that the relative robustness of critical combination doses is 

negatively correlated with Combination Index (CI) (positively correlated with 

synergy) provides a prediction that administering a synergistic combination of 

treatments can be a choice to increase the dose robustness of the treatment.  
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Synergistic treatments are by definition able to achieve the same efficacy with 

lower doses (compared with non-synergistic combinations), and here we show 

that they also have the potential to achieve a narrower confidence interval on 

the therapeutic effect, in the presence of uncertainty. 

One important application of computational network models is drug target 

identification and selection. Kitano proposed in 2007 to target the most 

sensitive (“fragile”) nodes in a network, on the grounds that a small 

perturbation (a low dose of inhibitor) directed at  a sensitive node would have 

greater impact (increased efficacy) [103].  Several subsequent studies have 

followed Kitano’s strategy [104-108], but these studies have not addressed the 

impact of network uncertainty on the dosing uncertainty.  Dose uncertainty is 

important in theory and in practice, because it increases the probability  of 

under-dosing or over-dosing, when there is model uncertainty  or patient 

variation.  In this study we suggest a new targeting strategy that optimizes 

dose robustness by selecting synergistic target combinations.  Under Kitano’s 

strategy, the design goal was to minimize the absolute sum of the therapeutic 

doses, for a single, average-case model.  In contrast, the design goal of our 

strategy is to maximize the dose robustness in the presence of parameter 

uncertainty (we use parameter uncertainty to represent both patient variation 

and model uncertainty).   Kitano’s goal of minimizing the absolute dose is 

mathematically optimal for minimizing toxicity  in a single ideal model, and it 

leads logically  to the strategy of targeting sensitive nodes.  Our goal of 
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maximizing the dose robustness optimizes a different type of toxicity, which 

may be equally important in practice.

Because bistable systems have two stable steady states, the impact of a 

treatment is an all-or-nothing effect: either remaining in the current steady 

state or switching to the other steady state (for each tissue, each cell, or each 

unit of bistability).  For systems with many small units, the dose response may 

be a sum of many binary effects, but if the system has a small number of large 

units, the dose response will have sharp cliffs, reflecting the success or failure 

to switch the states.  A sharp dose-response curve is rare in drug development.  

Dose-response information is extremely valuable [109] and a gradual slope 

provides an intuitive way to adjust the response by adjusting the dose.  A 

biological system with inherently sharp dose-response curves would violate 

the expectation of a tunable dose-response, and would be undesirable to target.  

In the long run, however, some biological systems may be unavoidably 

bistable, and some pathology may have inherent ultrasensitivity, regardless of 

how they  are targeted.  Our work, on combination targeting of bistable 

systems, contributes to a novel foundation for rational dosing, in systems 

where dose sensitivity dominates the risk profile.

The cliff-like separatrix of a bistable response creates an urgent motivation for 

seeking dosing strategies that are robust to parameter uncertainty, and hence 

we have explored the RR-synergy correlation first in bistable systems.  The 
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RR-synergy correlation we found is not exclusive to bistable systems (data not 

shown), but we have focused on bistable systems because their steep dose-

response behaviors motivate our emphasis on dose robustness.  For future 

work, the prevalence of the RR-synergy correlation should be assessed in 

other regimes (e.g. monostable, oscillating.)

3.6 Methods

       3.6.1 Definitions and the stable steady states.

        Let  dx/dt = F(x,p0) be a bistable model, where p0 is the constant 

parameter vector, and x is the variable vector of biochemical concentrations.  

By the definition of bistability, there are two stable steady state values of x, 

which we call ss1 and ss2.   For most models, the ss1 and ss2 vectors were 

published, or easily  derived from published information. For the ETT bistable 

models, bistability  was studied over a range of parameters, but no specific 

value of the p0 vector was published.  Therefore, we performed repeated 

simulations with random initialization, to search for feasible values of p0, ss1 

and ss2.

       3.6.2 Inhibitory species

        Inhibitors of each species were added explicitly as new species into the 

model equations.  For each species i, an irreversible (destructive) reaction 

between the ith species and its respective inhibitor was inserted using the 
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following mass-action chemical reaction: x(i) + x_inhibitors(i) → 

x_inhibitor_complexes (i). By definition the  x_inhibitor_complexes species 

had no activity.  The expanded model with inhibitory  reactions can be written 

as dxlong/dt = Flong(xlong, p0, k_inhibitors), where xlong  = [x, x_inhibitors, 

x_inhibitor_complexes].

       3.6.3 Single species perturbation analysis

        For perturbation analysis of species i in the transition from ss1 to ss2 (or 

vice versa), the system was initialized with all species at the steady state level 

ss1, except with a perturbation of x(i) or x_inhibitors(i), prior to simulating 

the system trajectory.  In other words, the perturbed initial condition, x(t = 0), 

was set equal to ss1 + δ_xi, where δ_xi  is a vector with all zeroes except a 

positive value for the x(i) or x_inhibitors(i) entry.  Positive perturbations were 

performed by adding positive amounts δ to x(i). Negative perturbations were 

performed by adding positive amount δ, to x_inhibitors(i).  The system was 

then simulated until steady  state convergence.  For each species i, the 

simulation was repeated many times with a series of positive or negative 

perturbations.  A “dose response” curve was then plotted showing the final 

steady  state of the system as a function of δ.  Due to the stability  property of 

the ss1 steady state, the simulated trajectories would converge back to ss1 if 

the perturbations were sufficiently small.  As expected, the dose response plots 

did not show a change of steady state after small perturbations, and but many 

showed a jump to ss2 for perturbations above some threshold.  We call that 
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threshold perturbation the critical dose.  The critical dose was estimated 

numerically for each species by the method of bisection.  The above procedure 

was performed for each species i, and for each direction of the system 

transition, ss1 to ss2 and from ss2 to ss1.  

For each direction of the system transition, we compiled a target list of 

species, which were the species capable of switching the steady state, either as 

positive or negative perturbations.  This list (and the respective critical doses) 

serve as input for combination species perturbation analysis and parameter 

perturbation analysis.  Note that no more than one type of perturbation (either 

positive or negative) was found in our analysis to induce a switch from ss1 to 

ss2.  If a positive (or negative) perturbation of species i could induce a 

transition from ss1 to ss2, then it was often (but not always) the case that an 

opposite-signed perturbation of species i could induce the opposite transition, 

from ss2 to ss1.   

       3.6.4 Combination species perturbation analysis 

        Combination perturbation analysis resembled single species perturbation 

analysis, except perturbing two species or species inhibitors at the same time.  

Simultaneous perturbation of more than 2 species would be possible in theory, 

but were not considered in this study.  Pairs of species (i,j) were taken from 

the list of species found to be capable of switching the system state during 

single species perturbation analysis.  For each species, a set of N perturbation 
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magnitudes was selected, using equally spaced values between zero and the 

critical dose.  N = 20 was used in Figure 3.1C-D, Figure 3.2A-B, while N = 10 

was used for synergy and robustness estimation in Figure 3.3 and Figure 3.4.  

The bistable system was initialized N2 times, such that all species were at  their 

steady  state levels except species i and j, which were perturbed by  every 

pairwise combination of the chosen N perturbation amounts.   Finally the N2 

initialized systems were simulated until convergence to a steady state.  As with 

single-species perturbations, a “negative” perturbation of x(i) was performed 

through a positive perturbation of x-inhibitor(i).  

A plot  of the combination effects used color for indicating convergence to 

either ss1 or ss2, for each pair of perturbation magnitudes. The plots of 

combination effects showed an obvious line or curve, called a separatrix, 

dividing the switch and non-switch regions of the plot.  The separatrix was 

extracted for the quantification of synergy. The synergy  was quantified using 

the combination index (CI) method as follows.

!

CI = separatrix _ xi
critical _ xii=1

2

∑ ;                 (1)

where critical_xi denotes the critical dose of species xi from single species 

perturbation analysis in the model; separatrix_xi denotes the combinatorial 

dose of xi on the separatrix in the combination plot.  

We defined the representative dose combination depending on the synergy/

antagonism of the combination.  For synergistic combinations, the 

86



representative dose combination was the point on the separatrix with 

minimum CI (maximum synergy).  For antagonistic combinations, the 

representative combination dose was the point on the separatrix with 

maximum CI (maximum antagonism).  For additive combinations, it was the 

point on the separatrix with the most equal relative doses, meaning both 

species dosed at 50% of their respective critical doses.  Therefore, we have: 

!
CI _ rep = rep_ xi

critical _ xii=1

2

∑ ;                 (2)

We chose this definition of the representative dose combination because it 

provided continuity  of doses (in the bistable models we studied) when 

parameter variation changed the shape and position of the separatrix.

       3.6.5 Single parameter perturbation analysis

        For each parameter p0(i), we used numerical simulation to find upward 

and downward perturbations that would disrupt the original bistability of the 

system, defined as the ability of the system to converge to two different steady 

states if initialized at ss1 and ss2.  The upward (or downward) perturbation 

was first estimated by repeated doubling (of halving) of the p0(i) value, until 

simulation of the system, initialized at  ss1 and ss2, failed to show convergence 

to two different steady states.  Subsequent refinement of the upward and 

downward perturbations was achieved by bisecting the search interval until it 

was less than 1%.  Finally the range between the upward and downward 

perturbation was discretized into N=20 equally spaced values, to provide a 
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range of values for p0(i).  N systems were constructed, with each of the N 

values of parameter p0(i), and subjected to combination species perturbation 

analysis.  In case a perturbed model became insensitive to a species in the 

target list (i.e., the species was no longer capable of causing a switch of the 

steady  state), then that species was omitted from the combination species 

perturbation analysis.

The single parameter perturbation method was repeated for each parameter.  

Also for each parameter, the upward and downward perturbation range 

identified during single parameter perturbation was provided as input for the 

method of multiple parameter perturbation.

       3.6.6 Multiple parameter perturbation analysis

        All parameters were varied randomly and simultaneously, within their 

respective ranges.   If we had sampled this high-dimensional parameter space 

with a uniform distribution, only a small fraction of the resulting systems 

would have shown bistability.  We therefore sampled the parameter space 

using a beta distribution in each dimension, with mean at the unperturbed 

value and boundaries defined by the perturbation range.  The probability  of 

selecting a value for parameter p(i) was: 

!
Pr(p(i)) = Beta(α (i),β(i))× (pupper (i)− plower (i))+ plower (i)
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where: 

!

α (i) = p0(i)− plower (i)
pupper (i)− plower (i)

× Nbeta

!

α (i) =
pupper (i)− p0(i)
pupper (i)− plower (i)

× Nbeta

!
Nbeta = 5 .

This sampling, weighted toward the original values, yielded a higher fraction 

of systems showing bistability.  Sampling was repeated until we obtained 50 

models that retained bistability  with the ability to switch states when perturbed 

by species of the target list. 

      3.6.7 Relative robustness of dosing

        For a pair of systems, one unperturbed system p0 and one perturbed 

system q, and for a given pair of species (x1,x2), we study the relative 

robustness of the (x1,x2) dose combination to represent the relative change of 

combination doses versus non-combination doses. More formally, we define 

the relative robustness, RR, as follows: 

!
ΔCI = rep_ xi _q − rep_ xi _ p0

critical _ xi _q − critical _ xi _ p0
= δD1_ comb

δD1
+ δD2 _ comb

δD2i=1

2

∑ ;                 (3)

!
RR = 1− ΔCI;                 (4)
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where critical_xi_p0 denotes the critical dose of species xi from single species 

perturbation analysis in the model with original parameter setting; rep_xi_p0 

denotes the xi component of representative dose combination in the model 

with original parameter setting; critical_xi_q denotes the critical dose of 

species xi from single species perturbation analysis in the model with 

perturbed parameters; rep_xi_q denotes the xi component of representative 

dose combination in the model with perturbed parameters. During single 

parameter perturbation analysis and multiple parameter perturbation analysis, 

we computed the RR for each perturbed model (compared with the original 

model), for each pair of species on the target list (Figure 3.3A-B, first row).

      3.6.8 Correlation between synergism and robustness

        For a pair of systems, perturbed and unperturbed, and for a given pair of 

species (x1,x2) we define the overall synergism to be the CImid:

!
CImid = (CI _ p0 +CI _q) / 2;                 (5)

where CI_p0 denotes the combination index of (x1,x2) in the model with 

original parameter setting using equation (2), and CI_q denotes the 

combination index of (x1,x2) in the model with perturbed parameters.  We 

computed the CImid for each perturbed model (compared with the original 

model), for each pair of species on the target list  (second row in Figure 3.3A-

B).  Finally, we compiled the mean RR for each pair of target  species, across 
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all perturbed models, and the mean CImid across all perturbed models, for 

plotting in Figure 3.3C-D.

3.7 Conclusions

        Through species perturbation and parameter perturbation analysis for a 

bistable TGF-β1 activation model, we found a correlation between synergism 

and relative robustness in combination therapy for bistable networks.  Further 

analysis on multiple bistable models of various biological systems suggests 

that such correlation could be a general property of many bistable network 

models.  The results of our study could be helpful in network modeling, drug 

discovery and the study of bistable biological decisions. 

3.8 Supplementary Information

      3.8.1 Supplementary figures

Figure 3.S1
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Figure 3.S1: Combination Index (CI) and its application in combination 
perturbation of bistale systems. The Combination Index (CI) and 
isobologram. (A) a classic ED50 isobologram for two drugs with actual doses 
on x- and y-axis. Dose combinations falling on the dotted line indicate 
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additive effect. Dose combinations falling on lower left (blue) indicate 
synergism. Dose combinations falling on upper right (red) indicate 
antagonism. (B) Separatrix in combination diagram of two drugs. Intercepts 
indicate the critical doses of the two drugs. Separatrix in a shape of straight 
line indicates additivity. Separatrix bending toward the origin (blue curve) 
indicates synergism. Separatrix in bending outward (red curve) indicate 
antagonism.
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Figure 3.S2

ssHigh to ssLow, k_others = 0~0.5
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ssHigh to ssLow, keff2 = 0.26~0.61
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ssLow to ssHigh, keff2 = 0.26~0.61
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Figure 3.S2: Responses of all species combinations to parameter variation 
in the bistable TGF-β1 activation model. Responses of all species 
combination to different parameter variation in the bistable TGF-β1 activation 
model. (A) Shifts in the separatrix when the system changed its kothers value 
from 0 to 0.5 continuously. The bistable switch was from ssHigh to ssLow. (B) 
Shifts in the separatrix when the system changed its keff2 value from 0.26 to 
0.61 continuously. The bistable switch was from ssHigh to ssLow. (C) Shifts 
in the separatrix when the system changed its kothers value from 0 to 0.5 
continuously. The bistable switch was from ssLow to ssHigh. (D) Shifts in the 
separatrix when the system changed its keff2 value from 0.26 to 0.61 
continuously. The bistable switch was from ssLow to ssHigh. 
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Figure 3.S3
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Figure 3.S3: Multiple parameter perturbation analysis of several other 
bistable models. In addition to Figure 3.4, several other models including (A) 
B cell differentiation model [88], and (B) cell cycle entry  model were also 
tested with multiple parameter perturbation analysis [84]. The results 
suggested that their RR and CImid also follow the same pattern as models in 
Figure 3.3-4.
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Figure 3.S4: Relative robustness (RR) and dose uncertainty. Diagrams of 
two typical cases of the dose variation of combination species perturbation. 
Synergistic combinations have smaller RR value compared with antagonistic 
combinations, but the actual dose uncertainty (or robustness) depends on the 
critical doses of their components, and the uncertainty (or robustness) of 
critical doses. (A) A synergistic combination and an antagonistic combination 
with similar combination dose uncertainty (or robustness). Blue curves 
represent the range of the combination critical doses (separatrix) of a 
synergistic combination. Blue arrows represent the uncertainty (variation) of 
the critical doses of its two components. Red curves represent the range of the 
combination critical doses (separatrix) of an antagonistic combination. Red 
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arrows represent the uncertainty (variation) of the critical doses of its two 
components. The green arrow represents the shared uncertainty (variation) of 
the representative critical dose combination (see Methods). Arrows were used 
in the equations to better reflect the qualitative difference in ΔCI and RR. The 
ratio between two arrows means the ratio between their x or y  component. For 

example, ↥/↥means the ratio between the y-components of green arrow and 

perpendicular blue arrow in the diagram, while ↥/↦ means the ratio 
between the x-components of green arrow and horizontal red arrow in the 
diagram. (B) A synergistic combination with better combination dose 
robustness than an antagonistic combination. Blue curves represent the range 
of the combination critical doses (separatrix) of a synergistic combination. 
Blue arrows represent the uncertainty (variation) of the critical doses of its two 
components. Red curves represent  the range of the combination critical doses 
(separatrix) of an antagonistic combination. Red arrows represent the 
uncertainty (variation) of the critical doses of its two components. The green 
arrow represents the uncertainty (variation) of the representative critical dose 
combination of the antagonistic combination. The orange arrow represents the 
uncertainty (variation) of the representative critical dose combination of the 
synergistic combination (see Methods). Arrows were used in the equations to 
better reflect the qualitative difference in ΔCI and RR.

      3.8.2 Supplementary tables

Table 3.S1: Bistable TGF-β1 activation model. (A) Steady  state 
concentrations of species in TGF-β1 activation model. (B) Parameter values 
modeling the in inhibitors effects. (C) Critical doses of different species for 
two directions of bistable switch. (D) A list  of combinations perturbations for 
two directions of bistable switch. Other details related with this model can be 
found in [1].

Table 3.S1A

species names steady state concentrationssteady state concentrations

low TGF-β1 
activation (µM)

high TGF-β1 
activation (µM)

scUPA 0.0348 0.0179

PLG 1.8517 0.7032

LTGF-β1 0.0016 0.0087

A2M 0.1159 0.0008
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species names steady state concentrationssteady state concentrations

Plasmin 0.0008 0.2736

tcUPA 0.0001 0.0226

TGF-β1 0.0153 0.0147

TSP1 0.0757 0.0010

PAI1 0.8205 0.8045

Table 3.S1B

parameter names parameter values

k_inhibitors 20

deg_inhibitors 0.0175

deg_inhibitor_complexes 1

k_others 0.35

Table 3.S1C
anti TGF-β1 activationanti TGF-β1 activation pro TGF-β1 activationpro TGF-β1 activation

perturbation critical dose perturbation critical dose

LTGF-β1 
inhibition 0.7500 LTGF-β1 

addition 0.2070

A2M 
inhibition 0.4219 A2M 

addition 0.4219

TGF-β1 
inhibition 0.3672 TGF-β1 

addition 0.1836

TSP1 
inhibition 2.8125 TSP1 

addition 0.4375

PAI1 
inhibition 2.3750 PAI1 

addition 1.8750

scUPA 
addition 0.2148 scUPA 

inhibition 0.1602

tcUPA 
addition 0.0083 tcUPA 

inhibition 0.0439

Plasmin 
addition 0.1992 Plasmin 

inhibition 0.4141
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anti TGF-β1 activationanti TGF-β1 activation pro TGF-β1 activationpro TGF-β1 activation

PLG 
addition 3.3125 PLG 

inhibition 0.8906

Table 3.S1D
index combination pairscombination pairs

anti TGF-β1 
activation

pro TGF-β1 
activation

1  +scUPA and +PLG  +LTGF-β1 and 
+A2M

2  +scUPA and +Plasmin  +LTGF-β1 and 
+TGF-β1

3  +scUPA and +tcUPA  +LTGF-β1 and 
+TSP1

4  +scUPA and -LTGF-β1  +LTGF-β1 and 
+PAI1

5  +scUPA and -A2M  +LTGF-β1 and -
scUPA

6  +scUPA and -TGF-β1  +LTGF-β1 and -
PLG

7  +scUPA and -TSP1  +LTGF-β1 and -
Plasmin

8  +scUPA and -PAI1  +LTGF-β1 and -
tcUPA

9  +PLG and +Plasmin  +A2M and +TGF-
β1

10  +PLG and +tcUPA  +A2M and +TSP1

11  +PLG and -LTGF-β1  +A2M and +PAI1

12  +PLG and -A2M  +A2M and -scUPA

13  +PLG and -TGF-β1  +A2M and -PLG

14  +PLG and -TSP1  +A2M and -Plasmin

15  +PLG and -PAI1  +A2M and -tcUPA

16  +Plasmin and +tcUPA  +TGF-β1 and 
+TSP1

17  +Plasmin and -LTGF-β1  +TGF-β1 and 
+PAI1

18  +Plasmin and -A2M  +TGF-β1 and -
scUPA
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index combination pairscombination pairs

19  +Plasmin and -TGF-β1 +TGF-β1 and -PLG

20  +Plasmin and -TSP1  +TGF-β1 and -
Plasmin

21  +Plasmin and -PAI1  +TGF-β1 and -
tcUPA

22  +tcUPA and -LTGF-β1  +TSP1 and +PAI1

23  +tcUPA and -A2M  +TSP1 and -scUPA

24  +tcUPA and -TGF-β1  +TSP1 and -PLG

25  +tcUPA and -TSP1  +TSP1 and -
Plasmin

26  +tcUPA and -PAI1  +TSP1 and -tcUPA

27  -LTGF-β1 and -A2M  +PAI1 and -scUPA

28  -LTGF-β1 and -TGF-β1  +PAI1 and -PLG

29  -LTGF-β1 and -TSP1  +PAI1 and -Plasmin

30  -LTGF-β1 and -PAI1  +PAI1 and -tcUPA

31  -A2M and -TGF-β1  -scUPA and -PLG

32  -A2M and -TSP1  -scUPA and -
Plasmin

33  -A2M and -PAI1  -scUPA and -tcUPA

34  -TGF-β1 and -TSP1  -PLG and -Plasmin

35  -TGF-β1 and -PAI1  -PLG and -tcUPA

36  -TSP1 and -PAI1  -Plasmin and -
tcUPA

Table 3.S2: Bistable Bcl2-apoptosis model. (A) Steady  state concentrations 
of species.  (B) Parameter values modeling the in inhibitors effects. (C) 
Critical doses of different species for two directions of bistable switch. (D) A 
list of combinations perturbations for two directions of bistable switch. Other 
details related with this model can be found in [85].

Table 3.S2A

species names steady state concentrationssteady state concentrations

Non-apoptosis apoptosis

InBax 39.6171 20.9680

AcBax 0.6758 5.3086
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species names steady state concentrationssteady state concentrations

Bcl2 6.6641 1.2231

Act 0.7587 1.5996

ActBcl2 0.8426 0.3261

AcBaxBcl2 3.7531 5.4108

Ena 0.6429 0.9075

EnaBcl2 0.0714 0.0185

Mac 0.2657 1.3609

Table 3.S2B

parameter names parameter values

k_inhibitors 1000

deg_inhibitors 0.01

deg_inhibitor_complexes 100

p2 0.020

Table 3.S2C
non-apoptotic to apoptoticnon-apoptotic to apoptotic apoptotic to non-apoptoticapoptotic to non-apoptotic

perturbation critical dose perturbation critical dose

InBax 
addition 26.5 InBax 

inhibition 8.625

AcBax 
addition 4.1875 AcBax 

inhibition 3.5

Bcl2 
inhibition 5.125 Bcl2 

addition 3.875

Act addition 5.5 Act 
inhibition 11

Ena addition 23 ActBcl2 
addition 14.25

Mac 
addition 2.15625 EnaBcl2 

addition 5.375

Mac 
inhibition 1.84375
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Table 3.S2D
index combination pairscombination pairs

non-apoptotic to 
apoptotic

apoptotic to non-
apoptotic

1  +InBax and +AcBax  +Bcl2 and +ActBcl2

2  +InBax and +Act  +Bcl2 and 
+EnaBcl2

3  +InBax and +Ena  +Bcl2 and -InBax

4  +InBax and +Mac  +Bcl2 and -AcBax

5  +InBax and -Bcl2  +Bcl2 and -Act

6  +AcBax and +Act  +Bcl2 and -Mac

7  +AcBax and +Ena  +ActBcl2 and 
+EnaBcl2

8  +AcBax and +Mac  +ActBcl2 and -
InBax

9  +AcBax and -Bcl2  +ActBcl2 and -
AcBax

10  +Act and +Ena  +ActBcl2 and -Act

11  +Act and +Mac  +ActBcl2 and -Mac

12  +Act and -Bcl2  +EnaBcl2 and -
InBax

13  +Ena and +Mac  +EnaBcl2 and -
AcBax

14  +Ena and -Bcl2  +EnaBcl2 and -Act

15  +Mac and -Bcl2  +EnaBcl2 and -Mac

16  -InBax and -AcBax

17  -InBax and -Act

18  -InBax and -Mac

19  -AcBax and -Act

20  -AcBax and -Mac

21  -Act and -Mac
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Table 3.S3: Bistable hematopeietic cell fate model. (A) Steady state 
concentrations of species.  (B) Parameter values modeling the in inhibitors 
effects. (C) Critical doses of different species for two directions of bistable 
switch. (D) A list of combinations perturbations for two directions of bistable 
switch. Other details related with this model can be found in [89].

Table 3.S3A

species names steady state concentrationssteady state concentrations

s.s. Neut s.s. Mac

M1 0.0161 2.0000

N1 2.0000 2.0000

M2 0.0006 3.3333

N2 3.3333 0.0268

M3 0.0003 3.8769

N3 3.1081 0.0073

Table 3.S3B

parameter names parameter values

k_inhibitors 10

deg_inhibitors 0.01

deg_inhibitor_complexes 10

eM 2

eN 2

nA 1

nR 4

alpha 5

alpha_lo 1

alpha_hi 4

Table 3.S3C
s.s. Neut to s.s. Macs.s. Neut to s.s. Mac s.s. Mac to s.s. Neuts.s. Mac to s.s. Neut

perturbation critical dose perturbation critical dose

N1 
inhibition 6.5 M1 

inhibition 5.25
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s.s. Neut to s.s. Macs.s. Neut to s.s. Mac s.s. Mac to s.s. Neuts.s. Mac to s.s. Neut

M2 addition 5.25 M2 
inhibition 3.5

N2 
inhibition 4.6875 N2 addition 2.8125

Table 3.S3D
index combination pairscombination pairs

s.s. Neut to s.s. 
Mac s.s. Mac to s.s. Neut

1 +M2 and -N1 +N2 and -M1

2 +M2 and -N2 +N2 and -M2

3 -N1 and -N2 -M1 and -M2

Table 3.S4: A top-robust ETT bistable motif model. (A) Steady state 
concentrations of species.  (B) Parameter values modeling the in inhibitors 
effects. (C) Critical doses of different species for two directions of bistable 
switch. (D) A list of combinations perturbations for two directions of bistable 
switch. Other details related with this model can be found in [99].

Table 3.S4A

species names steady state concentrationssteady state concentrations

s.s. 1 s.s. 2

A 0.0127 0.0004

As 0.0035 0.0002

B 38.7106 1.3194

Bs 31.1522 0.0071

C 39.5378 1.6391

Cs 96.9751 0.0073

AsB 1.5100 0.0032

AsC 1.5423 0.0040
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Table 3.S4B

parameter names parameter values

k_inhibitors 1000

deg_inhibitors 0.01

deg_inhibitor_complexes 100

k0 954.4394

k1 56.9482

k2 27.8277

kP 107.7107

kQ 431.3992

Ksyn 1.5481

KP 0.0112

KQ 0.2579

v 0.6996

bsyn 0.0100

kdeg 0.0100

P 0.0100

Q 0.1000

S 0.1292

Table 3.S4C
s.s. 1 to s.s. 2s.s. 1 to s.s. 2 s.s. 2 to s.s. 1 s.s. 2 to s.s. 1 

perturbation critical dose perturbation critical dose

A inhibition 12.2105102539062 As addition 5639.71875

As inhibition 3.28744506835938 B addition 292.369140625

B inhibition 1606.6640625 Bs addition 131.83935546875

Bs inhibition 1333.421875 C addition 284.171875

C inhibition 86.0712890625 Cs addition 125.69140625

Cs inhibition 113.3955078125
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Table 3.S4D
index combination pairscombination pairs

s.s. 1 to s.s. 2 s.s. 1 to s.s. 2 

1  -A and -As  +As and +B

2  -A and -B  +As and +Bs

3  -A and -Bs  +As and +C

4  -A and -C  +As and +Cs

5  -A and -Cs  +B and +Bs

6  -As and -B  +B and +C

7  -As and -Bs  +B and +Cs

8  -As and -C  +Bs and +C

9  -As and -Cs  +Bs and +Cs

10  -B and -Bs  +C and +Cs

11  -B and -C

12  -B and -Cs

13  -Bs and -C

14  -Bs and -Cs

15  -C and -Cs

Table 3.S5: B-cell differentiation model. (A) Steady  state concentrations of 
species.  (B) Parameter values modeling the in inhibitors effects. (C) Critical 
doses of different species for two directions of bistable switch. (D) A list of 
combinations perturbations for two directions of bistable switch. Other details 
related with this model can be found in [88].

Table 3.S5A

species names steady state concentrationssteady state concentrations

s.s. Blimp1 high s.s. Blimp1 low

Bcl6_gene1 0.0205 1.7972

Bcl6_mRNA 0.0369 3.2312

Bcl6 2.1296 186.5584

Blimp1_gene1 1.0288 0.0011

Blimp1_mRNA 1.8497 0.0020

Blimp1 106.7945 0.1129
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species names steady state concentrationssteady state concentrations

Pax5_gene1 0.0054 1.2296

Pax5_mRNA 0.0096 2.2106

Pax5 0.5560 127.6340

AP1p 77.0246 77.0246

TA 1554.5499 1554.5499

TAA 1345.4007 1345.4007

Table 3.S5B

parameter names parameter values

k_inhibitors 1000

deg_inhibitors 0.01

deg_inhibitor_complexes 100

LPS 0.2

TCDD 0.5

Table 3.S5C
s.s. Blimp1 high to s.s. 

Blimp1 low
s.s. Blimp1 high to s.s. 

Blimp1 low
s.s. Blimp1 low to s.s. 

Blimp1 high
s.s. Blimp1 low to s.s. 

Blimp1 high

perturbation critical dose perturbation critical dose

Bcl6_gene1 
addition 2816 Blimp1_gene

1 addition 1408

Bcl6_mRNA 
addition 61 Blimp1_mR

NA addition 5.125

Bcl6 
addition 3200 Blimp1 

addition 272

Pax5_gene1 
addition 1280

Pax5_mRN
A addition 7.125

Pax5 
addition 376
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Table 3.S5D
index combination pairscombination pairs

s.s. Blimp1 high to s.s. 
Blimp1 low

s.s. Blimp1 low to s.s. 
Blimp1 high

1  +Bcl6_gene1 and +Bcl6_mRNA +Blimp1_gene1 and 
+Blimp1_mRNA

2  +Bcl6_gene1 and +Bcl6  +Blimp1_gene1 and 
+Blimp1

3  +Bcl6_gene1 and +Pax5_gene1 +Blimp1_mRNA and 
+Blimp1

4  +Bcl6_gene1 and +Pax5_mRNA +Bcl6_gene1 and +Pax5_mRNA
5  +Bcl6_gene1 and +Pax5 +Bcl6_gene1 and +Pax5
6  +Bcl6_mRNA and +Bcl6 +Bcl6_mRNA and +Bcl6
7  +Bcl6_mRNA and +Pax5_gene1 +Bcl6_mRNA and +Pax5_gene1
8  +Bcl6_mRNA and +Pax5_mRNA +Bcl6_mRNA and +Pax5_mRNA
9  +Bcl6_mRNA and +Pax5 +Bcl6_mRNA and +Pax5
10  +Bcl6 and +Pax5_gene1 +Bcl6 and +Pax5_gene1
11  +Bcl6 and +Pax5_mRNA +Bcl6 and +Pax5_mRNA

12  +Bcl6 and +Pax5

13  +Pax5_gene1 and +Pax5_mRNA +Pax5_gene1 and +Pax5_mRNA
14  +Pax5_gene1 and +Pax5 +Pax5_gene1 and +Pax5
15  +Pax5_mRNA and +Pax5 +Pax5_mRNA and +Pax5

Table 3.S6: Bistable cell cycle entry model. (A) Steady state concentrations of 
species.  (B) Parameter values modeling the in inhibitors effects. (C) Critical 
doses of different species for two directions of bistable switch. (D) A list of 
combinations perturbations for two directions of bistable switch. Other details 
related with this model can be found in [84].

Table 3.S6A

species names steady state concentrationssteady state concentrations

s.s. “on” s.s. “off”

MD 0.9989 0.0000

RP 0.0000 1.0000

EE 1.9685 0.0000
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Table 3.S6B

parameter names parameter values

k_inhibitors 1000

deg_inhibitors 0.01

deg_inhibitor_complexes 100

S 0.0100

tMD 1.0000

tRP 1.0000

tEE 1.0000

n1 5.0000

k1 0.5000

n2 5.0000

k2 0.5000

n3 5.0000

k3 0.5000

n5 5.0000

k5 0.5000

n6 5.0000

k6 0.5000

n7 5.0000

k7 0.5000

n9 5.0000

k9 0.5000

tMD 1.0000

tEE 1.0000
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Table 3.S6C
s.s. “on” to s.s. “off”s.s. “on” to s.s. “off” s.s. “off” to s.s. “on” s.s. “off” to s.s. “on” 

perturbation critical dose perturbation critical dose

RP addition 3.5625 MD addition 1.9375

EE 
inhibition 2.125 EE addition 0.96875

Table 3.S6D
index combination pairscombination pairs

s.s. “on” to s.s. 
“off” s.s. “off” to s.s. “on” 

1  +RP and -EE +MD and +EE
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CHAPTER 4: CONCLUSIONS

        Rational design of anti-TGF-β1 therapies depends upon systems level 

understanding of TGF-β1 regulation in liver fibrosis. Recently  the systems 

biology  approach has been introduced to study  TGF-β1 regulation in liver 

fibrosis [1,2]. Computational modeling and simulation has been shown to be a 

great approach to reveal  systems level dynamics in various biological 

systems. Following this approach, we have identified the effects of two factors 

on the TGF-β1 bistability, and how one of them can affect  the sign of feedback 

loops within the network. We have also identified properties of inducing a 

bistable switch via combination perturbation for the TGF-β1 bistable 

activation model, and shown similar properties in models of many other 

bistable biological systems. Our work has extended the current understanding 

of TGF-β1 bistable activation on systems level, built up computational 

methods to study combination therapy on bistable biological systems, and 

revealed several correlation relationships between different properties of the 

same network. 

In our first work, we used computational modeling to explore the implications 

of a bistable TGF-β1 activation network, and we found (a) upstream factors 

like calcium and KLF2 could affect the steady state behavior of this bistable 

system, and (b) the steady state behavior of the system correlates with the sign 

of a feedback loop  in the network. For the first part, we modeled known 

effects of calcium on the balance between TSP1 and PLS [33,35,51-54], and 

known effects of KLF2 on the gene expression of PAI1 and TSP1 [37].  We 
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then used modeling to show how these effects would propagate through the 

system. Specifically, the model predicted that calcium would significantly 

promote TGF-β1 activation, shifting the bistable threshold of the system. The 

calcium-induced increase in TSP1 would lie within the physiological range of 

TSP1 [55]. In contrast, KLF2 was simulated to increase PLS activity and 

decrease the levels of TGF-β1, by suppressing PAI1 and TSP1 expression. 

This is consistent with previous work with statin drugs on liver fibrosis [36], 

where KLF2 upregulation was observed after treatment with simvastatin. Our 

model predicts that one of the ways KLF2 may contribute to improvement of 

liver fibrosis may be by decreasing the activation of TGF-β1 through 

reduction of the TSP1 and PAI feedback effects. While modeling KLF2 

effects, we noticed that  loss of bistability also caused a change in the sign of 

the PLS - PAI1 feedback loop. There is some support in the published 

literature that the relationship  between PLS and PAI can show either negative 

feedback or positive feedback, depending on context [48-50]. In our model, 

we found that without KLF2, the PLS-PAI1 feedback loop was positive 

(double negative), but with KLF2 (100% KLF2) and with the destruction of 

bistability, the PLS-PAI1 feedback loop was negative. Additional bifurcation 

analysis revealed that  high KLF2 is a special case of the general observation, 

that the bistability of the system is correlated with the sign of the PLS-PAI1 

feedback loop. An in vitro experiment validated the positive feedback 

behavior between PLS and PAI1 in a bistable TGF-β1 system. 
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In our second work, we studied the problem of combination targeting of 

bistable systems with our bistable TGF-β1 activation system. We found that 

different target  combinations yielded different levels of synergism. More 

interestingly, we found that the synergism of a combination was related to the 

robustness. To be precise, when model parameters underwent modest 

fluctuations (within the bistable regime of the system), the relative robustness 

of the combination doses was positively correlated with the combination 

index. The parameter fluctuations were performed by applying single-

parameter and multiple-parameter perturbation methods. The relative 

robustness was defined by the sum of relative changes of combination doses 

over single doses as defined by equations (3)-(4) in section 3.6.7, and the 

synergy was defined by the combination index (CI) method.  After repeating 

the same analysis on several other bistable network models, all cases exhibited 

some degree of positive correlation between RR (relative robustness) and 

synergy (negative correlation between RR and CI).  This suggests that a 

correlation between robustness and synergism may be a general property of 

combination dosing for many bistable network models. Robustness analysis 

has been used to deal with uncertainty  in network modeling. This traditional 

use of robustness analysis is complemented by our use of robustness analysis 

to study  dose robustness. Our discovery that the relative robustness of critical 

combination doses is negatively correlated with Combination Index (CI) 

(positively correlated with synergy) provides a prediction that administering a 

synergistic combination of treatments can be a choice to increase the dose 
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robustness of the treatment.  Synergistic treatments are by definition able to 

achieve the same efficacy  with lower doses (compared with non-synergistic 

combinations), and here we show that  they also have the potential to achieve a 

narrower confidence interval on the therapeutic effect, in the presence of 

uncertainty.

There are several caveats that should temper the interpretation of our modeling 

results. Firstly, the model used kinetics rate constants that were not known 

experimentally. Thus the behavior of the model should be taken as a 

qualitative prediction of trends rather than a quantitative prediction of absolute 

magnitude. Secondly, parameters taken from previous publications may be 

incorrect for our context, even if they were correct for the original context in 

which they were published. Thirdly, we have simplified complex processes 

into simplistic scalar variables. For example, even the effect of calcium on 

TSP1 has been greatly  simplified, relative to the true effect, which is a change 

in the equilibrium between different conformations of TSP1. The simplified 

nature of our model implies that its predictions are low-resolution trends, not 

detailed molecular concentrations. Fourthly, although the correlation 

relationships between qualitative properties have already considered the model 

uncertainty to some extent, and some of them are quite solid, experimental 

validation are still required to test the validity of the model and its behavior. 

By connecting information from different biological sources, we showed that 

computational models can guide us to hypothesize systems-level regulatory 

mechanisms. Model predictions of this sort, whether or not the predictions are 
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quantitatively accurate, may be useful for elucidating the network level 

vocabulary of TGF-β1 regulatory mechanisms that can effect systems-level 

coordination. We anticipate that these predicted hypotheses will help 

accelerate future experimental studies. 

To sum up, through the analysis of network dynamics, we have broadened our 

current understanding of TGF-β1 regulation in liver fibrosis on a system level. 

When studying the TGF-β1 bistable system, we have identified important 

implications for bistable systems, and combination therapy. The focus of 

future work should include experimental validation of the predictions that 

have been made, and looking for correlation relationships between properties 

of TGF-β1 bitable systems, other bistable biological systems, biological 

systems in general using a computational and systems biology approach.
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CHAPTER 5: FUTURE DIRECTIONS

5.1 Transient Dynamics and Non-monotonic Behaviors During Bistable 

Switch

       5.1.1 Motivation

        The bistable model of TGF-β1 activation implies bistable behavior not 

just for itself but also for the species along its feedback loops (PAI1, urokinase 

plasmin activator (uPA), PLS, and TSP1), not to mention effects on other 

proteins outside the scope of the model. Furthermore, in addition to steady-

state behaviors and feedback loops, transient effects may also be modeled, 

meaning system behaviors prior to steady-state convergence. The implications 

of these aspects have not yet been studied, and would be important for 

understanding the functions of these proteins in various disease contexts.

       5.1.2 The transition towards the low TGF-β1 steady state causes 

transient angiogenic effects

        We are particularly interested in system behavior during a switch 

transition from ssT to ssP. For example, a variety of anti-TGF-β  therapeutics 

has entered clinical trials [110], and might cause the TGF-β1 activation system 

to switch states. Even in the absence of drugs, the subsystem of PLS activation 

is bistable [90], and healthy regulation of clotting might involve sharp in- 

creases in PLS levels. If sharp changes do occur in PLS activity, how would 

they affect the transient behavior of the TGF-β1 network? Transient behavior 
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could have important effects on vasculature, where TSP1 and PLS are master-

regulators of angiogenesis and coagulation. During simulations of a transition 

from ssT to ssP, we noticed a variety of transient effects that could be 

significant for angiogenesis. TSP1 has multiple mechanisms for opposing 

angiogenesis [111-114], while PLS has multiple proangiogenic effects 

[115,116], in addition to cleaving TSP1. After TSP1 is cleaved, its N-terminal 

domain has strong pro-angiogenic effects [117-119], indicative of a matrikine 

effect with short half-life (fast degradation rate) [120,121]. 

TABLE S1 List of equations and parameters used for model construction 
 
Reaction 
number 

Reaction equation Reaction 
number 

Reaction equation 

1 scUPA + PLG keff1⎯ →⎯⎯ PLS + scUPA  12,13 A2M + PLS k5

k−5
⎯ →⎯← ⎯⎯ A2M :PLS  

2 PLS + scUPA keff2⎯ →⎯⎯ tcUPA + PLS  14,15 PAI1+ tcUPA k6

k−6
⎯ →⎯← ⎯⎯ PAI1: tcUPA  

3 tcUPA + PLG keff3⎯ →⎯⎯ PLS + tcUPA  16,17 PAI1+ scUPA k7

k7
⎯ →⎯← ⎯⎯ PAI1: scUPA  

4 PLS + LTGFβ1 k1⎯ →⎯ TGFβ1+ PLS  18 PLS + scUPA keff2⎯ →⎯⎯ tcUPA + PLS  
5 TSP1+ LTGFβ1 k2⎯ →⎯ TGFβ1+ PLS  19 PLS + scUPA keff2⎯ →⎯⎯ tcUPA + PLS  
6 LTGFβ1 kothers⎯ →⎯⎯ TGFβ1  20 TSP1:PLS k8⎯ →⎯  
7 TGFβ1 kp1⎯ →⎯ TSP1  21 TGFβ1 k9⎯ →⎯  
8 TGFβ1 kp2⎯ →⎯ PAI1  production α1⎯ →⎯ {scUPA;  LTGFβ1;  A2M};  α2⎯ →⎯ {PLG}  
9,10 TSP1+ PLS k3

k−3
⎯ →⎯← ⎯⎯ TSP1:PLS  degradation {scUPA;  LTGFβ1;  A2M} µedeg⎯ →⎯⎯ ;

{all other protein species} µpdeg⎯ →⎯⎯
 

11 TSP1:PLS k4⎯ →⎯ PLS + cleaved _TSP1  degradation (b) {cleaved _TSP1} µcTSP1_deg⎯ →⎯⎯⎯  
 
Here are the list of equations and parameters used for the models in this paper. 11(a) is used for calcium model and KLF2 model. 
11(b) is used for angiogenesis model. Degradation (b) is also used for angiogenesis model. All other equations and parameters are common to all 
the models in this paper. 
 

Table 5.1: List of equations and parameters used for model construction

We created a new species “cleaved_TSP1”  to represent the angiogenic 

fragments yielded from one molecule of TSP1 in the “angiogenesis model”. 

The cleaved_TSP1 species was inserted into equation 11 (Table 5.1). Finally, 

cleaved_TSP1 was assigned a fast degradation rate (1s-1). We calculated the 

“integrated angiogenic signal”  from the levels of PLS, TSP1, and 

cleaved_TSP1 using the following formula:
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AngioSignal = wPLS × PLS+ wTSP1×TSP1+ wcleaved_TSP1 × cleaved_TSP1,

where
wPLS = 0.01,

wTSP1 = 0.1,

wcleaved_TSP1 = 1000.

Starting with the model in the ssT state (TGF-β1 high steady state), we 

perturbed individual species and tracked how these perturbations would affect 

the net angiogenic signal, both transiently and after convergence to one of the 

steady states. Figure 5.1A shows that a sufficient dose of PLS could switch the 

system from ssT (with angiogenesis suppressed) into ssP with increased 

angiogenesis. Because the angiogenic signal is defined by including PLS as a 

pro-angiogenic factor, any increase in PLS necessarily caused an 

instantaneous increase in the angiogenic signal (comparing the angiogenic 

signal immediately before and after the addition). Quite interestingly, a 

perturbation to increase PLS also caused a second, later wave of transient side-

effects, including a spike in the angio- genic signal, before converging to a 

steady state (Figure 5.1A). This shows that, the bistable model of TGF-β1 is 

capable of producing non-monotonic concentrations during a switch, and 

some species can exhibit extreme levels during the transition.
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Figure 5.1: PLG/Plasmin have strong angiogenic effect. (A) angiogenic 
signal of PLS addition into low TGF-β1 activation steady  state, with 
degradation rate of cleaved TSP1 being 1 s-1. (B) angiogenic signal of TSP1 
inhibition into low TGF-β1 activation steady state, with degradation rate of 
cleaved TSP1 being 1 s-1. (C) angiogenic signal of PLG addition into low 
TGF-β1 activation steady state, with degradation rate of cleaved TSP1 being 
100 s-1. (D) dependence of PLS addition angiogenic signal on PLS dose, with 
degradation rate of cleaved TSP1 being 1 s-1. In this figure, the simulation is 
done with low calcium condition, and [KLF2] = 0%.

Not all transitions from ssT to ssP induced a spike in the angiogenic signal. 

For example, inhibiting TSP1 can switch the system, but during a TSP1-

induced switch, the transient level of angiogenic signaling was moderate and 

the direction of change was nearly monotonic (Figure 5.1B).

Finally we calculated the dependence of the angiogenic signal on the PLG and 

PLS dose, and on the parameters of the model. Figure 5.1C shows that the 
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timing of the angiogenic spike is sensitive to the reaction rates in the model, 

which were unknown. This case, with an alternative set of parameters, 

achieved a long-lasting spike of the angiogenic effect (a peak until 105s is 

roughly one day) after simulation with PLG. Next we calculated the integrated 

angiogenic signal, which we defined as the integral of the angio- genic signal 

time-course, minus the ssP level of angiogenic signal. In figure 5.1D, the 

integrated angiogenic signal was linearly correlated with the dose of PLS, but 

was relatively insensitive to the rate parameters, for parameter changes ± 20%. 

Figure 5.1D shows an example of this for the rate parameter kp1, which is the 

rate of TSP1 production. In sum, our model consistently predicts a transient 

angiogenic effect, but the nature of the prediction is qualitative, not 

quantitative.

We do not know how often a “TGF-β1 high”  (ssT) tissue would transit 

towards a “TGF-β1 low”  (ssP) state in vivo. Successful wound healing is an 

orderly progression of distinct phases, and in such well-reguglated cases, the 

transition away from a TGF-β1 high state might occur infrequently [122-124]. 

Pathologically excessive wound healing, such as fibrosis, may have dramatic 

swings with both abnormally high and abnormally low levels of PLS or 

coagulation proteins [125-127]. Liver fibrosis is characterized by pathological 

blood flow, including abundant sprouting of vessels [128,129], with poor 

delivery of oxygen and nutrients [130]. In other words, fibrosis has too many 

partially-formed blood vessels, and too much initiation of angiogenesis, but 

not enough complete, functional blood vessels. Future work should examine 
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whether pulses of pro-angiogenic influence, such as shown in Figure 5.1 

contribute to the disruption of vessel formation and to the pathological 

angiogenesis seen in fibrotic tissues. 

       5.1.3 Non-monotonic behavior during bistable switch

        The pulse-like influence towards angiogenesis we have found could be a 

special case of some general property of bistable systems. The essence of our 

insight is that the species concentrations in a bistable system do not 

necessarily progress monotonically from one steady state to the other. In the 

TGF-β1 bistable model, the fibrosis-like ssT state enforces low levels of PLS 

levels by preventing the activation of PLG (the inactive precursor of PLS). 

PLG has a relatively long half-life, so it accumulates to a high level in the ssT 

state. During a switch transition from ssT to ssP, this vast reservoir of PLG is 

converted suddenly into PLS, causing PLS levels to spike even higher than the 

ssP level. This is true regardless of angiogenic side-effects. For example, 

Figure 5.2 shows that exogenous addition of PLS caused a second later spike 

in the PLS level, because positive feedback converted the reservoir of latent 

PLG into PLS. Another non-monotonic effect occurs with the level of cleaved 

TSP1. The ssT levels of TSP1 are high, again like a reservoir of TSP1. During 

the ssT to ssP transition, the sudden spike in PLS causes sudden cleavage of 

TSP1 into cleaved_TSP1. The spike in cleaved_TSP1 causes a large fold-

change in the overall angiogenic effect [117-119].
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Figure 5.2: Nonmonotonic effect during bistable transition in a TGF-β1 
activation network

Future work should examine the co-existence of “reservoir”  molecules and the 

non-monotonic behavior of their “active”  forms in other network models. 

Systems with non-monotonic behavior allow small perturbations to induce a 

much stronger innate response, therefore a better understanding of non-

monotonic behavior in general would be valuable for the problem of drug 

target selection in the future.

5.2 In Vitro Study of Anti-TGF-β1 Combination Therapy

        Many anti-TGF-β1 strategies have shown effects in animal models of 

liver fibrosis [16]. These strategies include modifications of TGF-β1 receptor , 

using antibodies against TGF-β1, blockage of TGF-β1 activation, and over 

expression of Smad7. Blockage of TGF-β1 activation is an important type of 

strategy targeting the process of latent-TGF-β1 (LTGF-β1) activation. 

Previous studies have shown the effect of targeting the plasmin-activation 

pathway and the TSP1 activation pathway individually. For the plasmin 
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activation pathway, in vivo overexpression of UPA or knockout of PAI1 

caused a decrease in the level of TGF-β1 and fibrosis [23,24]. For the TSP1 

activation pathway, a peptide Leu-Ser-Lys-Leu (LSKL) that can inhibit TSP1-

dependent latent TGF-β1 activation prevented the progression of liver fibrosis 

in DMN rats [21]. Despite the remarkable progress of anti-TGF-β1 therapies, 

the research on combination therapy for liver fibrosis is still in its early phase. 

A study has indicated that the combination delivery of uPA and HGF could 

confer synergistic anti-fibrotic effect [131]. However, due to the lack of 

systems level understanding of TGF-β1 regulation during liver fibrosis, the 

choice of combination targets was mainly made empirically.

Systems biology and network modeling enables systems level design and in 

silico screening of combination targets. In Chapter 3, computational 

simulation has shown the combination effects of different target combinations. 

Future work should check whether such differences in synergy can be 

observed experimentally. The hepatocyte-HSC co-culture model described in 

Chapter 2 can serve as the in vitro experimental system. In vitro hits can then 

be tested on animal models.
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