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SUMMARY 

This research work has been undertaken to utilize low cost, inedible 

and waste feedstock as raw materials for biodiesel production and utilization 

in a diesel engine. As such, we have proposed two inedible and waste 

feedstock, namely, kapok oil and CNSL (cashew nut shell liquid), to be 

synthesized into biodiesel. Significantly, kapok oil has not been considered as 

an alternate fuel for diesel engine thus far despite being an indispensable 

renewable source, while CNSL is at the beginning stage of development. As a 

different approach, steam treatment process followed by mechanical crushing 

has been employed to extract bulk quantities of oil from kapok seeds as well 

as cashew nut outer shell. Subsequently, kapok biodiesel was produced from 

kapok oil through alkaline trans-esterification process, while CNSL biodiesel 

was synthesized through double stage trans-esterification process due to the 

higher FFA content of CNSL. Notably, the estimated thermal and physical 

properties of biodiesel were found to be conducive for their use in a diesel 

engine.  

After the synthesis of the required biodiesel, the operation of them in a 

diesel engine was studied through various fuel and engine modification 

strategies. As such, in the first phase, the operation of kapok biodiesel was 

optimized and to incept with, conventional testing of kapok biodiesel in blends 

with diesel was done. From the experimental investigation, B25 (25% 

biodiesel and 75% diesel) was found to be the optimum blend. To reduce the 

emissions for B25, in our next attempt, we modified the properties of the 

blend by adding 1,4-Dioxane, a multipurpose fuel additive. Furthermore, we 

attempted to adapt higher blends of kapok biodiesel in a diesel engine by 

coating the engine components using insulating material and varying the 

combustion chamber geometry. As an outcome of these studies, B50 (50% 

biodiesel and 50% diesel) was found to be the optimum blend. In addition, 

NOX (nitrogen oxide) emission from a coated diesel engine was mitigated by 

implementing SNCR (Selective non catalytic reduction) in the tail pipe. In the 

second phase of this study, CNSL biodiesel was investigated in a diesel engine 

and by varying the fuel injection pressure, B25 was shown to have better 

engine characteristics than diesel. To further improve the engine performance, 
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B25 was tested in a coated diesel engine and finite element analysis was 

performed to understand the effect of coating on engine performance. Finally, 

to harness the renewability of 100% CNSL biodiesel, it was operated in diesel 

engine after preheating it, and, additionally, an economic analysis was 

performed to verify its economic feasibility.  

In the last phase of this research study, combustion and emission 

modeling for kapok biodiesel were performed through a 3D CFD code, 

KIVA4. Accordingly, the fuel library of KIVA4 was updated with the 

properties of kapok biodiesel and appropriate reaction mechanisms for 

combustion and emission of kapok biodiesel were chosen. In the end, 

simulations were performed and the results such as in-cylinder pressure, CO, 

HC and NOX emissions were validated with the experimental data.  
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CHAPTER 1 

1. Introduction 

1.1. Renewable sources of energy for power production  

With the onset of globalization, the world has been witnessing a rapid 

growth and development in almost all possible spheres, especially science and 

technology has been immensely fostered. In wake of the upsurge in 

development and increase in world population, the gap between electricity 

demand and supply has been increased. In a forecast, US Department of 

Energy has predicted an increase in demand for electricity by 28%, from 3,839 

billion kWh in 2011 to 4,930 billion kWh in 2040, necessitating for capacity 

addition to meet the demand [1]. Since the majority of electricity production 

emanates from coal and natural gas fired power plants, these energy sources 

are getting depleted with the each passing day and the world’s energy system 

is being pushed to the breaking point. In addition to this, burning of these 

sources of energy also contributes to the emission of hazardous gases and soot 

emission into the atmosphere, paving way for climate change. Obviously, the 

effect caused by climate change is no less ominous and in current form, the 

world is on track for warming of 6 Celsius – a level that would create 

devastation, wiping out agriculture in many areas and rendering swathes of the 

globe uninhabitable.  

Scientists and research community are aware of the above mentioned 

consequences and they are attempting to advocate few solutions to overcome 

the rampant issues with energy demand and climate change. More often than 

not, sustainability and renewability are two quintessential affordable solutions 

that could help avert these problems. Significantly, the world has already 

committed to some contemporary renewable sources of energy like wind, solar 

and hydro to meet the energy demands. Generally, these are touted to be clean 

energy technologies as natural sources were used for producing power, 

enabling greener environment. Reportedly, solar, wind, hydro power and 

biomass does contribute to renewable energy generation from 524 billion kWh 
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in 2011 to 858 billion kWh in 2040, growing by an average of 1.7 percent per 

year [1], as statistically depicted in Figure 1.1. However, there are three 

important factors which have to be considered in deciding the suitability of 

these renewable sources over the conventional coal technologies such as 1) 

Availability of the source 2) cost competitiveness with fossil fuel technology 

3) Long term viability and geographical conditions. In the beginning of 21st 

century, spurred by the growth of these renewable energy technologies, the 

electricity demand has been offset from 9.8% to 0.7% [1]. If this scenario is 

likely to improve with the deployment of more renewable technologies, a 

restraint on energy deprivation and environmental devastation can be brought 

to prominence in the near future 

 

Figure 1.1 Prediction of renewable electricity generation by EIA  

1.2. Liquid biofuels and its application in power generation  

In addition to the power generation in large scale  through renewable 

source of energy, domestic electricity has also been produced from certain 

prime movers, driven by fossil petroleum fuel [2]. One common type of prime 

mover being used for generating electricity is a diesel engine, which has been 

designed to operate in stationary mode. Appreciably, this prime mover offers 

better efficiency than gasoline engines due to lean burning of the fuel, with the 

additional advantage of reduced HC and CO emissions. In the application 

point of view, they are used in buses, trucks, cars, compressors, generators and 
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pumps, which could be broadly classified under transport, industrial, marine 

and agricultural applications. It is noteworthy to mention that stationary diesel 

engine (generators) is being used in many industries and domestic applications 

to generate power and electricity while for transport application; the engine 

being used is different. Characteristically, though these generators are 

rationally conceived to meet the emergency power demands, they also find 

application in agricultural and marine fields. Also, since they are deemed to 

operate at a constant engine speed, design perspective of the engine is simple. 

In addition, this kind of diesel engine also finds use in marine applications, in 

which, huge capacity engine are designed to produce a power output of 

90,000kW, running at a precisely slower speed of 100rpm. On contrary, in 

agricultural sector, relatively small capacity stationary diesel engines are used 

in tractors, irrigation pumps and threshing machines.  

Basically, diesel engines are powered by fossil diesel and all its 

operational characteristics are standardized for the use of diesel, ever since the 

age of engine invention and development. However, our dependence on 

petroleum based fuel grows stronger each year and in light of this, the price of 

the crude oil is escalated to greater heights, which has become the potential 

threat to the developing and developed countries [3]. If this current scenario is 

likely to prevail for next couple of decades, the world would be at the risk of 

severe depletion of petroleum based fuels. Environmentally, the emission of 

greenhouse gases through the burning of petroleum fuels has caused havoc 

with no end in sight. Moreover, the other emissions such as CO, NOX and 

smoke could cause ruinous effect on atmosphere if not precisely contained. 

These pitfalls of fossil fuel shortage and environmental degradation could be 

overcome by supplementing biomass based fuels, which are reported to 

effectively mitigate the emissions in addition to replacing the petroleum based 

fuels  [4, 5]. Statistically, biomass based fuels are the third largest source for 

renewable energy generation and has contributed phenomenally to the 

generation of electricity, from 37 billion kWh in 2011 to 102 billion kWh in 

2021. On the whole, there have been prediction about these biomass based 

fuels contributing to one half of the energy demand by 2050 and both the 
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developed and developing countries are thriving to see this happen in the near 

future. 

In respect of several benefits in the utilization of biomass based fuels 

against the use of conventional fossil fuels, considerable attention has been 

paid on the development of them all over the world, with particular focus on 

biofuels that possess advantages of being renewable and biodegradable [6]. 

Notably, liquid biofuels, produced from plants and biological raw materials 

have grabbed the attention of many researchers as viable substitute for diesel 

in a diesel engine. From the production point of view, these biofuels are 

pointed out to be synthesized from the parts of plants such as seeds, crops and 

other naturally available renewable materials. Distinctly, these biofuels 

contains essential hydrocarbons and unlike diesel, it possesses inherent oxygen 

that makes it distinct and advantageous in respect of fuel oxidation and 

combustion process. Moreover, though the properties of these liquid biofuels 

are different due to their chemically different molecular structure and 

composition, they could be made conducive for their operation in diesel 

engine, which makes them more attractive. Systematic classification of these 

liquid biofuels delineates to vegetable oils, alcohols, biodiesel or esters, 

carbonates and ethers, which has been shown in Figure 1.2. In a broader 

classification, biofuels can be categorized into first and second generation 

biofuels, depending on the source from which it is produced. 

Characteristically, the biofuels produced from vegetable sources such as edible 

oil, starch and cellulose are termed as first generation biofuels, while second 

generation biofuels are synthesized from inedible sources such as lingo 

cellulosic biomass and agricultural wastes. From the production point of view, 

these biofuels are synthesized from different sources through biological or 

chemical treatment methods. In the present trend, according to an international 

energy agency, replacement of 6% of petroleum fuels by biofuels in USA and 

Europe appears to have been possible and for other nations, depending upon 

the availability and policies, this is likely to vary. In all prognosis, many 

biofuel refineries are believed to prosper in the near future and the economy 

will grow in the 21st century. 



 

 

Figure 1.2 Classification of liquid biofuels
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1.2.1. Vegetable oil as source of fuel for diesel engine  

From the classification of biofuels, vegetable oils from both edible and 

in-edible sources seems to be arguably one of the best alternate fuels for diesel 

engine, while alcohols are suited for operation in gasoline engine. The use of 

vegetable oils directly in diesel engine had been commemorated early since 

1900, when Rudolf diesel tested peanut oil in a diesel engine [7, 8]. Though 

the cost of vegetable is higher compared to diesel fuel, it was used at times 

when there arose an imminent threat of petroleum fuel deprivation. In 

particular, during the World War II, between 1930 and 1940, vegetable oils 

were used as a potential substitute for diesel. Normally, the source for these 

vegetable oils is from oil seeds, which are either cultivated or collected from 

scattered locations. Subsequently, oil is extracted from the seeds by means of 

mechanical, solvent or enzymatic extraction techniques, after preprocessing 

the seeds by drying it in an oven or sun. In the mechanical extraction 

technique, either manual or screw driven press has been employed, which 

contributes to around 60% to 65% and 68% to 80% extraction of oil, 

respectively [9]. Nonetheless, this method of oil extraction is not suitable for 

all kind of seeds and hence in the event of seeds not appropriate for 

mechanical extraction, solvent extraction technique can be adopted. For 

solvent extraction technique, it has been pointed out that a highly soluble less 

viscous solvent is needed to extract oil from powdered seeds [10]. In-order for 

this to be realized, the particle size and temperature of the medium seems to 

have a crucial role and besides this, the mixture has to be agitated well to 

increase the oil yield. In addition to the above two methodologies, there 

prevails an environmental friendly mode of oil extraction, known as enzymatic 

extraction method [11], which refrains from producing any volatile organic 

compounds thereby, preventing environmental pollution. 

Chemically speaking, vegetable oils are water insoluble hydrophobic 

substance composed of fatty esters of glycerol with higher molecular weight 

[12, 13]. However, the fatty acid composition of different types of vegetable 

oil varies, due to the distinction of being extracted from different sources. 

Besides the presence of free fatty acids, vegetable oil also does have sterols, 

phospholipids, water, odorants and other contaminants, which obligate for 
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refining of the oil to get purified [14]. However, when compared to fossil 

diesel, vegetable oils are bound to more oxidation when stored for a prolonged 

duration, especially for fuels with more unsaturated hydrocarbons. Eventually, 

when used in a diesel engine, the formed peroxide then polymerizes into 

insoluble compound, which could block the fuel filter and injector nozzle 

holes. 

Vegetable oil could be directly used in diesel engine because of its 

better burning properties and it is reported to have reduced the emission of 

deleterious greenhouse gas, CO2, and carbon foot prints [15, 16]. Moreover, 

the cetane number of it is higher and approximately, the calorific value of it is 

90% of diesel, equipping as a pertinent substitute for diesel in a diesel engine. 

Nevertheless, the use of neat vegetable oil directly in diesel engine is not 

advocated as its viscosity is higher, affecting the engine performance and 

combustion, and prolonged use of them in diesel engine would pave way for 

problems such as injector clogging, carbon deposits and lubrication oil 

contamination [3, 17-19]. Notably, the possible ways to reduce the viscosity 

are 1) Dilution or blending 2) micro-emulsification 3) pyrolysis and 4) trans-

esterification. Dilution of vegetable oil pertains to blending it with 

conventional diesel in various proportions wherein, mixed properties of 

vegetable oil and diesel could be subtly balanced. Importantly, there have been 

observations about the reduction in viscosity, when the proportion of diesel 

with the vegetable oil is increased and this has shown to improve the engine 

performance and emission [20, 21]. The other possible attempt to reduce the 

viscosity of the vegetable oil amounts to micro-emulsification wherein, water 

particles are infused into the oil and the homogeneity of the resultant mixture 

is ensured by a surfactant. Technically, the emulsified vegetable oil comprises 

of three phases namely, oil, aqueous and surfactant phases, and during 

evaporation and combustion of fuel, the low boiling fraction water evaporates 

and help improve the fuel spray characteristics [22, 23]. Besides these two 

approaches, chemical treatment of vegetable oils has earned the interest of 

many researchers and in light of this, processes like pyrolysis or trans-

esterification has been considered to reduce its viscosity. Characteristically, 

pyrolysis involves breaking down of higher molecules of vegetable oil into 
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smaller molecules, after subjecting it to decomposition in the absence of 

catalyst [24, 25]. On the other hand, trans-esterification is a chemical reaction 

in which the vegetable oil reacts with an alcohol to form smaller compounds, 

esters and glycerol. Subsequently, glycerol is drained out and the formed ester 

is termed as biodiesel, a potential renewable source of fuel.  

1.2.2. Biodiesel and its development  

Biodiesel is a fuel made up of mono alky ester of fatty acids, derived 

from animal fat or vegetable oil by trans-esterification process [26]. 

Significantly, biodiesel synthesized from vegetable oils has many advantages 

such as renewability, higher combustion efficiency, lower sulfur and aromatic 

content [26, 27]. Furthermore, the presence of inherent oxygen within it 

enhances its biodegradability [28] and the fact that biodiesel is enriched with 

free fatty acids improves its lubricity [29]. Besides these inherent merits of 

biodiesel, literature review on biodiesel claims that it has a potential to reduce 

the economic dependency on foreign oil import, supported by its authoritative 

domestic origin.  

In the aftermath of the extensive revelation about the composition and 

properties of biodiesel, many experimental studies on the performance, 

emission and combustion characteristics of a diesel engine fueled by it came to 

fore. From the engine experiments, it was reported that ignition delay reduces 

as the mixing ratio of biodiesel increases, because the cetane number of 

biodiesel is greater than that of conventional diesel [30]. Also, biodiesel 

produced from various vegetable oils emits lower exhaust emissions such as 

smoke, HC and CO [31]. Over and all, from the extensive studies conducted 

using blends of biodiesel in a diesel engine, 20% blend of it with diesel has 

been recommended as an optimum one, considering the engine performance 

and emission. Accordingly, this has provided an impetus for many researchers 

to find a viable biodiesel from several vegetable oil sources. It is worthwhile 

to mention that in the process of selecting suitable oil for biodiesel production, 

there are several considerations such as availability, cost, stability and 

manufacturing method. In recent times, researchers have forfeited using edible 

vegetable oil as source for biodiesel production and rather they have set their 

sight on inedible oils as the demand for edible vegetable oil has been increased 
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and there are concerns such as high cost and impact on food chain [32]. In this 

regard, inedible oils such as Jatropha (Jatropha carcus), Karanja (Pongamia 

pinnata), Nagchampa (Callophyllum inophyllum), Rubber seed (Hevca 

brasiliensis), Neem (Azadirachta indica), Mahua (Madhucha indica), Jojoba 

(Simmondsia chinensis), and Microalgae are being used as prominent sources 

for biodiesel production as they are readily available and are economical [33]. 

Moreover, inedible plants can be grown in waste lands, which further benefits 

as green cover to waste land. 

Besides the edible and inedible oils, waste products such as waste 

cooking oil and animal fats have also been given attention by many 

researchers as a viable candidate for producing biodiesel. Considerably, 

harnessing the renewable source of energy from the waste products would 

help combat the land availability issue for growing crops. In all likelihood, 

biodiesel produced from these inedible oils as well as waste products, when 

being used as alternate fuel in a diesel engine, would replace a fraction of 

petroleum based fuels and other conventional fuels in the near future, and will 

supposedly generate green energy to help prevent adverse effect on 

atmosphere. However, there are still several constraints associated with the use 

of biodiesel such as higher viscosity, lower energy content, higher cloud and 

pour point and increased NOX emission [28]. On account of its higher FFA 

content, the long term use of biodiesel in a diesel engine is likely to pose 

durability problems and soot depositions on the engine parts, especially the 

fuel injection equipment’s. After weighing the pros and cons of biodiesel 

derived from various vegetable oil, researchers have proposed several 

strategies to compensate the limitations with the thermal and physical 

properties of biodiesel. These techniques relate to modifying the engine design 

and operating parameters or altering the properties of the fuel by adding 

additives or other chemical treatment methods. Notably, these strategies would 

not only improve engine performance and emission but also enables 

adaptation of higher blends of biodiesel.  
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1.3. Motivation and Outline of the thesis 

Over the years, though different species of biodiesel have been 

capitalized as substitute for diesel, its cost and availability are the two factors, 

forbidding the commercialization of these fuels holistically. Further, it has 

been duly noted that the cost of biodiesel, which is still higher than the 

conventional diesel, is dependent on the feedstock cost and therefore, 

exploration of low cost feedstock is the need for the current ongoing research. 

In the wake of all contemporary issues pertaining to the choice of suitable 

feedstock for biodiesel production, various studies on the characterization of 

biodiesel form inedible oils have been investigated by many researchers [33-

35], given inedible oils are cheaper and can be grown in abundant. Further, the 

selection of inedible feedstock could also help avert the dispute between food 

and fuel, and might provide a chance to establish well defined agricultural 

policies for rural development. In further introspection, it was noticed that 

even with the inedible food crops, the availability of land for cultivating crops 

is of concern. Therefore, besides exploring an inedible feedstock for biodiesel 

production, focus on utilizing waste product as suitable raw material for 

producing biodiesel is beneficial. In the final consensus for the development of 

biodiesel, the feedstock should be both in-edible and a waste product as these 

considerations would not only reduce the cost of biodiesel but would also help 

encounter the land availability and problems associated with food chain. In 

this regard, we have set an objective to a select feedstock, which is in-edible, 

waste and economical for biodiesel production and utilization in a diesel 

engine. Further, to make the produced biodiesel more amenable for diesel 

engine, we have aimed to optimize the use of them by adopting various 

strategies.  

With the above stated objectives, an extensive literature review on the 

list of vegetable oils available so far was made and the performance, emission 

and combustion characteristics of few inedible biodiesel have been 

summarized. Further, to get insights on the optimization of biodiesel in a 

diesel engine, review of fuel modification strategies have been made and 

distinctly, a summary on design modification strategies for optimizing 

biodiesel in a diesel engine, which has not been accomplished before has been 
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made. The review work is made in line with the objectives proposed and has 

been described in Chapter 2. After an extensive search, we have chosen kapok 

oil, in our study, to synthesize biodiesel and operate them in a diesel engine. 

As a matter of fact, the oil extracted from kapok seeds are being underutilized, 

despite having the potential to qualify as a viable substitute for diesel. 

Previously, kapok oil was extracted only in small quantities by Soxlet 

extraction technique, with the intent to produce and optimize biodiesel. 

However, it is reliably learnt from the literature study that testing of kapok 

biodiesel in diesel engine has not come to light so far, which would demand 

production of large quantity of biodiesel. In this scenario, as a different 

attempt, this study has adopted steam treatment process followed by 

mechanical crushing technique, which extracts larger proportion of oil 

conveniently. Further, this study has focused on preparing biodiesel from 

extracted kapok oil by trans-esterification process and the properties of it, as 

determined by ASTM standard methods, were found to be in agreement with 

international biodiesel standards. All details pertaining to the extraction of 

kapok oil from its seeds, biodiesel production and the evaluation of fuel 

properties have been explained in Chapter 3. Further, the engine used for the 

experimentation and other information regarding the experimental 

methodology with engine have been explained in this chapter.  

After ensuring the feasibility of using KME (kapok biodiesel) in diesel 

engine, various blends of KME with diesel were prepared and the 

performance, combustion and emission characteristics of a diesel engine 

powered by KME – diesel blends are investigated for the first time. Followed 

by this, we decided to choose an optimum blend and improve the engine 

characteristics for the reported blend by adding a fuel additive. After 

scrutinizing several additives and their role on engine performance and 

emission, it was identified that 1,4-Dixoane, despite its multipurpose benefits, 

has not been used as an additive with biodiesel. Therefore, 1,4-Dixoane was 

added with the optimum blend of KME in a measure to improve the blend fuel 

properties and achieve better engine characteristics.  

Followed by the experimental investigation of kapok biodiesel in 

diesel engine without any modifications, we carried out optimization studies 
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by making certain engine design modifications so as to adopt higher blends of 

KME in diesel engine. Notably, in this study, considering the advantage of 

design modification strategy over optimization of engine operating 

parameters, the former has been chosen to operate KME – diesel blends. From 

the literature review, we identified two probable design modification 

techniques known as thermal barrier coating of engine components and 

optimization of combustion chamber geometry. Initially, the engine 

components were coated by insulating material, partially stabilized zirconia, 

so that the heat losses to the cooling water and exhaust were reduced to 

improve the thermal efficiency. The coating was achieved through plasma 

spray technique and various blends of KME with diesel were prepared and 

tested in a coated engine. Further, the contentious issue of increased NOX 

emission from coated engine was identified, which has not been addressed so 

far by many researchers when testing any of the biodiesel in a coated engine, 

and measures were taken to mitigate it. After the experimental investigation, 

the optimum blend with better engine performance and emission was 

identified. In our next study, the design of the combustion chamber geometry 

was altered when testing KME – diesel blends in a diesel engine and finally, 

the best combustion chamber design was zeroed in. In this attempt, three 

different combustion chambers such as toroidal, trapezoidal and hemispherical 

chambers were selected to test kapok biodiesel. The optimization of kapok 

biodiesel in a diesel engine through design and fuel modification strategies has 

been elucidated in Chapter 4.  

This research study is not only limited to identifying KME as viable 

alternate fuel for diesel engine but has also targeted to propose one more 

potential feedstock for biodiesel production and utilization in a diesel engine. 

As such, in the second phase of this study, a low cost feedstock, cashew nut 

shell liquid, which is at the beginning stage of development, was considered 

for our study. From the literature study, it is certain that despite the economic 

viability of CNSL, not much attention has been paid to harness the renewable 

source of energy from it due to difficulties encountered in fuel processing and 

characterization. Since the sole objective of this research study is to choose 

low cost and waste feedstock for biodiesel synthesis, we have shed some light 
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on using CNSL in a diesel engine. Further, as a different attempt, CNSL was 

extracted from the cashew nut shell through steam treatment process, which 

has not been considered by previous researchers. To enhance the recovery of 

maximum proportion of CNSL, the shells are further crushed in a mechanical 

expeller. Subsequently, CNSL biodiesel was produced by double stage trans-

esterification. The extraction of CNSL from cashew shell, biodiesel synthesis 

and fuel characterization have been explained in Chapter 3, alongside the fuel 

characterization of kapok biodiesel.  

After the synthesis of CNSL biodiesel, experimental investigation was 

carried out in a diesel engine using various blends of CNSLME with diesel. 

Based on the outcome of this study, the optimum blend of CNSLME was 

identified and the use of it in diesel engine was optimized by increasing the 

fuel injection pressure. Further, the effect of thermal barrier coating on the 

engine performance and emission using the optimum blend of CNSLME was 

realized. However, herein, in-order to understand the improvement in thermal 

efficiency by coating and understand the physical mechanism behind this, a 

finite element analysis was performed. In this regard, a 3D model of the key 

component of the engine, piston, was created using SOLIDWORKS and a 

coupled field thermal-stress analysis for the conventional and coated engine 

piston was carried out using ANSYS workbench. Finally, the results of the 

simulation work such as thermal stress, heat flux and temperature were 

examined and effect of coating on engine performance was analyzed. At last, 

apart from the design change, the fuel property i.e. viscosity was reduced for 

CNSL biodiesel and has been used as neat fuel by preheating the fuel before 

supplying to the engine. Notably, this measure offered the benefit of exclusive 

use of 100% renewable fuel in a diesel engine. Interestingly, among the 

various vegetable oils, CNSL appears to have lower cost and hence an 

economic analysis was conducted to justify this claim. The experimental 

investigation of CNSLME and the design as well as the fuel modification 

strategies followed to optimize it has been described in Chapter 5.  Thus, for 

both the proposed biodiesel, KME and CNSLME, design and fuel 

modification strategies were employed so as to optimize the use of them in a 

diesel engine.  
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In the last phase of this research work, numerical investigation on the 

modeling of biodiesel combustion and emission was performed using a 

computational three dimensional CFD code, KIVA4. It is worthwhile to note 

that KIVA4 cannot handle complex chemistry and hence to accommodate the 

chemical kinetic reaction mechanisms for biodiesel and model combustion, 

CHEMKIN solver was used and results of it were coupled with KIVA4. In this 

work, the numerical study was carried out for both conventional diesel and 

kapok biodiesel. Based on the surrogate component for diesel and KME, 

appropriate reaction mechanisms were chosen from literature and they were 

coupled with KIVA4. Followed by this, the critical properties and other 

advanced properties of KME were evaluated based on the composition of it 

through property prediction models and were included in KIVA4 fuel library. 

Finally, engine simulations were carried out and the obtained combustion as 

well as emission results are compared with the experimental data. The model 

description, simulation procedure and analysis of results for diesel and KME 

are detailed in Chapter 6. Finally, the summary and future recommendations 

are elucidated in Chapter 7.  

 



 

CHAPTER 2 

2. Literature review 

Since this research work focuses on the selection of low cost feedstock 

for biodiesel production, a comprehensive literature review on the production 

and characterization of biodiesel produced from inedible vegetable oil and 

waste products has been made. Further, the most prominent inedible and waste 

feedstock’s were chosen and the engine characteristics such as performance, 

combustion and emission when fueled by the reported fuels were elucidated. 

Though lower proportion of biodiesel could be blended with diesel and 

operated in a diesel engine without any modification, to envisage better engine 

characteristics and realize the use of biodiesel in higher proportions, engine 

operating and design parameters have to be optimized. However, when 

compared to the review work on optimization of operating parameters of a 

diesel engine, no efforts were up taken to summarize the design modification 

strategies of a diesel engine when fueled by biodiesel. Therefore, this review 

work would furnish a comprehensive review on the possible design 

modification strategies for biodiesel operation in a diesel engine. In addition, 

certain fuel modification strategies adopted to improve the performance and 

emission of a diesel engine, when fueled by biodiesel, have also been 

summarized in this work. Significantly, the literature review is made in line 

with the objective of the current study, focusing on inedible and waste 

feedstock and their optimization in a diesel engine through design and fuel 

modification strategies.  

2.1. Inedible sources for biodiesel production 

Thus far, more than 350 oil bearing crops have been identified to 

produce biodiesel, encompassing edible and inedible feedstock [36]. In a 

survey, Botanical Garden of Indian Republic (BGIR) has found a plethora of 

oil yielding crops and classified their family name, habit and uses, besides 

identifying the prospects of using them as fuels [37]. From the survey, it is 

evident that a growing interest has been shown to cultivate inedible crops, 
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considering that they are cheap and grow without affecting the food chain. In 

addition to these inedible sources, waste products such as animal fats, waste 

lubricating oil and waste cooking oil have garnered much attention as a 

renewable fuel for diesel engine, predominantly because of their cheaper price 

[38-41]. In this backdrop, researchers have figured out many pertinent inedible 

feedstock’s for biodiesel production so as to use them as alternate fuel in a 

diesel engine. These days, since many species have been cultivated and 

evolved, review work on categorizing the inedible feedstock based on 

properties, production method and engine characteristics have been brought to 

fore. Notably, Mohibbe Azam et al [42] studied the properties and fatty acid 

composition of 75 species of vegetable oil in India and gave a good account on 

the possibility of using them as alternate fuels. From their study, 26 species of 

crops, encompassing some inedible oil crop species such as Azadirachta 

indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata, 

have been declared as appropriate substitutes for diesel in the near future.  

Demirbas [36], in his review on progress and recent trends in biodiesel, 

recognized some inedible plant species such as Jatropha (Jatropha curcas), 

Karanja or Honge (Pongamia pinnata), Nagchampa (Calophyllum 

inophyllum), Rubber seed (Hevca brasiliensis), Neem (Azadirachta indica), 

Mahua (Madhuca indica and Madhuca longifolia), Silk cotton (Ceiba 

pentandra), Jojoba (Simmondsia chinensis), Babassu, Euphorbia tirucalli, and 

microalgae for biodiesel production. Besides categorizing the properties and 

fatty acid composition of these inedible sources for biodiesel production, the 

review work of Demirbas [36] asserted that these inedible oils are cheap when 

compared to edible oils in India. In another review work on characterization 

and production of biodiesel from different sources, Singh et al [43] identified 

few inedible sources such as Babassu, Brassica carinata, B. napus, Camelina, 

Cumaru, Cynara cardunculus, Jatropha curcas, Jatropha nana, Jojoba oil, 

Pongamia glabra, Laurel, Lesquerella fendleri, Mahua, Piqui, Palm, Karang, 

Tobacco seed, Rubber plant, Rice bran, Sesame and salmon oil. The 

performance of these alternate sources of fuel, properties, composition, 

constraints and their economic viability were addressed in this review work, 

besides focusing on the future prospect of biodiesel utilization and production.  
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No et al [44], emphasized the need to tap the renewable source of 

energy from inedible sources of vegetable oil and its derivatives to encounter 

the present energy crisis, and also to produce biodiesel at cheaper prices. 

Notably, in his review, different vegetable oils in the likes of Jatropha, 

Karanja, Mahua, Linseed, Rubber seed, Cotton seed and Neem oil were zeroed 

in and distinction in respect of fuel properties, engine performance and 

emissions were summarized. Based on the extensive collection of data on 

these reported aspects, Jatropha oil was identified to be the better candidate for 

diesel engine and it was shown to be operated through engine modification 

techniques like preheating, dual fueling and fuel modification strategies like 

blending with diesel, biodiesel and degumming. Considering the energy 

scenario of India, Kumar et al [45] reiterated the need to utilize inedible 

feedstock for biodiesel production to attain energy sustainability and 

underscored the need to search for dedicated inedible seeds and examine the 

possibilities of producing biodiesel from the extracted oil. Few species, noted 

in their study were J. curcas, P. pinnata, R. communis, A. Mexicana, C. 

odollam, P. roxburghii, S. mukorossi, H. brasiliensis, C. inophyllum, M. 

azedarach, S. chinensis, M. indica, S. triguga, T. peruviana and A. indica. 

 Apart from these inedible sources of vegetable oils, micro algae 

biomass has been widely contemplated by many researchers, highlighting that 

the oil productivity of it is higher than oil yielding crops [46, 47]. 

Characteristically, the cultivation of microalgae depends on the natural sources 

such as sun, CO2 and water. Once cultivated, the microorganisms convert 

them into sugar, which is then converted into tri-glycerides. In addition, 

significant focus has also been made to harness energy from waste products 

such as waste cooking oil, animal fats, discarded engine lubricating oil or 

waste plastic oil [48-51].  

2.2. Properties of biodiesel and vegetable oils 

Internationally, there exists a legitimate standard to authenticate the 

properties of biodiesel and every newly emerging biodiesel has to comply with 

this standard. Categorically, the American system of standards can be termed 

as ASTM, which has postulated a unique standard for the operation of B20 or 
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20% of biodiesel with diesel in a diesel engine. In the same note, the other 

popular standards emerged in the recent past are European standard - EN, 

United Kingdom – BS, German – DIN and to name a few. The international 

standard for the properties of biodiesel have been depicted in Table 2.1 and 

despite this, each country has set its own norms and standards as per the 

location, climate factors and so on.  

Table 2.1 Standard for the properties of Biodiesel  

Characteristically, when the vegetable oil undergoes trans-

esterification process, some of its properties change and therefore, it is 

essential to compare the properties of vegetable oil and biodiesel. Foremost, 

viscosity, which determines the flow and atomization properties of the fuel, is 

noticed to be higher for vegetable oil and after the trans-esterification process; 

it is reduced by one of eighth of the original value due to the breaking of 

heavier compound to smaller one. Generally, the energy density of biodiesel 

and vegetable oil are lower than diesel due to the presence of chemically 

bound oxygen in it [41]. Comparatively, after trans-esterification process, the 

calorific value drops from 38.20 MJ/kg to 37.2 MJ/kg and 37.5 MJ/kg to 36.5 

MJ/kg for Jatropha and Rubber oil methyl ester, while it was noticed to be 

increased from 34.0 MJ/kg to 36.0 MJ/kg and 35.6 MJ/kg to 36.8 MJ/kg for 

Karanja and Mahua oil methyl esters [44]. In another comparison, the cetane 

number of the vegetable oil, which defines the ignition quality, is noted to be 

lower for vegetable oil when compared to its biodiesel. For example, an 

Ester content >96.5% (m/m) 

Viscosity at 40ºC <6.0 

Flash point ºC >100 

Sulphur  content >15 ppm 

Cetane number >47 (747-751) 

Water content <500 ppm 

CU strip corrosion 3 Max 

Acid value >0.8 

Iodine value <140 
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increase in cetane number from 37.9 to 45.7 and 37.6 to 51, respectively, was 

noted in the transition from soybean and rapeseed oil to their respective 

biodiesel. It is worth mentioning that the length of the hydrocarbon chain is 

directly correlated to cetane number and since the carbon chain length of 

biodiesel is greater, the cetane number of it is generally higher. Further, with 

the notion that there prevails an opposite effect between ignition and cold flow 

properties, biodiesel reports poor cold flow properties such as cloud point 

(CP), pour point (PP) and cold filter plugging point (CFPP). In general, the CP 

is defined as the temperature at which the fuel appears cloudy, PP is the 

temperature at which the fuel stops to flow and CFPP is the temperature at 

which the fuel blocks the filter due to crystallization. The cold temperature 

properties are dependent on the amount of saturation and length of the carbon 

chain and by this token, the increase in degree of saturation of biodiesel is 

believed to increase the CP, PP and CFPP. Illustratively, coconut oil was 

reported to possess higher saturated fatty acids and therefore, the ester of it has 

higher cloud point of 5ºC, while safflower oil relatively has higher unsaturated 

hydrocarbons and hence it was observed to show lower cloud point of -6ºC. 

Finally, from the environmental aspects, biodiesel contains lower sulfur and 

phosphorous content, minimizing the toxicity and making the environment 

greener. Thus, most of the fuel properties of biodiesel are dependent on its 

chemical composition and structure and therefore, the distinction in properties 

of biodiesel obtained from different source is reasonable.  

2.3. Engine characteristics for inedible oil and its derivatives  

With the assurance that biodiesel produced from inedible feedstock 

hold promise in reducing the overall production cost, their characteristics in a 

diesel engine, with and without chemical treatment, have to be analyzed. 

Undeniably, each feedstock exhibit a different scenario of engine 

characteristics as their properties are bound to vary depending on the 

geographic and climatic conditions. To ascertain this, few inedible as well as 

waste feedstock’s were chosen in the current study and the performance, 

combustion and emission characteristics of them and their derivatives were 

discussed. The notable feedstock selected in this review work are Jatropha, 
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Polanga, Karanja, Mahua, Castor, Rubber seed, waste cooking oil, animal fats, 

plastic oil and engine lubrication oil.  

The most prominent feedstock, Jatropha, is widely distributed in 

tropical and subtropical region such as Africa, India and Southeast Asia. 

Statistically, the oil yielding capacity of the jatropha seed ranges from 30 to 

50%, with linoleic or oleic acid as its major constituent. The experimental 

investigation of Jatropha oil in blends with diesel in a diesel engine was 

carried out by Pramanik et al [52], after analyzing its properties. From the 

study, 50% addition of Jatropha oil with diesel was regarded as an optimum 

blend for which the engine showed decreased BSFC and EGT, with an 

increased BTE than diesel. Conclusively, considering the long term durability 

of the engine, the authors have recommended for modification of fuel 

properties. In the wake of this, Chauhan et al [53] attempted to reduce the 

viscosity of Jatropha oil by preheating it, before being supplied to the engine. 

In this regard, a shell and tube heat exchanger was used to recover the heat 

from the engine exhaust gases so as to increase the fuel inlet temperature. 

Subsequently, the experimental study revealed an increase in BTE of the 

engine and decrease in emissions such as HC, CO and smoke with the increase 

in fuel inlet temperature. As an outcome of this study, 80ºC was regarded as 

an ideal preheat temperature for Jatropha oil with respect to engine 

performance and emission. In another study, Senthil kumar et al [54] 

perceived effective improvement in fuel properties by blending Jatropha oil 

with less viscous methanol. However, since the ignition delay of the resultant 

blends were noticed to be longer, the authors went for dual fuel operation by 

injecting methanol in the inlet manifold and biodiesel through the main fuel 

injection system. In this regard, the ignition of methanol was supported by the 

auto-ignition of biodiesel and the experimental investigation revealed 

decreased NOX emission, with increased HC and CO emissions. In another 

measure to reduce the viscosity, Rao et al [55] subjected Jatropha oil to trans-

esterification process to produce biodiesel and subsequently, the prepared 

biodiesel was used in blends with diesel. From the experimental study, 

reduction in ignition delay and pressure rise rate was reported and the 

emissions such as HC, CO and smoke were reduced for Jatropha biodiesel 
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blends. Similarly, many experimental studies on the operation of Jatropha 

biodiesel blends were up taken in the past decade and over and all, 20% 

addition of it with diesel was regarded as the suitable blend based on the 

engine characteristics [56-58].  

Polanga oil, also called as poon or tamanu oil, commonly referred by 

the name of calophyllum inophyllum, is now being considered as a potential 

source for producing biodiesel. The seeds of the tree possess about 50 - 60% 

oil content and typically, the oil was reported to have 29.7% saturated fatty 

acid and 62.3% unsaturated fatty acid [59]. Devan et al [59] made a 

comparative study on the engine characteristics of poon oil and poon oil 

methyl ester blends with diesel. Based on their experimental results, reduction 

in smoke, CO and HC emissions were observed for poon oil methyl ester and 

its blends, whereas these emissions were reported to be higher for poon oil and 

its blends. These discrepancies are due to the distinction in their properties; 

especially the viscosity of poon oil is very much higher than poon oil methyl 

ester. In another study, Sahoo et al [60], considering the higher viscosity and 

acid value of Polanga seed oil, produced biodiesel from it through triple stage 

trans-esterification process. In the first stage, the organic matters and other 

impurities were removed by them using a reagent and subsequently, acid 

trans-esterification followed by alkaline trans-esterification were carried out to 

synthesize the required biodiesel. From their engine experimental 

investigation, higher BTE and lower BSFC were obtained for neat Polanga 

biodiesel at 100% load, with lower HC and smoke emissions than diesel.  

The oil extracted from the seeds of pongamia pinnata, formally called 

as Karanja or honge oil, is an inedible source for producing biodiesel and is 

native to countries like India, Malaysia, Indonesia, Taiwan, Bangladesh, Sri 

Lanka and Myanmar [61]. The oil content in the seeds ranges from 25 to 40% 

and the fatty acid composition of the extracted oil from the seeds reveals the 

presence of 51.8% oleic acid, 17.7% linoleic acid, 10.2% palmitic acid, 7% 

stearic acid and 3.6% linolenic acid [62, 63]. In a recent study, Agarwal et al 

[64] blended Karanja oil with mineral diesel and carried out an experimental 

load test in a diesel engine, with and without preheating the oil. For 

preheating, hot exhaust gases from the tail pipe of the engine were recovered 
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and utilized in a specifically designed heat exchanger. From the results 

obtained, 50% mix of Karanja oil with mineral diesel was declared to be the 

suitable blend for both with and without preheating. In another study, instead 

of preheating the oil, Raheman et al [65] trans-esterified it to synthesize 

Karanja methyl ester, using their own developed trans-esterification system 

and by this the viscosity was reduced by 2.9 times than that of Karanja oil. 

Based on the engine experimental results, emissions such as CO and smoke 

were reduced by 80% and 50%, respectively, for Karanja biodiesel blends than 

diesel. However, the engine power reduced for blends with biodiesel 

proportion beyond 40% and thus B40 was chosen as an optimum blend.  

Another important inedible oil of Indian origin that has gained 

popularity as renewable source of fuel for diesel engine is Mahua oil, 

recognized by the botanical name, Maducha Indica. Reportedly, the oil 

yielding capacity of the seeds was found to be 50% [66] and the extracted 

mahua oil from the seeds contain both saturated and unsaturated fatty acid; 

however, the presence of saturated fatty acid is predominant in this oil, 

affecting its cold flow properties [67]. To help authenticate the adaptability of 

Mahua oil for diesel engine, Agarwal et al [68] conducted an experimental 

investigation in a single cylinder stationary diesel engine. As an outcome of 

their study, blends up to 30% of Mahua oil with diesel was proved to be 

efficient, showing increased BTE and reduced BFSC at lower load while at 

higher load, the BSFC was found to be akin with diesel. However, the smoke 

density was noticed to be higher for the reported blend and it was shown to 

increase further with the increase in proportion of Mahua oil with diesel. In the 

same study, an economic analysis was conducted and the authors documented 

reports of price of Mahua oil to be slightly higher than conventional diesel 

fuel. In further development, Puhan et al [69] trans-esterified Mahua oil using 

NaOH and methanol, and the properties of the produced biodiesel were found 

to be conducive for its operation in a diesel engine. The single cylinder diesel 

engine showed a slight loss in engine power and increase in fuel consumption 

when testing biodiesel. However, in terms of emission, reduction in CO and 

smoke emissions were noted for Mahua oil methyl ester. In another study, 

Raheman et al [70] pretreated Mahua oil and then subjected it to trans-
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esterification process to synthesize the required biodiesel. The prepared 

biodiesel was then experimentally investigated in a diesel engine in blends 

with diesel and it was concluded that 20% addition of Mahua biodiesel with 

diesel is recommended as the reported blend did not significantly affect the 

engine performance and emission.  

Castor tree (botanical name – Riccinus Communis), popularly grown as 

drought resistance plant crop, is widely grown in tropical and subtropical 

countries like India, China, Brazil and Thailand. In addition to the domestic 

use, castor oil produced in many countries are being imported, and India top 

the market, importing about 80% of the produced castor oil [71]. Notably, the 

estimated properties of it showed an increased viscosity and boiling point due 

to higher colligative properties of it, while the melting point and solidification 

point are observed to be lower. Due to its higher viscosity and hygroscopic 

nature, direct use of castor oil in a diesel engine is not recommended, while 

ester of castor oil is found to be suitable for its operation in a diesel engine. In 

a recent study, Panwar et al [72] converted castor oil into its methyl ester by 

trans-esterification process and the test carried out in a constant speed diesel 

engine showed increased BTE and lower BSFC for lower blends of castor oil 

methyl ester.  

Rubber seed oil, a unique vegetable oil obtained from the seed of the 

tree, has 17% free fatty acid content. After analyzing the composition of the 

oil, it was noted to be highly unsaturated, with 39.6% linoleic acid, 24.6% 

oleic acid and 16.3% linolenic acid [73]. Ramadhas et al [74] examined the 

prospects of using inedible rubber seed oil as an alternate fuel for diesel 

engine. As such, they prepared suitable blends of rubber seed oil with diesel 

and evaluated their physical and thermal properties by ASTM standard 

methods. From their investigation, the blend proportion of 50% to 80% rubber 

seed oil with diesel was found to be the optimum blend. Subsequently, to 

ensure the durability of the engine for the operation of this optimum blend, it 

was operated in a long run and consequently, high carbon deposits were found 

on the fuel injection equipment, mandating frequent change of fuel pump, 

filter and combustion chamber. Therefore, in their next study, to encounter the 

higher viscosity of rubber seed oil and long term durability problems, 
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Ramadhas et al [75], endeavored to trans-esterify it to synthesis biodiesel. Due 

to the higher FFA content of rubber seed oil, double stage trans-esterification 

was employed to improve the yield of biodiesel. Their experimental 

investigation in a diesel engine asserted an improvement in BTE for lower 

blends of biodiesel whereas, the engine emissions were pointed out to be 

decreased with the increase in proportion of biodiesel.  

In addition to the above described inedible vegetable oils, waste 

cooking oil has grabbed the attention of many researchers, as it subtly reduces 

the cost of the fuel. Despite their economic benefits, used cooking oils are 

reported to have higher viscosity, while all other properties are shown to be 

comparable with other vegetable oils. Significantly, in few cases, the quality 

of the used cooking oil is deteriorated due to the oil decomposition and 

therefore, it requires proper treatment before being used in a diesel engine. 

The possible strategies to pre-treat used cooking oil are steam injection, 

column chromatography, neutralization, film vacuum evaporation and vacuum 

filtration [40]. In a study, Yu et al [76] experimentally investigated waste 

cooking oil in a diesel engine and pointed out a decrease in ignition delay, 

with the SOC being noted to be in advance than diesel by 2.7º CA. Followed 

by this, to mitigate the emissions and improve the performance, Pugazhvadivu 

et al [77] preheated waste frying oil and showed improvement in engine 

performance and reduction in CO and smoke emission. Subsequently, many 

researchers opted for trans-esterification of used cooking oil so as to reduce its 

viscosity and make it amenable for its use in a diesel engine. In this 

connection, Utlu et al [78] designed a reactor to produce biodiesel from waste 

frying oil and found the physical and chemical properties of it to concur with 

the general biodiesel standards. Further, the experimentation conducted in a 

turbocharged four cylinder diesel engine revealed a reduction in CO, CO2, 

NOX and smoke emission, while the engine torque, power output and specific 

fuel consumption were found to be in par with diesel. As opposed to this, 

when Valante et al [50] operated a stationary engine using waste cooking oil 

biodiesel in blends with diesel, the emissions such as CO, HC, NOX and 

opacity were observed to increase with the increase in biodiesel concentration. 

Notably, 50% blend of biodiesel showed 20.1%, 23.5% and 4.8% increase in 
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CO, HC and smoke emission, respectively. The discrepancies with the results 

of emission between various studies could be attributed to the difference 

between the nature of the engine and the properties of the produced biodiesel, 

which are deemed to be vital for the operation of any biodiesel.  

Now-a-days, plastics have become inevitable and since it is being non-

degradable, it inflicts severe environmental concerns. In this juncture, Mani et 

al [48] engineered the use of plastic oil, which are disposed of as waste, in a 

diesel engine as a substitute for diesel. The properties of the waste plastic oil 

were noticed to be similar to diesel, qualifying it as essential alternate fuel in a 

diesel engine. With this token, the plastic oil was tested in a diesel engine and 

the results evinced a comparable BTE with diesel, with an increase in CO and 

HC emission. Further, the engine emitted more NOX emission and to 

counteract this, Mani et al [79], in their next study, implemented cold EGR 

with the engine. As a notable mention, in their study, EGR level was estimated 

to be 20% was found to be effective in the reduction of NOX emission without 

compromising the engine performance. In another study, to improve the 

engine performance and emission, Mani et al [80] varied the fuel injection 

timing, when using waste plastic oil. Among the various fuel injection timing 

considered, retarded injection timing of 14° CA BTDC showed reduced NOX, 

CO and HC emission, with an increase in BTE.  

Arpa et al [39] identified that the engine lubrication oil is being 

discarded as waste and thus, initiated an attempt to utilize it as a fuel for diesel 

engine. In this regard, the contaminants present in the lubricating oil were 

filtered and a diesel like fuel (DLF) was produced by pyrolyitic distillation 

method. Further, oxidative desulfurization method was adopted to remove 

toxic sulfur from 3500 to 420 ppm at a temperature of 50°C. After ensuring 

the physical and thermal properties of the low sulfur diesel like fuel (LSDLF), 

it was operated in a diesel engine. From their analysis, the engine torque, 

brake mean effective pressure and BTE were found to be increased, while the 

emissions such as SO2, CO and NOX were noticed to be decreased than 

ordinary diesel. Many experimental investigation on using blends of waste 

lubricating oil with diesel have been reckoned in the past [81, 82] so as to 

equip it as an additional sources of alternate fuel.  
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The use of animal fats as source for producing biodiesel has been 

considered in the recent times by many researchers, as these are normally 

abandoned as restaurant waste. In this connection, Wyatt et al [51] produced 

biodiesel from lard, beef tallow and animal fat and measured the properties 

and composition of the fatty acid methyl ester. Distinctly, the produced 

biodiesel showed better oxidative stability and lubricity, however, the cold 

flow properties of it were noticed to be inferior to conventional soy based 

biodiesel. In another study, Oner et al [83] performed an experimental 

investigation in a diesel engine using inedible animal tallow biodiesel. From 

their study using biodiesel – diesel blends, decrease in effective efficiency and 

increase in fuel consumption were noticed with the increase in biodiesel 

concentration, much because of its lower calorific value. However, emissions 

such as CO, NOX, SO2 and smoke were observed to be lower for 100% tallow 

methyl ester when compared to diesel. When illustrating the production and 

utilization of biodiesel from animal fats, it is noteworthy to cast some attention 

on using fish oil, obtained the discarded waste parts of fish, as source for 

producing biodiesel, which is a triglyceride containing essential fatty acids. 

The notable fatty acids present in the fish oil are 24.8% stearic, 23.6% 

palmitic, 9.84% myristic, and 6.56% octadecatetraenoic acids. In a recent 

study, Godiganur et al[84] noted that the higher viscosity of fish oil as main 

obstacle for using it directly in a diesel engine, as it would affect the pumping, 

atomization and the ensuing combustion process. To counteract the above 

problem, they trans-esterified the fish oil and the produced methyl ester was 

found to have properties closer to diesel. With this token, blends of fish oil 

methyl ester was tested in a single cylinder stationary diesel engine and from 

the engine test results, the BSFC of B20 was noticed to lower than diesel, 

while the engine showed maximum BTE of 31.74% for B20. Notably, the CO 

and HC emissions were noted to be decreased with the increase in proportion 

of fish oil methyl ester in the blend, while the NOX emission was reported to 

be increased due to the presence of oxygen within the biodiesel itself and high 

in-cylinder temperature.  

The above discussion on the properties, production and engine 

characterization of biodiesel produced from in-edible oil and other waste 
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feedstock’s confides them as potential substitute for diesel in the near future. 

In addition, the main highlight of the discussion is the ability of them to 

reduce the overall biodiesel production cost, as they are cheap, readily 

available and sustainable. Therefore, looking towards the future, more 

research work should evolve on the synthesis of in-edible and waste product 

feedstock as source for producing biodiesel and utilize them in a diesel engine. 

Finally, though production of algal biodiesel has grabbed attention, it has not 

been extensively tested in a diesel engine like other contemporary biodiesel. 

Therefore, considering the large production capacity from algae and other 

benefits, researchers should also operate algal biodiesel in diesel engine.  

2.4. Engine design modification strategies 

The above discussion on the characteristics of a diesel engine with 

inedible vegetable oils and its derivatives, waste product and animal fats 

throws some insights on the pervasive trend likely to follow when using fuels 

other than diesel in a diesel engine. Comparatively, biodiesel and its blend are 

agreeable for its use in a diesel engine than vegetable oil itself in respect of 

their fuel properties and engine characteristics. However, there prevails a 

restraint on the maximum quantity of biodiesel to be blended with diesel and 

significantly, most of the researchers, if not all, have contended to blend only 

20% biodiesel with diesel for achieving fairly better engine characteristics [85, 

86]. In this outset, researchers have contrived strategies to modify the engine 

so as to realize the use of higher blends of biodiesel in a diesel engine. 

Typically, modifications of engine operating and design conditions have been 

regarded as the two strategies to optimize the use of biodiesel in diesel engine. 

In such a backdrop, it is noteworthy to perceive the proposals that have been 

dealt with in the past to change the engine operating and design conditions. 

Noticeably, researchers have pointed out variation of operating parameters 

such as fuel injection timing, injection pressure, injection pulse and duration to 

optimize biodiesel in a diesel engine [87-90]. Similarly, for changing the 

engine design, researchers have opined to alter the engine compression ratio, 

insulate the engine components and change the geometry of the combustion 

chamber [91-93].  
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 With the advent of different varieties of biodiesel and the 

experimentation of them as viable alternate sources of fuel happening around 

the corner, researchers have judiciously summarized the study on biodiesel. 

Initially, much to the betterment of growing researchers, many review work 

have been specifically set to demonstrate the ensemble list of feedstock 

available for synthesizing biodiesel and various strategies that goes into the 

production of biodiesel from these indigenous feedstock’s [94-98]. 

Subsequently, many other review works established the life cycle, policy 

issues and economic analysis of biodiesel, given the production cost of 

biodiesel is crucial in its commercialization [99-103]. Ecologically, depending 

on the geography, each country has their own protocol in the production of 

biodiesel and consequently, this has led to the development of different 

varieties of biodiesel at different regions. For instance, countries such as India, 

USA, Europe, Malaysia, Indonesia, Iran, and Pakistan have identified their 

own feedstock for biodiesel production and the prospects of these biodiesel as 

sustainable energy solutions have been documented as separate review works 

[104-111]. In addition, the behavior of these biodiesel in a diesel engine have 

been reported as review work [112-115] and most of these work delineate the 

characteristics of a diesel engine, powered by different variants of biodiesel.  

With umpteen number of review work on characterization of biodiesel 

production and experimentation flourishing, only meager of works have 

contemplated on summarizing the optimization methods, pertaining to engine 

operating and design conditions. Recently, Mohan et al [87], consolidated the 

various injection strategies such as optimization of fuel injection timing, 

pressure and rate shaping for the operation of biodiesel in a diesel engine that 

has happened in the past few decades. Apart from this, no studies have 

attempted to summarize the design modification strategies, aimed to optimize 

the use of biodiesel, as a review work. With such motivation, in the current 

review work, we have summarized three major engine modification techniques 

such as variation of engine compression ratio, insulation of engine 

components and modification of combustion chamber design, when using 

biodiesel as an alternate fuel. The intricacies that go into the task of design 

change, impact of the design modifications on engine characteristics and other 
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advantages as well as the limitation of it have been duly addressed in the 

current review work.  

2.4.1. Thermal barrier coating of engine components  

The historical perspectives of engine coating studies date back to two 

decades when the ceramic coatings acquired much prominence as an efficient 

insulating material for variety of applications [116-119]. At a time, when there 

was an adjuration to improve the engine performance, many researchers 

adopted coating technique to accomplish it. The objective with the realization 

of coating is to increase the surface temperature of the engine components and 

thereby, the temperature difference between cylinder and wall could be 

minimized to prevent heat transfer. Conceptually, the notion of decreased 

temperature gradient or otherwise reduction in heat loss, aids in the conversion 

of trapped heat into useful piston work, improving the engine power output 

and efficiency. Significantly, thermal barrier coating of engine components 

has several advantages such as improved performance, high power density, 

prevention of metal components from thermal stress and decreasing the 

cooling requirements [120]. 

As a matter of fact, it is noteworthy to lay an emphasis on the selection 

of suitable material for the intended coating process, as the material properties 

plays a crucial role in ascertaining the impact of coating on engine 

characteristics [121]. Normally, materials with poor thermal conductivity are 

chosen as it seldom allows heat to percolate into the material under 

investigation. As such, materials such as ceramics and zirconates, both of 

which are reported to have good mechanical properties, are contended by 

modern researchers as pertinent coating materials [122, 123]. In addition to the 

thermal conductivity, another important property that presides over the 

durability of the coating material is CET (coefficient of thermal expansion). 

Undesirably, the CET of insulating materials are lower, while for the metal 

substrate it is observed to be higher; when the difference between the CET of 

coating and substrate material increases, delamination of coated surface from 

the substrate takes place, affecting the durability of the coated engine [124]. 

Therefore, in consideration, it is advisable to maintain the difference in CET 

between the metal and coated surface as low as possible.  
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The motive to improve the efficiency by TBC has been accomplished 

in the past studies by applying ceramic coating using various methods [125-

127]. Regardless of the wide range of methods available for insulating the 

engine components, plasma spray coating is the common method employed to 

apply suitable coating for diesel engine application, as it creates a spat 

structure with 10-20% volume fraction of voids and cracks [128]. There are 

several factors which govern the application of coating on the engine 

components and in the past few years, many researchers have investigated and 

studied the effect of thermal barrier coating on engine performance. In this 

connection, Morel et al [129] showed that the heat transfer was ably prevented 

by applying thermal barrier coating. Also, the same study pointed out the 

prevalence of high temperature, supporting better combustion so as to improve 

the thermal efficiency. Lawrence et al [130] investigated the performance and 

emission characteristics of LHR diesel engine with ethanol as fuel and 

emphasized the benefit of coating the engine components with PSZ. This 

study reported an increase in BTE of up to 1.64% for ethanol with coating and 

a significant reduction in BSFC. However, in contrary, there are also few 

research works which had reported no improvement in efficiency even after 

coating the engine components, presumably due to some defects in coating 

[131, 132]. Considerably, Mendera et al [133], who examined the effect of 

plasma sprayed coating on engine heat release, conceded that the PSZ coating 

in diesel engine application didn’t help to improve the efficiency as expected, 

given that PSZ coatings were transparent to heat radiation and the ceramic 

materials were translucent, affecting the heat barrier properties. Further, 

Cheng et al [131] compared the performance of insulated and non-insulated 

diesel engine and it was noticed that insulated engine barely showed an 

improvement in efficiency. All the endeavors being made in the context of 

TBC brings into light an importance of optimum balance between decrease in 

heat rejection rate and thickness of applied coating. A recent report added that 

an increased intensity of coating would reduce volumetric efficiency and 

increase pumping power [134]. Therefore, failing to strike an optimum 

balance would yield contradictory results of improving the fuel efficiency in 

some cases while decreasing it in other cases. Besides fuel savings, the high 
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temperature encountered with TBC could reduce emissions like CO and HC, 

with slight reduction or increase in NOX [125] 

2.4.1.1. Effect of coating on biodiesel combustion and emission  

Stationary diesel engines are widely being used in agricultural and 

marine applications and suffers less operational difficulties, as they are bound 

to be operated at fixed load and operating conditions for a long time. Despite 

their flexibility in handling and operating alternate fuels like biodiesel and 

alcohols, the prevailing concerns of energy insecurity and sustainability 

mandate for some energy efficiency measures [135]. Adding further, due to 

the lower calorific value of biodiesel, fuel consumption and brake power of 

the engine were reported to have been increased and decreased, respectively. 

In this connection, engine developers are trying to find a promising solution in 

utilizing the energy efficiently when using biodiesel. Apparently, thermal 

barrier coating of engine components, an attempt to minimize the energy 

losses has conquered the interest of many researchers when fueling a diesel 

engine by biodiesel. Besides the implementation of thermal barrier coating in a 

diesel engine for the operation of conventional diesel fuel, this strategy has 

also been extended to a diesel engine powered by biodiesel, which are 

summarized below.  

Prasad et al [136], to combat its poor viscosity and volatility of 

Jatropha oil, emphasized the need to supply additional heat for the burning of 

Jatropha vegetable oil by conceiving LHR engines. In this regard, a separate 

piston crown was made of superini-90, a material with lower thermal 

conductivity, and screwed in between the crown and body of the piston with 

an air gap of 3mm. In consequence of their experimental study, the engine 

performance was noticed to be improved, with the combustion parameters in 

par with diesel. These results are reported to be justifiable as the heat lost to 

the engine coolant has been reduced, declaring inedible Jatropha oil as 

substitute for diesel in the developed LHR engine.  

Though preheating of vegetable oil esters is one promising solution to 

reduce its viscosity so as to improve the combustion process, the concept of 

LHR engine offered much more benefits, as noted by Hasimoglu et al [126]. 



Chapter 2: Literature review 32 

 

Therefore, in their study, they insulated the engine components using yttria 

stabilized zirconia (Y2O3ZrO2) with a thickness of 0.35mm over 0.15mm 

thickness of NiCrAl bond coat. From their study, the BSFC of the engine was 

reduced by 4%, which in turn had a positive impact of improved engine 

efficiency. Further, the authors also conceded the increase in in-cylinder 

temperature as reason for the reported decrease in fuel consumption and 

improvement in BTE. In summary, the above study had hinted the thermal 

barrier coating of engine components as an alternate idea to preheating the 

fuel, while the former prevents the heat loss to improve the efficiency 

whereas, the latter technique reduces the fuel viscosity to improve the 

combustion and performance.  

Significantly, Hazzar et al [137], foresaw the higher viscosity and 

lower calorific value of cotton methyl ester (CME) as major obstacles for 

better combustion and therefore, they decided to test CME in an engine coated 

by molybdenum (Mo). Notably, the coating thickness of about 300 microns is 

maintained and care is taken to ensure that the compression ratio of both the 

coated and uncoated engine is same. As a result, BTE of the engine was 

increased up to 2.2 to 2.3%, with the reduction in BSFC of up to 3.5 to 5.6%. 

In wake of this reported increase in combustion efficiency, the emissions such 

as CO and smoke were observed to be reduced by 17 to 22% and 5.2 to 10%, 

respectively. Significantly, the authors highlighted the remarkable advantage 

of effective burning of the fuel due to the injection of biodiesel into the 

combustion chamber after it is heated. However, as a negative consequence, 

NOX emission was noticed to be increased for coated engine due to more 

active combustion and the subsequent increase in in-cylinder temperature.  

In another study, Hazar et al [138] employed two different coating 

materials in the form of MgO-ZrO2 to be applied on cylinder head and valves 

for a thickness of about 0.35mm and, ZrO2 to be applied on the engine piston 

with a thickness of 0.15mm. For this study, canola methyl ester was used as 

renewable source of fuel. The reported study conceded a decrease in heat 

transfer from the engine and because of this; engine power output and specific 

fuel consumption were increased and decreased, respectively, for canola 

methyl ester. Though CO and smoke emissions were noted to be reduced, the 
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NOX emission was increased due to the increased in-cylinder temperature and 

the inherent presence of oxygen within the biodiesel. The significant highlight 

of the above study was effective utilization of 100% canola methyl ester, 

enabling complete replacement of fossil fuel, in a coated diesel engine.  

In a different attempt, MohamedMusthafa et al [139] compared the 

performance and emission characteristics of a coated diesel engine, fueled by 

rice bran and pongamia methyl ester. Distinctly, fly ash, a thermal power plant 

waste, had been used as coating material to be applied on piston crown, 

cylinder head, cylinder liner and valves and the thickness of the coating is set 

to be 200 microns. Comparatively, the BSFC of the coated engine was 

decreased by 6.6% for rice bran methyl ester and 3.2% for pongamia methyl 

ester, due to the positive effect of improvement in combustion, than uncoated 

engine. On the other hand, the gaseous emissions such as CO and smoke were 

reduced more for rice bran methyl ester than pongamia methyl ester. 

Invariably, with the coated engine, 100% use of these renewable methyl esters 

was appreciable with the assured token of enhanced performance and reduced 

emissions. Having studied the effect of TBC on diesel engine characteristics 

with biodiesel, Iscan et al [140] explored the feasibility of fueling straight 

vegetable oils in a coated engine, instead of biodiesel. With the reported 

advantage of the coating process, waste corn oil was chosen as the requisite 

vegetable oil and ZrO2 was chosen as the pertinent insulating material to be 

applied on piston combustion chamber and valves. As an outcome of their 

experimental attempts, interesting facts were transcribed with the engine 

components showing no abnormalities after 100h of operation and so does are 

the other insulated components. Apart from these positive results on durability 

of the coating, the engine also showed improved performance, with a 

reduction in fuel consumption and increase in torque. Followed by this, Aydin 

et al [141] extended the concept of LHR engine to other vegetable oils such as 

cotton and sunflower oil. Ironically, the same coating material, ZrO2, was used 

and the authors ascertained the utilization of pure vegetable oil, without 

subjecting it to pyrolysis, crackling or trans-esterification process, in a coated 

engine. From the experimental investigation, the performance of the engine 
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was enhanced and simultaneously, HC and CO emissions were decreased, 

with a compromise of increased NOX emission.  

Realizing the importance of LHR engine and motivated by the 

uncertain demand in petroleum fuels, Prasath et al [142] targeted to combine 

the benefits of coated engine and renewable biodiesel fuel in their study. In 

addition, a detailed analysis of the combustion, heat release rate and heat 

transfer rate from the engine was accomplished through a simulation technique 

and the predicted results were validated over the engine experimental data. For 

the experimental part, Jatropha oil methyl ester was used as a renewable fuel 

and the engine components were coated using NicrAl through plasma spray 

coating technique at a thickness of 0.5mm. Notably, the combustion results 

duly pointed out an increase in in-cylinder pressure for both diesel and 

Jatropha biodiesel in a coated engine in view of more amount of fuel being 

burnt in the premixed combustion phase. Followed by this, cumulative heat 

release calculations were performed by them and numerical heat release rate 

was found to be in par with diesel. The heat transfer and NOX model predicted 

a reduction in heat rejection and increase in NOX emission, representing a 

highly useful tool to predict the heat transfer for different fuels in different 

engine configuration.  

2.4.1.2. Summary and future recommendations 

With coating studies on diesel engine proving to be vital in improving 

the engine performance and combustion, there has been a growing inclination 

in the adoption of this design modification technique by many researchers. 

Instead of making changes with the properties of biodiesel by preheating, it is 

rather rational to go for coating of diesel engine components as this is more 

practical, reliable and effective in improving the engine characteristics. 

Conceptually, the increase in available energy by preventing the heat transfer 

improves the combustion characteristics such as shortening of ignition delay, 

increase in combustion duration and higher accumulated heat release. In 

consequence, the trapped heat is ably converted into piston work, increasing 

the engine torque, power and efficiency. Thus far, the studies which report the 

use of biodiesel or vegetable oil in a coated diesel engine, as summarized in 



 

Table 2.2 Summary of research work on coated diesel engine fueled by vegetable oil/ methyl esters  

Year Research group Type of fuel  Coating material Performance  Emission 

2008 Hasimoglu et al 
Sunflower oil 
methyl ester 

Y2O3 ZrO2 – 0.35mm 
NiCrAl – 0.15mm 

BTE – ↑ 
BSFC – ↓ 

- 

2009 Hazar et al 
Canola  oil methyl 
ester 

Cylinder head, valves 
 - MgO ZrO2 

Piston - ZrO2 

BP – ↑ 
SFC – ↓ 

CO – ↓ 
Smoke – ↓ 
NOX – ↑ 

2010 Hazar et al 
Cotton seed oil 
methyl ester 

Molybdenum – 0.25mm 
NiAl – 0.05mm 

BTE – ↑ 
 

CO – ↓ 
Smoke – ↓ 
NOX – ↑ 

2011 Musthafa et al 
Methyl ester of 
Pongamia and Rice 
bran oil 

Fly ash 
BSFC – ↓ 
BP – ↑ 
BTE – ↑ 

Smoke – ↓ 
HC – ↓ 
NOX – ↑ 

2012 Iscan et al Waste corn oil  ZrO2 
BP – ↑ 
Torque – ↑ 
BSFC – ↓ 

CO – ↓ 
Smoke – ↓ 
HC – ↓ 
NOX – ↑ 

2013 Aydin 
Pure Cotton seed 
oil and Sunflower 
oil  

ZrO2 
BSFC – ↓ 
BP – ↑ 
BTE – ↑ 

Smoke – ↓ 
CO – ↓ 
HC – ↓ 
NOX – ↑ 

↑ – increased, ↓– decreased when compared to uncoated engine 
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Table 2.2, has acceded to increase in BTE, reduction in BSFC, decrease in 

CO, smoke and HC emissions. However, due to the higher in-cylinder 

temperature, the NOX emissions was reported to be higher and as of now, no 

studies have resorted to control NOX emission from a coated diesel engine. 

Therefore, in the right earnest, researchers could try developing a coated diesel 

engine with effective after treatment techniques like SCR or EGR to reduce 

the NOX emission. Otherwise, the NOX reduction additives could be added 

with biodiesel or vegetable oil, when testing in a coated diesel engine, to avoid 

the complexity of more arduous engine modifications with SCR and EGR. 

2.4.2. Variation of compression ratio  

The basic laws of thermodynamics assert that there is a factor by which 

the pressure inside the combustion chamber could be surged past or reduced 

below the optimum pressure. Significantly, this factor is called the 

compression ratio, which is defined as the ratio of total cylinder volume to the 

clearance volume.  

�� =
�� + ��

��
 

Where VS- Swept volume; VC – Clearance volume  

The change in clearance volume, which entails the change in distance 

between the cylinder head and top of the piston (squish region), affects the 

compression ratio, and depending on the requirement, it could be set to a 

prescribed value. Typical values of compression ratio are 12 to 24 for 

compression ignition engine, while for SI engines it ranges from 8 to 12. 

Understandably, there are two eminent ways by which the compression ratio 

of a DI diesel engine can be altered. One pragmatic approach is to change the 

thickness of cylinder gasket so as to decrease or increase the clearance 

volume. On the other hand, there exists another enviable approach to alter the 

compression ratio of engine, which delineates to changing the geometry of 

piston bowl so that the clearance volume can be either increased or decreased 

[143]. However, a great deal of efforts has to be paid to accomplish this, 

though there are additional benefits like increase in airflow and turbulence in 
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the combustion chamber, and hence normally not preferred for changing the 

compression ratio.  

In addition to the above two strategies, with the advancement in 

technology and development, engine developers have also devised some other 

approaches to change the compression ratio without stopping the engine and 

altering the combustion chamber geometry. Conceptually, engine cylinder 

block was made to be tilted to change the clearance volume and this 

methodology is applicable for both stationary and variable speed engine [144]. 

In further advancement, few engine developers have made provisions in the 

engine like diesel injection point or spark advancement so as to enable engine 

operation at lower compression ratios. At any particular speed and loading 

condition, either the injection of fuel or ignition through spark point can be 

enabled, facilitating the realization of engine operation from lower 

compression ratio of 8 up to the maximum permissible value of 22.  

It is worthwhile to reprise the fact that compression ratio of an engine 

is directly proportional to cycle efficiency. With the increase in compression 

ratio, the output power of the engine increases and so does is the engine 

torque, and therefore, the BTE of the engine is deemed to increase. Further, 

the combustion parameters such as in-cylinder pressure and temperature 

increases with the increase in compression ratio, which could be positively 

correlated with the improvement in efficiency [145]. On the emissions front, 

NOX emission increases with the increase in compression ratio due to high in-

cylinder temperature, however, the other gaseous emission were reported to be 

lower [143]. These assertions on engine characteristics with the change in 

compression ratio unanimously applies for all VCR engine fueled by diesel 

and this scenario is likely to prevail over for biodiesel too, given that the 

principle is applicable for all fuels. 

2.4.2.1. Effect of compression ratio on biodiesel combustion and emission  

Most of the research work reports the use of lower blends of biodiesel 

with diesel in a diesel engine without any modifications and therefore, a 

design change is required to adapt higher blends of biodiesel. Notably, many 

researchers have emphasized the need for engine modifications to help adapt 
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biodiesel in face off its distinct properties [146, 147] and therefore, suggested 

increasing the compression ratio of the engine as a viable approach. Typically, 

the lower calorific value and higher viscosity of biodiesel appears to have 

affected the combustion process and with the increase in compression ratio, 

these shortcomings are limited to some extent. The excerpt of the work on the 

modification of compression ratio with biodiesel as fuel for a diesel engine has 

been summarized in this subsequent section, to get better insight on it 

Jindal et al [146] diligently identified the need to bring about some 

modification in engine design, when biodiesel is being used in a diesel engine. 

With this consideration, they set about a research study to change the 

compression ratio of the engine to increase the brake power and compensate 

for the setback of lower calorific value of biodiesel. Synonymous with their 

objective, the BSFC was decreased with the increase in compression ratio, 

when using Jatropha methyl ester as renewable fuel. Further, to help improvise 

the atomization of biodiesel, the fuel injection pressure was optimized and 

with the increase in injection pressure, there was a noticeable improvement in 

engine performance. After several combination of compression ratio and 

injection pressure value, the engine was found to show reduced fuel 

consumption at an injection pressure of 250bar and a compression ratio of 18, 

which happens to be 10% lower than standard setting (CR-17.5 and IP-

220bar). Regarding the emissions, CO and smoke emission were noticed to be 

decreased with the increase in compression ratio due to the persistence of 

higher in-cylinder temperature, caused by more complete combustion. 

However, interesting observation of increase in HC emission was reported 

with the increase in compression ratio due to the dilution by residual gases, 

whereas at lower compression ratio, the longer ignition delay has prompted to 

reduce the HC emission. On the other hand, NOX emission was reported to 

increase with the increase in compression ratio. In the final consensus, though 

some increase in emissions were reported with the increase of compression 

ratio, the fact that they were still lower than diesel was conceded to be 

appropriate, with a notable advantage of utilizing 100% Jatropha methyl ester.  

Gumus [148], to study the combined effect of modifying the engine 

operating and design parameters on the characteristics of a diesel engine 
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powered by biodiesel, initiated a research work by varying compression ratio, 

injection pressure and timing. In his work, Hazel nut kernel oil methyl ester 

was used as the renewable fuel and the combustion characteristics were 

investigated at different operating and design conditions. It was noticed from 

his study that increase in compression ratio resulted in shortening of ignition 

delay and increase in in-cylinder pressure, rate of heat release rate and 

cumulative heat release, when using hazel nut kernel biodiesel and its blends 

in diesel engine. Further, as the compression ratio was increased, BSFC was 

pointed out to be decreased, while the BTE was increased. Conclusively, the 

increased injection pressure, compression ratio and injection timing were 

demonstrated to be crucial in the improvement of engine combustion and 

emission characteristics.  

Haik et al [149], have shed some light on using algae biodiesel in a 

variable compression ratio diesel engine, emphasizing the importance of algae 

oil over other vegetable oils. As such, algae oil methyl ester was prepared by 

trans-esterification process and suitable blends of it with diesel were 

investigated in a diesel engine. With the experimental testing at a default 

compression ratio of 22, the engine was reported to show higher heat release 

rate and noise for algae oil methyl ester, though the torque output produced for 

it lower than diesel. To avert engine noise, the compression ratio of the engine 

was reduced to 18 and in light of this, the experimentation showed no sign of 

engine knocking or noise. Reportedly, this was attributed to the reduction in 

in-cylinder pressure as well as temperature at the time of fuel injection. By this 

token, the maximum pressure rise rate was reduced so as to control the degree 

of smoothness of operation of the engine.  

Raheman and Ghadege [85] identified the need to optimize the engine 

operating and design parameters such as injection timing, injection pressure 

and compression ratio, when fueled by biodiesel, to improve the engine 

performance and emission. In this light, Mahua oil biodiesel was chosen as 

renewable source of fuel and from the engine study, it was identified that 

biodiesel showed a remarkable improvement in engine performance when the 

compression ratio was increased, whereas for diesel, the improvement in 

performance at higher compression ratio was not highly appreciable. After the 
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root cause analysis of the reported occurrence with biodiesel and diesel, the 

lower volatility and higher viscosity of biodiesel was adjudged as potential 

reasons. Though the results confirmed the utilization of 20% Mahua biodiesel 

in blend with diesel at any compression ratio for getting fairly comparable 

performance with diesel, higher compression ratio of 20 was recommended for 

pure Mahua biodiesel operation. In an another study, Sayin et al [150], when 

using biodiesel - diesel blends in a variable compression ratio engine, procured 

a suitable biodiesel from the external source, as biodiesel was commercialized 

and readily available in markets these days. Notably, the authors reported that 

increase in compression ratio resulted in improvement in BSFC, BTE and 

BSEC due to faster combustion at higher compression ratio. On the other 

hand, HC and CO emissions were reported to be lower when the compression 

ratio was increased due to the increase in in-cylinder temperature during the 

expansion stroke. However, these benefits were achieved only at the expense 

of higher NOX emission.  

Selvan et al [91], as a different attempt, conducted an engine testing 

using diesel – biodiesel – ethanol blends at compression ratio of 15, 17 and 19. 

The renewable biodiesel used in their study was Jatropha biodiesel and all the 

physical and thermal properties of it were ensured to be within general 

biodiesel standard. Noticeably, despite the lower cetane number of ethanol 

present in the blend, the in-cylinder pressure was observed to higher at higher 

compression ratio due to complete combustion. In the same note, the peak heat 

release rate for the blend fuels were noted to be higher at a compression ratio 

of 19 and the total combustion duration decreased with the increase in 

compression ratio. In another study, Mohanraj et al [151], tilted the cylinder 

block of the engine to vary the engine compression ratio form 14 to 18, and 

investigated tamanu oil biodiesel in a diesel engine. The results of their 

experimental study confirmed that the performance of the engine is a function 

of compression ratio and the engine emissions such as HC, CO and smoke 

were drastically reduced with the increase of compression ratio.  

Amarnath et al [144], in their experimental study to compare the 

performance of engine fueled by Jatropha and Karanja methyl esters, acceded 

to the decrease in BSFC with increase in compression ratio. As such, BTE of 
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the engine was perceived to be 5.31% and 6.34% higher for Jatropha and 

Karanja methyl esters, respectively, when the compression ratio was increased 

from 14 to 18. Further, HC and CO emission were observed to be decreased as 

the compression ratio is increased on account of higher heat of the compressed 

air. As expected, NOX emission was shown to be increased for both the 

biodiesel when the compression ratio was increased due to higher in-cylinder 

temperature and availability of surplus oxygen within the biodiesel. In another 

study, Amarnath et al [152] optimized both the compression ratio and injection 

pressure of a diesel engine fueled by Karanja biodiesel using genetic 

algorithm. While the increase in compression ratio resulted in shortening of 

ignition delay and increased the peak in-cylinder pressure, the increase of 

injection pressure enhanced the atomization and air/fuel mixing process. 

Accordingly, at higher injection pressure and compression ratio, BTE of the 

engine was increased, and emissions such as HC, CO and smoke were reduced 

at a negative consequence of higher NOX emission. As a final disposition of 

the optimization study, the authors disclosed 220bar injection pressure and 

compression ratio of 18 as optimum value.  

 Recently, Kassaby et al [153] employed waste cooking oil biodiesel as 

a renewable fuel for diesel engine and examined the engine characteristics 

under varying compression ratio of 14, 16 and 18. As expected, the BSFC of 

the engine decreased not only with the increase in proportion of biodiesel with 

the blend, but also with the increase in compression ratio. According to their 

study, on an average, BTE of the engine was increased by 18.39%, 27.48%, 

18.5%, and 19.82% for B10, B20, B30 and B50, respectively, when the 

compression ratio is increased from 14 to 18. Similarly, HC and CO emission 

were decreased by 52% and 37.5%, respectively, while NOX emission was 

increased by 36.84%. These benefits were ascribed to the promotion in 

combustion with the increase in engine compression ratio, wherein the 

combustion delay was reported to be decreased by 13.95% than diesel.  

2.4.2.2. Summary and future recommendations 

In summary, the increase of compression ratio resulted in increase of 

in-cylinder pressure and shortening of ignition delay, while BTE of the engine 

was increased and emissions such as HC, CO and smoke were reduced. 
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However, increased in-cylinder pressure and maximum pressure rise rate 

could lead to engine knocking at high load and hence the extent to which the 

compression ratio can be increased has to be refrained. In addition, the 

enhanced combustion was asserted to have increased the in-cylinder 

temperature, thereby increasing the NOX emission. However, many 

researchers have enunciated optimization of operating parameters along with 

variation of compression ratio to control the NOX emission. In a general 

perspective, though retardation of injection timing in an engine with higher 

compression ratio could reduce the NOX emission, it would compensate for 

engine performance and therefore, effect of increase in compression cannot be 

realized. As a suggestion, suitable after treatment technique of SCR or 

addition of NOX reduction additives with the fuel blend can be adopted in the 

near future to mitigate the NOX emission, without compromising on the engine 

performance.  

2.4.3. Modification of combustion bowl geometry  

In the history of engine development, engine manufacturers are 

conspicuous of design of the combustion chamber meticulously as it is the key 

component, determining the degree of combustion and engine performance. 

Usually, the combustion chamber is a bowl in piston type, with the swirl being 

generated in the angular direction to control the air/fuel mixing and speed of 

combustion. Typically, different combustion chamber design will have 

different effect on air/fuel mixing process and improved air/fuel mixing will 

help achieve enhanced fuel burning rate [154]. In conception, when the piston 

moves toward TDC (at the end of compression stoke), the gas is pushed into 

the piston bowl and shape of the combustion bowl determines swirl motion 

and air/fuel mixing process. On the other hand, the impingement of fuel spray 

into the combustion chamber has to be properly designated as it controls the 

fuel vaporization. For example, in conventional diesel engine, part of fuel 

impingement is on the combustion chamber surface and the mixture 

distribution is highly non-uniform, leading to incomplete combustion [155]. 

Therefore, in the design process, care should be taken to develop a proper 

combustion chamber, which could enhance the air/fuel mixing and the 

subsequent combustion process. With these considerations, in the past, 
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researchers have been nursing several options to decide on the shape of the 

combustion chamber and figure out an optimal design. Right from the 

development of simple design of open combustion chamber, there is a 

phenomenal change in design to re-entrant type, swirl combustion chambers, 

pre-combustion chambers and so on.  

In the primitive stages of engine development, owing to the complexity 

and strenuous efforts to be paid in optimizing the combustion chamber 

geometry experimentally, many numerical studies were conducted. However, 

with the age of development, few experimental studies were also thoroughly 

accomplished using conventional diesel fuel with different combustion 

geometries like hemispherical, open cup, toroidal, shallow depth and re-

entrant combustion chamber. The air flow and the associated flow fields in the 

bowl and squish region are interconnected, and for different shapes of 

combustion chambers, the engine performance, combustion and emission 

characteristics are different. In order to study the effect of combustion 

chamber geometry on engine performance and emission, Saito et al [156] 

opted for re-entrant type instead of conventional hemispherical type 

combustion chamber and showed an improved performance and combustion. 

As a significant measure of their study, the heat transfer calculations 

manifested an increase in temperature of the combustion chamber wall, which 

ably prevented the ignition lag. Further improvement in combustion and 

engine performance, were justified by increase in in-cylinder velocity and the 

accompanied higher turbulence. In the experimental investigation by 

Kidoguchi et al [157], a high squish combustion chamber with a squish lip was 

recommended to reduce the NOX and soot emissions simultaneously. 

However, the authors insisted on the need to retard the injection timing when 

using the reported combustion chamber so as to avoid the rapid pressure rise 

and engine knocking.  

2.4.3.1. Effect of combustion chamber geometry on biodiesel combustion 

and emission  

In the past, there have been many revelations about the engine 

characteristics when using different combustion chamber for diesel [158-160]. 

Nevertheless, with some general trend obtained for diesel, the effect of 
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combustion chamber geometry when using biodiesel is worth of an 

investigation and in wake of this, few researchers have recently changed the 

combustion chamber design for using biodiesel. Since the properties of the 

biodiesel are distinct, a design modification in respect of change in geometry 

of the combustion chamber is quintessential to enhance the fuel/air mixing 

process and the combustion process. The following is the excerpt on the effect 

of various piston bowl geometry on the performance, combustion and 

emission characteristics of the engine when fueled by biodiesel.  

Jaichandar et al [161] carried out engine experimental testing with 

three types of combustion chamber geometries in the form of hemispherical, 

toroidal and shallow combustion chamber without altering the compression 

ratio of the engine. As a notable mention, the authors emphasized the necessity 

to go for engine modifications, in particular the combustion chamber shape, 

when using B20 blends of Pongamia biodiesel as alternate fuel, so as to 

improve the air/fuel mixing process. From their investigation, among the three 

combustion chambers, toroidal combustion chamber was observed to evince 

better performance and emission, due to its geometric consideration. 

Significantly, both the squish and swirl motions for toroidal combustion 

chamber was noted to be superior, enabling better vaporization and mixing of 

the blend fuel. Further, due to the improvement in combustion process and 

presence of oxygen with in biodiesel, the gaseous emissions such as CO, HC 

and smoke were reduced, with an increase in NOX emission. However, 

regardless of the type of combustion chamber, a perceptible increase in 

diffusion combustion phase and decrease in premixed combustion phase were 

reported for B20 due to the shortening of ignition delay. However, the authors 

remarked that the likelihood of the results to comply for various biodiesel, 

produced from different feedstock was noted to be impossible as the fuels 

properties of biodiesel are prone to variations.  

In-order to study the effect of re-entrant combustion chamber design 

over the hemispherical, toroidal and shallow combustion chamber design, 

Jaichander et al [162], in another study, conducted an experimental study in a 

diesel engine using the same B20 blend of Pongamia biodiesel. As a notable 

mention, in re-entrant combustion chamber, the lip of the combustion chamber 
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protrudes beyond the wall surface of bowl and this was reportedly facilitated 

to increase the engine performance and emission on account of better air/fuel 

mixing process. Further, with re-entrant combustion chamber, the surfaces 

were reported to be hotter and this enabled to prevent the ignition lag and 

provide better fuel economy. From the experimental results, toroidal 

combustion chamber discerned higher BTE than re-entrant combustion 

chamber and interestingly, the BTE of the re-entrant combustion chamber was 

found to be flanked between toroidal and hemispherical combustion chamber. 

Due to better mixture formation and the subsequent hot combustion 

environment, HC, CO and smoke emission were divulged to be lower for 

toroidal as well as re-entrant combustion chamber than conventional 

hemispherical combustion chamber, while NOX emission was reported to be 

higher.   

As a follow up to the modification of combustion chamber geometry 

for achieving better performance and emission, when using Pongamia methyl 

ester, Jaichandar et al [163] coupled the effect of varying the combustion 

chamber design and operating parameters in their next study to realize more 

effective engine characteristics. From their previous studies, as explained 

above, toroidal combustion chamber was chosen as an optimum design along 

with the conventional hemispherical combustion chamber in the current study. 

In addition to the design change, the fuel injection pressure was increased so 

as to enhance the atomization of the Pongamia biodiesel blends and the 

holistic effect of these changes on engine characteristics was recorded. 

Previously, when compared to hemispherical combustion chamber, the 

toroidal combustion chamber showed lower BSFC and with the increase of 

fuel injection pressure, BSFC was further reduced. As remarked by them, the 

fuel was atomized finer due to higher injection pressure and this coupled with 

higher swirl ratio of toroidal combustion chamber has supported better fuel/air 

mixing process, improving the performance of the engine. As a reflection of 

complete combustion, BTE of the engine was increased and notably, for 

toroidal combustion chamber, the BTE was increased to 34.31% from 33.07% 

when the injection pressure was increased up to 230bar. Further, the HC 

emission for toroidal combustion chamber was pointed out to be 30% lower 
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than that for hemispherical combustion chamber at full load condition and it 

was further decreased when the injection pressure was increased. Similarly, 

there was a reduction in CO and smoke emission by 44.5% and 28%, 

respectively, for toroidal combustion chamber, when compared to 

hemispherical combustion chamber at higher injection pressure of 230bar. 

With the observation of increased NOX emission with toroidal combustion 

chamber, due to the increase in in-cylinder temperature inflicted by the 

enhanced combustion, Jaichandar et al [164] attempted to retard the injection 

timing to control NOX emission. As a case in point, the injection timing was 

retarded form 23º CA to 20º CA in steps of 1º CA. With the retardation of fuel 

injection timing, the fuel mixing time was reduced and hence the burning rate 

of the fuel was abated to decrease the in-cylinder temperature and NOX 

emission, with a marginal increase in HC, CO and smoke emission.  

2.4.3.2. Summary and future recommendations 

The degree to which the swirl motion of the air and turbulence within 

the confines of the combustion chamber are amplified is dependent on the 

geometry of the bowl in piston. The better air movement offers the benefit of 

improved performance and emission. Though basic implication of combustion 

chamber geometry can be learnt though simulation studies, a myriad of 

experimental data is needed to make this comprehensive. However, extensive 

revelations on the modification of combustion bowl geometry have not been 

considered for the experimental testing of biodiesel in a diesel engine. Owing 

to the availability of different categories of biodiesel, each being produced 

from different renewable source, the experimental investigation of certain 

species of biodiesel in a diesel engine with different combustion geometry is 

alone not adequate. Therefore, there exactly props a paucity of experimental 

data on different species of biodiesel been tested in a diesel engine with 

different combustion geometry.  

2.5. Fuel modification strategies  

The use of neat vegetable oil in diesel engine already exists in 

literature [135], while the initiative to use them as fuel incepted way back in 

1900 when Rudolf diesel used peanut oil to fuel diesel engine [165, 166]. 
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Vegetable oils could be directly used in diesel engine because of its good 

burning properties and it was reported to have reduced the deleterious 

greenhouse gas CO2 (carbon dioxide) and carbon foot prints [15, 16]. 

Nevertheless, the use of neat vegetable oil directly in diesel engine without 

reliability issues hasn’t been realized thus far, as its viscosity is significantly 

higher than diesel affecting the engine performance and combustion. Further, 

prolonged use of them in diesel engine would pave way for long term 

problems such as injector clogging, carbon deposits and lubrication oil 

contamination [3, 19, 167]. Therefore, in order to reduce its viscosity, several 

studies have focused on using preheated vegetable oil in a diesel engine to 

enhance the fuel atomization such that the fuel is effectively mixed with air to 

favor combustion process [53, 77, 168].  

In a recent study on preheating of fuel inlet temperature, Chauhan et al 

used preheated jatropha oil for fueling diesel engine and found that such an 

option could increase BTE (brake thermal efficiency) and decrease BSFC 

(brake specific fuel consumption) [53]. Furthermore, it is also learnt from their 

study that preheated jatropha oil gave less emission of HC (hydrocarbon), CO 

(carbon monoxide) and smoke with slight increase in NOX (oxides of 

nitrogen) than unheated jatropha oil. Similarly, many other research studies 

have shown an improvement in engine performance and reduction in emission 

when using preheated vegetable oil than unheated oil [135, 169]. Literature 

analysis gave ample evidence of decrease in viscosity by preheating the 

vegetable oil and subsequent improvement in performance and emission when 

tested in a diesel engine. Though the idea of preheating would wriggle out the 

difficulties encountered in trans-esterification process and minimizes the 

production cost, the viscosity hasn’t been considerably reduced. Therefore, 

researchers have entrusted on producing biodiesel by trans-esterification 

process as it is an efficient method to reduce the viscosity to amenable levels 

[170, 171].  

The addition of fuel additives is gaining popularity, as this can be done 

with ease when compared to engine modification techniques. Significantly, 

additives play a crucial role in changing the molecular structure of the fuel and 

its enhanced chemical reactivity benefits in attaining better performance [172]. 
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Fuel additives can be classified into four categories as cetane number 

improvers, fuel injection deposit cleaning detergents, combustion promoters 

and oxygenates. The general classification of fuel additives that are intended 

to be added with biodiesel are shown in Figure 2.1.  

 

Figure 2.1 Different types of fuel additives 

To begin with, cetane number improvers are either peroxide group or 

nitrate group members that are deemed to control both NOX and smoke 

emission simultaneously [173, 174]. Prolonged use of injector without proper 

cleaning is at high risk of clogging, because of deposits blocking the injector, 

and these deposits could be evaded away by the cleaning detergents [175]. The 

combustion promoters are concocted to accelerate the pace of combustion and 

soot oxidation process, reducing the combustion duration on the whole [176, 

177]. In addition to this, oxygenated additives like di-ethyl ether, di-methyl 

ether and carbonates have the tendency to promote oxidation of fuel to support 

better combustion [178-181]. Nowadays, contrary to regular additives, 

metallic fuel additives have also been considered to improve the performance 

and emission characteristics of a diesel engine, when fueled by diesel as well 

as biodiesel. In this connection, a recent investigation, conducted by Keskin et 

al [182], on the effect of metallic particle additives such as Mg (Magnesium) 

and MgO (Magnesium oxide) brought into light an improvement in BSFC 

(brake specific fuel consumption) by 6%, when the engine is driven by tall oil 
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biodiesel mixed with suitable metallic particles. On the similar lines, the fuel 

borne catalyst, FeCl3 (ferric chloride), have been added to biodiesel to 

improve the engine performance [183].  

Besides the prevalence of many fuel additives, there exists an ether 

based oxygenated additive, 1,4-Dioxane, known to improve engine 

performance and emissions. A recent study on the use of ethanol – diesel 

blend in diesel engine reveals that 1,4-Dioxane allows splash blending of 

ethanol with diesel in a clear solution, reporting improved performance and 

emissions [184]. Moreover, 1,4-Dioxane acts as a cetane improver, besides 

generating stable blends and promoting fuel oxidation [172], so as to improve 

the ignition attributes of the fuel. It is surprising to note that diethyl ether is 

rather insoluble in water, whereas 1,4-Dioxane, ether based additive, 

is miscible and hygroscopic. Since it is being an oxygenated additive, the 

aromatic intermediates are reduced [185] and thus, 1,4-Dioxane, unlike other 

fuel additives, materialize as an dual purpose additive, serving to improve the 

combustion as well as the ignition of the fuel. 

2.6. Conclusions  

A comprehensive literature review on the characterization and 

optimization of biodiesel produced from inedible and waste feedstock in a 

diesel engine has been made. The properties and engine characteristics of 

selected biodiesel were elucidated and the prospect of lowering the biodiesel 

production cost when utilizing inedible and waste feedstock has been 

emphasized. With regards to the adaption of biodiesel, engine and fuel 

modification strategies were proposed and past experimental investigations 

pertaining to these have been documented. The design modification techniques 

such as thermal barrier coating, variation of compression ratio and 

modification of combustion chamber geometry, employed to operate biodiesel 

has been summarized.  Interestingly, such a review on design modification 

strategies has not been accomplished before and hence in the pursuit of this 

research work, this review work has been up taken to the benefit of 

researchers. Finally, in the fuel modification strategies, the impact of adding 

certain additives with biodiesel on engine characteristics was summarized.  



 

CHAPTER 3 

3. Materials and experimental methodology  

3.1. Kapok biodiesel 

3.1.1. History of kapok seeds 

Kapok tree is grown in India, Malaysia and other parts of Asia and has 

greater economic importance for domestic and industrial use in Nigeria. The 

pods of the tree contain seeds surrounded by a fluffy, yellowish fiber that is a 

mix of lignin and cellulose and about 120–175 seeds could be found inside 

each pod. In hindsight, kapok tree is mainly grown for its cotton and fiber, 

while the seeds are normally disposed of as waste material. Historically, the 

identification of kapok seeds dates back to 1931, when Dr. C.L.Alsberg, 

happen to collect some kapok seeds, during his visit to Java, and examine the 

fatty acid composition of the small quantity of oil extracted from the seeds 

[186]. Reportedly, from his study, the oil was found to contain 17.15% of 

saturated fatty acid and 76.32% of unsaturated fatty acid. Later, from 1964 to 

1974, various studies disclosed the presence of more unsaturated fatty acid 

than saturated fatty acids in kapok oil with variable proportions of cyclo-

propenoid fatty acids [187].  

At present, the kapok oil has only limited application and the natural 

production of seeds remain underutilized. However, very recently, the oil 

extracted from the seed is being considered as an indispensable source of 

biodiesel and researchers are deliberating to harness benefits from it. As a 

significant contribution, a recent study on the production of biodiesel from 

inedible kapok (C. Pentandra) oil has reported the use of soxhlet extractor and 

n-hexane as a solvent to extract oil from the dried and powdered kapok seeds 

[188]. Subsequently, they optimized the biodiesel production, presenting the 

results of reaction time, reaction constant and activation energies, during the 

conversion of raw oil in to methyl ester. Another research work in connection 

with production of biodiesel from kapok oil has adopted the same approach to 

extract oil and have reported higher oxidative stability of kapok methyl ester 
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than the standard values [189]. In the above works, only the chemistry part for 

the biodiesel production was discussed in detail, targeting the kinetics of 

biodiesel production form kapok oil. However, no study has attempted to 

experimentally investigate it as an alternate fuel in a diesel engine.  

3.1.2. Extraction of oil from kapok seeds 

In the current research work, kapok pods, entailing a large number of 

black color kapok seeds surrounded by silky fiber, were collected from a 

village in India. Thus far, kapok oil is reported to have been extracted by 

Soxhlet extraction method using n-heptane as solvent [190, 191]; however, 

this study has attributed to extract kapok oil by steam treatment process 

followed by mechanical crushing. The outline of the steam treatment process 

followed by crushing of the hot seeds in an expeller has been depicted in 

Figure 3.1.  

 

Figure 3.1 Outline of the oil extraction process from kapok seeds 

Firstly, the seeds separated from the fibers were noted to be in good 

physical condition and therefore, without subjecting it to any pretreatment 

process, these seeds were fed into a reactor of large capacity to hold bulk 

volume of kapok seeds. After which, steam from a separate line is allowed to 

be passed into the reactor so as to soak the seeds with hot steam and help 

extract small fraction of raw oil. Subsequently, the left out oil in the seeds is 
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recovered by crushing the hot seeds in a mechanical expeller and the total 

quantity of oil, as collected through these steps, is channelized into a separate 

tank as shown in Figure 3.1. The extracted oil is then purified through a filter 

so as to remove any sediments or contaminants left out in it. After the 

extraction process, the total oil yield, which was calculated to be 21%, was 

ensured from the weight of seeds used and weight of total oil extracted using 

the following formula, 
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For application like diesel engine, this method of oil extraction is 

reasonable, as it admits bulk extraction of oil in a single trail and makes the 

method economical. Further, this method is believed to enhance the recovery 

of oil than normal mechanical expulsion technique and would help improve 

the properties of the extracted oil. This is because, hot treatment of seeds by 

steam recovers some proportion of oil and this coupled by a mechanical 

expeller would help enhance maximum recovery of oil. Distinctly, the process 

of steam treatment followed by mechanical crushing has not been attempted 

by many researchers when compared to other oil extraction techniques such as 

mechanical, solvent and enzymatic extraction methods [192]. The physical 

and thermal properties of the extracted kapok oil, as evaluated by ASTM 

standard methods, have been shown in Table 3.1. The estimated fuel 

properties of kapok oil reveal that it has higher viscosity and boiling point, 

which does not support its direct use in a diesel engine. Therefore, it is 

essential to trans-esterify the extracted kapok oil to reduce its viscosity and 

make it feasible for its use in a diesel engine. 

3.1.3. Trans-esterification of kapok oil 

The process of trans-esterification to synthesize biodiesel entails an 

alcohol and catalyst wherein, the tri-glycerides with larger molecules are 

broken into smaller compounds, esters. As such, in the sample preparation of 

biodiesel, one litre of kapok oil is heated in a magnetic stirrer apparatus, 

containing a hot plate and stirrer. Subsequently, the oil is heated up to 65°C 

and in parallel, KOH pellets were dissolved in methanol in a separate vessel to 
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form potassium methoxide solution. The formed potassium methoxide 

solution is then poured into the heated oil and stirred well. When the reaction 

completes, methyl ester and glycerol gets separated and glycerol is drained 

out. After repeated washing using distilled water, biodiesel is separated out 

and heated up to 100ºC to remove the last traces of water molecules from it. 

The physical and thermal properties of the produced biodiesel are imperative 

before using it in a diesel engine and hence, they were evaluated by ASTM 

standard methods, as shown in Table 3.1. It is worthwhile to note that, after 

the trans-esterification process, all the properties of KME were found to be in 

compliance with biodiesel standard. 

Table 3.1 Physical and thermal properties of raw kapok oil and KME  

3.1.4. Composition of KME 

It is a well-known fact that biodiesel are methyl esters of fatty acids 

and therefore, typical composition of a biodiesel, synthesized from vegetable 

oils, ought to possess long chain methyl esters. The composition of KME was 

estimated by conducting a gas chromatography – mass spectrometry (GC-MS) 

analysis. Notably, the column of the GC-MS was initially heated up to 50ºC 

and subsequently, at the ramp rate of 2°C/min, the temperature was raised up 

Property 
Measurement 
standards 

kapok oil KME Diesel 

Density (kg/m3) ASTM D1298 923.2 875 822 

Kinematic 
viscosity (m2/s) 

ASTM D445 31.2 * 10-6 5.4 * 10-6 3.6* 10-6 

Flash point (°C) ASTM D92 170 156 74 

Pour point (°C) ASTM D97 -10 -8 -23 

Gross calorific 
value (kJ/kg) 

ASTM D240 39086 36292 42700 

Sulphur content 
(%) 

ASTM D5453 
Less than 
0.005 

Less than 
0.05 

- 

Calculated cetane 
index 

ASTM D976 38 54 50 

Copper strip 
corrosion @100°C 
for 3 hours 

ASTM D130 
Not worse 
than no 1 

Not worse 
than no 1 

Not worse 
than no 1 
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to 200ºC with the split ratio of 80:1. Further, helium, with a purity of 99.99%, 

was used as a carrier gas at the flow rate of 2µl/min. From the spectrum 

(Figure 3.2), the major constituents of KME were identified to be methyl 

esters of linoleic acid, oleic acid and palmitic acid. This is done after 

comparing the retention time of various compounds with standard database 

and finally, arriving at the exact constituent. The typical composition of KME 

in % volume is shown in Table 3.2 and after analyzing the fatty acid 

composition, the presence of both saturated and unsaturated hydrocarbons 

with oxygen in their structure is perceivable, as shown in Figure 3.2. 

Table 3.2 Composition of KME  

 

 

 

 

 

 

 

Figure 3.2 GC-MS spectrum of kapok methyl ester 

Fatty acid methyl ester Composition (%) 

Palmitic acid (C16:0) 21.2 

Stearic acid (C18:0) 4.14 

Oleic acid (C18:1) 23.55 

Linoleic acid (C18:2) 37.4 

Linolenic acid (C18:3) 1.5 
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3.2. Cashew nut shell liquid biodiesel 

3.2.1. Cashew tree and cashew nut production 

The cashew tree is evergreen, growing up 10-12m with a short 

irregularly shaped trunk. The tree is most prevalent in Asia and other south 

East Asian countries. The main commercial product of the cashew tree is the 

nut and from the production statistics of food and agriculture organization, it 

has been found that India is the second largest producer of cashew nuts among 

the top ten producers listed in Table 3.3 [193]. The total cultivation area of 

cashew in India amounts to 0.7 million hectares and 0.4 million tons of 

cashew were reported to have been produced [194].  

The cashew fruit obtained from cashew tree has a kidney-shaped nut, 

consisting of coriaceous epicarp, spongy mesocarp and stony endocarp. The 

cashew nut shell is the outer covering of the cashew nut, which is normally 

peeled off during the processing of cashew nuts. The cashew nut shell is about 

0.3 cm thick, having a soft feathery outer skin and a thin hard inner skin. 

Between these skins is the honeycomb structure, containing the phenolic 

material known as CNSL. In ancient times, the outer shell of cashew was 

usually discarded as waste and later, researchers have documented the 

presence of useful oil in cashew nut shells through their scientific studies.  

Table 3.3 Top ten cashew nut (with shell) producers  

 
Country 

Production 
(metric tons) 

Yield 
(MT/hectares) 

Nigeria 650,000 1.97 

India 613,000 0.66 

Ivory coast 380,000 0.44 

Vietnam 289,842 0.85 

Indonesia 145,082 0.25 

Philippines 134,681 4.79 

Brazil 104,342 0.14 

Guinea-Bissau 91,100 0.38 

Tanzania 80,000 1.0 

Benin 69,700 0.29 

World Total 2,757,598 0.58 
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3.2.2. Prospects of CNSL as an alternate fuel – An overview  

CNSL may be generated from cashew shells by various processes such 

as hot bath process, cold solvent extraction techniques and roasting process. 

The general roasting of the cashew shell in a furnace produces a dark brown 

liquid with higher FFA content. However, in hot bath process, oil is extracted 

from cashew shell by immersing it in hot bath at 185-190°C, while cold 

solvent extraction process has also been adopted to extract CNSL. The hot 

extraction produces a different CNSL when compared to that obtained by cold 

extraction process [195]. CNSL obtained either by hot or cold extraction 

process consists of anacordic acid, cardol and cardanol [196], but their typical 

composition varies depending upon their process. Initially, the extracted 

CNSL is being used to treat wood and is believed to prevent termite attack. 

Composite Technical Services (Kettering, Ohio, USA) have investigated the 

use of CNSL as a resin for carbon composite products [197]. It is extensively 

used in the manufacture of superior type of paints, insulating varnishes in the 

electrical industry, special types of adhesive cement, brake linings, phenolic 

resins and also in petrochemical industry [196]. In addition to its commercial 

use, as stated above, since it is a biodegradable source of energy; it is 

worthwhile to replenish the erstwhile degrading petroleum reserves by 

harnessing it as a renewable fuel. Therefore, nowadays, it is also being viewed 

as one of the probable source for producing biodiesel as it is economically 

viable and available in abundance. 

Past studies, which focused on utilizing the unattended CNSL as an 

alternate fuel, have resorted to use it after subjecting it to some pre-treatment 

processes. When compared to other contemporary vegetable oils, CNSL is 

reported to have higher viscosity and FFA content. Consequently, it is an 

arduous task to trans-esterify CNSL and only limited focus has been paid so 

far to adopt this method. Considering these factors, few researchers have 

attempted to use CNSL in a diesel engine without trans-esterifying it or 

reducing its viscosity to desired levels. In this connection, Kasiraman et al 

[198] have tried using CNSL directly in diesel engine, however, they blended 

CNSL with camphor oil to enhance the evaporation rate of the blend fuel. In 

another study, Loganathan et al [196] used pyrolyzed CNSL as blends with 
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diesel to investigate the characteristics of a single cylinder diesel engine. 

Notably, pyrolysis increased the calorific value of the fuel, however, the 

viscosity was still observed to be higher, affecting the fuel atomization and 

combustion process [199]. A recent study also pointed out subjecting CNSL to 

second stage distillation process, after the initial distillation of cashew shells, 

to remove the waste polymeric materials from CNSL and use them as a bio-oil 

with diesel [200, 201]. Until now, only one research study has attempted to 

trans-esterify CNSL, obtained by hot extraction followed by distillation 

process, [202]. Despite the higher viscosity of CNSL, this study has resorted 

alkaline trans-esterification process, which is not recommended for oils with 

higher FFA as it would lead to soap or sludge formation.  

3.2.3. Cost comparison of CNSL with various vegetable oils  

The exuberent price of the vegetable oil is a major concern, which 

contributes to around 80% of the total biodiesel production cost, increasing the 

total cost of biodiesel [3]. Therefore, it is highly required to find a pertinent 

feedstock for biodiesel production that would sustain the economy of biodiesel 

in the international market. In order to comprehend the current cost scenario, 

an extensive cost comparative study of different vegetable oils has been 

performed and is shown in Table 3.4. After getting to analyze the cost of 

various vegetable oils, it is envisaged that CNSL is the cheapest among the list 

of vegetable oils considered and hence it could be proclaimed as the low cost 

feedstock ever available for biodiesel production.  

Table 3.4 Cost details of various vegetable oils  

Type of oil Price/ Litre in USD 

Palm oil 0.98 

Rice bran oil  1.39 

Jatropha oil 1.07 

Pongamia oil 0.98 

Karanja oil 1.15 

Castor oil 1.97 

Mahua oil 1.48 

Neem oil 1.97 

Cashew nut shell liquid (CNSL) 0.33 
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3.2.4. Extraction of CNSL from cashew shell 

In this study, a different approach to synthesize CNSL from cashew 

nut shell has been employed as shown in Figure 3.3. Large quantities of 

cashew shell are placed in a huge steel container and from the bottom; steam is 

fed into the container to initiate the steam treatment process. Subsequently, the 

shells are further crushed in a mechanical expeller and by which, maximum 

quantity of CNSL have been extracted. The steam treatment process followed 

by mechanical crushing was selected over other contemporary techniques like 

roasting and hot bath process, as it is convenient and believed to enhance the 

recovery of CNSL from the shells. The major composition of CNSL was noted 

to be anacordic acid, cardanol and cardol. Further, the physical and thermal 

properties of raw CNSL were determined by ASTM standard methods and it 

could be well comprehended that it possesses higher viscosity, flash point and 

boiling point when compared to conventional diesel. In the past, a research 

study has reported the properties of raw CNSL [203] wherein, the viscosity of 

it was perceived to be 53 * 10-6 m2/s at 38°C. In our case, the physical and 

thermal properties of raw CNSL were different from the past reported study 

and this difference in properties could be attributed to difference in method of 

CNSL extraction.  

 

Figure 3.3 CNSL extraction and biodiesel production 
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3.2.5. Synthesis of CNSL biodiesel  

Attempts on trans-esterifying CNSL by single stage alkaline trans-

esterification process proved futile. This is because, CNSL with higher acidity 

and viscosity, when subjected to alkaline trans-esterification, decreased the 

yield of biodiesel and was liable to soap formation. In light of this, as a 

different attempt to counter the difficulties with trans-esterification process, 

CNSL was trans-esterified in two stages. In the first stage, an acid catalyst, 

sulfuric acid and an alcohol, methanol were used to minimize the higher 

viscosity and acidity of CNSL and then in the second stage, methanol and an 

alkali catalyst, i.e. potassium hydroxide, were used to produce CNSL 

biodiesel. The glycerol, produced during the trans-esterification, was drained 

and sufficient washing was done to get the required CNSLME. Finally, the 

cleaned biodiesel is heated to about 100°C so as to remove last traces of tiny 

water particles. The basic fuel properties of CNSLME such as specific gravity, 

kinematic viscosity, calorific value, flash and pour point were determined by 

ASTM standard methods and are shown in Table 3.5.  

Table 3.5 Thermal and physical properties of CNSL and CNSLME 

Property CNSL CNSLME 

Density (kg/m3) 956.4 909.3 

Kinematic viscosity (m2/s) 43.1 * 10-6 10.3 * 10-6 

Ash (%) 0.08 0.16 

Carbon residue (%) 6.74 1.29 

Flash point (°C) 226 170 

Pour point (°C) -12 -1 

cloud point (°C) -7 -5 

Copper strip corrosion @100°C 
for 3 hours 

Not worse than 
NO 1 

Not worse than NO 
1 

Gross calorific value (kJ/kg) 38681 34300 

Sulphur content (%) Less than 0.005 Less than 0.05 

Calculated cetane index 33 48 
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3.2.6. Composition of CNSLME 

Having identified the key constituents of the raw CNSL as anacardic 

acid and cardonol, the composition of biodiesel synthesized from it was 

determined in a gas chromatography – mass spectrometry (GCMS), with the 

column specification; 200°C operating temperature, 2°C/min ramp rate, 

2µl/min flow rate and 80:1 split ratio. The GC-MS spectrum, as shown in 

Figure 3.4, identifies methyl esters of linoleic acid and palmitic acid as two 

major constituents of CNSLME. The individual esters were determined from 

the retention time, noted above the peak of each compounds, with the standard 

library of database. Deeper scrutiny of their structure reveals that both are 

unsaturated hydrocarbon, perhaps with longer hydrocarbon chain length and 

inherent oxygen in their structure, in the likes of other contemporary biodiesel. 

 

Figure 3.4 GC-MS spectrum for CNSL biodiesel 

3.3. Diesel engine and experimentation  

Typically, generator sets are available in different assortments such as 

small, medium and high power requirements and depending up on the 

application, preferred specification can be chosen. These days, for research 
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studies, there is a growing interest in the adoption of this single cylinder diesel 

engine generator for testing alternate renewable fuels like alcohols, vegetable 

oils and biodiesel, owing to the flexibility in handling as well as the ability to 

operate at desired operating and loading conditions for long hours. Therefore, 

in the current research study, to experimentally investigate kapok and CNSL 

biodiesel, this single cylinder constant speed diesel engine (genset), enabling 

variation of operating and design parameters, has been used. The engine, 

which is a naturally aspirated one, is configured to operate at a default 

compression ratio of 17.5, with a capacity to produce a maximum power of 

5.2kW. Further, combustion chamber is a hemispherical bowl in piston type 

and the other detailed specification of the reported diesel engine has been 

discerned in Table 3.6.  

Table 3.6 Engine specification 

Conventionally, the air flow rate of the stationary diesel engine is 

maintained constant and this is ensured by the pressure drop measured in the 

u-tube manometer, attached to orifice meter in the inlet manifold. The air, 

which has been filtered through an air filter, is inducted into the cylinder, 

while the fuel is injected directly into the cylinder. The fuel injection 

equipment, which necessarily comprises of a fuel pump, injector and fuel flow 

Type 
Four stroke, Kirloskar make, direct injection, 
constant speed ,vertical, water cooled  

No of cylinders one 

Bore 87.5 mm 

Stroke 110 mm 

Compression Ratio 17.5:1 

Rated Power 5.2 kW 

Rated Speed 1500 rev/min 

Dynamometer Eddy current 

Start of injection 23° BTDC 

Injection pressure 220 bar 

Type of injection  Mechanical pump-nozzle injection 

No of nozzle holes 3 
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lines are of mechanical type and therefore, fuel delivery and operational 

characteristics are regulated manually. Typically, the fuel injection pump is an 

inline pump with plunger, barrel, and associated components. The plunger is 

actuated by the camshaft and the fuel delivery is governed by shape of the 

plunger as well as the profile of the cam. Based on the speed and load 

requirements, the delivery is changed, though the stroke of the plunger is 

fixed. For instance, when the load is increased, the fuel pump rack rotates the 

plunger and controls the required quantity of fuel to be sent to the engine. 

Notably, the start of fuel injection is fixed at 23º CA BTDC and this can be 

either retarded or advanced by changing the thickness of the shim with the fuel 

pump. The schematic diagram of the engine experimental setup and the 

associated equipment’s has been shown in Figure 3.5  

 

Figure 3.5 Schematic diagram of the engine experimental setup 

3.3.1. Eddy current dynamometer and power measurement  

The engine is loaded by water cooled eddy current dynamometer, 

which works on the faraday’s law of electromagnetic principle. When the load 

applied to the engine has to be varied, the current supplied to the dynamometer 

is varied and depending upon the magnitude of the current supplied, required 
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load is applied. The force (F) exerted by the applied load on the dynamometer 

is measured by the strain gauge, fitted in its housing, and the measured force 

signals are converted to torque (T) as noted below,  

�	����	��� = �	���	����
��	��� ∗ � 

Where R is the distance measured from center point of the shaft to the pivot 

point of the stain gauge.  

From the estimated torque values, the respective power output of the 

engine are calculated as follows,  

 ��!�	"	���	� #� = 	�	����	��� ∗ $ 

Where N is the speed of the engine is rpm.  

3.3.2. Engine measurements  

The quantity of fuel consumed by the engine, for each and every 

loading condition, is measured manually by a burette and stopwatch. In this 

regard, the time taken for the consumption of 10cc of fuel is noted down, for 

three times, and finally the average of the time taken is used in the calculation 

of total fuel consumption. If ρ is the density of the fuel, then the fuel 

consumption can be written as follows, 

Total	fuel	consumption	 = 	
3�4��
�	�5� ∗ 6	��7�	


�7�
 

Significantly, the two important parameters that define the 

performance of the engine are BSFC and BTE, both of which have been 

accounted in the present study for the performance evaluation of both kapok 

and CNSL biodiesel. BSFC of the engine, quantifying the amount of fuel 

consumed for producing 1kW of power output, can be estimated from the total 

fuel consumption using the below formulation,  

 8�� =	
���

 #
 

BTE of the engine, which defines the effectiveness with which the 

engine converts the chemical energy, after burning the fuel, into useful power, 

can be figured out from TFC, BP and amount of heat supplied to the engine. 
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Technically, it manifests how efficient the combustion process has been, 

which can be manipulated as follows,  

 �9 = 	
 #

:��
	��""����	
		
ℎ�	�4��4�
 

Where, the heat supplied to the engine is given by, 

:��
	��""����	
		
ℎ�	�4��4� = 	��� ∗ ���	�����	6���� 

The major gaseous emissions measured in the current study are HC, 

CO, CO2, O2 and NOX. Arguably, the reason for the occurrence of these 

emissions are general and depends up on the type of fuel being used, engine 

operating and design condition, engine loading condition, fuel injection 

system employed and other factors. Notably, these reported emissions were 

measured using AVL 444 di gas analyzer, which detects the constituent of the 

exhaust gases by non-dispersive infrared (NDIR) principle. According to this 

principle, when infrared radiation of different wavelength and frequency is 

being sent by the analyzer into the sample exhaust gases, each and every gas 

will absorb the radiations at a particular frequency and emits are different 

frequency. Depending up on the absorption potential of individual gases, the 

individual compounds are identified through the respective peaks of the infra-

red graph. Prior to the measurement of exhaust emissions, the exhaust sample 

to be evaluated was passed through a cold trap and filter element to prevent 

water vapor and particulates from entering into the analyzer. HC and NOX 

emission were measured in ppm and CO and O2 emission were measured in 

terms of percentage volume.  

In addition to these gaseous emissions, the other product of incomplete 

combustion being contended is the smoke emission. An AVL 437C smoke 

meter has been employed to measure the smoke density in terms of smoke 

opacity, which is the number of smoke particles per unit volume of gas. The 

smoke meter works on the principle of light extinction principle, wherein, the 

percentage of light transmitted through the source is prevented by the smoke 

particles from reaching the detector and percentage reduction is quantified in 

terms of HSU. Apart from the emission, temperature of exhaust gases is also 

an important consideration to ascertain the combustion process and in our 
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study, a K-type thermocouple is employed in the exhaust pipe to measure the 

exhaust gas temperature. 

Besides evaluating the engine performance and emission, the 

combustion characteristics were also examined in the current work and this 

has been realized by measuring the in-cylinder pressure. The in-cylinder 

pressure is measured by AVL pressure transducer, which is installed on the 

top of cylinder head. Further a crank angle encoder, installed at the engine 

crank shaft, clarifies the crank angle at which the in-cylinder pressure is being 

measured. The pressure transducer, which is subjected to water cooling, 

produces charge output proportional to the pressure inside the cylinder. In 

turn, this charge output of the pressure transducer is amplified in the Indi 

meter hardware, and the amplified analog signals are converted into digital 

signal using analog to digital convertor. Further, the converted pressure signal 

are analyzed in the indiwin software, which calculates the associated 

combustion parameters such as heat release rate and pressure rise rate using 

the standard formulations. Characteristically, the software records the pressure 

signal for 100 consecutive cycles and the average value of the in-cylinder 

pressure has been considered. Finally, the measured and calculated 

combustion data, stored as a separate ASCII file, are collected from the PC 

interface and plot of the requisite combustion parameters such as in-cylinder 

pressure, heat release rate and cumulative heat release rate are drawn to 

analyze the combustion results.   



 

CHAPTER 4 

4. Operation of kapok biodiesel in a diesel engine 

4.1. Experimental investigation of kapok (Ceiba pentandra) oil 

biodiesel as an alternate fuel for diesel engine  

4.1.1. Background  

It is reliably learnt from the literature study that testing of kapok 

biodiesel in a diesel engine hasn’t come to light so far and only the production 

of it has been optimized. Therefore, in this study, attempts were taken to 

experimentally investigate KME in a diesel engine for the first time. It is 

noteworthy to point out that the extraction of kapok oil in large quantities for 

producing KME is a new attempt with this study. Since the extraction of 

kapok oil, production of KME and analysis of its properties has been 

discussed in the previous chapter, it has not been dealt separately here.  

4.1.2. Methodology  

Initially, the engine is made to run with diesel for 30 minutes to attain 

warm up condition which is ensured by the cooling water and lubrication oil 

temperature. Subsequently, the engine is tested using different blends of KME 

such as B25, B50, B75 and B100 without any modifications. Before testing 

the engine with respective fuel blends, the previously used fuel was 

completely drained from the fuel lines, filters, pumps, injector and other 

associated equipment’s. During the engine testing, BP is varied by changing 

the engine load through an eddy current dynamometer in steps of 20% from 

20% to 100% load. Each time, the speed and required power output are 

maintained constant by adjusting the fuel pump rack position. The engine 

parameters such as BSFC, TFC, BTE, heat release rate and emissions 

parameters such as CO, smoke and NOX were recorded then.  Variation of all 

these parameters with respect to brake power for different blends of KME was 

examined at standard engine operating and design conditions. All the reported 

measurement with regards to engine and emission parameters, which were 
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realized at ambient condition, was noted for three times to improve the 

accuracy of the measured readings. In order to figure out the total uncertainty 

of the intended experiment using KME in the diesel engine associated with 

various instrumentation, an error analysis was conducted in the right earnest. 

The accuracy and uncertainty of the equipment’s and measured parameters are 

listed in Table 4.1. From the uncertainty of the individual parameters, the total 

uncertainty of the experiment was computed by the method of propagation of 

errors, as described in Holman [204], and was noted to be ±2.0%  

Table 4.1 List of measurement uncertainties 

Total experimental uncertainty = Square root of {(uncertainty of TFC)2 + 

(uncertainty of BP)2 + (uncertainty of 

BSFC)2 + (uncertainty of BTE)2 + 

(uncertainty of CO)2 + (uncertainty of 

smoke)2 + (uncertainty of NOX)2 + 

(uncertainty of EGT indicator)2 + 

(uncertainty of pressure pick up)2}.  

= Square root of {(1)2 + (0.2)2 + (1)2 + (1)2 + 

(0.2)2 + (1)2 + (0.2)2 + (0.15)2 + (0.1)2}. 

= 2.0 % 

Measurement Accuracy % uncertainty  

Load  ±10N ±0.2 

Speed  ±10rpm ±0.1 

Burette fuel measurement  ±0.1cc ±1 

Time ±0.1s ±0.2 

Manometer ±1mm ±1 

CO ±0.02% ±0.2 

NOX ±12ppm ±0.2 

Smoke ±1HSU ±1 

EGT indicator ±1°C ±0.15 

Pressure pickup ±0.1 kg ±0.1 

Crank angle encoder ±1° ±0.2 
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4.1.3. Results and discussion 

4.1.3.1. Brake specific fuel consumption 

 

Figure 4.1 Variation of BSFC with respect to brake power 

 

Figure 4.2 Variation of TFC with respect to brake power 

Figure 4.1 shows the change in BSFC with respect to brake power for 

various blend fuels and diesel. It is clearly evident from the figure that BSFC 

of B25 blend is akin to that of diesel whereas; B75 and B100 blends show 

some discrepancies. BSFC of the engine depends upon the relationship 
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between the amount of fuel injected and the calorific value of the fuel [205]. 

As KME has a lower calorific value, in order to produce the same power 

output, the TFC as visualized from Figure 4.2, is more for KME and its 

blends, thereby resulting in a higher BSFC. However, lower blends such as 

B25 show good agreement with diesel at most of the loads. The reason behind 

the comparable BSFC for B25 with diesel is that although the calorific value 

of B25 is slightly lower than that of diesel, the improved combustion due to 

the presence of inbuilt oxygen in it compensates the reduced energy. 

Moreover, the viscosity of B25 is comparable to diesel, while on the other 

hand, the higher blends such B75 and B100, experiences less complete 

combustion, due to lower calorific value and higher viscosity of KME. In 

compliance with these findings, Raheman et al [70] conceded increased BSFC 

with the increase in biodiesel proportion. In an another work, Usta et al [206], 

in their investigation on hazelnut soap stock/waste sunflower oil biodiesel, 

confessed the supply of more fuel due to lower calorific value of biodiesel.  

4.1.3.2. Brake thermal efficiency 

The thermal efficiency of the engine relies on the extent to which the 

fuel is burnt inside the combustion chamber [207]. Figure 4.3 shows the BTE 

of the engine fueled by various blend fuels and diesel. It can be seen from the 

figure that B25 has a better efficiency than diesel and other blend fuels under 

different loading conditions. For instance, the BTE of B25 was increased by 

8.6% at lower load and 4% at higher load in comparison to diesel. This is due 

to the fact that KME has a higher cetane number and the presence of oxygen 

in the fuel is favorable for combustion. However, with the increase of KME 

blend ratio, there is a slight drop in BTE. This is mainly due to the combined 

effects of the increased viscosity of the fuel and the presence of inbuilt 

oxygen. The lower blends of KME have a lower viscosity and experience 

better atomization relative to higher blends; as a result, their thermal 

efficiencies are higher. However for higher blends of KME, the increased 

viscosity of the blend fuel affects the fuel atomization and predominate the 

combustion process, causing the efficiency to drop.  
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Figure 4.3 Variation of BTE with respect to brake power 

4.1.3.3. Heat release rate and cumulative heat release rate  

 Cetane number of the fuel is primarily responsible for the ignition 

process [208] and therefore, the SOC (start of combustion) is little bit earlier 

for KME and its blends as their cetane number is higher than that of diesel 

(Table 3.1). It can also be observed from Figure 4.4 that the peak heat release 

rate for B25 lie in close agreement with diesel at maximum load of the engine. 

Nonetheless, the other blends such as B75 and B100 show a progressive 

decrease in peak heat release rate. For example, the peak heat release rate of 

B100 is 33% lower than that of diesel. This is because with the increase of 

KME percentage, the calorific value of the blend decreases, while the 

viscosity of the blend increases, affecting the fuel atomization and the ensuing 

combustion process, resulting in a lower peak heat release rate. Similar to this, 

Muralidharan et al [209] pointed out a decrease in peak heat release rate of 

biodiesel blends than diesel on account of higher viscosity and poor spray 

characteristics. Further, the reduced premixed combustion has had its impact 

on diffusion combustion as the accumulated heat release happens to get 

reduced for higher blends of KME. For better clarity and understanding, 

cumulative heat release rate curve has been drawn and is shown in Figure 4.5 
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Figure 4.4 Variation of heat release rate with respect to crank angle  

 

Figure 4.5 Variation of cumulative heat release rate with respect to crank angle  

4.1.3.4. CO (carbon monoxide) emission 

Figure 4.6 shows the CO emission for various blend fuels and diesel. It 

is noted that all the blend fuels emit higher CO emission, except B25, 

especially at full load condition, despite the presence of inherent oxygen 

within KME. This is due to the fact that more fuel is injected into the engine to 
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produce the same power output as diesel (Figure 4.2), which increases the 

fuel/air ratio, resulting in incomplete combustion. At the same time, the 

increased viscosity of KME further deteriorates the combustion process 

resulting in more CO emission. However, for B25, the CO emission was 

observed to be in par with diesel, with a slight increase at full load condition.  

 

Figure 4.6 Variation of CO emission with respect to brake power 

Since B25 doesn’t confront with poorer atomization, and the presence 

of inbuilt oxygen has supported enhanced combustion, the results are in 

agreement with diesel. There are varied results with CO emission for 

biodiesel, as Sahoo et al [210], when comparing the emission of Jatropha and 

Karanja biodiesel, showed increased and decreased CO emission for Jatropha 

and Karanja, respectively. These distinctions might have arisen on account of 

feedstock type and biodiesel synthesis methodology. As a matter of fact, most 

of the researchers tend to report higher CO emission mainly because of higher 

viscosity of biodiesel, like the one presented here with KME.  

4.1.3.5. NOX (nitrogen oxide) emission 

Diesel engine are prone to more NOX emission due to higher heat 

release rate and rapid rise of temperature inside the combustion chamber 

[211]. The NOX emission for various blends of KME increases with the 

increase in load due to the increased quantity of fuel injection, which when 
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being burnt elevates the in-cylinder temperature. Apparently, from Figure 4.7, 

the NOX emission for B25 blend is noticed to be slightly higher than diesel. 

The magnitude of peak heat release rate for B25 is almost similar to diesel and 

this accompanied by presence of excess oxygen paves way for the reaction of 

nitrogen molecules with oxygen at the temperature of burnt gas mixture, 

resulting in small increase in NOX emission than diesel at higher loads. 

However, B100 and other higher blends shows slightly reduced NOX emission 

than that of diesel since the combustion of B100 is predominated by the 

significant increase in viscosity and thereby, affecting the combustion process. 

In justification with this, Labeckas et al [212] indicated lower NOX emission 

for pure biodiesel, Rapeseed methyl ester in their case, due to lower calorific 

value and slower evaporation of high viscous biodiesel.  

 

Figure 4.7 Variation of NOX emission with respect to brake power 

4.1.3.6. Smoke emission  

The variation of smoke emission with respect to brake power for 

different blend fuels is shown in Figure 4.8 and it is found to increase with the 

increase in KME blend ratio. The smoke value of B25 happens to be in par 

with diesel. For all other KME blends, the smoke value is higher than diesel, 

with B100 blend reporting a 31.2% increase at full load condition. It is well 

known that soot precursors are formed during premixed combustion phase and 

if the premixed combustion phase is more pronounced, there is more time 
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available for carbon particles to combine with oxygen and combust properly 

[213]. But in this case, the premixed combustion phase is less pronounced for 

higher blends of KME on account of shorter ignition delay and lower calorific 

value, which in effect, has caused for liberation of more smoke. The other 

potential reasons may include increased fuel/air equivalence ratio and 

viscosity of higher blends of KME. The deterrence’s in combustion, resulting 

in increased smoke emission for biodiesel, has been remarked by Agarwal et 

al [135], which conforms the results of present study. 

 

Figure 4.8 Variation of Smoke emission with respect to brake power 

4.1.3.7. Exhaust gas temperature 

The EGT of B25 is slightly lower than that of diesel as shown in 

Figure 4.9. Notably, higher ignition delay results in a delayed combustion and 

higher EGT [214]. For B25, SOC happens to be a bit earlier than diesel, 

inciting low temperature to the exhaust gases. This also explains the slightly 

increased efficiency of B25 compared to diesel. However, the EGT of higher 

blends of KME were noticed to be slightly higher than diesel, despite the 

higher cetane number of KME and excess oxygen within KME, as the 

combustion is deterred by the higher viscosity of KME, paving way for late 

combustion in the tail pipe.  
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Figure 4.9 Variation of EGT with respect to brake power 

4.1.4. Conclusions 

In this study, KME, produced from inedible kapok oil, has been used 

as an alternate fuel for a diesel engine for the first time. Significantly, the 

potential benefits of kapok oil as source for fuel in diesel engine has been 

tapped. Kapok oil, extracted by steam treatment process followed by 

mechanical crushing, underwent alkali trans-esterification and the produced 

KME was tested in diesel engine. Systematic characteristic study of the fuel to 

identify the properties of the biodiesel was done and it was found to be in 

compliance with ASTM standard. Among the various blends tested in a single 

cylinder diesel engine, B25 blend claims a 4% increase in BTE than diesel and 

comparable emissions of HC, CO, NOX and smoke with diesel. It is believed 

that the kapok oil would garner much attention and qualify as a viable source 

of renewable fuel among the other alternate fuels in the near future. 
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4.2. Effect of adding 1,4-Dioxane with kapok biodiesel on the 

characteristics of a diesel engine  

4.2.1. Background 

From the previous investigation of KME – diesel blends in a diesel 

engine, B25 was observed to evince better engine performance and emission 

than other blends. When compared to diesel, the engine characteristics for B25 

were noted to be in par with diesel. To help improve the performance and 

emission for B25, in the current study, we decided to modify the properties of 

B25 by adding a fuel additive. Fuel additives, by virtue of their characteristics, 

alter the fuel properties in such a way that the combustion is improved. The 

comprehensive literature review on fuel additives, as described in chapter 2, 

manifest that 1,4-Dioxane has not been used as fuel additive with biodiesel 

thus far, despite its multipurpose benefits (Figure 2.1). Notably, in addition to 

improving the engine performance and emission, 1,4-Dioxane also enhances 

the blending of biodiesel with diesel and thus the mixing stability of the blend 

is improved. With all these considerations, 1,4-Dioxane, an indispensable 

additive, was added with the optimum blend (B25) in the current study, 

considering its potential to improve the fuel properties.  

4.2.2. Methodology  

In the current work, in an attempt to improve the performance and 

emission for B25 in an unmodified engine, we have decided to modify the fuel 

properties by adding 1,4-Dioxane with B25. The reported additive was 

procured from the commercial store and subsequently, it was added with B25 

in the following composition, B25-5ml (B25 – 99.5% and 1,4-Dioxane – 

0.5%) and B25-10ml (B25 – 99% and 1,4-Dioxane - 1%), and stirred well in 

an ultrasonic agitator. Subsequently, the fuel properties of B25, B25-5ml and 

B25-10ml were determined by ASTM standard methods and have been 

reported in Table 4.2. 1,4-Dioxane, when added with B25, improves the flash 

point as well as the cetane number of the blend. Further, the cold flow 

properties of the blend such as cloud point and pour point, and viscosity were 

improved, thereby enabling efficient pumping of the fuel without nucleation.  
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Table 4.2 Thermal and physical properties of B25 with and without 1,4-Dioxane 

4.2.3. Results and Discussion 

Heat release curve, a representation of amount of energy being 

released from the burning of fuel, for B25 with and without additive at full 

load condition, has been depicted in Figure 4.10. It could be noted from the 

figure that the peak heat release rate for B25 was in par with diesel, as there 

isn’t any big drop in its heating value when compared to diesel. However, the 

blends with additive shows a decrease in magnitude of peak heat release rate 

than diesel, with B25-10ml showing a lower magnitude of peak heat release 

rate than B25-5ml. This is because, the addition of 1,4-Dioxane in the blend 

ably reduces the ignition delay and as a result, the amount of fuel being burnt 

in the premixed combustion phase is reduced, decreasing the magnitude of 

peak heat release rate. The decrease in ignition delay with the increase of 1,4-

Dioxane, as noted from Figure 4.10, could be attributed to the inherent nature 

of it to enhance the ignition attributes of the resultant blend. Conceptually, 

Dioxane molecules fragment at space and time when the fuel evaporates, and 

this liberates free radicals to improve the ignition quality of the blend. 

Incidentally, Ashok [215], demonstrated the shortening of ignition delay and 

Property B25 B25 -5ml B25 -10ml 

Density (kg/m3) 850 853 851 

Kinematic viscosity (*10-6 

m2/s) 
4.1 3.76 3.65 

Flash point (°C) 105 95 86 

Pour point (°C) -8 -10 -14 

Cloud point (°C) -2 -4 -6 

Copper strip corrosion 
@100°C for 3 hours 

Not worse 
than No. 1 

Not worse 
than No. 1 

Not worse 
than No. 1 

Gross calorific value (kJ/kg) 41098 41012 40927 

Sulphur content (%) 
Less than 
0.005 

Less than 
0.005 

Less than 
0.005 

Calculated Cetane index 52 54 56 
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the subsequent reduction in accumulation of air/fuel mixture by adding di-

ethyl ether, an additive similar to 1,4-Dioxane, with emulsion fuel.  

 

Figure 4.10 Effect of adding 1,4-Dioxane with B25 on heat release rate at full load 

condition 

 

Figure 4.11 Effect of adding 1,4-Dioxane with B25 on cumulative heat release rate 

at full load condition 

Despite the reduction in magnitude of peak heat release rate, the 

diffusion combustion phase, as noted from Figure 4.11, was more active for 
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B25-10ml. As a result, combustion is more complete, paving way for 

increased accumulated heat release rate. This could be attributed to the 

improvement in fuel properties after the addition of additives. In particular, the 

addition of 1,4-Dioxane improves the cold flow properties and in wake of this, 

the fuel atomization and evaporation are improved. At the same time, the 

oxygen enrichment from the additive and KME by itself, together with the 

improvement in other fuel properties, have promoted active diffusion 

combustion so as to increase the net energy released. 

To help understand the effect of 1,4-Dioxane on the amount of fuel 

being burnt in respective combustion zones, percentage mass of fuel burnt, 

calculated from the net energy release rate at full load condition, for all the test 

fuels have been discerned in Figure 4.12. The figure clearly shows a reduction 

in mass of fuel burnt in premixed combustion phase and an increase of it in 

diffusion combustion phase with the increase in proportion of 1,4-Dioxane 

with B25. Notably, the mass of fuel burnt in premixed combustion phase was 

reduced to 24.86% for B25-10ml from 31.2% for B25. In compliance with 

this, Ladommatos et al [216] pronounced a decrease in mass of fuel being 

burnt in the premixed combustion phase, after improving the ignition 

attributes of the fuel being used.  

 

Figure 4.12 Effect of adding 1,4-Dioxane with B25 on mass of fuel burnt in 

premixed and diffusion combustion phase at full load condition 
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CO emission from a diesel engine is governed by various factors such 

as fuel/air equivalence ratio, in-cylinder temperature and presence of oxygen 

[70, 217]. Despite the presence of inbuilt oxygen, B25 showed slightly higher 

CO emission than diesel due to its slightly higher viscosity. However, the 

addition of 1,4-Dioxane enhances the combustion process and therefore, the 

CO emission for the blends with additive (B25-5ml and B25-10ml) is reduced 

than that of diesel. Furthermore, this reduction in CO emission could also be 

supported by their fuel properties (Table 4.2) such as reduced viscosity and 

improved cold flow properties. Notably, B25-10ml blend, as envisaged form 

Figure 4.13, depicts a 22.5% reduction in CO emission than B25 at full load 

condition. In a recent study, TJ Bruno et al [218] postulated the oxygen mass 

fraction of 1,4-Dioxane to be 0.36 and in light of this, better oxidation of CO 

was reported. By this token, in our study too, the promotion in oxidation of 

CO to CO2 is certain due to the subtle increase in oxygen proportion, certainly 

from biodiesel as well as the additive.  

 

Figure 4.13 Effect of adding 1,4-Dioxane with B25 on CO emission 

The HC emission for B25 with and without additive at respective 

loading conditions has been portrayed in Figure 4.14, highlighting the effect of 

additive on HC emission. From the figure, it could be inferred that the HC 

emission for B25-10ml is reduced by 25.3%, when compared to B25, at full 
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load condition. For B25, the increased HC emission than that of fossil diesel is 

due to the incomplete combustion while for the blends with additive, the 

combustion is promoted so as to reduce the HC emission. The reason behind 

this is with the enhancement in ignition attributes of blends with additive 

(B25-5ml and B25-10ml) and the contribution of oxygen from both KME and 

1,4-Dioxane, more complete combustion is enabled. Even in the past, Agarwal 

et al [64] conceded to the increase in HC and CO emission in face of 

incomplete combustion, caused by the higher viscosity of the fuel. However, 

later on, this effect was reportedly suppressed by the effect of additive to 

improve the ignition and combustion process, resulting in the reduction of CO 

and HC emissions [175], which is in compliance with the findings of the 

present study.  

 

Figure 4.14 Effect of adding 1,4-Dioxane with B25 on HC emission 

The blends with additive (B25-5ml and B25-10ml) are not subjected to 

improper soot oxidation due to inherent presence of oxygen within the fuel 

and additive and thereby, decreasing the smoke emission. In addition, since 

the cold flow properties and viscosity of the blend with additive are improved, 

the fuel atomization is more pronounced and thereby, the available oxygen 

easily penetrates the fuel droplets to properly oxidize the soot. It is worthwhile 

to link the reduced smoke emission for B25-5ml and B25-10ml, with the 
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respective heat release curves of them. With the increase in proportion of 1,4-

Dioxane with B25, the magnitude of premixed combustion is reduced and this 

might have increased the smoke emission, as premixed combustion phases are 

reported to be smoke free combustion zone [216]. In contrary, B25 with 

additive, despite the reduction in magnitude of premixed combustion, has 

shown reduced smoke emission, mainly due to the oxygen present in both 

biodiesel and additive, which has promoted the diffusion combustion phase, as 

described above. Notably, for B25-10ml, as seen from Figure 4.15, the smoke 

emission is reduced by 24.6% than B25 at full load condition, emphasizing 

more active combustion. The reduction in smoke emission is in compliance 

with the findings of Lin et al [185], who examined the intermediates of a 

cyclic oxygenated hydrocarbon (1,4-Dioxane) at low pressure with an 

equivalence ratio of 1.80, and found no aromatic intermediates. Further, 

reduction in smoke emission, when adding 1,4-Dioxane with ethanol – diesel 

blends, has also been reported by Sundar et al [172], which is in parallel with 

the finding of current study.  

 

Figure 4.15 Effect of adding 1,4-Dioxane with B25 on Smoke emission 

The high flame temperature and presence of surplus oxygen are being 

considered as propellants for the formation of NOX in diesel engine [219]. 

However, B25-5ml and B25-10ml, despite the presence of inherent oxygen 
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within them, were noticed to show a significant reduction in NOX emission, as 

seen from Figure 4.16. From the heat release curve (Figure 4.10), it could be 

comprehended that the magnitude of peak heat release rate is lower for the 

blends with additive, as the SOC is early, which prevents the accumulation of 

air fuel mixture. Early SOC not only reduces the peak heat release rate, but 

also implicates softer changes in pressure and temperature [220]. Since the 

degree of smoothness of engine operation is enhanced and the in-cylinder 

temperature is reduced, the NOX emission has been found to be lower for 

blends with additive. Similar conclusion were drawn by Vallinayagam et al 

[221], while investigating the engine characteristics using pine oil – diesel 

blend with ignition promoters, Iso-amyl nitrate and Di-tertiary butyl peroxide, 

in a stationary diesel engine. In the relentless pursuit to control both NOX and 

smoke emission simultaneously, the shortening of the magnitude of premixed 

combustion phase by reducing SOC is regarded as an appropriate strategy 

[61], which has been realized in the current study by adding 1,4-Dioxane with 

the optimum blend of KME.  

 

Figure 4.16 Effect of adding 1,4-Dioxane with B25 on NOX emission 

The BTE of the engine for B25 with and without additive at respective 

loading conditions has been shown in Figure 4.17. As noted from the figure, 

BTE for B25 was found to be slightly higher than diesel at all loading 

condition. A closer scrutiny of BTE curve reveals a noteworthy increase of 
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BTE for B25-10ml by 5.7% at full load condition, when compared to B25, due 

to improved combustion as explained above. In a comparison, Sundar et al 

[222], while investigating the effect of 1,4-Dioxane on ethanol blended diesel, 

reported an improvement in BTE, which is in concordance with the results of 

the present study. Furthermore, to help justify the increase in BTE with 

additive, the cumulative heat release curve (Figure 4.11) could be analyzed, 

which shows an increase in net energy released for B25-5ml and B25-10ml. 

When comparing B25, B25-5ml and B25-10ml, the accumulated heat release 

happen to get increased due to the improvement in combustion process in 

wake of improved fuel properties. This in turn has contributed holistically to 

the conversion of the accumulated heat release into useful piston work, 

thereby increasing the BTE for B25-5ml and B25-10ml.  

 

Figure 4.17 Effect of adding 1,4-Dioxane with B25 on BTE 

The BSFC for B25 with and without additive was calculated from the 

total fuel consumption (TFC) for all corresponding loads and has been shown 

in Figure 4.18. For biodiesel with lower energy density, in order to produce 

the same power output, more amount of fuel has to be supplied than diesel, 

incurring more fuel consumption. Since KME has a lower calorific value, the 

BSFC was found to be slightly increased for B25 than diesel, which is the case 

for all biodiesel categories. Previously, Muralidharan and Vasudevan [209] 
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have confided the increase in BSFC of the engine when using blends of waste 

cooking oil methyl ester with diesel, owing to the lower caloric value and 

higher viscosity of the biodiesel. However, with the addition of 1,4-Dioxane, 

the combustion process is improved on account of improved fuel properties 

and this in turn has slightly reduced the BSFC of the engine than that for B25 

without additive.  

 

Figure 4.18 Effect of adding 1,4-Dioxane with B25 on BSFC 

4.2.4. Conclusions 

The energy crisis and notched up price of crude oil and petroleum, 

which is reported to have triggered a new interest in the field of alternate fuels, 

have impelled us to find an enviable renewable source of fuel. As a solution, 

KME, produced from inedible kapok oil, has been used as an alternate fuel for 

a diesel engine in the current study. Further, to stifle down the emission and 

improve the performance of the engine, multipurpose additive, 1,4-Dioxane 

has been added with B25 blend of KME. Significantly, the added additive has 

improved the cold flow and ignition properties of the blend, with another 

advantage of improvement in the blend stability. The combustion 

characteristics of the blend with additive (B25-5ml and B25-10ml) were 

noticed to be improved, while testing it in a single cylinder diesel engine, with 

significant reduction in emission and improvement in the performance. 
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Significantly, the following observation were derived out of the experimental 

investigation, 

• The cetane number of B25-10ml showed an improved value of 56, 

which has had triggered proactive combustion process by 

shortening the ignition delay.  

• The emissions such as CO, HC, NOX and smoke were reduced by 

22.5%, 25.3%, 15.2%, and 24.6%, respectively, for B25-10ml 

than B25. Noticeably, the emission of both NOX and smoke were 

simultaneously reduced with the addition of 1,4-Dioxane with 

B25.  

• The performance parameters such as BSFC and BTE, for B25-

10ml were observed to be improved, when compared to B25, by 

5.7%.  

Associated publication  

o Vedharaj S, Vallinayagam R, Yang WM, Chou SK, Lee PS. Effect of 

adding 1,4-Dioxane with kapok biodiesel on the characteristics of a diesel 

engine. Applied energy.2014 (Article in press) 

o Vedharaj S, Vallinayagam R, Yang WM, Chou SK, Chua KJE, Lee PS. 

Influence of additive (1,4-Dioxane) on the performance and emission 

characteristics of kapok oil biodiesel. In proceeding of: International 

Conference on Applied Energy (ICAE) 2013, Pretoria, South Africa. 
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4.3. Reduction of harmful emissions from diesel engine fueled 

by kapok methyl ester by combined coating and SNCR 

technology 

4.3.1.  Background  

In the consistent effort to improve the characteristics of a diesel engine 

when fueled by biodiesel, researchers have engineered some design 

modification strategies. When compared to the optimization of engine 

operating parameters, these design modification strategies are more effective. 

Notably, it offers the benefit of adaptation of higher blends of biodiesel, which 

have been earlier remarked to be used only up to 20% in an unmodified 

engine. The distinguished design change conjured up are alteration of the 

engine compression ratio, coating of engine components using insulating 

material and optimization of combustion bowl geometry, which has been 

elaborated in detail in chapter 2.  

Among the various design modification techniques, thermal barrier 

coating of engine components has attracted the attention of many researchers. 

The ideology behind this technique is to reduce the heat losses from the 

engine, by coating the engine components with materials having poor thermal 

conductivity, so as to facilitate the conversion of accumulated heat into useful 

piston work. Further, from Table 2.2, which encapsulates the work on a coated 

engine fueled by biodiesel, it is clearly evident that though the intended 

objective of improved performance has been met after coating the engine 

components, the limitation of increased NOX emission still persists for various 

biodiesel and vegetable oils. Thus far, no study has been initiated to curtail the 

NOX emission from a coated diesel engine fueled by biodiesel, though the 

other emissions such as CO, HC and smoke were found to be lower. 

Regardless of the presence of various NOX reduction techniques for a diesel 

engine such as optimization of injection timing, EGR, SCR and addition of 

NOX reduction additives [79, 217, 223], required attention has not been paid to 

simultaneously improve the performance and reduce the NOX emission from a 

coated engine.  
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Due to the enormous task to be paid to achieve a design change, only a 

few studies have focused on it, when using biodiesel as renewable fuel 

Therefore, following the fuel modification study to improve the engine 

performance and emission, in the current study, we have decided to adopt the 

design modification strategy of TBC so as to improve the engine performance. 

Considering that design modifications would empower using higher blends of 

biodiesel [146], contrary to the reported adaptation of 25% biodiesel in an 

unmodified engine, herein we have used KME up to 50% with diesel (B25 and 

B50) in a coated diesel engine. Also, from the above discussion, it is evident 

that there exists an appeal for reduction in NOX emission from a coated diesel 

engine fueled by biodiesel. Therefore, this research work would also focus on 

to reduce NOX emission by implementing a urea based SNCR system in the 

exhaust pipe of a coated diesel engine, fueled by KME – diesel blends. Thus 

the objective of the study is not only to improve the engine performance by 

coating the engine components, but also to reduce the NOX emission by 

implementing urea based SNCR system. Finally, the engine characteristics of 

the reported blends in a coated engine with SNCR and unmodified engine are 

analyzed and compared. 

4.3.2.  Methodology  

4.3.2.1. Coating process 

The engine components such as top surface of the piston, bottom face 

of the valves and the cylinder head portion associated with the combustion 

chamber were coated using PSZ. Plasma spray coating technique has been 

employed to coat the engine components meticulously; the photographs of the 

coated engine components are depicted in Figure 4.19. Prior to coating, the 

components are grit blasted so as to attain a surface roughness (Ra) value of 4, 

after which, the surfaces are cleaned using ethylene glycol. When the 

components are dried, PSZ is sprayed over cleaned surface and this ensures 

sufficient bond coat between the base substrate and the coating material. The 

thickness of the coating has been limited to 450 microns as increased thickness 

duly reduces the amount of air inducted in to the cylinder and this tends to 

decrease the volumetric efficiency of the engine, affecting the engine 

performance and emission.  
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Figure 4.19 Engine components coated with PSZ (partially stabilized zirconia) 

4.3.2.2. After treatment process 

In order to control NOX emission from coated diesel engine, an 

additional SNCR circuit involving a tank with urea solution, 3 way control 

valve, small pump and flow pipes, was devised and fitted in the exhaust pipe, 

as show in Figure 4.20. The urea solution was prepared by mixing 30% of urea 

with 70% of water, widely recognized composition for urea based SCR 

systems [217], and was placed overhead in the tank. Further, the urea solution 

was sprayed into the exhaust manifold and the quantity of injection was 

controlled by maintaining adequate pressure in the flow lines through the 

pump and control valve assembly. In this study, urea was directly sprayed into 

the exhaust gases without the requirement of any catalyst and hence the name, 

non-catalytic SCR system. Typically, a catalytic converter was not preferred 

along with the SNCR system, given that the coated engine is reported to have 

decreased other emissions such as CO and HC already due to better 
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combustion. Notably, this SNCR assembly was implemented only for coated 

engine and the emission results are compared with uncoated engine without 

SNCR. The selection of SNCR system to reduce NOX emission than other 

strategies like EGR or retardation of injection timing is because of the fact that 

it does not compromises the engine performance, as modifications are only 

dealt in the tail pipe of the engine. Further, according to the reports of Casapu 

et al [224], urea – SNCR system is more amenable for stationary diesel 

engine, like the one used in the current study, than light commercial vehicles 

in face of complexity and large dimensions of the system. Therefore, the 

selection of urea – SNCR system for the current study was reasonable. 

 

Figure 4.20 Schematic diagram of the engine experimental setup with SNCR 

assembly   

4.3.3. Results and discussion 

Before appraising the effect of TBC on engine performance, it is 

worthwhile to analyze its impact on combustion process. In this connection, 

the variation of heat release rate and in-cylinder pressure for diesel, B25 and 

B50 in coated and uncoated engine, at full load condition, have been shown in 

Figure 4.21 (a), (b) and (c), respectively. It can be seen from the figures that  



 

 

Figure 4.21 In-cylinder pressure and heat release rate comparison for (a) Diesel (b) B25 (c) B50 in coated (-C) and uncoated engine at full 

load condition
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for all the tested fuels, both the peak heat release rate and in-cylinder pressure 

of the coated engine are higher than that of uncoated engine due to the fact 

that heat lost were reduced in a coated engine. These results are in consonance 

with the results of Prasath et al [142], wherein, an improvement in in-cylinder 

pressure of around 3 bar has been reported for coated engine over normal 

diesel engine when fueled by Jatropha methyl ester. Furthermore, by 

comparing Figure 4.21(a) and Figure 4.21(c), it could be noted that the peak 

heat release rate for B50 is lower than diesel both in coated as well as 

uncoated engine; mainly due to its lower calorific value. Another reason is the 

shorter ignition delay of KME because of its higher cetane number, which is in 

agreement with the reports of Sarin [61]. Conceptually, the early start of 

combustion, accompanied by poor evaporation of KME, has yielded less 

amount of prepared fuel for premixed combustion, contributing to reduced 

peak heat release rate.  

 

Figure 4.22 Variation of BSFC for diesel, B25 and B50 in a coated (-C) and 

uncoated engine 

The performance parameters such as BTE and BSFC have been 

analyzed to appreciate the effect of TBC on engine performance. For uncoated 

engine, BSFC was noticed to be increased with the increase of KME in the 

blend ratio, as seen from Figure 4.22. This trend could be explained by the 

distinct property of KME i.e lower calorific value than diesel, which demands 
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larger quantity of fuel to produce the required power output, resulting in 

higher BSFC. Similar reports on increase in BSFC for various biodiesel have 

attributed lower calorific value as the prime reason for it [14, 206]. However, 

for coated engine, the heat trapped inside the engine cylinder and the inherent 

presence of oxygen within the fuel has promoted better combustion for B25 

and B50 and thereby, lowering the BSFC of the coated engine. Similar such 

conclusion has been drawn by Hazar et al [137], when testing canola methyl 

ester in a low heat loss diesel engine.  

 

Figure 4.23 Variation of BTE for diesel, B25 and B50 in a coated (-C) and 

uncoated engine 

In general, the presence of oxygen within the renewable biodiesel 

promotes better oxidation of hydrocarbon, resulting in increased BTE. 

However, higher viscosity and lower calorific value of B50 caused a slight 

decline in efficiency compared to diesel and B25, which is clearly evident 

from the present investigation in an uncoated engine. On the other hand, in a 

coated engine, the BTE of the engine, as shown in Figure 4.23, gives a clear 

picture of improvement in engine performance for B50 as the heat loss to the 

surrounding has been minimized by the insulation of engine components. This 

reduced heat loss not only increases the energy available for converting into 

useful piston work, but also improves the combustion process. As a result, an 

obvious higher efficiency has been achieved for all test fuels in coated engine. 
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Remarkably, BTE was increased by 9% for B50 in a coated engine than in 

uncoated engine at full load condition. In the past, improvement in BTE of a 

coated diesel engine fueled by sunflower oil biodiesel was reported by 

Hasimoglu et al [126], which is in concordance with the improved efficiency 

for B50.  

The major emissions such as CO, HC, smoke and NOX for diesel, B25 

and B50 in coated and uncoated engine have been analyzed In light of higher 

viscosity, the combustion is said to be incomplete for B50 in uncoated engine, 

resulting in higher CO and HC emission than diesel, which are shown in 

Figure 4.24 and Figure 4.25, respectively. However, B25 showed comparable 

CO and HC emission with diesel, as its viscosity is not much higher and 

further, presence of oxygen within the fuel could have promoted oxidation of 

CO and HC to CO2 and H2O. In general, many experimental investigation 

have shown more active combustion of biodiesel, due to the inherent 

possession of oxygen within its molecular structure, resulting in reduced CO 

and HC emission [60, 75, 225]. Nonetheless, there are also contradictions to 

the above said fact as the higher viscosity and boiling point of biodiesel affects 

the combustion process [226, 227]. This is why B50 is reported to have shown 

higher HC and CO emission than diesel in uncoated engine.  

 

Figure 4.24 Variation of CO emission for diesel, B25 and B50 in coated (-C) and 

uncoated engine 
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Figure 4.25 Variation of HC emission for diesel, B25 and B50 in coated (-C) and 

uncoated engine 

It is very interesting to compare the CO and HC emission from coated 

engine and uncoated engine, and analyze the impact of coating on engine out 

emissions. Apparently, all the blend fuels showed decreased CO and HC 

emission in coated engine when compared with uncoated engine. This 

decrease can be judged based on the expected increase in in-cylinder 

temperature, due to the reduced heat losses to the coolant, in coated engine. 

The increase in temperature is believed to promote the oxidation of CO to 

CO2, thereby reducing the CO emission by 40% for B50 in coated engine than 

that in uncoated engine. The same is the case for HC emission, with B50 in 

coated engine showing 35.3% reduction in HC emission than that for uncoated 

engine, perhaps slightly better than diesel too. Similar such reductions in HC 

and CO emission were also noted by Hazar et al [138] and Musthafa et al 

[139], when using cotton and pongamia methyl ester in a coated diesel engine, 

complying with the findings of the current study. Categorically, it has been 

reported that SCR systems reduces HC and NOX emissions, while the CO 

emission increases [228]. On the contrary, in the current study, an appreciable 

increase in CO emission has not been envisaged for B25 and B50 in coated 

engine. This is because of the profound impact of coating and effective 
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utilization of the heat energy in accomplishing more complete combustion 

within the combustion chamber itself.  

In general, when biodiesel is being utilized as an alternate fuel for 

diesel engine, the NOX emission is reported to be increased due to the inborn 

oxygen within fuel, fuel injection advance and other features pertaining to fuel 

chemistry [229]. However, there are contradictions to the above said 

phenomenon, as few researchers consider that the lower peak heat release rate, 

caused by higher cetane number of biodiesel, reduces the in-cylinder 

temperature so as to impede the formation of NOX [230]. Incidentally, this 

latter occurrence, lower peak heat release rate to reduce NOX emission for 

B50, has happened in the present study with uncoated diesel engine, as seen 

from Figure 4.26. The reasons for this are explained as follows: due to the 

higher viscosity and lower boiling point of KME, the atomization and 

evaporation of it are affected and therefore, the quantity of well mixed fuel 

available for combustion is reduced. Following this, the lower cetane number 

of KME advances the combustion process and with the reduced quantity of 

fuel being available for combustion, coupled by the lower calorific value of 

KME, the magnitude of peak heat release rate is decreased and this reduces the 

in-cylinder temperature to decrease the NOX emission for B50.  

 

Figure 4.26 Variation of NOX emission for diesel, B25 and B50 in coated (-C) and 

uncoated engine 
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On the other hand, it is widely noted that coated engine tends to 

increase the in-cylinder temperature and this together with the presence of 

oxygen within the biodiesel would cause an increase in NOX emission, as high 

temperature and presence of nitrogen as well as oxygen in air are reported to 

be crucial elements in the formation of NOX [231]. Substantially, Aydin et al 

[141] and Iscan et al [140], demonstrated an increase in NOX emission when 

using sunflower oil and waste corn oil in a coated engine, perhaps for the same 

reason as noted above. In the event of increasing the performance of a diesel 

engine fueled by KME blends through coating of engine components, similar 

phenomenon is believed to arise. To avert the expected increase in NOX 

emission for the blend fuels in the current experimental study using PSZ 

coated engine, urea based SNCR system, which is regarded as an effective 

after treatment technique [232], has been fitted in the exhaust pipe. With the 

SNCR fitted coated engine, the NOX emissions for B25 and B50 were 

successfully reduced, as shown in Figure 4.26. The ideology behind NOX 

reduction with urea – SNCR system is: when urea is sprayed in the exhaust 

pipe, it gets decomposed and hydrolyzed in ammonia (NH3), while the formed 

ammonia then reacts with NO and NO2 and breaks it down to N2 and H2O. 

Consequently, NOX emission for B50 in coated engine with SNCR has been 

reduced by 13.4% than that in uncoated engine. In parallel with these 

conclusions, Xu et al [233] and Liu et al [234] had already reported a drastic 

reduction in NOX emission by implementing urea based NOX reduction 

system. However, when compared to diesel, the NOX emission for B50 was 

noticed to be slightly lower due to deterrence in combustion and the 

subsequent reduction in in-cylinder temperature, caused by the higher 

viscosity of KME, and for the other reasons with the early start of combustion 

as explained above. It could be pointed out that the NOX emission for lower 

blend, B25, was shown to be higher than diesel, as the properties are not much 

varied, which is in compliance with the general scenario of increased NOX 

emission for biodiesel. The temperature of the exhaust gas at respective 

loading condition would have an effect on the NOX reduction potential as the 

reaction of urea with it is depend on the temperature. To have a better 

understanding of this, the EGT for diesel and blend fuels in coated and 

uncoated engine has been drawn and shown in Figure 4.27. Evidently, the 
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coated engines tend to exhibit higher EGT due to the reduction in heat losses 

and this ought to enhance the NOX reduction in a coated engine.  

 

Figure 4.27 Variation of exhaust gas temperature for diesel, B25 and B50 in coated 

(-C) and uncoated engine 

There always exists a tradeoff between NOX and smoke in a diesel 

engine fueled by any kind of fuel. However, in our case, this tradeoff has been 

refrained with the realization of coating and implementation of urea – SNCR 

system, as both NOX and smoke are simultaneously reduced for B50. Notably, 

a 21.4% decrease in smoke emission for B50 in coated engine than that in 

uncoated engine, as noted from Figure 4.28, has been realized. 

Characteristically, the soot precursors formed in the fuel rich zones of spray 

are oxidized by the oxygen from KME and this is ameliorated by the enhanced 

combustion temperature, following the prevention of heat loss through 

coating. To back up this, Di et al [235], in their study using oxygenated fuel 

(ethanol) as substitute for diesel, acceded to the profound oxidation of fuel in 

the diffusion combustion phase and reported effective reduction in smoke 

emission. In general, when the premixed combustion is more pronounced, the 

soot formations are reduced as the amount of fuel being burnt in diffusion 

controlled combustion is reduction. In our case, since premixed combustion is 

more pronounced for B50 in a coated engine, as seen from Figure 4.21, the 

smoke emission are noted to be reduced than that in an uncoated engine. 
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Figure 4.28 Variation of Smoke emission for diesel, B25 and B50 in coated (-C) 

and uncoated engine 

4.3.4. Conclusions  

The first objective of this investigation was to improve the 

performance of a diesel engine by coating the engine components using PSZ, a 

commensurate insulating material. Secondly, the increased NOX emissions 

from the coated diesel engine, due to rise in temperature inside the combustion 

chamber, has been identified and efforts were taken to reduce it by 

implementing urea – SNCR system in the exhaust pipe. Further, this study has 

also thrived to duly utilize kapok seed oil, an underutilized bio oil, to 

synthesize biodiesel (KME) and experimentally investigate the engine 

characteristics in a coated diesel engine. From the experimental investigation, 

the performance and combustion characteristics are found to be improved for 

the blend fuels in coated engine, with a 9% increase in BTE for B50 in coated 

engine than uncoated engine. Further, the major emissions from the coated 

engine such as HC, CO and smoke for B50 were found to be reduced by 

35.3%, 40% and 21.4% than uncoated engine, and with the incorporation of 

urea – SNCR systems, the NOX emission was also reduced by 13.4% than 

uncoated engine. Previously, many research studies on coated diesel engine 

with biodiesel, categorically reported better engine performance and reduction 

of HC, CO and smoke emissions at the expense of higher NOX emission. 
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However, distinctly, this study has duly noticed the problem of higher NOX 

emission with coated engine fueled by biodiesel and subsequently, an effective 

after treatment technique in the likes of SNCR was incorporated to reduce the 

rampant impact of NOX emission on atmosphere, implicating much greener 

environment.  
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4.4. Modification of combustion chamber geometry for the 

operation of kapok biodiesel in a diesel engine 

4.4.1. Background  

Having realized the utilization of higher blends of KME by combined 

coating and SNCR technology, we have initiated another design modification 

strategy of optimizing the combustion bowl geometry in the current study. In 

the previous study, with coated engine components, B50 was noted to show 

only comparable engine performance and emission with diesel, though B25 

showed enhanced engine characteristics. To attain better engine efficiency and 

emission results with higher blends of KME, in the current study, we 

endeavored to operate KME – diesel blends in a diesel engine with various 

combustion chamber geometries. As such, three different combustion bowl 

geometries were used for operating different blends of KME such as B25, 

B50, B75 and B100 in a diesel engine. Finally, performance, emission and 

combustion characteristics of the engine with different combustion bowl 

geometries for the reported blends have been discussed.  

4.4.2. Methodology  

In the event of optimization of combustion chamber geometry for 

kapok biodiesel and its blends, three different shapes of combustion chamber 

geometry such as TRCC (trapezoidal combustion chamber), TCC (toroidal 

combustion chamber) and HCC (hemispherical combustion chamber) were 

selected. In the design aspect every combustion chamber, fabrication is done 

in such a way that the volume of the combustion bowl is not altered so as to 

maintain the same compression ratio for all configurations. The photographic 

view of the different combustion chambers, employed in the current work, has 

been depicted in Figure 4.29. In a comparison, the lip of the TCC touches the 

combustion chamber wall and offers better squish than other combustion 

chambers, while TRCC is shown to have larger surface area. Experiments are 

carried out in diesel engine, after assembling and dis-assembling the variety of 

combustion chambers sequentially, following the methodology explained in 

the previous section of this chapter.   
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Figure 4.29 Combustion chamber geometries (a) TRCC (b) HCC and (c) TCC  

4.4.3. Results and discussion 

The performance, combustion and emission characteristics have been 

analyzed for different blends of KME with various combustion chamber 

geometries such as TRCC, TCC and HCC and are discussed below. The 

variation of BTE for KME – diesel blends with various combustion chamber 

geometries at low (20%) and full (100%) load conditions has been discerned 

in Figure 4.30 and Figure 4.31, respectively. As inferred from the figure, it 

was noted that TCC was able to show an increase in BTE for blends up to B50 

and after which, BTE was observed to decline, while HCC was noticed to 

show increase in BTE for blends up to B25. Significantly, for B25 with HCC, 

the presence of oxygen within the fuel and a better calorific value than other 

KME – diesel blends have promoted active combustion of it, showing an 

increased BTE. However, for blends beyond B25 with HCC, the higher 

viscosity of KME appears to have affected the fuel atomization and the 

subsequent air fuel mixing process, as reported for other categories of 

biodiesel [236, 237], resulting in lower BTE than diesel.  

With TCC, despite the higher viscosity, the improvement in squish has 

increased the swirl and promoted better air/fuel mixing, thereby increasing the 

BTE by 5.2% for B50 than diesel. Noticeably, the enhanced air flow is 

believed to improve the fuel evaporation and this together with the presence of 

oxygen from KME has triggered proactive combustion for B25 and B50. 

Notably, the better utilization of oxygen and the enhanced air movement to 
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improve the BTE has been remarked in the past [238, 239], which coincides 

with the outcome of the current study as reported above. For blends beyond 

B50, even with TCC, BTE was found to be decreased than diesel as the higher 

viscosity and lower calorific value of KME has deterred the fuel atomization, 

air/fuel mixing and the ensuing combustion process. Undesirably, TRCC did 

not support better combustion for any of the selected blends. This is because, 

TRCC has higher surface area and this ought to increase the heat losses from 

the combustion chamber, meanwhile, the sharp angle is not favorable for the 

formation of squish, and part of fuel may deposit on the sharp angle, resulting 

in the decrease of engine power output and thereby decreasing the BTE. 

 

Figure 4.30 Effect of combustion chamber geometry on BTE for various KME – 

diesel blends at low load condition 

The scenario of BTE with various combustion chamber geometries at 

low load condition has a reverse trend to evince, as exhibited in Figure 4.30. 

At low load, regardless of the type of combustion chamber geometry, the BTE 

of the engine was observed to decrease slightly with the increase in proportion 

of KME with diesel. Characteristically, the presences of oxygen in KME tend 

to dilute the air/fuel mixture and therefore, the fuel to air equivalence ratio is 

reduced, decreasing the in-cylinder temperature. Predominantly, the in-

cylinder temperature that is lower at low load condition has affected the 

combustion of high viscous KME and this is further compounded by other 
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adverse properties of KME such as lower calorific value, higher boiling point 

and flash point. The decrease in BTE for bio derived fuels with inherent 

oxygen at low load condition had already been demonstrated by many 

researchers [240, 241], which is in concordance with the results of current 

study. Notably, though TCC has improved the squish and swirl motion, the 

negative impact of lower fuel to air equivalence ratio has deteriorated the 

efficiency than diesel at low load condition. Over and all, either at low or full 

load condition, TCC has shown better BTE for diesel as well as KME – diesel 

blends than conventional HCC and TRCC.  

 

Figure 4.31 Effect of combustion chamber geometry on BTE  for various KME – 

diesel blends at full load condition 

The maximum heat release rate for KME – diesel blends with various 

combustion chamber geometries has been portrayed in Figure 4.32 and Figure 

4.33 at low and full load conditions, respectively. As evident from the figure, 

the increase in peak heat release rate than diesel is appreciable up to B25 with 

HCC and for the remaining blends of KME, the maximum heat release rate is 

found to be lower. Also, TRCC, because of its distinct shape, has shown a 

lower peak heat release rate for all test fuels than diesel. The reasons for the 

decrease in maximum heat release rate for higher blends of KME with HCC 

and TRCC can be explained as follows: Since KME being a high viscous fuel 

with higher boiling point, the quantity of prepared air/fuel mixture readily 
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available for combustion is reduced after the delay period and this has reduced 

the rate of energy release. Furthermore, the lower calorific value of KME 

reduces the amount of net energy release, lowering the maximum heat release 

rate for higher blends of KME with HCC and TRCC, respectively, than diesel. 

Substantially, many research studies have also conceded to the decrease in 

peak heat release rate when using biodiesel from different feedstock [242-

244].  

 

Figure 4.32 Effect of combustion chamber geometry on maximum heat release rate 

for various KME – diesel blends at low load condition  

Significantly, with TCC, peak heat release rate has been scrutinized to 

be higher for blends up to B50 than diesel, while other blends of KME showed 

a drop in peak heat release rate. For TCC, the improved air flow motion has 

inflicted better evaporation and mixture formation for blends up to B50, 

facilitating faster burning of fuel to increase the peak heat release rate when 

compared to other combustion chamber geometries. Characteristically, the 

peak heat release rate for B50 with TCC is increased by 7.2 than that with 

HCC at full load condition. Therefore, from the present test results, TCC has 

shown an improvement in engine combustion and performance for higher 

blend of KME, B50, than diesel at full load condition, while the conventional 

HCC was reported to show increased BTE and peak heat release rate than 

diesel only for B25 at the respective loading condition. On the other hand, at 

low load condition, similar to BTE, the maximum heat release rate for all 
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combustion chamber geometries were noted to be decreased with the increase 

in addition of KME with diesel due to the above mentioned reasons of lower 

in-cylinder temperature and fuel to air equivalence ratio.  

 

Figure 4.33 Effect of combustion chamber geometry on maximum heat release rate 

for various KME – diesel blends at full load condition 

 

Figure 4.34 Effect of combustion chamber geometry on CO emission for various 

KME – diesel blends at low load condition  

It is worthwhile to shed some focus on the effect of combustion 

chamber geometry on the pollutant emission from a diesel engine fueled by 

KME – diesel blends. As such, gaseous emissions such as CO, smoke and 
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NOX were measured for various blend of KME and are compared for different 

bowl geometry shapes.  

 

Figure 4.35 Effect of combustion chamber geometry on CO emission for various 

KME – diesel blends at full load condition 

Figure 4.34 and Figure 4.35 represents the CO emission for KME – 

diesel blends with various combustion chamber geometries at low and full 

load conditions, respectively. The traditional HCC evinces a comparable CO 

emission for B25 with diesel and for higher blends; CO emission is noted to be 

increased as the viscosity of KME predominates the combustion process, 

resulting in incomplete combustion. In addition, due to the lower calorific 

value of KME, more fuel is being injected to produce the same power output 

and this increases the fuel to air equivalence ratio, thereby resulting in 

increased CO emission. On the other hand, TCC showed reduced CO 

emissions for all test fuels than that with HCC and TRCC, due to better 

air/fuel mixing and the following more complete combustion. Considering the 

emissions with TCC alone, addition of KME up to 50% with diesel showed 

reduced CO emissions than diesel. Notably, the CO emission for B50 with 

TCC was reduced by 15.7% than diesel, while it was found to be 27.8% lower 

than that with HCC at full load condition. For blends beyond B50, despite 

enhancement in air/fuel mixing process, the negative effect of higher viscosity 

had cost for the penalty of increased CO emission than diesel. Furthermore, 

for TRCC, irrespective of the blends, the CO emissions were noted to be 
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increased than HCC and TCC due to poor squish and unique shape of the 

combustion bowl, trapping hydrocarbons at its sharp edges so as to hinder the 

fuel oxidation process. While at full load condition, there was substantial 

decrease in CO emission for B25 and B50 in HCC and TCC, respectively, the 

trend is more likely different at low load condition, reporting an increase in 

CO emission with the increase in addition of KME with diesel. The lower in-

cylinder temperature and the excessive dilution of the air/fuel mixture are the 

reason noted for the increase in CO emission with KME – diesel blends, 

notwithstanding the different combustion chamber geometries being used.  

 

Figure 4.36 Effect of combustion chamber geometry on smoke emission for various 

KME – diesel blends at low load condition  

The much reported trade-off between NOX and smoke emission in a 

diesel engine has been well noted and analyzed herein for various blends of 

KME at low and full load condition. Among the various combustion chamber 

geometries, smoke emission as inferred from Figure 4.36 and Figure 4.37, was 

observed to be lower for all test fuels with TCC than that with HCC and 

TRCC for the reason of enhanced swirl motion of air and the consequent 

active combustion. With TCC, B50 showed a 7.8% reduction in smoke 

emission than diesel, while B75 and B100 discerned higher smoke emission 

despite the presence of oxygen within KME. This is because; the oxidation of 

soot particles is hindered for higher blends of KME due to the lower in-

cylinder temperature, caused by the detoriation in combustion. On the other 
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hand, at low load, the smoke emission was observed to be increased with the 

increase in KME in the blend, irrespective of the type of combustion chamber 

geometry being used.  

 

Figure 4.37 Effect of combustion chamber geometry on smoke emission for various 

KME – diesel blends at full load condition 

 

Figure 4.38 Effect of combustion chamber geometry on NOX emission for various 

KME – diesel blends at low load condition  

A completely opposite scenario to the smoke emission, as it deemed to 

be, was observed with NOX emission at full and low load condition from 

Figure 4.38 and Figure 4.39for different test fuels with various combustion 
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chamber geometries. The observed higher NOX emission for all test fuels with 

TCC than other geometries was held accountable due to the higher in-cylinder 

temperature in respect of better combustion. Substantially, the increased NOX 

emission with TCC compared to HCC has been reported previously by 

Jaichander et al [161] when using Karanja methyl ester. However, only B25 

and B50 evinced higher and comparable NOX emission for TCC, while higher 

blends of KME showed decreased NOX emission because of ineffective 

combustion. In another interpretation, with HCC, only B25 showed 

comparable NOX emission with diesel, whereas the other higher blends 

manifested decreased NOX emission. In contrast, for all other blends, TRCC 

showed lower NOX emission due to the combined effect of weak swirl ratio 

and increased viscosity of KME, which has had deterred the combustion 

process on whole.  

 

Figure 4.39 Effect of combustion chamber geometry on NOX emission for various 

KME – diesel blends at full load condition  

4.4.4. Conclusions 

Experimental investigation was carried out to optimize the combustion 

chamber geometry for the operation of kapok biodiesel in a single cylinder 

diesel engine. As such, three different combustion chamber geometries viz 

HCC, TRCC and TCC, with constant compression ratio to make the 

comparison unanimous, were chosen. In this connection, blends of KME with 
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diesel such as B25, B50, B75 and B100 were chosen and tested in a diesel 

engine with different combustion chamber geometries. From the experimental 

investigation, TCC was found to show better combustion and performance 

than other combustion chamber geoemtries for all test blends. However, when 

compared to diesel, TCC showed increased BTE only up to B50 blend and 

beyond which, a decline in engine performance was reported. Similarly, the 

CO and smoke emission were noticed to be 15.7% and 7.8% lower for B50 

than diesel in TCC, while NOX emission was shown to be in par with diesel. 

It is noteworthy to point out that, with the conventional combustion chamber 

(HCC), the engine was able to show better performance and emission for only 

B25 blend, while in TCC, blends up to B50 showed better engine 

characteristics. In the final disposition, among the various combustion 

chamber geometries, the improvement in which the engine characteristics such 

as performance, combustion and emission could be rated goes in this trend: 

TCC>HCC>TRCC. In our previous study with coating, B50 evinced only 

comparable engine characteristics with diesel, while herein, improved engine 

performance and emission was achieved for B50 in TCC. 
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