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Abstract

Background: Pathway data are important for understanding the relationship between genes, proteins and many
other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction,
reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases–
e.g., KEGG, WikiPathways, and BioCyc–are dedicated to collecting pathway data for public access. However, the
effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular
representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and
incomprehensive data from different databases.

Results: In this paper, we overcome these issues through extraction, normalization and integration of pathway
data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only
hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in
the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model
organisms and important pathogens). Four organisms–S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M.
musculus–are included in this version (V2.0) of IntPath. IntPath uses the “full unification” approach to ensure no
deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and
pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the
single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are
significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per
pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid
of errors and noises from source data (e.g., the gene ID errors in WikiPathways and relationship errors in KEGG). We
turn complicated and incompatible xml data formats and inconsistent gene and gene relationship representations
from different source databases into normalized and unified pathway-gene and pathway-gene pair relationships
neatly recorded in simple tab-delimited text format and MySQL tables, which facilitates convenient automatic
computation and large-scale referencing in many related studies. IntPath data can be downloaded in text format
or MySQL dump. IntPath data can also be retrieved and analyzed conveniently through web service by local
programs or through web interface by mouse clicks. Several useful analysis tools are also provided in IntPath.

Conclusions: We have overcome in IntPath the issues of compatibility, consistency, and comprehensiveness that
often hamper effective use of pathway databases. We have included four organisms in the current release of
IntPath. Our methodology and programs described in this work can be easily applied to other organisms; and we
will include more model organisms and important pathogens in future releases of IntPath. IntPath maintains
regular updates and is freely available at http://compbio.ddns.comp.nus.edu.sg:8080/IntPath.
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Background
The proliferation of pathway databases–e.g., KEGG [1],
WikiPathways [2,3], BioCyc [4,5], and MouseCyc [6]–are
useful for understanding the relationship between genes,
proteins and other molecules in living organisms. How-
ever, the effectiveness of these databases is hindered by
issues such as incompatible data formats, inconsistent
molecular representations, inconsistent molecular rela-
tionship representations, inconsistent referrals to pathway
names, and incomprehensive data from different data-
bases. These difficulties call for an effective integration of
these databases.
There are many approaches to integrate pathways. For

example, Pathway Commons and PathCase [7] can be
considered as taking the “aggregator” approach. In this
approach, a common access method and data format are
adopted or developed for a set of pathways imported from
a collection of source databases. The aggregator approach
does not perform any unification of the underlying path-
ways–viz., if n source databases each contains information
on a particular pathway, that pathway is presented by the
aggregator as n separate pathways. On the other hand,
GenMapp [8], Cytoscape [9], and PathVisio [10] can be
considered as taking the “converter” approach. Basically,
these tools support the import and export of biological
pathways in a variety of formats, even though these tools
are designed mainly for exploring, visualizing, and editing
biological pathways. Lastly, PathwayAPI [11] can be con-
sidered as taking the “full unification” approach. In this
approach, pathways in different source databases that are
meant to represent the same pathway are merged and
molecular objects mentioned in the different source path-
ways that are meant to represent the same objects are
matched. This approach is technically more difficult than
other approaches; but it has the advantage of presenting a
more coherent and comprehensive view of the pathways.
Very recently, Stobbe et al. [12] compared the genes, EC

numbers and reactions of five frequently used human
metabolic pathway databases. They found that the overlap
between these databases is surprisingly low. More impor-
tantly, their results show that each of the five networks
compared provides a valuable piece of the puzzle of the
comprehensive reconstruction of the human metabolic
network. This discovery is a strong motivation for the “full
unification” approach mentioned above. Stobbe et al.
further suggested that, for an effective integration, one
needs to standardize the metabolite names and identifiers
and to resolve the conceptual differences between the
databases.
Besides the databases that focus specifically on pathway

data integration, some protein functional interaction data-
bases have also extended their collection to pathway data.
For example, ConsensusPathDB [13] integrates different
types of functional interactions from heterogeneous

interaction data resources and pathway databases for three
organisms(human, yeast and mouse).The distinct differ-
ence in their primary focus results in an obvious difference
between ConsensusPathDB and IntPath. Consensus-
PathDB collects pathway data from many databases but
dose not appear to produce integrated pathways–even
when the same pathway is present in different sources,
they are still listed individually without merging. How to
merge the different instances of the same pathways among
and within the source pathway databases is the major con-
cern of IntPath. Unlike ConsensusPathDB, IntPath mainly
focuses on the integration of pathway-gene and pathway-
gene pair relationships, with the aim of solving the pro-
blem of inconsistencies and incomprehensiveness among
different pathway databases. The definition of “gene pair”
in this paper is the gene-gene relationship in pathways, the
relationship type of the two components in each gene pair
is described in table 1.
In this paper, we take this full unification approach in

building IntPath, the Integrated Pathway gene relation-
ship database for model organisms and important patho-
gens. This approach was also taken earlier by Soh et al.
[11] when they integrated general human pathways into
PathwayAPI. IntPath differs from PathwayAPI in several
aspects. In terms of content, a different set of databases
and multiple organisms are considered in IntPath. In
terms of data extraction, IntPath extracts all pathway
data directly from the xml files of each source database
and the whole process is highly automated. Therefore,
IntPath provides integrated and unified pathway informa-
tion on a much larger set of organisms and it can be
extended to include many other organisms in a short
time. In contrast, PathwayAPI integrated only human
pathways. Also, for all the organisms included in IntPath,
a regular update of each organism can be maintained. In
terms of pathway data integration, IntPath not only looks
for related pathways between databases but also within
each source database; this integration approach provides
more unified, meaningful and comprehensive integrated
pathway-gene and pathway-gene pair relationships infor-
mation. In contrast, PathwayAPI only looks for related
pathways between databases but not within the same
source database. Moreover, IntPath also provides more
features and tools. It not only supports web service but
also a full-featured web interface. More analysis tools
based on pathway data have been provided–like “Analyze
Distance” and “Identify Pathways"–and more analysis
functions and tools will continue to be added on IntPath
in future releases.
The incompatible data formats of different databases

seriously inhibit effective and compatible information
retrieval. In KEGG, pathways are represented in KGML
format and SOAP (returned when using API calls). In
WikiPathways, pathways are represented in GPML
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format; recently it begins to support web service [3],
allowing users to access the data through API calls; and
the BioPAX format is also supported. In BioCyc and
MouseCyc, the pathway data are primarily represented
in the BioPAX format. In IntPath, we overcome this
limitation by extracting the pathway gene relationships
from these different databases and convert these various
complicated XML-based formats into simple tab-delim-
ited text files.
Inconsistent molecular representations significantly

lower the effectiveness of pathway information retrieval.
Different databases maintain different naming conventions
on the nodes of their pathways. In KEGG, the names of
the nodes (genes and proteins) in the pathways can be
KEGG Entry name, KEGG ORTHOLOG (KO) ID, etc.
The graphic names on KEGG pathway map can be Gene
Symbol (or synonym), Enzyme Commission (EC) number,
etc. In WikiPathways, the nodes’ “TextLabel” are given
gene symbol (or synonym), gene name, protein name, EC
number, etc. In most cases the nodes can also be given
Entrez ID, NCBI Accession, Ensembl Gene ID, Ensembl
protein ID, UniProt Assession, etc. And some times nodes
in WikiPathways are only given “TextLabel” without any
database reference ID. MouseCyc [6] mainly uses MGI ID
and also includes the corresponding gene symbol, UniProt
accession, etc. BioCyc (MTBRvCyc, YeastCyc and Human-
Cyc) Accession Number is mainly used to represent nodes
in the pathways while corresponding gene symbol, gene
name (protein name), Entrez ID, and UniProt accession
number are sometimes included. Inconsistent molecular
relationship representations may also cause confusion
when referencing pathway information from different
repositories. In KGML (KEGG), the relationships between
molecules are represented as PPrel, ECrel, PCrel, GErel,
etc. In GPML (WikiPathways), the relationships can be
inhibition, activation, protein complexes, enzyme com-
plexes, acetylation, phosphorylation, etc. In BioPAX (Bio-
Cyc and MouseCyc), when transformed into the SIF
format, the relationships can be SEQUENTIAL_CATALY-
SIS, CO_CONTROL, INTERACTS_WITH, IN_SAME_-
COMPONT, METABOLIC_CATALYSIS, etc. These
inconsistencies cause troubles for researchers wishing to
refer to pathway information in a large-scale manner
across different databases. Therefore, some normalization
technique is needed to convert the nodes and edges from

different pathways in different repositories into a common
representation. In IntPath, we overcome the above two
limitations by normalizing the pathway gene representa-
tions and gene relationship representations from different
databases into unified IntPath gene and relationship repre-
sentation. The unified IntPath gene ID for Homo Sapiens
is HGNC Symbol, Mus musculus is MGI Symbol, Sacchar-
omyces cerevisiae is Systematic name, and Mycobacterium
tuberculosis H37Rv is TuberList Rv number. The unified
IntPath gene relationship representations are listed in
Table 1.
Inconsistent referrals to pathway names are another

source of confusion that substantially reduces the effec-
tiveness of retrieving information on the same pathway
from different databases. For instance, KEGG may refer to
a pathway as “Glycolysis/Gluconeogenesis”, and WikiPath-
ways may name it as “Glycolysis and Gluconeogenesis”.
For another example, WikiPathways contains a pathway
with the name “Cholesterol Biosynthesis”, while BioCyc has
many corresponding pathways such as “cholesterol bio-
synthesis III (via desmosterol)”, “cholesterol biosynthesis II
(via 24, 25-dihydrolanosterol)”, “cholesterol biosynthesis I”,
and “superpathway of cholesterol biosynthesis”. Therefore,
a unified pathway naming system may reduce the confusion
when referring to the same or similar pathway information
from different databases.
Furthermore, the comprehensiveness of data from differ-

ent databases is another limitation of these pathway data-
bases. By the term “incomprehensiveness”, we mean that
each single biological database is not a comprehensive
representation of biological knowledge that is considered
by experts to be accurate [11]. We reveal the incompre-
hensiveness of current databases via analysis on the agree-
ment of the common pathway between these different
databases. In IntPath, these inconsistencies and incompre-
hensiveness issues are solved by the integration approach.

Data
We choose several representative data sources–KEGG
[1], WikiPathways [2,3], BioCyc [4,5], and MouseCyc
[6]–for our analysis and integration. These data sources
are selected because they are representatives of very dif-
ferent kinds of curation efforts. Currently, the following
organisms are included in our IntPath database (version
2.0): Homo sapiens, Mus musculus, Saccharomyces

Table 1 Four types of IntPath unified gene relationships.

Unified Genes Relationships Explanation

ECrel Enzyme-enzyme relation, indicating two enzymes catalyzing successive reaction steps.

PPrel Protein-protein interaction, such as binding and modification, or proteins have control over the same process.

GErel Gene expression interaction, indicating relation of transcription factor and target gene product.

GPrel Proteins belong to the same molecular complex, not necessarily interacting directly.

Explanations of the types of relationships in IntPath are given below.
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cerevisiae and Mycobacterium tuberculosis H37Rv. For
each organism included in IntPath, the pathway data are
collected from three representative databases: 1. KEGG;
2. WikiPathways; 3. One of the following four data-
bases–YeastCyc, HumanCyc [14], and MTBRvCyc from
the BioCyc collection [4,5]; and MouseCyc [6]. The four
Pathway/Genome Databases (PGDBs)–MouseCyc, Yeast-
Cyc, HumanCyc, MTBRvCyc–are generated and recorded
in a very similar way, but the PGDBs of different organ-
isms are maintained and curated by different groups.
MouseCyc is curated by the Jackson Laboratory; it is a

new, manually curated database of both known and pre-
dicted metabolic pathways for the laboratory mouse [6].
YeastCyc is a Tier-1 PGDB from the BioCyc collection
[4,5]; it is curated by SGD Curators in Stanford University.
PGDBs in Tier 1 have received more than one year of lit-
erature-based curation by scientists. MTBRvCyc and
HumanCyc [14] are Tier-2 PGDBs from the BioCyc col-
lection; they are generated by the PathoLogic program and
received moderate curation (mostly have undergone 1-4
months of curation). WikiPathways is maintained by a
community of users via a wiki-style platform [2,3]. KEGG
database is curated independently by a single lab from
published literature [11].

Methods
Extraction and normalization of pathway-gene and
pathway-gene pair relationships
The first step of extracting information from pathway
databases is downloading the XML files. To automati-
cally download the hundreds of KGML files of each
organism on the KEGG ftp site, we use a simple spider
program written in Perl. For BioCyc and MouseCyc, the
BioPAX files–and for WikiPathways, the GPML files–
are compressed into a single package which can easily
be downloaded manually.
Extracting the pathway-gene and pathway-gene pair

relationships from KGML is accomplished using an in-
house Java program, which extensively uses regular
expressions to retrieve specific information from the
KGML files. A KGML file consists of entries like
“</entry>”, “</relation>” and “</reaction>”; in each entry
there is either entry information of the nodes (genes,
enzymes, compounds, ortholog groups and so on), groups
(complexes of gene products like protein complexes and
so on) or relationships (relationship between the nodes in
the pathway map). Using regular expressions we can speci-
fically obtain the genes of each pathway and the relation-
ships between each gene, and then link these genes
according to the relationships. For genes belonging to
complexes (groups), the binary gene pairs are generated
based on the matrix model.
An alternative way of retrieving KEGG pathway genes

and gene pairs is by calling the KEGG API, which enables

users to easily use their programs to get access to the
KEGG database. However, the API is not well updated
[11]. The KEGG API does provide a function that can
retrieve gene relationships from this database, though the
results returned are KGML entry IDs, not exactly as we
have wanted. Although calling the KEGG API would
work in theory as described in [11], we turn to mining
KGML directly and achieve the same good results.
Extracting pathway-gene and pathway-gene pair rela-

tionships from a GPML file is also accomplished using a
strategy similar to mining KGML files. Mining a GPML
file is much more difficult due to its wikistyle; and there
are slight variations among individual GPML files even in
the same organism, like some key tags may be in upper
case in one file but lower case in another, random inser-
tions of whitespace character, etc. Due to these variations,
the regular expressions used for performing the extraction
must be very robust. In GPML files, the information of
genes and proteins are stored in a “</DataNode>” entry
where, if the node is a gene or protein, the Type of the
entry is set to “GeneProduct”. The information of relation-
ships (like activation and inhibition) are stored in a
“</Line>” entry. The linkage of “</DataNode>” entry and
“</Line>” entry is mainly accomplished by their “graphID”.
A “</Line>” entry usually records which two “</Data-
Node>” entries it links to through the records of two cor-
responding “graphID” of the “</DataNode>” entries. Using
this information we can retrieve the relationship of two
genes linked by a “</Line>” entry. This relationship–like
inhibition, activation, etc.–can be regarded as equivalent
to the “PPrel” relationship in KGML.
If the genes belong to certain complexes (groups), their

“GroupRef” ID are recorded in some “</DataNode>”
entries; and genes with same “GroupRef” ID are in the
same group (molecular complexes). All possible pair-wise
relationships among members of a group are generated
based on the matrix model. These relationships, derived
from such a group, are mainly binary relationships among
members in a protein complex or enzyme complex. They
can thus be regarded as equivalent to the “group” relation-
ship in KGML. This strategy works well for most GPML
files; but, for some individual files, there is simply no “gra-
phID” in the file and, only positional information of each
entry is recorded. This causes difficulty in retrieving the
corresponding gene relationships. Attempts have been
made to retrieve the pair-wise relationships based purely
on the positional information; but these attempts also
introduce a substantial amount of noise. Therefore we do
not use this noisy information.
Retrieving gene relationships from BioPAX files is

mainly by using the Paxtools Java programming library
[15] in combination with our own simple Java program.
By transforming a BioPAX (Level 2) file into the SIF for-
mat, we get both a Node file and an Edge file. Then a
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simple node mapping is made to retrieve gene relation-
ships. These pair-wise relationships have no indication of
the source pathway name. We need to map these rela-
tionships to their corresponding pathways. MouseCyc
and BioCyc provide a file that clearly records all the
genes in each pathway. Using this information, we are
able to map the gene relationships to their corresponding
pathways.
Converting the relationship of genes in complexes

(groups) into binary gene pair relationships may not be
the most ideal format for some users, who wish to refer to
the original protein complexes information in pathways.
For KEGG and WikiPathways we also maintain a “group-
gene list” which specifically retains the original format of
genes in the groups. The groups in this “group-gene list”
are not integrated, as we have done for the pathway-gene
and pathway-gene pair relationships, since maintaining
this “group-gene list” is mainly to prevent information loss
and to give users more precise original information that
may not be easily reconstructed from the integrated path-
way-gene pair relationships. We normalize the gene IDs in
the “group-gene list” to IntPath unified gene IDs and store
the list in a simple text file. Users can download this list
along with other pathway-gene and pathway-gene pair
relationships in the form of compressed text files from
IntPath.
Normalization of gene names is done using gene ID

mapping files downloaded from a variety of databases
including NCBI [16], KEGG [1], UniProt [17], HGNC
[18], MouseCyc [6], BioCyc [4,5], and BioMart [19]. The
gene relationships from different databases are mapped to
the IntPath unified relationships listed in Table 1.

Evaluation of normalized pathway genes and gene pairs
from different databases
After we have obtained the pathway-gene and pathway-
gene pair relationships from different pathway databases,
agreement among the databases can be analyzed. These
agreement analyses are crucial for the downstream appli-
cations of IntPath. We examine the agreement among the
different pathway databases in three aspects: (i) agreement
of genes and gene pairs in different databases, (ii) agree-
ment of the pathways in different databases, and (iii)
agreement of genes and gene pairs of the same pathway in
different databases.
After normalization the statistics about pathway num-

ber, gene number and gene pair number in each of the
source databases can be found in Table 2. To calculate the
agreement of genes and gene pairs in different databases,
we obtain all the non-redundant genes and gene pairs
(without considering the types of relationships) in different
databases. We then calculate how many genes and gene
pairs are common between two databases being compared.
The Jaccard coefficient between two datasets being

compared is calculated. Results are shown in the form of
pie charts in Figure 1 and 2, the detail statistics are listed
in Table 3 and Table 4.
To analyze the agreement of the pathways in different

databases, we only look at the pathway names in different
databases, and calculate how many pathways two data-
bases have in common. To find similar pathway names,
we implement a “Longest Common Substring” algorithm.
Our program can detect similar pathway names very accu-
rately; detailed techniques will be explained in the follow-
ing section. In this analysis we only search the related
pathway between databases rather than within databases.
The results are presented in Figure 3.
The two experiments above are analyses at the database

level. Next, to analyze–at the pathway level–the agreement
of genes and gene pairs of the same pathway in different
databases, We calculate the overlap of the genes and gene
pairs in the chosen pathway in different databases. The
results are summarized in Table 5.

Integration of pathway-gene and pathway-gene pair
relationships
From the analyses above, we realize the lack of compre-
hensiveness and consistency of different pathway data-
bases at both the database level and the pathway level.
Hence, we should use the integrated information from
all the databases rather than rely on any single source.
The inconsistent referrals to pathway names further
strengthen the necessity of integrating the pathway-gene
and pathway-gene pair relationships from different data-
bases into one unified and comprehensive information
source.

Table 2 The number of pathways, genes and gene pairs
from different databases after normalization.

H. sapiens KEGG WikiPathways HumanCyc

Pathways 237 135 290

Genes 5,935 3,445 1,082

Gene Pairs 29,566 18,035 5,961

M. musculus KEGG WikiPathways MouseCyc

Pathways 218 140 323

Genes 6,306 4,084 1,194

Gene Pairs 32,235 25,004 10,792

S. cerevisiae KEGG WikiPathways YeastCyc

Pathways 98 125 184

Genes 1,735 863 542

Gene Pairs 2,922 57 1,440

M. tuberculosis H37Rv KEGG WikiPathways MTBRvCyc

Pathways 110 8 234

Genes 1,078 152 493

Gene Pairs 3,775 62 2,764

Summary of the number of pathways, genes, and gene pairs after
normalization from different databases.
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To find all related pathways both among and within
databases which have inconsistent referrals to pathway
names (both name variations and different levels of

emphases), we implement a refinement of the Longest
Common Substring (LCS) algorithm to identify related
pathway names. LCS was shown by [11] to be superior for

Figure 1 Pie charts depicting overlapping gene proportions. The red part refers to the proportions of unique genes while the blue part
refers to proportions where there is an overlap of genes.
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identifying related pathways in different databases, com-
pared to approaches based on large overlap of genes and
interacting gene pairs.

The common LCS algorithm based on dynamic pro-
gramming works like this: when comparing two strings,
the more similar they are, the higher alignment score

Figure 2 Pie charts depicting overlapping gene pair proportions. The red part refers to the proportions of unique gene pairs while the blue
part refers to proportions where there is an overlap of gene pairs.
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they have. In our program, the alignment score is the
number of aligned characters. We also compute the
alignment ratio, which is two times the alignment score
divided by the sum of the length of the two strings. To
identify the related pathway names in two databases’
pathway name lists (x and y), we iterate each name in
the list x and search against all the names in the list y;
for each name in x, we report the best hit in y. “Best
hit” means that, for each name from x, when searched
against all the names in y, the one that gets the highest
alignment ratio is reported as the best hit for this
round. We do not use the alignment score to report
best hits because the alignment ratio proves to perform

better. This is because some related pathway names do
not have very high alignment scores due to the short
length of two strings, but the similarities of the two
strings can be revealed accurately by the high alignment
ratio when compared to other not-so-similar long strings
in a single round of search. For example, suppose the
name Xa is very short and is searched against the name
list y. Suppose there is a very similar short name Ya which
aligns all characters in Xa except one character. Suppose
there is also a very different but long name Yb which
aligns all characters in Xa. It is obvious that the alignment
score Xa - Ya is lower than the alignment score Xa - Yb,
while the alignment ratio of Xa - Ya is the higher of the

Table 3 Summary of overlapping gene proportions.

H. sapiens KEGG vs WikiPathways WikiPathways vs HumanCyc HumanCyc vs KEGG

Overlap Genes 2,485 396 824

Unique Genes 4,410 3,735 5,369

Jaccard Coefficient 0.360 0.096 0.133

M. musculus KEGG vs WikiPathways WikiPathways vs MouseCyc MouseCyc vs KEGG

Overlap Genes 2,611 532 919

Unique Genes 5,168 4,214 5,662

Jaccard Coefficient 0.336 0.112 0.140

S. cerevisiae KEGG vs WikiPathways WikiPathways vs YeastCyc YeastCyc vs KEGG

Overlap Genes 801 402 480

Unique Genes 996 601 1,317

Jaccard Coefficient 0.446 0.400 0.267

M. tuberculosis H37Rv KEGG vs WikiPathways WikiPathways vs MTBRvCyc MTBRvCyc vs KEGG

Overlap Genes 141 60 432

Unique Genes 948 525 707

Jaccard Coefficient 0.129 0.103 0.379

Summary of the number of overlap genes, number of unique genes, and Jaccard coefficient among three representative databases.

Table 4 Summary of overlapping gene pair proportions.

H. sapiens KEGG vs WikiPathways WikiPathways vs HumanCyc HumanCyc vs KEGG

Overlap Gene Pairs 1198 468 1,270

Unique Gene Pairs 45,205 23,060 32,987

Jaccard Coefficient 0.026 0.020 0.037

M. musculus KEGG vs WikiPathways WikiPathways vs MouseCyc MouseCyc vs KEGG

Overlap Gene Pairs 875 1,242 2,068

Unique Gene Pairs 55,489 33,312 38,891

Jaccard Coefficient 0.016 0.036 0.050

S. cerevisiae KEGG vs WikiPathways WikiPathways vs YeastCyc YeastCyc vs KEGG

Overlap Gene Pairs 35 9 419

Unique Gene Pairs 2,909 1,479 3,524

Jaccard Coefficient 0.012 0.006 0.106

M. tuberculosis H37Rv KEGG vs WikiPathways WikiPathways vs MTBRvCyc MTBRvCyc vs KEGG

Overlap Gene Pairs 9 8 358

Unique Gene Pairs 3,819 2,810 5,823

Jaccard Coefficient 0.002 0.003 0.058

Summary of the number of overlap gene pairs, number of unique gene pairs, and Jaccard coefficient among three representative databases.
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two. Thus using the alignment score to report the best hit
is not as good as using the alignment ratio.
From many background experiments, we realize that

relying only on best hits can result in some noise, since

many pathway names in the list x may not have any
related pathway names in the list y. Our strategy is to
introduce more stringent requirement to increase the
precision of the reported best hits. We require that either

Figure 3 Venn diagram of pathways in different databases. Venn diagram depicting overlapping pathways across the three databases.

Table 5 Table showing data overlap for same chosen pathways in difference source databases.

M. musculus TCA cycle pathway KEGG vs WikiPathways KEGG vs MouseCyc MouseCyc vs WikiPathways

Gene Count 31 vs 30 31 vs 13 13 vs 30

Overlap 24 13 11

Jaccard Coefficient 0.65 0.42 0.34

Gene Pair Count 100 vs 30 100 vs 24 24 vs 30

Overlap 10 9 7

Jaccard Coefficient 0.083 0.078 0.149

H. sapiens Fatty Acid Biosynthesis KEGG vs WikiPathways KEGG vs HumanCyc HumanCyc vs WikiPathways

Gene Count 6 vs 22 6 vs 2 2 vs 22

Overlap 3 2 1

Jaccard Coefficient 0.12 0.33 0.04

Gene Pair Count 12 vs 29 12 vs 2 2 vs 29

Overlap 1 1 0

Jaccard Coefficient 0.025 0.077 0.0

M. tuberculosis H37Rv TCA cycle pathway KEGG vs WikiPathways KEGG vs MTBRvCyc MTBRvCyc vs WikiPathways

Gene Count 35 vs 34 35 vs 10 10 vs 34

Overlap 34 10 10

Jaccard Coefficient 0.97 0.29 0.29

Gene Pair Count 107 vs 37 107 vs 19 19 vs 37

Overlap 3 9 5

Jaccard Coefficient 0.021 0.077 0.098

This table shows the calculation of gene/gene pair differences and overlap between the different source databases for the same chosen pathways.
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of the following two additional (empirically determined)
conditions to be satisfied:

1. Alignment score >the length of shorter string - 1
& alignment ratio >= 0.5, or
2. Alignment ratio >0.91

Combined with this additional requirement, our pro-
gram achieves high precision and recall in identifying
related pathway names. Nevertheless, a small number of
pathways which do not describe the same pathway, but
have very similar names, are still incorrectly identified by
the methods described above as related pathways. “VEGF
signaling pathway” and “EGFR1 Signaling Pathway”, “T
Cell Receptor Signaling Pathway” and “B Cell Receptor
Signaling Pathway”, etc. are examples of this kind of mis-
matches. Our approach to solve this problem is by using
a “error-prone words pair list” to filter potential mis-
matches. For example, if in a candidate related pathway
pair, one pathway name has one partner of an “error-
prone words pair"(EGFR1) and the other pathway name
contains the other partner in the “error-prone words
pair"(VEGF), this pair of candidate related pathways is
discarded by our program. This approach successfully
gets rid of mismatched pathways without compromising
the identification of related pathways. Although a little
manual curation is needed for initializing the “error-
prone words pair list”, the curation work load is much
less after the first time, since only a few changes or sup-
plementations of “error-prone words pair list” are needed
when processing different groups of pathway names.
Moreover, it is suitable for many different pathways in
different organisms.
We run our program to compare pathway names

within each database and between the databases. After
obtaining all the related pathways, our program uses a
disjoint set data structure to store all the identified
related pathways and then groups together all the related

pathways under a general pathway name. The general
pathway name is chosen as the shortest pathway names
from among the identified related pathways. The shortest
pathway name is usually suitable to be the name of the
integrated pathway. However, in some cases, the shortest
name contains “suffix” or “prefix"–like “I”, “II"–that
causes the integrated pathway name to give the wrong
idea of describing only a specific aspect of the integrated
pathway. So our program removes such suffixes and pre-
fixes when generating integrated pathway names. In addi-
tion, there are also a small number of cases where several
similar pathways are included in one pathway name–an
example is shown in the last row of Table 6. In these
cases, the shortest name is not appropriate as the name
of the integrated pathway. For these small number of
cases, we replace the keyword of the integrated pathway
name to cover more pathway information. After all the
processing steps described above, we can be sure that the
integrated pathway names in IntPath is correct and accu-
rate. The numbers of identified related pathway names
are listed in Table 7. The number of pathways, average
number of genes per pathway, and average number of
gene pairs per pathway in each database, before and after
this integration, is given in Table 8.

IntPath web interface and web service
IntPath is developed using JSP and MySQL. The web
service is created and published using AXIS2.

Results
Extraction and normalization of pathway-gene and
pathway-gene pair relationships
In order to overcome the limitation of incompatible data
formats, we directly extract from the XML files (KGML,
GPLM, BioPAX) of each pathway database and obtain the
gene relationships. To deal with inconsistent molecular
representations, we normalize the gene representations
into a unified gene ID. The IntPath unified gene ID (which

Table 6 Examples of inconsistent referrals to pathway names in M. musculus.

IntPath KEGG WikiPathways MouseCyc

Fatty Acid Fatty acid Fatty Acid 1. fatty acid biosynthesis initiation II

Biosynthesis biosynthesis Biosynthesis 2. very long chain fatty acid biosynthesis

3. fatty acid biosynthesis initiation III

Cholesterol Cholesterol 1. cholesterol biosynthesis III (via desmosterol)

Biosynthesis Biosynthesis 2. cholesterol biosynthesis II (via 24,25-
dihydrolanosterol)

3. cholesterol biosynthesis I

4. superpathway of cholesterol biosynthesis

TCA cycle Citrate cycle (TCA cycle) TCA cycle TCA Cycle

Glycolysis and
Gluconeogenesis

Glycolysis/
Gluconeogenesis

Glycolysis and
Gluconeogenesis

1. glycolysis I 2. glycolysis II

The table shows several examples of the same pathways with inconsistent referrals to pathway names in different databases.
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adopts a set of the most commonly used gene names) is
compatible with the gene names used in most public repo-
sitories. A summary of the number of pathways, genes and
gene pairs from different databases after normalization is
given in Table 2. To tackle inconsistent molecular rela-
tionship representations, we also normalized the relation-
ships of different databases into the IntPath unified
relationship types as shown in Table 1.

Evaluation of normalized pathway genes and gene
pairs from different databases
After obtaining the normalized pathway-gene and path-
way-gene pair relationships, we are able to analyze the
comprehensiveness and agreement among the different
pathway databases on different aspects.
The results from analyzing the overlap of genes and

gene pairs in different databases are presented in pie
charts in Figures 1 and 2. The detailed statistics are sum-
marized in Tables 3 and 4. These results prove that the
overlap of genes and gene pairs in different databases are

Table 7 Number of related pathways.

H. sapiens KEGG HumanCyc WikiPathways

KEGG 5 3 29

HumanCyc 3 34 12

WikiPathways 29 12 4

M. musculus KEGG MouseCyc WikiPathways

KEGG 6 6 32

MouseCyc 6 61 14

WikiPathways 32 14 10

S. cerevisiae KEGG YeastCyc WikiPathways

KEGG 1 10 11

YeastCyc 10 25 74

WikiPathways 11 74 15

M. tuberculosis H37Rv KEGG MTBRvCyc WikiPathways

KEGG 1 7 8

MTBRvCyc 7 35 2

WikiPathways 8 2 0

Summary of the number of identified related pathways within and among
databases.

Table 8 Summary of number of pathways, average number of genes per pathway and average number of gene pairs
per pathway before and after integration.

H. sapiens No. of Pathways BEFORE integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 135 pathways 46.3 166.2

HumanCyc 290 pathways 7.2 33.0

KEGG 237 pathways 72.4 171.3

H. sapiens No. of unique Pathways AFTER integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 100 pathways 42.7 157.4

HumanCyc 225 pathways 7.2 31.6

KEGG 201 pathways 72.6 165.3

Integrated Pathways 57 pathways 59.5 263.6

M. musculus No. of Pathways BEFORE integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 140 pathways 57.8 209.1

MouseCyc 323 pathways 8.0 61.4

KEGG 218 pathways 74.6 194.8

M. musculus No. of unique Pathways AFTER integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 97 pathways 56.8 242.8

MouseCyc 204 pathways 7.4 43.0

KEGG 172 pathways 77.9 187.3

Integrated Pathways 85 pathways 52.6 260.9

S. cerevisiae No. of Pathways BEFORE integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 125 pathways 11.8 0.5

YeastCyc 184 pathways 6.5 13.4

KEGG 98 pathways 35.2 34.7

S. cerevisiae No. of unique Pathways AFTER integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 45 pathways 15.1 0.2

YeastCyc 85 pathways 5.8 11.6

KEGG 80 pathways 38.0 35.0

Integrated Pathways 76 pathways 14.1 25.2
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very low. This result is in accord with similar experi-
ments done on human pathway databases [11].
From the results on the overlap of the pathways in dif-

ferent databases we can see there is also a strikingly low
overlap of pathways among the different databases; see
Figures 3. This demonstrates the obvious low level of
comprehensiveness in the databases analyzed, also in
accord with the experiments on human pathway data-
bases described in [11].
Zooming in from the database level to the individual

pathway level, we analyze the agreement of genes and gene
pairs of the same pathway in different databases. The results
are listed in Table 5. The agreement of different databases
at the pathway level is also not as high as we expected (espe-
cially for gene pairs), which proves the low level of consis-
tency between these databases on the same pathway.
The comparative analyses from the above three aspects

clearly exhibit the incomprehensiveness and inconsistency
among the pathway databases. This suggests that the inte-
gration of the extracted and normalized information from
different databases into a unified and comprehensive
resource is very necessary.

Integration of pathway-gene and pathway-gene pair
relationships
The results above demonstrate that relying only on a single
source of pathway information from any of the databases is
not reasonable. Moreover, we have also discovered the pro-
blem of inconsistent referrals to pathway names. Table 6
lists some examples of the same pathway under inconsis-
tent names in different databases. Those are just a few typi-
cal examples; there are many pathways with similar
situations which need to be properly addressed. Therefore,
it is of great necessity to integrate all the pathway-gene and
pathway-gene pair relationships from different databases
into a comprehensive and unified source.
In the integrated pathways, all the related pathways

with inconsistent names should be merged. (i) The

inconsistent referrals to pathway names are partially
caused by the different levels of emphases on the same
pathway in different databases. One database (BioCyc)
may emphasize on some very specific aspects of a certain
large pathway; so this large pathway is broken up in this
database into different pathways with similar/related
names, yet all describing the detailed aspects of the origi-
nal large pathway; see Table 6. However, the other two
databases may emphasize on a more general level and,
therefore only use a general and often shorter pathway
name. When merging pathways from different databases
into integrated pathways, we should unify the different
levels of emphases. We decide to choose a more general
level rather than a detailed level. (ii) When merging the
same pathways with different levels of emphases in differ-
ent databases, if we have already merged one detailed-
level pathway into a general-level pathway, all other
related detailed-level pathways in the databases should be
merged into this general-level pathway. After merging all
the related pathways we should use a general pathway
name (usually the shortest one) to represent the inte-
grated pathway. (iii) The distinct differences between our
integrated pathway gene relationships and conventional
pictorial pathway map indicate a more general level is
suitable. We are primarily focusing on gene relationships,
but not on other the relationships in the pathways (pro-
tein-compound relationships, compound-compound
relationships, and so on.) in this version of IntPath. This
emphasis results in less enthusiasm on the detailed level
of individual pathways, and we lack sufficient information
(just gene relationships) to emphasize on the detailed
level in most cases. (iv) The common problem of gene
relationships is the sparseness in each pathway; and put-
ting emphasis on the detailed aspect of certain pathway
could render the data in a single pathway too sparse to
be useful.
For the reasons listed above, we should merge all the

related pathways under the same general name into one

Table 8 Summary of number of pathways, average number of genes per pathway and average number of gene pairs
per pathway before and after integration. (Continued)

M. tuberculosis H37Rv No. of Pathways BEFORE integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 8 pathways 22.3 7.8

MTBRvCyc 234 pathways 5.7 18.9

KEGG 110 pathways 32.5 47.5

M. tuberculosis H37Rv No. of unique Pathways AFTER integration Average No. of genes/pathway Average No. of gene pairs/pathway

WikiPathways 0 pathways

MTBRvCyc 171 pathways 5.9 21.0

KEGG 94 pathways 35.4 51.7

Integrated Pathways 35 pathways 12.3 25.4

The table below shows the number of pathways from major pathway databases before and after integration.
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comprehensive pathway (among and within databases).
And after merging, we should use the general pathway
name which is usually the shortest name among all the
comparing pathway names.
The results of identified related pathways both within

and among databases are summarized in Table 7. From
the number of related pathways within databases, we find
BioCyc and MouseCyc emphasize more on the detailed
aspect of pathways; therefore, more related pathway
names are identified. In IntPath, all the related pathways
within and among databases are grouped together with
the integrated pathway name. The number of pathways,
average number of genes per pathway and average number
of gene pairs per pathway, before and after integration, in
the four IntPath included organisms are given in Table 8.
The statistics listed in Table 8 clearly show that in inte-
grated pathways there is a significant increase of average
node degree (average node degree = average no. of gene
pairs per pathway/average no. of genes per pathway),
which means significant increase of gene relationships of
each gene on average in the integrated pathways. There is
also a considerable increase of average no. of gene pairs
per pathway in the integrated pathways, which indicates
richer gene relationships on average in each pathway. In
some sense, the integration approach partially solves the
sparseness of pathway-gene relationships in MouseCyc
and BioCyc.
We accomplished in IntPath the integration of pathway-

gene and pathway-gene pair relationships, achieving com-
patible data formats, consistent molecular representations,

consistent relationship representations, consistent referrals
to pathway names and comprehensive data.

IntPath web interface and web service
The web interface of IntPath comprises the following
parts: Home, Gene List Analysis Tools (Identify Pathways
and Analyze Distances), API Toolkit, Statistics, Tutorial,
and Download. In order to facilitate convenient access of
IntPath data through local programs, the API functions
are also supported by IntPath web service. An overview
of the IntPath system is shown in Figure 4. The core
functions of IntPath are represented in Figure 5. An
explanation of each part is given below.
Home: It is to introduce the objective of IntPath, what

the major contribution of this database is and what the
specific problems that we wish to solve through this
database are. We also indicate the analysis tools sup-
ported in this database, the publications related to these
analysis tools, and which species are currently included
in our database. This Home page of IntPath is a sum-
mary of the general information of the database.
Identify Pathways: The function of “Identify Pathways”

uses the hyper-geometric test to find the most signifi-
cant pathways given an input gene list. Through this
tool, users can have a clear insight of which pathway is
most related to the input gene list. For each result
returned, details like p-value are also given.
Analyze Distances: The function of “Analyze Distances”

is to tell the similarities between the two input gene lists
from a pathway perspective. To perform the distance

Figure 4 IntPath system overview. This figure shows the components of IntPath database, the relationships between those components and a
clear indication on which components are supported by web service and which are supported by web interface.
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analysis, first the hyper-geometric test is used to find the
most significant pathways of the two input gene lists,
then the Floyd-Warshall algorithm is used to calculate
the “distances” between the two pathways. STRING PPI
datasets (version 9.0) is used in the distance calculation
between two pathways in the current version of IntPath
(V2.0). The “distances” provide a reference in telling the
relationships between two specific pathways, and it can
be very useful, e.g., in identifying how “far” it will take for
a normal pathway to transform into a diseased pathway.
For a detailed explanation of “Analyze Distances” and its
application in biomedical research, please refer to meth-
ods described in [20].
Statistics: This statistics section gives users an overall

insight of IntPath. Users can easily get the following statis-
tics: number of genes, number of gene pairs, number of
integrated pathways, number of original KEGG pathways,
number of original WikiPathways pathways, number of
original BioCyc(MouseCyc) pathways, and number of
source databases. The default option is “All statistics”
which displays all the statistics listed above.
API Toolkit: We provide powerful as well as flexible API

functions of our IntPath database. Users can both call the
API functions using their local programs through IntPath’s
web service or using API functions by directly retrieving
information through IntPath’s web interface. The follow-
ing API functions are supported, getGeneID, getDBPath-
ways, getPathway, getPathwayGenes, getGenePathways,
getPathway-Interactions, getPathwayDifference, getInt-
PathGenes, getIntPathGenePairs and getIntPathPathways.
The explanation and user guide of each API function can
be found in the Tutorial page.

Download: Some users may have other requirements of
data analyses that are not met by IntPath in the current
version. Some users may also have different application
purposes of IntPath. To cope with a variety of needs, we
release all our IntPath data in this “Download” section,
where users can obtain all IntPath data in two different
formats: (1) text format (*.txt), this compressed package
includes three text files, (a) the integrated pathway-gene
relationships, (b) the integrated pathway-gene pair rela-
tionships and (c) the normalized group-genes list; and (2)
sqldump format (*.sql), which is based on the integrated
data we have prepared and stored in 6 tables in each
sqldump (each organism is a separate sqldump).

Discussion
Comments on WikiPathways
The “wiki-style” of WikiPathways makes this database
more casual than other databases. It is good for the com-
munity to freely maintain and share knowledge through
WikiPathways. On the other hand, it causes many pro-
blems for automatic information retrieval. One of the lim-
itations is the slight inconsistency among the formats of
GPML as mentioned before–some key tags can be upper
or lower cases. GPML is more different from other XML
formats. GPML emphasizes more on pictorial information;
therefore, most of the objects on the file are more likely to
be recorded for their positional information. Worse, some
GPML files even do not have a “graphID” record; and for
these GPML files, whole information of certain pathways
is given by the positional information on the pathway
map. For these GPML files, judging the relationships
between two genes is solely dependent on the positional

Figure 5 Core functions of IntPath. This figure shows the core functions of IntPath, the relationships between those core functions, database
and web service.
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information. It may be easy for the human eye to look at
the pictorial format of the pathway map; but it is hard for
computer programs to retrieve accurate information auto-
matically. Attempts on spatial clustering have been made.
But these attempts also introduce a substantial amount of
noise. Therefore we decide to discard this noisy informa-
tion at the current stage.
Recently, WikiPathways begins to support web service

and BioPAX. We have tried solving the problem men-
tioned above using WikiPathways web service and
directly extracting from BioPAX format; but no
improvement has been achieved.
Web service has not solved the problem of those GPML

files that do not have “graphID” record. For example, our
program fails to extract reliable gene relationships from
the pathway “Mm Androgen Receptor Signaling Pathway
WP252_35669” by calling the WikiPathways API function
“find Interactions”. It is supposed to find interactions
defined in WikiPathways’ pathways. In our experiments, it
works in finding interactions in other pathways. Extensive
experiments have been made using different ways to call
the “find-Interactions” function. Yet nothing related to the
WP252 pathway is returned. On the png graph we can see
there are lots of interactions in this WP252 pathway.
These kinds of experiments have been attempted many
times on several pathways. All have failed to find the
“interactions” or gene relationships in the specific path-
ways that lack “graphID” entry.
We turn to BioPAX files which have recently been sup-

ported on WikiPathways for a solution. We specifically
run our program on the pathway BioPAX files whose cor-
responding GPML files do not have “graphID” records.
Our program successfully retrieved gene relationships
from BioPAX files in BioCyc and MouseCyc, but not on
these specific BioPAX files in WikiPathways (for example,
“Sc Cell Cycle and Cell Division WP414_21554” and “Sc
Glycolysis and Gluconeogenesis WP515_42806”). We also
try to visualize those specific BioPAX files on Cytoscape;
but no relationship can be visualized from these files.
The gene ID problems in WikiPathways is also quite

serious. There are two places to retrieve gene ID infor-
mation from the GPML “</DataNode>” entry, one is
from “TextLabel” and the other is from “<Xref Database”
IDs. Usually gene IDs in “TextLabel” are gene symbol,
while gene IDs in “<Xref Database” can be the gene IDs
from different public databases, like Entrez, Ensembl,
UniProt, and so on. Getting gene ID information from
both of these two fields is necessary. It is not uncommon
for the WikiPathways database to have errors and pro-
blems in both fields. In most cases, erroneous gene IDs
from “TextLabel” also do not have any information in
“<Xref Database”. The erroneous gene IDs can be gene
symbols or EC numbers that cannot be found in the

target organism to which the pathway map belongs; they
can also be common gene names without any informa-
tion in “<Xref Database”, or they can be just upper- or
lower-case flaws. In our program, both information from
the two fields,"TextLabel” and “<Xref Database” are
retrieved. For gene IDs where information from both of
these fields are problematic, manual curation is adopted
to deal with them, generally by removing them from
IntPath.

Access, update and extension of IntPath
IntPath and all its data have been released online at
http://compbio.ddns.comp.nus.edu.sg:8080/IntPath. As
some studies are already using data in IntPath [21], we
believe our work here can facilitate a variety of works
that need to refer to pathway information.
IntPath heavily depends on source pathway data from

all the pathway databases and most databases update
quite frequently. The important question is: Can we
keep our data updated in a timely fashion? The answer
is: Yes.
The “IntPath Data Preparation” program is streamlined

and automated in performing the extraction, normaliza-
tion, integration processes and directly outputing into
MySQL databases and text files. For organism already
included in IntPath, running the program for each update
takes a short time; and we will maintain a regular update
of IntPath in the long term. Another key question is
whether we can extend our approach to other organisms.
Currently, we have already included four organisms–
S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and
M. musculus–and we will include more in future releases
of IntPath. Extending the methodology to include other
organisms just needs modifying the regular expressions
for extracting GPML and KGML files; preparing the gene
ID mapping files; manually correcting some possible
errors of the gene IDs introduced by the source databases
(like WikiPathways gene ID problems) and, if necessary,
updating the “error-prone words pair list"; and reviewing
integrated pathway names. Therefore, the whole process
of including other organisms in IntPath takes a short
time. We will include more model organisms and impor-
tant pathogens in IntPath in future releases.

Outlook of IntPath
In the near future, more functions and analysis tools will
be supported in IntPath–for example, clustering algo-
rithms for microarray studies using the IntPath data as
background knowledge, visualization tools of interaction
and relationship, more powerful algorithms to identify
pathways given user-specified input gene lists, and more
API functions. Moreover, in this version of IntPath we
only take gene relationships into account; in a future

Zhou et al. BMC Systems Biology 2012, 6(Suppl 2):S2
http://www.biomedcentral.com/1752-0509/6/S2/S2

Page 15 of 17

http://compbio.ddns.comp.nus.edu.sg:8080/IntPath


version, IntPath will also consider other important rela-
tionships in the pathways–like protein-compound rela-
tionships, compound-compound relationships, and so
on. Meanwhile, in future releases, more organisms will
be included. We wish our continuing effort can make
IntPath one of the most useful databases in pathway
studies that can benefit a variety of related researches.

Conclusion
The five limitations of current pathway databases that
hamper effective use of pathway information have been
overcome in this work. We solve the problem of incom-
patible data formats in different databases by extracting
the pathway-gene and pathway-gene pair relationships.
The limitations of inconsistent molecular representations
and inconsistent molecular relationship representations
have been overcome by our normalization of the data
into common gene name representations and common
relationship types which are compatible with other data-
base. The problems of inconsistent referrals to pathway
names and incomprehensive data from different data-
bases have been solved by the integration of pathway-
gene and pathway-gene pair relationships into a unified
and comprehensive data source.
We achieve compatible data formats, consistent molecu-

lar representations, consistent relationship representations,
consistent referrals to pathway names and comprehensive
data in our IntPath database for several organisms–viz.,
H. sapiens, S. cerevisiae, M. musculus and M. tuberculosis
H37Rv. IntPath can maintain a regular update in these
organisms and, the methodology we describe here can be
applied to other organisms straightforwardly.
We believe IntPath will not only facilitate convenient

access of the integrated pathway gene relationship data for
model organisms and important pathogens but also greatly
boost data analysis and application to many related studies
through the analysis tools and API functions provided in
the database.
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