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ABSTRACT

The work described in this thesis reports on the possibilities of tuning the

electronic and spintronic properties of graphene by doping and atom adsorption.

Novel experimental and theoretical results are presented, showing how deeply

graphene properties can be transformed. In a first part, we study graphene

doped to ultra-high charge carrier density regimes by means of a polymer-

electrolyte gating technique. We show how the temperature-dependence of

the resistivity is affected by large Fermi energies. Possible implications for in-

trinsic superconductivity in graphene are discussed. In a second part, we show

how graphene, a very good conductor in its pristine form, can be turned into

a granular metal by chemical functionalization. We report the observation of

multiple inelastic and elastic co-tunneling conduction mechanisms such gran-

ular graphene systems, fabricated by hydrogenation of free-standing graphene

sheets. Even though multiple inelastic co-tunneling has already been observed

in conventional granular metals, this is, to the best of our knowledge, the first

time multiple elastic co-tunneling is observed. These conduction mechanisms

comprising series of virtual tunneling events, show deviations from established

theories. However, they are consistent with a theory developed for granular

Dirac materials, and presented in this thesis. Finally, we theoretically study the

modifications of graphene’s spintronic properties by atom adsorption. We show

that atoms adsorbed in hollow position can lead to the appearance of strong

and gate-tunable Spin Hall Effect, while certain atoms adsorbed on graphene

in top-position can induce a large Anomalous Hall Effect.
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Chapter 1

Introduction

1.1 Graphene, versatile material

Graphene [1], an atomically-thin two-dimensional hexagonal lattice of carbon

atoms is known for its high room-temperature mobility, its transparency, and

the exotic quantum phenomena it hosts [2], from Klein tunneling [3] to anoma-

lous quantum Hall effect [4]. It is also the strongest material ever measured

[6], and yet is flexible and elastic. Due to its low intrinsic spin-orbit coupling,

graphene is widely seen as a possible high-performance spin-preserving wire

for spintronic applications. Novel two-dimensional heterostructures combin-

ing graphene with other two-dimensional crystals [7] such as boron nitride and

molybdenum disulfide led to new interesting phenomena such as Dirac fermions

cloning [8]. Some of these multi-layer structures also exhibit strong Coulomb

drag phenomena [9] and enhanced light-matter interactions for photovoltaic ap-

plications [10]. Novel transistors based on vertical graphene heterostructures

[10, 11, 12, 13] with high on/off ratio [11] or negative differential conductance

[12] were recently demonstrated. The list of possibilities offered by graphene

alone or combined with other two-dimensional crystals in heterostructures is re-

ally impressive and impossible to fully cover in an introductory chapter or even

the entire thesis. However, the characteristics we already mentioned illustrate
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how versatile graphene can be, promising applications in many fields such as

electronics, spintronics, optics, mechanical engineering, and opto-electronics.

1.2 Graphene, chameleon material

In spite of the rich physics of graphene and all its promised applications, the

“Wonder Material” has its shortcomings. Its tiny spin-orbit coupling may make

it a good candidate as wire for spin transmission, it cannot be used as active

material for spin-processing in its pristine form. Moreover, the vanishingly small

density of states [2] in quasi-neutral graphene makes it an unlikely host of many

interesting correlated electron states. Last but not least, the ability of graphene

Dirac fermions to Klein-tunnel [3] through potential barriers makes it hard to

fabricate conventional horizontal transistors and large, scalable two-dimensional

arrays of quantum dots, which combined with graphene natural transparency,

bendability and elasticity would enable exciting flexible electronics and strain-

sensing applications. Though a possible route to compensate these disadvan-

tages may involve the fabrication of novel Van Der Waals heterostructures [7],

it is worth exploring methods which at the time of writing seem simpler, such as

ultra-high doping by polymer-electrolyte gating techniques, or the adsorption

of various atoms on the graphene scaffold to transform graphene properties at

will. This approach is the object of the present thesis. Before describing our

results in the following chapters, we briefly summarize the basic experimental

techniques used to fabricate and characterize graphene samples, as they will

frequently be refered to in the remainder of our thesis.
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1.3 Basic experimental techniques to fabri-

cate and characterize graphene devices

1.3.1 Exfoliation from graphite

Graphene is an abundant and natural material, which can be extracted from

graphite by exfoliation. The realization that this could be achieved by extremely

simple means allowed scientists to intensively study this atomically-thin mate-

rial, since 2004. The method [1], known as “Scotch tape technique”, consists

in the following steps:

(i) Insert a thin piece of graphite between two adhesive tapes - sticky faces on graphite.

(ii) Peel the tapes off. Thinner graphite flakes are now on both tapes.

(iii) Select the tape with the thinnest flakes, and cover it with another adhesive tape.

(iv) Repeat steps (i), (ii), and (iii) until resulting tapes contain transparent graphite flakes.

(v) Apply a tape with transparent flakes on a Si/SiO2wafer.

(vi) Gently rub the upper face of the tape with a tweezer for few minutes.

(vii) Peel the tape off
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Figure 1.3.1: Optical pictures of exfoliated single-layer (left) and bilayer (right)
graphene on a SiO2/Si wafer, with a 300 nm-thick silicon oxide layer.

If done well, steps (i) to (vii) leave many few-layer graphite flakes on the

silicon oxide surface. Some of these flakes are even monolayer graphite, i.e.

graphene. Critically, graphene layers are visible under conventional optical

microscopes for wafers with silicon oxide layers with a thickness of ≈ 90 nm

or ≈ 300 nm [29]. This is the reason why these thicknesses are often selected

in practice (and in all the experiments reported in this thesis!). Typical optical

pictures of graphene and bilayer graphene obtained by exfoliation from graphite

are shown in Figure 1.3.1.

1.3.2 Chemical Vapour Deposition

While the “Scotch tape technique” allowed the number of academic works on

graphene to quickly grow, this method can not be used for industrial production,

given its extremely small yield. For this reason, chemical vapour deposition

(CVD) methods have be developed [89], to produce large-area graphene in a

systematic way. Typically, graphene is grown at high temperature (∼ 1000 oC)

on metallic substrates such as copper [89] and nickel [19]. In order to fabricate

graphene-based transistors or other devices, the substrate is then chemically
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etched away, and graphene is transferred onto an insulator such as silicon oxide.

Figure 1.3.2: CVD graphene (background) entirely covering a SiO2/Si wafer.
Some “islands” of multilayer graphene are visible.

Figure 1.3.2 shows an optical picture of CVD graphene grown on copper

and transferred on a SiO2/Si wafer. Many variations of this method to grow

and transfer CVD graphene exist and have been reported by many authors.

1.3.3 Electron beam lithography

After selecting suitable graphene samples either prepared by exfoliation from

graphite or chemical vapor deposition, we may fabricate devices for electron

transport experiments. These devices usually consist in graphene channels con-

tacted with gold/chromium electrodes, and lie on a SiO2/Si wafer. A voltage

bias Vg between the p-doped silicon layer and the gold/chromium electrodes

allows to tune the graphene Fermi level, while graphene’s conductance is mea-

sured with the electrodes. Fabrication methods for these devices are standard,

and typically employ electron-beam lithography. Here, we summarize the fab-

rication process used for the work presented in this thesis.
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Figure 1.3.3: Typical graphene device fabricated by standard electron-beam
lithography, after gold/chromium evaporation and lift-off (left picture). The
graphene flake is then etched into a proper Hall bar by writting a PMMA etch-
mask (right) with electron-beam lithography and subsequently exposing the
sample to oxygen plasma.

We first spin-coat poly-methyl methacrylate (PMMA) on the silicon oxide

wafer, and then shine an electron-beam around the area of interest (a graphene

flake for instance). At this stage, the region of PMMA exposed to the electron-

beam is an array of symbols, called alignement markers. PMMA being a positive

photoresist, a subsequent bath of methyl isobutyl ketone (MIBK) and isopropyl

alcohol (IPA) leads to the removal of the exposed PMMA region. Patterning

these alignment markers is particularly useful. With them carved on the spin-

coated PMMA film, we are equipped with a frame relative to which electrodes

can be patterned. This approach generally improves the device patterning pre-

cision greatly. Next, optical pictures of the graphene sample together with

clearly visible alignment markers are taken, and used to design the device elec-

trodes with the Design CAD software. Created design files are then loaded to

the nanometer pattern generator (NPGS) software driving the electron-beam

setup (we use a FEI Nano SEM 230). The electron-beam is then projected on

the wafer, along the designed electrodes. After this second electron-beam step,

the wafer is bathed in a MIBK/IPA solution again for development. We end up

with a patterned PMMA film on the graphene/SiO2/Si system. If everything

went well, these patterns have the desired electrode shapes. Subsequent ther-

mal evaporation of chromium and gold, followed by a lift-off step (consisting
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in leaving the wafer in acetone more than 10 hours) then yields a graphene

device with its electrodes. An optical picture of a typical device after lift-off is

shown in Figure 1.3.3(a). To give the graphene channel a proper geometry (a

Hall bar for instance), a step of oxygen-plasma etching might be needed. In

this case, a third elecron-beam step is needed to fabricate a protective PMMA

mask, as shown in Figure 1.3.3(b).

1.3.4 Raman spectroscopy

Raman spectroscopy is a powerful characterization method. This versatile tech-

nique is very popular among graphene physicists [14], and is used to measure

important properties of fabricated samples such as the number of graphene

layers in ultra-thin graphite films [15], crystallinity [97, 99], density of charges

[31], and degree of mechanical strain [16]. Covering all possible applications

of Raman spectroscopy to graphene goes beyond the scope of this section

and the present thesis. We will nonetheless summarize key results on Raman

spectroscopy applied to graphene.

Typical Raman measurements consist in shining a laser of frequency νi on a

sample. Incidents photons excite some electrons in the sample, which then may

experience scattering events with phonons and/or defects before recombining

with a hole while emitting a photon of frequency νf . These outgoing photons

are detected by the Raman setup, which measures the intensity of outgoing light

IRaman as a function νf − νi. The IRaman(νf − νi) spectrum is a footprint of

the sample which reflects important scattering mechanisms. These scattering

events give rise to characteristic peaks in the IRaman(νf − νi) spectrum and

can thus be identified.

We now list key scattering events probed by a Raman measurement of

single-layer graphene. We first start with scattering processes yielding the

most visible peaks in graphene Raman spectra, called G, 2D and 2D′ peaks

corresponding to νf−νi ≈ 1580 cm-1, νf−νi ≈ 2700 cm-1 and νf−νi ≈ 3240
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cm-1 respectively. The G-peak arises from scattering of laser-excited electrons

with low-momentum phonon modes situated in the Brilloin zone centre [18]

and of energy ∼ 1580 cm-1. The 2D- and 2D′- peaks originate from higher-

order scattering processes involving two phonons [15, 17]. Scattering with

two phonons of energy ω ∼ 1350 cm-1(respectively ω′ ∼ 1620 cm-1) and

with opposite momenta before electron-hole recombination leads to the 2D-

peak (respectively 2D′-peak), located at νf − νi = 2ω (respecively νf −

νi = 2ω′). The G-, 2D- and 2D′-peaks are measured in pristine graphene.

Additional peaks can be observed in Raman spectra of defective graphene,

where other Raman processes are possible. These peaks are calledD andD′

and require excited electrons to experience scattering with both a phonon

and a defect [15, 17]. More precisely, the D-peak (respectively D′-peak)

arises from scattering of excited electrons with a phonon of energy ω ∼ 1350

cm-1(respectively ω′ ∼ 1620 cm-1) and high-momentum ~q (respectively low-

momentum ~q) followed by inter-valley (respectively intra-valley) scattering due

to an impurity, prior to electron-hole recombination. The D- and D′-peaks,

located at νf−νi = ω and νf−νi = ω′ are important to analyse the crystallinity

of graphene samples, as these peak allow to estimate the amount of defects.

Such a method will be used later in this thesis.

1.3.5 Electron transport measurements in a Variable

Temperature Insert (VTI) coupled with a magnet

The electron transport data presented in this thesis are measured at variable

temperatures and magnetic fields. Temperatures typically range from ∼ 2

K up to room temperature, while the magnetic field can be tuned between

-9T and 9T. In order to perform these measurements, we load our devices

inside a vacuum probe. The probe is then introduced in a variable-temperature

insert cryostat coupled to a superconducting magnet. Electrometers, resistance

meters, voltage and current sources, as well as lock-in amplifiers are electrically
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connected to the probe, itself connected to our nanofabricated devices by wire-

bonding.
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Chapter 2

Transport properties of

graphene at high electron

densities

2.1 Electronic structure of graphene

Graphene is a honeycomb lattice of carbon atoms comprising two inequivalent

triangular sublattices, A and B. Within a first-nearest neighbor tight-binding

model, one can easily calculate the valence and conduction bands of graphene

π-electrons. These results are well-documented and known to all graphene

physicists [20, 2]. For the sake of presenting a self-contained thesis, we will

nonetheless briefly rederive them, starting from graphene Hamiltonian

H0 = −t
∑
〈i,j〉

(a†ibj + b†jai) (2.1.1)

where t ≈ 2.7 eV is graphene first-nearest neighbor hopping integral, a†i and

b†i create an electron in site i of the A and B sublattices. In equation 2.1.1,

〈i, j〉 refers to neighboring sites i and j belonging to the A and B sublattice

respectively. Noting ~αi (respectively ~βj) the position vector corresponding site
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i ∈ A (respectively j ∈ B), and N the number of carbon atoms in each

sublattice, operators ai ans bi can be written as

ai =
1√
N

∑
~k

e−i
~k.~αia~k (2.1.2)

bi =
1√
N

∑
~k

e−i
~k. ~βib~k (2.1.3)

where a†~k and b†~k create an electron of momentum ~k in the A and B sublat-

tice respectively. Using equations 2.1.2 and 2.1.3 we can diagonalise H0 in

momentum space.

H0 = − t

N

∑
~k

∑
〈i,j〉

[
e−i

~k.( ~βj−~αi)a†~kb~k + ei
~k.( ~βj−~αi)b†~ka~k

]
=

∑
~k

[
φ∗(~k)a†~kb~k + φ(~k)b†~ka~k

]
(2.1.4)

where

φ(~k) = −t
∑
l=1,2,3

ei
~k.~δl (2.1.5)

In equation 2.1.5, vectors ~δl connect an atom of the A-sublattice to its nearest

neighbors. Noting ~ex and ~ey unit vectors along the zig-zag and armchair direc-

tions forming a direct basis, we have ~δ1 = a0

2
(
√

3~ex+~ey), ~δ2 = a0

2
(−
√

3~ex+~ey)

and ~δ3 = −a0~ey, where a0 ≈ 1.42 Å is the distance between nearest carbon

atoms. The quadratic form Q(~k) = φ∗(~k)a†~kb~k+φ(~k)b†~ka~k can easily be written

as

Q(~k) = |φ(~k)|

a~k + φ∗(~k)

|φ(~k)|
b~k√

2

†a~k + φ∗(~k)

|φ(~k)|
b~k√

2


− |φ(~k)|

a~k − φ∗(~k)

|φ(~k)|
b~k√

2

†a~k − φ∗(~k)

|φ(~k)|
b~k√

2

 (2.1.6)
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Figure 2.1.1: Graphene single-electron energy spectrum. K and K’ points are
indicated, as well as the Γ-point, the Brillouin zone centre.

providing a natural diagonalisation basis for H0 where E±(~k) = ±|φ(~k)| are

the conduction (+) and valence (−) band energy dispersion relations. Corre-

spondingly, operators

Ψ±,~k =
a~k ±

φ∗(~k)

|φ(~k)|
b~k√

2
(2.1.7)

annihilate a quasi-particle of crystal momentum ~k and energy E±(~k). Using

explicit forms for vectors ~δl, we obtain

E±(~k) = ±t

√
3 + 2 cos(

√
3a0kx) + 4 cos(

√
3

2
a0kx) cos(

3

2
a0ky) (2.1.8)

Energy bands E±(~k) are plotted in Figure 2.1.1, where it can be seen that

conduction and valence bands meet at the corners of the Brillouin zone. The

two inequivalent corners, the K and K ′ points, are called Dirac points, because

in their vicinity, E±(~k) have a conic geometry, similarly to the dispersion relation
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of relativistic Dirac particles. More precisely, for vectors ~q of norm much smaller

than 1/a0, we have

φ(λ
−→
ΓK + ~q) = λ~vF qeiλθ (2.1.9)

E±(λ
−→
ΓK + ~q) = ±~vF q (2.1.10)

where λ = ±1 is the valley index, θ is the angle between ~q and
−→
ΓK, and

vF = 3a0t/2~ is the Fermi velocity. For a band index s = ±1 and a valley

index λ = ±1, corresponding eigensates describing the so-called graphene Dirac

fermions read

Ψ†
s,λ
−→
ΓK+~q

|0〉 =
a†~k + s φ(~k)

|φ(~k)|
b†~k√

2
|0〉 =

|A,~k〉+ s.λeiλθ|B,~k〉√
2

(2.1.11)

where |A,~k〉 = a†~k|0〉 and |B,
~k〉 = b†~k|0〉. Most of the interesting phenomena

in graphene, such as Klein tunneling [3] and anomalous quantum Hall effect

[4], arise from its linear dispersion relation 2.1.10 and corresponding Dirac

fermion states 2.1.11. Due to graphene linear spectrum, its charge carriers

have zero effective mass in the low-energy limit, which makes graphene an

ideal platform for the observation of Bose-Einstein condensates of excitons at

high temperatures [21]. However, this also means that neutral graphene is not

an intrinsic superconductor due to a linearly vanishing density of states at low

energy ε,

D(ε) =
2

π

ε

(~vF )2
(2.1.12)

making the BCS critical temperature

Tc(ε) = 1.14ΘDe
−1/D(ε)Ve−ph , (2.1.13)

where Ve−ph is the electron-phonon coupling, exponentially small in spite of

graphene’s exceptionnally high Debye temperature ΘD ≈ 2300 K.

Nonethelss, it is worth noting that graphene’s atomically thin character
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makes its Fermi energy widely tunable, and that graphene devices could then

become superconducting upon applying a large enough gate voltage. In par-

ticular, the graphene spectrum has a particular topology in the vicinity of the

mid-points of the first Brillouin zone edges, or M -points. These high-energy

points, situated at an energy t away from the Dirac points, are saddle points.

Close to theseM -points, the Fermi surface becomes singular and the the Fermi

velocity 1
~∇~kE vanishes, leading to a diverging density of states, or van Hove

singularity, as shown in Appendix (see section 2.4.1). It is therefore expected to

have a considerably enhanced Tc(εF ) as the Fermi energy approaches t. Clearly,

such a high energy level t ≈ 2.7 eV is unreachable by conventional methods

employing a silicone oxide gate. Silicone oxide is limited not only by his small

dielectric constant εSiO2 ≈ 3.9, but also by a breakdown field of Fmax ≈ 0.5

V/nm, above which it becomes irreversibly damaged. Such constraints would

lead to a maximum charge carrier density of the order of 1013/cm2 and corre-

sponding maximum Fermi energy of ∼ 400 meV. However, other methods, such

as polymer-electrolyte gating [31], provide better prospects and could be used

to obtain much higher electronic densities. With such techniques, approaching

graphene’s van Hove singularities seems feasible, but is challenging and can be

seen as a long-term goal.

A very important preliminary step is to explore how graphene properties

change upon raising the Fermi level to ultra-high values. Electron transport

experiments are expected to capture much of the change, as significantly in-

creasing the electronic density is predicted to transform the temperature depen-

dence of graphene resistivity [23, 24, 25]. Besides, as the Fermi level increases,

the Fermi surface should morph from circular to trigonal, thereby altering the

graphene propagator and hence the way charges scatter with typical defects.

Last but not least, going to ultra-high charge carrier densities n should con-

siderably diminish the resistivity terms ρCI and ρad originating from charged

impurities and adatoms due to their well-known ∝ 1/n dependence [22, 2],
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perhaps allowing the observation of terms arising from interesting many-body

effects, usually dominated by ρCI and ρad. We devote the remainder of this

chapter to the study of graphene at ultra-high charge carrier densities, by first

reviewing some theoretical aspects of this regime and then presenting our elec-

tron transport experiments.

2.2 Electron-phonon scattering in graphene

We now review the interaction between graphene Dirac fermions and acoustic

phonons, as it evolves with charge carrier density and is expected to lead to

measurable effects in charge transport experiments. We aim to calculate the

electron-phonon scattering rate and corresponding resistivity, in particular its

temperature-dependence. This section is essentially a detailed re-derivation of

the main results from E.H. Hwang and S. Das Sarma [23], Stauber et al [25]

and Kaasbjerg et al [24]. We start with the following Hamiltonian,

Htot = H0 +He−ph (2.2.1)

where H0 describes previously studied prisitine graphene Hamiltonian, and

He−ph is the electron-phonon interaction term [48]:

He−ph = D
∑
~q

√
~

2ρmAgrω~q
‖~q‖ ρ̂(~q)(c~q + c†−~q) (2.2.2)

where ρm is graphene mass density, Agr is the graphene sheet area and D is

the deformation-potential coupling constant. c~q is the annihilation operator for

phonons of momentum ~q and frequency ω~q.In equation 2.2.2,ρ̂(~q) is the Fourier

transform of the electron density operator

ρ(~r) = ψ†A(~r)ψA(~r) + ψ†B(~r)ψB(~r) (2.2.3)
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and therefore,

ρ̂(~q) =

ˆ
d2~k

(2π)2

{
ψ̃†A(~k)ψ̃A(~k + ~q) + ψ̃†B(~k)ψ̃B(~k + ~q)

}
(2.2.4)

Here, we only consider coupling to longitudinal acoustic phonons, since other

phonons of graphene either couple too weakly with graphene charge carriers

or carry too much energy to have a significant occupation number nBE below

room temperature. The relevant phonon energy dispersion is therefore linear

in momentum,

ω~q = vsq (2.2.5)

with vs = 2 × 104 m/s. To calculate transition probabilities Pe−ph(~ki → ~kf )

for a the deflection of a charge carrier’s momentum from ~ki to ~kf due to the

absorption or emission of a phonon, we use the Fermi golden rule. We thus

need to calculate the matrix element 〈~kf |He−ph|~ki〉 with

| ~ki,f〉 =
1√
2Agr

(ψ̃†A(~ki,f ) + eiθi,f ψ̃†B(~ki,f ))|0〉 (2.2.6)

where θi,f is the angle of momentum ~ki,f with respect to some axis ~u. Using

fermions anti-commutation property, we easily obtain

〈~kf |ρ̂(~q)|~ki〉 =
1 + ei(θi−θf )

2
(2π)2δ(~kf − ~ki + ~q) (2.2.7)

and hence:

〈~kf |He−ph|~ki〉 = D

√
~

2ρmAgrω~ki−~kf

∥∥∥~ki − ~kf∥∥∥ 1 + ei(θi−θf )

2
(2.2.8)

Since vs � vF , acoustic phonons carry small energies compared to graphene

electrons, and electron-acoustic phonon scattering can be considered elastic.
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At finite Fermi level, we can thus write ki ≈ kf and

|〈~kf |He−ph|~ki〉|2 ≈
~D2ki
ρmAgrvs

∣∣∣∣sin(θi − θf2

)∣∣∣∣ cos2

(
θi − θf

2

)
(2.2.9)

Noting ~q = ~kf − ~ki, the Fermi golden rule gives:

Pe−ph(~ki → ~kf ) =
2π

~
|〈~kf |He−ph|~ki〉|2

{
nBE(ω~q)δ(E(~ki)− E(~kf ) + ω~q)

+ xBE(ω~q)δ(E(~ki)− E(~kf )− ω~q)
}

(2.2.10)

where xBE(ω~q) verifies the detailed balance principle

|〈~kf |He−ph|~ki〉|2fFD(E(~ki))(1− fFD(E(~kf ) + ω~q))nBE(ω~q)

= |〈~ki|He−ph|~kf〉|2fFD(E(~kf ) + ω~q)

×(1− fFD(E(~ki)))xBE(ω~q) (2.2.11)

reflecting that at equilibrium, the probability for an electron to scatter from ~ki

to ~kf upon absorbing a phonon is equal to the probability to scatter from ~kf

to ~ki by emitting a phonon. In equation 2.2.11, fFD(ε) and nBE(ω) are the

Fermi-Dirac and Bose-Einstein distributions,

fFD(ε) =
1

1 + e
ε−εF
kBT

(2.2.12)

and

nBE(ω) =
1

e
~ω
kBT − 1

(2.2.13)

and εF is the Fermi level. Electron-acoustic phonon scattering being quasi-

elastic, we have E(~kf ) ≈ E(~ki) and |〈~kf |He−ph|~ki〉|2 ≈ |〈~ki|He−ph|~kf〉|2, lead-

ing to

xBE(ω~q) ≈
fFD(E(~ki))(1− fFD(E(~ki) + ω~q))

fFD(E(~ki) + ω~q)(1− fFD(E(~ki)))
nBE(ω~q) (2.2.14)
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which simplifies to

xBE(ω~q) ≈ nBE(ω~q) + 1 (2.2.15)

The total transport scattering rate for an electron of initial momentum ~ki is

therefore

Pe−ph(~ki) =
∑
~kf

Pe−ph(~ki → ~kf )(1− cos(θi − θf ))

≈ gsAgr
ˆ

d2~kf
(2π)2

(1− fFD(E(~kf )))

Pe−ph(~ki → ~kf )(1− cos(θi − θf )) (2.2.16)

where gs accounts for the spin-degeneracy. Here, we do not take the valley

degeneracy gv into account as we neglect inter-valley scattering. The rate

Pe−ph(~ki) depends on ki but not on θi because the electron-phonon scattering

amplitude depends on the scattering angle θf−θi but not on individual angular

variables θi and θf . Pe−ph can therefore be seen as a function of the incoming

electron energy E(~ki) only. We shall now calculate the energy-averaged scat-

tering rate 〈Pe−ph〉εF for an electron at the Fermi level, by summing Pe−ph(~ki)

over ~ki and dividing by the typical number of states Nscatt involved in the scat-

tering process. Nscatt is the number of states within kBT around the Fermi

level εF ,

Nscatt ∼ 2AgrD(εF )kBT (2.2.17)

and

〈Pe−ph〉εF =
gsAgr
Nscatt

ˆ
dεD(ε)f(ε)Pe−ph(ε)

=
gsA2

gr

Nscatt

ˆ
dεD(ε)f(ε)×

ˆ
d2~kf
(2π)2

(1− fFD(E(~kf )))Pe−ph(~ki → ~kf )(1− cos(θi − θf ))

(2.2.18)
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Using equations 2.2.9, 2.2.10, 2.2.15 and 2.2.16, we obtain with ϕ = θf − θi,

〈Pe−ph(εF )〉 =
2πgsAgr
~Nscatt

~D2ki
ρmvs

ˆ 2π

0

dϕ

2π
(1− cosϕ)

∣∣∣sin(ϕ
2

)∣∣∣ cos2
(ϕ

2

)
×

ˆ +∞

0

kfdkf
2π

(1− fFD(E(~kf )))×
ˆ +∞

−∞
dεD(ε)f(ε)

{
nBE(ω~q)δ(E(~ki)− E(~kf ) + ω~q)

(nBE(ω~q) + 1)δ(E(~ki)− E(~kf )− ω~q)
}

(2.2.19)

Writing ki ≈ kf ≈ εF
~vF

and D(ε) ≈ D(εF ) in the above-integrand, equation

2.2.19 simplifies to

〈Pe−ph〉εF ≈ gsD
2Agr

Nscatt

ε2FD(εF )

ρm(~vF )3vs

ˆ 2π

0

dϕ

2π
(1− cosϕ)

∣∣∣sin(ϕ
2

)∣∣∣ cos2
(ϕ

2

)
×

ˆ +∞

−∞
dεf(ε) {nBE(ω~q)(1− fFD(ε+ ω~q))

+ (nBE(ω~q) + 1)(1− fFD(ε− ω~q))} (2.2.20)

Functions fFD(ε)(1 − fFD(ε ± ω~q)) have two series of simple poles, εn =

2kBTi(
π
2

+ nπ) and ε′n = ∓ω + 2ikBT (π
2

+ nπ) so that applying the residue

theorem easily gives

ˆ +∞

−∞
dεfFD(ε)(1− fFD(ε± ω~q)) = ~ω~q(Θ(±ω~q) + nBE(ω~q)) (2.2.21)

where Θ is the unit-step function. Equation 2.2.20 can thus be rewritten as

〈Pe−ph(εF )〉εF ≈ gs~D2Agr
Nscatt

ε2FD(εF )

ρm(~vF )3vs

×
ˆ 2π

0

dϕ

2π
(1− cosϕ)

∣∣∣sin(ϕ
2

)∣∣∣
cos2

(ϕ
2

)
ω~qnBE(ω~q)(nBE(ω~q) + 1) (2.2.22)

Since the energy exchanged between phonons and electrons is ω~q = 2kFvs
∣∣sin (ϕ

2

)∣∣,
where kF is the Fermi momentum, a typical temperature scale emerges, the
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Bloch-Grüneisen temperature

TBG =
2~vskF
kB

(2.2.23)

If T � TBG, then all states of graphene Fermi surface can be scattered to any

other state of the Fermi surface by absorbing or emitting an acoustic phonon,

and one expects the scattering rate 〈Pe−ph(εF )〉εF to be significant. In this

regime, we have

nBE(ω~q) =

(
exp

(
TBG
T

∣∣∣sin(ϕ
2

)∣∣∣)− 1

)−1

≈ T

TBG
∣∣sin (ϕ

2

)∣∣ � 1 (2.2.24)

and the integral in equation 2.2.22 can be calculated easily, to yield

〈Pe−ph(εF )〉εF ≈
gs~D2Agr
Nscatt

ε2FD(εF )

ρm(~vF )3vs

kFvs
2

(
T

TBG

)2

(2.2.25)

We can simplify the above-equation further using equation 2.2.17, to end up

with:

〈Pe−ph(εF )〉εF ≈
D2

8~3

εF
ρmv2

Fv
2
s

kBT (2.2.26)

In the opposite limit T � TBG, the acoustic phonon occupation number is

exponentially small and the Fermi surface becomes extremely sharp, leading to

quenched phonon absorption and emission rates. In this limit, one thus expects

a vanishingly small electron-phonon scattering rate. More precisely,

nBE(ω~q) ≈ e−
TBG
T |sin(ϕ2 )| (2.2.27)

and the integral in equation 2.2.22 can be approximated by

〈Pe−ph(εF )〉εF ≈ 2gs~D2Agr
Nscatt

ε2FD(εF )

ρm(~vF )3vs

TBG
~

×
ˆ 2π

0

dϕ

2π
sin4

(ϕ
2

)
cos2

(ϕ
2

)
e−

TBG
T |sin(ϕ2 )|
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Doing the change of variables u = TBG
T

∣∣sin (ϕ
2

)∣∣, we have

ˆ 2π

0

dϕ

2π
sin4

(ϕ
2

)
×

cos2
(ϕ

2

)
e−

TBG
T |sin(ϕ2 )| = 2

(
T

TBG

)5 ˆ TBG
T

0

duu4(1− (
T

TBG
u)2)1/2e−u

≈ 2

(
T

TBG

)5 ˆ +∞

0

duu4e−u

= 48

(
T

TBG

)5

and finally,

〈Pe−ph(εF )〉εF ≈
6D2

~4

(kBT )4

kF εFρmv5
s

(2.2.28)

The rate 〈Pe−ph(εF )〉εF is equal to the inverse average electron-phonon scatter-

ing time 1/ 〈τe−ph〉. The corresponding conductivity, given by the well-known

formula

σe−ph =
e2v2

F

2
D(εF ) 〈τe−ph〉 , (2.2.29)

scales as ∝ (k3
FT

4)
−1 in the Bloch-Grüneisen regime T � TBG while it does

not depend on kF and is inversly proportional to temperature in the the high-

temperature regime T � TBG. At fixed temperature T , the crossover form the

σe−ph ∝ T−1 regime to the Bloch-Grüneisen regime occurs when the graphene

Fermi surface becomes too large for acoustic phonon scattering to connect any

two states of the Fermi surface around a given valley, K or K ′. Experimentally,

observing this crossover can be used as evidence for reaching ultra-high charge-

carrier densities.
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2.3 Electronic properties of graphene in the

ultra-high doping regime

2.3.1 Summary of our experimental results

We report the study of graphene devices in Hall-bar geometry, gated with a

polymer electrolyte. High densities of 6 × 1013/cm2 are consistently reached,

significantly higher than with conventional back-gating. The mobility follows

an inverse dependence on density, which can be correlated to a dominant

scattering from resonant scatterers. Furthermore, our measurements show

a Bloch-Grüneisen regime until 100 K (at 6.2 × 1013/cm2), consistent with

an increase of the density. Ubiquitous in our experiments is a small upturn in

resistivity around 3 × 1013/cm2, whose origin is discussed. We identify two

potential causes for the upturn: the renormalization of Fermi velocity and an

electrochemically-enhanced scattering rate.

2.3.2 Introduction

Since its first exfoliation from graphite in 2004 [1], graphene transport prop-

erties have mainly been studied in the vicinity of the Dirac point, where the

dispersion relation is linear and the electrons behave as massless Dirac particles

[3, 4, 5]. For technical reasons, the electrical properties of graphene have rarely

been measured at densities beyond 1013 /cm2. But the physics of graphene

may well be as exciting at high charge carrier densities as it is in the vicinity of

the Dirac point. As the chemical potential is shifted away from the Dirac point,

the description of electrons as massless Dirac particles becomes less valid and

corrections are needed to describe the physics [26, 27]. Besides, recent an-

gle resolved photoemission spectroscopy (ARPES) experiments [26] show that

potassium- and calcium-doped graphene have extended van Hove singularities

(VHS), a feature also present in the cuprate energy-bands and suspected by
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some to be responsible for their high-Tc superconducting transitions [26, 28].

However, the extended VHS of cuprates are easily accessible, whereas their

graphene counterparts lie at ∼ 2 eV above the Dirac points, corresponding to

electron densities greater than 2× 1014 /cm2.

Experimentally, the realization of high carrier densities in graphene devices

is limited by the requirement of thin dielectrics with high capacitance. These

materials are however prone to dielectric breakdown at gate voltages required

for achieving high doping. In addition the growth and identification of graphene

on various substrates remains challenging [29]. The conventional SiO2 back-

gate, while being suitable for identifying graphene flakes, cannot lead to carrier

densities greater than 1013 /cm2 in graphene. The use of high-κ dielectrics has

also been considered for achieving high doping [30], although this approach

has been less successful. The present work uses a polymer electrolyte gate

to achieve high-doping. When a potential difference is applied between two

electrodes in an electrochemical cell, the ions move in the polymer matrix

according to their charge polarity and accumulate to form an electric-double

layer at the electrode interface. Such nanometer-size gate has a very high

capacitance and can induce counter charges of equivalent density on graphene.

Polymer electrolyte top-gating has been previously used to demonstrate the

sensitivity of the Raman spectrum to high carrier densities in graphene [31, 32].

2.3.3 Polymer Electrolyte Gating

In this work, we study the electronic properties of graphene Hall devices gated

with a polymer electrolyte and track the deviations from Dirac physics through

density and temperature dependent transport measurements. The Hall mea-

surements demonstrate the effectiveness of the electrolyte system in realizing

high carrier densities in graphene. From transport measurements, we evaluate

the relative contributions to graphene resistivity induced by different scattering

mechanisms. Monolayer graphene flakes are prepared by mechanical exfoliation
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Figure 2.3.1: Optical image and schematic of graphene device in Hall-bar con-
figuration, coated with polymer electrolyte [S = Source, D = Drain, G =
Polymer Electrolyte Gate]. Scale bar: 10 μm.

on Si/SiO2 substrates. The device measurements are performed on standard

Hall bar and four-terminal structures fabricated with electron-beam lithogra-

phy. A schematic of the device is shown in fig. 2.3.1. In addition to the

electrodes on the graphene flake, Au/Cr electrodes of large surface area are

also patterned within the plane of the device structure at few micron separa-

tions. While several designs for polymer electrolyte gating rely on evaporation

of top gate-electrode or insertion of a Pt or Au wire in the polymer matrix

[31, 33], the present design does not require positioning of the top-contact.

The in-plane gate electrode can be simultaneously patterned lithographically

along with the graphene contacts. Migration of metal atoms into the polymer

matrix may happen in case of evaporated top contact and this contamination

is also prevented. The polymer electrolyte, an aqueous dispersion of polyethy-

lene oxide (PEO) and lithium perchlorate is then drop cast on the device and

bake-dried.

The graphene resistance is measured at low frequencies (13 Hz) in the

four-terminal configuration under low vacuum conditions. A plot showing the

modulation of graphene resistivity (ρ) with applied polymer electrolyte gate

voltage Vg at room temperature is shown in fig. 2.3.2(a). Due to the large

interfacial capacitance arising from a nearby layer of counter ions, it is possible

to obtain a large and reversible modulation in graphene resistance with the
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application of small voltages. The measurements are restricted to a maximum

gate leakage of ∼ 1 nA. At high gate voltages (or gate leakage currents)

the devices show a breakdown due to electrochemical reactions. Since the

polymer is hygroscopic, the presence of adsorbed residual water contributes

importantly to this leak [34], but at the same time allows a better ionic mobility.

Significantly lower leakage current is observed, when the device is cooled below

the ice-point of water. In addition, we note that the sweep rate of gate voltage

must be slow enough to allow equilibration of the ion double layer atop graphene

and measure a stabilized value of resistivity. The typical mobility of our pristine

graphene samples at low doping is in the range 4000-7000 cm2/V.s. Upon

addition of the polymer electrolyte, the mobility of graphene remains larger

than 3000 cm2/V.s at n ∼ 1013/cm2. The slope of graphene resistance dR
dVg

(measured at half the value of maximum resistance) gated with silicon-oxide

back-gate is typically 150 Ω/V. This slope is enhanced significantly to ∼ 3500

Ω/V when the polymer electrolyte gate is used. Upon sweeping the electrolyte

gate voltage, a typical on-off ratio of 30-40 is obtained. The sharp resistance

slope and high on-off ratio value are indicative of high-doping in graphene.

At zero gate-voltage, graphene is found to be in a highly electron-doped low-

resistance state and the charge neutrality point is shifted by -3 to -5 V. Such

doping may be attributed to a higher concentration of Li+ ions adsorbed in

the vicinity of graphene, since the graphene has small hole-doping prior to the

coating of polymer electrolyte [see fig 2.3.2(a)]. The G-band Raman peak for

graphene shows a shift of 6-7 cm-1 upon addition of the polymer electrolyte as

well as a reduction in full-width at half-maximum (FWHM) [see fig. 2.3.2(b)],

which further supports the electron-doping of graphene [31].

Ubiquitous in our measurements is a small upturn in resistivity observed at

high gate voltages [see inset of Fig. 2.3.2(a)]. This upturn is consistently ob-

served in 6 graphene devices on 5 different wafers and across several sweeps for

the same sample. To characterize the nature of transport at high-doping and
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examine the contributions to graphene resistivity, we performed Hall measure-

ments. The room temperature resistivity ρ and Hall mobility µ of graphene

devices are plotted as a function of the carrier density in fig. 2.3.3(a) and

2.3.3(b) respectively, for two devices. The mobility shows a continuous de-

crease between 1 × 1013/cm2 and 6 × 1013/cm2 , µ ∼ 1/n, indicating that ρ

approaches a saturation value. As in the low density regime (n ≤ 1013/cm2),

the factors determining the total resistivity include charged impurities (both

from underlying substrate and from electrolyte ions), defects on the graphene

lattice and phonons [5, 35, 36, 37, 38]. While these contributions have been

examined at low densities, their relative contributions at high densities can be

significantly different due to high screening from carriers in graphene.

2.3.4 Contributions to graphene resistivity

In this experiment, graphene is sandwiched between the SiO2 substrate below

and the polymer layer above. The number of electrolyte ions in the vicinity

of the graphene sheet increases with the electron density, unlike the number

of charged impurities at the SiO2/graphene interface which remains constant.

To estimate the contribution of the ions to the total resistivity of graphene,

it is necessary to know their distribution in the vicinity of the graphene sheet,

which is hard to obtain experimentally. Theoretically, the Poisson-Boltzmann

equation is often used to describe the ion distribution in electrolyte systems

[31]. However, the concentration of ions estimated from this model diverges

at the graphene/polymer interface while the concentration of ions is limited by

the finite ionic radius, the space occupied by the polymer, and the formation

of electrolyte-polymer complex. To take this into account, modified Poisson-

Boltzmann equations are generally applied and/or cutoff concentrations cmax

introduced [39]. Following the latter approach, we modeled the ion-induced re-

sistivity of graphene [see Appendix]. With a polymer packing density f ≤ 80%

and an electrolyte ion effective radius around 1 nm, cmax takes values between
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Figure 2.3.2: (a) Resistance vs. polymer gate voltage for sample 1 [Inset: R vs.
Vg in the low resistance region, showing an upturn in the device resistance] (b)
G-band Raman-shift for pristine graphene (red) and polymer-electrolyte coated
graphene (black).
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Figure 2.3.3: (a) Resistivity vs. carrier concentration for Sample 1 (red) and
Sample 2 (green). (b) Hall mobility vs. carrier concentration for the same
2 samples at T = 295 K. (c) Resistivity vs. Temperature at two different
densities: n ∼ 6.2 × 1013/cm2 (red), n ∼ 2.5 × 1013/cm2 (blue) (d) Carrier
concentration vs. applied gate bias; Slope of the linear fit gives an estimate of
the gate capacitance of the electrolyte gating, C ≈ 1 μF/cm2.

1025 /m3 and 5 × 1025 /m3 . The polymer dielectric constant is ε ∼ 5 [31].

The concentration of ions in the bulk polymer matrix is estimated to be about

5× 1024/m3. The gate voltage dependence of carrier density is plotted in Fig.

2.3.3(d). This can be used to experimentally estimate the total gate capac-

itance (polymer capacitance and quantum capacitance in series), which is of

the order of ∼ 1 μF/cm2 [see fig. 3(d)]. Second, we consider the influence of

charged impurities from the SiO2 substrate on the graphene resistivity. This re-

quires an estimate of the charged impurity density nimp in the substrate, which

can be obtained from a linear fit to the σ − n plot at low densities for our

graphene samples, prior to the addition of the polymer [38]. This evaluation

may be an upper limit since other scatterers can also contribute to a linear

density dependence of conductivity at low density [36]. However, by consider-

ing this upper bound, we can at least estimate the maximum contribution of

charged substrate impurities to graphene resistivity. We obtained an average

value of nimp ∼ 7× 1011 /cm2 for our samples. Therefore, calculations based

on the semi-classical Boltzmann formalism lead to a maximum contribution of

few Ohms for n ≥ 1013/cm2. The contribution from substrate impurities is

significantly lower than from electrolyte ions in the polymer matrix.

The electrolyte ion distribution discussed above is almost temperature-

independent since the ions are practically frozen below the ice-point of wa-
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ter. Therefore, the phonon contribution ρphonon can be extracted from the

temperature dependence of the graphene resistivity at high-doping. The re-

sistivity versus temperature measurements are shown for Sample 1 down to

4 K in fig. 2.3.3(c). The upturn of resistivity observed at room tempera-

ture persists down to 4 K, since the resistivity at higher doping remains larger

than the resistivity at lower doping throughout this range of temperature. The

temperature-dependent part of the resistivity can be fitted by a T 4 law at

low temperature, up to T ∼70 K and ∼100K for n = 2.5 × 1013/cm2 and

n = 6.2 × 1013/cm2 respectively. This power-law dependence can be asso-

ciated to a Bloch-Grüneisen regime, characterized by a strong suppression of

the acoustic phonon scattering rate for T � TBG, where TBG = 2~vskF/kB

is the Bloch-Grüneisen temperature, vs the speed of sound in graphene and

kF the Fermi momentum [40]. The density of phonons being governed by

the Bose-Einstein law, TBG defines the temperature scale below which the

acoustic phonon absorption rate vanishes. Besides, the lower the temperature,

the sharper the Fermi distribution and lower the acoustic phonon emission

rate. These two factors lead to a complete suppression of the acoustic-phonon

induced resistivity in theBloch-Grüneisen regime T � TBG. Further, these

acoustic phonons are known to be the lowest-energy phonons graphene elec-

trons scatter with [37], which ensures that all phonon scattering is suppressed

around 4K. Previous measurements down to 20 K and at much lower densities

n = 2 × 1012 to n = 6 × 1012 , do not show the Bloch-Grüneisen regime

[37]. Since TBG ∝
√
n , the observation of a T 4 law to higher temperatures

(up to 100 K) in our experiment is consistent with theoretical predictions. We

also observe a linear regime (or non-degenerate regime) between 100 K and

170 K with a slope of ρtot(T ) ∼ 0.13 Ω/K, as the temperature becomes com-

parable to TBG (240 - 420 K), consistent with previous observations at lower

densities [37]. Above 200 K, the resistivity becomes a super-linear function of

the temperature, indicating that the electrons start to scatter with additional
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Figure 2.3.4: (a) Room temperature Hall mobility µtot−ph vs. carrier den-
sity for Sample 2. Green triangles represent experimental data, shaded blue
region represents all possible µtot−ph curves that cross the first data point
but do not include resistivity contribution from unitary scatterers. Orange
curve is a theoretical fit after including this contribution. (b) Mobility µtot−ph
vs. carrier density for Sample 1 (experimental data in red circles) (c) Resis-
tivity vs. n for Sample 2 (experimental data in green triangles). Best fits
of ρtot = ρion + ρph + ρd + ρ0 to resistivity data: without Fermi velocity
renormalization (dashed red curve); With electron-electron interaction induced
renormalization, for e2/4κv~ ≈ 0.11 (solid blue curve); By doubling the e-e
interaction coupling constant (solid black curve). This may reflect the need to
include the renormalization from several other interactions as discussed in the
text. [Inset: Resistivity vs. n for Sample 3]

phonons, as previously discussed in the literature [35, 37, 41] for experiments

at lower charge carrier densities. Finally, an estimate of ρphonon is obtained as:

ρphonon ≈ ρ(295K)− ρ(4K), which is equal to 40 to 47 Ω. This almost con-

stant phonon induced resistivity contributes to the observed 1/n dependence

of mobility. However, even after subtracting ρphonon from the total resistivity,

the resulting mobility µtot−ph = (1/µtot−1/µph)
−1 still shows such dependence

[see fig. 2.3.4(a), 2.3.4(b)]. This indicates that other scattering mechanisms

are also responsible for it, as discussed below.

We now consider the resistivity induced by defects in the graphene lat-

tice. Strong-potential defects such as vacancies and certain adatoms lead to a

density-dependent resistivity of the form,

ρd =
hnd

4e2n ln2(R0

√
πn)

(2.3.1)

where R0 ≈ 1.4 Å and nd are the size and density of these defects. Using
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typical values for nd [36], this leads to a contribution of the order of 1 kΩ

near the Dirac point. This logarithmic correction leads to a sublinear defect

conductivity at high density, and contributes to the decrease in mobility at high

doping. However, the increase of neρd with charge carrier density is too slow to

reproduce the mobility behavior, as shown in fig. 2.3.4. To explain the latter,

we thus consider scatterers inducing a constant resistivity ρ0, such as small

short-range potentials. This scattering mechanism corresponds to a potential

of the form, Vscatt(~r) = V0δ(~r) with small V0. To estimate ρ0, we fitted the

theoretical expression

µtot−ph(n) = 1/(ne(ρion(n) + ρd(n) + ρ0)) (2.3.2)

to the corresponding data [fig. 2.3.4(a), (b)], giving a typical value of ∼ 100 Ω.

Therefore the mobility analysis shows that ρ0 is the most important contribution

to the resistivity of our samples at high doping.

So far we have discussed the contributions to the graphene resistivity from

ions, phonons and point-defects. These contributions are either nearly constant

(phonons and small short-range potentials) or rapidly vanishing with density

(charged impurities and resonant scatterers). It is thus surprising to consistently

observe an upturn in resistivity in a finite density window near n ∼ 3×1013/cm2

[see fig. 2.3.3(a), 2.3.4(c)]. Note that at higher densities (1.6 × 1014/cm2),

the resistivity decreases, then saturates, as shown for one sample (Sample 3)

[see inset of fig. 2.3.4(c)]. Below, we consider possible corrections to the

resistivity terms to model this observed dependence on density. At first, we

note that phonons and point-defects make up most of the graphene resistivity

for n ≥ 3 × 1013 /cm2. Therefore, it is tempting to attribute the upturn to

corrections to these terms. Experimentally, the phonon contribution does not

increase with density, which makes point-defects the likely cause of the upturn.

We therefore examine the various factors that determine ρ0 to identify possible

underlying mechanisms driving the observed upturn. Theoretically, ρ0 is given
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by [36, 40]:

ρ0(n0, V0, vF ) =
hn0V

2
0

8e2(~vF )2
(2.3.3)

where V0 is the average impurity potential, n0 the density of point-defects of

potential ∼ V0 and vF is the Fermi velocity. We examine the three factors n0,

V0 and vF for corrections to resistivity induced by point-defects. One possible

explanation could be the electrochemically-induced creation of new defects in

graphene, δn0, upon application of gate volatge. However, this does not appear

very plausible since the onset of upturn is seen in some samples already at small

gate voltages (e.g. Vg ∼ 2 V, Ig ≤ 50 pA for Sample 1). At low voltages, the

resistivity is stable and shows negligible time dependence, precluding the for-

mation of new defects which would be a time-dependent process. Furthermore,

this resistivity increase is reversible with gate voltage and distinguishable from

an irreversible increase seen at much higher gate voltages (Vg ≥ 10 V), which is

likely to be related to electrochemical processes. A different explanation is re-

lated to the modification of the local scattering potential V0 at the sites where

Li+ couples to the carbon lattice to form complexes. These coupling sites may

invlove a finte density of pre-existing defects on the carbon lattice (e.g. edges,

vacancies), which could explain the density-dependence of resistivity after the

upturn [see fig. 2.3.4(c)], as these sites get saturated with complex formation.

A more interesting source for a resistivity upturn is related to the renormal-

ization of Fermi velocity vF . This renormalization has been previously shown

by scanning tunneling spectroscopy for graphene on graphite and ARPES mea-

surements on epitaxial graphene on silicon carbide substrates in our range of

densities [42, 26]. A density-dependent renormalization of the Fermi-velocity,

vF can lead to corrections to an otherwise constant ρ0. The Fermi velocity

is expected to be renormalized by direct electron-electron, Fröhlich, electron-

phonon and electron-impurity interactions [5, 40, 43, 44, 45, 46, 47]. The

direct electron-electron interaction is responsible for an increase of the Fermi

velocity near the Dirac point, following v → v(1− e2 ln(2a
√
πn)/(4κv~)) but
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this can only partially explain an increase in resistivity in our range of densities

[fig. 2.3.4(c)]. Other factors such as Fröhlich and electron-phonon interac-

tions and disorders contribute equally to this decrease of Fermi velocity. These

factors when considered together can potentially explain the magnitude of the

observed increase in resistivity [see fig.2.3.4(c)] [5, 40, 43, 44, 45, 46, 47].

By keeping the concentration of electrolyte ions in the compact layer cmax

around 1025/m3 and density of strong-potential defects nd around 1011/cm2,

it is possible to fit the ρ− n curves of our samples by varying the bare defect

resistivity of unitary scatterers r0 around 100 Ω, provided that this renormal-

ization of the Fermi velocity is taken into account. The upturn is essentially

a result of the competition between a decreasing ρion and an increasing ρ0.

Therefore, the charge carrier density corresponding to the onset of the up-

turn increases with the ratio cmax/r0. Besides, the decrease in Fermi velocity

induced by the above-mentioned interactions, slows down at higher densities

(n ∼ 1014/cm2), potentially leading to a saturation of ρ0 [see inset of fig.

2.3.4(c)] [43, 45, 48, 49, 47]. It also follows that for samples with a large

enough cmax/r0, the upturn is expected to be suppressed. Finally, note that

the Fermi velocity dependence of the phonon-induced resistivity and the renor-

malization of the former do not contradict the fact that the ρ− T curves [see

fig.2.3.3(c)] remain almost parallel in the linear regime. Due to the screen-

ing of the Coulomb interaction between carbon atoms, the sound velocity and

the deformation potential decrease with charge carrier density. This limits the

influence of a decrease of Fermi velocity on ρ(T ). Before we conclude, note

that at low densities (n ≤ 5 × 1012/cm2), the graphene resistivity is already

strongly density-dependent from Coulomb and strong potential defect scat-

tering. Thus any corrections arising from density-dependent renormalization

of Fermi velocity in the low density regime are hard to discern in transport

measurements.

33



2.3.5 Concluding remarks

In summary, we have demonstrated high electron densities 6.2 × 1013/cm2

in graphene with a polymer electrolyte gate. A Bloch-Grüneisen regime was

observed between 4 K and 100 K, a clear sign of large Fermi temperatures.

The density-dependence of the mobility and resistivity of our samples were

analyzed by considering various scattering mechanisms: Coulomb scattering

from the electrolyte ions, electron-phonon scattering, and electron-impurity

scattering. Vacancies, cracks and certain adatoms are important scatterers

in the low density regime. However, low-potential point-defects are the most

important scatterers in our range of densities (n ≥ 1013/cm2), as suggested by

the 1/n density dependence of mobility. The resistivity versus carrier density

graphs, obtained from Hall measurements, show an upturn for densities around

3 × 1013/cm, and possible corrections to resistivity originating from point-

defects are discussed. While the devices reported in this paper allowed to

reach electron densities significantly higher than obtained with conventional

dielectrics, further improvements are needed to explore the physics of graphene

in the vicinity of the van Hove singularity.

2.4 Appendix

2.4.1 Density of states at the van Hove filling

Here, we briefly derive an asymptotic formula for the density of states in

graphene as the Fermi level εF approaches t from below. By symmetry, all

M -points contribute equally to the density of states D(ε) of graphene, so that

we can choose to calculate the contribution from the saddle point situated at

( π√
3a0
, π

3a0
) in the Brillouin zone. In the vicinity of this M -point, graphene’s
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conduction band locally takes the form

E(~q) =
3ta2

0

2
(q2
x +
√

3qxqy +
2

3
p2
m) (2.4.1)

where ~q is measured from M and pm = 1/a0. Close to M , the Fermi velocity

vanishes linearly in qx and qy:

∇~kE ≈
3

2
ta2

0

 2qx +
√

3qy
√

3qy

 (2.4.2)

Accounting for the spin degeneracy gs, the resulting density of states reads [50]

DM(ε) ≈ gs
(2π)2

ˆ
L(εF )

dl∥∥∇~kE(l)
∥∥ (2.4.3)

where the integration is done over the Fermi surface, approximated by a hy-

perbola. This approximation is valid close to the M -point, where the Fermi

surface L(εF ) is described by the following equation:

2qx = −
√

3qy ±
√

3(q2
y − q2

min) (2.4.4)

with

qmin =
2
√

2

3

√
t− εF
t

pm (2.4.5)

Writing qy = qmin + Q with qmin � Q ≥ 0, we have dl =
√
dq2

x + dq2
y ≈√

3qmin
8Q

dQ and
∥∥∇~kE(l)

∥∥ ≈ 3ta2
0

2

√
6qminQ+ 3q2

min and introducing a cut-off

Qmax for Q, we obtain:

DM(ε) ≈ 4gs
(2π)2

ˆ Qmax

0

√
3qmin
8Q

dQ
3ta2

0

2

√
6qminQ+ 3q2

min

≈ gspm
(2π)2~vF

ˆ 2Qmax/qmin

0

du
√
u
√

1 + u

∼ gspm
2(2π)2~vF

ln

(
t

t− ε

)
(2.4.6)
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Therefore, the total density of states D(εF ) diverges logarithmically as εF →

t−.

2.4.2 Resistivity induced by electrolyte ions

The resistivity induced by the electrolyte ions of the polymer is modeled within

the framework of Boltzmann theory. Away from the Dirac point, the resistivity

is given by

ρ = 2/(e2v2
F (n)D(n)τ(n)) (2.4.7)

where vF is the Fermi velocity, D(n) the density of states, and τ(n) the scat-

tering relaxation time. We compute the scattering rate induced by a 2D layer

of charged particles situated at a distance z above the graphene plane by using

a screened scattering potential,

Vc(q, z) =
2πe2e−qz

κ(q + qTF )
(2.4.8)

In a classic Poisson-Boltzmann approach where the steric effects are not taken

into account, the concentration of ions diverges in the vicinity of the graphene

sheet. However, as the gate voltage is applied, charged ions form a compact

layer of thickness λc and concentration cmax atop graphene [39]. The total

scattering rate τ−1 is obtained by integrating over the compact layer and the

corresponding resistivity reads

ρion(n) =
π~cmaxIion
8e2(πn)3/2

(2.4.9)

where

Iion =

ˆ 1

0

du
u
√

1− u2(
1 + 2u

qs

)2 (1− e−4λckFu) ≈ 0.13 (2.4.10)

since the exponential factor is small for typical values of compact layer thickness

(λc ∼ 10 nm) and graphene carrier densities (kF ≈ 1 nm-1) in our experiment.
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Chapter 3

Virtual Tunneling in Granular

Graphene

3.1 Why study granular graphene?

Granular metals are arrays of conducting grains or dots seperated by an insu-

lating medium. The granules are usually mesoscopic, have a distinct electronic

structure but a significant energy-level spacing due to electron confinement.

These systems have been studied for decades [51] due to their rich corre-

lated electron physics and numerous applications, ranging from strain- and

bio-sensing to photovoltaic applications [52]. Ordinary granular metals are

prepared by thermal evaporation of metallic and insulating materials onto a

substrate [53], or self-assembly of colloidal nanocrystals [54, 55, 56].

An excellent conductor in its pristine state, graphene can be transformed

into an insulator by adsorption of atoms on its lattice. The most prominent

exemples are graphene oxide [57], fluorinated graphene [94] and hydrogenated

graphene [90]. Interestingly, adatoms on graphene often tend to form electri-

cally insulating clusters [58], so that it is possible to fabricate granular met-

als by functionalizing graphene with adatoms. We call such systems granular

graphene. Given graphene’s elasticity and transparency, granular graphene can
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be extremely interesting for strain-sensing and opto-electronic applications.

It is also worth noting that fully hydrogenated graphene systems, called

graphane, are predicted to be high-temperature superconductors [123]. How-

ever, fully hydrogenated graphene has proven hard to sythesize, and to the

best of our knowledge, graphane has never been realized. Fabricating granu-

lar graphene by hydrogenation is therefore both a more easily achievable goal

and very interesting in its own right, as it may exhibit percolative supercon-

ductivity. From this perspective, we propose to study the electronic properties

of heavily hydrogenated graphene in this chapter. While the next section is

devoted to the theoretical study of the main transport mechanisms in granu-

lar metals in general and granular graphene in particular, subsequent sections

report on experimental methods and results regarding hydrogenated graphene.

Using theoretical results derived for granular graphene, it will be shown that

our hydrogenated graphene samples have a granular metal behavior exhibiting

interesting properties.

3.2 Electron transport in granular metals: a

theoretical perspective

The main electron transport mechanisms in granular metals have been an out-

standing puzzle in mesoscopic physics for decades [51, 52]. At low-enough

temperatures, the conductivity σGM of granular metals has a temperature-

dependence similar to the Efros-Shklovskii variable-range hopping law

σGM(T ) ∝ e−
√
T0
T (3.2.1)

for some typical temperature T0. Systematically observed in experiments, this

behavior has long been intriguing because the insulating matrix in which gran-

ules are embedded makes the overlap between wave-functions of electrons local-

38



ized in non-neighboring granules vanishingly small. Moreover, this phenomenon

has also been observed when all granules have similar dimensions [59], a priori

making the bare density of states at the Fermi level zero, while a finite bare

density of states is necessary for the Efros-Shklovskii variable-range hopping

[60] mechanism to take place. Theoretically, a better understanding of the

main conduction mechanisms in granular metals emerged only recently, in the

works of Beloborodov et al. [84, 82], Zhang and Shklovskii [61], and Feigel’man

and Ioselevich [83]. In this section, we review the main conduction mechanisms

in conventional two-dimensional granular metals whose dots have a parabolic

energy spectrum, and derive new results for granular graphene, whose granules

are graphene dots and hence have a linear energy spectrum.

3.2.1 Model Hamiltonian

A typical granular metal or quantum dots array, sketched in Figure 3.2.1, is

essentially parameterized by the average dot diameter ξ, intra-dot density of

states D, effective dielectric constant κ and the inter-dot tunneling ampli-

tudes, whose magnitudes depend on overlaps between intra-dot eigenstates.

We neglect the overlap between wavefunctions of electrons localized in non-

neighboring dots, and hence any direct tunneling process between distant dots.

Besides, the typical distance between neighboring dots is assumed to be small

compared to ξ.

Granular metals can thus be described by a Hamiltonian H reading as the

sum of individual dot Hamiltonians H i
D and tunneling terms H ij

T connecting

dot i to neighboring dot j. In other words, H reads [84, 83]:

H =

ND∑
i=1

H i
D +

∑
〈i,j〉

H i.j
T = HD +HT (3.2.2)

where ND is the number of dots int the studied array. Moreover, the single-dot

Hamiltonian H i
D can be written as the sum of a term describing a virtually
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Figure 3.2.1: Cartoon representation of a granular metal. White disks represent
conducting dots while the gray area corresponds to the insulating medium.
Tunneling between state k in dot i and state p in dot j is depicted as a blue
arrow, and has a tunneling integral tkpij . Points between which tunneling occur
are shown in red.

non-interacting electron in dot i, a term accounting for Coulomb interactions

with other electrons in the system, and a term arising from possible external

electrostatic potentials:

H i
D =

∑
k

εk,ic
†
k,ick,i +

∑
j

Ei,j
c n̂in̂j + n̂ieVi (3.2.3)

where c†k,i creates a particle in state k in the ith dot, and

n̂i =
∑
k

c†k,ick,i (3.2.4)

is the number operator of dot i. In equation 3.2.3, Eij
c arises from the Coulomb

interaction between dots i and j, and Ei,j
c = e2/κrij if i 6= j and Eij

c = e2/κξ

if i = j. Besides, Vi is the external electrostatic potential in dot i, originating

from the gate voltage, source-drain bias and possible charged impurities in the

substrate or sample. εk,i is the single-electron energy (equal to zero at the

Fermi level) corresponding to state k in graphene dot number i. We besides
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assume that tunneling terms H i,j
T are of the form

H i,j
T =

∑
k,p

tijkpc
†
p,jck,i (3.2.5)

Following [62, 64], we write

tijkp = tψ∗p,j(lij)ψk,i(rij) (3.2.6)

where ψk,iis the wave function of state k in dot i. From an idealized point-

contact picture, lijand rij are the coordinates of the points between which

tunneling from dot i to dot j typically occurs. We can now describe the

main conduction mechanisms in granular metals described by Hamiltonian H,

assuming that |t| is much smaller than the typical charging energy Eii
c , and that

the corresponding tunneling conductance is much smaller than the intra-dot

conductivity.

3.2.2 Sequential tunneling

At temperatures T larger than the average charging energy, the main conduc-

tion mechanism is known as sequential tunneling, and leads to a conductivity

exhibiting an activated behavior [106]

σGM(T ) ∝ e
− U
kBT (3.2.7)

where U is an energy scale of the order of the dot charging energy. In the se-

quential tunneling regime, thermally excited charge carriers can pay the charg-

ing energy cost to tunnel to a neighboring grain, hence leading to the above

activated behavior. However, as T becomes much small than the dot charg-

ing energy, σGM is exponentially suppressed and sequential tunneling may not

remain the dominant conduction mechanism.
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3.2.3 Multiple inelastic co-tunneling

We now focus on cases where the temperature is much smaller than the charg-

ing energy. We treat the tunneling hamiltonian HT as a small perturbation

and calculate the probability amplitudes for the dominant transport mecha-

nisms connecting two given distant dots i and f . Such transport mechanisms

can involve different electrons inelastically tunneling between neighboring dots

along a chain of dots linking i and f , a single electron elastically hopping from

i to f via multiple intermediate virtual tunneling events, or a combination of

both inelastic and elastic processes. Inelastic processes require a finite tem-

perature or electric field, while elastic processes can occur at vanishingly small

temperature or electric field. For the sake of simplicity, we will consider only

two cases: either all intermediate tunneling events are inelastic and involve

a distinct charge carrier, or only one charge carrier elastically hops from the

initial to the final grain. While the former, called multiple inelastic mechanism,

is expected to dominate at sufficiently high temperatures or electric fields, the

latter, coined multiple elastic mechanism, should dominate in the limit of van-

ishingly small temperatures or electric fields. Both process types are depicted

in Figure 3.2.2. Intuitively, hybrid phenomena involving a combination of in-

elastic and elastic processes should be crossover phenomena, dominating only

in narrow intervals of temperatures or fields [83]. We first treat the case of

multiple inelastic co-tunneling. Multiple elastic co-tunneling will be discussed

later, in section 3.2.4.

3.2.3.1 Rate of multiple inelastic co-tunneling: a general expression

We first derive a general expression for the multiple inelastic co-tunneling rate

in a granular metal, without assuming any particular intra-dot energy spectrum.

Here, we follow a perturbative approach similar to the work of Feigel’man and

Ioselevich [83]. Given the nature of multiple inelastic co-tunneling, we need

to consider multiple charge-carriers. We consider N grains forming a chain,
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Figure 3.2.2: Schematic of multiple inelastic (b) and elastic (c) co-tunneling
mechansims for a two-dimensional granular metal (a) with parabolic dot spec-
trum. In (a), dots involved in high-order conduction mechanisms (b) and (c)
are shown in blue. In (a), (b) and (c) electrons (holes) are represented by
black disks (circles). In (b) and (c), the Fermi level is represented by a red
solid line. The gadient of blue represents the density of occupied states at fi-
nite temperature T , from fully occupied (dark blue) to empty (white). Dashed
lines are energy levels (almost unoccupied levels are not shown). In (c), crosses
represent the intermediate energy levels through which the electron tunnels.
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numbered from 1 to N . Let |ψk1,1〉, |ψk2,2〉, ..., |ψkN ,N〉 be eigenstates of

grains 1, 2, ..., N respectively, of eigenenergies εk1,1, εk2,2, ...,εkN ,N . We also

set |ψ〉 = |ψk1,1〉|ψk2,2〉...|ψkN ,N〉. We thus have:

HD|ψ〉 =
N∑
i=1

(εki,i + Ei)|ψ〉 (3.2.8)

where Ei is the electrostatic energy of an electron in dot i:

Ei =
∑
j

Ei,j
c ninj + nieVi (3.2.9)

where ni is the number of electrons in dot i. We aim to calculate the actual

N -particle eigenstate |ψtot〉 of H seen as a perturbation of |ψ〉 in the small

tunneling amplitude limit. We write

|ψtot〉 = |ψ〉+ |δψ〉 (3.2.10)

and

H|ψtot〉 = Etot|ψtot〉 (3.2.11)

where Etot is the energy of the pertubed state |ψtot〉. Etot is generally different

from

E0 =
N∑
i=1

(εki,i + Ei) (3.2.12)

since we consider inelastic tunneling. However, the difference Etot−E0 = δE0

is small compared to E0. We have:

(HD +HT )|δψ〉+HT |ψ〉 = δE0|ψ〉+ Etot|δψ〉 (3.2.13)

leading to

|δψ〉 = (E0 −HD − (HT − δE0) + iη)−1(HT − δE0)|ψ〉

= Gtot(Etot)(HT − δE0)|ψ〉 (3.2.14)
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Since

Gtot(Etot) =
+∞∑
n=0

(G0(E0)(HT − δE0))nG0(E0) (3.2.15)

we have:

|δψ〉 =
+∞∑
n=1

(G0(E0)(HT − δE0))n|ψ〉 (3.2.16)

The probability amplitude for the transition from initial state |ψ〉 to final state

|ψf〉 = |ψk′1,1〉|ψk′2,2〉...|ψk′N ,N〉 is A(~k,~k′) = 〈ψf |δψ〉. During multiple inelastic

co-tunneling, the electron tunneling in a dot is different from the electron

tunneling out of this dot, and hence |ψki,i〉 6= |ψk′i,i〉 for all i. Therefore,

A(~k,~k′) =
∑
n≥N

〈ψf |(G0(E0)(HT − δE0))n|ψ〉 (3.2.17)

Both δE0 and |t| are small compared to the graphene grains charging energy,

so that the dominant term in equation 3.2.17 is 〈ψf |(G0(E0)(HT−δE0))N |ψ〉.

Because for all i, |ψki,i〉 6= |ψk′i,i〉, δE0 does not contribute to the probability

amplitude for MIC events |ψ〉 → |ψf〉, and we obtain:

A(~k,~k′) ≈ 〈ψf |(G0(E0)HT )N |ψ〉

= 〈ψf |
∑

i1,i2,...,iN−1

G0(E0)H
(iN−1)
T G0(E0)H

(iN−2)
T ...G0(E0)H

(i1)
T |ψ〉

(3.2.18)

where H(ip)
T are all possible tunneling terms of HT connecting adjacent grains

along the path 1 → 2 → ... → N . In the above equation, only terms

with pairwise distinct H(ip)
T tunneling operators, connecting states |ψki,i〉 to

states |ψk′i+1,i+1〉, contribute to the probability amplitude A(~k, ~k′). However,

all possible orderings of tunneling events |ψki,i〉 → |ψk′i+1,i+1〉 along the path

1→ 2→ ...→ N are allowed. Each operator G0(E0)H
(ik)
T in

G0(E0)H
(iN−1)
T G0(E0)H

(iN−2)
T ...G0(E0)H

(i1)
T |ψ〉
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brings an extra factor of
[
E0 − E(k)

exc(i1, i2, ..., ik)
]−1

where E(k)
exc(i1, i2, ..., ik) is

the energy of the excited state G0(E0)H
(ik)
T ...G0(E0)H

(i1)
T |ψ〉 after k elemen-

tary tunneling events i1, i2, ..., ik. Assuming both the temperature T and elec-

tric fields Ebias = Vi+1−Vi
ξ

are small, i.e. kBT � e2/κξand eξEbias � e2/κξ,

each elementary tunneling event increases the energy by an amount of the

order of ∼ e2/κξ. Noting Ēc the average excitation energy added by a tunnel-

ing event, E(k)
exc(i1, i2, ..., ik) ≈ E0 + kĒc and each term in equation 3.2.18 is

proportional to (−1)N−1
(
(N − 1)!ĒN−1

c

)−1 . Since only |ψki,i〉 → |ψk′i+1,i+1〉

transitions contribute to probability amplitude A(~k,~k′), each non-zero term in

equation 3.2.18 has the same numerator

tN−1(ψk1,1(r1)ψ∗k′2,2(l2))×(ψk2,2(r2)ψ∗k′3,3(l3))×...×(ψkN−1,N−1(rN−1)ψ∗k′N ,N(lN))

Taking into account the (N − 1)! different tunneling orderings, we obtain:

A(~k,~k′) ≈ (−1)N−1

(
t

Ēc

)N−1 N−1∏
i=1

(ψki,i(ri)ψ
∗
k′i+1,i+1(li+1)) (3.2.19)

The total probability of multiple inelastic co-tunneling along the path 1→ 2→

...→ N is thus:

Pin,N =
∑
~k,~k′

|A(~k,~k′)|2 (3.2.20)

Chaotic dots are well described by Gaussian ensembles, either Gaussian Unitary

Ensemble (GUE) or the Gaussian Orthogonal Ensemble (GOE). In other words,

the energy level statistics and corresponding wavefunctions are not correlated,

and for a given state of wavefunction ψ, and given points ~r and ~r′ in the dot,

ψ(~r) and ψ(~r′) are identically distributed random variables having Gaussian

probability distributions [65]. Performing an ensemble average 〈...〉 on Pin,N ,
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we obtain:

〈Pin,N〉 =

(
|t|2

Ē2
c

)N−1∑
~k,~k′

N−1∏
i=1

〈
|ψki,i(ri)|2

〉 〈
|ψk′i+1,i+1(li+1)|2

〉
(3.2.21)

We now evaluate sums over ki and k′i+1 by means of integrals. Noting D(ε)

the areal density of states in dots, and fFD(ε) the Fermi-Dirac distribution,

we do the following substitutions at finite temperature:

∑
ki

→
ˆ +∞

−∞
dεiξ

2D(εi)fFD(εi) (3.2.22)

and ∑
k′i

→
ˆ +∞

−∞
dε′iξ

2D(ε′i)(1− fFD(ε′i)) (3.2.23)

We also write the sum
∑

~k,~k′ such that the tunneling events 1 → 2 and N −

1 → N involve a charge carrier leaving the fixed ground state k(0)
1 in dot

1 and reaching the excited state kexN in dot N respectively. Noting ∆ the

energy difference between the charge carrier leaving dot 1 and the charge carrier

reaching dot N , we obtain, since 〈|ψki,i(ri)|2〉 =
〈
|ψk′i+1,i+1(li+1)|2

〉
= ξ−2:

〈Pin,N〉 = ξ−4

(
|t|2

Ē2
c

)N−1

fFD(ε
k

(0)
1 ,1

)(1− fFD(εkexN ,N))IN(∆, T ) (3.2.24)

with

IN(∆, T ) =
N−1∏
i=1

ˆ +∞

−∞
dεiD(εi)fFD(εi)

ˆ +∞

−∞
dε′iD(ε′i)(1− fFD(ε′i))

δ

(
N−1∑
i=1

(ε′i+1 − εi)−∆

)
(3.2.25)

where δ
(∑N−1

i=1 (ε′i+1 − εi)−∆
)
enforces the energy conservation. Here, the

energy conservation of the N -particle state is a clear idealization. During
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multiple inelastic co-tunneling, individual charge carriers involved in the process

virtually tunnel to a neighboring dot, before relaxing their energy. The energy

relaxation can be done by phonon adsorption or emission, electron-electron

interaction, or by interacting with electron-hole pairs created by the inelastic co-

tunneling process itself [84]. While in the latter case, the energy conservation

of the N -particle state applies, it is not strictly enforced when phonons are

emitted or absorbed, or when energy is relaxed to other charge carriers in the

system. For these reasons, a more accurate calculation would replace the δ-

function by a peak-function F exhibiting a maximum at zero [66, 67, 68].

For the sake of simplicity, we will nonetheless follow Beloborodov et al and

Feigel’man and Ioselevich [84, 83], and consider a delta function.

We now estimate the multiple integral IN(∆, T ). Using the Fourier repre-

sentation of the Dirac δ function,

δ

(
N−1∑
i=1

(ε′i+1 − εi)−∆

)
=

ˆ +∞

−∞

dt

2π~
exp

[
i

(
N−1∑
i=1

(ε′i+1 − εi)−∆

)
t/~

]

=

ˆ +∞

−∞

dt

2π~
e−i∆t/~

N−1∏
i=1

ei(ε
′
i+1−εi)t/~ (3.2.26)

we rewrite IN(∆, T ) as:

IN(∆, T ) =

ˆ +∞

−∞

dt

2π~
e−i∆t/~

N−1∏
i=1

ˆ +∞

−∞
dεiD(εi)fFD(εi)e

−iεit/~

N−1∏
i=1

ˆ +∞

−∞
dε′iD(ε′i)(1− fFD(ε′i))e

iε′i+1t/~ (3.2.27)

For materials whose density of states is even in energy, such as graphene at

half-filling, we have

ˆ +∞

−∞
dωD(ω)(1− fFD(ω))eiωt/~ =

ˆ +∞

−∞
dωD(ω)fFD(ω)e−iωt/~ (3.2.28)
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and hence:

IN(∆, T ) =

ˆ +∞

−∞

dt

2π~
e−i∆t/~

(ˆ +∞

−∞
dωD(ω)fFD(ω)e−iωt/~

)2(N−2)

(3.2.29)

We next apply it to the particular cases of parabolic-band dots and granular

Dirac materials, whose grains have a linear spectrum.

3.2.3.2 The case of parabolic-band two-dimensional electron gases

We first investigate the case of a constant density of states, D(ω) = 2D0, where

D0 is the density of states per spin, valid for parabolic-band two-dimensional

electron gases. In this case, we have:

IN(∆, T ) = D2(N−2)
0

ˆ +∞

−∞

dt

2π~
e−i∆t/~F(T, t)2(N−2) (3.2.30)

where

F(T, t) = 2

ˆ +∞

−∞
dωfFD(ω)e−iωt/~ (3.2.31)

F(T, t) can be evaluated easily using the residue theorem. The poles ωn of

fFD(ω) are located on the imaginary axis and read, for all integers n:

ωn = 2ikBT (
π

2
+ nπ) (3.2.32)

so that:

F(T, t) = 4iπkBT
+∞∑
n=0

e−ωn/2kBT e−iωnt/~

sinh(ωn/2kBT )
(3.2.33)

F(T, t) = 4iπkBT
+∞∑
n=0

e−ωn/2kBT e−iωnt/~

sinh(ωn/2kBT )

=
2iπkBT

sinh(πkBTt/~)
(3.2.34)
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Therefore,

IN(∆, T ) = D2(N−2)
0

ˆ +∞

−∞

dt

2π~
e−i∆t/~

(
2iπkBT

sinh(πkBTt/~)

)2(N−2)

(3.2.35)

The integrand in equation 3.2.35 has zero as a pole of order 2(N − 2). Never-

theless, this problem can be cured by integrating in the lower or upper half of

the complex plane, i.e. doing the substitution:

ˆ +∞

−∞
→
ˆ +∞+iη

−∞+iη

(3.2.36)

where η = 0±. Noticing that

IN(∆, T ) = D2(N−2)
0

ˆ +∞+iη

−∞+iη

dt

2π~
e−i∆t/~

(
2πkBT

cosh(πkBTt/~ + iπ/2)

)2(N−2)

(3.2.37)

and doing the change of variable τ = t+ i~
2kBT

, we obtain:

IN(∆, T ) = e−∆/2kBTD2(N−2)
0

ˆ +∞+iη+ i~
2kBT

−∞+iη+ i~
2kBT

dτ

2π~
e−i∆τ/~

(
2πkBT

cosh(πkBTτ/~)

)2(N−2)

(3.2.38)

Performing a second change of variable, u = exp(−2πkBTτ/~) leads to:

IN(∆, T ) = − e−∆/2kBT

(2π)2 kBT
[4πkBTD0]2(N−2)

ˆ
Dη

du
uN−3+i∆/2πkBT

(1 + u)2N
(3.2.39)

where the integration domain Dη corresponds to the semi-infinite line ]−∞, 0]

rotated by an angle of η. Choosing η > 0, the integral over Dη can be

replaced by an integral over [0,+∞[ because the integrand does not admit any

pole other than -1. This leads to:

IN(∆, T ) =
e−∆/2kBT

(2π)2 kBT
[4πkBTD0]2(N−2)

ˆ +∞

0

du
uN−3+i∆/2πkBT

(1 + u)2N
(3.2.40)
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In equation 3.2.40, we recognize the Euler Beta function,

B(N − 2 + i∆/2πkBT,N − 2− i∆/2πkBT ) =

ˆ +∞

0

du
uN−3+i∆/2πkBT

(1 + u)2N

(3.2.41)

which can easily be written in terms of Euler Gamma functions,

B(N − 2 + i∆/2πkBT,

N − 2− i∆/2πkBT )

=
Γ(N − 2 + i∆/2πkBT )Γ(N − 2− i∆/2πkBT )

Γ(2(N − 2))

=
|Γ(N − 2 + i∆/2πkBT )|2

Γ(2(N − 2))
(3.2.42)

Putting all pieces together, we finally end up with:

〈Pin,N〉 =
|t|2Wξ−4

(2π)2 Ē2
ckBT

e−∆/2kBT

(
4πkBTD0|t|

Ēc

)2Nint |Γ(Nint + i∆/2πkBT )|2

Γ(2Nint)

(3.2.43)

with W = fFD(ε
k

(0)
1 ,1

)(1 − fFD(εkexN ,N)). In equation 3.2.43, Nint = N − 2

is the number of intermediate grains standing between initial and final dots

involved in the multiple inelastic co-tunneling (MIC) process. Introducing the

dimensionless inter-grain conductance

g = π|t|2D2
0 (3.2.44)

equation 3.2.43 suggests the existence of an effective elementary inelastic tun-

neling probability

pin = 16πg

(
kBT

Ēc

)2

(3.2.45)

which is vanishingly small in the low-temperature regime kBT � Ēc in which

MIC nonetheless dominates the “orthodox” sequential tunneling mechanism.

We can further simplify equation 3.2.43 by invoking the Efros-Shklovskii ar-

gument [60]: because of the unavoidable Coulomb interaction between an
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electron excited from ground state and the corresponding hole left behind, the

density of states ν(ε) of the entire granular system must vanish at the Fermi

level EF . In two-dimensions in particular, the density of states at EF vanishes

linearly in energy,

ν(ε) ∼
( κ
e2

)2

|ε− EF | (3.2.46)

and correspondingly, we have:

∆ ∼ Ce2

κNintξ
(3.2.47)

for some constant C of the order of unity. Defining the “charging temperature”

Tc = e2

κξ
and probability prefactor

α =
|t|2Wξ−4

(2π)2 Ē2
ckBT

(3.2.48)

the MIC probability now reads:

〈Pin,N〉 = αpNintin

|Γ(Nint + i∆/2πkBT )|2

Γ(2Nint)
exp

(
− CTc

2NintT

)
(3.2.49)

So far, Nint was a free parameter of the problem. However, the measured

MIC-induced conductivity of a large-enough two-dimensional granular metal

in the insulating regime is necessarily dominated by almost optimally conducting

pathways. Corresponding pathways comprise links of ∼ Nint + 2 grains, such

that Nint maximizes 〈Pin,N〉, or equivalently the “action” [84]:

ϕ(Nint) = Nint ln pin + 2 ln |Γ(Nint + i∆/2πkBT )| − ln Γ(2Nint)−
CTc

2NintT

(3.2.50)

52



Applying Stirling formula in the limit of low temperatures T and large Nint, we

have ln Γ(2Nint) = ln(π/Nint)/2+2Nint ln(2Nint)− 2Nint and

ln
(
|Γ(Nint + i∆/2πkBT )|2

)
≈ ln(2π) + (Nint −

1

2
) ln

(
N2
int +

(
∆

2πkBT

)2
)

− ∆

πkBT
arctan

(
∆

2πNintkBT

)
(3.2.51)

In this double limit, we can easily find the number of intermediate grains Nint =

Nhop which typically maximizes the action, by requiring:

∂ϕ

∂Nint

(Nhop) = ln
(pin

4

)
+ 2 + ln(1 +x2) +πx(1 +

2

π
arctanx) = 0 (3.2.52)

where we set

x =
∆

2πNhopkBT
(3.2.53)

Equation 3.2.52 indicates that x must be large at low temperatures, when pin

is vanishingly small. More precisely,

x ≈ 1

2π
ln

(
1

pin

)
(3.2.54)

and hence

Nhop ≈
√√√√ CTc

ln
(

1
pin

)
T

(3.2.55)

Since the action reads

ϕ(Nint) ≈ Nint

(
ln pin + ln

(
1 +

(
∆

2πNintkBT

)2
)

+ 2− 2 ln 2

)

− ∆

2kBT

(
1 +

2

π
arctan

(
∆

2πNintkBT

))
(3.2.56)
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equation 3.2.52 directly implies that the action takes the maximum value:

ϕ(Nhop) ≈ − ∆

kBT
(1 +

2

π
arctanx)

≈ − 2∆

kBT
(3.2.57)

and finally, using equation 3.2.55, we end up with:

ϕ(Nhop) = −

√
4C ln

(
1

pin

)
Tc
T

(3.2.58)

This strinkingly resembles the Efros-Shklokski law ϕES ∝ −T−1/2, except

that the charging temperature Tc is renormalized by a weakly temperature-

dependent factor of 4C ln
(

1
pin

)
which logarithmically diverges as T → 0K.

Though the underlying mechanism behind multiple inelastic co-tunneling is

clearly different from Efros-Shklovskii variable-range hopping mechanism [104],

it yields a conductivity with the same temperature-dependence and hence pro-

vides a compelling explanation for experimental results obtained so far in gran-

ular metals. Besides, action ϕ(Nhop) has a much smaller magnitude than Ec/T

in the T � Ec regime, showing that multiple inelastic co-tunneling dominates

over sequential tunneling in the small temperature limit.

Similarly, the typical hopping distance Nhopξ and corresponding action ϕ

can be calculated for a finite electric field Esd induced by the source-drain

voltage and at T = 0K. In this case, equation 3.2.35 simply becomes

IN(∆, T ) = D2Nint
0

ˆ +∞+iη

−∞+iη

dt

2π~
e−i∆t/~

(
2i~
t

)2Nint

=
(4D2

0∆2)Nint

|∆|(2Nint − 1)!
(3.2.59)

and hence:

〈Pin,N(T = 0)〉 =
Wξ−4|t|2

(2Nint − 1)!|∆|Ē2
c

(
4D2

0∆2|t|2

Ē2
c

)Nint
(3.2.60)
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The difference ∆ in energy between the initial and final states is now essentially

due to the electric field Esd,

∆ ≈ eξEsdNint (3.2.61)

so that

〈Pin,N(T = 0)〉 =
2Wξ−4|t|2

eξ|Esd|Ē2
c

(
(2Nint)

2Nint−1

(2Nint − 1)!

)(
g(eξEsd)

2

πĒ2
c

)Nint
(3.2.62)

and the effective elementary inelastic tunneling probability now becomes

pin(T = 0) =
g

π

(
eξEsd
Ēc

)2

(3.2.63)

The typical number of intermediate grains involved in an MIC event at T = 0K

and finite Esd can easily be computed. Unlike the non-zero temperatures case,

MIC events at finite Esd and T = 0K always involve

Nhop(T = 0) ≈

√
CTc
eEsdξ

(3.2.64)

grains, due to both the equality ∆ ≈ eξEsdNint expressing the typical bias be-

tween initial and final grains, and the Efros-Shklovski constraint ∆ ∼ CTc/Nint.

Using the Stirling approximation, we thus obtain

〈Pin,N(T = 0)〉 ∝ e2NhopeNhop ln pin(0), (3.2.65)

which in the low-field limit eξEsd � Ēc becomes:

〈Pin,N(T = 0)〉 ∝ exp

−
√
C ln2 pin(0)Tc

eEsdξ

 (3.2.66)

Again 〈Pin,N(T = 0)〉 has the same electric-field dependence as the Efros-

Shklovskii variable-range hopping conductivity at T = 0 K.
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3.2.3.3 The case of graphene at low Fermi energy

We next calculate 〈Pin,N〉 for granular graphene, when the Fermi level lies close

to the Dirac point. We now have D(ω) = 2
π
|ω|

(~vF )2 , and:

Igr,N(∆, T ) =

(
1

π(~vF )2

)2Nint ˆ +∞

−∞

dt

2π~
e−i∆t/~Fgr(T, t)2Nint (3.2.67)

with

Fgr(T, t) = 2

ˆ +∞

−∞
dω|ω|fFD(ω)e−iωt/~ (3.2.68)

At finite temperature T , Fgr(T, t) reads:

Fgr(T, t) =
kBT

2

2

(
ψ(1)

(
−ikBTt

2~

)
− ψ(1)

(
1

2
− ikBTt

2~

)
+ ψ(1)

(
1

2
+
ikBTt

2~

)
− ψ(1)

(
1 +

ikBTt

2~

))
(3.2.69)

where ψ(1) is the first derivative of the digamma function. For the sake of

simplicity, we calculate Igr,N(∆, T ) at T = 0K, as

Fgr(T = 0K, t) = −2~2

t2
(3.2.70)

In the zero-Kelvin limit, we thus have:

Igr,N(∆, T = 0K) =

(
2~2

π(~vF )2

)2Nint ˆ +∞+iτ

−∞+iτ

dt

2π~
e−i∆t/~t−4Nint (3.2.71)

where τ is an infinitesimal real time. The only pole of the above integrand is

0, and it is of order 1. Applying the residue theorem, we easily obtain

Igr,N(∆, T = 0K) =
1

|∆|(4Nint − 1)!

(
2∆2

π(~vF )2

)2Nint

(3.2.72)
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where the sign of τ has been chosen such that the winding number and ∆ are

of opposite sign. We therefore end up with the following MIC probability:

〈Pgrin,N(T = 0)〉 =
ξ−4W|t|2

|∆|Ē2
c (4Nint − 1)!

(
2∆2|t|

π(~vF )2Ēc

)2Nint

(3.2.73)

This expression can be further simplified. Introducing the Nint-independent

prefactor α′ = ξ−4W|t|2/eξ|Esd|Ē2
c and the typical level spacing in graphene

dots ∆0 = ~vF/ξ, we obtain, given that ∆ ≈ eξEsdNint:

〈Pgrin,N(T = 0)〉 =
α′(4Nint)

4Nint−1

(4Nint − 1)!

(
e2E2

sd|t|
8π∆2

0Ēc

)2Nint

(3.2.74)

For granular graphene with the Fermi level close to the Dirac point, the effective

elementary inelastic tunneling probability thus reads, at T = 0K:

pgrin(0) = g

(
e2E2

sdξ
2

8π∆0Ēc

)2

(3.2.75)

In the low electric-field limit, we thus recover a result similar to equation 3.2.66,

〈Pgrin,N(T = 0)〉 ∝ exp

−
√
C ln2 pgrin(0)Tc

eEsdξ

 (3.2.76)

Since in graphene, Ēc ∼ e2

κξ
is of the same order of magnitude as ∆0 = ~vF

ξ
,

ln(pgrin(0)) = 2 ln

(
Ēc
∆0

)
+ 2 ln pin(0)− ln(64g)

∼ 2 ln pin(0)− ln(64g) (3.2.77)

Therefore, for “moderately” insulating granular graphene, g ∼ 10−2 to 10−1,

the Esd-dependence of the conductance Ggr(Esd) is expected to be close to

the Esd-dependence of the conductance Gpara(Esd) for granular parabolic-band

2DEGs. Theoretically, both lnGgr(Esd) and lnGpara(Esd) have a ∼
√
E0/Esd

behavior with similar values of E0. Naturally, the same situation is expected at
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finite temperatures, i.e. comparable Ggr(T ) and Gpara(T ), with experimentally

indistinguishable temperature dependences.

3.2.3.4 Fluctuations of multiple inelastic cotunneling

In previous paragraphs, we calculated the average probability of MIC, and de-

rived an expression for the conductance GMIC associated with this transport

mechanism, both for parabolic-band grains and graphene grains. It was shown

that GMIC has similar temperature and electric-field dependences as the Efros-

Shklovskii law, though the underlying transport mechanisms are different. Un-

like Efros-Shklovskii variable-range hopping in amorphous media, single MIC

events in granular metals involve multiple charge-carriers which “cooperatively”

tunnel between neighboring grains. We thus expect a much larger temperature-

dependence for the mesoscopic fluctuations of lnGMIC compared to the case

of Efros-Shklovskii variable-range hopping. To verify this intuitive picture, we

aim to derive in this section a probability distribution for the probability of

multiple inelastic cotunneling, i.e. calculating P(PMIC = p).

Setting

Si,±(~ρ, τ) =
∑
εki,i

fFD(±εki,i)e∓iεki,iτ/~|ψki,i(~ρ)|2 (3.2.78)

and using results from the previous section, the probability of MIC along a path

1→ 2→ ...→ N reads:

Pin,N =
W
ξ4

(
|t|2

Ē2
c

)N−1 ˆ +∞

−∞

dτ

2π
e−i∆τ/~

N−1∏
i=2

Si,±(~ri, τ)Si,±(~li, τ) (3.2.79)

Given two independent random vectors with M components (X1, X2, ..., XM)

and (Y1, Y2, ..., YM), and assuming that Y1, ..., YM are identically distributed

random variables, then

L =
M∑
i=1

XiYi (3.2.80)
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and

L̃ =

(
M∑
i=1

Xi

)
1

M

M∑
i=1

Yi (3.2.81)

have asymptotically the same probability distributions in the M → +∞ limit.

This is easily shown by comparing n-order moments 〈Ln〉 and
〈
L̃n
〉
, which in

the M � 1 limit verify:

〈Ln〉 ∼
〈
L̃n
〉
∼

∑
i1,i2,...in

〈Xi1Xi2 ...Xin〉 〈Y 〉
n (3.2.82)

Based on this observation, we can write:

Si,±(~ρ, τ) ≈ ξ2

Nth

(ˆ +∞

−∞
dεD(ε)fFD(±ε)e∓iετ/~

)
Sth,i(~ρ, T ) (3.2.83)

with

Sth,i(~ρ, T ) =
∑

|εki,i−EF |.kBT

|ψεki,i(~ρ)|2 (3.2.84)

where Nth is the typical number of energy levels within ∼ kBT around the

Fermi level EF . If dots are described by the Gaussian Orthogonal (Unitary)

Ensemble, then eigenvectors are real (complex) and Sth,i(T ) is the sum of βNth

identically distributed random real Gaussian variables of mean 0 and standard

deviation σ ∼ ξ−1 with β = 1 (β = 2). Therefore, random variables Sth,i(~ρ, T )

follow a chi-squared law

P(Sth,i(~ρ, T ) = s) =
s
βNth

2
−1e−

s
2σ2

2βNth/2σβNthΓ(βNth/2)
, (3.2.85)

and Pin,N is a product of 2Nint such random variables:

Pin,N =Wξ4(Nint−1)IN(∆, T )

(
|t|2

Ē2
c

)N−1 N−1∏
i=2

Sth,i(~ri, T )Sth,i(~li, T )

(3.2.86)

The natural measure of conductance fluctuations in strongly disordered

systems is the standard deviation of log-conductance, σlnG. We thus need to
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calculate the standard deviation σlnS of ln (Sth,i(~ρ, T )). We have:

〈ln (Sth,i(~ρ, T ))〉 =

ˆ +∞

−∞
dx

xe
βNth

2
xe−

ex

2σ2

2βNth/2σβNthΓ(βNth/2)

= ln(2σ2) + ψ

(
βNth

2

)

where again, ψ is the digamma function. Similarly calculating the second

moment
〈
ln2 (Sth,i(~ρ, T ))

〉
, we easily obtain

〈
ln2 (Sth,i(~ρ, T ))

〉
− 〈ln (Sth,i(~ρ, T ))〉2 = ψ(1)

(
βNth

2

)
(3.2.87)

As soon as x & 1, ψ(1)(x) ≈ 1/x. This approximation is accurate and does

not require to be in the x� 1 limit to be valid. We can thus write

σlnS ≈
√

2

βNth

(3.2.88)

even when only few intra-dot energy levels exist within ∼ kBT around the

Fermi level. We can thus calculate the standard deviation σlnP of ln (Pin,N) for

Nint = Nhop in the small temperatures limit, whenNhop ∝ T−1/2 becomes large

and the central limit theorem can be applied, while equation 3.2.88 remains

valid in spite of small Nth. Since in addition Nth ∝ T for parabolic-band

2DEGs and Nth ∝ T 2 (see appendix, section 3.5.6) for graphene close to the

Dirac point, we end up with

σlnP ∝
√
Nhop

Nth

(3.2.89)

at low-enough temperatures. We now have to relate σlnP at the scale of a

hopping distance Nhopξ to the the fluctuations in log-conductance σlnG at the

scale of an entire array of dots. This can be achieved by mapping the granular

system to a resistor network whose vertices correspond to initial and final grains
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i and f involved in MIC events, and edges are resistors of conductance

gi→fMIC = g0e
−λXi→f (3.2.90)

where gi→fMIC is the MIC-induced conductance between grains i and f , Xi→f is

a random variable with uniform distribution in [0, 1]. In equation 3.2.90,

λ = 2
√

3σlnP (3.2.91)

and

g0 = γ0 exp

(
λ

2
−
√
KinTc
T

)
(3.2.92)

where γ0 is a numerical prefactor, Kin is such that 〈lnPin,N〉 = −
√
KinTc
T

.

With such definitions,
〈

ln gi→fMIC

〉
= 〈lnPin,N〉 up to a constant, and ln gi→fMIC

has a standard deviation of σlnP . The advantage of operating this mapping to

a random resistor network model is that the latter has been very well studied

[70]. In particular, networks whose elementary random conductances follow

the law described by equation 3.2.90 have a random resistivity R� following a

log-normal law [118, 114],

P(R� = ρ) =
1√

2πµρ
exp

(
− ln2(geρ)

2µ2

)
(3.2.93)

where µ ∼ λν

l
, l = L/Nhopξ is the granular system size L in units of the

hopping distance Nhopξ and ν = 4/3 is the critical exponent of the percolation

correlation length in two dimensions. In equation 3.2.93, ge = g0e
−pcλ where

pc is the percolation threshold. For a two-dimensional random resistor bond

network, pc = 1/2 and ge is simply

ge = γ0 exp

(
−
√
KinTc
T

)
(3.2.94)

which directly implies from equation 3.2.93 that the average granular system
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conductivity G� is ge, an expected result. Most importantly, we obtain from

equation 3.2.93 that the standard deviation of lnG� is σlnG = µ, and there-

fore:

σlnG ∝ Nhopσ
ν
lnP (3.2.95)

We thus have σlnG ∝ N
1+ ν

2
hop N

− ν
2

th , which leads to σlnG ∝ T−
3ν+2

4 ≈ T−3/2

for parabolic-band dots and σlnG ∝ T−
5ν+2

4 ≈ T−13/6 for graphene grains

with small Fermi energy. In the low-temperature limit, the fluctuations in log-

conductance are much larger for granular metals with graphene grains than

granular metals with parabolic-band grains. Interestingly, this means that

the intra-grain energy spectrum can be distinguished in electron transport ex-

periements in which the percolation network is tuned, for instance by means of a

gate voltage. The above-results also show that experimentally, multiple inelas-

tic co-tunneling can be easily distinguished from Efros-Shklovskii variable-range

hopping. Though these transport mechanisms yield average conductances with

similar temperature dependences, their fluctuations have drastically different

behavior. More precisely, Efros-Shklovskii variable-range hopping leads to much

less temperature-dependent conductance fluctuations, σESlnG ∝ T−a with a < 1,

as shown by several authors [113].

3.2.4 Multiple elastic co-tunneling

Until now, we have shown that while sequential tunneling is the dominant

electron-transport mechanism at temperatures T typically larger than the dots

charging energy, multiple inelastic co-tunneling yields much larger conductivi-

ties as kBT � e2/κξ and eξEsd � e2/κξ. However, MIC itself should become

irrelevant at low temperatures and low electric fields. In this case, multiple elas-

tic co-tunneling (MEC), introduced earlier, should become more important. In

this section, we quantitatively study MEC, which involves only one electron.

We can thus deal with single-electron states.

We first write the Schrödinger equation for a quasi-particle in the initial
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dot, numbered as 1. At the Fermi level EF ,

(HD +HT )(ψ1 + δψ1) = EF (ψ1 + δψ1) (3.2.96)

where ψ1 is the eigenstate of the quasi-particle in dot 1, and δψ1 is a pertur-

bation to this state induced by the small tunneling term HT . δψ1 thus reflects

the possibility for the considered quasi-particle to be outside dot 1, and spans

the entire granular system. By definition, ψ1 obeys the Schrödinger equation:

HDψ1 = EFψ1 (3.2.97)

Combining equations 3.2.96 and 3.2.97 thus yields:

(EF I−HD −HT )δψ1 = HTψ1 (3.2.98)

and hence:

δψ1 = Gtot(EF )HTψ1 (3.2.99)

where Gtot(EF ) is the total Green operator

Gtot(EF ) = lim
η→0+

(EF I−HD −HT + iη)−1 (3.2.100)

The perturbed Green operator can be simply related to the unperturbed one,

G0(EF ) = lim
η→0+

(EF I−HD + iη)−1 (3.2.101)

through the equation:

Gtot(EF )−1 = G0(EF )−1 −HT (3.2.102)
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A series expansion thus yields:

δψ1 =
+∞∑
n=1

(G0(EF )HT )nψ1 (3.2.103)

We assume that initial and final dots are connected by a path, comprising

N − 2 intermediate dots, which conducts exponentially better than all other

paths linking initial and final dots. Dots along this path are numbered from

1 to N . The probability amplitude for a multiple elastic co-tunneling event

between state ψN in final dot N and state ψ1 thus reads:

A(ψ1 → ψN) =
+∞∑
n=1

〈ψN |(G0(EF )HT )n|ψ1〉

≈ 〈ψN |(G0(EF )HT )N |ψ1〉 (3.2.104)

Discarding all terms corresponding to dots outside the most conducting path

and noting

∆E =

(
N∏
i=1

(Ecn
2
i + eϕini)

)1/n

− EF , (3.2.105)

we obtain:

A(ψ1 → ψN) ≈
∑

p2,p3,...,pN−1

t1,2p1,p2
× t2,3p2,p3

× ...× tN−1,N
pN−1,pN

(−εp2,2 −∆E + iη)× ...× (−εpN ,N −∆E + iη)

(3.2.106)

The corresponding probability P(ψ1 → ψN) thus verifies:

P(ψ1 → ψN) ∝ |t|2(N−2)
∑

p2,...,pN−1

∑
q2,...,qN−1

N−1∏
n=2

ψpn(ln)ψ∗pn(rn)ψ∗qn(ln)ψqn(rn)

(εpn,n + ∆E + iη)(εqn,n + ∆E − iη)

(3.2.107)

where ln (respectively rn) labels the point of dot n through which the consid-

ered quasi-particle enters (respectively leaves) by tunneling. We model Hamil-
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tonians H i
D describing individual dots by random matrices in the orthogonal

or unitary ensemble. In each grain, eigenvectors corresponding to different

eigenstates are thus independtly distributed Gaussian variables, and eigenvec-

tors and eigenvalues are uncorrelated. Besides, individual components of each

eigenvector are independently distributed Gaussian variables, in the large-dot

limit [65]. In other words,

〈ψ∗k(s)ψk′(s′)〉 =
δk,k′δs,s′

Adot
(3.2.108)

where 〈...〉 is the appropriate ensemble average and Adot ≈ ξ2 is the typical dot

area. Ensemble-averaging the transition probability P(ψ1 → ψN), we obtain:

〈P(ψ1 → ψN)〉 ∝ |t|2(N−2)
∑

p2,...,pN−1

∑
q2,...,qN−1

N−1∏
n=2

〈
ψpn(ln)ψ∗qn(ln)

〉 〈
ψqn(rn)ψ∗pn(rn)

〉
(εpn,n + ∆E + iη)(εqn,n + ∆E − iη)

(3.2.109)

Using equation 3.2.108, equation 3.2.109 simplifies to:

〈P(ψ1 → ψN)〉 ∝ |t|
2(N−2)

A2(N−2)
dot

∑
p2,...,pN−1

N−1∏
n=2

1

(εpn,n + ∆E)2
(3.2.110)

〈P(ψ1 → ψN)〉 ∝ |t|2(N−2)

A2(N−2)
dot

∑
p2,...,pN−1

N−1∏
n=2

1

(εpn,n + ∆E)2

∝ |t|2(N−2)

A2(N−2)
dot

N−1∏
n=2

∑
pn

1

(εpn,n + ∆E)2
(3.2.111)

Equation 3.2.111 can be simplified using the areal density of states D(ε) at

energy ε: ∑
pn

1

(εpn,n + ∆E)2
≈
ˆ +∞

0

AdotD(ε)dε

(ε+ ∆E)2
(3.2.112)
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Equation 3.2.112 is valid in the T = 0 K limit, where Fermi-Dirac distributions

can be replaced by step-functions. We do not include the effect of finite

temperatures as the leading-order term is temperature-independent. The MEC

rate therefore reads:

〈P(ψ1 → ψN)〉 ∝
(
|t|2

Adot

ˆ +∞

0

D(ε)dε

(ε+ ∆E)2

)Nint
(3.2.113)

Equation 3.2.113 is general and can be applied to granular metals with parabolic-

band dots or graphene dots. For parabolic-band grains, D(ε) = 2D0 is con-

stant, and we obtain:

〈Ppara(ψ1 → ψN)〉 ∝
(

2|t|2D0

Adot∆E

)Nint
(3.2.114)

Introducing the mean level-spacing δ0, and using equation 3.2.44, we end up

with the well-known result [84, 83]

〈Ppara(ψ1 → ψN)〉 ∝
(
g

δ0

π∆E

)Nint
(3.2.115)

For graphene, the density of states is linear in energy, D(ε) = 2
π

ε
(~vF )2 . This

remains approximately valid in graphene grains and even in chaotic dots [63].

Introducing graphene’s half-bandwidth Γ, necessary to make the integral of

equation 3.2.113 converge, we obtain the following average MEC rate for gran-

ular graphene:

〈Pgr(ψ1 → ψN)〉 ∝
(
g7

[
ln

(
Γ

∆E

)
− 1

])Nint
(3.2.116)

where we introduced the effective inter-grain dimensionless conductance

g7 =
2|t|2

πAdot(~vF )2
(3.2.117)

for granular graphene. In both parabolic-band dots and graphene dots cases,
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the MEC rate appears as the Nint-th power of a probability, pparael = g δ0
π∆E

and

pgrel = g7
[
ln
(

Γ
∆E

)
− 1
]
respectively. In both cases, the multiple elastic co-

tunneling rate can thus be interpreted as arising from a sequence of independent

virtual tunneling events of probability ppara/grel . However, one typically has

pparael � pgrel (3.2.118)

because δ0 � ∆E while ∆E � Γ. In other words, the MEC rate is con-

siderably enhanced in granular graphene, compared to conventional granular

systems, due to graphene’s linearly increasing density of states which partially

compensates the decreasing behavior of individual energy levels contribution to

the MEC rate, proportional to 1/(ε+ ∆E)2.

We can now calculate the MEC-induced conductivity GMEC in a way similar

to GMIC , presented in sub-sections 3.2.3.2 and 3.2.3.3. Applying the Mott

argument [69], the probability for a charge carrier of initial energy ε in grain 1

to hop to grain N with a final energy ε+ ∆ is, at small but finite temperature

T

PMEC(T ) ∝
(
p
para/gr
el

)Nint
e
− ∆
kBT (3.2.119)

where, employing the Efros-Shklovskii argument, ∆ ≈ Ce2

κNintξ
. Maximizing

PMEC(T ) with respect to Nint as done in sub-sections 3.2.3.2 and 3.2.3.3,

directly leads to the MEC-induced conductivity

G
para/gr
MEC (T ) ∝ exp

−
√√√√√Ce2 ln

(
1

p
para/gr
el

)
2κξT

 (3.2.120)

which again has a temperature-dependence similar to the Efros-Shklovskii variable-

range hopping law, in spite of arising from a distinct transport mechanism.

At T = 0 K and finite electric field Esd, we would find a similar result for

G
para/gr
MEC (Esd), with ∼ eξEsd playing the role of temperature T . In sub-sections
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3.2.3.2, 3.2.3.3, as well as the present section 3.2.4, we found two conduction

mechanisms, MIC and MEC, which yield larger currents than sequential tun-

neling in the low-temperature regime kBT � e2/κξ. An interesting question

is to find the range of temperatures in which MIC dominates over MEC. As

explained earlier, MEC is expected to dominate over MIC at low-enough tem-

peratures. A typical crossover temperature T para/grcross can easily be found by

solving

p
para/gr
in (T para/grcross ) = p

para/gr
el (3.2.121)

which for conventional granular metals and granular graphene gives a crossover

temperature proportional to the geometric average of the mean charging energy

Ēc and the intra-dot level spacing at the Fermi level [82].

3.3 Sample fabrication and characterisation

The previous section was devoted to presenting important theoretical results

on granular metals, and comparing our findings for granular graphene to estab-

lished results on “conventional” granular systems, whose grains are parabolic-

band two-dimensional electron gases. We now shift our focus to the experimen-

tal part of this chapter. Before presenting our data on hydrogenated graphene

and studying its granular character, we first describe two key techniques used

for sample fabrication and characterisation.

3.3.1 Graphene hydrogenation

In recent years, hydrogenated graphene has been intensively studied essentially

for energy storage applications and understanding better scattering between

graphene charge carriers and adatoms [90, 91]. These works mostly focused

on graphene hydrogenated on a single face, thereby limiting the concentration

of hydrogen atoms adsorbed on the graphene scaffold. However, recent predic-

tions of high-temperature superconductivity in fully hydrogenated graphene and
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the possibility to fabricate granular graphene sheets by heavy hydrogenation,

are strong incentives to develop methods to hydrogenate suspended graphene.

Here, we give a detailed description of the method we used to hydrogenate sus-

pended graphene sheets on both sides and fabricate devices for electron trans-

port measurements. Our method essentially consists in suspending graphene

over a grid, then exposing it to a hydrogen plasma in high-vacuum conditions

and finally depositing the resulting material onto a silicon oxide wafer for easy

fabrication of gold/chromium contacts by standard electron-beam lithography.

While in chapter 2, we used exfoliated graphene for our experiments, we now

decide to use CVD graphene, given the possibilities it offers in terms of transfer

onto a wide range of substrates and structures.

The standard CVD growth technique leads to the synthesis of graphene on

both faces of a copper foil. One of these two graphene layers must then be

removed to allow an easy chemical etching of the copper foil and a subsequent

transfer of the remaining graphene layer. The most widely used technique relies

on a layer of polymer - typically PMMA -, spin-coated on one graphene layer,

the other one remaining in contact with air. Upon exposure to O2/Ar plasma,

the later is completely etched, while the former stays intact, due to its protective

polymer layer. However, this technique is not appropriate to the production of

graphane crystals, as unavoidable polymeric residues would drastically limit the

hydrogenation. Figure 3.3.1 shows TEM pictures of suspended CVD graphene

samples, whose fabrication involved PMMA. The PMMA residues present on

the graphene membrane (left picture) cannot be removed by performing ther-

mal annealing at 250oC for 3 hours (right picture), which makes PMMA cluster

up and does not lead to its removal.

In order to facilitate the hydrogenation process, we used a polymer-free

method to suspend graphene sheets on top of a Transmission Electron Mi-

croscopy (TEM) grids. This technique is depicted in Figures 3.3.2 and 3.3.4.

It allows transferring CVD graphene from its copper foil to a TEM grid with-
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Figure 3.3.1: TEM pictures of suspended CVD graphene prepared with standard
PMMA-based methods. Left picture: without thermal annealing. PMMA
residues form large puddles over most of the graphene membrane; Right picture:
after thermal annealing at 250oC for 3h, graphene residues did not disappear,
but clustered up. Scale bars: 100 nm for both pictures.

out using PMMA. Only one chemical is used: a weakly concentrated solution

of ammonium persulfate to etch copper. Unlike PMMA, possible ammonium

persulfate residues on graphene can be easily removed upon DI water rins-

ing. After suspension using a gold Quantifoil Micromachined Holey Carbon

TEM grid S7/2, graphene is hydrogenated in a high-vacuum chamber and then

transferred to a Si/SiO2 wafer with 90 nm of oxide, which offers an enhanced

contrast for hydrogenated graphene.

In what follows, we give practical details regarding our polymer-free sus-

pension and hydrogenation technique. Letters (a) to (i) refer to steps depicted

in Figure 3.3.2, while letters (j) to (m) refer to Figure 3.3.4.We first prepare

- step (a) - a piece of scotch tape with a hole and cover it with a graphene-

coated copper foil.(b) The latter is stamped on the sticky face of the tape. A

shell is then pasted on top to form the structure depicted in (c), so that the

upper copper foil face is hermetically sealed. This structure is then exposed

to argon plasma for 2 min (60W, 20 sccm of flow rate) and O2/Ar plasma

for 2 more minutes (60W, 20 sccm of flow rate for both O2 and Ar) to etch

graphene away from the non-protected side (d). The protective shell is then
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removed, and a piece of the suspended copper foil is cut (e) and placed on

the surface of a solution of ammonium persulfate (with a typical concentration

of 5-10 g/L). At this stage, there is no graphene at the interface between the

copper foil and the solution of ammonium persulfate, while a graphene layer

lies on the upper copper foil face. A gold Quantifoil Micromachined Holey

Carbon TEM grid S7/2 (f, g) is then gently deposited on the floating copper

foil, the carbon face being in contact with graphene (h). After few hours, the

copper foil is fully etched, leaving the TEM grid alone with a graphene layer

attached to its carbon film [71]. The TEM grid is then transferred to a pure

DI water beaker for 6 hours in order to rinse the graphene layer (i). Figure

3.3.3 shows an optical picture of a PMMA-free graphene sheet supported by a

TEM grid, just after rinsing and drying. A typical TEM picture of a 7 μm × 7

μm square of suspended graphene is shown in inset, illustrating the cleanliness

of the resulting suspended CVD graphene sheets, compared to CVD graphene

sheets prepared with standard polymer-based methods, see Figure 3.3.1.

Next, four of these graphene-covered TEM grids (j) are prepared and in-

serted in a home-made stainless steel TEM-grid holder (k). The holder is then

put on a hot plate at 100oC for a few minutes to dry the graphene membranes.

To prevent trapped water vapors from damaging graphene layers, the holder is

placed on the hot plate in an oblique fashion. The TEM grid holder is then

placed in an ultrahigh-vacuum chamber for hydrogenation. Before introduction

of a hydrogen plasma, a low pressure of 10−9 Torr is typically established. Then

a hydrogen plasma is generated by means of a RF Plasma system at 13.56 MHz

and 300W. During hydrogenation, the temperature is ∼ 300K and the pres-

sure is ∼ 5× 10−6 Torr [91]. After hydrogenation, the graphene-on-TEM-grid

samples are taken out of the holder and stamped onto 90 nm SiO2 wafers, the

graphene layer being in contact with the oxide (l). A scotch tape is generally

pasted on top of the grids, and then gently rubbed for few minutes using a

tweezer. Upon delicately removing the grids, some 7 μm ×7 μm squares of
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(e)

(f)

(g)

(h)

(i)

(d)

(c) (b) (a)

Figure 3.3.2: Polymer-free isolation of CVD graphene from its copper substrate.
Steps (a) to (i) are described in the main text.

72



Figure 3.3.3: Typical picture of a Quantifoil TEM grid entirely covered with
PMMA-free CVD graphene, after rinsing and drying on a hot plate. Inset: TEM
picture of a 7μm × 7μm square of suspended graphene, before hydrogenation.
This picture illustrates the exceptional cleanliness of CVD graphene prepared
following the method depicted in Figure 2. Scale bare: 1 μm.

graphene are transferred to SiO2, presumably due to the electrostatic forces at

the SiO2-graphene interface. An optical picture of the typical result is shown

in Figure 3.3.4 (m).

The polymer-free fabrication method presented in this section is key for the

fabrication of highly hydrogenated graphene samples. However, we also need

to have tools to characterize as-produced samples. In particular, we need to

know how graphene adatoms are distributed on the graphene lattice. Are they

randomly distributed, forming amorphous hydrogenated graphene films, or are

they arranged in clusters, possibly giving a granular structure to graphene?

3.3.2 Accessing the sample topology by combining Ra-

man spectroscopy and electron transport mea-

surements

Raman spectroscopy is a convenient method to provide answers to the above

question, given its ability to measure the intervalley scattering rate in graphene,
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(j)

(k)

(l)

(m)

Figure 3.3.4: Schematic illustrating the hydrogenation and deposition of CVD
graphene on Si2O substrate. Steps (j) to (m) are described in the main text.

74



and hence evaluate the amount of adatoms on the lattice. It was shown by

several authors [96, 97] that the ratio of integrated intensities ID/IG for the

D and G peak in graphene with short-range defects is related to the mean

distance LD between these defects, through the formula:

ID
IG

= F (LD) = CA
r2
A − r2

S

r2
A − 2r2

s

(
exp(−πr2

S/L
2
D)− exp(−π(r2

A − r2
S)/L2

D)
)

+ CS(1− exp(−πr2
S/L

2
D)) (3.3.1)

Equation 3.3.1 was first established for ion-bombarded graphene [96], but was

found to describe chemically-functionalized graphene well [99], at least in sit-

uations where adatoms do not cluster and are randomly distributed on the

graphene scaffold. In this case, rS is a fixed parameter giving the radius of a

disk centered on the impurity, and within which graphene is structurally disor-

dered. rA is the typical distance from the structurally disordered area within

which electrons excited by the Raman laser contribute to the D peak before

recombining with a hole. CA and CS are dimensionless prefactors. Experimen-

tally and theoretically, it was found that in such cases, this formula describes the

ID/IG ratio properly provided rS, rA, CA and CS typically take the following

values: rS ∼ 2 nm, rA ∼ 4 nm, CA ∼ 4 and CS ∼ 1. LD is usually determined

by measuring ID/IG experimentally and solving F (LD) = (ID/IG)experimental.

However, in many realistic situations, defects are not randomly distributed.

A degree of correlation often exists [122, 101, 58, 88]. For instance, hydrogen

[122, 101] adatoms tend to cluster. But F (LD) should still adequately describe

ID/IG provided that:

(i) clusters are randomly distributed,

(ii) clusters have a typical radius rS,

(iii) the average distance between cluster centres is LD.

In most experimental situations, the typical cluster size is unknown and
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hence both LD and rS are unknown. rA is unknown as well, but simply de-

pends on rS through rA = rS + δ, where δ is the average distance a graphene

electron excited by the Raman laser travels before recombining with a hole. We

now briefly re-establish the formula ID/IG = F (LD) using arguments similar

to Lucchese et al [96], and show that it can be applied to situations satisfying

conditions (i), (ii) and (iii). Let SS and SA be the total area of chemically-

functionalized graphene and activated area, respectively. The activated area

corresponds to the area of defect-free graphene within which laser-excited elec-

trons have a significant probability of undergoing inter-valley scattering with

an adatom before recombining with a hole and emitting a photon. Let A be

the total area of the graphene sheet. Both chemically-functionnalized graphene

and the activated zone contribute to the measured ID/IG signal a term pro-

portional to their respective area SS and SA. Corresponding proportionality

coefficients are different though: CS/A and CA/A. We assume N clusters of

adatoms are present on the graphene sheet, and we add an N + 1th cluster

randomly. We further assume that the position of its centre has a uniform

probability distribution law. For the sake of simplicity, we assume that only the

following two outcomes are possible: (a) the N + 1-th cluster does not overlap

with the N other clusters or (b) the N + 1-th cluster completely overlaps with

another cluster. In other words, we neglect the possibility of a partial overlap

between clusters. Consistently, the average increase in SS upon adding the

N + 1-th cluster is:

〈SS(N + 1)− SS(N)〉 =
A− SS(N)

A
× πr2

S (3.3.2)

Correspondingly, the average increase in SA reads:

〈SA(N + 1)− SA(N)〉 =
A− SS(N)− SA(N)

A
× π(r2

A − r2
S) (3.3.3)

Introducing fA = SA/A and fS = SS/A and σ = N/A ≈ L−2
D , we immedi-
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ately obtain:
dfS
dσ

= πr2
S(1− fS) (3.3.4)

and
dfA
dσ

= π(r2
A − r2

S)(1− fS − fA) (3.3.5)

as in reference [Carbon 48, 1592]. By definition, fS(σ = 0) = 0, so that

equation 3.3.4 leads to

fS(σ) = 1− e−πr2
Sσ (3.3.6)

Reinjecting the obtained expression for fS(σ) in equation 3.3.5, we easily obtain

(given that fA(σ = 0) = 0):

fA(σ) =
r2
A − r2

S

r2
A − 2r2

s

(
e−πr

2
Sσ − e−π(r2

A−r
2
S)σ
)

(3.3.7)

and hence

ID
IG

= CA
r2
A − r2

S

r2
A − 2r2

s

(
e−πr

2
Sσ − e−π(r2

A−r
2
S)σ
)

+ CS(1− e−πr2
Sσ) (3.3.8)

Equation 3.3.8 is often used to determine LD assuming no significant cluster-

ing takes place, and rS ∼ 2 nm is commonly used in practice. Here, rS is

not necessarily small, and shall be extracted from Raman spectra using 3.3.8.

Since the localization length ξ is known from electron transport data and is

comparable to the crystallite size as Vg lies close to the charge neutrality point

[72], one can relate LD to rS and ξ. Modelling the clusters network by a square

lattice of disks, we have, qualitatively:

√
2LD ∼ 2rS + ξ (3.3.9)
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Injecting 3.3.9 into equation 3.3.8, we obtain, in the rS, δ � ξ limit:

ID
IG

=
4πδ

ξ2
CArS (3.3.10)

and
ID
IG
∼ CS (3.3.11)

in the rS � ξ limit. ID/IG typically reaches the saturation regime ID/IG ∼ CS

when

rS ∼
CS
CA

ξ2

4πδ
. (3.3.12)

Interestingly, these equations can be used to estimate rS from Raman spectra

provided ξ is known. Estimates of ξ can be obtained by electron transport

measurements performed at different temperatures and source-drain voltages.

In the next section, we describe our experiments on hydrogenated graphene,

and present our data.

3.4 Multiple virtual tunneling of Dirac fermions

in granular graphene: experimental re-

sults

3.4.1 Summary of our experimental results

Graphene’s charge carriers behave as massless Dirac fermions, opening the

exciting possibility to observe long-range virtual tunneling of electrons in a solid.

In granular metals, electron hops arising from series of virtual transitions are

predicted to yield observable currents at low-enough temperatures, but to date

experimental evidence is lacking. We report on electron transport in granular

graphene films self-assembled by hydrogenation of suspended graphene. While

the log-conductance shows a characteristic T−1/2 temperature dependence,
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cooling the samples below 10K drives a triple crossover: a slope break in log-

conductance, simultaneous to a substantial increase in magneto-conductance

and onset of large mesoscopic conductance fluctuations. These phenomena are

signatures of virtual transitions of electrons between distant localized states,

and conductance statistics reveal that the high crossover-temperature is due

to the Dirac nature of granular graphene charge carriers.

3.4.2 Introduction

Short-lived particles allowed by Heisenberg’s uncertainty principle are called

“virtual”, but the effects they induce are very real. They lead to vacuum fluc-

tuations and mediate fundamental forces [73], explain the Lamb shift of atomic

levels [74], the Casimir effect [74, 75] and possible Hawking radiations [76].

Though unobservable, virtual particles are key ingredients of modern quan-

tum electrodynamics. Considerable research efforts have thus been devoted

to measuring the most direct consequences of their existence, such as virtual-

to-real photon conversion during dynamic Casimir effect [77]. Quantum dot

nanostructures are excellent test beds too, as electron tunneling through virtual

states [78, 79, 80] generates background currents observable below ∼ 100mK

[81]. Interestingly, higher-order currents between distant localized states are

predicted to arise from multiple transitions to virtual states in macroscopic

granular metals [82, 83, 84], but this phenomenon coined multiple elastic co-

tunneling (MEC) has not been observed yet. From this perspective, graphene

is a particularly promising material, in which virtual excitations of charges play

a special role. They are theoretically predicted to induce Dirac fermions’ jittery

motion called zitterbewegung [85], and give a minimum conductivity to pristine

graphene. In granular form, graphene dots’ linear density of states (DOS) [86]

means that high-energy virtual states should contribute significantly to elastic

co-tunneling currents despite shorter life-times, unlike ordinary granular metals

(GM). This not only makes granular graphene the ideal platform for the first
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observation of MEC, but also provides a rare opportunity to measure long-range

effects mediated by high-energy virtual states.

3.4.3 Results

Recently, chemical functionalization of graphene [87] was reported to be a vi-

able method to produce granular graphene [88], due to the tendency of adatoms

to form electrically insulating clusters. At high enough adatoms concentra-

tions, such clusters merge into percolative pathways, effectively partitioning

the graphene sheet into weakly-coupled graphene dot arrays, or GM. To conve-

niently fabricate graphene GMs, we exposed suspended CVD graphene sheets

[89] to hydrogen plasma [90, 91], thereby allowing adsorption of sufficiently

high concentrations of hydrogen atoms on both sides of the graphene scaffold.

We then stamped as-produced doubly-hydrogenated graphene (DHG) films on

90 nm-SiO2 chips. Au/Cr contacts in two- and four-probe geometries were

then fabricated. Typical devices are shown in inset of Figure 3.4.1. To observe

the charge-neutrality point (CNP) at gate voltages Vg ∼ 0V , the samples were

then vacuum-dried [92] in-situ at 10-6 Torr for a day before cooling below 0

oC. We then measured electron transport in 8 devices from room temperature

down to 2.4K. After fabrication, samples were loaded in a variable tempera-

ture insert coupled to a 9T superconducting magnet. A pressure of ∼ 10−6

Torr was maintained during the experiments. Electron transport measurements

were carried out with a Keithley 6517B Electrometer/High-Resistance Meter.

To eliminate possible DC noise, we used the following procedure: for each bias

Vsd, the source-drain current Isd was measured 10 times at +Vsd within ∼ 1 s,

then 10 times at −Vsd within ∼ 1 s. The resulting noise-filtered current was

then systematically calculated as

Ifiltsd =
〈Isd(Vsd)〉 − 〈Isd(−Vsd)〉

2
(3.4.1)
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Figure 3.4.1: Sheet resistance against charge density n at room temperature
(Device D0). Inset shows an optical picture of typical devices. Scale bar: 10
μm.

where 〈...〉 corresponds to the arithmetic average. Vsd was sourced by Keithley

6517B or Keithley 6430. Keithley 6430 was systematically used to source the

gate voltage Vg. When needed, a fixed source-drain current was sourced with

a Keithley 6221, while Vsd was measured with Keithley 6517B.

Figure 3.4.1 shows the room-temperature resistance R in units of resistance

quantum h/e2, against charge-carrier density n - determined from the back-gate

capacitance - for a typical sample (D0). The R(n) curve has a characteristic

graphene-like shape, but is broad and R(n) � 1 throughout the whole range

of measured densities, indicating strong localization.

Next, we measure the conductance G for different bias voltages Vsd and

temperatures T to extract the typical localization length ξ of our samples.

The inset of figure 3.4.2 shows G against Vsd at different temperatures T

between 2.3K and 20K for device D1. For consistency, all subsequent data

shown in this section correspond to the same device D1. Data taken for other

devices are reported in section 3.5.1. We observe that above Vsd ∼ 0.1V , G

increases with Vsd while below, G is bias-independent, indicating an Ohmic

behavior. Crucially, G(Vsd, T ) data can be used to extract ξ without assuming
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Figure 3.4.2: Constant-conductance V 2
sd vs T 2 domains extracted from con-

ductance G against Vsd curves at 2.3K and all temperatures between 3K and
20K in steps of 1K (inset). The solid lines of the main figure are linear fits of
slope ≈ −1.4× 10−4V 2K−2 to G = 1 nS (circles), G = 2 nS (triangles), G =
4 nS (squares), G = 10 nS (diamonds) and G = 20 nS (stars) domains. These
domains correspond to traces represented as green dashed lines in inset.

any particular transport mechanism. Since an electron hopping against the

source-drain electric field E = Vsd/L over a distance d increases its energy

by an amount eEd, it was shown that charge carriers experience an effective

temperature

Teff =

√
T 2 +

(
αeξVsd
kBL

)2

(3.4.2)

where L = 4µm is the channel length, and α ≈ 0.67 is a constant [93]. More

details regarding the concept of effective temperature and its applicability are

given in section 3.5.2. Importantly, Teff uniquely determines G, which implies

that constant-conductance domains of (V 2
sd, T

2)-space are straight lines of slope

−(αeξ/kBL)2. Figure 3.4.2 shows such domains extracted fromG(Vsd, T ) data

at 1, 2, 4, 10 and 20 nS. As expected, they are well-fitted by straight lines of

slope ≈ −1.4× 10−4V 2K−2, giving ξ ≈ 45nm.

We now show that our DHG samples have a GM structure by comple-

menting our electric transport measurements with Raman spectroscopy data,

presented in figure 3.4.3. The spectrum shown in figure 3.4.3 exhibits a promi-
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nent D peak as well as broad 2D and D + D′ peaks. The D peak partially

overlaps with the G peak. The D′ peak at 1614 cm−1 almost completely

merges with the G peak at ∼ 1588 cm−1 but can still be resolved as shown by

the inset of figure 3.4.3 . These are characteristics of strongly sp3-hybridized

graphene [94]. The D-peak of sp3-hybridized graphene probes the distribution

of sp3-bonds on the graphene lattice [95]. More precisely, the ratio ID/IG of

integrated intensities of the D and G peaks is related to the typical adatom

cluster size rS and the mean distance LD between nearest cluster centers by

the formula [96, 97]

ID
IG

= F (rs, LD)

= CA
r2
A − r2

S

r2
A − 2r2

S

(
e−πr

2
S/L

2
D − e−π(r2

A−r
2
S)/L2

D

)
+ CS

(
1− e−πr2

S/L
2
D

)
(3.4.3)

discussed in section 3.3.2 where CA and CS are constants, rA = rS + δ, and

δ is the average distance laser-excited electrons travel before recombining with

holes. Experimentally, it was shown that CA ≈ 4, CS ≈ 0.9 and δ ≈ 2 nm

for a laser of 2.4 eV [98, 99]. By fitting Fano line-shapes [100] to the Raman

spectrum peaks, we calculate the peaks integrated intensities and ID/IG ≈ 1.8.

This value is clearly inconsistent with a random distribution of isolated adatoms,

which would yield LD ≈ δ � ξ. Conversely, hydrogen adatoms form clusters of

typical radius rS [101], and since ξ ≈ 45 nm and ID/IG ≈ 1.8, we find rS & 30

nm by using equation 3.3.12, leading to LD ∼ 2rS. In other words, clusters

tend to merge, isolating graphene dots of size ξ, and our DHG samples have

a GM structure. This agrees with previous studies on graphene quantum dots

of size ∼ ξ [102] yielding comparable Raman spectra due to edge scattering

[98, 103].

Next, we focus on identifying the dominant charge transport mechanisms
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Figure 3.4.3: Raman spectrum (device D1). The data (black) are fitted by a
five-peak line-shape (red), sum of Breit-Wigner-Fano peaks: violet (D), blue
(G), cyan (D’), green (2D) and orange (D+G). The inset is a zoom on the G
and D’ peaks.

by analyzing the temperature-dependence of the conductance G(T ). More

precisely, one expects G to follow a

G(T ) = G0e
−(T0/T )γ (3.4.4)

law characteristic of hopping transport, where γ and T0 depend on the exact

hopping mechanism [104]. We thus measuredG around CNP for different T be-

tween 2.4K and 300K. G(T ) is systematically measured in the low-bias Ohmic

regime, where both electric-field-driven electron hopping and Joule heating are

negligible. We observed a reduced activation energy [105]

β =
d lnG

d lnT
(3.4.5)

linear in lnG with slope ≈ −1/2 both for lnG < −21.5 and lnG > −19.

More details are given in section 3.5.3. Therefore, we plotted G against T−1/2

in figure 3.4.4. Strikingly,

lnG ∝ T−1/2 (3.4.6)
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Figure 3.4.4: Low-bias G vs T−1/2 at Vg = 1.5 V. The violet line is a fit
accounting for inelastic and elastic co-tunneling mechanisms as described in
main text. The blue (resp. red) dashed line corresponds to the best power law
fit for lnG vs T−1/2 below 6K (resp. above 10K). Inset shows a histogram
for pel extracted from slopes of lnG(T ) vs T−1/2 at different Vg, see section
3.5.4. The red solid line is a guide to the eyes and the dashed green line is an
estimate for pel calculated in section 3.2.4.

between 300K and ≈ 12K, and between ≈ 8K and 2.4 K, but with a much

smaller slope.

A distinct slope break is thus identified around Tcross = 10 K. Graphene

being atomically thin, this phenomenon certainly does not reflect a decrease in

effective sample dimensionality from three to two dimensions [106]. Besides,

our measured samples have a channel widthW ≈ 6−7 μm systematically larger

than the length L ≤ 5 μm to avoid any possible 2D to 1D crossover upon low-

ering the temperature. A G0 exp(−(T0/T )γ) fit both above and below Tcross

respectively gives γ = 0.56 ± 0.04 and γ = 0.495 ± 0.05. In these regimes,

G(T ) is thus neither of the Arrhenius type (γ = 1) nor of the Mott’s 2D

variable-range hopping (VRH) type (γ = 1/3). However, γ = 1/2 suggests an

Efros-Shklovskii (ES) VRH behavior, the 1D Mott VRH being excluded due to

the geometry of our devices. Such behavior contrasts with the result of several
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earlier studies, in particular [90], performed on strongly localized hydrogenated

graphene samples, where the conduction is attributed to 2D Mott VRH. How-

ever, these results were obtained for less hydrogenated graphene samples, fab-

ricated by exposing a single graphene face to hydrogen plasma. Conversely, a

γ = 1/2 behavior was already reported in heavily oxidized graphene films [88]

with a GM structure. However, the presence of both a gamma-1/2 behavior

and a slope break as observed in figure 3.4.4 around 10K has never been ob-

served before, to the best of our knowledge. While a crossover between two

γ = 1/2 regimes with different slopes is not expected in standard VRH theories

[104], it is predicted for granular systems [82], each regime reflecting a distinct

transport mechanism illustrated in figure 3.4.5: multiple inelastic co-tunneling

(MIC) at high temperatures and multiple elastic co-tunneling (MEC) at low

temperatures. During MIC, multiple electrons simultaneously tunnel from the

Fermi sea of a grain to an excited state of a neighboring grain, along a string

of grains ultimately left in an excited state, thus requiring a finite temperature

or electric field. During an MEC event, a single charge carrier hops between

two distant grains by transiting to virtual states in intermediate grains which

ultimately remain unexcited.

To verify that our G(T ) data result from a MIC-to-MEC crossover, we fit

a function of the form

G(T ) = GMIC(T ) +GMEC(T ) (3.4.7)

where

GMIC(T ) = Gine
−
√
Tin/T (3.4.8)

and

GMEC(T ) = Gele
−
√
Tel/T (3.4.9)

are MIC and MEC conductance terms. The best fit is obtained for Gin = 6

μs, Tin ≈ 700 K, Gel ≈ 1.5 nS, and Tel ≈ 6 K. We now show that these
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Figure 3.4.5: Cartoon representation of hydrogenated graphene sheets (bot-
tom), MEC (centre) and MIC (top). Hydrogen clusters partition hydrogenated
graphene into disconnected metallic graphene dots. Hydrogen concentration is
encoded by shades of green, from white (hydrogen-poor) to green (hydrogen-
rich). Hopping from initial to final localized state (grey) occurs by two possible
mechanisms described in the main text: MIC (top) and MEC (centre). Cones
represent graphene’s energy spectrum within individual dots circled by dashed
lines in the bottom panel. Discrete energy levels due to confinement are marked
by red and blue circles. Red (blue) balls represent electrons (holes). Arrows
correspond to tunneling events leaving the dots either in an excited state (top)
or a ground state (bottom).
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values match theoretical expectations for co-tunneling in granular graphene.

We start with Gin, which is the total conductance in the T � Tin limit and is

related to the nearest-grain tunneling conductance g by g ∼ LGin/W , where

W ≈ 7 μm is sample D1 width. This leads to g ∼ 0.1 � 1 in units of e2/h,

which is a characteristic of insulating GM. The inter-dot tunneling conductance

g should also be compared to the intra-dot conductance gdot [107]. Since

before hydrogenation, our graphene samples have a typical mobility µ ≈ 5000

cm2/V.s, the intra-dot mean-free path can be estimated to be l ∼ A
√
n with

A = h
2e

µ√
π
≈ 6 × 10−12 cm2. A graphene grain of size ∼ ξ with at least one

Dirac fermion, corresponding to an areal density of ∼ 5 × 1010 cm-2, should

have a mean-free path l > 13 nm and a Thouless energy [108]

ETh =
~vF l

2(ξ/2)2
(3.4.10)

larger than ∼ 10 meV. Therefore, ETh typically exceeds the dots mean energy

level spacing [109]

∆ ≤ ~vF
ξ
∼ 10meV (3.4.11)

so that

gdot ≈
2e2

h

ETh
∆

(3.4.12)

is at least a few e2/h. gdot � g is thus satisfied throughout the experimentally

relevant range of densities. This is again perfectly consistent with an insulating

granular metal behavior, and contrasts sharply with the case of homogeneously

disordered systems [82], where gdot ≈ g. Next, we notice that Tin ≈ 700 K is

significantly larger than the charging energy of a grain

Tc =
e2

4πεε0ξ
≈ 100K (3.4.13)

where ε ≈ 3.5 is the dielectric constant of the inter-granular medium [88].

This agrees with MIC theory [82] which predicts Tin = χinTc, where χin is a
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logarithmically T-dependent coefficient. As T � Tc,

χin = −4C ln pin (3.4.14)

where C is a dimensionless constant of the order of unity, and pin is the rate of

elementary inelastic tunneling events introduced in sections 3.2.3.2 and 3.2.3.3.

pin is usually assumed to read [84]

pin ≈ 16πg

(
T

Tc

)2

(3.4.15)

However, equation 3.4.15 is valid provided grains have an energy-independent

density of states. For graphene grains, we expect to have a different temperature-

dependence for pin. Though deriving an analytical finite-temperature result for

pin is challenging for graphene (see equation 3.2.69), equation 3.2.75 strongly

suggests a ∝ (T/Tc)
4 behavior close to CNP, with a prefactor similar to the

one in equation 3.4.15. Given the logarithmic dependence of χin, and the

presence of a prefactor C close to unity but not precisely known, we opt for a

conservative approach. We take C = 1 and use equation 3.4.15 to analyse the

data. This leads to χin ≈ 8 at T = 10 − 20 K, and Tin,theory ≈ 800 K, close

to the experimental value. We finally focus on Tel, whose value extracted from

figure 3.4.4 is one order of magnitude smaller than Tc. This remains true at

all Vg despite fluctuations, and Tel averages to θel ≈ 10 K. More details on the

statistics of Tel are reported in section 3.5.4. Theoretically,

Tel = −CTc
2

ln p (3.4.16)

where p is the probability of virtual transition to a neighboring grain [82, 83].

For conventional two-dimensional GMs, the DOS in each grain is constant and
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the level spacing is small compared to the charging energy, leading to [82]

p ∝ g
∆

Tc
� g � 1 (3.4.17)

and Tel of the order of few Tc. Therefore, Schrödinger fermions cannot account

for the observed Tel � Tc behavior. Unlike MIC for which only states within

kBTeff around the Fermi level contribute to G, virtual transitions to high-

energy states contribute to the MEC conductance and the band structure plays

a key role. In the Dirac fermions case, the short life-time ~/E of high-energy

fermions is compensated by a DOS which increases linearly with energy E,

making the contribution of high-energy virtual states significant. It remains

true for chaotic dots with edges of random shape[86, 109]. We derived in

section 3.2.4 an estimate for the virtual tunneling probability of graphene Dirac

Fermions:

pel ∼
g

2

(
ln

(
Γ

kBTc

)
− 1

)
≈ 0.3 (3.4.18)

where Γ is the energy bandwidth. This is in accord with experimental statistics

on pel shown in inset of figure 3.4.4 and implies that pin ∼ pel just above

Tcross, between 20K and 40K, thus providing strong evidence for MIC-to-MEC

crossover.

A powerful way to gain further insight is to analyze the variations of G with

Vg and Vsd, as each transport mechanism leaves its own mesoscopic fluctuations

footprint [110, 111, 112, 113]. Figure 3.4.6(a) shows G measured at 3K for

−7.5V ≤ Vg ≤ 7.5V and 0 ≤ Vsd ≤ 200 mV and exhibits vertical stripes

of width ∆Vg ≈ 200 mV, corresponding to peaks and valleys in conductance

reproduced at all measured Vsd. This is highlighted by figure 3.4.6(b), which

shows four different traces extracted from figure 3.4.6(a) at Vsd = 10 mV,

80 mV, 120 mV and 175 mV. While overall the conductance increases with

Vsd, the different fixed-Vsd G(Vg) curves show reproducible peaks and valleys.

To analyze these fluctuations quantitatively, we systematically extracted the
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Figure 3.4.6: (a) Conductance as a function of Vg and Vsd at 3K. The linear
color scale corresponds to the measured conductance in nS. (b) Conductance
against Vg traces at 3K extracted from fig. 3.4.6(a): at Vsd = 10 mV (blue),
Vsd = 80 mV (green), Vsd = 120 mV (orange), and Vsd = 175 mV (red).
The vertical black dashed curves are guides to the eyes highlighting the repro-
ducibility of the peaks in conductance across different voltage biases.

standard deviation of log-conductance σlnG at fixed source-drain bias from

figure 3.4.6(a) and three other data sets shown in section 3.5.5. Figure 3.4.7

shows σlnG plotted against Teff (see equation 3.4.2) from 3K up to 80K, in

double-log scale. Two different regimes can be clearly distinguished. Below

Teff = 10 K, σlnG is weakly temperature-dependent while above 10K, σlnG

decreases rapidly with Teff . Quite remarkably, these two regimes coincide with

the two distinct G(T ) regimes observed in figure 3.4.4. We start by analyzing

the high-Teff regime, where σlnG is very well described by the power-law

σlnG ∝ T−2.1
eff (3.4.19)

This behavior is clearly incompatible with Mott or ES VRH as such phenomena

would lead to σlnG ∝ T−aeffwith a < 1 [113]. We now compare the observed

fluctuations above 10K to expected MIC-induced fluctuations. From a hopping

percolation viewpoint [114], the fluctuations in log-conductance σlnG are re-

lated to the standard deviation s of log-conductance at the scale of a hopping

distance rhop, by

σlnG =
κν

l
(3.4.20)
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where κ = 2
√

2s, l = L/rhop and ν ≈ 4/3 is the critical exponent in two

dimensions. Since MIC is a fundamentally phase-incoherent process involving

a different charge carrier for each intermediate transition (see figure 3.4.5),

MIC-induced fluctuations in conductance do not originate from quantum in-

terferences between electron wave functions. It must rather arise from fluctua-

tions in inter-dot conductances accompanying changes in percolation network

as gate voltage is tuned. From this perspective, we find - based on probabilistic

arguments developed in section 3.2.3.4- that

s ∝
√
Nhop

Nth

(3.4.21)

where [82]

Nhop =
rhop
ξ
∝

√
Tin
Teff

(3.4.22)

and Nth is the number of intra-grain energy levels within an energy ∼ kBTeff

from the Fermi level εF . We emphasize that it is a good approximation to

substitute Teff to T in equations 3.2.55, 3.2.58, and 3.2.89, because at finite

voltages, the Fermi-Dirac distribution can be replaced by the effective distribu-

tion feff (ε) ≈ (1+exp((ε−εF )/kBTeff ))
−1, as discussed in appendix (section

3.5.2). This not only guarantees the validity of equation 3.4.22, but also the

pertinence of our analysis based on the effective temperature rather than the

temperature. For a 2D GM with parabolic-band grains, Nth ∼ kBTeff/∆

and hence s ∝
√

∆/kBTeff (Tin/Teff )
1/4. This corresponds to σlnG ∝ T−1.5

eff ,

which does not satisfactorily fit the data. However, in graphene grains, energy

levels are not evenly spaced. The nth energy level from neutrality point has an

expected value of energy

En ∝ ∆0

√
n (3.4.23)

where ∆0 = ~vF/ξ. Therefore - see appendix, section 3.5.6 -,

Nth ∝
(
kBTeff

∆0

)2

(3.4.24)
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Figure 3.4.7: Standard deviation σlnG of the log-conductance as a function of
Teff (see Eq. 3.4.2). Data points were extracted from 4 distinct data sets
- DS1, DS2, DS3, DS4, see section 3.5.5 - measured in sample D1. DS3
corresponds to fig. 3.4.6(a). Blue circles (DS1) were extracted from G vs Vsd
curves taken at 3K for different Vg. Green triangles (DS2) and orange diamonds
(DS3) were extracted fromG vs Vg, Vsd plots. Red squares (DS4) correspond to
G vs Vg curves taken at 6K and fixed source-drain current. Dashed and solid
lines correspond to theoretically predicted power-laws for different transport
mechanisms: Dirac fermions (DF) MIC (black), Schrödinger fermions (SF)
MIC (violet), ES (green) and Mott VRH (pink), bottleneck-limited MEC (red).
Inset shows the high-field MC at Vg = 0 V between 2K and 40K. Data points
are shown in black. The solid red line is a guide to the eyes and the dashed
green line indicates Tcross.

and

s ∝ ∆0

kBTeff

(
Tin
Teff

)1/4

∝ T−1.25
eff (3.4.25)

This yields

σtheorylnG ∝ T−2.16
eff (3.4.26)

which agrees very well with the data. In other words, the unusually strong Teff–

dependence of σlnG above 10K can only be understood in terms of inelastic

co-tunneling of Dirac fermions.

We now discuss the sub-Tcross regime, where σlnG ∼ 0.5 is weakly T -

dependent, clearly ruling out MIC as dominant transport mechanism below

10K. This is perfectly consistent with figure 3.4.4 which indicates a crossover
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to MEC below 10K. Since MEC is a phase-preserving process, it is tempt-

ing to assign this behavior to quantum interferences between distinct phase-

coherent charge-carrier paths [115, 116], a phenomenon known to produce

almost Teff -independent conductance fluctuations of large magnitude. This

view is supported by magneto-transport experiments carried out at 2.4K for

−500mV ≤ Vsd ≤ 500mV . The inset of figure 3.4.7 shows the relative

magneto-conductance MC = G(8T )/G(0T ) against Teff from 2.4K up to

40K. MC is almost constant and close to 1 above Tcross where MIC dom-

inates, reflecting its phase-incoherent nature, whereas MC rapidly increases

to ≈ 2 below Tcross, a manifestation of quantum interferences [83, 116, 117]

attributable to MEC. Moreover, figure 3.4.7 shows that the sub-Tcross data are

well-described by σlnG ∝ T−ηeff with η ≈ 0.16 or less, suggesting conduction

is limited by a strongly resistive portion of the granular graphene film of size

∼ rhop, or “bottleneck”. Such a situation systematically occurs in granular me-

dia at sufficiently low Teff when σlnG approaches unity [113, 118], which is the

case around Tcross. Since quantum interferences within a bottleneck must give

the main contribution to σlnG, the observed σlnG ∝ T−ηeff -behavior plausibly

approximates the

σlnG =

√
AT

−1/3
eff +B (3.4.27)

law for systems of size close to the phase-coherence length [119, 120, 121].

In summary, both the significant increase in magneto-conductance and weak

temperature-dependence of σlnG below 10K indicate the appearance of quan-

tum interferences. The presence of such strong interferences only below Tcross

is consistent with the existence of a crossover from phase-incoherent MIC above

10K to MEC below 10K.

3.4.4 Discussion

Our results show that doubly-hydrogenated graphene is not amorphous but

has a granular structure instead. This finding is consistent with the tendency
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of hydrogen atoms adsorbed on graphene to phase-separate [122] and form

electrically insulating clusters. This observation is particularly interesting as

graphane phases – or fully hydrogenated graphene regions – are predicted to

be high-temperature superconductors [123]. From this perspective, hydro-

genation of suspended graphene sheets appears as a viable route towards the

synthesis of novel granular superconductors [82, 124] . The granularity of our

doubly-hydrogenated graphene samples is reflected by the presence of Dirac

fermions in this material, which can exist in graphene grains or dots, but not

in amorphous media. Both the large crossover temperature from inelastic to

elastic co-tunneling and the temperature dependence of the log-conductance

fluctuations with gate voltage are signatures of the presence of Dirac fermions

in our samples. In conclusion, we observed multiple elastic co-tunneling for

the first time in a granular metal. In our granular graphene samples, both

multiple inelastic and elastic co-tunneling mechanisms showed signatures of

Dirac fermions. The presence of large high-order elastic co-tunneling currents

in granular graphene establishes granular Dirac materials as ideal platforms for

the study of vacuum fluctuations and quantum noise [125].
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3.5 Appendix

3.5.1 Data from other samples

3.5.1.1 I-V characteristics for four devices of different lengths:

Figure 3.5.1: Source-drain current as a function of voltage bias for four different
devices (namely D2, D3, D4 and D5), around the charge neutrality point. All
devices show strongly non-linear I-V characteristics and exhibit threshold volt-
ages of different values determined by channel length and localization length.

96



3.5.1.2 Temperature-dependence of the conductance

Figure 3.5.2: Low-bias conductance as a function of T−1/2 around the charge
neutrality point for four different samples (D2, D3, D4 and D5). The dashed
lines are Efros-Shklovskii temperature-dependence fits to the data above 10K.
The inset shows the characteristic temperature TES defined as ln(G/G(T →
∞))) = −

√
TES/T plotted against the ratio I(2D)/I(G) of 2D-to-G peak

intensities extracted from the Raman spectrum of each sample. I(2D)/I(G) is
a convenient measure of the degree of hydrogenation of a sample as it decreases
monotonously with the number of sp3bonds introduced in the graphene lattice
[94]. This figure shows that the most hydrogenated samples have the largest
TES. Their conductance decreases too rapidly as T decreases (red and orange
curves), so that the slope break observed around 10K for the least hydrogenated
samples (blue and green curves) cannot be observed, due to the limitations of
our setup.

3.5.2 The concept of effective temperature

In sections 3.2.3.2, 3.2.3.3, 3.2.3.4, and 3.2.4 on multiple inelastic and elastic

cotunneling, we expressed hopping probabilities P and conductivities G� re-

sulting from these transport phenomena as a function of either temperature T

or electric field Esd. Besides, we always implicitly assumed that the electric

field Esd was small enough to be almost at equilibrium, so that the electron

97



statistics was always close to the standard Fermi-Dirac distribution,

fFD(ε) =
1

1 + e
ε−EF
kBT

(3.5.1)

where EF is the Fermi level. The results of these sections are thus valid in

the eξEsd � kBT limit at finite temperature, or at vanishingly small eξEsd at

absolute zero temperature. In this section we deal with the situation where both

Esd and T are finite and comparable, and the standard Fermi-Dirac distribution

3.5.1 fails to describe electron and hole statistics properly. Several authors

studied this difficult question for strongly localized systems such as disordered

materials [93, 128, 126, 127] and good conductors in the quantum Hall regime

[129]. Intuitively, a non-zero electric field offers more available sites to hop

to for an electron moving in the field direction, and therefore enhences the

conductivity. For a system whose typical localization length is ∼ ξ, one thus

expects eξEsd/kB to play a role similar to the temperature T [93]. It has been

proposed that T should be replaced by an effective temperature Teff (T,Esd)

in equation 3.5.1, so that transport quantities P(T,Esd) and G�(T,Esd) can

be uniquely determined by Teff , i.e. P(Teff (T,Esd)) and G�(Teff (T,Esd)).

Such an effective temperature Teff should then verify basic properties:

(I) G�(Teff (T,Esd)) must be Ohmic as Esd → 0

(II) Teff (T,Esd)→ T as Esd → 0

(III) Teff (T,Esd)→ Esd as T → 0

If condition (I) is satisfied then at finite T and Esd = 0, we have:

dG�
dEsd

=
dG�
dTeff

dTeff
dEsd

= 0 (3.5.2)

leading to dTeff
dEsd

= 0. By maximizing hopping probabilities of the form PN ∝

pNe
− ∆
kBT with ∆ ∝ e2

κNξ
+eNξEsd, one would obtain conductivitiesG�

(
T + eξEsd

kB

)
depending only on an effective temperature T ∗eff = T + eξEsd

kB
. However, such
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an effective temperature does not satisfy condition (I) as
dT ∗eff
dEsd

= eξ/kB. This

is because at finite electric field, the boltzmann factor e−
∆
kBT is incorrect. A

possible method to find the steady-state distribution functions f(ε, Esd) re-

placing Fermi-Dirac distributions fFD(ε) when an electric field ~Esd is applied

is to solve the balance equation [93, 128, 126]:

∑
j 6=i

f(εi, Esd)Γij(1− f(εj, Esd)) =
∑
j 6=i

f(εj, Esd)Γji(1− f(εi, Esd)) (3.5.3)

associated with a Miller-Abrahams network [70] for which a node i of real-

space coordinates ~ri corresponds to a state i of energy εi, and Γij represents

the transition rate from state i to state j and is given by:

Γij = Γ0e
−2‖~ri−~rj‖/ξΘij (3.5.4)

where Θij is equal to exp(−(εj−εi−e ~Esd.(~rj−~ri))/kBT ) if εj−εi−e ~Esd.(~rj−

~ri) ≤ 0 and Θij = 1 otherwise. Since the rates Γij verify the detailed balance

equation,
Γji
Γij

= e
εj−εi−e~Esd.(~rj−~ri)

kBT (3.5.5)

it is easy to check that the Fermi-Dirac distribution verifies, at Esd = 0,

fFD(εi)Γij(1− fFD(εj)) = fFD(εj)Γji(1− fFD(εi)) (3.5.6)

and hence solves equation 3.5.3 at zero electric field. At finite Esd however, fFD

is generally not a solution of equation 3.5.3, and the standard approaches to

solve the balance equation for the correct distribution f(ε, Esd) are numerical.

Observing that effective temperatures of the form

T
(η,γ)
eff (T,Esd) = (T η + (γeξEsd/kB)η)1/η (3.5.7)
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verify conditions (I), (II) and (III) provided η > 1, distribution functions of the

form

f (η,γ)(ε) =
1

1 + exp

(
ε−EF

kBT
(γ,η)
eff (T,Esd)

) (3.5.8)

are then usually fitted to the numerical data. Excellent fits are then obtained

for values of η close to ∼ 2 and γ of the order of unity. Values of η and γ

nonetheless vary slightly with the assumed density of states g(ε) in the sys-

tem described by the Miller-Abrahams network. Conventional strongly doped

semiconductors have a density of midgap states g(ε) ∝ e−ε/ε0 exponentially

decaying from the band edge into the gap, leading to an effective temperature

T
(η,γ)
eff (T,Esd) with η = 2 and γ = 0.67[93] provided the Fermi level lies deeply

in the exponential tail of the density of midgap states and the temperature is

small enough, kBT � ε0. Other densities of states have been considered, such

as Gaussian distributions g(ε) ∝ e−ε
2/2σ2 describing disordered organic mate-

rials, leading to η ≈ 1.54 and γ ≈ 0.64 [127]. Effective temperatures T (η,γ)
eff

with γ ≈ 0.6 − 0.7 and η ≈ 1.5 − 2 thus properly describe typical strongly

localized systems in the Mott variable-range hopping regime. Are such effective

temperatures applicable to other types of strongly localized materials, whose

conduction is dominated by different transport mechanisms, such as Efros-

Shklovskii variable-range hopping, multiple inelastic co-tunneling or multiple

elastic co-tunneling? Irrespective of the hopping mchanism, strongly localized

systems can be mapped to a Miller-Abrahams network with transition rates of

the form given by equation 3.5.4. While for Mott and Efros-Shklovskii variable-

range hopping mechanisms, the prefactor exp (−2 ‖~ri − ~rj‖ /ξ) originates from

the overlap between exponentially decaying wave-functions describing localized

states, this prefactor simply corresponds to pNintin or pNintel for MIC or MIC

transition rates PMIC
N and PMEC

N , which can easily be seen by introducing the
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inelastic (elastic) co-tunneling effective localization length

ξin/el =
2ξ

ln
(

1
pin/el

) , (3.5.9)

and ‖~ri − ~rj‖ ≈ Nintξ. To check whether an effective temperature T (η,γ)
eff (T,Esd)

with η ∼ 2 and γ ∼ 1 generally applies to disordered semiconductors domi-

nated by Efros-Shklovskii variable-range hopping or to granular metals in the

insulating regime, we now need to understand the behavior of the density of

localized states g(ε) for such systems. In amorphous semiconductors domi-

nated by Efros-Shklovskii VRH, the density of localized states g(ε) must be

similar to the one observed in disordered semiconductors dominated by Mott

VRH, except that g(ε) must vanish in the vicinity of the Fermi level, due to

the presence of an Efros-Shklovskii Coulomb gap [60]. The case of granular

metals is more complicated. The charging energy Ec of its dots deeply af-

fects the density of states g(ε) at the scale of the entire granular metal [61],

which as a result exhibits peaks in density of states with a periodicity equal to

the average charging energy 〈Ec〉. These peaks are unavoidably broadened by

charged impurities and random fluctuations in dots capacitance due to varia-

tions of the dots geometry [61]. It is expected that these random fluctations

in turn give the peaks in g(ε) a Gaussian character and hence a finite density

of states at the Fermi level, should we neglect the Efros-Shklovskii Coulomb

gap. Regarding g(ε), the situation for granular metals therefore resembles the

situation for above-mentioned materials whenever the Fermi levels lies between

two peaks. It is therefore reasonable to expect the existence of an effective

temperature Teff of the form given by the heuristic formula 3.5.7 with η ≈ 2

and γ ∼ 1 for a wide range of Fermi energies. However, it is not clear to us

to which extent the Efros-Shklovskii Coulomb gap affects Teff . To the best

of our knowledge, the literature lacks conclusive studies on this question, even

if it can be confidently said that Coulomb glasses and granular metals expe-

101



rience an effective temperature Teff ≈ γeξEsd/γ at high electric fields, with

γ ≈ 0.5. It is also worth noting that the concept of effective temperature

was recently applied to strongly localized graphene nano-ribbons exhibiting an

Efros-Shklovskii temperature-dependence by M.Y. Han, J.C. Brant, and P. Kim

[130].

3.5.3 Reduced activation energy

Figure 3.5.3: Low-bias G vs T−1/2 at Vg = 1.5 V together with corresponding
reduced activation energy β vs lnG shown in inset. β(lnG) was extracted
from main graph using discrete derivatives. In inset, the red (resp. blue)
dashed line is the best linear fit for −19 < lnG < −13 (resp. between
−22 < lnG < −21.5), and was obtained for γ ≈ 0.5. The violet dashed
line corresponds to β(lnG) directly calculated from the fit (violet) of the main
figure.
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3.5.4 Fluctuations of T0 = Tel with Vg

While below T ∼ 10 K, the low source-drain bias conductance has a

G(T ) ∝ exp

(
−
√
Tel
T

)
(3.5.10)

behavior at all gate voltages Vg, Tel exhibits large fluctuations with Vg. This

phenomenon is highlighted by the following three figures.

Figure 3.5.4: Conductance against the T−1/2
eff , where Teff is the effective

temperature defined in the main text. The purple circles (resp. big blue
squares) correspond to G vs. T−1/2

eff at low bias, variable T and Vg = 1.5 V
(resp. Vg = 0 V). The small data points correspond to G vs. T−1/2

eff at fixed
T and variable Vsd, at Vg = 0 V and 1.5 V . Small light blue squares: T = 3
K, Vg = 0 V; Small purple circles: T = 2.4 K, Vg = 1.5 V; Green triangles
correspond to G vs. T−1/2

eff at fixed T and variable Vsd at Vg = 10 V. Black
dashed lines are guide to the eyes. Inset shows V 2

sd against T 2 at constant
conductance G. Different G are represented: 1 nS (black), 2 nS (blue), 4 nS
(green), 10 nS (orange), and 20 nS (red). The V 2

sd against T 2 curves are well
fitted by straight lines of same slope.
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Figure 3.5.5: Conductance against gate voltage at Vsd = 25 mV. The black
(resp. red) curve is measured at 3K (resp. 7K). The shaded regions corre-
spond to ranges of gate voltages where the conductance is weakly temperature-
dependent.
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Figure 3.5.6: T0 = Tel vs Vg extracted by two different methods. The red points
have been measured by sweeping the gate voltage at 3K and 7K and calculating
(∆ lnG/∆Xeff )

2 for all Vg, where Xeff = T
−1/2
eff (see Figure 3.5.5). The blue

dots have been obtained at fixed T by sweeping the bias voltage at different
Vg, and systematically calculating the slope of lnG vs T−1/2

eff below 10K (see
Figure 3.5.4). Solid lines are averages. The histogram shown in figure 3.4.4
has been plotted using the red data and the relation Tel = −Tc

2
ln(pel).

3.5.5 Data sets used to plot σlnG vs Teff in figure 3.4.7

In order to plot a meaningful σlnG vs Teff graph (figure 3.4.7), we used large

data sets from the same device. These data sets were measured in different

regions of the three-dimensional (T, Vsd, Vg) parameter space. Standard devi-

ations were systematically calculated from G vs Vg data series, at fixed T and

Vsd. We show below the data sets used to plot σlnG vs Teff in figure 3.4.7,

apart from the G(T = 3K,Vsd, Vg) data set (Data set 3), already shown in

Figure 3.4.6.

105



3.5.5.1 Data set 1 (DS1):

Figure 3.5.7: Conductance as a function of voltage bias for 25 different
gate voltages, at T = 2.42 K. Vsd varies between -0.5V and 0.5V in steps
of 5 mV. The 25 different Vg lie in the range [-5V,+5V]. The standard
deviation of lnG shown as blue dots in Figure 3.4.7 has been systemat-
ically calculated at fixed Vsd = -0.5V, -0.495V,. . . ,0.495V, 0.5V. For all
Teff =

√
T 2 + (αeξVsd/kBL)2, the standard deviation of the log-conductance

is calculated as σlnG(Teff ) = (σlnG(Vsd) + σlnG(−Vsd))/2.
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3.5.5.2 Data set 2 (DS2):

Figure 3.5.8: Conductance as a function of Vg and Vsd at 3K. The color scale
corresponds to the measured conductance in nS. Here, the gate voltage is
varied between -5V and 5V, while the bias voltage is varied between -300 mV
and 300 mV. This data set is used to calculate the standard deviation of the
log-conductance against Teff points represented by green triangles in Figure
3.4.7.
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3.5.5.3 Data set 4 (DS4):

Figure 3.5.9: Conductance against gate voltage at 6K, measured at fixed
source-drain current: 10 nA (blue) and 100 nA (red). The standard devia-
tion of the log-conductance was calculated in both cases in the flat region
around the charge neutrality point. The red squares in Figure 3.4.7 correspond
to the fluctuations in log-conductance between -4V and 4V.

3.5.6 Dependence of Nth on Teff

For graphene dots at Fermi energies comparable to or smaller than kBTeff ,

we have Nth ∝ T 2
eff , since graphene dots’ bulk charge carriers have a linear

density of states. This is a reasonable assumption in our case, where the

density of charge carriers is of the order of ∼ 1012/cm2, or less. In other

words, the number of electrons (or holes) per dot of linear size ξ ∼ 45 nm is

comparable to or smaller than 20. This is typically smaller than the number

of low-energy edge-states existing in a dot of size ξ ∼ 45 nm, which is of the

order [137] of ξ/a0 ∼ 100, where a0 is graphene lattice constant. Unlike bulk

states which have a density of states ρbulk(ε) ∼ ε, edge states have a density

of states ρedge(ε) ∼ 1/ε [137]. Since the number of charge carriers per dot is

typically smaller than the number of edge states, the Fermi energy is pinned

around the zero-energy point. Numerical simulations reported in reference [137]

suggest that in our case, the Fermi energy lies within few meV from charge-

neutrality point, comparable to kBTeff in the MIC regime (see Figure 3.4.7).

The number of graphene dots extended bulk states within an energy interval

of length kBTeff must thus be Nth ∝ T 2
eff .
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Chapter 4

Engineering spin and

anomalous Hall effects in

graphene by means of

spin-orbit active adatoms

4.1 Graphene spintronics

Graphene is widely seen as a promising material for spintronics given its low

intrinsic spin-orbit coupling [132] of λint ∼ 1 μeV and its ability to form sp3

bonds with adatoms in a controllable way [90, 91]. While the former prop-

erty in principle allows to use graphene as a spin-preserving channel, the latter

gives the possibilty to locally enhance the spin-orbit coupling due to atomic-

scale out-of-plane deformation of the lattice [149]. Therefore, it may become

possible to engineer novel graphene-based spintronics devices, with spatially-

varying spin-orbit coupling. Low spin-orbit interaction regions would be used

to faithfully transport spins, while the high spin-orbit coupling ones would be

used to manipulate spins. However, spin-transport experiments performed on

pristine graphene [133] showed that spin diffusion lengths are orders of magni-
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tude smaller than expected from the extremely small value of λint. Many early

spin-transport experiments on graphene [133, 134] and its bilayer counterpart

[135] were devoted to understand the main scattering mechanisms responsible

for such unexpectedly low spin diffusion lengths. At the time of writing, this is

still a mystery in spite of some notable advances [136].

Hybridization techniques to tune graphene’ s spin-orbit coupling and allow

new spin-processing possibilities are still in their infancy. While it was recently

shown that hydrogenation of graphene could lead to spin Hall effect at zero

magnetic fields [87], few other types of adatoms have been tried to functionalize

graphene. Clearly, exploring Mendeleev’s table more deeply could bring new

exciting possibilities for spin-processing. In this purely theoretical chapter, we

investigate the effects of non-magnetic heavy elements, which leave the lattice

flat. We show that such species can induce large spin-orbit interactions if

adsorbed in hollow- or top-position, but not in bridge-position. Exact spin-orbit

coupling mechanisms depend not only on the position of adatoms on the lattice

but also on their valence orbital type: s, p, d or f. Our calculations reveal that

while hollow-position adatoms can induce large pure transverse spin currents

and spin Hall effect, top-position adatoms produce no spin-currents but give rise

to transverse charge currents, leading to anomalous Hall effect. Crucially, we

show that tuning the Fermi level can not only switch these transverse currents

on and off but also reverse their flow. This opens up new avenues for novel

spintronics and electronics applications.

4.2 Constructing effective impurity Hamilto-

nians

We now derive Hamiltonians describing the action of adatoms on graphene’s

Dirac fermions. In previous works, graphene’s adatoms have essentially been

described as a Dirac-peak potential V δ(~r), in order to estimate the conductivity
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[139, 156] of defective graphene, and identify its dependence on charge carrier

density. Though this approach proved successful experimentally[150, 151, 152],

it does not capture subtle effects which we aim to investigate, in particular the

impact of adatoms on charge carriers spin and valley degrees of freedom. In this

section we seek to establish a continuum theory of atoms adsorbed on graphene,

within which an adatom situated at the origin adds a localized effective-mass

term Mδ(~r) to pristine graphene’s Dirac Hamiltonian, and M is an 8× 8 ma-

trix which depends on the adatom’s exact position in the lattice: at the center

of a honeycomb hexagon - hollow position -, on top of a carbon atom - top

position -, or in the middle of a carbon-carbon bond - bridge position -. For

the continuum theory to incorporate the most important symmetries associ-

ated with these particular positions in the lattice, we first derive very general

graphene-only single-electron level tight-binding Hamiltonians, and then take

the limit of vanishingly small lattice spacing.

4.2.1 Adatoms in hollow position

We start by considering the case of a single adatom in the hollow position.

Since we are primarily concerned with spin-orbit coupling, we decide to write

our graphene-only hamiltonian in terms of creation and annihilation operators

of states of well-defined angular momentum M , instead of the more conven-

tional creation and annihilation operators of carbon pz-orbital states. Since

hopping integrals between the latter and the adatom decrease exponentially

with distance from the adatom, the relevant states of angular momentum M

can be written as superposition of all pz-orbital states located at the 6 vertices

of the hexagon occupied by the adatom, as depicted in FIG. 4.2.1.

Using the numbering of carbon atoms shown in Figure 4.2.1, and noting ci

the operator annihilating a pz-orbital state of atom i, we focus on operators of

the form C =
∑6

i=1 λici. We also note sl=0,x,y,z the Pauli matrices acting on

spin. Requiring C to have a given angular momentum, there exists an integer
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Figure 4.2.1: Schematic picture of an adatom (pink sphere) in a hollow position.
A-sublattice (resp. B-sublattice) carbon atoms are represented as blue (resp.
red). Right pannels show the modulus of wave functions ψm(x, y) created by
operators Ω†m, form = 0,±1,±2, 3. Space coordinates (x, y) have the adatom
as origin, and verify (x, y) ∈ [−3.5, 3.5]2 in units of a ≈ 1.43. The color scale
is linear and reprsents |ψm|, from dark blue (lowest values) to red (highest
values).
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m such that C transforms into e−iszπ/6e−imπ/3C under in-plane rotation by π/3

around the adatom. This condition imposes that λ2 = ωmλ1, λ3 = ω2mλ1,...,

λ6 = ω5mλ1, where ω = e−iπ/3. In other words, the only possible operators

annihilating a graphene quasiparticle state on the hexagonal plaquette hosting

the adatom, and of well-defined angular momentum M around this adatom

are, up to a scalar coefficient and unitary operator acting on spin, Ωm =∑6
i=1 ω

m(n−1)cn for m = 0,±1,±2, 3. By construction, operators Ωm, already

encountered in Ref. [154], carry angular momentumm, except Ω3 which carries

angular momentum 0. This can easily be seen by considering the time-reversed

operator syΩ3 which has the same angular momentum. Since time-reversal

transforms angular momentum ~L = ~r × ~p into its opposite, it follows that Ω3

has angular momentum zero. We also observe that the six operators Ωm are

linearly independent, since
[
ωm(n−1)

]
(m,n)

is a Vandermonde matrix [155] and

ω is a primitive sixth root of unity. Therefore, the most general graphene-only

single-electron Hamiltonian term induced by a hollow-position adatom can be

written in terms of operators annihilating “hexagonal” Ω†m|0〉 states:

Hhollow =
3∑

m=−2

Ω†mXmΩm +
1∑

m=−2

Ω†mMmΩm+1

+
∑

m=0,±1

Ω†3TmΩm + h.c. (4.2.1)

where Xm, Mm, and Tm are matrices acting on spin. These matrices connect

operators Ωi which have angular momenta differing by at most 1, by conser-

vation of total angular momentum J = L+ S. Conservation of J also implies

that Xm and T0 are diagonal matrices, while Mm and T1 matrices are pro-

portional to the spin-raising operator s+ = sx+isy
2

and T−1 is proportional to

the spin-lowering operator s− = sx−isy
2

. This means that under rotation by

π/3, Ω†mXmΩmand Ω†mMmΩm+1 are invariant, while Ω†3TmΩm terms are odd.

The invariance of Hhollow under rotation by π/3 thus requires Tm=0,±1 = 0. In
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other words, zero-angular momentum states Ω†3|0〉 don’t couple to any other

hexagonal Ω†m|0〉 state and can be ignored. Moreover, since we consider non-

magnetic and static impurities, Hhollow is time-reversal invariant, which implies

that syX∗msy = X−m and syM∗
msy = M †

−m−1. Finally, invariance of Hhollow

under reflection x 7→ −x requires sxXmsx = X−mand sxMmsx = M †
−m−1.

Together, these conditions lead to the simplified form:

Hhollow =
2∑

m=−2

ν+
mΩ†mΩm +

∑
m=±1,±2

ν−mΩ†mszΩm

+ i
1∑

m=−2

Λm(Ω†ms+Ωm+1 − Ω†m+1s−Ωm) (4.2.2)

where ν+
m, ν

−
m, and Λm are real numbers verifying ν+

m = ν+
−m, ν

−
−m = −ν−m

and Λ−m−1 = −Λm. It is important to note that eq. 4.2.2 is general at

the single-electron level, provided that interactions between the adatom and

graphene’s pz-orbitals are negligible outside the adatom’s six nearest neigh-

bors. The exact coupling mechansims between hexagonal states only affect

the value of constants ν±m and Λm, but not the overall form of Hhallow given

by eq. 4.2.2. Relations between these coupling constants and microscopic

parameters such as energy levels and spin-orbit couplings of the adatom are

derived in Appendix, in situations where a graphene electron or hole in state

Ω†m|0〉 undergoes spin-dependent tunneling to an adatom orbital of same angu-

lar momentum, potentially flips its spin by intra-atomic spin-orbit interaction

and tunnels back to the graphene sheet in another Ω†m′ |0〉 state. In such cases,

Hhollow describes the effect of impurity-graphene hybridization on graphene’s

Dirac fermions.

We now derive an expression for Hhollow in the continuum limit, where the

carbon-carbon distance a0 is seen as vanishingly small. In this limit, pristine
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graphene’s Hamiltonian reads [157]

H0 =

ˆ
d2~r

A7
Ψ†(~r)H0(~r)Ψ(~r) (4.2.3)

where H0 = vF (τzσxpx + σypy) and A7 =
3
√

3a2
0

2
is the area of a unit cell.

Here, τl=0,x,y,z and σl=0,x,y,z are Pauli matrices acting respectively on valley-

and sublattice-space. In eq. 4.2.3,

Ψ†(~r) = (Ψ†↑KA(~r),Ψ†↑KB(~r),Ψ†↑K′A(~r),Ψ†↑K′B(~r),

Ψ†↓KA(~r),Ψ†↓KB(~r),Ψ†↓K′A(~r),Ψ†↓K′B(~r))

is an 1×8 creation operator whose components Ψ†sτσ(~r) create a state with spin

s = ↑, ↓≡ 1,−1, valley τ = K,K ′ ≡ 1,−1, in sublattice σ = A,B ≡ 1,−1

and at point ~r. To account for both K and K ′ valleys, we write spin-s

components of annihilation operators cn as superpositions of ΨsKσn(~rn) and

ΨsK′σn(~rn), where ~rn and σn are the position vector and sublattice index cor-

responding to site n:

cn,s =
∑
τ=±1

eiτ
−→
ΓK.~rnΨsτσn(~rn) (4.2.4)

Here, Γ denotes graphene’s first Brillouin zone center, and taking the a0 → 0

limit, the spin-s =↑, ↓ component of Ωm becomes:

Ωm,s =
∑
τ

(
γAmτΨsτA(~0) + γBmτΨsτB(~0)

)
(4.2.5)

with γAmτ = 1 + 2 cos((m − τ)2π
3

) and γBmτ = (−1)m + 2 cos((m − 2τ)π
3
).

Writing

Hhollow =

ˆ
d2~r

A7
Ψ†(~r)Hhollow(~r)Ψ(~r) (4.2.6)
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we obtain the following continuum-limit expression for Hhollow(~r):

Hhollow = (V0I + ∆τxσx + Vsoszτzσz + ∆soszτyσy

+ ΛR(sxσy + syτzσx))A7δ(~r) (4.2.7)

where V0 = 9(ν+
1 +ν+

2 ), ∆ = 9(ν+
2 −ν+

1 ),Vso = 9(ν−1 −ν−2 ), ∆so = 9(ν−1 +ν−2 )

and ΛR = −9Λ1. From now on, A7 is set to unity, unless specified otherwise.

Eq. 4.2.7 is only valid in the vicinity of the Dirac point, as terms of order 1

or higher in momentum k have been neglected. It nonetheless gives insight

regarding possible spin-orbit coupling mechanisms induced by hybridization. In

addition to expected on-site potential V0I [156] and Kane-Mele [158] intrinsic

spin-orbit coupling Vsoszτzσz terms discussed in Ref. [154], Hhollow contains

a spin-independent intervalley term ∆τxσx and a term Vsoszτyσy which mixes

both spin and valley degrees of freedom. The presence of ∆τxσx reflects the

fact that atomically small impurities tend to act as “white noise” [161] in mo-

mentum space and hence make intra-valley and inter-valley scattering processes

equi-probable. Similar to intrinsic spin-orbit coupling term Vsoszτzσz, the term

Vsoszτyσy is even under Rz : z 7→ −z reflection. However, the former dif-

fers from the latter by its valley-connecting character, itself a consequence of

the short-range nature of adatoms. Importantly, Hhollow also contains a term

HR = ΛR(sxσy + syτzσx)δ(~r) originating from couplings between hexagonal

states of total angular momentum J = ±3
2
, namely Ω†±1s±Ω±2 and Ω†±2s∓Ω±1

in equation 4.2.2. Since p-orbitals accomodate two states of angular momen-

tum ±3/2, p-orbital adatoms can in principle mediate spin-orbit interactions

between hexagonal states Ω†1,↑|0〉 and Ω†2,↓|0〉, thereby leading to non-zero ΛR.

This is confirmed by calculations performed with Löwdin’s method, shown in

Appendix. However, ΛR should be significantly enhanced in situations where

spin-orbit coupling is mediated by d- or f -orbital adatoms, which host four

states of angular momentum ±3/2.
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The symmerties of HR are interesting in their own right. This term is

odd under reflection Rz but differs from the well-known Bychkov-Rashba [159]

Hamiltonian HBR = Λso(sxσy − syτzσx) induced by an out-of-plane electric

field, a possibility already pointed out by Ref. [160] for inversion symme-

try breaking impurities. Similarly to the Bychkov-Rashba Hamiltonian, HR is

SO(2)-symmetric, as it should be for spin-orbit interactions induced by hollow-

position adatoms, which preserve graphene’s C6v-symmetry. However, spinors

ψ(~r) verifying (H0 + Hhollow)ψ = Eψ transform under rotation by φ, noted

Rφ, as

e+iszφ/2e−iτzσzφ/2ψ(R−φ(~r)) (4.2.8)

instead of the conventional e−iszφ/2e−iτzσzφ/2ψ(R−φ(~r)). As a result, τσ − s

is a conserved quantity, but not τσ + s .

Finally, let us mention that Hamiltonian Hhollow can easily be interpreted

in terms of hopping between graphene’s pz orbitals closest to the adatom,

as illustrated by Figure 4.2.2. While scalar potential V0I and intrinsic spin-

orbit coupling term Vsoszτzσz are associated with on-site energies and hopping

between second-nearest neighbors, inter-valley terms ∆τxσx and ∆soszτyσy

correspond to first- and third-nearest neighbor hopping respectively. In contrast

with Bychkov-Rashba spin-orbit interaction HBR, the ΛR(sxσy + syτzσx) term

is associated with both first- and third-nearest neighbor hopping.

4.2.2 Adatoms in top-position

Another important class of adatoms are species which can be physisorbed or

chemisorbed in top position, i.e. on top of a graphene carbon atom belonging

to the A- or B-sublattice, as depicted in Figure 4.2.3. Such an adatom breaks

graphene’s C6v symmetry and hence induces spin-orbit coupling mechansims

different from those introduced by adatoms in hollow position. In contrast

with adatoms in hollow position, a top-position adatom has only one nearest

neighbor, located directly below and numbered as 0, as well as three second
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Figure 4.2.2: Interpretation of effective HamiltonianHhollow in terms of hopping
between graphene’s pz-orbitals.
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Figure 4.2.3: Schematic picture of adatoms (pink spheres) in top position, on
an A-sublattice (blue) and B-sublattice (red) carbon atom. Sites numbering
used in main text is shown for both cases, A- and B-sublattice. Right pannels
show the modulus of wave functions φm(x, y) created around the A-sublattice
adatom by operators Γ†m, for m = 0,±1. Space coordinates (x, y) have this
adatom as origin, and verify (x, y) ∈ [−3.5, 3.5]2 in units of a ≈ 1.43. The
color scale is linear and reprsents |φm|, from dark blue (lowest values) to red
(highest values).

nearest neighbors labelled 1,2 and 3 and situated at a distance of a0 away from

0. The only electronic states with definite angular momentum m formed by

linear combinations of pz orbitals 1,2 and 3 are “triangular states” annihilated by

operators Γm =
∑3

n=1 ζ
m(n−1)cn where m = 0,±1 and ζ = e−i2π/3, see Figure

4.2.3. In particular, states with angular momentum ±2 are not supported.

Since Γ0, Γ1 and Γ−1 are linearly independant, we can write the graphene-only

impurity hamiltonian Htop describing the action of a top-position adatom in

terms of operators c0 and Γ0,±1 only, provided that interactions between the

adatom and more distant carbon atoms are negligible. At the single-electron
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level, the most general time-reversal invariant Htop conserving total angular

momentum and preserving C3v-symmetry reads:

Htop = V0c
†
0c0 + V1Γ†0Γ0 + V2(c†0Γ0 + Γ†0c0)

+ Λ+(Γ†1Γ1 + Γ†−1Γ−1)

+ Λ−(Γ†1szΓ1 + Γ†−1szΓ−1)

+ iµ(c†0s+Γ1 + c†0s−Γ−1 − h.c.)

+ iτ(Γ†0s+Γ1 + Γ†0s−Γ−1 − h.c.) (4.2.9)

where V0,1,2, τ , µ and Λ± are reals. In the continuum limit a0 → 0, spin-

s components of c0 and Γm operators, are c0,s = ΨsKA(~0) + ΨsK′A(~0) and

Γm,s = 3(1− δm,0)ΨsmB(~0) if the adatom is on top of an A-sublattice carbon

atom, and c0,s = ΨsKB(~0) + ΨsK′B(~0) and Γm,s = 3(1 − δm,0)Ψs,−m,A(~0)

otherwise. In the continuum, an adatom on top of an A,B-sublattice site thus

induces the following HA,B
top Hamiltonian:

HA,B
top = (V0(τ0 + τx)πA,B + v0πB,A ± λsoszτzπB,A

+ Λso(sxτxσy + sxσy + syτzσx ± syτyσy))δ(~r)

(4.2.10)

where πA = σ0+σz
2

and πB = σ0−σz
2

are projectors on A- and B-sublattice

subspace respectively, and v0 = 9Λ+, λso = 9Λ− and Λso = 9
2
µ. The term

V0(τ0 + τx)πA,Bδ(~r) of HA,B
top in eq. 4.2.10 has already been derived for atomi-

cally sharp potentials on an A- or B-sublattice atom [161]. It induces intervalley

scattering and is symmetric under x 7→ −x reflection Rx, but breaks all rota-

tional symmetries in the contiuum theory describing graphene Dirac fermions.

This is best highlighted by local density of states maps in the vicinity of such im-

purities [162], exhibiting fringes perpendicular to
−−→
KK ′ and hence to −→ex . Invari-

ance of HA,B
top under Rx is manifest, as UxHA,B

top Ux = HA,B
top , where Ux = sxτx is
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the unitary representation of Rx in the continuum theory described by Htot =

H0 +HA,B
top . Importantly, one also has UyHA

topUy = HB
top, with Uy = syσx . In

other words, HA
top transforms intoHB

top underRy : y 7→ −y, faithfully reflecting

the lattice geometry. This means that top-position adatoms induce different

spin-orbit coupling terms, depending on the host sub-lattice. Both close cousins

of graphene’s intrinsic spin-orbit coupling, Rz-even spin-orbit interaction me-

diated by top-position adatoms on A- and B-sublattice are λsoszτzπBδ(~r) and

−λsoszτzπAδ(~r) respectively. The Rz-odd component is more surprising. Be-

side the valley-preserving term ∝ (sxσy + syτzσx)δ(~r) already encoutered in

eq. 4.2.7, a new valley-mixing term Λso(sxτxσy ± syτyσy)δ(~r) emerges, + for

HA
top and − for HB

top. Since in the continuum limit, Γ0 = 0 + O(a0k), spin-

flipping processes coupling two triangular states are quenched, in contrast with

those coupling a triangular state Γ†±1|0〉 with the central orbital c†0|0〉, whose

continuum limit is a superposition of K- and K ′-valley states. This explains

why top-position adatoms give rise to Rz-odd spin-orbit interactions inducing

both spin-flip and inter-valley scattering.

Continuum-limit hamiltonian HA,B
top can be interpreted in terms of hop-

ping between pzorbitals i = 0, 1, 2, 3, as shown in Figure 4.2.4. While spin-

independent terms V0(τ0+τx)πA,B and v0πB,A correspond to on-site energies on

central site 0 and neighboring orbitals i = 1, 2, 3 respectively, theRz-even spin-

orbit coupling term ±λsoszτzπB,A is associated with hopping between orbitals

i = 1, 2, 3. Finally, the Rz-odd term Λso(sxτxσy + sxσy + syτzσx ± syτyσy)

arises from spin-dependent hopping between the central site 0 and its first

nearest neighbors.

4.2.3 Adatoms in bridge position

We now consider the case of adatoms in the bridge position, depicted in Figure

4.2.5. The only states of definite angular momentum m which can be formed

with pz-orbitals of atoms 1 and 2 are, up to a scalar and a unitary matrix
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Figure 4.2.4: Interpretation of effective Hamiltonian HA
top in terms of hopping

between graphene’s pz-orbitals.

acting on spins: (c†1 ± c
†
2)|0〉. However, these states have angular momentum

zero. Other possible definite-m linear combinations including further pz-orbitals

would also have m = 0, because the only rotational symmetry preserved by

the bridge configuration is the rotation by π. As a result, Rz-odd spin-orbit

coupling mechanisms induced by graphene-adatom hybridization is forbidden in

absence of electric field. Furthermore, the impurity HamiltonianHbridge induced

by any non-magnetic, static bridge-position adatom must respect hermicity,

time-reversal symmetry and Ry. At the single electron level, and limiting

ourselves to orbital 1 and 2, these conditions constrain Hbridge to read:

Hbridge = Vb(c
†
1c1 + c†2c2) + β(c†2c1 + c†1c2) (4.2.11)

where Vb and β are reals. Clearly, Hbridge does not have any spin-orbit coupling

term, but for completeness, we derived the continuum limit of Hbridge, using
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c1,s → ΨsKB(~0) + ΨsK′B(~0) and c2,s → ΨsKA(~0) + ΨsK′A(~0). We obtain:

Hbridge = (Vb(τ0 + τx) + β(τ0 + τx)σx)δ(~r) (4.2.12)

Figure 4.2.5: Adatom (pink sphere) in bridge position. A-sublattice and B-
sublattice carbon atoms are shown in blue and red respectively. Relevant atoms
are numbered as in main text.

In summary, adatoms in hollow, top and bridge positions give rise to a mass-

term in the continuum limit Hamiltonian describing graphene quasi-particles:

Htot = vF (τzσxpx + σypy) +Mδ(~r) (4.2.13)

where M = Mel + Mev + Modd are, close to the Dirac point, momentum-

independent 8×8 hermitian matrices. Here,Mel describes the spin-independent

part, of pure electrostatic origin, while Mev and Modd correspond to the Rz-

even and Rz-odd spin-orbit coupling contributions. Expressions for these ma-

trices in previously-discussed cases are compared in table 4.1.
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Effective
mass Hollow Top (A or B) Bridge

Mel V0I + ∆τxσx V0(τ0 + τx)πA,B + v0πB,A Vb(τ0 + τx) +
β(τ0 + τx)σx

Mev Vsoszτzσz +
∆soszτyσy

±λsoszτzπB,A 0

Modd ΛR(sxσy +
syτzσx)

Λso(sxτxσy + sxσy +
syτzσx ± syτyσy)

0

Table 4.1: Table comparing effective masses Mel, Mev, and Modd induced
by spin-independant, Rz-even and Rz-odd terms of impurity Hamiltonians
originating from adatoms in hollow, top (on A- or B-sublattice) and bridge
positions. Results are valid for s-, p-, d-, and f - orbital adatoms.

4.3 Scattering theory

4.3.1 Scattering cross-section formalism

We consider a hollow- or top-position adatom on graphene, centered at the

origin and inducing an effective mass Mδ(~r). The impurity induces elastic

scattering, i.e. an incoming Dirac plane wave φs,τ~k (~r) of spin s, valley τ ,

momentum ~k and energy E = sE~vFk, where sE = ±1, is scattered to an

outgoing wave φout(~r), giving rise to a total wave Φ(~r) = φs,τ~k (~r) + φout(~r) of

energy E. The outgoing and incoming waves are related by the the Lippmann-

Schwinger equation [163]:

φout(~r) = G±0 (~r, E)T (E)φs,τ~k (~0) (4.3.1)

where G±0 (~r, E) = 〈~r|(E −H0 ± iη)−1|~0〉 is pristine graphene’ s advanced (-)

or retarded (+) Green’s function, depending on the energy sign: (+) if ω > 0
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and (-) otherwise. The matrix T satisfies the equation:

T (E) = M(I− g(E)M)−1 (4.3.2)

In eq. 4.3.2, g(E) corresponds to the Green’s function evaluated at the origin,

which is a scalar:

g(E) =
E

2π
ln

(
|E|
Ec

)
− iE

4
(4.3.3)

where Ec is graphene half band-width and ~vF ≡ 1 has been set. For the

sake of simplicity, we write the T -matrix and G±0 (~r, E) in the following basis

of states:

{| ↑ KA〉, | ↑ KB〉, | ↑ K ′B〉, | ↑ K ′A〉,

| ↓ KA〉, | ↓ KB〉, | ↓ K ′B〉, | ↓ K ′A〉} (4.3.4)

where the Green’s function takes the simple asymptotic form, as r → +∞:

G±0 (~r, E) = −
√
isEk

8π

eikr√
r
eiτz
−→
ΓK.~r(I + s0τzσθ) (4.3.5)

with σθ =

 0 e−iθ

eiθ 0

 and θ = ∠(~ex, ~r). In eq. 4.3.5, the diagonal matrix

eiτz
−→
ΓK.~r encodes the phase difference between waves at K and K ′ points. In

basis 4.3.4, we write T in block form:

T =



T↑K,↑K T↑K′,↑K T↓K,↑K T↓K′,↑K

T↑K,↑K′ T↑K′,↑K′ T↓K,↑K′ T↓K′,↑K′

T↑K,↓K T↑K′,↓K T↓K,↓K T↓K′,↓K

T↑K,↓K′ T↑K′,↓K′ T↓K,↓K′ T↓K′,↓K′


(4.3.6)
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and we note, for valleys τ, τ ′and spins s, s′

Tsτ,s′τ ′ =

 T 11
sτ,s′τ ′ T 12

sτ,s′τ ′

T 21
sτ,s′τ ′ T 22

sτ,s′τ ′

 (4.3.7)

With these notations, the outgoing wave φout reads, away from the impurity:

φout(~r) = −
√
isEk

8π

eikr√
r
eiτz
−→
ΓK.~r

∑
s′,τ ′

csτ,s′τ ′(θ)u
s′,τ ′

k~er
(θ) (4.3.8)

where ~er = ~r/r, us
′,τ ′

k~er
(θ) = 1√

2
|s′〉 ⊗ |τ ′〉 ⊗

 1

sEτ
′eiθ

 in basis 4.3.4, and

csτ,s′τ ′(θ) = T 11
sτ,s′τ ′ + τT 12

sτ,s′τ ′

+ τ ′e−iθ
(
T 21
sτ,s′τ ′ + τT 22

sτ,s′τ ′

)
(4.3.9)

Accounting for both spin and valley degrees of freedom, the radial probability

density current associated with the outgoing wave reads

Jr = vFφ
†
outs0τzσθφout

=
k

8πr
vF
∑
s′,τ ′

|csτ,s′τ ′(θ)|2, (4.3.10)

while the tangential component of the probability density current is

Jθ = vFφ
†
outs0τz∂θσθφout = 0, (4.3.11)

so that the probability density current is radial, ~J (~r) = Jr~er. The current

associated with scattering of an incoming Dirac fermion of spin s and valley

τ is thus the sum of currents ~Jsτ,s′τ ′ = k
8πr
vF |csτ,s′τ ′(θ)|2~er arising from all

possible sτ → s′τ ′ transitions, and the corresponding differential cross-sections

σsτ,s′τ ′(θ) are:

σsτ,s′τ ′(θ) =
k

8π
|csτ,s′τ ′(θ)|2 (4.3.12)
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An asymptotic formula for σsτ,s′τ ′(θ) can easily be derived from equation 4.3.9:

σsτ,s′τ ′(θ) =
k

8π
(C2
sτ,s′τ ′ +Msτ,s′τ ′ cos(θ + ϕsτ,s′τ ′)) (4.3.13)

where

C2
sτ,s′τ ′ = |T 11

sτ,s′τ ′ + τT 12
sτ,s′τ ′|2

+ |T 21
sτ,s′τ ′ + τT 22

sτ,s′τ ′|2 (4.3.14)

Msτ,s′τ ′ = 2τ ′|T 11
sτ,s′τ ′ + τT 12

sτ,s′τ ′|

× |T 21
sτ,s′τ ′ + τT 22

sτ,s′τ ′| (4.3.15)

and

ϕsτ,s′τ ′ = arg(T 11
sτ,s′τ ′ + τT 12

sτ,s′τ ′)

− arg(T 21
sτ,s′τ ′ + τT 22

sτ,s′τ ′) (4.3.16)

It is important to note that σsτ,s′τ ′(θ) generally has a phase ϕsτ,s′τ ′ , which

can give rise to skew-scattering and hence spin Hall effect or anomalous Hall

effect, provided ϕsτ,s′τ ′ 6= 0 and Msτ,s′τ ′ 6= 0. Establishing conditions under

which skew scattering is significant is the object of the remaining paragraphs.

This study can be conveniently carried out by comparing the integrated skew

cross-sections

Σ⊥sτ,s′τ ′ =

ˆ 2π

0

dθ sin θσsτ,s′τ ′(θ), (4.3.17)

which measure the skewness of sτ → s′τ ′ scattering mechanisms, to the inte-

grated transport cross-sections:

Σ
‖
sτ,s′τ ′ =

ˆ 2π

0

dθ(1− cos θ)σsτ,s′τ ′(θ) (4.3.18)
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From a semi-classical view point, these integrated cross-sections directly relate

to the relevant microscopic currents

J⊥sτ,s′τ ′ = sE

ˆ 2π

0

~Jsτ,s′τ ′ .~eyrdθ

= sEvFΣ⊥sτ,s′τ ′ (4.3.19)

and

J
‖
sτ,s′τ ′ = sE

ˆ 2π

0

~Jsτ,s′τ ′ .(~er − ~ex)rdθ

= sEvFΣ
‖
sτ,s′τ ′ (4.3.20)

which respectively describe the transverse and deflected currents due to sτ →

s′τ ′ processes.

4.3.2 Scattering with hollow-position adatoms

We now focus on scattering mechanisms induced by an adatom in the hollow

position. Using table 4.1, the calculated T -matrix in basis 4.3.4 reads:

Thollow =

 T ↑↑hollow T ↓↑hollow

T ↑↓hollow T ↓↓hollow

 (4.3.21)

with 4× 4 blocks:

T sshollow =



αs 0 γs 0

0 βs 0 δs

γs 0 αs 0

0 δs 0 βs


(4.3.22)
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where s =↑, ↓, and:

T ↑↓hollow = −tT ↓↑hollow =



0 0 0 0

τf 0 0 0

0 0 0 0

0 0 −τf 0


(4.3.23)

Matrix elements appearing in equations 4.3.22 and 4.3.23 verify:

τf =
2iΛR

d
(4.3.24)

α↑ = β↓ =
χ− pg
d

(4.3.25)

α↓ = β↑ =
χ′ − qg
d′

(4.3.26)

γ↑ = δ↓ =
∆−∆so

d
(4.3.27)

γ↓ = δ↑ =
∆ + ∆so

d′
(4.3.28)

where we set χ = V0 +Vso, χ′ = V0−Vso, p = (V0 +Vso)
2− (∆−∆so)

2−4Λ2
R

and q = (V0 − Vso)2 − (∆ + ∆so)
2. We also defined:

d = 1− 2gχ+ pg2 (4.3.29)

and

d′ = 1− 2gχ′ + qg2 (4.3.30)
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Strikingly, T-matrix elements for intervalley-scattering events involving spin-flip

are null. However, intra-valley spin-flips, spin-preserving inter-valley scattering

and pure momentum scattering events are allowed, and we shall describe them

in more detail in the following paragraphs.

Using equations 4.3.9 and 4.3.12, we found that differential cross-sections

σ↑K,↓K(θ), σ↑K′,↓K′(θ),σ↓K,↑K(θ), and σ↓K′,↑K′(θ) are equal and isotropic, lead-

ing to:

Σsτ,−sτ =
k|τf |2

4
, (4.3.31)

and null skew cross-sections. In other words, spin-flip does not give rise to

transverse spin-currents.

This contrasts sharply with the case of spin-preserving scattering. In par-

ticular, inter-valley scattering cross-sections are characterized, for τ 6= τ ′, by:

Msτ,sτ ′ = τ ′Minter (4.3.32)

ϕsτ,sτ ′ = sΘinter − (1− τ)
π

2
(4.3.33)

with

Minter = 2
∆2 −∆2

so

|d′d|
(4.3.34)

and

Θinter = arctan

(
=d′

<d′

)
− arctan

(
=d
<d

)
+ πH(−<d′)− πH(−<d) (4.3.35)

where H is the Heaviside step function. Generally, both Minter 6= 0 and

Θinter 6= 0 and hence inter-valley scattering induced by a hollow-position

adatom is skewed. The case of spin-preserving intra-valley scattering is similar:

Msτ,sτ = τMintra (4.3.36)
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Figure 4.3.1: Schematic representation of skew-scattering induced by adatoms
in hollow position. The black arrow represents the momentum ~kin of an in-
coming quasi-particle in K-valley. Blue (resp. red) half circles correspond to
the region of the Fermi line where the outgoing momentum ~kout is most likely
to be after a scattering event, if the incoming charge-carrier has spin down
(resp. spin up). Resulting pure spin currents are depicted as blue and red
planar arrows. Spin currents in K and K ′ valleys associated with intra- and
inter-valley scattering tend to oppose each other.

ϕsτ,sτ = sΘintra − (1− τ)
π

2
(4.3.37)

with

Mintra =
2|χ′ − qg||χ− pg|

|d′d|
(4.3.38)

and

Θintra −Θinter = arctan

(
=g
<g − χ

p

)

− arctan

(
=g

<g − χ′

q

)

+ πH

(
<g − χ

p

)
− πH

(
<g − χ′

q

)
(4.3.39)
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These results trivially lead to a zero transverse charge current

J⊥Q = e
∑
s,τ,τ ′

J⊥sτ,sτ ′ = 0, (4.3.40)

but to a generally non-zero transverse spin current

J⊥S =
∑
s,τ,τ ′

sJ⊥sτ,sτ ′

=
ksEvF

2
Minter

{
sin Θinter −F sin Θintra

}
(4.3.41)

where

F =
Mintra

Minter

(4.3.42)

The key parameters controlling the magnitude of the transverse spin current J⊥S

are thus the phase difference ϑ = Θintra−Θinter and the F factor. They depend

on hopping energies characterizing the adatom-graphene hybridization, and are

thus expected to depend strongly on the valence orbital type. Since s-orbital

adatoms lack J = ±3/2,±5/2 total angular momentum states necessary to

couple hexagonal states of angular momentum m = ±2, they induce zero ν±2 .

This directly leads to p = q = 0. As a result, ϑ = 0, F = 1 and hence J⊥S = 0.

Interestingly, p-orbital adatoms are a limit case. They host exactly two orbital

states J = ±3/2 and no J = ±5/2 states. Therefore, Ω†±2|0〉 −→ Ω†±2|0〉

transitions require double spin-flips, leading to small ν±2 ∝ w2
2 couplings, where

w2 is the hopping energy between graphene’s Ω†±2,↓/↑|0〉 state and adatom’s

p-orbital with angular momentum ±1 and spin-↑, ↓, see Appendix. p-orbital

adatoms are thus expected to yield negligible ϑ, F ≈ 1 and hence small J⊥S .

The case of d- and f-orbital adatoms are noticeably different as they offer spin-

preserving channels for Ω†±2|0〉 −→ Ω†±2|0〉 transitions, generally leading to

appreciable ν±2 couplings. In the low-energy limit |g| � χ
p
, the F factor then
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becomes

F ≈
(
ν+

1 + ν+
2

ν+
1 − ν+

2

)2

6= 1 (4.3.43)

where couplings corresponding to spin-dependent processes are neglected. Clearly,

this opens up the possibility of having large J⊥S provided Θinter and/or ϑ are

finite, leading to spin Hall effect [165, 166, 167, 168]. ϑ vanishes in the vicin-

ity of the Dirac point, reflecting the fact that intra- and inter-valley scattering

mechanisms tend to yield transverse spin currents of opposite signs, as depicted

by 4.3.1. However, ϑ can become significant under certain conditions. A nat-

ural question is thus whether ϑ can become large close to the Dirac point for

some physically meaningful values of p, q, χ and χ′. Typically, ϑ peaks when

<g lies between x = χ
p
and x′ = χ′

q
. Conditions <g = x, x′ are fulfilled for

Fermi levels EX=x,x′ verifying

EX
Ec

ln

∣∣∣∣EXEc
∣∣∣∣ =

2πE2
7X
Ec

(4.3.44)

where constants ~vF and A7 have been restored, and E7 = ~vF√
A7

. Peak

values of ϑ are thus attained close to the Dirac point provided 2πE2
7|X| � Ec,

in which case
EX
Ec

= L
(

2πE2
7X
Ec

)
(4.3.45)

Here, L is a function defined by means of the lower branch of the Lambert

W-function, W−1:

L(y) =
y

W−1(−|y|)

≈ y

ln |y|

(
1 +

ln | ln |y||
ln |y|

+
ln2 | ln |y||

ln2 |y|
− ln | ln |y||

ln2 |y|

)
(4.3.46)

We now determine under which conditions, 2πE2
7|X| � Ec is verified. Pa-

rameters p, q, χ and χ′ can be expressed in terms of the adatom’s energy
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levels as well as tight-binding parameteres connecting hexagonal states to the

adatoms valence orbital. If the Fermi energy lies far away from the adatom’s

valence orbital energy levels,

χ ≈ 9

(
σ2

1

E+
3/2

+
σ2

2

E−3/2

)
(4.3.47)

χ′ ≈ 9

(
σ2

1

E−1/2
+

σ2
2

E+
5/2

)
(4.3.48)

p ≈ 324
σ2

1σ
2
2

E−3/2E
+
3/2

(4.3.49)

q ≈ 324
σ2

1σ
2
2

E−1/2E
+
5/2

(4.3.50)

where E±J are energy levels valence orbitals would have in absence of intra-

atomic spin-flip, σm = um+νm and um and νm are hopping integrals connecting

hexagonal states and adatom’s orbitals of same angular momentum m, see

appendix. We thus have

2πE2
7x

Ec
≈
πE2

7
18Ec

(
E+

3/2

σ2
1

+
E−3/2
σ2

2

)
(4.3.51)

and
2πE2

7x
′

Ec
≈
πE2

7
18Ec

(
E−1/2
σ2

1

+
E+

5/2

σ2
2

)
(4.3.52)

which are small provided Ecσ2
1,2/E

2
7 are significantly larger than the adatom’s

valence orbital energy levels.

In addition, Θinter exhibits resonances of its own, which typically occur in

energy windows where real parts of d and d′ are small. The real parts of d and

d′ vanish close to the Dirac point at energies ED=d,d′ which relate to X = x, x′

and C = c, c′ = p
χ2 ,

q
χ′2

by

ED
Ec
≈ L

(
2πE2

7X
Ec

[1−
√

1− C]

)
(4.3.53)
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Θinter exhibits resonances close to the Dirac point provided 2πE2
7|X| � Ec or

C � 1. The former condition is valid whenever both Ecσ1/E
2
7 and Ecσ2/E

2
7

are large compared to adatom energy levels, whereas, the latter condition is

fulfilled if σ1 � σ2 or σ2 � σ1. More precisely, c, c′ ∝ (σ2/σ1)2 whenever

σ1 � σ2 and c, c′ ∝ (σ1/σ2)2 in the opposite limit.

Figure 4.3.2(a) shows J⊥S as a fraction of total outgoing current

J
‖
tot = sEvF

∑
s,τ,s′,τ ′

Σ
‖
sτ,s′τ ′ (4.3.54)

against Fermi energy EF , for realistic values of hopping integrals and atomic

energy levels. While the adatom energy levels are kept fixed, J⊥S /J
‖
tot is plot-

ted for different pairs of couplings (σ1, σ2), corresponding to points A,B,C

and D shown in figure 4.3.2(b). 4.3.2(a) illustrates the strong dependence

of J⊥S /J
‖
tot on couplings between the adatom valence orbitals and graphene

hexagonal states. At point A, the transverse spin current is negligible com-

pared to J‖tot, whereas points B and C yield transverse spin currents as large

as ∼ 20% of the total outgoing current at resonance. In situation D, J⊥S /J
‖
tot

exhibits giant peak-values of up to 40 in magnitude. 4.3.2(b) connects the

existence of peaks in J⊥S /J
‖
tot for particular (σ1, σ2) points to previously dis-

cussed resonant energies Ex,x′,d,d′ . It highlights that Ex,x′,d,d′ and resulting

peaks in transverse spin currents exist at low energy for sufficiently high σ1 or

σ2. However, peak values of J⊥S /J
‖
tot become significant provided both σ1 and

σ2 exceed ∼ E7(E±J /Ec)
1/2.

While transverse spin currents arising from skew scattering of graphene

Dirac fermions with a hollow-position adatom can exhibit large resonances,

eq. 4.3.41 suggests that J⊥S possesses another interesting property. Since

J⊥S results from competing transverse spin currents originating from intra- and

inter-valley scattering, one expects J⊥S to change sign for particular Fermi
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energies, such that

tan Θinter =
F sinϑ

1−F cosϑ
(4.3.55)

The existence of such levels close to the Dirac point would open up inter-

esting technological prospects, as simple field-effect would allow to reverse

spin-current flows. Intriguingly, eq. 4.3.55 admits low energy solutions for suf-

ficiently large σ1 or σ2. For the sake of clarity, points (σ1, σ2) such that the

solution Einv of minimum magnitude is equal to a tenth of graphene half band-

width are shown in Figure 4.3.2(b), as a yellow dashed line. Energies Einv

closer to the Dirac point are obtained away from the origin, beyond the

yellow curve. This is illustrated by point D, whose corresponding J⊥S /J
‖
tot

against EF curve is shown in 4.3.2(a), and exhibits a sharp inversion in

transverse spin current flow around EF ≈ 50 meV.

Finally, let us highlight further the specificities of the above-discussed spin

currents. Though spin Hall effects of intrinsic [172] and extrinsic [87] types

have already been observed in graphene, they differ drastically from the spin

Hall effect discussed in our work. While in Ref. [172], spin Hall effect ne-

cessitates a strong magnetic field and relies on Zeeman splitting at the Dirac

point [173], correlating spin ↑, ↓ and charge ∓e, spin Hall effect observed in

Ref. [87] is induced by the deformation of graphene lattice due to the pres-

ence of sp3-bonds [149]. Our theory describes spin Hall effect arising from

hybridization of graphene with d- or f -orbital adatoms in hollow position, and

predicts the appearance of large spin currents around resonant energies Ex,x′

and Ed,d′ The nature of these resonances is graphene-specific: the peaks in ϑ

and Θinter reflect an anomalous dephasing of the A- and B-sublattice compo-

nents of Dirac spinors after spin-conserving scattering with the adatom. This

phenomenon is unrelated to the previously-observed enhancement of spin-orbit

coupling occuring when the Fermi level lies close to an impurity level [174]

or a large spin-orbit coupling energy band [175]. Last but not least, a very

interesting and distinct feature of the resonant regime illustrated by Figure
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Figure 4.3.2: (a)J⊥S /J
‖
tot (in %) against Fermi energy (in eV), for hollow-

position adatoms with fixed E±1/2 = 1 eV, E±3/2 = 1.5 eV, and E±5/2 = 2 eV
and different (σ1, σ2), corresponding to points A, B, C and D shown in the
lower panel. (b) Maximum of |J⊥S /J

‖
tot| for |EF | ≤ 0.5 eV, against σ1 and

σ2. |E|/Ec = 0.1 lines are shown for E = Ex,x′,d,d′ , Einv. Each line parti-
tions (σ1, σ2)-space into regions, whose farthest from the origin corresponds to
|E|/Ec < 0.1.
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4.3.2 is the possibility to change the sign of J⊥S upon tuning the Fermi level

around specific “inversion energies” Einv. A direct consequence is the ability to

convert a charge current into a large transverse spin current in a certain energy

range, and to reverse its flow by tuning the gate voltage around critical values,

enabling novel spin-based logic devices.

4.3.3 Scattering with top-position adatoms

We now deal with scattering mechanisms induced by an adatom in top position.

We start with adatoms on top of an A-sublattice carbon atom. Using table

4.1, the corresponding T -matrix in basis 4.3.4 reads:

Ttop,A =

 T ↑↑top,A T ↓↑top,A

T ↑↓top,A T ↓↓top,A

 (4.3.56)

with 4× 4 blocks:

T sstop,A =



a 0 0 a

0 bs 0 0

0 0 b′s 0

a 0 0 a


(4.3.57)

where s =↑, ↓ and

T ↑↓top,A = −tT ↓↑top,A =



0 0 −t 0

t 0 0 t

0 0 0 0

0 0 −t 0


(4.3.58)

The T-matrix elements in equations 4.3.57 and 4.3.58 verify the following

identities:

t =
2iΛso

1− Ug + 2wg2
(4.3.59)
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a =
V0 − wg

1− Ug + 2wg2
(4.3.60)

b↑ = b′↓ =
v0 + λso

1− g(v0 + λso)
(4.3.61)

b↓ = b′↑ =
v0 − λso − 2wg

1− Ug + 2wg2
(4.3.62)

where we set U = 2V0 + v0−λso and w = (v0−λso)V0− 4Λ2
so. The T-matrix

Ttop,B for an adatom on top of a B-sublattice site is easily obtained from Ttop,A

by reflection Ry,

Ttop,B = UyTtop,AUy (4.3.63)

Matrix elements tσ,σ
′

sτ,s′τ ′ and t̃
σ,σ′

sτ,s′τ ′ of Ttop,A and Ttop,B associated with sτσ →

s′τ ′σ′ transitions are thus related by:

t̃ σ,σ
′

sτ,s′τ ′ = ss′tσ,σ
′

−sτ,−s′τ ′ (4.3.64)

with A = B and B = A. We next describe possible scattering mechanims

induced by an adatom on top of a σ0-sublattice site, σ0 = A,B, by calculating

corresponding cross-sections σσ0

sτ,s′τ ′ . Since Ttop,A transforms into Ttop,B under

Ry, the following relation holds:

σBsτ,s′τ ′(θ) = σA−sτ,−s′τ ′(−θ) (4.3.65)

so that we can focus on computing σAsτ,s′τ ′(θ) cross-sections only.

From this perspective, we first describe scattering mechanisms which do not

conserve spin and valley quantum numbers. Equation 4.3.57 directly implies

that intra-valley spin-flip and spin-preserving inter-valley scattering induced by

top-position adatoms are isotropic mechanisms, as

σAsτ,−sτ =
k|t|2

8π
, (4.3.66)
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and for τ 6= τ ′,

σAsτ,sτ ′ =
k|a|2

8π
(4.3.67)

Unlike adatoms in hollow position, top-position adatoms induce inter-valley

spin-flip scattering processes. In particular, for adatoms on the A-sublattice,

corresponding differential cross-sections read, for s 6= s′ and τ 6= τ ′:

σAsτ,s′τ ′(θ) =
k|t|2

2π
cos2

(
θ

2

)
δs+τ (4.3.68)

Therefore, scattering mechanisms originating from top-position adatoms yield

zero transverse currents, i.e. JA⊥sτ,s′τ ′ = 0, whenever s 6= s′ or τ 6= τ ′.

Next, we study spin-preserving intra-valley scattering. Irrespective of the

valley τ and spin s, T-matrix elements tA,Asτ,sτare equal. This contrasts with

tB,Bsτ,sτ elements, which generally verify:

tB,B↑K,↑K = tB,B↓K′,↓K′ 6= tB,B↑K′,↑K′ = tB,B↓K,↓K (4.3.69)

As a result, spin-preserving intra-valley scattering cross-sections for ↑ K and

↓ K ′ charge carriers differ from those for ↓ K and ↑ K ′ quasi-particles, and

σsτ,sτ (θ) is determined by the conserved quantity s+τ . We start by considering

the s+τ = ±2 case, and noteM2 =MA
↑K,↑K =MA

↓K′,↓K′ and ϕ2 = ϕA↑K,↑K =

ϕA↓K′,↓K′ , which verify:

M2 =
2|v0 + λso|.|V0 − wg|

|1− Ug + 2wg2|.|1− g(v0 + λso)|
(4.3.70)
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and:

ϕ2 = arctan

(
U=g − 2w=(g2)

1− U<g + 2w<(g2)

)
+ arctan

(
(v0 + λso)=g

(v0 + λso)<g − 1

)
+ arctan

(
w=g

w<g − V0

)
+ πH (w<g − V0) + πH ((v0 + λso)<g − 1)

− πH
(
U<g − 2w<(g2)− 1

)
(4.3.71)

The case of Dirac fermions for which s + τ = 0 is markedly different. Noting

M0 =MA
↓K,↓K =MA

↑K′,↑K′ and ϕ0 = ϕA↓K,↓K = ϕA↑K′,↑K′ , we obtain

M0 =
2|V0 − wg|.|v0 − λso − 2wg|

|1− Ug + 2wg2|2
(4.3.72)

and

ϕ0 = arctan

(
w=g

V0 − w<g

)
− arctan

(
2w=g

v0 − λso − 2w<g

)
+ πH (2w<g + λso − v0)− πH (w<g − V0)

(4.3.73)

Crucially, currents JA⊥↑K,↑K + JA⊥↑K′,↑K′ and J
A⊥
↓K,↓K + JA⊥↓K′,↓K′ are equal, so that

spin-preserving intra-valley scattering does not give rise to any transverse spin

current. The same holds true for spin-preserving intra-valley scattering induced

by an adatom on the B-sublattice, but owing to relation 4.3.65,

JB⊥sτ,sτ = −JA⊥−sτ,−sτ (4.3.74)

However, the transverse charge current arising from scattering with a single
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top-position adatom on sublattice σ = A,B

Jσ⊥Q = e
∑
s,τ

Jσ⊥sτ,sτ (4.3.75)

is generally non-zero, and eq. 4.3.74 directly implies JA⊥Q = −JB⊥Q . Macro-

scopically, top-position adatoms thus give rise to anomalous Hall effect [176],

provided the populations of adatoms on A- and B-sublattice differ by type or

number. Let us now study transverse charge currents Jσ⊥Q in more detail. Using

equations 4.3.75, 4.3.19 and 4.3.13, we obtain:

Jσ⊥Q = −σeksEvF
4

(M0 sinϕ0 +M2 sinϕ2) (4.3.76)

It is interesting to note that the magnitude of Jσ⊥Q is modulated byM0 and

M2, which are proportional to |v0−λso−2wg| and |v0+λso| respectively. While

the dependence on λso is expected, as spin-orbit interaction is a well-known

cause of anomalous Hall effect [176], the dependence on v0, a scalar potential

acting on graphene triangular states Γ†m,s|0〉, is more surprising. However,

this v0-dependence has a trivial geometrical explanation: the v0πB,A term of

HamiltonianHA,B
top is the continuum-theory counterpart of the trigonal potential

which affects the three graphene pz-orbitals neighboring the adsorption site,

and trigonal potentials clearly scatter charges anisotropically.

We next describe the energy-dependence of Jσ⊥Q . In neutral graphene,

phases ϕ0 and ϕ2 are null. However, they exhibit large resonances at finite

Fermi energies, such that

<g = 1/ωi=1,2,3 (4.3.77)

where:

ω1 = v0 + λso (4.3.78)

ω2 = v0 − λso −
4Λ2

so

V0

(4.3.79)
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ω3 = 2V0 −
8Λ2

so

v0 − λso
(4.3.80)

Equation 4.3.77 has a low-energy root |Ei| � Ec provided |ωi| � 2πE2
7/Ec,

in which case (see Eq. 4.3.46):

Ei
Ec

= L
(

2πE2
7

Ecωi

)
(4.3.81)

Another resonance is reached whenever

<(g2)− U

2w
<g +

1

2w
= 0 (4.3.82)

Equation 4.3.82 admits a low energy solution E4 verifying

E4

Ec
≈ L

(
2πE2

7
EcU

)
(4.3.83)

provided 8|w| � U2 and |U | � 2πEc.

We now write conditions for the existence of resonant energies close to

the Dirac point, in terms of tight-binding parameters connecting central and

triangular states to the top-position adatoms. We first consider the marginal

case of s-orbital adatoms, which only host states of total angular momentum

J = ±1/2. Couplings between triangular states of angular momentumm = ±1

are thus necessarily mediated by double spin-flip through an available adatom

orbital. Using the Appendix notations as well as equations 4.5.29 and 4.5.31

within, this results in v0 = −λso ≈ 9
2

l2so,1

E+
1/2

and Λso ≈ 9
2

lso,1γ

E+
1/2

. Therefore, ω1 = 0

and resonant energy E1 is infinite. Besides, the hopping integral lso,1 connecting

triangular states Γ†±1,↓/↑|0〉 to s-orbitals of opposite spin is expected to be

small compared to E+
1/2 and graphene half-bandwidth Ec, leading to |ω2,3| �

2πE2
7/Ec and |E2,3| � Ec. Resonant energies E1,2,3 are thus experimentally

irrelevant. However, U ≈ 2γ2

E+
1/2

and E4 is the only resonance which can possibly

be observed, provided γ2

E+
1/2

� πEc.

For all other types of valence orbitals, i.e. p, d, and f , the existence
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of spin-preserving channels coupling triangular states of angular momentum

m = ±1 gives rise to enhanced v0, λso and Λso energy scales, making resonant

energies Ei=1,2,3 accessible under certain conditions. Equations 4.5.29 and

4.5.31 directly lead to:

V0 ∼
γ2

E+
1/2

(4.3.84)

v0 ∼
9

2
θ2

1

(
1

E−1/2
+

1

E+
3/2

)
(4.3.85)

λso ∼
9

2
θ2

1

(
1

E+
3/2

− 1

E−1/2

)
(4.3.86)

Λso ∼ −
9

2

γθ1Λ1
so

E−1/2E
+
1/2

(4.3.87)

Therefore, equation 4.3.77 holds for i = 1, 2 or 3 if θ2
1/|E+

3/2| � E2
7/Ec,

θ2
1/|E−1/2| � E2

7/Ec or γ
2/|E+

1/2| � 2πE2
7/Ec respectively. Moreover,

U ∼ 2γ2

E+
1/2

+
9θ2

1

E−1/2
(4.3.88)

and assuming Λso is much smaller than V0, v0 and λso, we have:

w ∼ 9θ2
1γ

2

E−1/2E
+
1/2

(4.3.89)

so that equation 4.3.83 is valid provided |γ| � |θ1| or |γ| � |θ1|, and

2γ2/E+
1/2 + 9θ2

1/E
−
1/2 � 2πE2

7/Ec.

Figure 4.3.3(a) shows the transverse charge current JA⊥Q as a fraction of

total outgoing current

J
A‖
tot = esEvF

∑
s,τ,s′,τ ′

Σ
A‖
sτ,s′τ ′ (4.3.90)

against Fermi energy EF , for fixed values of atomic energy levels E±1/2, and

E±3/2, and various (γ, θ1) points, labelled as A,B,C,D and E. While for small
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Figure 4.3.3: (a)JA⊥Q /J
A‖
tot (in %) against Fermi energy (in eV), for top-position

adatoms with fixed E±1/2 = 1 eV and E±3/2 = 1.5 eV and different (σ1, σ2),
corresponding to points A, B, C, D and E shown in lower panel. (b) Maximum
of |JA⊥Q /J

A‖
tot | for |EF | ≤ 0.5 eV, against σ1 and σ2. |E|/Ec = 0.1 lines are

shown for E = E1,2,3,4, Einv. Each line partitions (σ1, σ2)-space into regions,
whose farthest from the origin corresponds to |E|/Ec < 0.1.
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γ and θ1 (situation A), the transverse charge current is negligible compared to

J
A‖
tot , significant JA⊥Q currents are obtained for values of γ and θ1 of the order

of few eV (points B,C,D,E in Figure 4.3.3(b)), up to 20%. In addition, the

transverse charge current can change direction for some values of Fermi energy,

as illustrated by curves C and E in figure 4.3.3(a). Such “inversion” energies

can exist close to the Dirac point for finite values of γ and θ1 only. Noting Einv

the inversion energy closest to the Dirac point for a given (γ, θ1) couple, figure

4.3.3(b) shows |Einv(γ, θ1)| = Ec/10 lines, which partition (γ, θ1)-space into

regions whose farthest from the origin corresponds to |Einv|/Ec < 0.1 . Clearly,

|Einv|/Ec < 0.1 domains overlap with regions of large JA⊥Q /J
A‖
tot magnitude,

making the existence of Einv relevant for applications. Similar to transverse spin

currents arising from scattering with hollow-position adatoms, we believe that

the possibility of changing the sign of Jσ⊥Q by field effect can lead to interest-

ing novel logic devices, with new functionalities. However, the observation of

significant anomalous Hall effect due to scattering with top-position adatoms

appears more challenging than the observation of large spin Hall effect due to

hollow-position adatoms, due to the necessity of having an imbalance between

A- and B-sublattice. Nevertheless, it should be noted that sublattice ordering

driven by RKKY-type interactions below a critical temperature was predicted

by several authors [177, 178, 179, 180], so that the above-discussed anomalous

Hall effect may in principle be observed in an experiment.

4.4 Concluding remarks

We have shown that both position in the lattice and valence orbital type are

critical to determine the action of an adatom on graphene’s Dirac fermions. Our

study of non-magnetic elements adsorbed on graphene, valid when the Fermi

energy is detuned from the adatoms valence orbital spectrum, established that

while bridge-position adatoms do not induce spin-orbit coupling, hollow- and
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top-position adatoms induce spin-orbit interaction, in such a way that spin and

valley quantum numbers are strongly intertwined. The low-energy continuum

theories constructed for hollow- and top-position species allowed to derive the

corresponding electron scattering mechanisms. Quite surprisingly, these two

categories of adatoms give rise to transverse currents of drastically different

nature: pure spin currents for the former, and non-polarized charge currents

for the latter. They nonetheless have two key characteristics in common: they

can be switched on and off and their flow can be reversed by tuning the Fermi

energy. We anticipate that such properties will find technological applications

in the fields of spintronics- and electronics-based logic devices and memories.

While we believe our scattering theory to be essentially correct, we expect the

existence of complementary effects originating from the neglected momentum

dependence of effective-mass terms Mδ(~r). This is beyond the scope of this

work, and will be discussed in a future paper.

4.5 Appendix

In this appendix, we re-derive the impurity Hamiltonians of section I, for

adatoms in hollow- and top-positions, accounting for adatoms’ internal degrees

of freedom. From this perspective, we describe the “graphene + adatom” sys-

tem with a tight-binding Hamiltonain Htot = Hgr +Had+Hgr−ad where Hgr is

pristine graphene’s Hamiltonian, Had is the adatoms’ Hamiltonian, and Hgr−ad

is the graphene-adatom hybridization term. We write Hgr as the following

first-nearest neighbors tight-binding Hamiltonian:

Hgr = −t
∑
i∈A

∑
〈i,j〉

a†ibj + h.c. (4.5.1)

where A describes graphene’s A-sublattice carbon atoms, a†i (bj) creates an

A-sublattice electron at atom i ∈ A (annihilates an electron from B-sublattice

site j). Here, 〈i, j〉 refers to nearest neighbors j of site i, and t is the hop-
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ping energy between nearest neighbors. Next, we derive single-electron tight-

binding Hamiltonians for Had and Hgr−ad by symmetry arguments [154], and

then trace these terms out of full Hamiltonian Htot by Löwdin’s transformation

[164]. Taking the continuum limit then yields the results of Table 4.1. Beside

confirming results obtained in section I, this approach has the advantage of

relating couplings - V0, Vso, ∆, ∆so, ΛR, ...- appearing in Table 4.1 to micro-

scopic parameters -hopping integrals, atomic spin-orbit couplings and energy

levels- and the Fermi energy of graphene.

We start by writing the solution of Schrödinger equation Htot|ψ〉 = E|ψ〉

as a sum of waves |ψ〉 = |ψad〉 + |ψN 〉 + |ψ∞〉 where |ψad〉, |ψN 〉 and |ψ∞〉

are projections of |ψ〉 on the adatom valence l−orbital, its immediate vicinity

-where graphene’s pz- orbitals couple strongly to the adatom’s valence orbital

- and further graphene’s pz-orbitals respectively. We note d†m,s the operator

creating an adatom’s l-orbital of angular momentum m and spin s, and write

d†m,s|0〉 = |m, s〉ad. In the case of an adatom in hollow position, |ψN 〉 is a

linear combination of hexagonal states Ω†m,s|0〉 = |m, s〉N . For top-position

adatoms, |ψN 〉 is a linear combination of triangular states Γ†m,s|0〉 and c
†
0|0〉.

Here, we explain the method used in the case of an adatom in hollow position,

the top-position case being analogous. We write |ψad〉, |ψN 〉 as:

|ψN 〉 =
∑
s,m

αm,s|m, s〉N (4.5.2)

|ψad〉 =
∑
s,m

βm,s|m, s〉ad (4.5.3)

The projection of Schrödinger equation Htot|ψ〉 = E|ψ〉 on |m, s〉ad gives:

∑
s′,m′

βm′,s′ad〈m, s|Had|m′, s′〉ad +∑
s′,m′

αm′,s′ad〈m, s|Hgr−ad|m′, s′〉ad = βm,sδm,m′δs,s′E (4.5.4)
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Noting Ẑ the square matrix (ad〈m, s|Had|m′, s′〉ad)(m,s),(m′,s′) and T̂ the rect-

angular matrix (ad〈m, s|Hgr−ad|m′, s′〉N ), equation 4.5.4 leads to:

B = (EI− Ẑ)−1 ˆT A (4.5.5)

where A and B are vectors (αm,s)(m,s) and (βm,s)(m,s) respectively. Setting

Himp = Had + Hgr−ad, we next project vector Himp|ψ〉 on |m, s〉N -states.

This gives:

N 〈m, s|Himp|ψ〉 =
∑
m′,s′

αm′,s′N 〈m, s|Ŝ|m′, s′〉ad (4.5.6)

where

Ŝ = T̂ †(EI− Ẑ)−1T̂ (4.5.7)

Equation 4.5.6 can be interpreted as the projection of vector H̃imp(|ψ〉N+|ψ〉∞)

on state |m, s〉N , where H̃imp is the graphene-only Hamiltonian:

H̃imp =
∑
m,s

∑
m′,s′

Ŝ(m,s),(m′,s′)Ω
†
m,sΩm′,s′ (4.5.8)

Tracing Had out hence consists in replacing Himp by H̃imp in the full Hamilto-

nian Htot.

We now derive a single-electron tight-binding Hamiltonian Had describing

an l-orbital adatom either in hollow- or top-position, thereby generalizing a

result of Ref. [154]. We start with an ansatz Hamiltonian Had which manifestly

conserves total angular momentum,

Had =
l∑

m=−l

εmd
†
mdm +

l∑
m=−l

λmsod
†
mszdm

+
l−1∑
m=−l

Λm
so(d

†
ms+dm+1 + d†m+1s−dm) (4.5.9)

This Hamiltonian is invariant under rotation by π/3, so that choosing en-
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Figure 4.5.1: Cartoon representation of typical spin-flip (red) and spin-
conserving (blue) processes induced by a p-orbital adatom (gray) on graphene
(light blue). Energy levels ε0 and ε1 of adatom’s p-orbitals m = 0 and m = ±1
are represented as gray solid lines. Core orbitals are depicted as a black ball.
Shaded region corresponds to the adatom’s immediate vicinity, where carbon
atoms pz-orbitals couple strongly to the adatoms valence p-orbital. Red (blue)
straight vertical arrows represent the spin of an electron transiting between
graphene and the adatom while flipping (conserving) its spin. Partial waves
|ψ∞〉, |ψN 〉 and |ψad〉 introduced in appendix are associated with the blue area,
dashed area and adatom’s valence orbital respectively.

ergies εm, λmso, and Λm
so such that Had is time-reversal invariant and symmetric

under Rx : x 7→ −x reflection makes it suitable for describing both hollow-

and top-position l-orbital adatoms, l = p, d, f . Since in spherical coordinates,

〈θ, φ|d†m|0〉 = Y m
l (θ, φ), where Y m

l (θ, φ) are conventional spherical harmonics,

dm transforms into sxd−m under Rx, which sends φ to π − φ. Enforcing Rx-

symmetry thus requires εm = ε−m, λ−mso = −λmso and Λ−m−1
so = Λm

so. Moreover,

time-reversal symmetry requires εm, λmso, and Λm
so to be reals. We end up with:

Had =
l∑

m=−l

ε|m|d
†
mdm +

l∑
m=1

λmso(d
†
mszdm − d

†
−mszd−m)

+
l−1∑
m=0

Λm
so(d

†
ms+dm+1 + d†−m−1s+d−m + h.c.) (4.5.10)

which describes the adatom Hamiltonian for both hollow- and top-position.

However, hybridization terms Hgr−ad differ in the hollow- and top-position

cases. We first treat the hollow-position situation, in which total angular mo-
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mentum conservation constrains Hgr−ad to take the form

Hhollow
gr−ad =

2∑
m=−2

tmd
†
mΩm +

2∑
m=−2

τmd
†
mszΩm

+
2∑

m=−2

(Wm
sod
†
m−1s+Ωm + V m

so d
†
m+1s−Ωm) + h.c.

(4.5.11)

Since Ωm 7→ sxΩ−m under Rx, we must have tm = t−m, τm = −τ−m and

Wm
so = V −mso . Enforcing time-reversal symmetry requires tm, τm and Wm

so to

read tm = i|m|u|m|, τm = imν|m| and Wm
so = imwmwhere u|m|, ν|m| and wm are

reals. Finally,

Hhollow
gr−ad =

2∑
m=−2

i|m|u|m|d
†
mΩm

+
2∑

m=1

imν|m|(d
†
mszΩm − d†−mszΩ−m)

+
2∑

m=−2

imwm(d†m−1s+Ωm + d†−m+1s−Ω−m) + h.c.

(4.5.12)

A similar treatment allows to deriveHgr−ad for top-position adatoms. Enforcing

symmetry under Rx, time-reversal symmetry and total angular momentum

conservation, we obtain:

H top
gr−ad =

1∑
m=−1

i|m|θ|m|d
†
mΓm + iτ(d†1szΓ1 − d†−1szΓ−1)

+
∑
m=0,1

imlso,m(d†m−1s+Γm + d†−m+1s−Γ−m)

+ Lso(d
†
−1s+c0 + d†1s−c0) + γd†0c0 + h.c. (4.5.13)

where θm, τ , lso,m, Lso and γ are reals. We can now derive graphene-only

Hamiltonians for adatoms in hollow- or top-position using equations 4.5.7

and 4.5.8. We write the Ẑ-matrix, similar for both hollow- and top-position
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adatoms, in a basis Bl of 2(2l+ 1) states |m, s〉ad arranged in ascending total

angular momentum J = m+ s order:

Bl = {| − l, ↓〉ad, | − l, ↑〉ad, | − l + 1, ↓〉ad,

| − l + 1, ↑〉ad, ..., |l, ↓〉ad, |l, ↑〉ad} (4.5.14)

In basis Bl, the Ẑ-matrix is simply block-diagonal and reads:

Ẑ =



Ẑ−l− 1
2

0 · · · 0 0

0 Ẑ−l+ 1
2
· · · 0 0

...
... . . . ...

...

0 0 · · · Ẑl− 1
2

0

0 0 · · · 0 εl + λlso


(4.5.15)

where Ẑ−l− 1
2

= Ẑl+ 1
2

= εl + λlso. If |J | 6= l + 1
2
, then ẐJ are 2 × 2 matrices

acting on total-angular momentum J subspace:

ẐJ =

 E+
J ∆J

∆J E−J

 (4.5.16)

where E+
J = εsJ (J− 1

2
) +sJλ

sJ (J− 1
2

)
so , E−J = εsJ (J+ 1

2
)−sJλ

sJ (J+ 1
2

)
so , ∆J = Λ

|J |+ 1
2

so ,

sJ = J/|J | and λ0
so = 0. Using basis BΩ of hexagonal states in ascending-J

order:

BΩ = {| − 2, ↓〉N , | − 2, ↑〉N , | − 1, ↓〉N ,

| − 1, ↑〉N , ..., |2, ↓〉N , |2, ↑〉N} (4.5.17)

the “hybridization” matrix T̂ for a hollow-position adatom is also a sparse ma-

trix. Its only non-zero elements are in 2 × 2 and 1 × 2 blocks T̂J connecting
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subspaces of hexagonal and adatom orbital states of same total angular mo-

mentum J . 2× 2 T̂J blocks read:

T̂J = iJ−
1
2


aJu|J− 1

2
| + ν|J− 1

2
| iwJ+ 1

2

i−2J+1w−J+ 1
2

bJu|J+ 1
2
| + iν|J+ 1

2
|

 (4.5.18)

where aJ = i|J−
1
2
|−J+ 1

2 and bJ = i|J+ 1
2
|−J+ 1

2 , while 1×2 blocks are appropriate

sub-matrices of the 2 × 2 blocks shown in eq. 4.5.18. As a result, the Ŝ-

matrix is block-diagonal and for instance, the f -orbital adatom graphene-only

Hamiltonian reads:

H̃hollow =
l∑

m=−l

(Ω†m↑,Ω
†
m+1↓)Ŝm+ 1

2

 Ωm↑

Ωm+1↓

 (4.5.19)

with

ŜJ = T̂ †J (EI− ẐJ)−1T̂J (4.5.20)

Similar results are straightforwardly obtained for p- and d-orbital adatoms. The

connection with the Hamiltonian of equation 4.2.2 is easily made, as:

Ŝm+ 1
2

=

 ν+
m + ν−m iΛm

−iΛm ν+
m+1 − ν−m+1

 (4.5.21)

We now write the “hybridization” matrix T̂top for top-position adatoms, using

a basis Btop of states arranged in ascending J-order:

Btop = {Γ†−1,↓|0〉,Γ
†
−1,↑|0〉,Γ

†
0,↓|0〉, c

†
0,↓|0〉,

c†0,↑|0〉,Γ
†
0,↑|0〉,Γ

†
1,↓|0〉,Γ

†
1,↑|0〉} (4.5.22)
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Unlike BΩ, Btop comprises 6 states of total angular momentum ±1/2 due to

the presence of central states c†0,↑/↓|0〉in addition to triangular states Γ†0,↑/↓|0〉

. Correspondingly, the only non-zero elements of T̂top are in blocks T̂top,J

connecting states of total angular momentum J . Irrespective of the adatom’s

valence orbital - p, d, or f -, we have:

T̂top,− 1
2

=

 iθ−1 + iτ lso,0 Lso

ilso,1 θ0 γ

 (4.5.23)

T̂top, 1
2

=

 γ θ0 ilso,1

Lso lso,0 iθ1 − iτ

 (4.5.24)

Other blocks T̂top,J depend on the adatom’s valence orbital, but are appropriate

sub-arrays of:

T̂top,− 3
2

=

 −ilso,−1

iθ1 + iτ

 (4.5.25)

T̂top, 3
2

=

 iθ1 + iτ

−ilso,−1

 (4.5.26)

The Ŝ-matrix for top-position adatoms is block-diagonal,

Ŝtop =



Ŝtop,− 3
2

0 0 0

0 Ŝtop,− 1
2

0 0

0 0 Ŝtop, 1
2

0

0 0 0 Ŝtop, 3
2


(4.5.27)

with Ŝtop,J = T̂ †top,J(EI−ẐJ)−1T̂top,J as in equation 4.5.20. The graphene-only
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top-position Hamiltonian thus reads:

H̃top = Ŝtop,− 3
2
Γ†−1,↓Γ−1,↓ + Ŝtop, 3

2
Γ†1,↑Γ1,↑

+ (Γ†−1,↑,Γ
†
0,↓, c

†
0,↓)Ŝtop,− 1

2


Γ−1,↑

Γ0,↓

c0,↓



+ (c†0,↑,Γ
†
0,↑,Γ

†
1,↓)Ŝtop, 12


c0,↑

Γ0,↑

Γ1,↓

 (4.5.28)

This is exactly the Hamiltonian of equation 4.2.9 with the following correspon-

dence:

Ŝtop,− 3
2

= Ŝtop, 3
2

= Λ+ + Λ− (4.5.29)

Ŝtop,− 1
2

=


Λ+ − Λ− −iτ −iµ

iτ V1 V2

iµ V2 V0

 (4.5.30)

Ŝtop, 1
2

=


V0 V2 iµ

V2 V1 iτ

−iµ −iτ Λ+ − Λ−

 (4.5.31)
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Chapter 5

Conclusion

In this thesis, we presented our experimental and theoretical results showing

that graphene properties can be considerably modified upon ultra-high doping

or atom adsorption. By using a polymer-electrolyte technique, we demon-

strated that graphene’s density of states and electron-phonon coupling can be

dramatically enhanced so that the temperature-dependence of its resistivity is

deeply modified. Improving this technique to new levels could perhaps lead to

the first observation of strictly two-dimensional intrinsic superconductivity in a

crystal. At the time of writing, no research groups could achieve this result,

despite numerous attempts, but the objective of observing intrinsic supercon-

ductivity in graphene at high charge carrier densities still looks attainable. In

another series of experiments and theoretical development, we showed that

graphene could be effectively transformed into a granular metal by heavy sp3

hybridization. Originally a semi-metal, graphene could be transformed into

a granular Dirac material whose conduction is mediated by sequences of vir-

tual tunneling events, with characteristics specific to the Dirac nature of its

grains. Though surprising at first, this result is a consequence of the well-

known theory of neutrino billiards developed by Berry and Mondragon. From a

technological viewpoint, the possibility of fabricating elastic granular materials

such as granular graphene opens up the way to novel strain sensors. Finally,

156



we theoretically studied the possibility to engineer spin Hall effect and anoma-

lous Hall effect in graphene by adding a small concentration of adatoms of

various valence orbitals, s, p, d and f . We studied the impact of the adsorp-

tion position on the spintronic and electronic properties, and concluded that

they affect significantly the transverse spin and charge currents generated by

scattering of charge carriers with the adatoms. While hollow-position adatoms

tend to induce gate-tunable spin Hall effect and no transverse charge currents,

top-position adatoms favor the occurrence of anomalous Hall effects instead of

spin Hall effects.
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