
A DYNAMIC HETEROGENEOUS
MULTI-CORE ARCHITECTURE

MIHAI PRICOPI
(B.Eng., M. Eng., UNIVERSITY “GHEORGHE ASACHI” OF IASI)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

January 2014

iv

Abstract

Computing systems have made an irreversible transition towards parallel architectures
with the emergence of multi-cores. The existing trends indicate that multi-cores (and
even many-cores) will comprise of collections of simple cores rather than complex
cores. However, contemporary applications have highly diverse computation require-
ments that are hard to satisfy with a set of simple homogeneous cores. While parallel
applications can benefit from thread-level parallelism offered by such multi-core solu-
tions, there still exist a large number of applications with substantial amount of sequen-
tial code. The sequential programs suffer from limited exploitation of instruction-level
parallelism in the simple cores.

In this thesis, we design and evaluate a novel dynamic heterogeneous multi-core
architecture, called Bahurupi, that can successfully reconcile the conflicting demands
of instruction-level and thread-level parallelism. Bahurupi can accelerate the perfor-
mance of serial code by dynamically forming coalition of two or more simple cores
to offer increased instruction-level parallelism. In particular, Bahurupi can efficiently
merge 2-4 simple 2-way out-of-order cores into coalition to reach or even surpass the
performance of more complex and power-hungry 4-way or 8-way out-of-order core.
For floating-point SPEC benchmarks, on average, dual-core and quad-core Bahurupi
improve performance by 23% and 57% compared to 4-way and 8-way cores. While
for SPEC integer benchmarks, dual-core and quad-core Bahurupi achieves, on average,
92% and 91% of the performance of 4-way and 8-way cores.

We also introduce a novel reconfigurable L1 data cache architecture for Bahurupi
that is able to accommodate the memory demands of a dynamic heterogeneous multi-
core architecture with low area and energy overhead. Our design consumes 4.16X less
energy per access compared to the alternative multi-ported cache design.

A fundamental challenge in exploiting dynamic heterogeneous multi-cores arises
from appropriately scheduling the workload on such a flexible architecture design. We
design offline and online schedulers that intelligently reconfigure and allocate the cores
to a mix of sequential and parallel applications so as to minimize the overall makespan.
Experimental evaluation confirms that dynamic heterogeneous multi-core architectures

can substantially improve the performance compared to homogeneous and static het-
erogeneous multi-core architectures with average speedups ranging from 17% to 28%.
When doing online scheduling on Bahurupi, utilization results also put dynamic hetero-
geneous multi-core architectures on the first place (76% average utilization).

vi

Any problem in computer science can be solved with another level of indirection.

— David John Wheeler

... except for the problem of too many layers of indirection.

— Kevlin Henney

ii

List of Publications

1. M. Pricopi and T. Mitra. Bahurupi, Bahurupi: A Polymorphic Heterogeneous Multi-

core Architecture, ACM Transactions on Architecture and Code Optimization, TACO,

8(4):22:122:21, January, 2012.

Presented at 7th International Conference on High-Performance and Embedded Ar-

chitectures and Compilers (HiPEAC) 2012.

2. M. Pricopi and T. Mitra, Polymorphic Heterogeneous Multi-Core Architecture, Patent

number: PCT/SG2012/000454, 2012.

3. M. Pricopi and T. Mitra, Task Scheduling on Adaptive Multi-core, IEEE Transactions

on Computers, TC, (PrePrints), 2013.

4. K. Mysur, M. Pricopi, T. Marconi, and T. Mitra, Implementation of Core Coalition

on FPGAs, In Preceedings of the 21st International Conference on Very Large Scale

Integration, VLSI-SoC, pages 198203. IFIP/IEEE, 2013.

iii

5. M. Pricopi, T. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin, Power-

Performance Modeling on Asymmetric Multi-cores, In International Conference on

Compilers, Architecture and Synthesis for Embedded Systems, CASES, pages 1-10,

2013.

6. T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin., Hi-

erarchical Power Management for Asymmetric Multi-core in Dark Silicon Era, In

Proceedings of the 50th Annual Design Automation Conference, DAC, pages 174:1–

174:9, ACM, 2013.

iv

Acknowledgements

Foremost, I would like to express my deepest gratitude to my advisor, Professor Tulika

Mitra for her continuous support during my PhD. Professor Tulika has been an invalu-

able mentor for me, she always encouraged my research and allowed me to develop as

a research scientist and as a person. Most important, her extreme passion for research,

her commitment and professional attitude have been a true inspiration for me, inspira-

tion that I will carry with me in my professional life. I owe a great debt of thankfulness

to Professor Tulika.

I would like to extend my gratitude to my thesis committee members, Professors

Weng Fai Wong and Soo Yuen Jien for their valuable comments and feedback during

the different steps of my PhD. Their comments allowed me to greatly improve and

clarify my thesis.

Special thanks go to friends from our Embedded Systems Lab, with whom I had

the chance to work in different projects over the years: Malai, Kaushik, Chen Liang,

Vanchi and Andrei. A heartfelt thanks to the friends that always supported me in my

research. With them I shared my ideas and beliefs which many times served as the topic

of very long and constructive discussions, especially during the lunch breaks: Bogdan,

Cristina, Dumi, Cristi, Narcisa, Marcel and Nicolas.

Deep gratitude and consideration go to Ge Zhiguo and Naxin Zhang with whom I

had the chance to collaborate in a constructive environment which helped me to enhance

part of my thesis with valuable ideas.

v

These lines cannot express my feelings for my parents and my brother, Andrei, for

their constant and unconditional support. Without you I would not be the person I am

today. I owe them my full gratitude and respect for supporting me. In all these years I

always felt them very close even though home has been so far away.

Above all, I would like to thank the most important person in my live - my fiancee

Delia. She has been a constant source of love, balance, strength and inspiration for

me. There have been several times when I felt the lack of motivation and strength

in continuing my research. Her constant determination and encouragement made me

always keep on going until seeing this work done. Thank you for everything.

vi

Table of Contents

List of Publications iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 Thesis contributions . 9

1.2 Thesis outline . 13

2 Related Work 15

2.1 Heterogeneous multi-core architectures 15

2.1.1 Static heterogeneous multi-core architectures 15

2.1.2 Dynamic heterogeneous multi-cores 18

2.2 Reconfigurable caches . 24

2.3 Task scheduling . 27

vii

3 Bahurupi Adaptive Multi-Core 30

3.1 Bahurupi execution model . 31

3.1.1 Sentinel instruction . 34

3.1.2 Execution model . 37

3.2 Architectural details . 41

3.2.1 Live-in register renaming . 41

3.2.2 Live-out register renaming . 42

3.2.3 Branch misprediction and exceptions 44

3.2.4 Memory hierarchy . 45

3.2.5 Memory hazards . 45

3.2.6 Reconfiguration overhead . 46

3.2.7 Compiler support . 47

3.3 Experimental setup . 47

3.3.1 Simulator . 47

3.3.2 Compiler . 48

3.3.3 Benchmarks . 50

3.4 Experimental results . 50

3.4.1 Overall speedup . 50

3.4.2 Energy consumption . 53

3.4.3 Load balancing . 54

3.4.4 Global register file access . 54

3.4.5 Traffic on coalition bus . 58

3.4.6 Sentinel instruction overhead 58

3.4.7 Area and delay overhead of coalition logic 59

3.5 Bahurupi FPGA implementation . 60

3.5.1 Fabscalar synthesizable out-of-order core 60

3.5.2 Core coalition logic . 63

viii

3.5.3 Prototype synthesis and evaluation 67

3.6 Summary . 71

4 Reconfigurable Data Cache Architecture 73

4.1 Experimental setup . 76

4.2 Limitations of multi-ported shared L1 cache 77

4.2.1 Area and energy overhead . 79

4.3 Limitations of single-ported shared L1 cache 79

4.3.1 Simultaneous memory accesses 79

4.3.2 Performance impact . 80

4.4 System reconfiguration . 82

4.5 Network reconfiguration and address mapping 85

4.5.1 Network routing and reconfiguration examples 89

4.5.2 Bank conflicts . 96

4.6 Cache reconfiguration . 97

4.6.1 L1 data cache miss rates . 97

4.6.2 Area and energy consumption 101

4.6.3 Miss rate improvement and performance analysis 102

4.7 Comparison with multi-ported shared L1 cache 104

4.8 Summary . 105

5 Scheduling on Bahurupi Architecture 106

5.1 Optimal schedule on ideal dynamic heterogeneous multi-core 109

5.1.1 Optimal schedule with continuous resources 110

5.1.2 Optimal schedule with discrete resources 113

5.2 Task scheduling on Bahurupi . 116

5.2.1 Constraint C1 . 116

5.2.2 Constraint C2 . 117

ix

5.2.3 Constraint C3 . 118

5.2.4 Online schedule for Bahurupi 120

5.3 Quantitative results . 123

5.3.1 Workload . 123

5.3.2 Multi-core configurations . 123

5.3.3 Speedup functions . 126

5.3.4 Scheduling on homogeneous and static heterogeneous multi-cores128

5.3.5 Limit study of dynamic heterogeneous multi-core 128

5.3.6 Realistic performance benefit of dynamic heterogeneous multi-

core . 131

5.3.7 Reconciling ILP and TLP . 132

5.4 Summary . 134

6 Conclusions 136

6.1 Summary of the thesis . 136

6.2 Future work . 138

References 141

x

List of Figures

1.1 Evolution of single-core processor performance [45]. 2

1.2 Speedup of multi-cores according to Amdahl’s law [96]. 3

1.3 Single-core, homogeneous and heterogeneous multi-cores performance

(Figure from P. Hofstee, IBM Austin). 5

1.4 Examples of homogeneous, static and dynamic heterogeneous architec-

tures. 6

1.5 Bahurupi architecture. 10

2.1 big.LITTLE static heterogeneous multi-core architecture. 17

2.2 TFlex micro-architecture and internal organization [52]. 19

2.3 Federation architecture [93]. 21

2.4 Block diagram of a 4-core Voltron architecture [104]. 21

2.5 Example of a logarithmic interconnection network. 27

3.1 Speedup trends for Ferret kernels and overall speedup with reconfig-

urable architecture. 31

3.2 Bahurupi architecture. Additional resources required for coalition are

highlighted. 32

3.3 The sentinel instruction format. 34

3.4 Percentage of basic blocks with number of live-in and live-out registers

below a threshold. 36

xi

3.5 Bahurupi distributed execution model: (a) Control flow graph (CFG) of

a program, and (b) Execution of the CFG on 2-core Bahurupi architecture. 39

3.6 Global and local register renaming. 42

3.7 Bahurupi speedup normalized to 2-way core for (a) SPEC and (b) em-

bedded benchmarks. 51

3.8 Bahurupi energy consumption normalized to 2-way core for (a) SPEC

and (b) embedded benchmarks. 55

3.9 Load balance on 4-core Bahurupi. 56

3.10 Percentage of destination registers renamed to global register file. 56

3.11 Broadcasts on coalition bus in (a) 2-core Bahurupi and (b) 4-core Bahu-

rupi. 57

3.12 Code size increase due to sentinel instructions. 58

3.13 Fabscalar pipeline with coalition logic. 61

3.14 Two 2-way core coalition. 62

3.15 Register flow across cores - an illustration. 65

3.16 Area utilization (8-way core equivalent in performance to 4-core coali-

tion could not be synthesized). 70

3.17 Area breakup of coalition logic w.r.t baseline core. 70

3.18 Clock frequency for various core configurations. 71

4.1 Example of 4-core coalition with data cache merging. 74

4.2 Miss rate for shared cache vs. coherent caches. 76

4.3 Multi-ported shared cache configurations. 78

4.4 Shared cache area and energy increase for different number of ports

(normalized w.r.t to 1 port). 80

4.5 Average number of L1 data cache accesses per cycle for 2-core coali-

tion, 3-core coalition and 4-core coalition. 81

xii

4.6 Performance impact for 2-core and 4-core coalition run on cache con-

figurations with four ports and one port (normalized w.r.t performance

of a baseline single core). 82

4.7 Novel L1 data cache architecture for dynamic heterogeneous multi-cores. 83

4.8 System reconfiguration for private and coalition modes in case of a 4-

core coalition. 84

4.9 CPU to memory interconnection network architecture for 4-cores and 8

access points. 87

4.10 Address mapping in the interconnection network. 88

4.11 Address mapping examples for different scenarios. 90

4.12 Address mapping examples for simultaneous requests. 92

4.13 Reconfiguration of the number of access points example. 94

4.14 L1 data cache average accesses per cycle per banks for 4-core coalition

connected to the log network. 96

4.15 L1 data miss rates improvement relative to a 4KB, 2-way set associative

cache. 97

4.16 Cache reconfiguration for coalition mode. 98

4.17 Example of cache reconfiguration. 100

4.18 Miss rate improvement for 2 banks, 4 banks and 8 banks (normalized

w.r.t miss rate of 2 banks). 102

4.19 Speedup of 4-core coalition connected to 2, 4 and 8 banks using the log

network (normalized w.r.t performance of a baseline single core). 103

4.20 Comparison between our design (8banks) and four-ported cache. 104

5.1 Illustrative example showing the schedule of a mix of sequential and

parallel applications on different architectures. 108

5.2 Resource transformation example for n = 2. 112

xiii

5.3 Piecewise interpolation of speedup function for mcf 113

5.4 Rectangle packing for discrete resource problem. 114

5.5 Example of imposing constraint C2. 117

5.6 Example of imposing constraint C3. 119

5.7 Speedup functions for sequential and parallel tasks. 127

5.8 Comparison of dynamic and static multi-cores under off-line schedule.

The speedup is w.r.t. the baseline homogeneous S1. 129

5.9 Utilization of different multi-cores in offline schedule. 130

5.10 Comparison of Bahurupi with static multi-cores under online schedule.

The speedup is w.r.t. baseline homogeneous S1. 131

5.11 Utilization of different multi-cores in online schedule. 132

5.12 Speedup of sequential applications averaged across all task sets normal-

ized w.r.t. execution on native 2-way core. 133

5.13 Speedup of parallel applications averaged across all task sets normal-

ized w.r.t. execution on one 2-way core. 134

xiv

List of Tables

2.1 Comparison between different dynamic heterogenous multi-core archi-

tectures. 23

3.1 Parameters for baseline cores. 48

3.2 Workloads used for simulation. 49

3.3 Additional ports within the baseline core. 68

3.4 Additional RAMs/CAMs for coalition per core. 68

3.5 Global resources for coalition. N is # of cores. 68

4.1 Benchmarks description. 77

4.2 Amount of shared cache accessed based on the Access Point bitfield

width and the cache reconfiguration switches position. 101

5.1 Characteristics of benchmarks used in our study. 124

5.2 Multi-core configurations used in our study. 125

5.3 Configuration parameters for out-of-order cores: issue, commit, dis-

patch width; reorder buffer (ROB) size; load-store queue (LSQ) size;

number of ALU, floating point (FP), and load-store (LSU) units; instruction-

data TLB size, L1 instruction-data cache size, and unified L2 cache size.

. 125

xv

xvi

List of Algorithms

1 Malleable Task Scheduler on Bahurupi 115

2 Online scheduler for Bahurupi . 122

xvii

xviii

Chapter 1

Introduction

For the past two decades, the computer architects have transparently accelerated sequen-

tial applications through aggressive exploitation of instruction-level parallelism (ILP).

Figure 1.1 shows the performance evolution of single-core processors over time where

their complexity increased proportionally with the performance. Between 2002 – 2006,

the last very complex superscalar micro-architectures with out-of-order execution, dy-

namic speculation and SMT capabilities were designed in order to meet the require-

ments of the various applications. Limited power and thermal budgets have reversed

this trend; instead of building more complex cores, the architecture community moved

irreversibly towards multi-cores. The increase of number of transistors on-chip allowed

the computer architects to propose designs comprising of many homogeneous, simple

and power-efficient cores on the same die.

Homogeneous multi-cores. The multi-core architectures are ideally suited for ex-

ploiting the thread-level parallelism (TLP) existing in the applications. These archi-

tectures are also named homogeneous multi-cores because all the cores have the same

area, performance and power capabilities. But there still exist a large class of applica-

tions with substantial sequential code fragment that are difficult, if not impossible, to

1

Chapter 1. Introduction

CS5222 (c) Mitra 2010 8

Growth in Processor Performance

Figure 1.1: Evolution of single-core processor performance [45].

parallelize. Here, we cite Amdahl’s Law which captures the overall gain obtained by

enhancing parts of a computation. The law states that the performance improvement of

an entire application obtained by enhancing a fraction f of a computation by speedup

factor S is given by the relation:

Speeduphomogeneous(f ,S) =
1

(1− f)+
f
S

(1.1)

In case of applications running on multi-cores, the speedup of the parallel portion

of the code is governed by the total number of cores, while the overall speedup of the

application will be limited by the performance of the serial code. In Figure 1.2 we show

the overall speedup of an application with different fractions of parallel code that runs

on different number of cores. This plot assumes an ideal multi-core architecture that can

support a large number of cores and an application that can be easily parallelised with

no communication overhead. Assuming that we can parallelise 95% of the application,

2

Chapter 1. Introduction

5Figure 1.2: Speedup of multi-cores according to Amdahl’s law [96].

the overall speedup that can be obtained is limited to just 20% even when running

on large number of cores. Moreover, if we can parallelise 99% of the application,

then the overall speedup can reach only close to 100% even when running on large

number of cores (more than 16384). Of course, real multi-core architectures have a

relatively small number of cores (4–16) and real parallel applications are not easily

threaded without paying the communication overhead. Consequently, the multi-cores

are unable to offer more speedup as they cannot accelerate the sequential fraction of

code through instruction-level parallelism (ILP) exploitation. Only complex out-of-

order execution engines with high-degree of superscalarity can transparently accelerate

sequential code fragments through aggressive exploitation of ILP. Power and thermal

limits as well as reliability issues, however, do not permit deployment of such complex

cores on the same die.

In Figure 1.3 we show how different processor architectures try to keep up with

3

Chapter 1. Introduction

the Moore’s Law (named after Gordon Moore), which states that the number of on-chip

transistors doubles approximately every two years. Ideally, the processors’ performance

should follow the Moore’s Law. We can see that single-cores have reached a steady state

of performance years ago, while the homogeneous multi-cores will soon reach a steady

state of performance; they clearly cannot ride the growth line mostly due to the poor

exploitation of ILP.

A related concept to the Moore’s Law is the Dennard’s Scaling (named after Roberd

Dennard, who first described this effect in 1974). The key idea of the Dennard’s Scaling

is that, while transistors get smaller, the power density (the amount of power per unit

volume) remains constant. For example, if the transistor’s linear size is reduced by two

then the power it consumes will be reduced by four – with voltage and current both

being reduced by half. While the Moore’s Law still remains valid, the Dennard’s Scal-

ing has already failed. The ability to reduce the supply voltage and current has reached

the reliability limits, making the Dennard’s Scaling infeasible. As a result, the dynamic

power mostly remains constant while the static power consumption increases due to

the increased number of transistors. As a consequence, we can still add more cores

on the chip but we cannot switch them all on at the same time due to power and ther-

mal constraints. This phenomenon, known as Dark Silicon [40], demands alternative

architectural designs.

The next logical step in order to overcome the limitations of homogeneous multi-

cores and continue to follow the Moore’s Law trend (Figure 1.3) is to design hetero-

geneous multi-cores. We identify two main categories of heterogeneous multi-cores:

static and dynamic. Static heterogeneous multi-cores are comprising of cores that share

the same Instruction Set Architecture (ISA) but have different area, power and perfor-

mance capabilities. On the other side, dynamic heterogeneous multi-cores are built on

top of homogeneous multi-cores and are able to create at run-time virtual cores by com-

bining homogeneous simple cores. The virtual cores are more powerful and capable of

4

Chapter 1. Introduction

m
an
ce

Heterogeneous multi‐core
processors

Pe
rf
or
m

Multi‐core processors

Single thread performance

P. Hofstee, IBM Austin

1980 2005 2015? 2025?? 2035???

Figure 1.3: Single-core, homogeneous and heterogeneous multi-cores performance
(Figure from P. Hofstee, IBM Austin).

accelerating sequential applications.

For illustration, Figure 1.4 depicts four examples of multi-core architectures. We

present two types of homogeneous multi-cores: an eight-core architecture where each

core is a simple core capable of poor exploitation of ILP and a four-core architecture

where each core is a complex superscalar our-of-order core capable of extracting sig-

nificant amount of ILP. The figure also shows an example of a static heterogeneous

architecture with five cores where core C0 is a very complex superscalar, out-of-order

core capable of aggressive exploitation of ILP. The other four cores are simple cores.

The last example is a eight-core dynamic heterogeneous multi-core architecture where

two virtual cores are created. The first virtual core is created by coalescing the cores

{C1, C2, C3} and the second virtual core is created by coalescing the cores {C4, C5}.

Another form of heterogeneity (which we do not cover in this thesis) can be found

especially in the embedded devices that generally embrace multi-core solutions cus-

tomized for a particular application domain (i.e., multi-processor systems-on-chip (MP-

5

Chapter 1. Introduction

C0 C1

C4 C5

C2 C3

C6 C7

C1 C2

C3 C4

C0 C1

C4 C5

C2 C3

C6 C7

Homogeneous simple Homogeneous complex

C0

Static heterogeneous Dynamic heterogeneous

C0

C2

C1

C3

Figure 1.4: Examples of homogeneous, static and dynamic heterogeneous architectures.

SoC)). These architectures can offer significant advantages in terms of performance,

power and area. While such customizations are beneficial for specific kernels such as

audio, video, image processing, today both desktop and mobile computing platforms

need to execute a wide variety of general-purpose applications for which the workload

is not known a-priori.

Static heterogeneous multi-cores. Static heterogeneous multi-cores, are already emerg-

ing on the market as a promising solution that can achieve power-performance trade-

off [83] essential in high performance, energy constrained embedded systems such as

tablets, smart-phones, automotive telematics, and others. However, recently, the dis-

tinction between mobile embedded architectures and general-purpose computing archi-

tectures is rapidly disappearing especially in the consumer electronics space. Today, a

smartphone or a tablet is expected to support a very dynamic and diverse landscape of

software applications. Moreover, the processor architectures that we find today in the

6

Chapter 1. Introduction

mobile devices are very similar to the ones found in the general-purpose or server com-

puters. These static heterogeneous multi-core architectures integrate high performance,

power hungry complex cores (“big” cores) with moderate performance, power efficient

simple cores (“small” cores) on the same chip. The characteristic that distinguishes

static heterogeneous multi-cores from heterogenous MPSoC is that the different core

types implement the same ISA; that is, the same binary executable can be scheduled to

run on either the big or the small core. Examples of commercial static heterogeneous

multi-cores include ARM big.LITTLE [41], integrating high performance out-of-order

cores with low power in-order cores and NVidia Kal-El [5], consisting of four high

performance cores with one low power core. An instance of the former, integrating

quad-core ARM Cortex-A15 (big core) and quad-core ARM Cortex-A7 (small core)

has already appeared in the Samsung Exynos 5 Octa SoC driving high-end Samsung

Galaxy S4 smart-phones. The Cortex-A7 can handle regular low-intensity workloads

on a smartphone (e.g., phone call, SMS, music playback) while Cortex-A15 needs to

get involved in compute-intensive applications (e.g., gaming, flash heavy website).

Dynamic heterogeneous multi-cores. Even though static heterogeneous multi-cores

are clearly positioned to accommodate software diversity (mix of ILP and TLP work-

load) much better than homogeneous multi-cores with promising results [70, 77, 32, 61,

54, 62], they are still not the ideal solution. As the mix of simple and complex cores

has to be frozen during design/fabrication time, a static heterogeneous multi-core lacks

the flexibility to adjust itself to the dynamic nature of workload. Any change in the

applications requirements would have a big impact on the production costs. The next

step forward to support both diverse and dynamic workload is to design dynamic het-

erogeneous multi-cores that can, at runtime, tailor itself according to the applications.

Such adaptive architectures are physically fabricated as a set of simple, homogeneous

cores. At runtime, two or more such simple cores can be coalesced together to create

7

Chapter 1. Introduction

a more complex virtual core. Similarly, the simple cores participating in a complex

virtual core, can be disjoined at any point of time. A canonical example is to form

coalition of two 2-way out-of-order cores to create a single 4-way ooo core. In other

words, we would like to dynamically create static heterogeneous multi-cores through

simple reconfiguration.

Speedup benefit of heterogeneity. A simple comparison of the performance potential

of the three types of multi-core architectures is presented by Mark Hill and Michael R.

Marty in [46] where the classical Amdahl’s Law is extended to the new types of multi-

core architectures. Traditionally, Amdahl’s Law has been applied to homogeneous

multi-core processors comprising of n cores. The results presented in this work show

that heterogeneity clearly can offer performance beyond the Amdahl’s Law. Moreover,

static heterogeneous multi-cores can offer better performance than homogeneous multi-

cores but their performance is still bounded by the lack of resources when exploiting

both ILP and TLP. Additionally, this work clearly demonstrates that dynamic hetero-

geneous multi-core architectures offer speedups that are not limited by the sequential

fraction (their speedup curve is an increasing function) of the program as these architec-

tures can dynamically create complex cores that can accelerate the sequential fraction.

The results of this simple analysis leads us to the conclusion that we need to design a

dynamic heterogeneous multi-core system that can efficiently coalesce cores at run-time

with minimal overhead.

In this thesis we present a dynamic heterogeneous multi-core architecture and its

memory system design. We also design offline and online schedulers for dynamic

heterogeneous multi-core architectures that clearly show that dynamic heterogeneous

multi-core architecture perform the best when compared with homogeneous and static

heterogeneous multi-core architectures. In the next sections we describe the main con-

tributions of this thesis and then we present the thesis organization.

8

Chapter 1. Introduction

1.1 Thesis contributions

The main contributions of this thesis revolve around the design of a dynamic heteroge-

neous multi-core system — starting with the micro-architecture design of the processor

and its execution model, continuing with the design of the first level of data cache nec-

essary for such a system, an FPGA proof-of-concept implementation and ending with a

scheduler that is able to smartly allocate mixes of serial and parallel tasks to the cores

or coalitions of cores.

Our first contribution is the design of a dynamic heterogeneous multi-core processor

called Bahurupi (an Indian word meaning a person of many forms and guides, a poly-

morph), that can be tailored according to the workload by software [74][75]. Bahurupi

is fabricated as a homogeneous multi-core system containing multiple identical, simple

cores. The main novelty of Bahurupi lies in its ability to morph itself into a heteroge-

nous multi-core architecture at runtime under software directives. Post-fabrication,

software can compose together the primitive cores to create a customized multi-core

system that best matches the needs of the applications currently executing on the sys-

tem. Bahurupi successfully re-conciliates the conflicting requirements of applications

with explicit thread-level parallelism and single-threaded serial applications with high

degree of instruction-level parallelism.

Bahurupi high-level architecture. Figure 1.5 depicts a high-level overview of Bahu-

rupi architecture. Each core is a simple 2-way out-of-order processor. Four such simple

cores form a cluster. The example architecture in Figure 1.5 consists of 2 such clusters;

but the number of clusters can be easily scaled with technology. In normal mode, this

multi-core architecture can efficiently support multi-threaded execution. The simple 2-

way cores, however, cannot exploit much ILP from sequential applications. To solve

this issue, Bahurupi can form dynamic coalitions of 2-4 cores in a cluster with mini-

9

Chapter 1. Introduction

9

C0 C1 C2 C3

C4 C5 C6 C7

L1 I$

L2$

Coalition Logic

Coalition Logic

High ILP

Medium ILP
Low ILP

L1 D$

L1 D$
L1 I$

Figure 1.5: Bahurupi architecture.

mal additional hardware such that the merged cores can substantially speed up serial

code execution. When 2 cores (4 cores) form a coalition, Bahurupi achieves perfor-

mance close to that of 4-way (8-way) out-of-order execution engine. Note that Bahu-

rupi allows coalition of at most 4 cores as speedup is limited beyond 8-way out-of-order

core. The figure shows the architecture running four applications — one high-ILP serial

thread running on 2-core coalition, two low-ILP serial threads running on two indepen-

dent cores and one very high-ILP serial code running on 4-core coalition. In summary,

Bahurupi can achieve the performance of complex out-of-order superscalar processor

without paying the price of complex hardware and its associated energy inefficiency

and reliability issues.

10

Chapter 1. Introduction

Bahurupi, is a hardware-software cooperative solution that demands minimal changes

to both hardware and software. In coalition mode, Bahurupi follows a distributed exe-

cution model that avoids complex centralized fetch/decode, dependency resolution, and

instruction scheduling of previous approaches. It needs support from compiler to iden-

tify the basic blocks and their register dependencies. This information is encapsulated

in special sentinel instructions that precede each basic block. Thus, the dependencies

among the basic blocks are explicitly conveyed in the program code. The cores can fetch

and execute different basic blocks in parallel, thereby achieving performance speedup.

The only additional hardware required is the coalition logic shared by the cores form-

ing the coalition. This logic includes a shared global register file to communicate values

between basic blocks running on different cores as well as three dedicated registers for

synchronization among the cores. A minimal amount of additional resources is added

to the internal architecture of the cores to support coalition. The main execution engines

of the cores remain completely unchanged.

Bahurupi proof-of-concept implementation. Even though quite promising, the lack

of acceptability of dynamic heterogeneous multi-cores, arises from the complexity of

the glue logic required to coalesce the simple cores together. No attempt has been

made so far to implement any of these architectures in hardware. The open question

therefore remains whether dynamic heterogeneous multi-cores are feasible in terms of

cycle-time and area overhead. The second contribution of this thesis takes the first

step towards answering this question through a concrete, functionally correct imple-

mentation of our proposed Bahurupi multi-core architecture in hardware. We design a

micro-architecturally accurate hardware synthesizable implementation of Bahurupi [71]

architecture and we emulate the architecture in FPGAs. We synthesize a working pro-

totype of the architecture on Xilinx Virtex 6 FPGA platform. Our prototype provides

a proof-of-concept implementation that confirms the feasibility of dynamic heteroge-

11

Chapter 1. Introduction

neous multi-core architecture and establishes the benefit of the architecture compared

to homogeneous and static heterogeneous multi-cores.

Bahurupi memory design. In case of dynamic heterogeneous multi-cores, the com-

plex cores that are dynamically coalesced together are able to execute more instructions

in parallel when compared with the simple baseline cores. This is similar to the case in

which a wider issue superscalar processor with many parallel load/store units is access-

ing the memory [50, 88, 27, 101, 7]. Consequently, there are more accesses per cycle

to the first level of data and instruction caches, imposing special requirements in the

design of the L1 cache architecture. In case of instruction accesses, there is no need for

special considerations as the fused cores execute the same application. If we assume

the absence of self-modifying code, the cores can safely bring in and replicate the same

instructions in multiple private caches without any coherency issue.

However, it is more challenging to design the L1 data cache to support multiple

accesses per cycle ensuring high bandwidth and low latency as accesses to the L1 data

cache have a high degree of sharing — different cores can read and write the data

which is part of the same sequential program. Thus, we need a design of the first level

of data cache that can be shared across the cores in a coalition. Our third contribution

presented in this thesis is a novel reconfigurable L1 data cache architecture for dynamic

heterogeneous multi-cores [78] that overcomes the limitations of multi-ported caches,

offering high bandwidth and low latency when accessing the shared cache. Our design

is also able to switch between two modes of execution: private mode (for traditional

multi-core) and coalition mode (for dynamic heterogeneous multi-core). Additionally,

the system can also reconfigure the size and associativity of the shared L1 data cache,

which ensures optimal efficiency in terms of energy consumption, cache miss rate and

performance.

12

Chapter 1. Introduction

Scheduling support for Bahurupi. Dynamic heterogeneous multi-cores appear well

poised to support diverse and dynamic workloads consisting of a mix of serial (mul-

tiprogrammed) and parallel (multithreaded) tasks. As this is a nascent area, existing

research primarily focuses on developing appropriate micro-architectural techniques to

form coalition of simple cores. In reality, such adaptive architectures need to support

both sequential and parallel applications executing concurrently. Existing literature is

thus missing a realistic evaluation of the performance potential of adaptive multi-cores.

Our fourth contribution of this thesis takes the first step towards filling up this gap

through a concrete performance limit study of our Bahurupi adaptive heterogenous

multi-core in a scenario where both parallel and sequential applications coexist in the

system [76]. Conducting a limit study of adaptive heterogeneous architectures with

realistic workload is a challenging problem. As we are interested in identifying the

true performance potential of an adaptive heterogeneous multi-core architectures, we

have to employ an optimal scheduler that can intelligently reconfigure and allocate the

cores to the applications so as to minimize the makespan (the time when all applica-

tions complete execution). We implement offline and online schedulers for Bahurupi

and compare the results with the makespan obtained on homogeneous and static het-

erogeneous multi-cores. We continue in the next section with the organization of this

thesis.

1.2 Thesis outline

This thesis continues with the presentation of the literature survey in Chapter 2. We

introduce and describe in detail the micro-architecture of our dynamic heterogeneous

multi-core, Bahurupi, in Chapter 3. Here, we begin by describing the execution model

and the sentinel instruction format, then we present the architectural details — the live-

in and live-out registers renaming process, the branch misprediction and hazard recov-

13

Chapter 1. Introduction

ery mechanisms, the compiler support and then we present the experimental evalua-

tion that validates the micro-architectural design. In this chapter, we also include the

FPGA prototype implementation of Bahurupi, emphasising on the challenges experi-

enced when implementing such an architecture on FPGA, and the impact on the area

and the latency. In Chapter 4 we present the architectural details of the first level of data

cache, which is able to accommodate the memory requirements of Bahurupi. Here, we

start by analysing the positive and negative aspects of choosing an alternative solution

— a multi-ported shared cache. Then, we show the details of our reconfigurable solu-

tion which can offer the same benefits of the shared cache but with the lowest power

and area overheads.

In Chapter 5 we describe our performance limit study of Bahurupi multi-core archi-

tecture by introducing task scheduling on dynamic heterogenous multi-cores. Here, we

consider a realistic approach where both serial and parallel tasks coexist in the system.

We begin by introducing an optimal static scheduler for ideal dynamic heterogeneous

multi-cores with no constraints. Then, we adapt this scheduler for the constraints that

Bahurupi imposes. We continue by designing an online scheduler for Bahurupi and we

end with a quantitative evaluation where we clearly show that dynamic heterogeneous

multi-cores can perform much better than the homogeneous and static heterogeneous

multi-cores. The thesis ends with conclusions and future work in Chapter 6.

14

Chapter 2

Related Work

2.1 Heterogeneous multi-core architectures

As we have shown in Chapter 1 heterogeneous multi-core architectures can be classi-

fied into two types: static heterogeneous multi-core architectures and dynamic hetero-

geneous multi-core architectures. In this section we present the related works on these

two types of new architectures. We also comparatively present the differences between

other dynamic heterogeneous multi-core architectures and our proposed Bahurupi ar-

chitecture.

2.1.1 Static heterogeneous multi-core architectures

The static heterogeneous architecture was initially proposed by Rakesh Kumar et al.

in [57] and [55]. Heterogeneous multi-cores were built by connecting together cores

with different size and performance parameters. It was shown that the strong points

of these new architectures are the low power consumption and performance that are

achieved by dynamically moving the programs from one core to another in order to

reach an optimal tradeoff point. The study in [55] introduces and seeks to gain some

insights into the energy benefits available for these new architectures. The particular

15

Chapter 2. Related Work

opportunity examined is a single application switching among cores to optimize the

energy consumption and the performance. This work shows that there can be great

advantage to diversity within an on-chip multiprocessor, allowing that architecture to

adapt to the workload in ways that a homogeneous multi-cores cannot. A static multi-

core heterogeneous architecture can support a range of execution characteristics not

possible even in an adaptable single-core processor, even one that employs aggressive

power gating. Such an architecture can adapt not only to changing demands in a sin-

gle application, but also to changing demands between applications, changing priorities

or objective functions within a processor or between applications, or even changing

operating environments. The work in [57] evaluates a variety of static heterogeneous

architectural designs, including processor cores that support Simultaneous Multithread-

ing (SMT). It shows that this approach can provide significant performance advantages

for a multiprogrammed workload over homogeneous chip-multiprocessors.

Another static heterogeneous multi-core example was provided by Aater Suleman et

al. in [91]. This work targets to overcome the serialization effect of a critical section for

multi-threaded application. In some multi-threaded applications, threads do not usually

finish their jobs in the same time (unbalanced). Thus, the synchronization mechanisms

can make a considerable number of fast jobs threads wait for the slow jobs threads. This

work proposes that processors should have a dedicated powerful core that would help

accelerate the slow job threads in order to reach their deadline faster.

Asymmetric Cluster Chip Multi-Processing [66] proposed by Tomer Morad et al., is

another variation of the initially proposed static heterogeneous multi-cores in which the

cores have the same ISA with different areas, but they can have a completely different

micro-architecture which translates into different performance capabilities. If we con-

sider the current static heterogeneous multi-core architectures (e.g., ARM big.LITTLE

[41] existing on the market), we can see that this work was predicting well the future

architectures. Now, the trend is to include on the same die heterogeneous cores with

16

Chapter 2. Related Work

Cortex
A15

Cortex
A7

Cortex
A15

Cortex
A15

Cortex
A15

Cortex
A7

Cortex
A7

Cortex
A7

L2$ L2$

DRAM

Cache coherent interconnect

Figure 2.1: big.LITTLE static heterogeneous multi-core architecture.

the same ISA but with very different micro-architectures. In Figure 2.1 we show the

architecture of the big.LITTLE static heterogeneous multi-core architecture that exists

currently on the market. It consists of high performance Cortex-A15 cluster and power

efficient Cortex-A7 cluster. All the cores implement ARM v7A ISA. The Cortex-A15 is

complex out-of-order superscalar core that can execute high intensity workloads, while

Cortex-A7 is a power efficient in-order core meant for low intensity workloads. While

each core has private L1 instruction and data caches, the L2 cache is shared across all

the cores within a cluster. The L2 caches across clusters are kept seamlessly coherent

via a cache coherent interconnect.

Balakrishnan et al., performed a study in [8] to explore the impact of the static het-

erogeneity in the emerging multi-core architectures from software developers perspec-

tive. The results show that static heterogeneous multi-core architectures introduce a

high degree of unpredictability for the software applications. Performance heterogene-

ity in multi-core systems breaks a long-standing assumption made by multi-threaded

application developers. These developers typically assume all computational cores

provide equal performance when they write their parallel algorithms and applications.

However, this study investigates the impact, if any, of computational heterogeneity on

the behavior of multi-threaded applications. This work tries to answer some important

17

Chapter 2. Related Work

questions, for example, does computational heterogeneity result in unpredictable per-

formance characteristics in a commercial server, which must meet certain performance

guarantees? Does the heterogeneity expose a scalability problem in applications that

otherwise would not have manifested? Computer architects should consider the impli-

cations of multi-core proposals on application behavior, and the developers must design

applications that are robust enough to dynamically deal with changing compute power.

2.1.2 Dynamic heterogeneous multi-cores

Considerable previous work has been done in order to propose an architecture that will

efficiently adapt multi-cores to the continuously changing demands of the applications.

The idea of composing simple cores together to accelerate serial code has been explored

before. However, such solutions either require significant additional shared hardware

resources (e.g., Rakesh Kumar et al. with Conjoined-Core Chip Multiprocessing [56])

and modifications to the internal architecture of the composable cores (e.g., Engin Ipek

et al. with Core Fusion [48]) or follow a radically different instruction-set architecture

that require complete re-engineering of the software model and aggressive compiler

optimizations (e.g., Changkyu Kim et al. with TFlex [52]).

The Core Fusion architecture [48] can fuse homogeneous cores and presents a de-

tailed hardware solution to support adaptive core fusion. The proposed architecture

has a reconfigurable, distributed front-end and instruction cache organization that can

leverage individual core’s front-end structure to feed an aggressive fused back-end, with

minimal over-provisioning of individual front-ends. Comparing to Bahurupi design,

Core Fusion uses more complex hardware which brings the most impact on the per-

formance. It also implements a complexity-effective remote wake-up mechanism that

allows operand communication across cores without requiring additional register file

ports, wake-up buses, bypass paths, or issue queue ports. Comparing to Core Fusion,

our design does not use a distributed ROB organization and it uses a much simpler

18

Chapter 2. Related Work

128-entry

instruction

window

Int.

ALU

FP

ALU

Memory

network

in/out

S
e

le
ct

 lo
g

ic

Register

forwarding

logic & queues

40-entry

load/store

queue

8KB 2-way

L1 D-cache

4KB

direct-mapped

L1 I-cache

Operand

buffer

128x64b

Operand

buffer

128x64b

128-entry

architectural

register file

2R, 1W port

Operand

network

out queue

Operand

network

in queue

8-Kbit

next-block

predictor

Block

control

Control

networks

4KB block

header cache

local exit

history

global exit

history vector

Predicted next-block address

l2

g2

t2

BTB

CTB

Btype

RAS

SEQ

Global history vector

2 top RAS entries

Next-block

address

To next

owner core

One TFlex Core Next-Block Predictor32-Core TFlex Array

Figure 3:Microarchitectural components of single TFlex core and internal organization of the next-block predictor

4.3 Composable Control-flow Prediction

Control-flow predictors are some of the most challeng-
ing structures to partition for composability, since the pre-
dictor state has traditionally been physically centralized to
facilitate few cycles between successive predictions. The
TFlex composable predictor treats the distributed predic-
tors in each composed core as a single logical predic-
tor, exploiting the block-atomic nature of the TRIPS ISA
to make this distributed approach tenable. Similar to the
TRIPS prototype microarchitecture, the TFlex control flow
predictor issues one next-block prediction for each 128-
instruction hyperblock—a predicated single entry, multiple
exit region—instead of one prediction per basic block.

Figure 3 illustrates the distributed next block predictor
consisting of eight main structures. Each core has a fully
functional block predictor and the predictors are identical
across all the cores. The block predictor can be divided
into two main components: the exit predictor, predicting
which branch will be taken out of the current block; and
the target predictor, which predicts the target address of the
next block. Each branch in a block contains threeexit bits
in its instruction, which are used to form histories insteadof
the traditional taken/not taken bits.

The exit predictor is an Alpha 21264-like tournament-
style hybrid predictor [13] and is composed of traditional
two-level local, global, and choice predictors that use local
and global block exit histories. The local as well as global
histories are updated speculatively after a prediction andre-
paired from backup history buffers on a misprediction. The
target address is predicted by first predicting the type of the
exit branch—a call, a return, a next sequential block, or a
regular branch—using the Btype predictor. The Btype pre-
dictor result selects one of those four possible next-block
targets, which are provided by a next-block adder (SEQ),
a Branch Target Buffer (BTB) to predict branch targets, a
Call Target Buffer (CTB) to predict call targets, and a Re-
turn Address Stack (RAS) to predict return targets.

Each of the major predictor structures is affected by the

composed nature of the microarchitecture. The local histo-
ries are trivially composable since, for a fixed composition,
the same block address will always map to the same core.
Local predictions do not lose any information even though
they are physically distributed. Similarly, the Btype, BTB
and CTB tables hold only the target addresses of the blocks
owned by that core. With this organization, the capacity
of the predictor increases as more cores are added, assum-
ing that block addresses tend to be distributed among cores
equally.

The global predictor is more complex because of the dis-
tributed history. When a predicted next-block address is
sent from the previous blocks’ owner to the owning core
of the predicted block, the global exit history is forwarded
along with the prediction. This forwarding enables each
prediction to be made with the current global history, with-
out additional latency beyond the already incurred point-to-
point latency to transmit the predicted next-block address
from core to core.

The component that is most difficult to distribute, the Re-
turn Address Stack (RAS), must be maintained as a single
logical stack across all the cores since it represents the pro-
gram call-stack. The TFlex microarchitecture uses the com-
posed entries to permit a deeper RAS. Instead of using ad-
dress interleaving, it sequentially partitions the RAS across
all the cores (e.g. a 32-entry stack for 2 cores would have
entries 0 to 15 in core 0 and 16 to 31 in core 1). The stacks
from the participating cores form a logically centralized but
physically distributed global stack. If the exit branch type
is predicted as a call, the corresponding return address is
pushed on to the RAS by sending a message to the core
holding the current RAS top. If the branch is predicted as a
return then the address on the stack is popped off by sending
a pop-request to the core holding the RAS top. Recovery
upon a misprediction is the responsibility of the mispredict-
ing owner, which rolls back the mis-speculated state and
sends the updated histories and RAS pointers to the next
owner core, as well as the corrected top-of-stack RAS in-
formation to the core that will hold the new RAS top.

Figure 2.2: TFlex micro-architecture and internal organization [52].

global renaming table which does not have to track the mapping done by the individual

cores and also it does not bypass the internal core renaming logic.

TFlex processor [52] uses no physical shared resources among the cores which

would make it a very good alternative to our design. Instead, TFlex is dependent on

a special distributed micro-architecture called Explicit Data Graph Execution (EDGE)

which is configured to implement the composable lightweight processors. Bahurupi, on

the other hand, can be implemented on top of conventional CISC and RISC architec-

tures. EDGE ISAs creates programs in which the instructions are grouped in consecu-

tive blocks of instructions. This approach is similar to ours in which we use the liveness

information provided by the compiler to create special instructions (sentinel instruc-

tions) that will separate the basic blocks and carry the dependency between them. Com-

puting liveness is a basic step done by an ordinary compiler in order to implement op-

timisation techniques. TFlex EDGE ISA adds complex information and book-keeping

to the block structures and it relies on point-to-point communication to exchange in-

formation between cores. In Figure 2.2 we show the internal micro-architecture and

organization of a 32 core TFlex architecture. The figure also shows the internals of the

next block predictor. This predictor predicts the next block of instructions which will

be fetched and executed.

David Tarjan et al. proposed Federation [93] as an alternative approach. Federation

19

Chapter 2. Related Work

makes a pair of scalar cores to act as a 2-way out-of-order core by adding additional

stages to their internal pipeline (shown in Figure 2.3). The key insight that makes

federation work is that it is possible to approximate traditional out-of-order issue with

much more efficient hardware structures, replacing CAMs and broadcast networks with

simple lookup tables; and that these out-of-order structures can be placed between a

pair of scalar cores and use the fetch, decode, register file, cache, and datapath of the

scalar cores to achieve an ensemble that is competitive in performance with an out-of-

order superscalar core. Federated cores are best suited for workloads that usually need

high throughput but sometimes exhibit limited parallelism. Federation provides faster,

more energy-efficient cores for the latter case without sacrificing area that would reduce

thread capacity for the former case.

Other works approached the idea of dynamic heterogeneous multi-core systems to-

gether with code parallelization as in the case of the Voltron processor proposed by

Hongtao Zhong et al. in [104]. As shown in Figure 2.4, Voltron uses multiple homoge-

neous cores that can be adapted for single and multi-threaded applications. The cores

can operate in coupled mode when they act as a VLIW processor that will help exploit

the hybrid forms of parallelism found in the code. Voltron relies on a very complex

compiler that is able to exploit parallelism from the serial code, partition the code into

small threads, schedule the instruction to the cores and direct the communication be-

tween the cores. In this case, the cores are only passing values among themselves on

specialised buss. Code parallelization was shown to be a tedious process that can in-

troduce errors as well. Bahurupi does not use a special unit which is orchestrating the

instructions to the cores. It only using a lock-unlock mechanism over a shared register

which holds the address of the next basic blocks.

Rakesh Kumar et al. give another interpretation of the core coalition in Conjoined-

Core Chip Multiprocessing [56]. That is, nearby cores can share functional units (e.g.,

FP units, crossbar ports, instruction caches, data caches etc.).

20

Chapter 2. Related Work

����� ����� 	

���

����������� ������� ��� ��������� ������������������
Figure 1: The pipeline of a federated core, with the
new pipeline stages in shaded boxes.���� !"#$ %� !"#$%$" &$'()*$ +, (-$./ 0-* (1 -$*#+$!2)3 4 56�� !"#$ %� !"#$%$" &$'()*$ +, (-$./ 0-* (1 -$*#+$!2)3 4 56&$74 --8" �0) �0)�0)9: ;< =9: ;< >
Figure 2: A simplified floorplan showing the ar-
rangement of two in-order cores with the new struc-
tures necessary for federation in the area between
the cores.

ware thread-contexts. But as Table 4 shows, the area over-
head of multi-threading is not very large, making federation
an attractive option even for single-threaded cores.
The main goal of federation is to add OO execution capa-

bility to the existing in-order cores with as little area over-
head as possible. Thus, each federated core is relatively
simple compared to many dedicated OO implementations.
Specifically, each federated core is single-threaded and two-
way issue with a 32-entry instruction window. The federated
cores implement the pipeline shown in Figure 1, with the ad-
ditional pipeline stages not present in the baseline in-order
cores shown in shaded boxes. A simplified view of a possible
floorplan is shown in Figure 2.
In order to minimize the area overhead of federation, we

strive to avoid adding any significant CAMs or structures
with a large number of read and write ports. Table 1 lists
the sizes of the new structures required to support OO exe-
cution, as well as whether or not each structure could poten-
tially be implemented by re-using the existing register file of
the underlying multi-threaded core, while Table 2 lists the
new wiring required. The following subsections provide an
overview of the operation of each pipeline stage in the fed-
erated core, along with a discussion of the design tradeoffs
that were made. Additional details appear in [14].

Branch Prediction: Branch prediction is implemented
using Next Line and Set prediction (NLS) [3, 9] instead of a
branch target buffer.

Fetch: The fetch stage starts by receiving a predicted
cache line from the NLS, a return address from the RAS,
or, in the case of a misprediction, a corrected PC from the
branch unit in the execute stage. It then initiates the fetch
by forwarding this request to the instruction cache. When
federated, the individual instructions caches of the two cores
are combined into a single cache with double the associativ-
ity and random replacement.

Decode: Since each core can only decode a single instruc-
tion, the second instruction (if valid) is sent to the second
core for decoding. So that this extra wire does not influence
cycle time, we allocate an extra pipeline stage for copying

Structure
Size

Type
Reuses

(Bits) RF
Branch Predictor (NLS) 6,144 SRAM No

Branch Predictor (Bimodal) 4,096 SRAM No
Unified Register File 4,096 Reg Yes
Smaller Structures 3056 both No

Worst Case Total (Bits)
10,496 SRAM
6,844 Register

Assumed Total (Bits)
10,496 SRAM
1,852 Register

Table 1: Area estimates for the new structures
added to the baseline in-order processor. The worst
case total assumes that none of the structures can
reuse the register file.

New Wiring Width
Cross Core Value Copying 2 * (64 + 6) bits
Mem Unit to 2nd D-Cache 2 * 64 bits
Cross I-Cache to Decode 32 bits

Decode to Allocate 64 bits

Table 2: The size of wires that must be added to the
baseline core in order to support federation.

the instruction to the second core, buffering the first instruc-
tion in a pipeline register.

Allocate: During the allocate stage, each instruction
checks for space in several structures required for OO ex-
ecution and stalls the frontend if space is not available.

Rename: Because branches are only resolved at commit
time, there is no need to checkpoint the state of the RAT for
every branch. If a branch misprediction or another kind of
exception is detected, the pipeline is flushed and a bit asso-
ciated with each RAT entry is set to indicate that the most
up-to-date version of the register is in the non-speculative
RAT. As soon as an instruction in the rename stage writes
to a particular register, this bit is reset to indicate that the
speculative version is the most up to date.

Issue: The area and power constraints of our design pre-
vent the implementation of a traditional CAM-based issue
queue (IQ). Instead, we use a simple table in which con-
sumers“subscribe”to their producers by writing their IQ po-
sition into one of the producer’s IQ entry’s consumer fields,
similar to a scheme evaluated by Huang et al. [7].

In addition to the usual opcode, register ids, and imme-
diates, each IQ entry also holds several consumer id fields
and two ready bits; the ready bits are set when the left and
right operands become available, respectively. When issued,
an instruction checks its consumer fields and sets the appro-
priate ready bits for its consumer(s). If both input operands
are ready (i.e., both ready bits are set), the ready signal for
that entry is sent to the scheduler. The number of consumer
fields per entry is a design choice; we found that having only
two fields per entry had a negligible impact on performance.

The normal scheduling logic for an out-of-order proces-
sor attempts to issue the oldest instructions first. Achiev-
ing this age-prioritization is costly in terms of both area
and power. Instead, we implement a much simpler pseudo-
random scheduler [13] which uses a simple static priority
encoder and does not take into account the age of instruc-
tions. For a small instruction window, this simplified sched-
uler only reduces performance by around 1%.

For simplicity, we use a näıve scheduling algorithm that
only schedules instructions on core one if core zero is already
busy. Additionally, all load and store instructions are issued

Figure 2.3: Federation architecture [93].

GPR FPR PR BTR

Register Files

FU
Mem
FU

. . .

To northTo west

L1
Instruction Cache

L1 Data Cache
with Transactional
Memory Support

From Banked L2 To/From Banked L2

Instruction Fetch/Decode

Comm
FU

(a) (b) (c)

Core

Comm FU

Routing

Logic

To west To north

To Register File

D
ir
e
ct

 M
o
d
e
 B

y
p
a
ss

D
ir
e
ct

 M
o
d
e
 B

y
p
a
ss

S
e
n
d
 Q

u
e
u
e

R
e
ce

iv
e
 Q

u
e
u
e

Core 0 Core 1

Core 2 Core 3

Banked L2 Cache

Banked L2 Cache

Stall Bus

Figure 4: Block diagram of the Voltron architecture: (a) 4-core system connected in a mesh topology, (b) Datapath for a single
core, and (c) Details of the inter-core communication unit.

and a sender core identifier. When a RECV operation is ex-
ecuted, it looks for the message from the specified sender in
the receive queue, and writes the data to the destination reg-
ister if such a message is found. It stalls the core if such a
message is not found. The receive queue uses a CAM struc-
ture to support fast sender identifier lookup.

The router gets items from the send queue and routes them
to the target core through one or more hops. In queue mode,
SEND and RECV operations do not need to be issued in the
same cycle. Data will wait in the receive queue until the
RECV is executed, and the receiver core will stall when a
RECV is executed and the data is not available. Only one
pair of SEND/RECV operations is required to communicate
between any pair of cores; the router will find a path from
the sender to the receiver. The latency of communication
between cores in the queued mode is 2+number of hops: it
takes one cycle to write the value to the send queue, one cycle
per hop to move the data, and one cycle to read data from
the receive queue. The operand network operating in queue
mode is similar to the RAW scalar operand network [25].

The two modes of communication provide a la-
tency/flexibility trade-off. The compiler can examine the
characteristics of an application to utilize direct mode when
communication latency is critical and queue mode when non-
deterministic latencies caused by frequent cache misses dom-
inate.

3.2 Voltron Execution Modes

Voltron supports two execution modes that are customized
for the form of parallelism that is being exploited: coupled
and decoupled. Coupled efficiently exploits ILP using the
direct mode operand network, while decoupled exploits LLP
and fine-grain TLP using the queue mode operand network.

Coupled mode. In coupled mode, all cores execute in
lock-step, collectively behaving like a wide-issue multiclus-
ter VLIW machine. The cores pass register values to each
other using the direct communication mode. The compiler
is responsible for partitioning computation, scheduling the

PBR r10 = BB10

CMP p1 = (i>100)?

BR r10 if p1

PBR r10 = BB10

CMP p1 = (i>100)?

BCAST p1

BR r10 if p1

PBR r11 = BB10

GET p2

BR r11 if p2

PBR r10 = BB10

CMP p1 = (i>100)?

BR r10 if p1

PBR r11 = BB10

CMP p2 = (i>100)?

BR r11 if p2

(a) (b) (c)

core 0 core 1 core 0 core 1

Figure 5: Execution of a distributed branch: (a) Original
unbundled branch, (b) Branch with predicate broadcast, and
(c) Branch with the condition computation replicated.

instructions, and orchestrating the communication between
cores. In this mode, Voltron operates as a distributed VLIW
(DVLIW) machine, which differs from conventional multi-
cluster VLIW in that there is no centralized fetch unit; each
core maintains its own control flow [28]. The branch mech-
anism in Voltron is based on the unbundled branch in the
HPL-PD ISA [8]. In HPL-PD, the portions of each branch
are specified separately: a prepare-to-branch (PBR) opera-
tion specifies the branch target address, a comparison (CMP)
operation computes the branch condition, and a branch (BR)
transfers the control flow of the program based on the tar-
get address and the branch condition, as illustrated in Fig-
ure 5(a).

Figure 5(b) illustrates the branch mechanism in Voltron
coupled mode. To synchronize the control flow in all cores,
each core specifies its own branch target using separate PBR
operations. The branch target represents the same logical ba-
sic block, but a different physical block as the instructions for
each core are located in different memory spaces. The branch
condition is computed in one core and broadcast to all the
other cores using a BCAST operation. Other cores receive
the branch condition using a GET operation to determine if
the branch is taken or fall through. (Note, the branch con-
dition can alternatively be replicated on all cores as shown
in Figure 5(c)). BR operations are replicated across all cores
and scheduled to execute in the same cycle. When the BR op-
erations are executed, every core branches to its own branch
target (same logical target) keeping all cores synchronized.
In essence, separate instruction streams are executed on each

Figure 2.4: Block diagram of a 4-core Voltron architecture [104].

The idea of using special instructions that carry the liveness information between

blocks of code with similar format was proposed by Sriram Vajapeyam et al. in [95].

Using trace descriptors, this design allows processors to go beyond basic block limits in

program order. This architecture uses a shared ROB, a shared fetch unit and very sim-

ple execution units (that have only fetch, issue and execute stages) instead of ordinary

cores. Bahurupi, on the other hand, does not need major modifications to the existent

commonly used structures. As in our case, the design uses a shared renaming map for

the live-out and live-in registers.

Recently, Khubaib et al. have proposed MorphCore architecture [51]. Morphcore

21

Chapter 2. Related Work

is an adaptive core that is created by starting with a traditional high performance out-

of-order core and making internal changes to allow it to be transformed into a highly-

threaded in-order SMT core when necessary. The main idea stems from the fact that

in general, the architecture designers build two types of cores: (a) powerful out-of-

order cores capable of exploiting high ILP from the sequential code (e.g., Intel i7, ARM

Cortex-A15) but they are power inefficient when exploiting the TLP or (b) low power in-

order cores that are very good in exploiting the TLP from parallel applications but they

lack the capability to offer good performance to single-threaded applications. Usually

big out-of-order cores consume much more power than the small in-order cores; but

as they finish the execution of the program much faster, they can offer better energy

results or better energy-delay product (EDP). EDP is a metric worth to be considered

especially in the field of mobile computing where users are interested in applications

that run fast with the lowest energy consumption. MorphCore brings modifications

to the internal pipeline of an out-of-order core by adding components that allow fast

switching between out-of-order mode and in-order mode. The fetch stage is modified

such that it can switch between 8 threaded in-order SMT core and a dual-issue out-

of-order core. The decision to switch between execution modes is automatically taken

care by the hardware system and not by the operating system. Generally, when the OS

spawns more than two tasks (threads), the hardware switches to SMT mode and when

the number of threads reduce to less than two, then the hardware switches to out-of-

order mode.

Andrew Lukefahr et al. proposed Composite Cores architecture [64] that uses a

similar concept as MorphCore. It reduces switching overheads by creating heterogene-

ity within a single-core. The proposed architecture pairs simple and complex pipeline

engines together inside a single chip. Essentially, there are two different pipelines con-

nected together on the same CPU die – an out-of-order pipeline and an in-order pipeline.

The connectivity between these two allows fast migration of processes from one engine

22

Chapter 2. Related Work

7

Related Works

Programming
model

Architecture

Special
ISA

Special
compiler

Type of merging and shared
resources between the basic cores

Core level
coalition

Core
adaptation

Shared
resources
between

cores

Core Fusion
[48]

 X X

TFlex [52] X X X

Federation
[93]

 X

Voltron [104] X X

MorphCore
[51]

 X

Composite
Cores [64]

 X

Bahurupi X X

Table 2.1: Comparison between different dynamic heterogenous multi-core architec-
tures.

to another. The two engines share the front-end of the pipeline, the branch predictor and

the instruction and data caches. An extra hardware component is added to the system – a

reactive PID controller that is in charge of detecting when to migrate from one pipeline

to another. The online controller tries to minimize the energy saving by choosing the

right core configuration at runtime. The controller integrates a complex performance

estimator to decide where the task will be migrated.

The literature presented so far confirms that more research must be dedicated in

order to efficiently create dynamic heterogeneous multi-core systems. Bahurupi is an

alternative to these proposed designs. It not only reduces the production costs and in-

creases performance, but it also helps reduce the power consumption and ease software

23

Chapter 2. Related Work

development.

We summarise this section by offering in Table 2.1 a high-level comparison among

the existing dynamic heterogeneous multi-core solutions. Architectures like MorphCore

or Composite Cores need core adaptations as they heavily modify the internals of the

core in order to easily switch the applications between different types of pipelines. As

shown in this table, Core Fusion is closest to Bahurupi architecture. However, the

amount of shared resources between the cores and the complexity of the hardware is

significantly more in Core Fusion compared to Bahurupi.

2.2 Reconfigurable caches

In this section, we present related work on reconfigurable caches with special consider-

ation for the connectivity between the cores and the first level of caches.

There is a general consensus in the computer architecture community that the L1

instruction and data cache must be private to the core in order to accommodate the

frequent accesses to the data or instructions. Moreover, there has been extensive re-

search in the organization and reconfiguration of the lower level of caches starting from

private L2 [28, 12, 79] to shared L2 or adding private or shared caches at lower lev-

els (e.g., L3) [90, 53, 47, 82, 81, 80, 49]. However, computing systems like GPUs

need high bandwidth and low-latency access to the first level of memory (i.e., tightly

coupled scratchpad memories) [72] for which very little research has been done. Sim-

ilarly, dynamic heterogeneous multi-cores like Bahurupi need to share the first level

of cache. When coalescing cores, Bahurupi generates more memory accesses per cy-

cle that puts high pressure on the first level of cache. Traditional bus-based intercon-

nects or crossbars are not able to offer this level of bandwidth and low latency even

if advanced techniques are used (e.g., out-of-order completion or multiple outstanding

transactions) [3][1]. Similarly, network-on-chips [13][34] are well positioned for ac-

24

Chapter 2. Related Work

commodating the bandwidth requirements, but their increased latency [18] makes them

impractical for being used as an interconnect between the core and first level of cache.

The recently proposed dynamic heterogeneous multi-core designs presented in the

previous section focus mostly on the internal micro-architecture, the compiler, the pro-

gramming model and the execution model. They mostly ignore or make simplifying

assumptions regarding the memory hierarchy. A common assumption in all these works

is that the first level of data and instruction caches must support reconfigurability. How-

ever, none of the designs delve into the details of the reconfigurable cache architecture.

Core Fusion [48] uses a reconfigurable instruction cache that can merge each core’s

private cache into a fused group. In coalition mode, each cache keeps a replica copy

of tags, and broadcast is needed as the cache line is distributed across the participating

caches. This incurs area and latency overhead. As for data cache, Core Fusion keeps the

data cache private, which can have poor performance in coalition mode. Similarly, Fed-

eration [93] employs a recongurable L1 instruction and data cache. In coalition mode,

all the cache banks behave as a large set-associative shared cache without analysing the

overheads introduced by composing the L1 caches. TFlex [52] also makes its L1 caches

composable when multiple cores are fused. However, it does not offer any details about

the interconnection network between the cores and the L1 caches. Even in the case of

MorphCore and Composite Cores, the system still needs reconfigurable caches as the

big cores require more throughput to the first level of cache.

Recent proposals on reconfigurable caches seek to make caches dynamically adapt

to applications and power requirements [14][40] [89][97][103]. However, they gen-

erally focus on overcoming the non uniform cache access (NUCA) effects or increas-

ing or decreasing the available cache size or associativity without considering the re-

quired cache access throughput [14][40]. Similarly, interconnection networks required

for cache resizing are often simplified or ignored [89][97]. MorphCache proposed by

Shekhar Srikantaiah et al. in [89] can dynamically merge and split its L2 and L3 cache

25

Chapter 2. Related Work

slices. However, it uses a simple segmented bus to connect or isolate adjacent cache

slices. A miss on a local L2 (or L3) cache is put on the segmented bus to be delivered

to all shared L2 (or L3) caches. This broadcast scheme and the segmented nature of

the bus can lead to frequent multi-hop bus transactions that result in additional perfor-

mance overhead. Molecular Caches proposed by Keshavan Varadarajan et al. in [97]

dynamically reconfigures the cache to accommodate diverse application requirements.

It varies the size of cache and cache line, associativity and cache replacement policy

to achieve power efficiency. However, it does not offer detailed information about the

intra tile (group of molecules) interconnection.

Sharing the L1 cache is a good design point for tightly coupled multi-core proces-

sors. In such systems, the high availability of TLP can be limited by the memory access

latency, especially due to the interconnection network latency between the processing

cores and L1 memory units. For this reason, a new Mesh-of-Trees (MoT) implemen-

tation of interconnection network was recently proposed, which outperforms the tradi-

tional networks in terms of area, bandwidth and latency [10]. Based on this network,

Abbas Rahimi et al. proposed in [84] a parametric, fully combinational logarithmic

interconnection network to support high-performance, single-cycle communication be-

tween processors and multi-banked, tightly coupled L1 data cache. In Figure 2.5 we

present a logarithmic network that connects four cores with eight memory banks. As

we can see there is an unique path from each core to the arbitration layer. The network

comprises of two layers: a pure combinational logarithmic routing layer and an arbitra-

tion layer. The basic routing elements are switches and the arbiters simply arbitrate in

case of multiple accesses going to the same bank of memory.

26

Chapter 2. Related Work

C0

C1

C2

C3

$B0

$B1

$B2

$B3

$B4

$B5

$B6

$B7

Routing tree Arbitration

Figure 2.5: Example of a logarithmic interconnection network.

2.3 Task scheduling

In this section, we cover the related work on task scheduling on heterogeneous multi-

core systems. Scheduling on such systems is different from the classic scheduling prob-

lem on homogeneous multi-cores as now the system must not only smartly allocate the

tasks to the cores but also merge the cores if necessary, which turns out to be a chal-

lenging task.

An early method to dynamically allocate threads on static heterogeneous multi-core

systems is presented in [11] by Michela Becchi and Patrick Crowley. In order to take

advantage of a heterogeneous architecture, an appropriate policy to map running tasks

to processor cores must be determined. The overall goal of such a strategy must be to

maximize the performance of the whole system by accurately exploiting its resources.

The control mechanism must take into account the heterogeneity of the system, the

27

Chapter 2. Related Work

workload, and the varying behavior of the threads over time. Moreover, it must be

easily implementable and introduce as little overhead as possible. This work shows that

a heterogeneous system adopting a dynamic assignment policy is able to accommodate

a variety of degrees of thread-level parallelism more efficiently than a homogeneous

multi-core.

Scheduling only sequential applications on dynamic heterogeneous multi-core ar-

chitectures is studied in [42] by Divya Gulati et al. where different algorithms for

static and dynamic scheduling are proposed. However, this work is built on top of the

TFlex [52] adaptive architecture that we have seen requires a special ISA (EDGE) con-

figured to support distributed execution of sequential applications. Moreover, this work

proposes an optimal static scheduling algorithm with high time complexity, O(n m2),

where n is the number of applications and m is the number of cores in the system.

For our scheduler presented in this thesis we first model the applications as inde-

pendent preemptive malleable tasks. Scheduling malleable tasks has recently received

significant attention. Malleable tasks are parallel tasks that may be processed simulta-

neously by a number of cores, where the processor speedup of the task is dependent

on the number of allocated cores. Malleable tasks are allowed to preempt and change

the number of cores during execution. Scheduling malleable tasks is a promising tech-

nique for gaining computational speedup when solving large scheduling problems on

parallel and distributed computers [23, 102]. Real applications for malleable tasks have

been presented among others in [15] for simulating molecular dynamics, in [35] for

Cholesky factorization, in [19] for operational oceanography and in [20] for berth and

quay allocation.

The malleable task model was first proposed in [94] by John Turek et al. and later

studied in [63, 99] and [67]. Scheduling independent malleable tasks without pre-

emption is proved to be NP-hard [36] and related work on this topic focus on find-

ing sub-optimal solutions. John Turek et al. found a polynomial λ -approximation

28

Chapter 2. Related Work

algorithm for the malleable tasks problem starting from any λ -approximation algo-

rithm for the 2D bin-packing problem. Following this work, Walter Ludwig presents a

two-approximation algorithm in [63] and Gregory Mounie et al. developed a heuristic

in [67] with a worst case performance guarantee of
√

3, which was later improved to

3
2 in [68]. Additionally, scheduling malleable tasks on clusters of multi-cores is pro-

posed by Pierre-Francois Dutot and Denis Trystram in [37] where allocation of tasks to

clusters is also considered.

Operating with malleable tasks presents significant challenges for the scheduling

system. In our thesis, we also use a variation of the malleable model called the moldable

model. Moldable tasks are parallel tasks that can be executed using an arbitrary number

of cores but they cannot change the core allocation during execution. Similarly, their

performance is directly related to the number of allocated cores. Suboptimal solutions

for scheduling moldable tasks have been studied in [21], [22] by Jacek Blazewicz et al.

and in [29] by Guan-Ing Chen and Ten-Hwang Lai.

29

Chapter 3

Bahurupi Adaptive Multi-Core

In this chapter we present a dynamic heterogenous multi-core architecture called Bahu-

rupi, that can dynamically create static heterogeneous configurations in order to better

accommodate the software requirements.

Motivating Example. As a concrete motivating example, we present here a case

study of Ferret benchmark from PARSEC suite [16] that performs image similarity

search. The application consists of six kernels. We first run the sequential version of

the application on one complex core configured as 2-way, 4-way, and 8-way out-of-

order execution engines, respectively, using MARSS [73] simulator. We collect execu-

tion time for each individual kernel. Next we create 2-core and 4-core homogeneous

multi-core systems where each core is a 2-way out-of-order engine. For 2-core system

(4-core system), we create 2 threads (4 threads) for each of the kernels except for load

and out, which are hard to parallelize. Now we run this multi-threaded application on

multi-core and collect execution time for each kernel. Figure 3.1 shows the speedup

trend for each kernel as we increase ILP and TLP normalized w.r.t. 2-way core. seg and

rank can benefit from TLP while extract and vec benefit from ILP.

For the whole application, the speedup from homogeneous configurations (4-way

30

Chapter 3. Bahurupi Adaptive Multi-Core

0

0.5

1

1.5

2

2.5

3

3.5

load seg extract vec rank out whole
application

Sp
e

e
d

u
p

 2-way

4-way

8-way

2-core x 2-way

4-core x 2-way

reconfigurable 4-core

Figure 3.1: Speedup trends for Ferret kernels and overall speedup with reconfigurable
architecture.

out-of-order, 8-way out-of-order, 2x2-way core, and 4x2-way core) are shown on the

right. None of these configurations can exploit both ILP and TLP. A 4-core dynami-

cally reconfigurable architecture like Bahurupi can run seg and rank on 4x2-way cores

to exploit TLP, while the rest of the kernels can be run on virtual 8-way out-of-order

engine by forming coalition of 4 cores. Thus, the 4x2-way reconfigurable architec-

ture improves the speedup by 38% compared to static homogeneous 4x2-way cores.

This case study confirms once more that dynamic reconfigurable architectures, such as

Bahurupi, that can seamlessly transition between ILP and TLP can provide significant

performance boost to applications in comparison to homogeneous multi-cores.

3.1 Bahurupi execution model

Bahurupi reconfigurable multi-core architecture allows cores to form coalitions so as to

improve single-thread performance. A coalition is defined as a group of cores working

together to accelerate the execution of a serial stream of instructions. In normal mode,

Bahurupi executes multi-threaded application on a set of homogeneous cores. One

simple core might not be powerful enough to exploit the amount of ILP [98] available

in some threads. In that scenario, Bahurupi architecture configures a subset of its cores

31

Chapter 3. Bahurupi Adaptive Multi-Core

C0 C1 C2 C3

C4 C5 C6 C7

L1 I$

L2$

Coalition Logic

Coalition Logic

Coalition Bus

GPC ticket serving

Global register file

IF

ID

Issue

----- ticket g-reg

EX EX EX EX

CM

a-reg g-reg ROB-ID

: : :
ROB

live-out map
SF

High ILP

Medium ILP

Low ILP

L1 D$

L1 D$
L1 I$

Figure 3.2: Bahurupi architecture. Additional resources required for coalition are high-
lighted.

to run in coalition mode so that the virtual cores can extract more ILP and implicitly

execute the threads faster. The design uses limited amount of additional hardware that

is shared among the cores and minimal compiler modifications.

In Figure 3.2 we show the high-level architecture of Bahurupi together with the

additional resources required for coalition. Here, we present two four-core clusters

sharing the last level of L2 unified cache. In each cluster, Bahurupi allows at most

one coalition of cores to be formed. The number of cores found in a coalition can be

decided at runtime by the run-time system. In this figure, we show an example of two

low ILP threads being spawned on the cores C2 and C3, a medium ILP application

being scheduled on a coalition of two cores (C0 and C1) and a high ILP application

being scheduled on a coalition of four cores (C4-C7).

When found in coalition, the cores are connected to the Coalition Logic which com-

prises of Coaltion Bus, Global Register File and Renaming Logic, GPC, Ticket and

32

Chapter 3. Bahurupi Adaptive Multi-Core

Serving registers. The Coalition Bus allows the cores to pass the values of live-in and

live-out registers from one core to another or to the Global Register File. The Renam-

ing Logic takes care of renaming the live-in and live-out registers to allow out-of-order

execution of basic blocks between coalesced cores. The GPC register contains the ad-

dress of the next basic block to be fetched by a core found in a coalition. Finally, the

Ticket and Serving registers help to commit the instructions from different basic blocks

in program order — when renamed, a basic block is given a Ticket value such that all

the instructions are labeled with this Ticket value. At commit time, the instructions are

only allowed to be committed if their Ticket value is equal to the Serving value. Besides

the Coalition Logic components, there are few other internal components (e.g., live-in

map, live-out map, ROB-ID) which will be explained in detail in the following sections.

Bahurupi architecture follows a distributed execution model in coalition mode. The

unit of execution for a core is a basic block — a sequence of instructions with single

entry and single exit point. A core fetches and executes one basic block of instructions

at a time. Our goal is to execute the basic blocks in parallel on the cores that form

coalition and thereby achieve speedup for serial code.

Bahurupi execution model is similar to thread pool pattern in parallel computing

where a number of threads are created to execute a number of tasks. The number of

tasks is usually much more compared to the number of threads. As soon as a thread

completes its task, it requests the next ready task until all the tasks have been completed.

In Bahurupi architecture the cores correspond to the threads and the basic blocks cor-

respond to the tasks. The cores fetch basic blocks for execution. As soon as a core

completes fetch, decode, and rename of all the instructions in a basic block, it attempts

to fetch the next available basic block.

To achieve the execution model of Bahurupi, we need to first resolve register and

memory dependencies among the basic blocks so as to maintain correctness during

parallel execution. Instead of relying on a complex hardware mechanism to detect inter-

33

Chapter 3. Bahurupi Adaptive Multi-Core

OPCODE BB_SIZE BB_TYPE LI_0 LI_1 LI_2 LO_0 LO_1 LO_2

051117232935364063

Figure 3.3: The sentinel instruction format.

dependency among the basic blocks, we resort to a hardware-software co-operative

solution. Second, we need to ensure that the cores fetch, rename and commit the basic

blocks in program order. The execution of the instructions from different basic blocks

can be performed out-of-order and the main speedup of Bahurupi comes from this out-

of-order parallel execution of instructions from different basic blocks on different cores.

3.1.1 Sentinel instruction

We let the compiler detect the live-in and live-out registers corresponding to each basic

block. The term live-in register indicates a register that is alive at the entry of a basic

block and is actually used inside the basic block. The term live-out register stands for a

register that is alive at the exit of a basic block and is actually updated inside the basic

block. The live-in and live-out registers correspond to inter basic block dependencies. It

is possible for the same register to appear as both live-in and live-out register. Now we

need to communicate the live-in, live-out information to the hardware architecture. We

introduce a new instruction, called sentinel, to encode this information. The compiler

adds a sentinel instruction in the beginning of each basic block. That is, the compiler

splits the program into basic blocks which are delimited by sentinel instructions.

Bahurupi design can be applied to any ISA that can be extended with the sentinel

instruction. Figure 3.3 depicts the format of a sentinel instruction. Our design assumes

64-bit instruction format. The BB SIZE field specifies the length of the basic block

which is delimited by this sentinel instruction. We set this field to 4 bits, that is, we

can support at most 16 instructions in a basic block. Experiments show that on average

the basic blocks do not contain more than 6 instructions. In the rare case when the size

34

Chapter 3. Bahurupi Adaptive Multi-Core

of a basic block exceeds 16 instructions, it is split into two or more basic blocks. The

BB TYPE is a 1-bit field that specifies if the basic block ends with a branch instruction

or not.

The next six fields hold the live-in and live-out registers for the basic block. We

decide to use three live-in and three live-out registers after evaluating multiple bench-

marks. Figure 3.4 depicts the percentage of basic blocks with number of live-in and

live-out registers below certain thresholds for some SPEC and embedded benchmarks.

For almost all benchmarks, 90% of basic blocks contain less than or equal to 3 live-in

and live-out registers. We believe that 3 live-in and 3 live-out slots are enough but one

can add two more slots for live-in and live-out respectively as there are enough bits left

from the opcode field. If a basic block contains more than 3 live-in or live-out regis-

ters, the compiler splits the basic block into two or more sub-blocks so as to satisfy the

constraint. The size of a live-in and live-out field is 6 bits for an ISA with 32 integer

registers and 32 floating point registers. If an ISA does not offer enough bits to encode

the live-in and live-out registers, we can set aside a limited number of registers as global

live-in, live-out registers. This is similar in spirit to using specific registers to transfer

parameters during subroutine calls. The compiler has to perform register swapping to

map all live-in, live-out registers to these specific set of registers. We then only need

to encode which subset of registers from this specific set has been used in a particular

basic block.

Figure 3.6 shows the sentinel instruction for a basic block with five instructions. It

has one live-in register r5 and one live-out register r4. Notice that r5 is defined locally

as well by instruction I2. Similarly, r4 is defined multiple times (I0 and I3); but the last

definition in I3 is treated as live-out.

35

Chapter 3. Bahurupi Adaptive Multi-Core

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti

v
e

 b
a

si
c

b
lo

ck

Number of live-ins

parser

bzip2

mesa

equake

swim

hmmer

lbm

mpeg2.d

dijkstra

crc

susan.c

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7

C
u

m
u

la
ti

v
e

 b
a

si
c

b
lo

ck

Number of live-outs

parser

bzip2

mesa

equake

swim

hmmer

lbm

mpeg2.d

dijkstra

crc

susan.c

Figure 3.4: Percentage of basic blocks with number of live-in and live-out registers
below a threshold.

36

Chapter 3. Bahurupi Adaptive Multi-Core

3.1.2 Execution model

In our architecture, the base processing cores are 2-way out-of-order execution engines.

They use register map table to rename architectural registers into physical registers. The

registers local to a basic block can remain in the core-local register file. However, the

live-in and live-out register values have to be communicated among the cores. So we

introduce a global register file that is shared across the cores. This includes a global

map table and a global physical register file. The live-in registers have to be read from

the global register file, while the live-out registers have to be written into the global

register file. Thus live-in and live-out registers have to be renamed using the global

map table. The sentinel instructions take care of global register renaming.

Any out-of-order execution core should rename registers in program order as well as

commit instructions in program order. As the global (inter basic block) dependencies

are encapsulated in the sentinel instructions, we only need to ensure that the sentinel

instructions execute and rename global registers in program order. We satisfy this pro-

gram order requirement by using a global program counter (GPC) that is shared across

the cores (see Figure 3.2). The GPC also comes with a locking mechanism such that

only one core can access and update the GPC at any point of time [33]. Initially the

GPC points to the sentinel instruction in the very first basic block of the program. Once

a core fetches the sentinel instruction and completes global register renaming, it up-

dates the GPC to point to the next basic block (i.e., the next sentinel instruction). If the

basic block ends with a branch instruction, the GPC will be updated with the predicted

target address generated by the branch predictor in the core. Otherwise, the GPC is

incremented by the length of the basic block (the length information is encoded in the

sentinel instruction). In other words, the GPC always points to a sentinel instruction.

After updating, the core releases the lock on the GPC allowing the next core (or the

same core) to lock the GPC register. Now the core starts fetching the instructions from

37

Chapter 3. Bahurupi Adaptive Multi-Core

the basic block and then executes them out-of-order whenever their operands are ready

(i.e., all the local and global dependencies are resolved).

The in-order commit constraint is to handle speculative execution and precise ex-

ception. The in-order commit requirement is handled through a shared ticket lock mech-

anism. The ticket lock contains two registers: serving and ticket (see Figure 3.2). Both

are initialized to 0. The ticket register is used in order to keep track of the order in

which the basic blocks are fetched by the cores. When a core locks the GPC, it also

reads and increments the current value of ticket register. It then tags the reorder buffer

(ROB) entries of all the instructions in the basic block with this ticket value. That is,

each basic block of instructions is tagged with a unique ticket value and the ticket values

are assigned to basic blocks in program order.

The serving register dictates which set of instructions are allowed to be committed.

At any point in time only one core is permitted to commit instructions. That is the core

for which the instructions are ready to be committed and their associated ticket number

matches the value held by the serving register. The serving register is incremented after

all the instructions from the basic block are committed. This process ensures that the

basic blocks are committed in order.

Example. Figure 3.5 illustrates Bahurupi execution model with an example. The left

hand side of the figure shows a simple control flow graph (CFG) corresponding to a

program. This CFG contains five basic blocks B0–B4. In the beginning, the global

program counter (GPC) points to the sentinel instruction of B0. Let us assume that

core 0 manages to get a lock on GPC first. It fetches the sentinel and renames the

global registers according to live-in and live-out information. The sentinel also indicates

that basic block B0 ends in a branch instruction. Therefore core 0 performs branch

prediction, which indicates B1 as the predicted next basic block. So GPC is updated to

point to the sentinel of B1 and core 0 releases its lock on GPC. During this period core

38

Chapter 3. Bahurupi Adaptive Multi-Core

B0

B1 B2

B3

B0

B1

B1

B3

B3

B0

B0

B1

B1

B3

B3

B4

B4

B4

B4

B0

B4

Core 0 Core 1

SF: Super-instruction fetch and
global renaming

RF: Regular instruction fetch,
decode and renaming

EX: Regular instruction execution

CM: Regular instruction commit

Time SF RF EX CM SF RF EX CM

Figure 3.5: Bahurupi distributed execution model: (a) Control flow graph (CFG) of a
program, and (b) Execution of the CFG on 2-core Bahurupi architecture.

1 is sitting idle as it cannot obtain a lock on GPC.

Now core 0 starts fetching, decoding, renaming, and executing the regular instruc-

tions from basic block B0. Meanwhile, as GPC has been released, core 1 locks GPC

and renames global registers corresponding to basic block B1. As B1 does not have any

branch instruction in the end, GPC is incremented by the length of B1 and now points

to B3. Core 1 also releases the lock on GPC. At this point, both core 0 and core 1 are

fetching, renaming, and executing instructions from their corresponding basic blocks.

When core 1 releases the lock, both the cores are still busy fetching instructions

from their respective basic blocks. Therefore, none of them attempt to lock the GPC.

Only when a core completes fetching all the instructions from its current basic block, it

will proceed to get the lock for the next basic block. This is the reason why there is a gap

between the completion of execution of sentinel in B1 and the fetching of the sentinel

in B3. Next, core 0 completes fetching all the instructions of B0 and locks the GPC for

B3. So when core 1 completes fetching all its instructions from basic block B1, it needs

to wait for the lock. Even though in this example the basic blocks alternate between the

39

Chapter 3. Bahurupi Adaptive Multi-Core

two cores, it is possible for a core to fetch consecutive basic blocks specially when the

other core is handling a large basic block and cannot request lock on GPC.

Now let us focus on the commit. Initially the value of serving and ticket are both 0.

Thus core 0 tags all the instructions of B0 with 0 and ticket is incremented to 1. Once the

first instruction of B0 completes execution, core 0 can start committing instructions as

serving value matches the tag of its instructions. Core 1 has tagged all the instructions

of B1 with ticket value 1. So core 1 cannot commit in parallel with core 0. Instead,

it should wait till core 0 completes all the commit and increments serving to 1. This

introduces idle cycles in the commit stage of core 1 as shown in Figure 3.5.

In summary, Bahurupi execution model requires (a) in-order fetching of the sen-

tinels so that global register renaming can happen in-order, and (b) in-order commit of

the instructions across the cores. The dashed lines in Figure 3.5 highlight the in-order

fetch and commit. This can introduce idle cycles but is necessary to maintain correct-

ness of program execution. The fetch, rename, and execute of regular instructions in

the cores can proceed in parallel to create the illusion of a single virtual ooo engine.

Bahurupi model of execution can even outperform true out-of-order execution en-

gines. For example, for floating point benchmarks, 2-core Bahurupi architecture per-

forms better than 4-way issue out-of-order processor (see Figure 3.7). This is because

Bahurupi can look far ahead in the future. In Figure 3.5, for example, the cores are

fetching instructions from basic blocks B3 and B4 in parallel. In the 4-way issue pro-

cessor, however, the instructions from B3 and B4 have to fetched sequentially. As

dependencies between the basic blocks are resolved with the help of live-in, live-out

information, Bahurupi can exploit ILP across basic blocks much more easily.

40

Chapter 3. Bahurupi Adaptive Multi-Core

3.2 Architectural details

Bahurupi architecture uses classic register renaming for both local and global register

files. As mentioned before, we introduce a shared global register file that includes

global register map and global physical register file. The size of the global register map

is determined by the number of registers in the processor ISA. The size of the global

physical register file, however, depends on the fraction of register accesses that require

global register file. In our architecture, we allocate 40 entries for the global physical

register file based on empirical evaluation.

3.2.1 Live-in register renaming

When a core fetches a sentinel instruction, it has to handle the live-in and live-out

registers. For a live-in register, there can be two scenarios. In the first case, the value

corresponding to the global register has already been produced by a previous basic

block. The core only needs to copy this value into the local register file. In the second

case, the value is not yet ready. The register renaming logic then simply copies the

mapping from the global register map to the local register map. That is, the local register

map for the live-in register now points to a global register file entry.

Figure 3.6 shows an example of register renaming with a basic block. The basic

block has one live-in register (r5) and one live-out register (r4). When the sentinel

instruction is fetched, the core accesses the global register map where r5 has been re-

named to global physical register GR3. Therefore, in the local register map as well we

map r5 to GR3. When the regular instructions are fetched within the basic block, they

get renamed as usual using only the local register map. Hence, source register r5 in

instructions I0, I1, I2 get renamed to GR3. Instruction I2 however redefines register r5.

At this point, r5 gets renamed to a local physical register LR9. So the next instruction

I3 uses LR9 for source register r5. So the same register r5 initially gets mapped to a

41

Chapter 3. Bahurupi Adaptive Multi-Core

I0: addiu LR7 GR3 -27

I1: addu LR8 GR3 LR7

I2: addiu LR9 GR3 2

I3: addu LR10/GR8 LR9 LR7

I4: sw LR8 (LR10)

Basic block Renamed registers

sen 5 0 r5 0 0 r4 0 0

I0: addiu r4 r5 -27

I1: addu r6 r5 r4

I2: addiu r5 r5 2

I3: addu r4 r5 r4

I4: sw r6 (r4)

Live-out map

4 GR8 ROB9

4 GR8 ROB9

4 GR8 ROB6

4 GR8 ROB6

4 GR8 ROB6

4 -GR8

Figure 3.6: Global and local register renaming.

global physical register and then gets mapped to a local physical register. On the other

hand, register r6 in instruction I1 is always mapped to local physical register as it does

not belong to live-in register list.

3.2.2 Live-out register renaming

The core needs to rename the live-out registers. This process is a bit more involved.

First the core requests the global register renaming logic to supply a free global physical

register corresponding to each live-out register. This mapping information is maintained

in the global register map as well as in a special local table called live-out map. The live-

out map contains only three entries corresponding to three live-out registers. Each entry

is a 3-tuple containing (a) architectural register index, (b) global physical register index,

and (c) ROB ID of the instruction that last mapped the corresponding architectural

register. Figure 3.6 shows the live-out map of register r4 to free global physical register

GR8. The ROB entry is not yet known.

Note that we do not immediately copy the live-out mapping into the local register

map. This is because a live-out register can be defined multiple times within a basic

42

Chapter 3. Bahurupi Adaptive Multi-Core

block and only the last write to the register should be communicated to the global reg-

ister file. For example, in Figure 3.6, live-out register r4 gets defined in both instruction

I0 and I3. However, only I3 should write to the global register file.

In a 2-way out-of-order processor, we need to rename 4 source registers and 2 des-

tination registers per cycle. In contrast, sentinel instruction requires renaming 3 source

registers and 3 destination registers. However, unlike normal instructions where the

hardware needs to identify possible dependencies among the registers being renamed

in parallel, we only need to identify 3 free physical registers for sentinel instructions.

Thus it is easy to rename 3 registers in one clock cycle for sentinel instruction.

The fetching and renaming of regular instructions in the basic block proceeds as

usual. For example, r4 gets renamed to local physical register LR7 in I0 and then to

LR10 in I3. Whenever r4 gets renamed, the ROB ID of the corresponding instruction is

copied into the live-out map as shown in Figure 3.6. Originally, the ROB ID is ROB6

corresponding to I0 and then it changes to ROB9 corresponding to I3.

Whenever a normal instruction with live-out register gets renamed, we copy the

global register file index into the corresponding ROB entry. Later on, if the live-out

register is renamed again in the basic block, the global register file index is removed

from the previous ROB entry and added to the new ROB entry. For example, initially

ROB entry ROB6 for instruction I0 contains global register index GR8 and is later

removed when ROB9 for I3 is updated with global register file index GR8.

When an instruction that defines a live-out register completes execution, it writes

the value into both the local and global register file. For example, when I3 completes

execution, the value of register r4 will be written to both LR10 and GR8. In addition,

when a core writes to the global physical register file, it needs to broadcast the informa-

tion on the coalition bus so that other cores dependent on this register can get the value.

Finally, when such an instruction is ready to commit, the value is committed to global

register file.

43

Chapter 3. Bahurupi Adaptive Multi-Core

It is possible that a regular instruction that last defines a live-out register value (e.g.,

I3) completes execution even before all the instruction corresponding to its basic block

have been fetched and renamed. In that case, when the instruction executed, it was not

guaranteed that it needs to write the value into the global register file. This information

is known only when all the instructions in the basic block have been renamed. The

process that adds the global register information to the ROB entry at the end of a basic

block, also broadcasts the value to global register file and other cores if the value is

ready in the ROB entry. For this reason, instructions from a basic block are not allowed

to broadcast and commit live-out registers till all the instructions from that basic block

have been fetched and renamed.

As mentioned before, we can only allow in-order commit to support speculation.

Even though the cores in a coalition can perform fetch, rename, execute, and register

writes in parallel, only one core can perform commit per cycle. However, we are not

restricted to at most 2 instructions commit per cycle. This is because all the instructions

with local register destination do not need to commit. Only the instructions with live-

out destination registers and memory instructions need to commit to the global register

file. So we are only restricted to commit at most 2 instructions with live-out destinations

and memory instructions per cycle. Hence when we attempt to emulate 4-way or 8-way

processor, the commit stage does not become the bottleneck.

3.2.3 Branch misprediction and exceptions

When a core detects a branch misprediction, it will signal all the cores (including itself)

to flush the fetch queues and the ROB entries with ticket value greater than the ticket

value of the mispredicted branch instruction. In other words, all the instruction subse-

quent to the mispredicted branch are flushed from the pipeline similar to what happens

in a normal out-of-order execution. The core will ask any other core locking the GPC

to release it. The core with the mispredicted branch will then lock the GPC, restore the

44

Chapter 3. Bahurupi Adaptive Multi-Core

global ticket value to one plus the ticket value of the mispredicted branch instruction

and set the GPC to the correct address. Then it will continue fetching from the new

GPC address which now points to the correct sentinel instruction. The same policy is

followed to maintain precise exception.

3.2.4 Memory hierarchy

Figure 3.2 depicts an example of a Bahurupi processor with eight 2-way cores where

at most four cores can be composed together. To form a coalition, the cores need to

share the data and instruction caches. We employ reconfigurable L1 instruction cache

and L1 data cache for this purpose [30]. Both L1 instruction and data cache have four

banks. In normal mode, each core is allocated a cache bank, which behaves as a direct-

mapped cache and the cache mapping is configured accordingly. In coalition mode, all

the four cache banks together behave as a large 4-way set-associative shared cache. The

combined instruction and data L2 cache is shared across all the cores both in normal

mode and coalition mode.

For the experiments presented in this chapter, we adopt the above quick solution as

our main focus here is on the micro-architecture and the execution model. However, we

do propose a novel memory hierarchy solution for dynamic heterogeneous multi-cores

in Chapter 4 that is able to accommodate the memory requirements of Bahurupi with

low energy and area consumption.

3.2.5 Memory hazards

As with any out-of-order architecture, our design restricts the store operations to update

the memory in the commit stage. Thus we can avoid write-after-write memory hazards.

However, we still have the problem of write-after-read and read-after-write memory

hazards. A load and store executing on different cores can access the same memory

45

Chapter 3. Bahurupi Adaptive Multi-Core

location. In that case, we have to ensure that they execute in the original program order.

If a load instruction is about to read from an address at which a previous store (from

another core) has to write, then the load operation may read a wrong value. However,

this problem is not unique to Bahurupi architecture. Even in a single-core traditional

out-of-order execution engine, a load may execute while the memory address of a pre-

vious store instruction is still not ready. Later on, it may turn out that the load and the

previous store access the same address and hence the value read by the load operation is

incorrect. This is handled through memory disambiguation at commit stage by out-of-

order processors. We use the same mechanism in Bahurupi. The mechanism enforces

that all load operations should execute two times. First, when their operands are ready

(execution stage) and second, when they are ready to commit. When the load is exe-

cuted the second time, it will check if the value read is different from the value which

was obtained at the first attempt. If it is different, then it means that another core has

committed previously and it wrote at the same address. All the instructions executed af-

ter the load instruction by all the cores (including the current one) are corrupted and the

core will have to signal all the cores to flush their internal structures and again prepare

the GPC and ticket registers for a new fetch.

3.2.6 Reconfiguration overhead

The main advantage of Bahurupi is that it is a reconfigurable heterogeneous architec-

ture. At runtime, it is possible to form coalition of two to four cores if we need to

execute high ILP applications. On the other hand, the architecture behaves like a tradi-

tional homogeneous multi-core architecture in non-coalition mode. The reconfiguration

overhead of Bahurupi is minimal except for the latency to flush the pipeline. A special

instruction is used to request a core to join a coalition or leave from the coalition. In

coalition mode, the additional coalition logic is simply turned off. When forming or

leaving coalition, the L1 cache memories have to be reconfigured to either run in par-

46

Chapter 3. Bahurupi Adaptive Multi-Core

titioned mode (for individual cores) or shared mode (for coalition cores). We assume

100 cycle latency for reconfiguration.

3.2.7 Compiler support

Any optimizing compiler computes the live-in and live-out information for a basic

block. We simply use this information. We modify the compiler to insert the sen-

tinel instruction at the beginning of each basic block as well as split a basic block if

it exceeds the threshold for either number of instructions or number of live-in/live-out

registers.

3.3 Experimental setup

In this section we present an experimental evaluation of Bahurupi architecture. First,

we estimate the area and delay overhead due to the coalition logic through synthesis.

This is followed by performance and energy evaluation with cycle-accurate architectural

simulator. In this chapter we present detailed performance evaluation of individual

sequential code to show the effectiveness of the coalition. A study of multiprogrammed

workload on Bahurupi will be presented in Chapter 5.

3.3.1 Simulator

We implement a cycle-accurate simulator for Bahurupi architecture by modifying an

existing multi-core version [9] of SimpleScalar simulator [6]. The original implementa-

tion of the simulator only supports multiprogrammed workload with no sharing between

tasks. We implemented the shared coalition between the cores together with the inside

modifications per core. Our simulated architecture comprises of 2-way out-of-order

SimpleScalar cores that share the same memory hierarchy. We simulate 2-core and

4-core Bahurupi architecture built from two 2-way and four 2-way basic cores, respec-

47

Chapter 3. Bahurupi Adaptive Multi-Core

Parameter 2-way 4-way 8-way
ROB Size 64 128 256
Int ALU 2 4 8
Int MULT 1 2 4
FP ALU 2 4 8
FP MULT 1 2 4
Predictor 2K Comb 4K Comb 8K Comb
L1-D$ 256KB 512KB 1MB
L1-I$ 256KB 512KB 1MB
L2$ 1MB 2MB 4MB

Table 3.1: Parameters for baseline cores.

tively. Our Bahurupi cycle-accurate simulator can directly execute sequential program

binary annotated with sentinel instructions generated by our modified gcc compiler.

We verify that the output produced by Bahurupi simulator matches with the original

program output confirming its functional correctness.

For comparison purposes, we also simulate baseline 2-way, 4-way, and 8-way pro-

cessor architectures. Table 3.1 summarizes the processor configuration parameters. The

parameters generally get doubled as processor complexity increases. We use 1 cycle la-

tency for L1 data and instruction cache, 6 cycles for L2 data and instruction cache and

18 cycles for the main memory. As mentioned before, our synthesis results indicate that

both baseline 2-way processor core and Bahurupi architecture with coalition logic can

run at the same clock frequency (0.6ns clock period). The 4-way baseline processor

clock can be synthesized at only 0.8ns clock period. However, in the simulation, we

optimistically assume that all the baseline architectures (2-way, 4-way, and 8-way) can

run at the same clock frequency.

3.3.2 Compiler

We use gcc-2.7.2.3 compiler configured for SimpleScalar PISA instruction set. We

modify the compiler by adding an optimisation pass in the back-end after the register

48

Chapter 3. Bahurupi Adaptive Multi-Core

Workload Version Type Input arg./cycles
go SPEC95 INT 50 9 2stone9.in/470M
compress SPEC95 INT 10000 q 2131/27M
li SPEC95 INT 2 test.lsp/832M
ijpeg SPEC95 INT specmun.ppm quality 40/49M
perl SPEC95 INT primes.pl/8M
fpppp SPEC95 FP natoms.in/7M
wave5 SPEC95 FP wave5.in/575M
parser SPEC2000 INT 2.1.dict first phrase/180M
bzip2 SPEC2000 INT input.program/1.71B
gzip SPEC2000 INT input.compressed/1.58B
mesa SPEC2000 FP test meshfile mesa.in/179M
equake SPEC2000 FP test inp.in/808M
swim SPEC2000 FP test swim.in/150M
mgrid SPEC2000 FP test mgrid.in/259M
applu SPEC2000 FP test applu.in/528M
hmmer SPEC2006 INT num 200 bombesin.hmm/192M
lbm SPEC2006 FP 10 out 0 1 100 100 130/29M
crc MiBench telecomm small.pcm/28M
dijkstra MiBench network small input.dat/57M
rijndael (encrypt) MiBench security input samll.asc/36M
rijndael (decrypt) MiBench security output small.enc/36M
susan (edges) MiBench automotive input small.pgm/3M
susan (corners) MiBench automotive input small.pgm/1M
susan (smoothing) MiBench automotive input small.pgm/50M
MPEG2 (decode) Mediabench2 media processing input base 4CIF.mpg/1.72B
MPEG2 (encode) Mediabench2 media processing input base 4CIF.par/534M

Table 3.2: Workloads used for simulation.

allocation is done. Here, the basic blocks are identified together with the live-in, live-

out registers and the sentinel instructions are inserted to support Bahurupi execution

model. Moreover, the compiler splits a basic block into two or more blocks when either

the size restriction of 16 instructions or 3 live-in, 3 live-out registers restrictions are

violated.

49

Chapter 3. Bahurupi Adaptive Multi-Core

3.3.3 Benchmarks

We simulate serial benchmarks from both general-purpose and embedded domain ex-

hibiting a diverse workload. Table 3.2 depicts the summary of the selected workloads.

The cycles column shows the number of cycles to execute the benchmarks on a 2-way

core. As the gcc compiler supported by SimpleScalar PISA instruction set is rather old,

we had difficulty in compiling the remaining benchmarks from the suites. Note that this

is inherent problem with older version of gcc and has nothing to do with our compiler

modifications.

3.4 Experimental results

3.4.1 Overall speedup

Figure 3.7 shows Bahurupi’s speedup compared to baseline out-of-order architectures.

The speedup is normalized w.r.t. the performance of a 2-way architecture. As expected,

baseline 4-way and 8-way architectures perform much better than 2-way architecture

due to more aggressive ILP exploitation — an average speedup of 2.6 for 4-way and 3.9

for 8-way in embedded benchmarks. Note that the speedup numbers are quite optimistic

for 4-way and 8-way cores as we assume the same clock frequency and pipeline for all

the baseline cores. As our synthesis results showed, we would need slower clock or

more pipeline stages for 4-way and 8-way cores.

What is interesting here is that Bahurupi matches and sometimes even exceeds the

performance of true out-of-order execution engines. On average, for embedded bench-

marks, dual-core and quad-core Bahurupi outperforms 4-way and 8-way architectures,

respectively. The speedup numbers are even more impressive for floating-point SPEC

benchmarks, where, on average, dual-core and quad-core Bahurupi improve perfor-

mance by 23% and 57% compared to 4-way and 8-way cores. Even for SPEC integer

50

Chapter 3. Bahurupi Adaptive Multi-Core

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

go

co
m

p
re

ss li

ij
p

eg

p
er

l

p
ar

se
r

b
zi

p
2

gz
ip

h
m

m
er

sp
ec

 g
eo

m
 m

ea
n

fp
p

p
p

w
av

e5

m
es

a

eq
u

ak
e

sw
im

m
gr

id

ap
p

lu

lb
m

sp
ec

 g
eo

m
 m

ea
n

Sp
ee

d
u

p

2-way 4-way 2-core Bahurupi 8-way 4-core Bahurupi

0

1

2

3

4

5

6

crc dijkstra rijndael.e rijndael.d susan.s susan.c susan.e mpeg2.d mpeg2.e emb geom
mean

Sp
ee

d
u

p

2-way 4-way 2-core Bahurupi 8-way 4-core Bahurupi

Figure 3.7: Bahurupi speedup normalized to 2-way core for (a) SPEC and (b) embedded
benchmarks.

51

Chapter 3. Bahurupi Adaptive Multi-Core

benchmarks, dual-core and quad-core Bahurupi achieves, on average, 92% and 91%

of the performance of 4-way and 8-way cores. In summary, for different workloads,

Bahurupi can achieve 1.31–5.61 speedup through core coalition compared to baseline

2-way cores used in normal mode.

If we consider the results obtained with Federated cores in [93] we will see that

two federated in-order cores can achieve on average 12.9% less performance than the

dedicated 2-way out-of-order processor. The closest comparison would be with Bahu-

rupi coalescing two 2-way out-of-order cores. Thus, Bahurupi achieves 8% less per-

formance than the dedicated 4-way core for integer benchmarks and outperforms the

dedicated core by 23% in the case of floating-point SPEC benchmarks. Even though

Federation is appealing in the context of coalescing two in-order cores, it can intro-

duce significant overhead if we want to reach the performance of even wider processors

(e.g., 4-way and 8-way). The work done by Pierre Salverda and Craig Zilles in [86]

shows that, under ideal conditions, the steering hardware necessary for obtaining wider

cores through coalition is very complex. Additionally, the work shows that in order to

obtain the behavior of a dedicated 4-way superscalar processor a large number of in-

order cores must be coalesced (12 to 16 cores). Grouping such a large number of cores

can dramatically increase the overhead induced by the interconnection logic and issue

queues.

Being the closest to our architecture, the results obtained with Core Fusion [48]

show an average speedup of 50% for the floating-point SPEC applications and 30% for

the integer SPEC applications when using a quad-core fused configuration compared

with fine-grain 2-way CMP. In contrast with Core Fusion, quad-core Bahurupi obtains

an average speedup of 91% for SPEC integer applications and 210% for SPEC floating-

point applications compared to baseline 2-way core.

The reason that 2-core (4-core) Bahurupi can outperform 4-way (8-way) superscalar

architecture is because Bahurupi can exploit far-flung ILP. Theoretically, both 4-core

52

Chapter 3. Bahurupi Adaptive Multi-Core

Bahurupi coalition and 8-way baseline normal superscalar core can execute at most 8

instructions per cycle. However, the baseline core is mostly restricted to finding ILP

within one or two basic blocks. In contrast, the register dependencies among the basic

blocks are identified at compile time and explicitly specified in the binary executable

in Bahurupi architecture. This allows the 4 cores in Bahurupi architecture to work

on independent instructions from 4 different basic blocks leading to higher ILP. As a

concrete example, consider a loop containing only one large basic block with many

intra-loop dependencies but no loop carried dependencies. An 8-way superscalar core

would fetch one iteration of the loop at a time and would not find many independent

instructions to execute due to data dependencies. A 4-core Bahurupi, on the other hand,

would fetch and execute 4 independent iterations of the loop in parallel and thus would

be able to discover more ILP.

3.4.2 Energy consumption

Next we evaluate the energy consumption of Bahurupi architecture compared to regular

out-of-order cores. We use SimWattch [26] suitably modified to compute the energy

consumption in the cores. We use the same CACTI [69] tool version (3.0) that is in-

corporated by the SimWattch to model power consumption of the global register file,

global renaming logic, and the broadcast bus and add this energy consumption in the

coalition logic to the overall energy consumption of Bahurupi. Figure 3.8 plots energy

consumption of Bahurupi normalized w.r.t. the baseline 2-way core. As expected, for

SPEC integer benchmarks, 2-core Bahurupi consumes 5% more energy compared to

4-way baseline cores due to slightly increased execution time and the extra energy con-

sumption due to coalition logic and sentinel instructions. But 4-core Bahurupi improves

energy consumption by 29% compared to 8-way baseline architecture. For SPEC float-

ing point and embedded benchmarks, on average, 2-core Bahurupi improves the energy

consumption by 26% and 11%, respectively, compared to 4-way cores. This is due

53

Chapter 3. Bahurupi Adaptive Multi-Core

to the reduced power per core and the overall improved execution time. Although the

transistor technology used by the SimWattch to model the power consumption is quite

old, we believe that for smaller transistor features, the energy consumption trend should

remain the same.

3.4.3 Load balancing

We do not impose any constraint on the order in which the cores can lock the GPC.

Instead, we allow a core to lock the GPC when it is free. To evaluate the impact of this

design decision on load balancing, we plot the percentage of instructions committed by

each core on a 4-core Bahurupi architecture in Figure 3.9. The figure shows Bahurupi

achieves almost perfect load balance among the cores.

3.4.4 Global register file access

Bahurupi achieves considerable speedup when register dependencies are mostly re-

stricted within the basic block, i.e., most register accesses are to the local register file.

Figure 3.10 quantizes this characteristics of the benchmarks by plotting the percentage

of destination registers that get renamed to global register file compared to the total

number of destination registers. On average, for integer SPEC benchmarks 41% of

registers are renamed to global register file, whereas only 27% and 24% of registers

are renamed to global register file for SPEC floating point and embedded benchmarks.

This contributes to better speedup for SPEC floating point and embedded benchmarks

in coalition mode compared to SPEC integer benchmarks.

The basic block size has direct impact on the overall speedup of the system. The

bigger the basic block size is, the higher the chance for other cores to lock the GPC

and fetch the next basic block. This way the cores can fetch and execute different basic

blocks in parallel leading to improved performance. With smaller basic block size, the

54

Chapter 3. Bahurupi Adaptive Multi-Core

0

0.5

1

1.5

2

2.5

3

3.5

g
o

co
m

p
re

ss li

ij
p

e
g

p
e

rl

p
a

rs
e

r

b
zi

p
2

g
zi

p

h
m

m
e

r

in
t

g
e

o
m

 m
e

a
n

fp
p

p
p

w
a

v
e

5

m
e

sa

e
q

u
a

k
e

sw
im

m
g

ri
d

a
p

p
lu

lb
m

fp
 g

e
o

m
 m

e
a

n

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

2-way 4-way 2-core Bahurupi 8-way 4-core Bahurupi

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

crc dijkstra rijndael.e rijndael.d susan.s susan.c susan.e mpeg2.d mpeg2.e emb geom
mean

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

2-way 4-way 2-core Bahurupi 8-way 4-core Bahurupi

Figure 3.8: Bahurupi energy consumption normalized to 2-way core for (a) SPEC and
(b) embedded benchmarks.

55

Chapter 3. Bahurupi Adaptive Multi-Core

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P0 commit % P1 commit % P2 commit % P3 commit %

Figure 3.9: Load balance on 4-core Bahurupi.

0%

10%

20%

30%

40%

50%

60%

G
lo

b
a

l
re

g
is

te
r

re
n

a
m

e
 %

Figure 3.10: Percentage of destination registers renamed to global register file.

56

Chapter 3. Bahurupi Adaptive Multi-Core

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B
ro
a
d
ca
st
s/
C
yc
le

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
ro
a
d
ca
st
s/
C
yc
le

Figure 3.11: Broadcasts on coalition bus in (a) 2-core Bahurupi and (b) 4-core Bahu-
rupi.

same core tends to fetch consecutive basic blocks leading to limited opportunity of par-

allelism. Basic block size is limited to 16 instructions due to sentinel instruction format.

In general, basic block size is much smaller in integer benchmarks compared to floating

point benchmarks leading to speedup difference between the two cases. In addition, the

amount of ILP and dependency among basic blocks also influence performance. The

best case scenario is when an application has big basic blocks, high ILP and low depen-

dency among the basic blocks. Then the application is almost running in parallel on all

the cores in Bahurupi architecture.

57

Chapter 3. Bahurupi Adaptive Multi-Core

0%

5%

10%

15%

20%

25%

30%

C
o

d
e

 s
iz

e
 i

n
cr

e
a

se

Figure 3.12: Code size increase due to sentinel instructions.

3.4.5 Traffic on coalition bus

If multiple cores attempt to use the coalition bus in parallel to broadcast global register

file writes, then we have to serialize the writes leading to a bottleneck. Figure 3.11

shows the average number of broadcasts required on the coalition bus per cycle in 2-

core Bahurupi architecture is well below 1.0, while for 4-core Bahurupi, it is below 1.6.

This indicates that broadcast due to global register file writes is not a bottleneck. In

both cases, floating point applications show higher traffic on the coalition bus as they

expose higher ILP.

3.4.6 Sentinel instruction overhead

Bahurupi pays the price for reduced hardware complexity with increased code size due

to the addition of sentinel instructions. Figure 3.12 shows that, on average, code size for

SPEC integer applications increases by 24% and the floating point ones by 15%. The

Mediabench [59] and MiBench applications size increase by 19% on average. Note

58

Chapter 3. Bahurupi Adaptive Multi-Core

that we did not optimize the code. The code size increase can be countered through

compiler optimizations such as loop unrolling and superblock formation that increase

basic block size.

3.4.7 Area and delay overhead of coalition logic

In order to estimate the area and delay overhead due to the coalition logic, we synthesize

a preliminary version of the baseline processor core and the coalition logic. We use a

synthesizable version of the Simplescalar processor core [31]. We generate a 2-way and

a 4-way Simplescalar core with the same configuration parameters given in Table 3.1.

The synthesis is performed using Synopsys 2010 [92] design compiler with FreePDK

[39] 45nm technology library.

The main components of the shared resources are represented by the global register

file and the corresponding renaming logic that we implement and synthesize. The re-

naming logic maps 3 live-in and 3 live-out registers per cycle. Note that normal 2-way

processor core is expected to map 4 live-in and 2 live-out registers per cycle whereas

a normal 4-way processor has to map 8 live-in and 4 live-out registers per cycle. Fur-

ther, we assume 3 register read ports and 2 register write ports for the global register

file. This is because the global register file is read during the renaming of global live-in

registers and there are at most 3 live-in registers per sentinel instruction. The global

register file is written when an instruction with live-out destination register completes

execution. As we have shown earlier, only 24% of the registers are renamed to global

register file for embedded benchmarks. Even for a 4-core coalition, this corresponds to

2−way×4cores×0.24 = 2 global destination registers written per clock cycle.

Synthesis results show that the baseline 2-way Simplescalar core can run at 0.6ns

clock period. Note that both the synthesizable version of Simplescalar core we are

using [31] as well as the global register file we have designed are not highly optimized.

The 4-way baseline Simplescalar core can run at 0.8ns clock period. In contrast, the

59

Chapter 3. Bahurupi Adaptive Multi-Core

global register file can still be synthesized at well below 0.6ns clock period. In other

words, the global register file does not contribute to additional delay in the clock period

of the baseline 2-way processor core. Thus Bahurupi architecture with coalition logic

can easily run at 0.6ns clock period as opposed to 0.8ns clock period for 4-way baseline

superscalar processor core.

In terms of area overhead, the coalition logic corresponds to 31.27% of the area of a

2-way Simplescalar core (the area of the core does not include the caches and the TLB)

and 23.48% of the area of a 4-way Simplescalar core.

A complete hardware implementation of Bahurupi multi-core architecture will be

presented in the next section.

3.5 Bahurupi FPGA implementation

We have claimed in the above sections that Bahurupi needs minimal hardware overhead

in order to be implemented on top of existing architectures. In this section, we present

the details of implementing the Bahurupi architecture through minimal modification of

a real 2-way out-of-order pipeline. A key concern is the latency and the area impact of

the glue logic that coalesces the cores together.

3.5.1 Fabscalar synthesizable out-of-order core

We select synthesizable out-of-order superscalar core generated by Fabscalar [85] — a

parametric micro-architecture generation tool chain for the baseline simple cores. The

cores use PISA ISA. FabScalar is a project developed at the Department of Electrical

and Computer Engineering in the NC State University under the guidance of Dr. Eric

Rotenberg. Fabsclaar works on developing heterogeneous multi-core systems that uses

superscalar cores. FabScalar helps researchers to create such systems by offering a

Verilog toolset for automatically assemble arbitrary superscalar cores.

60

Chapter 3. Bahurupi Adaptive Multi-Core

FE
TC

H
 1

FE
TC

H
 2

D
EC

O
D

E

R
EN

A
M

E

D
IS

PA
TC

H

LIVE-IN
MAP

LIVE-OUT
MAP

GPC CTRL DECODE

BROADCAST
CLIENT

EXECUTION
ENGINE

ACTIVE LIST

COMMIT CTRL

REGISTER
FILE

GLOBAL REGISTER FILE

Live-In Data Path

Broadcast Bus

Live-Out Data Path

LOCAL
RENAME

GLOBAL
RENAME

Figure 3.13: Fabscalar pipeline with coalition logic.

We custom generate a 2-way out-of-order core with five in-order frontend pipeline

stages and an out-of-order backend. The backend comprises of a centralized issue logic,

register-read stage, integer execution units and write-back stage. Two in-order commit

stage completes the pipeline. Figure 3.13 depicts the pipeline stages along with the

coalition logic that we added on top of it. The non-shaded region is the baseline core.

The critical components for supporting core coalition are the register file implemen-

tation and its renaming logic of the baseline core, which we briefly describe here before

proceeding to the core coalition implementation. Usually, different real out-of-order

superscalar processors use special renaming and register file structures and techniques.

Bahurupi high-level design needs to be adapted for these structures. However, we will

show in this section that this adaptation process has very little overhead.

The renaming structure of Fabscalar consists of a Register Map Table (RMT) and

an Architectural Map Table (AMT). The live uncommitted mapping between the archi-

tectural registers and the physical registers is maintained in the RMT. In the rename

stage, the source registers get the current mapping to the physical registers and the des-

61

Chapter 3. Bahurupi Adaptive Multi-Core

CORE 2 CORE 3

Global
Reg File

Broadcast
Client

Broadcast
Client

Broadcast
Manager

Global Sync
Unit

Live Out
Map

Live In
Map

Live Out
Map

Live In
Map

Global
AMT

Global
Rename

Live-In Data Bus

Broadcast Bus

CORE 0 CORE 1 CORE 2 CORE3

Core Coalition Logic

Figure 3.14: Two 2-way core coalition.

tination register is renamed to a free physical register. The new mapping is written on

to the RMT for use by the source operands of the following instructions. A dedicated

FIFO buffer maintains the list of free registers. Once in-order renaming is complete,

instructions are dispatched to the out-of-order execution engine along with an entry in

the Active List. The Active List maintains the instructions in program order.

As instructions retire in program order from the Active List, the logical-to-physical

mapping of the destination registers are committed in the AMT. In case of mis-speculation,

the mapping from the RMT are erased and the execution continues with the mapping

from the AMT. As an instruction retires, the physical register corresponding to the old

mapping in AMT is disassociated from the logical register and is added back to the free

list buffer. A busy bit array in the physical register file indicates if the corresponding

data is ready for use. A physical register is busy between the rename cycle, where it

gets mapped to a destination register, and the write-back cycle for the corresponding

instruction when data is ready.

62

Chapter 3. Bahurupi Adaptive Multi-Core

3.5.2 Core coalition logic

The core coalition logic is required so that the cores can cooperate together to create a

virtual core with higher degree of superscalarity. Figure 3.14 shows the coalition logic

required for a cluster of four 2-way cores. We add three hardware units inside the core,

apart from which there is no other significant modification to the existing core. One of

key challenge is to make sure that the new hardware units are not in the critical path of

existing core.

We will next present step by step how the instructions (sentinel instructions and

normal instructions) are processed in the Fabscalar pipeline and what specific hardware

structures are used.

Sentinel instruction processing. Each participating core requests for the global PC

through the global synchronization unit. We use Least Recently Used (LRU) policy

to grant the lock for the global PC. The core that gets the lock proceeds to fetch the

sentinel instruction. Assuming that we have a cache hit, it takes 2 clock cycles to fetch

and decode the sentinel instruction. We decode it in Fetch-2 stage, one cycle before the

actual decode stage so that the lock can be released earlier. If the basic block ends with

a branch, we calculate the branch address based on the length of the basic block and

index into the branch target buffer and branch prediction unit in the second Fetch stage.

In the third clock cycle, we access global rename module to rename the live-out

registers. We also get the existing mapping of the live-in registers. In parallel, the

global PC is updated with the address of the next sentinel instruction, that is, a pointer

to the next basic block. This will be a speculated address in case of a basic block ending

with conditional branch. Otherwise, the next address is calculated by simply adding the

length of the basic block to the current global PC. The lock is released at the end of the

third clock cycle. The global rename module signals the global synchronization unit to

63

Chapter 3. Bahurupi Adaptive Multi-Core

free the lock.

After the lock is released, the core continues with sentinel instruction processing.

The live-in register values reside in the global physical register (GPR) file. To operate

on these values, we need to create a local copy. Thus we rename each live-in register

within the core to get a corresponding local physical register (LPR). Figure 3.15 pro-

vides an illustration of this scenario. From the given assertions, let us say, Sentinel

Instruction1 (SI1) for Basic block 1 (BB1) is about to be dispatched. It checks if the

GPR corresponding to each live-in (GPR5 and GRP6), is ready. If ready, the data is

directly copied into the corresponding LPR (LPR4). However, it finds GPR5 still busy

and maintains the GPR-to-LPR mapping for that live-in register in the Live-In Map

(GRP5-LPR2).

Similarly, while dispatching the sentinel instruction, the mapping of live-out reg-

isters to GPR are stored temporarily in Live-Out Map. In the example, SI1 stores the

live-out register R8 in Live-Out Map (R8-GPR3). Unlike Live-In Map, Live-Out map

only consists of 3 entries corresponding to 3 live-out registers. Live-Out Maps are main-

tained until all the instructions in the basic block have been renamed. We only broadcast

the result of the last instruction in the basic block that writes to a particular live-out.

Normal instruction processing. The coalition design is transparent to the processing

of the normal instructions. It is visible in only two stages of the pipeline: Live-Out

Map module in the dispatch stage and commit control logic in the Active List module.

Figure 3.13 shows the seamless integration of coalition logic into the base Fabscalar

pipeline.

As instructions in the basic block are dispatched, the destination registers are searched

for a match in the Live-Out Map (implemented as a CAM). If matched, the active list

entry of the corresponding instruction is updated with the GPR index from the Live-

Out Map. In our example, first instruction in BB1, I11, finds register R8 in the Live-Out

64

Chapter 3. Bahurupi Adaptive Multi-Core

Assertions:
SI0 - Completed renaming and execution
I01 - Completed execution
I02 - Waiting on R2

SI0: live-in = R2 live-out = R5, R6
I01 : addiu R6 R0 #10
I02 : addu R5 R6 R2

Basic block 0

SI1: live-in = R5, R6 live-out = R8, R14
I11 : addu R8 R6 R5
I12 : addiu R14 R0 #32 …

Basic block 1

LRMT
Arch reg GPR Index

R5 LPR2
R6 LPR9
R8 LPR4

R14 LPR17

LPR File
Arch reg Busy

2 1
4 1
9 0

17 1

Live-in map
GPR Index LPR Index

GPR5 LPR2
GPR7 -

Live-out map
Arch reg GPR Index AL Index Result

R8 GPR3 AL7 -
R14 GPR12 AL8 32

GRMT
Arch reg GPR Index

R5 GPR5
R6 GPR7
R8 GPR3

R14 GPR12

GPR File
Arch reg Busy

3 1
5 1
7 0

12 1

Core 0

Core 1

Global rename logic

GPR5(R5)

GPR7(R6)

Figure 3.15: Register flow across cores - an illustration.

65

Chapter 3. Bahurupi Adaptive Multi-Core

Map and adds GPR3 into its active list entry (AL7). This is to ensure that when the

instruction I11 completes execution, it will broadcast the value. Also the Live-Out Map

is updated with the active list ID (R8-GRP3-AL7) of the instruction. This happens in

parallel to dispatching instructions to the ooo execution engine.

While the basic block is being renamed, if an instruction with live-out register desti-

nation completes execution, the result is stored in Live-Out Map. To illustrate, consider

that the instruction I12 in BB1, completes execution while the following instructions in

BB1 are still being renamed. As the system is not in a position to determine if I12 is

indeed the last instruction in BB1 to write to the live-out register R14, it is illegal to

broadcast the result on the Global Broadcast Bus (GBB). Hence, the result of I12 is tem-

porarily stored in Live-Out Map (value 32). When the last instruction of a basic block

is renamed, we have the final list of instructions that need to broadcast their result onto

the GBB. At this point, if some live-out register values are ready in the Live-Out Map,

we broadcast them through the Broadcast Client. In our example, I12 has completed ex-

ecution and assuming no other instruction after I12 writes to R8, we can now broadcast

the result on the GBB. Live-Out register results produced after this point are broadcast

as and when they are ready.

In our example, I02 would eventually complete and broadcast the result (GPR5)

in its write-back stage through Broadcast client. Broadcast client module is the third

significant addition inside the core. It is a simple FIFO buffer and has the logic to

obtain broadcast bus access. The broadcast bus is monitored by a global module called

Broadcast Manager. The access is given to one core at a time using LRU policy. Once

the client gets the lock, a live-out value is broadcast on GBB.

Live-In Map module passively snoops all the data on the GBB. If an active Live-In

Map for the broadcasted tag is found, the data is internally re-broadcasted to wake up

the instructions waiting on that live-in operand. I11 of BB1 waits in the issue queue for

the availability of live-in register (R5). When I02 of BB0 broadcasts the result (GPR5),

66

Chapter 3. Bahurupi Adaptive Multi-Core

Live-In Map module of Core 1 (running BB1) finds a match (GPR5-LPR2) and latches

the result for internal broadcast. We moved the internal broadcast to the next cycle,

which helps reduce the wire length for GBB. The cost of one additional cycle is amor-

tized by the pipelined architecture.

A key aspect to note here is that, though coalition logic is exposed at two stages of

normal instruction processing, it does not alter the control path of the normal instruc-

tions. Coalition logic does not even appear in the critical path for normal instructions

apart from searching for destination registers in the Live-Out Map. As there could be a

maximum of only 3 live-out registers per basic block, this CAM search of 3 entries does

not impact the clock cycle length. The one cycle access to GBB is not altered by the

number of cores in the coalition, as we have split the broadcast into two cycles: global

and internal. Increasing number of cores can create contention on the global broadcast

bus. However, we have shown in Section 3.4.5 that even for high ILP code, the num-

ber of broadcast requests per cycle is below 1.0 for 2-core coalition and below 1.6 for

4-core coalition.

3.5.3 Prototype synthesis and evaluation

We implement our prototype on Xilinx Virtex 6 (XC6VLX240T-1FF1156) [4] platform.

In Section 3.4.7, we present a preliminary evaluation of the impact of only the global

register file and its renaming logic on the clock period. Here we present a full-fledged

implementation that brings out the challenges involved.

Resources for core coalition. Table 3.3 shows additional read/write ports required

in existing components from the baseline core and Table 3.4 shows block memories

required to implement sentinel instruction processing within cores.

The global structures added are independent of the number of cores participating in

the coalition. The only exception is the global physical register file for which number of

67

Chapter 3. Bahurupi Adaptive Multi-Core

Component AMT RMT Free List LPRF Issue Queue
Write Ports 1 1 1 2 0
Read Ports 1 1 1 0 2

Table 3.3: Additional ports within the baseline core.

Module RAM/CAM Component Bits R/W Ports

Active List

RAMS

Ticket Number 128*9 2R/2W
Live-Out Map 128*7 3R/3W

Sentinel Commit Map 16*90 1R/1W
Broadcast Client Broadcast FIFO Buffer 16*46 1R/4W
Live-In Map GPR-to-LPR Mapping 96*7 1R/2W

Live-Out Map
Live-Out-Map 3*46 3R/3W

CAMS
GPR Search 3*7 2R/3W

Active List ID Search 3*7 3R/2W

Table 3.4: Additional RAMs/CAMs for coalition per core.

read ports increases linearly with the number of cores in the coalition. The placement

of these global resources is a key to achieve good clock frequency. For two 2-way core

and four 2-way core coalition, default placement strategies in Xilinx’s Place and Route

tool with no optimizations enabled could give us the desired clock frequency. Table 3.5

lists the global resources required for core coalition.

Handling multiple ports in FPGAs. A major challenge in synthesizing out-of-order

cores in FPGAs is the multi-ported RAMs as most FPGA vendors only support 2-port

memories. Many different solutions have been proposed for this problem [58]; but no

single technique can fully provide our desired behavior from the RAMs. So we have

used three different techniques: Replication to provide multiple read ports; Live-Value-

Module Component RAM in Bits RAM Ports
Global AMT Logical-to-GPR Mapping 34*7 3R/3W
Global RMT Logical-to-GPR Mapping 34*7 3R/3W
Global Free List Free GPR List Buffer 62*7 3R/3W
GPRF Global PRF 96*32 NR/1W

Table 3.5: Global resources for coalition. N is # of cores.

68

Chapter 3. Bahurupi Adaptive Multi-Core

Table (LVT) implementation for multiple write ports; and Virtual Cycle implementation

to mitigate the one cycle delay due to Synchronous block RAMs.

In LVT based design, a RAM is replicated into n number of banks, for n write ports.

A table with n write ports called LVT registers the bank number for a particular address

where the latest write was sent. Writes to all ports can happen in the same positive

edge of a cycle and are available in the following clock cycle. In addition, RAMs in

each bank are further replicated into m RAMs, for m read ports. A read coming into

an LVT based RAM is sent to all banks and read in parallel in the same positive clock

edge. All read data are available in the following clock cycle. The actual output of the

read is decided based on the multiplexing logic using the live value obtained from the

LVT. LVT itself is implemented as a RAM with n write and m read ports but cannot

be realized as a block RAM, instead, uses D-Flip-Flops. As the width of LVT is log(n

write ports), the area for the LVT itself should not be a problem. In a real system, this

can be further optimized by multi-pumping technique [58].

As the block RAMs are synchronous, data from RAM reads are only available in

the following clock cycle. However, our baseline core requires asynchronous read logic

in some stages (e.g., data needs to be read in the same cycle in which the address is

sent). We use Virtual Cycles to achieve this goal. A global virtual cycle generator

unit connects to all the components and alternatively generates virtual stall signal for

the entire core apart from the RAMs itself. This single cycle stall helps mitigate the

asynchronous read problem. However, this effectively halves the frequency achieved;

but as this applies to all the core configurations, we consider this a fair comparison.

Area evaluation. Figure 3.16 presents the area required for different core configu-

rations including the baseline 2-way out-of-order core. We have seen that 2-core (4-

core) coalition has similar performance to a native 4-way (8-way) out-of-order core.

Our 2-core coalition requires less area than a native 4-way out-of-order core for most

69

Chapter 3. Bahurupi Adaptive Multi-Core

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Slice Registers Slice LUTs RAMs Occupied Slices

2-Way 4-Way 2-Core-Coalition 4-Core-Coalition

Figure 3.16: Area utilization (8-way core equivalent in performance to 4-core coalition
could not be synthesized).

781

2875

22

1104

6056

14

12431

23944

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Slice Registers

Slice LUTs

BRAMs (No. of instances)

Global logic Additional Internal logic Baseline core

Figure 3.17: Area breakup of coalition logic w.r.t baseline core.

critical resources. We could successfully synthesize and perform place-and-route of a

4-core coalition on Virtex-6 board. However, we could not synthesize an 8-way core on

the same board. Thus, Bahurupi has an area advantage over conventional out-of-order

cores.

Figure 3.17 shows the break-up of area required for core coalition logic in compar-

ison to a baseline 2-way core. The results show the utilization of the slice registers,

LUTs and BRAMs. Core-coalition logic consumes additional 13% of Slice Registers,

26% of BRAMs and 27% of Slice LUTs compared to the the baseline core. Note that

in our evaluation, the multi-core is directly connected to the rest of the system without

any cache memory hierarchy. Still, the results are encouraging with minimal additional

resource requirement.

70

Chapter 3. Bahurupi Adaptive Multi-Core
0%

Slice Registers

Clock Frequency (MHz)

0 10 20 30 40 50 60 70 80 90

4-Core Coalition

2-Core Coalition

4-Way

2-Way

Clock Frequency (MHz)

Figure 3.18: Clock frequency for various core configurations.

Clock frequency. The synthesis result concretely supports the simplicity and effi-

ciency of Bahurupi architecture. We observe that core coalition logic has no impact

on clock frequency of the baseline core. Figure 3.18 shows that the clock frequency

remains almost the same for 2-core (84.4 MHz) and 4-core (83.3 MHz) coalition as

baseline 2-way core (84.8 MHz). In contrast, a 4-way core synthesizes to a much

lower frequency (62.67 MHz) and an 8-way core could not even be synthesized due

to resource limitations (slice LUTs and slice units) on the FPGA platform. The low fre-

quency obtained for the 4-way core is due to the increased delay observed in the critical

path which comprises of issue lookup logic, register file and active list.

3.6 Summary

In this chapter we have presented and evaluated our dynamic heterogeneous multi-core

architecture, called Bahurupi, that can dynamically adapt itself to support both multi-

threaded code with explicit thread-level parallelism as well as sequential code with

instruction-level parallelism. Bahurupi can dynamically merge the base 2-way out-of-

order execution engines to achieve the performance of 4-way or even 8-way out-of-

order processors. Bahurupi is a hardware-software cooperative solution that requires

minimal additional hardware resources and compiler support for coalition.

We have also presented a full prototype implementation of Bahurupi in FPGA. We

71

Chapter 3. Bahurupi Adaptive Multi-Core

can successfully create a virtual 4-way (8-way) out-of-order core from two (four) 2-

way out-of-order cores. The area of the virtual core is slightly smaller while the clock

frequency is signicantly higher compared to the equivalent native core.

72

Chapter 4

Reconfigurable Data Cache

Architecture

In this chapter we present a novel reconfigurable L1 data cache architecture for dynamic

heterogeneous multi-cores that overcomes the limitations of multi-ported caches, offer-

ing high bandwidth and low latency when accessing the shared cache.

Recently proposed adaptive heterogeneous multi-core designs [48, 52, 93, 104]

mostly ignore or make simplifying assumptions regarding the memory hierarchy im-

plemented in such architectures. A common assumption in all these works is that the

first level of data and instruction caches must support reconfigurability. Our dynamic

heterogeneous multi-core architecture, Bahurupi, also requires the first level of cache to

support reconfigurability when the coalition of cores is created. The data and instruction

caches are now shared by the cores found in the coalition.

Assuming no self-modifying code, one can afford replication in case of private in-

struction caches in the dynamic heterogeneous multi-core systems as instruction ac-

cesses are read-only. However, it is more challenging to design the L1 data cache that

supports multiple accesses per cycle ensuring high bandwidth and low latency. When

a virtual core is created by coalescing the cores, this virtual core creates more mem-

73

Chapter 4. Reconfigurable Data Cache Architecture

High ILP

L1 D$ L1 D$ L1 D$ L1 D$

C3C2C1C0

coherence

Figure 4.1: Example of 4-core coalition with data cache merging.

ory requests thus stressing the bandwidth to the first level of data cache. Moreover,

these accesses to the L1 data cache have a high degree of sharing — different cores can

read and write the data which is part of the same sequential program. In Figure 4.1 we

show an example of a 4-core coalition executing a program that exposes high amount

of ILP. Traditionally, the caches are kept coherent using a coherence bus. We can see

that besides coalescing the cores, private data caches merging is also needed.

The traditional coherent data caches will lead to too many coherent misses due to the

extensive data sharing among the cores. Figure 4.2 shows the average miss rate across

L1 data caches for 2-core coalition and 4-core coalition in case of several sequential

SPEC applications when using coherence. For comparison, we also plot the miss rate

of the application when the cores found in coalition are sharing a four-ported L1 data

cache. In each case, the L1 data cache is a 32KB, 8-way set associative cache. The

coherence protocol used for this experiment is MESI. We can clearly see that when us-

ing coherence, the L1 data cache miss rate increases to unacceptable levels. Whenever

a core is updating a value in its private L1 data cache there will be many cache blocks

invalidated in the other caches as the degree of data sharing between basic blocks is

74

Chapter 4. Reconfigurable Data Cache Architecture

very high. Consequently, this will have a dramatic impact on the performance of the

application and on the energy consumption due to excessive access to the lower level of

cache.

We identify two possible design choices for the shared L1 data cache. A multi-

ported L1 data cache that can be shared by all the cores. These ports can be exclusive

read ports, write ports, or read/write ports. However, multi-porting the cache means

having all the internal memory cells multi-ported, which in turn increases the cache

area significantly [87]. Additionally, the access time and power consumption increase

dramatically with multiple ports. A second design option to allow multiple accesses

to the first level of data cache is to use independent cache banking. The cache is split

into smaller banks; each bank is mapped to different parts of the address space with

independent address and data lines. The advantage is that the small banks are simple,

fast to access and they consume low power compared to the big multi-ported cache. On

the other hand, it is possible that multiple accesses go to the same bank (bank conflict)

in which case, arbitration is needed. Similarly, routing a request to the appropriate

cache bank may require additional overhead.

In this chapter we propose a novel reconfigurable L1 data cache architecture for dy-

namic heterogeneous multi-core architectures that overcomes the limitations of a multi-

ported cache, offering high bandwidth and low latency when accessing the shared cache.

Our design is also able to switch between two modes of execution: private mode (for

traditional multi-core) and coalition mode (for dynamic heterogeneous multi-core). Ad-

ditionally, the system can also configure the size and associativity of the overall shared

L1 data cache.

75

Chapter 4. Reconfigurable Data Cache Architecture

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

M
is

s
ra

te

Benchmarks

4-ported cache 2-core coh. avg. 4-core coh. avg.

Figure 4.2: Miss rate for shared cache vs. coherent caches.

4.1 Experimental setup

Our evaluation is done in conjunction with Bahurupi adaptive multi-core architecture

and we compare our results against a shared multi-ported cache. For evaluating differ-

ent L1 data cache designs we use the same simulation setup described in Section 3.3.1.

In these experiments we configured the cache access latencies to be closer to the ones

found in modern CPUs (e.g., ARM Cortex A-15): the L1 cache access latency is con-

figured to 3 cycles for both instruction and data caches, the L2 cache access latency is

19 cycles while the main memory access latency is 140 cycles.

The SPEC95, SPEC2000 and SPEC2006 [2] benchmarks used in all our experi-

ments are described in Table 4.1. For all our experiments the benchmarks were run by

fast forwarding over the first 100 million instructions and run for 2 billion instructions.

76

Chapter 4. Reconfigurable Data Cache Architecture

Name Benchmark Suite Description
li SPEC95 Xlisp interpreter

ijpeg SPEC95 Image compression/decompression
gzip SPEC2000 Compression

bzip2 SPEC2000 Compression
parser SPEC2000 Word Processing
equake SPEC2000 Seismic Wave Propagation
mesa SPEC2000 3-D Graphics Library
mgrid SPEC2000 Multi-grid Solver: 3D Potential Field
swim SPEC2000 Shallow Water Modeling
applu SPEC2000 Partial Differential Equations

art SPEC2000 Image Recognition / Neural Networks
milc SPEC2006 Physics / Quantum Chromodynamics (QCD)

sphinx SPEC2006 Speech Recognition
lbm SPEC2006 Computational Fluid Dynamics

hmmer SPEC2006 Search Gene Sequence

Table 4.1: Benchmarks description.

4.2 Limitations of multi-ported shared L1 cache

We begin our evaluation by first describing the simple design solution given by a multi-

ported cache. We will show the advantages and disadvantages of using such a design.

We constructed two examples of shared cache configurations shown in Figure 4.3:

(a) shared cache with 4 read ports and (b) shared cache with one arbiter and one read

port. In each configuration the caches have only one write port as Bahurupi only allows

one memory store operation per cycle (stores execute in program order). For the con-

figuration with one read port, the arbiter is interposed between the cores and the cache

granting only one request out of four in case of bank conflicts.

The internal interconnect of a first level cache is usually in the shape of a h-tree

(shown in Figure 4.3) where accesses to the internal banks are guaranteed to be uni-

form [87]. As a result, this simplifies the pipelining of the cache access increasing

the memory access throughput. This interconnect only works for small caches as the

lower levels of caches use more complex interconnect to accommodate the NUCA ef-

77

Chapter 4. Reconfigurable Data Cache Architecture

$L1D

C0

C1

C2

C3

$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B34

(a) Shared cache with 4 read ports.

A
rb
it
ra
ti
o
n

C0

C1

C2

C3

$L1D
$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

(b) Shared cache with 1 read port.

Figure 4.3: Multi-ported shared cache configurations.

78

Chapter 4. Reconfigurable Data Cache Architecture

fect [44]. In our evaluation we assume that the L1 data caches contain 8 banks. Along

with the network wires, the interconnect also contains various predecoders for selecting

the destination bank for a request. Usually each bank has its own tag and data array line

decoder.

Modern architectures (e.g., Intel i7, Ivy Bridge) use 32KB, 8-way set associative

cache which offers good hit rate. Here, we consider the 32KB, 8-banked, 8-way set

associative cache with each bank being 4KB, 8-way set associative as our baseline cache

configuration, which we use for various comparisons.

4.2.1 Area and energy overhead

We measure the area occupancy and energy consumption per access of single and multi-

ported shared cache configurations using CACTI 6.5 [69] configured for 32nm technol-

ogy. The results are shown in Figure 4.4 where the values are normalised w.r.t the area

and energy of a single ported shared cache. The results show that the area and energy

consumption dramatically increase when increasing the number of ports. A dual ported

cache occupies 1.9X more area than a single ported cache and consumes 1.5X more

energy per access, while a three-ported cache occupies 3.3X more area and consumes

2.4X more energy. Similarly, four-ported cache occupies 6.5X more area and consumes

4.4X more energy.

4.3 Limitations of single-ported shared L1 cache

4.3.1 Simultaneous memory accesses

In case of a core coalition there is high probability of multiple accesses to happen within

the same cycle. The virtual core creates now more memory requests per cycle. In Figure

4.5 we present the average number of cache accesses that happen in the same cycle for

79

Chapter 4. Reconfigurable Data Cache Architecture

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

1

2

3

4

5

6

7

1 port 2 ports 3 ports 4 ports E
n

er
gy

 c
o

n
su

m
p

ti
o

n
 p

er
 a

cc
es

s

C
ac

h
e

ar
ea

Number of ports

Area Energy

Figure 4.4: Shared cache area and energy increase for different number of ports (nor-
malized w.r.t to 1 port).

2-core, 3-core and 4-core coalition in case of cache configuration with four read ports.

On average, for all the core coalition configurations, the number of accesses pe cycle is

above one (1.05, 1.16 and 1.30 respectively). The number of accesses per cycle is more

than two for 4-core coalition in case of the benchmarks mgrid and lbm.

4.3.2 Performance impact

Moving to a single ported shared cache offers reduction in both area and energy con-

sumption. In this case, arbitration is needed to handle multiple accesses to the shared

cache in the same cycle (see Figure 4.3b), which will impact the overall performance.

We implement a simple round-robin priority selection scheme for the requesting inputs.

When an arbitration conflict happens, the unsuccessful cores will reinsert the memory

operation in the internal issue queue and try to issue it again in the next cycle. More-

over, arbitration introduces an extra stage in the cache access pipeline that increases the

cache access latency by 1 cycle.

In Figure 4.6 we show the performance obtained when running coalition of 2-cores

and 4-cores on multi-ported cache configurations with four ports and one port. The

numbers are normalized w.r.t the performance obtained on a single-core baseline pro-

80

Chapter 4. Reconfigurable Data Cache Architecture

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1
L

1
D

 a
cc

es
se

s
/

cy
cl

e

Benchmarks

2-core 3-core 4-core

Figure 4.5: Average number of L1 data cache accesses per cycle for 2-core coalition,
3-core coalition and 4-core coalition.

cessor with private cache. We can see how the performance drops due to the arbitration

conflicts. On average, the loss in performance for constraining a 2-core coalition to

share the single-ported cache is 10%. The loss in performance is even higher (50%) for

a 4-core coalition constrained to use only one port.

The performance degradation for mgrid and lbm benchmarks is the highest as they

have the highest number of arbitration contentions. Interestingly, when these two appli-

cations run on a 4-core coalition connected to a single-ported cache, the performance

drops very close to the performance obtained with 2-core coalition. This is due to the

memory access patterns of the benchmarks and the way Bahurupi executes the basic

blocks in a distributed fashion.

In conclusion, in order to support 4-core coalition, we need high bandwidth to the

L1 data cache that can be offered by multi-ported cache. However this has a huge

impact on the area and the energy consumption. Alternatively, we can constrain the

system to use less number of ports resulting in smaller area and energy consumption

but reduced performance.

81

Chapter 4. Reconfigurable Data Cache Architecture

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

d
u

p

Benchmarks

2-core 4-ports 2-core 1-port 4-core 4-ports 4-core 1-port

Figure 4.6: Performance impact for 2-core and 4-core coalition run on cache configu-
rations with four ports and one port (normalized w.r.t performance of a baseline single
core).

4.4 System reconfiguration

Using a multi-ported shared cache for adaptive multi-cores clearly shows significant

overheads in terms of area and energy consumption. We overcome these limitations by

proposing a novel reconfigurable L1 data cache architecture for adaptive multi-cores

presented in Figure 4.7. Our design allows three types of reconfiguration described

below.

An important property that the adaptive multi-cores must have is the ability to switch

between coalition mode and private mode seamlessly. In coalition mode, the cores

should connect to a shared L1 data cache, while in private mode the cores should con-

nect traditionally to their own private caches that are connected through a coherent

protocol. In our design we implement system reconfiguration through switches that

control these two modes of execution by selecting the corresponding input for the four

muxes shown in Figure 4.7.

82

Chapter 4. Reconfigurable Data Cache Architecture

Network
reconfiguration

$D0

$D1

$D2

$D3

C0

Interconnect

C1

C2

C3

$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

K4

K6

Cache
reconfiguration

System
reconfiguration

Figure 4.7: Novel L1 data cache architecture for dynamic heterogeneous multi-cores.

83

Chapter 4. Reconfigurable Data Cache Architecture

System reconfiguration

8

$D0

$D1

$D2

$D3

C0

Interconnect

C1

C2

C3

(a) System reconfiguration for private mode.

System reconfiguration

8

$D0

$D1

$D2

$D3

C0

Interconnect

C1

C2

C3

(b) System reconfiguration for coalition mode.

Figure 4.8: System reconfiguration for private and coalition modes in case of a 4-core
coalition.

84

Chapter 4. Reconfigurable Data Cache Architecture

Bahurupi extends the ISA with a new instruction that can control the configuration

of the muxes through the 4-bit system reconfiguration register. The decision of recon-

figuration can be fully taken at the operating system side where performance counters

(e.g., IPC and cache misses) can be combined with offline knowledge of the applica-

tion to correctly predict that the application can run faster on a bigger coalition or the

application should be moved to a smaller coalition. The register controls the selection

input for each mux based on the subset of cores used for coalition. In Figure 4.8 we

show how the system reconfiguration works for private and coalition modes in case of a

4-core coalition. In private mode (Figure 4.8a), an operating system routine configures

the muxes to private mode such that each core accesses directly its own data cache. In

this case, the interconnection network is not involved and it is practically switched off.

When switching to coalition mode (Figure 4.8b), for all four cores, the muxes redirect

the memory requests to the interconnection network that in turn sends the requests to

the shared cache. In this case, the two private data caches D0 and D1 can be switched

off, reducing the system power consumption. Of course, before switching off the two

caches, their content must be flushed to the lower level of cache (e.g., L2 unified cache).

Also, when doing system reconfiguration for creating coalition of cores, the content of

the private caches corresponding to the cores engaged in the coalition must be flushed

to the lower level cache.

4.5 Network reconfiguration and address mapping

Our main goal is to allow coalition of cores to be able to share the same amount of

cache that is used by cores in private mode with minimal area, energy and performance

overhead. In our case, our target is a 32KB, 8-way set associative shared cache. In

default coalition mode, we only use four out of eight banks for each data cache. If

necessary, we may use the extra banks for increasing associativity of the caches. In

85

Chapter 4. Reconfigurable Data Cache Architecture

order to obtain eight parallel access points to eight banks we need to use two data

caches out of four. Thus, we make the network connect to already existing banks inside

the two (D2 and D3) through the access points highlighted (small crossed rectangles) in

Figure 4.7. We justify this decision by the fact that Bahurupi can fuse at most 4 cores at

runtime and the network offers enough bandwidth to accommodate the requests coming

from 4 cores. Moreover, the amount of shared cache is enough to offer a low miss rate.

The shared cache contains banks used in private mode in case of cores C2 and C3.

As the system only allows one coalition of cores at a time, an operating system routine

can ensure that the cores C2 and C3 will always be part of a coalition.

The architecture of the interconnection network is shown in Figure 4.9 where the

four cores connect to eight access points. The network was first proposed in [84] where

the main focus was on the architecture of the interconnect. It comprises of two layers:

a layer of switches also known as logarithmic network layer and an arbitration layer.

The logarithmic network layer connects to the memory ports of each core and carries

the memory requests to the arbitration layer. Notice that up to the arbitration layer, the

requests coming from different cores follow independent routes. Thus, the interconnect

interacts with the outside world through four input ports and eight output ports. The

arbitration layer grants access to the access points which are connected internally to

the caches. In contrast to our proposed architecture, the original design did not support

pipelined access to the cache banks and reconfiguration. The interconnect is a logarith-

mic network (or mash-of-trees) which comprises of two main parts: the combinational

routing network and the arbitration stage.

The combinational routing network uses a simple routing scheme where a subset of

the address bits are used to route the input of each switch (demux based implementation)

S to one of the two outputs. The selection of the bits for routing highly influences the

degree of interleaving of accesses to the cache banks.

The address mapping used in our proposal is presented in Figure 4.10 where we

86

Chapter 4. Reconfigurable Data Cache Architecture

Log Network
layer

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

Access
points

Arbitration
layer

Reconfiguration register

Figure 4.9: CPU to memory interconnection network architecture for 4-cores and 8
access points.

87

Chapter 4. Reconfigurable Data Cache Architecture

Network reconfiguration and address mapping

10

 Baseline cache: 32kB, 8-way set associative, 8 banks, 64B line
size

 Switches use bits out of Bank number field when doing the
routing (interleaved access)

 Network reconfiguration varies the length of Bank Number field

 More bits for Bank number -> more cache banks accessed

Tag
Set

Index
Access
Point

Byte Offset

variable

Byte Offset – 6 bit for byte offset in the cache line of 64B
Access Point – max 3 bits for the access point
Set Index – 3 bits for accessing the cache set in a

4KB, 8-way set associative bank

Figure 4.10: Address mapping in the interconnection network.

show the breakdown of the memory address issued by the core. The bitfield Access

Point is used by the switches to route the packet to the destination access point and it

has a maximum width of 3 bits as our network connects to a maximum of eight access

points. The Byte Offset field is used to select the byte from the cache line, while the

Set Index is used to select the set within a bank. The interconnection network has three

columns of switches. By default, switches from the first column will check the Access

Point[2] bit; if the bit is 0 the packet will be routed in the upward direction, otherwise it

will be router in the downward direction. The second column and third column will do

the same checking and routing by checking the bits Access Point[1] and Access Point[0]

respectively.

However, the routing decision can be reconfigured based on the number of access

points the coalition of cores needs to access. This reconfiguration is done through a

simple Reconfiguration Register that connects to all switches and can be dynamically

written by the core. The reconfiguration means changing the mapping of the addresses

by increasing or decreasing the width of the Access Point field in the address word.

When moving to less than 8 access points, the Reconfiguration Register fixes the map

for selected switches such that they simply forward the input to the fixed output. As

a result of changing the address mapping, whenever a network reconfiguration is per-

formed the shared cache must be flushed to lower level cache.

88

Chapter 4. Reconfigurable Data Cache Architecture

Moreover, when a network reconfiguration is performed the decoder corresponding

to the cache bank must be configured for correctly choosing the set index bits from the

instruction address. The length of the set index bitfield is the same in all configuration

but its bits as a subset from the whole address can be shifter left or right by 3 positions

based on the number of access points the system decides to use.

The second layer of the interconnection network is the arbitration layer. This layer

takes care of the bank contentions that can happen when multiple cores access the same

bank. The arbiters grant one input out of four inputs and consume one extra pipeline

stage.

4.5.1 Network routing and reconfiguration examples

In Figure 4.11 we show two scenarios in which cores C0 and C2 send memory requests

to the access points 0 and 5 respectively (the dashed lines highlight the paths from the

cores to the access points). The length of the Access Point bitfield is three and each

bit from MSB to LSB of the field is used by the switches respectively for routing the

packet to the corresponding access point. The memory request is sent from the load-

store queue and travels the normal memory translation process by using the internal

TLBs. The translated request is then sent to our interconnection network that maps it

to the corresponding access point. In the first case (Figure 4.11a) the switch connected

directly to the core C0 will check the MSB bit in the access point bitfield. As the bit is

zero, the switch will redirect the request in the upward direction to the second switch.

Here, the middle bit is checked and as the bit is zero, the request will be directed up

to the last switch that again checks the LSB bit and as this bit is zero will direct the

packet in the upward direction to the arbiter. This entire routing process consumes one

cycle. In the next cycle the arbitration layer decides what to do with the request. In

this case, there is no arbitration to be done and the request will be directed to the access

point which can forward it to a cache bank or two cache banks (in case of increased

89

Chapter 4. Reconfigurable Data Cache Architecture

Tag
Set

Index
Byte

Offset

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

AP0

AP1

AP2

AP3

AP4

AP5

AP6

AP7

000C0

(a) C0 sends request to access point 0.

Tag
Set

Index
Byte

Offset

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

AP0

AP1

AP2

AP3

AP4

AP5

AP6

AP7

101C2

(b) C2 sends request to access point 5.

Figure 4.11: Address mapping examples for different scenarios.90

Chapter 4. Reconfigurable Data Cache Architecture

associativity).

In the second case (Figure 4.11b), the core C2 is issuing the memory request. After

translation, the immediate switch will check the MSB of the access point field. In this

case the MSB is set to one and the switch will forward the packet in the downward

direction to the second switch. Similarly, the second switch checks the middle bit and

as the bit is zero the packet will be forwarded in the upward direction to the last switch

that again, checks the LSB bit (set to one) and forwards the request in the downward

direction to the arbiter. In the second cycle, the arbiter will detect no arbitration conflict

and simply forwards the packet to the access point.

The powerful property of this interconnection network lies in the availability of

bandwidth by allowing multiple requests to be serviced per cycle. In Figure 4.12 we

show two scenarios in which cores C1 and C2 send simultaneous requests. In Figure

4.12a the requests are sent successfully to different access points (2 and 5). In this case,

C1 issues the request to the access point 2. The MSB bit is zero so the first switch will

direct the request upward to the second switch which will direct the request downward

towards the last switch as the middle bit is one. Here, the switch will direct the request

upward to the arbiter. C2 issues its request to the access point 5 through the three

switches that redirect the request downward, upward and downward again based on the

bits in the access point field. We notice that both arbiters allow the request in the second

cycle with no arbitration conflict. If the requests generate a hit in the corresponding

cache banks then both cores will obtain their response simultaneously.

It is possible that two or more cores will access the same access point. In case of

Figure 4.12b the requests coming from C1 and C2 are sent at the same time to the same

access point (5). In this case, both requests will have the same values for their Access

Point bitfield (i.e., 101). Notice that the traversal of the network does not generate any

conflict as it is done in parallel. There is an unique path from each core to each arbiter.

After the two requests traverse the network, in the second clock cycle, the arbiter will

91

Chapter 4. Reconfigurable Data Cache Architecture

Tag
Set

Index
Byte

Offset

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

AP0

AP1

AP2

AP3

AP4

AP5

AP6

AP7

101C2

Tag
Set

Index
Byte

Offset
010C1

(a) C1 and C2 send requests to access points 2 and 5.

Tag
Set

Index
Byte

Offset

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

AP0

AP1

AP2

AP3

AP4

AP5

AP6

AP7

101C2

Tag
Set

Index
Byte

Offset
101C1

(b) C1 and C2 send request to access point 5 which generates an arbitration conflict.

Figure 4.12: Address mapping examples for simultaneous requests.92

Chapter 4. Reconfigurable Data Cache Architecture

decide which request to grant. In this case, the arbiter will use a simple round-robin

scheme to select the request. Assuming that core C1 is granted, a retry response signal

goes back to the load-store queue of C2 and announces that its request was not granted.

In this case the core will re-issue its memory request in the next cycle.

In Figure 4.13 we show how the network reconfiguration works by using the Recon-

figuration Register. This register is accessible by the cores by adding a new instruction

to the ISA. The register is a 56 bit wide (2 bits for each of the 28 switches). For each

switch the system can specify one of three operation modes: normal mode in which

the switch will use the bits from the Access Point bitfield to forward the request to the

appropriate output. The second mode is forward upward in which the switch blindly

forwards the packet upward and the third mode is forward downward which instructs

the switch to blindly forward packets downward. The last two modes can be used when

the network is reconfigured to use less than eight access points. In this cases, the length

of the Access Point bitfield is reduced from three to two, one or zero.

In case of Figure 4.13a, the system reconfigures the network such that at most two

access points can be addressed (0 and 1). Here, core C0 sends a request to access point

0. We can see that the length of the Access Point bitfield is set to one. In this case,

the Reconfiguration Register will instruct the first two switches to work in the forward

upward mode, while the last switch will operate in the normal mode. The first two

switches will simply bypass the request in the upward direction to the last column of

switches which will direct the request upward or downward based on the single bit

entry. The bit is set to zero; so the request will be directed upward to the arbiter. In

this case, we can see that there are only 12 switches used out of 28 and only two access

points out of eight. A power-gating solution can be applied here in order to power down

the remaining part of the network to reduce more energy. Similarly, the cache banks

connected to the inactive access points can be shut down to save even more energy.

In case of Figure 4.13b, the system decides to reconfigure the network such that the

93

Chapter 4. Reconfigurable Data Cache Architecture

Tag
Set

Index
0

Byte
Offset

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

AP0

AP1

AP2

AP3

AP4

AP5

AP6

AP7

C0 0

Reconfiguration register
 instructs switches to bypass
 Access Point length = 1

(a) At most 2 access points.

C0

C1

C2

C3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

AP0

AP1

AP2

AP3

AP4

AP5

AP6

AP7

Tag
Set

Index
10

Byte
Offset

1010C1

Reconfiguration register
 instructs switches to bypass
 Access Point length = 2

(b) At most 4 access points.

Figure 4.13: Reconfiguration of the number of access points example.94

Chapter 4. Reconfigurable Data Cache Architecture

cores can address at most four access points. In this case, the length of the Access Point

bitfield is two and core C1 sends a request to the access point 2. Here, the Reconfigu-

ration Register instructs only the first switch to operate in the forward upward mode.

The other two switches will operate in the normal mode. Half of the network is used in

this case and the request goes upward, downward and then upward again to the arbiter

which sends the request to the access point 2.

95

Chapter 4. Reconfigurable Data Cache Architecture

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
vg

. a
cc

es
se

s
/

cy
cl

e
/

b
an

k

Benchmarks

2banks 4banks 8banks

Figure 4.14: L1 data cache average accesses per cycle per banks for 4-core coalition
connected to the log network.

4.5.2 Bank conflicts

We are interested to find out the number of access point conflicts that translates into

cache bank conflicts. We measure the effect of the address interleaving on the bank

conflicts by computing the average number of conflicts across the banks when using 2

banks, 4 banks and 8 banks. We assume that at each access point we attach a single

cache bank. Figure 4.14 shows the average accesses per cycle per bank in case of a

4-core coalition connected to the interconnection network. As we see, when moving

to more banks connected to the network, the address interleaving reduces the bank

conflicts considerably. On average, the bank conflicts for 2 banks, 4 banks and 8 banks

is 1.28, 1.06 and 0.92 respectively. We notice that the same two benchmarks mgrid

and lbm are having high conflicts per bank when using 2 banks but this reduces to 1.45

and 1.29 respectively when using 4 banks and it reduces even more to 1.19 and 1.05

respectively when using 8 banks.

96

Chapter 4. Reconfigurable Data Cache Architecture

0

5

10

15

20

25

30

35 li
ijpeg
gzip
bzip2
milc
lbm
art
parser
equake
applu
mgrid
swim
sphinx
mesa

Figure 4.15: L1 data miss rates improvement relative to a 4KB, 2-way set associative
cache.

4.6 Cache reconfiguration

4.6.1 L1 data cache miss rates

In our evaluation we also perform a study on the L1 data cache behavior of differ-

ent benchmarks. In case of many individual applications, the cache parameters fixed

at fabrication time are not the ideal ones in terms of energy and area efficiency. We

have collected traces of L1 data cache accesses from different benchmarks using the

reference inputs. We measured the miss rate of different cache configurations by using

DineroIV [38].

In Figure 4.15 we show the L1 data cache miss rate improvement of the applications

with different cache parameters relative to the miss rate obtained on a 4KB, 2-way set

associative cache. In all the experiments the cache line size is set to 64 Bytes. For

typical L1 data cache sizes found in modern processors from ARM or Intel (i.e., 32KB,

2-way set associative or 32KB, 8-way set associative respectively) we can see that many

applications gain very little or nothing across many neighbouring cache configurations.

97

Chapter 4. Reconfigurable Data Cache Architecture

K6

K4

Network
reconfiguration

$D2

$D3

C0

Interconnect

C1

C2

C3

`
$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

Cache
reconfiguration

Coalition mode:
 K[0:3] in L2 and/or L3 must be OFF

`
$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

K4

K6

Figure 4.16: Cache reconfiguration for coalition mode.

For example benchmarks mesa, swim and equake have similar miss rate improvements

around this configuration. In these cases, reducing the cache size would be desirable

from energy efficiency point of view.

Now we will present how the cache reconfiguration works. In our design, the

amount of cache shared by the cores can be reconfigured at runtime. We connect the

access points of the caches D2 and D3 to the H-tree as shown in Figure 4.7 and make

the H-tree reconfigurable through the switches K0−K7. When switches K0−K3 are

off, the system and the h-tree runs in coalition mode (as shown in Figure 4.16). We add

a new instruction to the Bahurupi ISA that allows control on the Cache Reconfiguration

Register which is 16 bit wide (8 switches for each cache).

Switches K4−K7 introduce an additional reconfiguration knob to the cache, by

which one can double the size and associativity of the cache bank. For example, by

98

Chapter 4. Reconfigurable Data Cache Architecture

turning on the switch K4 the arbiter will access a 8KB, 16-way set associative formed

by two banks (B0 and B2). The request coming from the corresponding access point

is simply broadcast to both cache banks. This operation does not require any change

in the number of cache sets of bank B0; hence the address mapping remains the same

and the system does not need to flush the content of the bank to the lower level cache.

When switches K4−K7 are off, the banks B2, B3, B6 and B7 are powered down.

We enumerate all possible shared L1 data cache configurations obtained by doing

network reconfiguration and cache reconfiguration in Table 4.2. For configurations

that allow access to 16KB/16-way and 8KB/16-way caches the table does not show all

possible switch combinations that can be used. For example, for accessing 8KB/16-way

cache the switches K5, K6 or K7 could also be used depending on which access point

the request is coming from and how the network was configured.

In Figure 4.17 we show two examples of cache reconfigurations. In the first case

(Figure 4.17a), the system decides to use only four access points connected to the D3

cache by doing network reconfiguration – the length of the Access Point bitfield is two,

the first level of switches are set to the mode forward downward and the cache D2 is

switched off. The system also reconfigures the cache by accessing the Cache Reconfig-

uration Register such that all switches K0-K7 are off. In this case, the amount of shared

cache allocated to the coalition of cores will be 16KB and the total associativity is equal

to the associativity of a single bank (8-way set associative). For many benchmarks a

16KB, 8-way set associative L1 data cache offers a good hit rate (see Figure 4.15). If

the number of access points offers a good interleaving factor (low arbitration conflicts)

than this configuration can offer a very good energy-performance tradeoff.

In the second case (Figure 4.17b), we show how the cache reconfiguration works

when we want the core coalition to share a cache double in size and associativity. The

system uses the Cache Reconfiguration Register to switch on K4-K7. As discussed

previously, when doing this, we do not need to flush the contents of the cache banks

99

Chapter 4. Reconfigurable Data Cache Architecture

`

K6

K4

K4

K6

Network
reconfiguration

$D2

$D3

C0

Interconnect

C1

C2

C3

`
$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

Cache
reconfiguration

 Network Reconfiguration: 2 bits for the Access Point
 K[0:3] OFF
 K[4:7] OFF
 Access to 4 banks: B0, B1, B6, B7
 Shared cache: 16K, 8-way

$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

(a) Cache reconfiguration to 4 access points.

Network
reconfiguration

$D2

$D3

C0

Interconnect

C1

C2

C3

 Network Reconfiguration: 2 bits for the Access Point
 K[0:7] OFF
 K[4:7] ON
 Access to 8 banks: [B0, B2]; [B1, B3]; [B4, B6]; [B5, B7]
 Shared cache: 32K, 16-way

`
$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

K4

K6

K4

K6

`
$B4

$B6

$B5

$B7

$B0 $B1

$B2 $B3

K0 K1

K2 K3

K5

K7

Cache
reconfiguration

(b) Cache reconfiguration to 4 access points and increased associaitvity.

Figure 4.17: Example of cache reconfiguration.

100

Chapter 4. Reconfigurable Data Cache Architecture

Access Point Shared # access Banks Switches
bitfield width cache size/assoc. points used from on

3 64KB/16-way 8 L1D2 & L1D3 K4-K7
3 32KB/8-way 8 L1D2 & L1D3 –
2 32KB/16-way 4 L1D3 K4-K7
2 16KB/8-way 4 L1D3 –
1 16KB/16-way 2 L1D3 K4&K5
1 8KB/8-way 2 L1D3 –
0 8KB/16-way 1 L1D3 K4
0 4KB/8-way 1 L1D3 –

Table 4.2: Amount of shared cache accessed based on the Access Point bitfield width
and the cache reconfiguration switches position.

B0, B1, B4 and B5. Thus, the access points will be connected to group of banks that

double the associativity to 16-way: (B0-B2), (B1-B3), (B4-B6) and (B5-B7). The total

amount of shared cache is 32KB which can offer a very good hit rate.

As we can see, increasing the Access Point bitfield width not only has the effect

of increasing the interleaving factor by accessing more banks but also it increases the

amount of shared cache. Consequently, our design can allow the adaptive multi-core

to access a wide variety of cache sizes and associativity starting from 4KB, 8-way set

associative and ending with a 64KB, 16-way set associative shared cache.

We now move on to show the area and energy consumption of our design and then

we do a performance analysis.

4.6.2 Area and energy consumption

The total area occupied by our design is mainly given by the area occupied by the

logarithmic network and the arbiters and the area occupied by the 8 single ported cache

banks. We have implemented in Verilog and synthesised the network and the arbiters for

both core-to-cache and cache-to-core using Synopsys [92] with 32nm Generic Library.

The total area occupied by our design is 1.07 times bigger than the area occupied by a

single-ported 32KB, 8-way associative cache. This gives us a great advantage over the

101

Chapter 4. Reconfigurable Data Cache Architecture

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
is

s
ra

te
 im

p
ro

ve
m

en
t

Benchmarks

8KB 8-Way 16KB 8-Way 32KB 8-Way

Figure 4.18: Miss rate improvement for 2 banks, 4 banks and 8 banks (normalized w.r.t
miss rate of 2 banks).

multi-ported caches.

In terms of energy consumed per access, we assume that in coalition mode, the

h-tree network (together with the predecoders) is mostly turned off. This saves con-

siderably amount of power as the h-tree network is a power hungry component in a

cache. The results show that our design consumes 1.18 times more energy than the

single ported private cache.

4.6.3 Miss rate improvement and performance analysis

The network can be reconfigure to reduce the bank conflicts, the miss rate or both. In

Figure 4.18 we show the improvement in miss rate when moving to higher number of

banks. The numbers are normalised w.r.t the miss rate obtained when using 2 banks.

Here, we do not switch on K4-K7, thus, each access point corresponds to a cache bank.

We can see that there are benchmarks for which the increase in the cache size brings

very small or no contribution to the improvement in the miss rate. In case of milc

benchmark, there is no improvement in the cache miss rate and also there is small bank

conflict reduction when moving to more banks (see Figure 4.14). In this case using

102

Chapter 4. Reconfigurable Data Cache Architecture

1

1.5

2

2.5

3

3.5

4

4.5
Sp

ee
d

u
p

Benchmarks

4-core 2banks 4-core 4banks 4-core 8banks

Figure 4.19: Speedup of 4-core coalition connected to 2, 4 and 8 banks using the log
network (normalized w.r.t performance of a baseline single core).

only 2 access points (2 banks) would save significant amount of energy per access with

minimal performance loss.

The reduction in bank conflicts plus the increase in the L1 data cache size has a

positive impact on the performance of some of the applications. In Figure 4.19 we show

the speedup (IPC ratio) obtained when running a 4-core coalition on the logarithmic

network connected to 2, 4 and 8 banks normalized w.r.t the performance of a baseline 2-

way out-of-order core. On average, when moving from 2 banks to 4 banks the increase

in speedup is 14%, relative to the baseline core, while when moving from 4 banks to 8

banks the increase is 7% relative to the baseline core.

In Figure 4.15 we can see that there are benchmarks that are receiving great miss

rate improvement when moving to higher cache sizes and associativity. For example,

the benchmark equake running on 16KB, 16-way set associative cache improves the

miss rate by 43% compared with 8K, 8-way set associative. In this case a cache re-

configuration can be done by turning the switches K4 and K5 on. Notice that having a

higher cache size does not improve the miss rate any further for this benchmark. Thus,

by only using two access points we can obtain a good miss rate with low energy con-

103

Chapter 4. Reconfigurable Data Cache Architecture

0

1

2

3

4

5

6

7

Total Area Energy per access Avg. performance

T
o

ta
l a

re
a,

 E
n

er
gy

 p
er

 a
cc

es
s

an
d

 a
vg

. c
o

n
su

m
p

ti
o

n

LogNetwork 8banks L1D 4 ports

Figure 4.20: Comparison between our design (8banks) and four-ported cache.

sumption.

4.7 Comparison with multi-ported shared L1 cache

Our main goal is to have a design that can allow the coalition of cores to provide perfor-

mance as close as possible to the one obtained when using a multi-ported cache. At the

same time, we want our design to occupy very low area and consume very low energy

per access. In fact we want these values to be closer to the area and energy consumed

by the private caches.

Figure 4.20 summarises the comparison between the four-ported cache and our L1

data cache design in terms of area, energy and performance. The multi-ported values are

normalized w.r.t the results obtained for our design. The multi-ported cache occupies

6.42X more area than our design. Moreover, our design consumes 4.16X less energy

per access compared to the multi-ported design. In terms of performance, when using

8 access points and run on 4-core coalition, our design only looses 5% (normalized

to the baseline core) compared with the multi-ported cache. In conclusion, our novel

architecture consumes much less area and energy per access when compared with the

multi-ported cache with minimal performance penalty.

104

Chapter 4. Reconfigurable Data Cache Architecture

As we can see, by only using 8 access points the network offers enough interleaving

(low arbitration conflicts) to obtain a performance very close to the one obtained when

connected to a four-ported cache. Thus, scaling the network to larger number of access

points will not bring significant performance improvement. Moreover, scaling the net-

work to more than 8 access points brings the risk of increasing the power consumption

above the accepted limits.

4.8 Summary

In this chapter we have approached the architecture of the first level of data cache used

by the dynamic heterogeneous multi-core architectures. A coalition of cores requires

reconfiguration of the first level of data cache that must efficiently accommodate the

bandwidth and latency needed by such architectures. We propose and implement a

novel L1 data cache design that is able to overcome the limitations in terms of area,

energy and performance of multi-ported shared caches. Results show that our design

is able to accommodate successfully the memory demands of Bahurupi providing high

performance with very low area and energy consumption. Additionally, our design

offers dynamic reconfiguration capabilities. It can reconfigure at runtime the number

of cache banks that can be accessed in parallel reducing the L1 data bank conflicts. At

the same time, the design can also reconfigure the size and associativity of the shared

cache dynamically.

105

Chapter 5

Scheduling on Bahurupi Architecture

In this chapter we conduct a performance limit study for Bahurupi by employing opti-

mal schedulers in order to obtain the ideal speedup of applications on an ideal dynamic

heterogeneous multi-core architecture that has no hardware limitations. We then con-

duct a performance limit study of Bahurupi and see how the real hardware constraints

affect the speedup of the applications running on the dynamic architecture. In this thesis

we consider a more realistic scenario where both parallel and sequential tasks coexist

in the system.

Illustrative Example. Here, we present an example that provides a visual illustration

of our scheduling problem. This example also concretely explains the challenges in-

volved in conducting the performance limit study. For this example, we have chosen

a set of five benchmarks: three sequential applications (gobmk, quantum and fft) from

SPEC [2] and MiBench [43] benchmark suites that can exploit ILP through complex

out-of-order cores, and two parallel applications (bodytrack and blackscholes) from

PARSEC [16] benchmark suite that can exploit TLP through multiple simple cores.

The experimental setup used to obtain the performance of each individual benchmark

on different number of cores and configurations will be presented in Section 5.3.

106

Chapter 5. Scheduling on Bahurupi Architecture

We consider three different multi-core architectures that were introduced in Chapter

1: (a) homogeneous multi-core architecture with eight 2-way out-of-order cores, (b)

static heterogeneous multi-core architecture with one 8-way out-of-order core and four

2-way out-of-order cores, and (c) dynamic heterogeneous multi-core architecture with

eight 2-way cores where the cores can be coalesced together to form 4-way, 6-way, or

8-way complex core. If we assume the area requirement of a 4-way core is roughly

equivalent to that of two 2-way cores and the area of a 8-way core is roughly equal to

that of two 4-way cores then all the architectures are area-equivalent to the homoge-

neous architecture with eight 2-way cores.

The Gantt charts presented in Figure 5.1 show the schedules for different architec-

ture along with the makespan (the time when all the applications finish execution). The

lower the makespan, the better is the throughput of the system.

For the homogeneous multi-core, the sequential applications are restricted to using

only one core, while the parallel applications can benefit from multiple cores. This

severely restricts the performance and the makespan of 500 million cycles is defined by

the sequential application fft.

In the static heterogeneous multi-core, we provide opportunity for the sequential

applications to exploit ILP through one 8-way core. But the parallel applications are

restricted to use only four simple cores. The sequential applications fft and quantum

attempt to take advantage of the complex core to reduce execution time and reduce the

demand for the simple cores. But this choice only leads to increased makespan. This

example clearly shows that a fixed static heterogeneous solution may not always be the

best replacement for the homogeneous architecture due to the lack of flexibility and

availability of the number of cores.

The dynamic heterogeneous architecture, on the other hand, carefully selects the

number of cores allocated to each application. In this case, the sequential applications

exploit ILP through core coalition, while the parallel applications exploit TLP by using

107

Chapter 5. Scheduling on Bahurupi Architecture

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500

C
o
r
e
s

Cycles (x 1MIL)

gobmk
quantum

fft

blackscholes
bodytrack

(a) Homogeneous multi-core

0

1

2

3

4

5

 654 0 100 200 300 400 500 600

C
o

re
s

Cycles (x 1MIL)

gobmk
quantum8

fft8

blackscholes
bodytrack

(b) Static heterogeneous multi-core

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

gobmk
quantum

fft

blackscholes
bodytrack

(c) Dynamic heterogeneous multi-core

Figure 5.1: Illustrative example showing the schedule of a mix of sequential and parallel
applications on different architectures.

108

Chapter 5. Scheduling on Bahurupi Architecture

multiple simple cores. In fact, the dynamic heterogeneous architecture dynamically cre-

ates five different static heterogeneous multi-core configurations during the makespan,

in contrast to rigid homogeneous and static heterogeneous solutions.

The example illustrates the challenges in forming the schedule for a dynamic het-

erogeneous multi-core architecture. For the optimal schedule in Figure 5.1, we have to

first determine the allocation of the cores to the applications. The problem is even more

challenging because an application can be allocated varying number of cores over time.

For example, fft uses two cores for certain time interval and one core for the remaining

time. Moreover, an application may be allowed to migrate from one core to another

during its execution even if it uses fixed number of cores throughout execution. Fi-

nally, any realistic dynamic heterogeneous architecture imposes additional scheduling

and allocation constraints that need to be included in our decision process.

5.1 Optimal schedule on ideal dynamic heterogeneous

multi-core

The goal of this section is to conduct a quantitative performance limit study of the dy-

namic heterogeneous multi-core architectures. We design an efficient off-line scheduler

to carry out this limit study. We first present an optimal scheduler for an ideal dynamic

heterogeneous multi-core architecture that is not restricted by any physical or techno-

logical constraint. Next, we impose additional constraints to perform scheduling on our

realistic dynamic heterogeneous multi-core Bahurupi.

The ideal dynamic heterogeneous multi-core architecture consists of m physical 2-

way superscalar out-of-order cores supporting shared memory through hardware cache

coherence. Any subset of these cores can be coalesced together to form one or more

complex out-of-order cores. If r cores (r ≤ m) form a coalition, then the resulting

complex core supports 2r-way superscalar out-of-order execution. The architecture can

109

Chapter 5. Scheduling on Bahurupi Architecture

support any number of coalitions as long as the total number of cores included in all

the coalitions at any point in time does not exceed m. We assume that the core coalition

does not incur any performance overhead, that is, the performance of a 2r-way core

coalition is identical to a native 2r-way core. A parallel application can execute on any

subset of the simple cores, while a sequential application can execute on any simple

core or a core coalition.

The dynamic heterogeneous multi-core architecture allows both sequential and par-

allel applications to use time varying number of cores. Thus we model the applications

as malleable workload [60], where the number of cores allocated per application is not

fixed and can change during execution through preemption. For the limit study, our

goal is to create the optimal schedule for the malleable tasks 1 on the ideal dynamic

heterogeneous multi-core architecture.

The scheduling problem can be formulated as follows. We consider an ideal dy-

namic heterogeneous multi-core architecture consisting of m homogeneous independent

physical processors {P0,P2, ...,Pm−1} running a set of n (n ≤ m) preemptive malleable

tasks {T0,T2, ...,Tn−1}. We assume that all the tasks arrive at time zero. The objec-

tive is to allocate and schedule the tasks on the cores so as to minimize the makespan

Cmax = max j{C j} where C j is the finish time of task Tj.

5.1.1 Optimal schedule with continuous resources

We first determine the optimal Cmax assuming that the number of cores allocated to a

task need not be an integer. Then we transform this schedule to one that uses discrete

resources.

Let us denote the number of processors assigned to a task Tj by r j, where 0< r j≤m.

If r j is a continuous renewable resource (i.e., r j can have real value), then we can adopt

the solutions presented for the continuous resource allocation problem [100, 25] as our

1We use the terms task and application interchangeably.

110

Chapter 5. Scheduling on Bahurupi Architecture

starting point.

Each task has a fixed amount of processing work p j > 0. In a time interval of length

t, a task performs t×g(t) amount of work where g(t) = f j(r j)≥ 0 is a continuous non-

decreasing processing speedup function that relates r j to the processing speed of a task.

The set of feasible resource allocations of processors to tasks is as follows.

R =

{
r = (r0, ...,rn−1) | r j > 0,

n−1

∑
j=0

r j ≤ m

}

Applying speedup function f j(r j) over the elements of R we obtain the set of feasi-

ble transformed resource allocations

U =
{

u = (u0, ...,un−1) | u j = f j(r j), j = 0, ...,n−1,r j ∈ R
}

Theorem 1. (Resource allocation theory [100])

Let n≤ m, convU be the convex hull of the set U, i.e, the set of all convex combina-

tions of the elements of U, and u = p/C be a straight line in the space of transformed

resource allocations given by the parametric equations u j = p j/C, j = 0, ...,n−1. Then,

the minimum schedule length is

C0
max = min

{
C |C > 0,

p
C
∈ convU

}
(5.1)

where p = (p0, ..., pn−1) is the processing work for the tasks.

From (5.1) it follows that, the minimum makespan value C0
max is given by the inter-

section point of the line u= p/C and the boundary of the convU set in the n-dimensional

space of transformed resource allocations. The boundary of the convU set has a shape

that depends on the convexity or concavity of the speedup functions f j. The referred

resource allocation solution is only valid for concave speedup functions f j. In our

evaluation, all the applications we tested can be approximated with concave speedup

111

Chapter 5. Scheduling on Bahurupi Architecture

r2

r1 m

m

0

R

u1

f2(m)

0

U = convU
u0

𝑢1
0

𝑢2
0

𝑢

concave functions f1, f2

u2

f1(m)

Figure 5.2: Resource transformation example for n = 2.

functions. In Figure 5.2, we give a geometrical interpretation of the resource allocation

problem applied in the case of n = 2 tasks, m processors and concave speedup func-

tions f0, f1. The set of feasible allocations R is transformed into the set of feasible

transformed allocations U by applying the speedup functions.

The value of C0
max is determined by the intersection point u0, C0

max = p j/u0
j , j =

0, ...,n− 1. Thus, in order to find the minimum schedule length for our problem, we

have to find the point u0. [25] presents an algorithm that finds the solution for the

continuous resource allocation problem in O(n max{m,n log2 m}) time.

Normally, the speedup functions are only defined at integer points for a resource

(discrete functions). The speedup functions f j are extended with piecewise linear func-

tions between consecutive r j points. This way the monotonicity and concavity proper-

ties of the functions are maintained. The piecewise linear functions are described by

the equations

f j(r) = b j,sr+d j,s, r ∈ [s−1,s],

s = 2, ...,m, j = 0, ...,n−1,

b j,0 = d j,0 = 0

(5.2)

Figure 5.3 shows an example of piecewise interpolation applied to the discrete speedup

112

Chapter 5. Scheduling on Bahurupi Architecture

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4

Sp
e

e
d

u
p

Cores

mcf

Figure 5.3: Piecewise interpolation of speedup function for mcf

function for the mcf benchmark from SPEC benchmark suite with m = 4. If using

more than four cores, the observed speedup is minimal. Note that mcf is a sequential

application. So the speedup on r cores correspond to the speedup on 2r-way out-of-

order core compared to the baseline 2-way out-of-order core.

5.1.2 Optimal schedule with discrete resources

Clearly, considering processors as continuous renewable resources is not a realistic as-

sumption. Fortunately, the solution to the continuous problem can be transformed into

a discrete solution with the same optimal makespan value C0
max [24].

The discrete solution is obtained from the continuous version through a rectangle

packing procedure where two rectangles are allocated to each task. The rectangles rep-

resent the processing work and the number of cores allocated to a task. The dimensions

(height and width) of the rectangles (a j, v j), (b j, w j) are computed as follows

a j = br0
jc, b j = dr0

je

v j = (b j− r0
j)p j/ f j(r0

j)

w j = (r0
j −a j)p j/ f j(r0

j)

(5.3)

Essentially, Equation 5.3 rounds the processor allocation r0
j up and down to integer

113

Chapter 5. Scheduling on Bahurupi Architecture

cores

time0 Cmax

m

rectangles assigned

Tj Tj

Tj
Tj

bj
aj

bj

wj

vj

Figure 5.4: Rectangle packing for discrete resource problem.

values and represent r0
j as linear combinations of these two values. Consequently b j−

a j = 1 for any task Tj. The rectangles are packed in (C0
max, m) rectangle using the rule of

the southwest corner in which a new rectangle is always assigned the leftmost position

at the bottom of the unoccupied area. It can be proved [24] that the total width of the

two rectangles can not exceed C0
max. Also a rectangle always fits within the height m.

Once a rectangle exceeds C0
max along the width, it is cut and the excess portion is moved

back inside following the packing rule.

An example is shown in Figure 5.4, where two rectangles of height b j and a j are

allocated to application Tj. The rectangle of height b j is packed first and it exceeds

C0
max. The highlighted part of the rectangle is moved back and then the second rect-

angle allocated for this task is placed. The packing algorithm guarantees at most two

preemption points for each task and requires O(n) time. Consequently, the time com-

plexity to optimally schedule the malleable tasks on an ideal adaptive multi-core is

O(nmax{m,n log2 m}).

114

Chapter 5. Scheduling on Bahurupi Architecture

Algorithm 1: Malleable Task Scheduler on Bahurupi
AdaptiveScheduler (task list, m, n) begin

restart = FALSE;
Apply constraint C1(task list, m, n);
Find contiunous cmax(task list, m, n);
Convert to discrete(task list, m, n);
Generate and pack rectangles(task list, m, n, restart);
if restart == TRUE then

AdaptiveScheduler(task list, m, n);
end
Apply constraint C3(task list, m, n);

end

Generate and pack rectangles (task list, m, n, restart)

begin
constraint violated = FALSE;
current task = 1;
rectangles = Generate rectangles(m, n);
Order rectangles(rectangles, n);
while constraint violated == FALSE do

Place rectangles(rectangles[current task]);
Apply constraint C2(task list, m, n, constraint violated);
if constraint violated == TRUE then

restart = TRUE;
violating task = current task;
break;

end
current task = current task + 1;

end
if constraint violated == TRUE then

Constrain remaining tasks(current task, n);
end

end

Apply constraint C2 (task list, m, n, constraint violated)

begin
for all time intervals (∆ j , ∆ j+1) do

n coalitions = Count coalitions(∆ j , ∆ j+1);
CL j = Build coalitions list(∆ j , ∆ j+1);
NCL j = Build non coalitions list(∆ j , ∆ j+1);
if n coalitions > (m/4) then

constraint violated = TRUE;
break;

end
end

end

Apply constraint C3 (task list, m, n)

begin
constraint violated = FALSE;
for all tasks in CL j do

for 1≤ k < (m/4) do
if task uses cores P4k and P4k−1 then

constraint violated = TRUE;
break;

end
end

end
if constraint violated == TRUE then

Pack coalitions(CL j);
Pack non coalitions(NCL j);

end
end

115

Chapter 5. Scheduling on Bahurupi Architecture

5.2 Task scheduling on Bahurupi

When scheduling tasks on a realistic dynamic heterogeneous multi-core architecture,

we must take into consideration all the constraints and limitations imposed by the sys-

tem. More concretely, for Bahurupi architecture, we need to consider the following

constraints in forming core coalitions for sequential tasks. The constraints are actu-

ally quite generic and are present in almost all adaptive multi-core architectures in the

literature even though the exact values for the constraints can be different.

C1. A sequential application can use at most four cores.

C2. We can form at most m/4 coalitions at any time.

C3. A sequential application can only use cores that belong to the same cluster.

There is no such constraints for the parallel tasks. A parallel task may use any

number of available cores to minimize the overall makespan. The scheduling solution

for Bahurupi needs to add the constraints to the optimal scheduling solution presented

in Section 5.1 for the ideal dynamic heterogeneous multi-core architecture. Algorithm

1 presents the scheduling algorithm for Bahurupi.

5.2.1 Constraint C1

Bahurupi restricts any sequential application to use at most four cores due to the limited

amount of ILP found in sequential applications and the increase in coalition overhead

when using more than four cores. To implement this constraint we modify the set of

feasible resource allocation such that, the system can allocate at most four cores for

sequential applications.

R =

{
r = (r0, ...,r j, ...,rn−1) | r j > 0,

n−1

∑
j=0

r j ≤ m

}

116

Chapter 5. Scheduling on Bahurupi Architecture

0

1

2

3

4

 1346 0 200 400 600 800 1000 1200

C
o

re
s

Cycles (x 1MIL)

∆0 ∆1 ∆2 ∆3

hmmer gsm swaptions

(a)

0

1

2

3

4

 0 200 400 600 800 1000 1200 1400

C
o

re
s

Cycles (x 1MIL)

hmmer gsm swaptions

(b)

Figure 5.5: Example of imposing constraint C2.

max(r j) =

 4 if application Tj is sequential,

m if application Tj is parallel

Function Apply constraint C1 in Algorithm 1 implements this constraint for the se-

quential tasks.

5.2.2 Constraint C2

Bahurupi architecture can accommodate at most one coalition per cluster. For each

cluster, Bahurupi uses the coalition logic, which can be allocated to at most one coali-

tion. Figure 5.5 illustrates an example of a 4-core Bahurupi architecture running two

sequential tasks, hmmer and gsm and one parallel task swaptions. This architecture can

support at most one coalition. The time at which the tasks are preempted are marked on

the top of the charts. The original schedule for the ideal adaptive architecture shown in

Figure 5.5(a) violates the bound on number of coalitions in the interval ∆0 – ∆1 where

there are two coalitions of two cores ({P0,P1} and {P2,P3}) used simultaneously by the

tasks hmmer and gsm.

The one coalition per cluster constraint is imposed through Apply constraint C2

during the placement of the rectangles in the function Generate and pack rectangles

117

Chapter 5. Scheduling on Bahurupi Architecture

in Algorithm 1. The rectangles are ordered initially by the function Order rectangles

in decreasing order of their heights. Rectangles having the same height are ordered

in decreasing order of the corresponding processing work p j. After placing a new

rectangle, we scan each time interval (∆ j–∆ j+1) to count the number of coalitions used

by the sequential tasks in that interval. If there are more than m/4 coalitions, then the

constraint C2 is violated.

If the constraint C2 is violated, then we abort the rectangle packing and constrain the

sequential tasks that are not placed yet (including the last placed task) to use only one

processor, i.e., r j = 1. The algorithm is then resumed with the new constraint. Imposing

constraint C2 may lead to increased makespan. For example, in Figure 5.5(b), gsm is

restricted to using only one core and the makespan is increased.

5.2.3 Constraint C3

Constraint C3 ensures that a sequential task is restricted to using only the cores within

a cluster. In Figure 5.6(a) we consider a set of three sequential applications gobmk,

bitcount and fft and two parallel applications, blackscholes and canneal. We can see

that the constraint C3 is violated for time intervals ∆2–∆5 assuming that processors P0

– P3 belong to one cluster and P4 – P7 belong to another cluster.

Function Apply constraint C3 in Algorithm 1 implements this constraint. To im-

pose this constraint, we first assume that the schedule has already been modified to

satisfy the constraints C1 and C2. For each time interval ∆ j–∆ j+1, we check if any

sequential task uses cores across clusters. This can be done by simply checking if any

sequential task uses cores P4k and P4k−1, where 1 ≤ k < (m/4). If the constraint is

violated in any time interval, then we need to migrate the tasks within that interval.

For each time interval ∆ j–∆ j+1, let CL j be the list of rectangles for which the height

is greater than 1 and the corresponding tasks are sequential (i.e., sequential tasks that

need coalitions) and NCL j be the list with rectangles that correspond to sequential tasks

118

Chapter 5. Scheduling on Bahurupi Architecture

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400
C

o
re

s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(d)

Figure 5.6: Example of imposing constraint C3.

119

Chapter 5. Scheduling on Bahurupi Architecture

without coalition or parallel tasks. These lists are built while the rectangles are packed.

As constraints C1 and C2 have already been satisfied, it follows that we can fit each

rectangle from CL j list on a unique cluster P4k – P4k+3, where 0 ≤ k < (m/4). This is

implemented by function Pack coalitions. The one-unit height rectangles from NCL j

can fit in the available free cores regardless of the clusters, while the rectangles (threads)

corresponding to the parallel tasks can be scheduled such that they fill the remaining free

cores. This is done in function Pack non coalitions.

Figure 5.6(b) shows the scheduling after applying the constraint C3 for the interval

∆2–∆3. Here, CL2 = {bitcount, fft} and NCL2={canneal, blackscholes, gobmk}. The

tasks bitcount and fft are placed on cores P0–P1 and P4–P5 as they are sequential appli-

cations running on coalitions. After this step, the cores P2 and P3 are free. We choose

gobmk to run on core P2 and one thread of parallel application blackscholes to run on

core P3. Figures 5.6(c)–(d) show the results for the rest of the intervals. As this step

is only a rectangle rearrangement, application of the constraint C3 has no effect on the

makespan.

Note that imposing constraints C1 and C3 maintain the optimality of the schedule.

However, imposing constraint C2 may violate the optimality of the schedule. Among

all the task sets we evaluated, only 1% of the task sets violate the constraint C2 in

the optimal schedule on ideal adaptive multi-core. Thus, for most of the task sets, the

schedule obtained for Bahurupi is the optimal schedule.

5.2.4 Online schedule for Bahurupi

The off-line schedule described in the previous section assumes all the tasks are ready

at time zero. However, in a real system, the tasks can arrive at any point in time and

the arrival times are not known beforehand. In this section, we present an online sched-

ule for Bahurupi architecture to quantitatively evaluate the performance of a dynamic

heterogeneous multi-core compared to homogeneous and static heterogeneous multi-

120

Chapter 5. Scheduling on Bahurupi Architecture

cores.

We allow the tasks to arrive in the system with different arrival times. Every task

Tj is now defined by the tuple < type j, arr j, f jk >, where type j is the type of the task

(serial or parallel), arr j is the arrival time and f jk is its speedup function on k cores.

The arrival times arr j are randomly distributed in the interval [0,∑n−1
j=0 p j] allowing the

tasks to compete for limited number of free cores.

Algorithm 2 presents our online scheduler for Bahurupi multi-core. Here we model

the workload as moldable tasks [60]. A moldable task can be scheduled on any number

of cores just like malleable tasks but with the restriction that it cannot be preempted.

This assumption makes it easy for us to integrate the scheduler in existing operating

systems.

When a task arrives in the system, the only information required by the scheduler

is its speedup function. This can be obtained by profiling the task on different num-

ber of cores. The scheduling decision is taken periodically at every system tick by

the function OnlineSchedule tick. As the moldable tasks cannot be preempted, once a

task is scheduled on one or more cores using Allocate cores function, it will run till

completion. Once a task completes execution, the number of free cores is updated by

Update free cores function.

The dynamic allocation of the tasks to the cores is handled by Place task function.

For most tasks, the speedup function tends to have a flat region when applied to a

large number of cores (see Figure 5.7). In this region, the increase in performance

on r j + 1 cores is minimal compared to the performance on r j cores. The function

Get max cores returns the number of cores beyond which the speedup improvement is

lower than 4%. This way we avoid allocating unnecessary cores that contribute little

to performance improvement. Instead, these cores can be allocated to future tasks.

The algorithm also ensures that the constraints C1, C2 and C3 mentioned earlier are

satisfied. When constraint C3 is violated, function Allocate cores migrates the tasks

121

Chapter 5. Scheduling on Bahurupi Architecture

Algorithm 2: Online scheduler for Bahurupi

InitAdaptiveOnlineScheduler (m, n) begin
free cores = m;
free clusters = m/4;

end

OnlineSchedule tick ()

begin
if task queue.empty() == FALSE then

if free cores > 0 then
next task = task queue.front();
Place task(next task);

end
end
if current task is finished then

Update free cores(current task, free cores);
free clusters = free cores/4;

end
end

Place task (task)

begin
max cores = Get max cores(task);
use cores = max cores;
if max cores < free cores then

use cores = free cores;
end
if task.type == PARALLEL then

Allocate cores(task, use cores);
end
else

use cluster = (use cores > 1);
if (free clusters - use cluster) > 0 then

Allocate cores(task, use cores);
free clusters = free clusters - use cluster;

end
else

use cores = 1;
Allocate cores(task, use cores);

end
end
free cores = free cores - use cores;

end

122

Chapter 5. Scheduling on Bahurupi Architecture

such that no sequential task spans across clusters.

5.3 Quantitative results

In this section, we first present quantitative characterization of the performance limit

of ideal dynamic heterogeneous multi-core and realistic dynamic heterogeneous multi-

core (Bahurupi) compared to homogeneous and static heterogeneous multi-cores. This

is followed by performance comparison of Bahurupi with homogeneous and static het-

erogeneous multi-cores using online scheduler.

5.3.1 Workload

We select 27 sequential applications from SPEC2006, SPEC2000 and embedded MiBench

benchmark suites and 6 parallel applications from PARSEC benchmark suite. The char-

acteristics of the benchmarks appear in Table 5.1.

We generate different workload (task sets) consisting of varying mix of ILP and TLP

tasks. We ensure that the tasks within a task set have similar processing workload so

that all the tasks are competing for the resources throughout execution. This restriction

in variability of processing workload is achieved as follows. Given the workload p j for

each task Tj, we compute the average workload and the standard deviation. We ensure

that the ratio of standard deviation and average does not exceed 0.35 for a task set.

Across all the tasks sets, the ratio of sequential tasks ranges from 25% to 80%; so the

ratio of parallel tasks ranges from 20% to 75%.

5.3.2 Multi-core configurations

We model seven different static and dynamic multi-core configurations in our study as

shown in Table 5.2. All these configurations are roughly area equivalent to eight 2-

way multi-core architecture (S1) under the assumption that the area of a 2r-way core is

123

Chapter 5. Scheduling on Bahurupi Architecture

Benchmarks Inputs Suite Type
gzip input.source

SPEC2000

sequential

mesa mesa.ppm
mcf inp.in

equake inp.in
crafty crafty.in
ammp ammp.in
parser test.in

perlbmk diffmail.pl
bzip input.program

SPEC2006

gobmk capture.tst
calculix beampic

hmm bombesin.hmm
sjeng test.txt

quantum 50 5
lbm reference.dat

sphinx an4.ctl
basicmath

runme large.sh MiBench

bicount
qsort
susan

dijkstra
patricia

sha
adpcm

fft
gsm

stringsearch
blackscholes

simsmall PARSEC parallel

swaptions
canneal

vips
bodytrack
raytrace

Table 5.1: Characteristics of benchmarks used in our study.

124

Chapter 5. Scheduling on Bahurupi Architecture

Configuration Description
(S1) 8x2-way Homogeneous eight 2-way cores
(S2) 4x4-way Homogeneous four 4-way cores
(A1) 2x4-way + 4x2-way Static heterogeneous two 4-way + four 2-way cores
(A2) 1x8-way + 4x2-way Static heterogeneous one 8-way + four 2-way cores
(A3) 1x8-way + 2x4-way Static heterogeneous one 8-way + two 4-way cores
(Ideal) 8x2-way Ideal dynamic heterogeneous multi-core
(Bahurupi) 8x2-way Bahurupi dynamic heterogeneous multi-core

Table 5.2: Multi-core configurations used in our study.

Type Issue Commit Dispatch ROB LSQ ALU FP LSU I/D TLB I/D L1$ I/D L2$
width width width size size cnt cnt cnt size size size

2-way 2 2 2 64 32 2 1 1 16 128K 2MB
4-way 4 4 4 128 64 3 2 2 32 256K 2MB
6-way 6 6 6 192 96 4 3 3 48 384K 2MB
8-way 8 8 8 256 128 5 4 4 64 512K 2MB

Table 5.3: Configuration parameters for out-of-order cores: issue, commit, dispatch
width; reorder buffer (ROB) size; load-store queue (LSQ) size; number of ALU, floating
point (FP), and load-store (LSU) units; instruction-data TLB size, L1 instruction-data
cache size, and unified L2 cache size.

equivalent to that of r 2-way cores.

The homogeneous eight 2-way multi-core architecture S1 is treated as the baseline.

We also consider another homogeneous multi-core S2 with medium complexity cores:

four 4-way cores. The static heterogeneous multi-core architectures A1, A2, and A3

employ different combination of small, medium, and large complexity cores. For ex-

ample, A1 has more number of cores compared to A3 and hence is more suitable for

TLP tasks, while A3 can accelerate ILP tasks better than A1.

The ideal dynamic heterogeneous multi-core and Bahurupi require the same amount

of physical area as the baseline homogeneous multi-core. However, they can be mor-

phed at runtime to form various different homogeneous or static heterogeneous con-

figurations. As mentioned earlier, the ideal dynamic heterogeneous architecture has

no restriction on how core coalitions can be formed while Bahurupi imposes certain

constraints driven by implementation considerations.

We use MARSS cycle-accurate multi-core simulator [73] for our quantitative char-

125

Chapter 5. Scheduling on Bahurupi Architecture

acterization work. The configuration parameters for out-of-order cores with different

superscalarity values are shown in Table 5.3. The resources available to a core increases

with increasing superscalarity.

5.3.3 Speedup functions

All architectures allow parallel tasks to use any number of cores. The speedup function

for parallel tasks on different number of cores are shown in Figure 5.7. We compile the

parallel task with r threads and execute the threads on r cores to obtain the speedup.

In other words, the speedup function represents the ideal scenario where the number

of threads is equal to the number of cores. In reality, a parallel task compiled with r

threads may need to use a different number of cores during execution. Similarly, for an

adaptive architecture, a task can be allocated varying number of cores during execution.

However, we noticed little difference in performance when an application compiled

with m threads executed on r cores where r < m.

The homogeneous and static heterogeneous multi-cores use native 4-way and 8-way

cores. The speedup of serial tasks on native 4-way and 8-way cores are obtained from

MARSS cycle-accurate simulator [73]. Both ideal dynamic heterogeneous multi-core

and Bahurupi architecture, on the other hand, employ core coalition to create virtual

2r-way cores from r 2-way physical cores. We have established before [74] that the

performance of a virtual 2r-way core through core coalition in Bahurupi is either close

to or even surpasses the performance of native 2r-way core. For serial tasks running

on virtual cores in dynamic heterogeneous architectures (Ideal and Bahurupi), we use

speedup obtained from core coalition. As going beyond 8-way cores does not provide

further speedup due to limited ILP, we restrict the speedup function for serial tasks to

8-way core as shown in Figure 5.7.

126

Chapter 5. Scheduling on Bahurupi Architecture

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2way 4way 6way 8way

Sp
e

e
d

u
p

Core configurations

bzip

gobmk

calculix

hmm

sjeng

quantum

lbm

sphinx

equake

(a) SPEC

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2way 4way 6way 8way

Sp
e

e
d

u
p

Core configurations

basicmath

bitcount

qsort

susan

dijkstra

patricia

sha

adpcm

FFT

(b) MiBench

7

8

1P 2P 3P 4P 5P 6P 7P 8P1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
e

e
d

u
p

Cores

blackscholes

swaptions

canneal

vips

bodytrack

raytrace

(c) PARSEC

Figure 5.7: Speedup functions for sequential and parallel tasks.

127

Chapter 5. Scheduling on Bahurupi Architecture

5.3.4 Scheduling on homogeneous and static heterogeneous multi-

cores

The scheduling algorithms presented in Section 5.1 are used to obtain the makespan for

Ideal and Bahurupi architectures. For the homogeneous architectures S1 and S2, we

can employ the same optimal scheduling algorithm used for Ideal by simply restricting

the sequential applications to use only one core.

For static heterogeneous architectures, however, we need to modify the scheduling

algorithm. We first obtain the optimal makespan C0
max assuming continuous resource

allocation. Then for each task Tj, we round up or down the resource allocated r0
j to

match an available simple or complex core, except for r0
j < 1 in which case r0

j becomes

1. Finally, we perform strip packing [65] to optimally schedule the tasks. Note that

scheduling using strip-packing is computationally expensive for static heterogeneous

multi-cores; but scheduling on static heterogeneous multi-cores is not the focus here.

We merely use it for comparison purposes.

For online schedule on homogeneous and static heterogeneous multi-cores, we adapt

the online algorithm presented for Bahurupi in Section 5.2.4. In all the schedules, we as-

sume a preemption penalty of 100 cycles and reconfiguration penalty of 100 cycles [74].

5.3.5 Limit study of dynamic heterogeneous multi-core

We now proceed to characterize the performance limit of dynamic heterogeneous multi-

cores compared to homogeneous and static heterogeneous multi-cores. As mentioned

earlier, we generate 850 task sets and compute the makespan of each task set on different

multi-core architectures. The results are presented in Figure 5.8. The speedup on Y-axis

is defined w.r.t. the makespan on baseline homogeneous S1 architecture consisting of

eight 2-way cores. We plot the speedup on six different architectures for each task set

represented on the X-axis. That is, each point in this graph represents the speedup of

128

Chapter 5. Scheduling on Bahurupi Architecture

-100%

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

Sp
e

e
d

u
p

Task sets

Ideal Bahurupi Static het. A1 Static het. A2 Static het. A3 Homogeneous S2

Figure 5.8: Comparison of dynamic and static multi-cores under off-line schedule. The
speedup is w.r.t. the baseline homogeneous S1.

a particular task set on a particular architecture compared to baseline S1. For ease of

presentation, the task sets along X-axis are sorted in non-decreasing order of speedup

on Bahurupi.

The results clearly demonstrate that dynamic heterogeneous architectures (Ideal and

Bahurupi) perform significantly better when compared to homogeneous and static het-

erogeneous architectures. It is interesting to note that the performance of Bahurupi is

practically identical to that of Ideal dynamic heterogeneous architecture even though

Bahurupi imposes certain constraints on core coalition. Thus, a cluster-based dynamic

heterogeneous architecture like Bahurupi is quite effective in reaching the speedup limit

set by ideal dynamic heterogeneous architecture.

The normalized speedup of dynamic heterogeneous architectures ranges from 10%

to 49%. When the speedup on dynamic heterogeneous architecture is low, the speedup

on the other multi-core architectures is also very low or they perform even worse than

the baseline homogeneous architecture S1 due to lack of resources. On average, dy-

namic heterogeneous architectures outperform the static heterogeneous configurations

A1, A2 and A3 by 18%, 35% and 52% respectively. When compared with the homoge-

neous configuration S2, the dynamic heterogeneous architecture performs 26% better,

129

Chapter 5. Scheduling on Bahurupi Architecture

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal Bahurupi Static het.
A1

Static het.
A2

Static het.
A3

 Homog. S2 Homog. S1

P
ro

ce
ss

o
r

u
ti

liz
at

io
n

Multi-core processor configurations

Figure 5.9: Utilization of different multi-cores in offline schedule.

which makes the homogeneous configuration S2 a better option than the static heteroge-

neous configurations A2 and A3. This is due to the availability of a number of powerful

cores in S2 that can accelerate both the sequential and parallel tasks.

The results also anticipate the performance benefit of the announced static heteroge-

neous big.LITTLE multi-core [41], which includes two 3-way Cortex A-15 out-of-order

cores and four dual-issue in-order Cortex A-7 cores on the same die. This configuration

is close to the A1 configuration, which performs the best out of all static heterogeneous

configurations.

Figure 5.9 reports the processor utilization (averaged across all tasks sets) for differ-

ent static and dynamic multi-core architectures. The dynamic heterogeneous architec-

tures have the best utilization (94%) and performance making them the most efficient

architectures. In contrast, the static heterogeneous multi-core A3 has a high utilization

(92%) but low performance, making it the least efficient multi-core architecture. The

homogeneous configuration S1 has low utilization (61%) as it can only exploit TLP

from parallel tasks. The serial tasks keep only a subset of the cores busy. The static

heterogeneous configuration A1 has good utilization (82%) making it the most efficient

static heterogeneous multi-core configuration.

130

Chapter 5. Scheduling on Bahurupi Architecture

-100%
-90%
-80%
-70%
-60%
-50%
-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%

Sp
e

e
d

u
p

Task sets

Bahurupi Static het. A1 Static het. A2 Static het. A3 Homogeneous S2

Figure 5.10: Comparison of Bahurupi with static multi-cores under online schedule.
The speedup is w.r.t. baseline homogeneous S1.

5.3.6 Realistic performance benefit of dynamic heterogeneous multi-

core

We now present the performance benefit of dynamic heterogeneous multi-core archi-

tecture such as Bahurupi in the context of realistic online scheduling where tasks can

arrive at arbitrary point in time. The results are shown in Figure 5.10. The X-axis and

Y-axis are defined similar to Figure 5.8. We perform the experiments for the same 850

task sets used for offline schedule; however, we run each task set with five different

arrival times to create a total of 4,250 task sets.

Again Bahurupi outperforms homogeneous and static heterogeneous multi-core ar-

chitectures with speedup ranging from 10% to 62%. On average, Bahurupi outperforms

static heterogeneous A1, A2 and A3 configurations by 17%, 26%, and 28%, respec-

tively. The homogeneous architecture S2 shows a loss in performance of 26% when

compared to Bahurupi. This shows that in the case of online scheduling, the speedup

trend for different configurations is almost the same as that of off-line schedule (Figure

5.8). The static heterogeneous configuration A1 offers the best performance out of all

131

Chapter 5. Scheduling on Bahurupi Architecture

0%

10%

20%

30%

40%

50%

60%

70%

80%

Bahurupi Static het. A1 Static het. A2 Statis het. A3 Static het. S2 Homog. S1

P
ro

ce
ss

o
r

u
ti

liz
at

io
n

Multi-core processor configurations

Figure 5.11: Utilization of different multi-cores in online schedule.

static heterogeneous multi-cores, while the configuration A3 offers the worst perfor-

mance.

Figure 5.11 plots the average processor utilization of the different architectures in

online scheduling. The utilization trend is similar to that of offline schedule (Figure

5.9). Bahurupi shows very good efficiency with 76% average utilization, while the

static heterogeneous configuration A3 shows the worst efficiency with 67% average

utilization. Similarly, homogeneous configuration S1 has the lowest utilization (44%)

due to the large number of simple cores that can only benefit the parallel applications,

whereas the serial applications keep the occupied cores busy for a long time.

The measured average competitive ratio between our online scheduler and an opti-

mal online scheduler (obtained using strip packing) is 1.14.

5.3.7 Reconciling ILP and TLP

The main objective of dynamic heterogeneous multi-core architectures such as Bahu-

rupi is to reconcile the conflict between ILP and TLP tasks and provide performance

benefit for both. We now provide quantitative validation that Bahurupi indeed manages

132

Chapter 5. Scheduling on Bahurupi Architecture

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sp
e

e
d

u
p

Bahurupi Static het. A1 Static het. A2 Static het. A3 Homog. S1 Homog. S2

Figure 5.12: Speedup of sequential applications averaged across all task sets normalized
w.r.t. execution on native 2-way core.

to accelerate both sequential and parallel tasks.

As mentioned before, we use 27 sequential and 6 parallel applications to create 850

different task sets for our online scheduling experiment. Each task set is run with 5

different randomly selected arrival times to create a total of 850×5 different task sets.

For each task and multi-core configuration used in our study, we compute the average

speedup of the task across all the online schedules in which the task participates. The

speedup is computed w.r.t. the execution time of the task on a single 2-way core.

Figure 5.12 shows the speedup for the sequential applications. Bahurupi is the clear

winner here and provides the best speedup for each application among all the multi-core

configurations. Static heterogeneous A3 using native 8-way core is close to Bahurupi.

Also as expected, homogeneous S2 deploys 4-way cores and hence has better speedup

for serial tasks compared to homogeneous S1 using 2-way cores. The performance of

static heterogeneous A1 and A2 for serial applications appear somewhere in between.

In contrast, Figure 5.13 shows the speedup for parallel applications. Again, the

speedup of Bahurupi is close to that of baseline homogeneous S1, which understand-

ably has the best speedup because it has a large number of simple cores. The other

homogeneous and static heterogeneous configuration perform quite badly for parallel

133

Chapter 5. Scheduling on Bahurupi Architecture

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

blackscholes canneal bodytrack vips swaptions raytrace

Sp
e

e
d

u
p

Bahurupi Static het. A1 Static het. A2 Static het. A3 Homog. S1 Homog. S2

Figure 5.13: Speedup of parallel applications averaged across all task sets normalized
w.r.t. execution on one 2-way core.

applications.

So in summary, Bahurupi dynamic heterogeneous multi-core architecture is suc-

cessful in accelerating both serial and parallel tasks. While homogeneous S1 with large

number of simple cores is quite effective for TLP, it shows poor performance for serial

tasks. Static heterogeneous architecture A3 can perform well for serial tasks due to the

presence of a complex core but suffers badly for parallel tasks. Among the static hetero-

geneous configurations, the configuration A1 provides the best balance of ILP and TLP

speedup; but is far behind dynamic heterogeneous multi-core architecture Bahurupi.

5.4 Summary

In this chapter we have presented a comprehensive quantitative approach to establish the

performance potential of dynamic heterogeneous multi-core architectures compared to

homogeneous and static heterogeneous multi-cores. This is a performance study that

considers a mix of sequential and parallel workloads to observe the capability of dy-

namic heterogeneous multi-cores in exploiting both ILP and TLP. We employ an op-

timal algorithm that allocates and schedules the tasks on varying number of cores so

as to minimize the makespan. This optimal schedule allows us to define the perfor-

134

Chapter 5. Scheduling on Bahurupi Architecture

mance limit of ideal dynamic heterogeneous multi-cores for realistic workloads. We

then modify this optimal schedule to satisfy the constraints imposed by a realistic dy-

namic heterogeneous multi-core, namely Bahurupi. The experiments reveal that both

the ideal and the realistic dynamic heterogeneous architecture provide significant reduc-

tion in makespan for mixed workload compared to homogeneous and static heteroge-

neous architectures. Finally, we compare the performance of dynamic heterogeneous,

homogeneous and static heterogeneous multi-cores in an online scheduling policy and

demonstrate the same performance trend.

135

Chapter 6

Conclusions

6.1 Summary of the thesis

The Moore’s law is still valid, but recent research already show that the current ar-

chitectural trends of including more and more simple cores on the same die will soon

come to an end. We already see the first [41] steps towards static heterogeneous designs

where cores with different power and performance characteristics sharing the same ISA

are placed on the same die. This is to offer a better energy-performance tradeoff when

compared to the homogeneous designs. But these static heterogeneous multi-cores lack

the adaptability to support changing requirements coming from the existing and emerg-

ing applications. The next logical step would be to move to dynamic heterogeneous

architectures. These architectures are not fixed at the fabrication time, but they can

adapt dynamically to the new performance requirements.

The major contribution of this thesis is the design and evaluation of a novel recon-

figurable multi-core architecture, called Bahurupi, that can dynamically adapt itself to

support both multi-threaded code with explicit thread-level parallelism as well as se-

quential code with instruction-level parallelism. Bahurupi can dynamically merge the

baseline 2-way out-of-order execution engines to achieve the performance of 4-way

136

Chapter 6. Conclusions

or even 8-way out-of-order processors. Bahurupi is a hardware-software cooperative

solution that requires minimal additional hardware resources and compiler support for

coalition. In this thesis we have also included the prototype implementation of the

Bahurupi multi-core architecture in FPGAs.

We also propose and implement a novel L1 data cache architecture for our dynamic

heterogeneous multi-core. When Bahurupi creates coalition of cores, the newly created

core becomes more demanding in terms of memory requests. In order to satisfy the

memory demands of such architecture, a high bandwidth access to the first level of

cache must be provided. Our novel architecture is able to overcome the limitations in

terms of area, energy and performance of multi-ported shared caches. Results show

that our design is able to accommodate successfully the memory demands of dynamic

heterogeneous architectures providing high performance with very low area and energy

consumption. Additionally, our design offers dynamic reconfiguration capabilities. At

runtime, the design can switch between two modes of execution: private mode and

coalition mode. In private mode, the cores access their private caches in the traditional

way and our design is not used. In coalition mode, the cores connect to a high bandwidth

and low latency interconnect that can reconfigure at runtime the number of banks the

adaptive multi-core accesses reducing the L1 data bank conflicts. At the same time, the

design can also reconfigure the size and associativity of the cache that the virtual core

accesses.

In this thesis, we have also presented a comprehensive quantitative approach to es-

tablish the performance potential of dynamic heterogeneous multi-core architectures

compared to homogeneous and static heterogeneous multi-cores. This study considers

a mix of sequential and parallel workloads to observe the capability of dynamic hetero-

geneous multi-cores in exploiting both ILP and TLP. We employ an optimal algorithm

that allocates and schedules the tasks on varying number of cores so as to minimize the

makespan. This optimal schedule allows us to define the performance limit of ideal dy-

137

Chapter 6. Conclusions

namic heterogeneous multi-cores for realistic workloads. We then modify this optimal

schedule to satisfy the constraints imposed by our realistic adaptive multi-core, Bahu-

rupi. The experiments reveal that both the ideal and the realistic dynamic heterogeneous

architectures provide significant improvement in throughput for mixed workload com-

pared to homogeneous and static heterogeneous architectures. Finally, we compare the

performance of dynamic heterogeneous, homogeneous and static heterogeneous multi-

cores in an online scheduling policy and demonstrate the same performance trend.

6.2 Future work

In future, more research can be done on the portability of Bahurupi to any ISA. Many

ISAs prevent the designers from adding any new instruction to the instruction set. Cir-

cumventing the sentinel instruction need would have a very good impact in the appli-

cability of Bahurupi on existing architectures and ISAs. More research can also be

conducted to analyse the benchmarks characteristics that impact the performance of

Bahurupi.

In addition to our L1 data cache architecture design, we wish to investigate the

effect of the coalition on the last level of unified cache (LLC) with combination of par-

allel applications. Usually, modern LLCs are caches with big banks, that are accessed

in a non-uniform fashion (NUCA caches). By creating the coalition, the virtual core

becomes more aggressive in terms of memory access as it basically accesses memory

across multiple loop iterations. This may impact the behaviour of the other applications

sharing the LLC. New research can propose solutions that can overcome these problems

by proposing novel core-to-bank allocation policies.

In addition, we also wish to dedicate more research on energy-aware online sched-

ulers for Bahurupi. We believe that a performance and power modeling scheme similar

to the one in [77] plus a controller-based solution similar to the one in [70] can lead to

138

Chapter 6. Conclusions

a very efficient scheduling system that can optimally balance the resource allocation to

the sequential and parallel tasks coexisting in the system. A prediction method would

be very useful at runtime to predict when the application will need coalition of cores

and how big the coalition should be. The system would be able to decide when to create

the coalition of cores with the help of performance counters (e.g., on-line measuring of

IPC, cache misses). The available set of performance counters should be enriched with

ones that can monitor the amount of dependency existing between basic blocks and in-

side the basic blocks. This information together with the overall system utilization and

memory usage can make an operating system decide when to coalesce and how many

cores to coalesce.

Similarly, in terms of L1 data cache architecture reconfiguration, the system needs

to smartly decide when to add more access points or (and) to increase the size and as-

sociativity of the shared cache seen by the coalition of cores. Performance counters

can be added to monitor the miss rates per cache bank, the arbitration conflicts per ar-

biter and total energy consumption. The reconfiguration penalty plays an important role

when making these decisions. When reconfiguring the network, the address mapping

changes; thus, the cache banks must flush their content to the next level of cache. This

is a costly process, so the number of reconfigurations during execution of an application

should be wisely decided. On the other hand, when increasing the associativity of the

cache at runtime, there is no need for flushing the caches to the next level. However, in

this case the energy consumption increases.

In the future, we also plan to implement our Bahurupi design in a more robust and

easy to manage simulator (i.e., GEM5 simulator [17]) which will offer the possibility

of running a full modern operating system. This will bring more opportunities for the

operating systems research in the context of flexible multi-core architectures.

In addition, we also plan to implement multi-clusters of Bahurupi dynamic hetero-

geneous multi-cores by using multiple FPGAs and study the benefits of such architec-

139

Chapter 6. Conclusions

ture in a many-core environment.

140

References

[1] ARM Ltd., The Advanced Microcontroller Bus Architecture (AMBA). www.

arm.com/products/solutions/AMBAHomePage.html.

[2] SPEC CPU Benchmarks. http://www.spec.org/benchmarks.html.

[3] Stmicroelectronics, The STBus Interconnect., note = www.st.com.

[4] Xilinx. Virtex-6 FPGA ML605 Evaluation Kit. http://www.xilinx.com/

products/boards-and-kits/EK-V6-ML605-G.htm.

[5] Nvidia. The Benefits of Multiple CPU Cores in Mobile Devices,

2010. http://www.nvidia.com/content/PDF/tegra_white_papers/

Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf.

[6] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for Computer

System Modeling. Computer, 35(2):59–67, February 2002.

[7] T. M. Austin and G. S. Sohi. High-bandwidth Address Translation for Multiple-

issue Processors. In Proceedings of the 23rd Annual International Symposium

on Computer Architecture, ISCA, pages 158–167. ACM, 1996.

[8] Balakrishnan, Saisanthosh, Rajwar, Ravi, Upton, Mike, Lai, and Konrad. The

Impact of Performance Asymmetry in Emerging Multicore Architectures. In

Proceedings of the 32nd Annual International Symposium on Computer Archi-

tecture, ISCA, pages 506–517. ACM, 2005.

141

www.arm.com/products/solutions/AMBAHomePage.html
www.arm.com/products/solutions/AMBAHomePage.html
http://www.spec.org/benchmarks.html
www.st.com
http://www.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf

REFERENCES

[9] S. Baldawa and R. Sangireddy. CMP-SIM: A flexible CMP architectural simu-

lation environment.

[10] A. O. Balkan, G. Qu, and U. Vishkin. A Mesh-of-Trees Interconnection Network

for Single-Chip Parallel Processing. In Application-specific Systems, Architec-

tures and Processors, ASAP, pages 73–80. IEEE, 2006.

[11] M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous Mul-

tiprocessor Architectures. In Proceedings of the 3rd Conference on Computing

Frontiers, CF, pages 29–40. ACM, 2006.

[12] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive Selective Repli-

cation for CMP Caches. In Proceedings of the 39th Annual International Sym-

posium on Microarchitecture, MICRO, pages 443–454. IEEE, 2006.

[13] L. Benini and G. De Micheli. Networks on Chips: A New SoC Paradigm. Com-

puter, 35(1):70–78, January 2002.

[14] D. Benitez, J. C. Moure, D. I. Rexachs, and E. Luque. Evaluation of the Field-

programmable Cache: Performance and Energy Consumption. In Proceedings

of the 3rd Conference on Computing Frontiers, CF, pages 361–372. ACM, 2006.

[15] P.-E. Bernard, T. Gautier, and D. Trystram. Large Scale Simulation of Parallel

Molecular Dynamics. In Proceedings of the 13th International Symposium on

Parallel Processing and the 10th Symposium on Parallel and Distributed Pro-

cessing, pages 638–644, 1999.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In Proceedings of the 17th In-

ternational Conference on Parallel Architectures and Compilation Techniques,

PACT, pages 72–81. ACM, 2008.

142

REFERENCES

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. D. Hill, and D. A. Wood. The Gem5 Simulator. ACM SIGARCH

Computer Architecture News, 39(2):1–7, August 2011.

[18] T. Bjerregaard and S. Mahadevan. A Survey of Research and Practices of

Network-on-chip. ACM Computing Surveys, 38(1), June 2006.

[19] E. Blayo and L. Debreu. Adaptive Mesh Refinement for Finite-Difference Ocean

Models: First Experiments. Journal of Physical Oceanography, 29:1239–1250,

1999.

[20] J. Blazewicz, T. C. E. Cheng, M. Machowiak, and C. Oguz. Berth and Quay

Crane Allocation: A Moldable Task Scheduling Model. Journal of the Opera-

tional Research Society, 62(7):1189–1197, 2011.

[21] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling Multiprocessor Tasks

to Minimize Schedule Length. IEEE Transactions on Computers, C-35(5):389–

393, 1986.

[22] J. Blazewicz, M. Drozdowski, G. Schmidt, and D. de Werra. Scheduling Inde-

pendent Multiprocessor Tasks on a Uniform k-processor System. Parallel Com-

puting, 20(1):15–28, January 1994.

[23] J. Blazewicz, K. Ecker, and D. Trystram. Handbook on Parallel and Distributed

Processing. Springer, 2000.

[24] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and J. Weglarz.

Preemptable Malleable Task Scheduling Problem. IEEE Transactions on Com-

puters, 55(4):486–490, April 2006.

143

REFERENCES

[25] J. Blazewicz, M. Machowiak, J. Weglarz, M. Y. Kovalyov, and D. Trystram.

Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan.

Annals OR, 129(1-4):65–80, 2004.

[26] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations. In Proceedings of the

27th Annual International Symposium on Computer Architecture, ISCA, pages

83–94, june 2000.

[27] D. Burger, J. R. Goodman, and A. Kagi. Memory Bandwidth Limitations of

Future Microprocessors. In Proceedings of the 23rd Annual International Sym-

posium on Computer Architecture, ISCA, pages 78–89. ACM, 1996.

[28] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In Pro-

ceedings of the 33rd Annual International Symposium on Computer Architecture,

ISCA, pages 264–276. IEEE, 2006.

[29] G.-I. Chen and T.-H. Lai. Preemptive Scheduling of Independent Jobs on a Hy-

percube. Information Processing Letters, 28(4):201–206, July 1988.

[30] D. Chiou, S. Devadas, L. Rudolph, and B. Ang. Dynamic Cache Partitioning via

Columnization. Technical report, MIT, 1999.

[31] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H.

Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg. FabScalar: Composing

Synthesizable RTL Designs of Arbitrary Cores Within a Canonical Superscalar

Template. In Proceedings of the 38th International Symposium on Computer

Architecture, ISCA, pages 11–22. ACM, 2011.

144

REFERENCES

[32] J. Cong and B. Yuan. Energy-efficient Scheduling on Heterogeneous Multi-core

Architectures. In Proceedings of the International Symposium on Low Power

Electronics and Design, ISLPED, pages 345–350. ACM, 2012.

[33] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Soft-

ware Approach. Elsevier Morgan Kaufmann, 1999. Page 337.

[34] W. J. Dally and B. Towles. Route Packets, Not Wires: On-chip Inteconnection

Networks. In Proceedings of the 38th Annual Design Automation Conference,

DAC, pages 684–689. ACM, 2001.

[35] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V. Vorst. Numerical Linear

Algebra for High Performance Computers. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1998.

[36] J. Du and J. Y.-T. Leung. Complexity of Scheduling Parallel Task Systems. SIAM

Journal on Discrete Mathematics, 2(4):473–487, November 1989.

[37] P.-F. Dutot and D. Trystram. Scheduling on Hierarchical Clusters Using Mal-

leable Tasks. In Proceedings of the Thirteenth Annual Symposium on Parallel

Algorithms and Architectures, SPAA, pages 199–208. ACM, 2001.

[38] J. Edler and M. D. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simulator.

University of Wisconsin Computer Sciences.

[39] FreePDK, 2011. http://www.eda.ncsu.edu/wiki/FreePDK.

[40] A. Gordon-Ross, F. Vahid, and N. Dutt. Fast Configurable-cache Tuning with

a Unified Second-level Cache. In Proceedings of the 2005 International Sym-

posium on Low Power Electronics and Design, ISLPED, pages 323–326. ACM,

2005.

145

http://www.eda.ncsu.edu/wiki/FreePDK

REFERENCES

[41] P. Greenhalg. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7.

Technical report, ARM, 2011.

[42] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger. Multi-

tasking Workload Scheduling on Flexible Core Chip Multiprocessors. SIGARCH

Computer Architecture News, 36(2):46–55, May 2008.

[43] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A Free, Commercially Representative Embedded Benchmark

Suite. In Proceedings of the Workload Characterization, WWC, pages 3–14.

IEEE, 2001.

[44] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA:

Near-optimal Block Placement and Replication in Distributed Caches. In Pro-

ceedings of the 36th Annual International Symposium on Computer Architecture,

ISCA, pages 184–195. ACM, 2009.

[45] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2006.

[46] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer,

41(7):33–38, July 2008.

[47] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, Utilitar-

ian, and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In

Proceedings of the 15th International Conference on Parallel Architectures and

Compilation Techniques, PACT, pages 13–22. ACM, 2006.

[48] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: Accommo-

dating Software Diversity in Chip Multiprocessors. In Proceedings of the 34th

146

REFERENCES

Annual International Symposium on Computer Architecture, ISCA, pages 186–

197, 2007.

[49] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer.

Adaptive Insertion Policies for Managing Shared Caches. In Proceedings of the

17th International Conference on Parallel Architectures and Compilation Tech-

niques, PACT, pages 208–219. ACM, 2008.

[50] T. Juan, J. J. Navarro, and O. Temam. Data Caches for Superscalar Processors.

In Proceedings of the 11th International Conference on Supercomputing, ICS,

pages 60–67. ACM, 1997.

[51] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt. Mor-

phcore: An Energy-Efficient Microarchitecture for High Performance ILP and

High Throughput TLP. In Proceedings of the 45th Annual International Sympo-

sium on Microarchitecture, MICRO, pages 305–316. IEEE, 2012.

[52] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,

D. Burger, and S. W. Keckler. Composable Lightweight Processors. In Proceed-

ings of the 40th Annual International Symposium on Microarchitecture, MICRO,

pages 381–394. IEEE, 2007.

[53] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in

a Chip Multiprocessor Architecture. In Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques, PACT, pages

111–122. IEEE, 2004.

[54] D. Koufaty, D. Reddy, and S. Hahn. Bias Scheduling in Heterogeneous Multi-

core Architectures. In Proceedings of the 5th European Conference on Computer

Systems, EuroSys, pages 125–138. ACM, 2010.

147

REFERENCES

[55] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-

ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power

Reduction. In Proceedings of the 36th annual International Symposium on Mi-

croarchitecture, MICRO, pages 81–. IEEE, 2003.

[56] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-Core Chip Multiprocess-

ing. In Proceedings of the 37th Annual International Symposium on Microarchi-

tecture, MICRO, pages 195–206. IEEE, 2004.

[57] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-

ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload Per-

formance. In Proceedings of the 31st Annual International Symposium on Com-

puter Architecture, ISCA, pages 64–, 2004.

[58] C. E. LaForest and J. G. Steffan. Efficient Multi-ported Memories for FPGAs. In

Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, FPGA, pages 41–50. ACM, 2010.

[59] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communicatons Systems. In Pro-

ceedings of the 30th Annual International Symposium on Microarchitecture, MI-

CRO, pages 330–335. IEEE, 1997.

[60] J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling: Algorithms,

Models, and Performance Analysis. 2004.

[61] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient Operating System

Scheduling for Performance-asymmetric Multi-core Architectures. In Proceed-

ings of the Conference on Supercomputing, SC, pages 1–11, 2007.

148

REFERENCES

[62] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn. Operating

System Support for Overlapping-ISA Heterogeneous Multi-core Architectures.

In Preceedings of the 16th International Symposium on High Performance Com-

puter Architecture, HPCA, pages 1–12. IEEE, 2010.

[63] W. T. Ludwig. Algorithms for Scheduling Malleable and Non-malleable Par-

allel Tasks, 1995. PhD thesis. Department of Computer Science, University of

Wisconsin-Madison.

[64] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.

Wenisch, and S. Mahlke. Composite Cores: Pushing Heterogeneity Into a Core.

In Proceedings of the 45th Annual International Symposium on Microarchitec-

ture, MICRO, pages 317–328. IEEE, 2012.

[65] S. Martello, M. Monaci, and D. Vigo. An Exact Approach to the Strip-Packing

Problem. Institute for Operations Research and the Management Sciences Jour-

nal on Computing, 15(3):310–319, July 2003.

[66] T. Morad, U. Weiser, and A. Kolodny. ACCMP Asymmetric Cluster Chip Multi-

Processing, 2004. CCIT Technical Report.

[67] G. Mounie, C. Rapine, and D. Trystram. Efficient Approximation Algorithms for

Scheduling Malleable Tasks. In Proceedings of the eleventh Annual Symposium

on Parallel Algorithms and Architectures, pages 23–32. ACM, 1999.

[68] G. Mounie, C. Rapine, and D. Trystram. A 3
2 -Approximation Algorithm for

Scheduling Independent Monotonic Malleable Tasks. SIAM Journal of Comput-

ing, 37(2):401–412, May 2007.

[69] N. Muralimanohar and R. Balasubramonian. CACTI 6.0: A Tool to Understand

Large Caches. University of Utah and Hewlett Packard Laboratories.

149

REFERENCES

[70] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin.

Hierarchical Power Management for Asymmetric Multi-core in Dark Silicon Era.

In Proceedings of the 50th Annual Design Automation Conference, DAC, pages

174:1–174:9. ACM, 2013.

[71] K. Mysur, M. Pricopi, T. Marconi, and T. Mitra. Implementation of Core Coali-

tion on FPGAs. In Preceedings of the 21st International Conference on Very

Large Scale Integration, VLSI-SoC, pages 198–203. IFIP/IEEE, 2013.

[72] J. Nickolls and W. J. Dally. The GPU Computing Era. IEEE Micro, 30(2):56–69,

March 2010.

[73] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: A Full System Simulator for

Multicore x86 CPUs. In Proceedings of the 48th Design Automation Conference,

DAC, pages 1050–1055. ACM, 2011.

[74] M. Pricopi and T. Mitra. Bahurupi: A Polymorphic Heterogeneous Multi-

core Architecture. ACM Transactions on Architecture and Code Optimiza-

tion (TACO), 8(4):22:1–22:21, January 2012. Presented at 7th International

Conference on High-Performance and Embedded Architectures and Compilers

(HiPEAC) 2012.

[75] M. Pricopi and T. Mitra. Polymorphic Heterogeneous Multi-Core Architecture,

2012. Patent number: PCT/SG2012/000454.

[76] M. Pricopi and T. Mitra. Task Scheduling on Adaptive Multi-core. IEEE Trans-

actions on Computers (TC), (PrePrints), 2013.

[77] M. Pricopi, T. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin.

Power-Performance Modeling on Asymmetric Multi-cores. In International

150

REFERENCES

Conference on Compilers, Architecture and Synthesis for Embedded Systems,

CASES, pages 1–10, 2013.

[78] M. Pricopi, Y. Yao, Z. Ghe, T. Mitra, N. Zhang, and W. Chen. L1 Data Cache

Architecture for Adaptive Multi-Cores. In Design Automation Conference, DAC,

2014. Under review.

[79] M. Qureshi. Adaptive Spill-Receive for Robust High-performance Caching in

CMPs. In International Symposium on High Performance Computer Architec-

ture, HPCA, pages 45–54. IEEE, 2009.

[80] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive Insertion

Policies for High Performance Caching. In Proceedings of the 34th Annual In-

ternational Symposium on Computer Architecture, ISCA, pages 381–391. ACM,

2007.

[81] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-

Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches.

In Proceedings of the 39th Annual International Symposium on Microarchitec-

ture, MICRO, pages 423–432. IEEE, 2006.

[82] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural Support for Operating

System-driven CMP Cache Management. In Proceedings of the 15th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT,

pages 2–12. ACM, 2006.

[83] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No ”Power”

Struggles: Coordinated Multi-level Power Management for the Data Center. In

Proceedings of the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS, pages 48–59. ACM,

2008.

151

REFERENCES

[84] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini. A Fully-Synthesizable Single-

Cycle Interconnection Network for Shared-L1 Processor Clusters. In Design

Automation and Test in Europe, DATE, pages 491–496. IEEE, 2011.

[85] E. Rotenberg. Fabscalar Project. http://www.tinker.ncsu.edu/ericro/

research/fabscalar.htm.

[86] P. Salverda and C. Zilles. Fundamental Performance Constraints in Horizontal

Fusion of In-order Cores. In Preceedings of the 14th International Symposium

on High Performance Computer Architecture, HPCA, pages 252 –263, February

2008.

[87] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Integrated Cache Timing, Power,

and Area Model, 2001. WRL Technical Report.

[88] G. S. Sohi and M. Franklin. High-bandwidth Data Memory Systems for Su-

perscalar Processors. In Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, AS-

PLOS, pages 53–62. ACM, 1991.

[89] S. Srikantaiah, E. Kultursay, T. Zhang, M. Kandemir, M. Irwin, and Y. Xie. Mor-

phcache: A Reconfigurable Adaptive Multi-level Cache Hierarchy. In Preceed-

ings of the 17th International Symposium on High Performance Computer Archi-

tecture, HPCA, pages 231–242. IEEE, 2011.

[90] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache

Memory. Journal of Supercomputing, 28(1):7–26, April 2004.

[91] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating Critical

Section Execution with Asymmetric Multi-core Architectures. In Proceedings

152

http://www.tinker.ncsu.edu/ericro/research/fabscalar.htm
http://www.tinker.ncsu.edu/ericro/research/fabscalar.htm

REFERENCES

of the 14th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS, pages 253–264, 2009.

[92] Synopsys, 2010. http://www.synopsys.com.

[93] D. Tarjan, M. Boyer, and K. Skadron. Federation: Repurposing Scalar Cores

for Out-of-Order Instruction Issue. In Proceedings of the 45th Annual Design

Automation Conference, DAC, pages 772–775, 2008.

[94] J. Turek, J. L. Wolf, and P. S. Yu. Approximate Algorithms Scheduling Par-

allelizable Tasks. In Proceedings of the fourth Annual Symposium on Parallel

Algorithms and Architectures, pages 323–332. ACM, 1992.

[95] S. Vajapeyam, B. Rychlik, and J. P. Shen. Dependence-chain Processing us-

ing Trace Descriptors having Dependency Descriptors, 2008. Intel Corporation

Patent No.: US 7363467 B2.

[96] A. Vajda. Programming Many-Core Chips. Springer Publishing Company, In-

corporated, 2011. Chapter 4 – The Fundamental Laws of Parallelism.

[97] K. Varadarajan, S. K. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, S. Makineni, and

D. Newell. Molecular Caches: A Caching Structure for Dynamic Creation of

Application-specific Heterogeneous Cache Regions. In Proceedings of the 39th

Annual International Symposium on Microarchitecture, MICRO, pages 433–442.

IEEE, 2006.

[98] D. W. Wall. Limits of Instruction-level Parallelism. In Proceedings of the Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS, pages 176–188. ACM, 1991.

[99] Q. Wang and K. H. Cheng. A Heuristic of Scheduling Parallel Tasks and its

Analysis. SIAM Journal on Computing, 21(2):281–294, April 1992.

153

http://www.synopsys.com

REFERENCES

[100] J. Weglarz. Modelling and Control of Dynamic Resource Allocation Project

Scheduling Systems. In S. G. Tzafestas, editor, Optimization and Control of

Dynamic Operational Research Models. Amsterdam: North-Holland, 1982.

[101] K. M. Wilson, K. Olukotun, and M. Rosenblum. Increasing Cache Port Effi-

ciency for Dynamic Superscalar Microprocessors. In Proceedings of the 23rd

Annual International Symposium on Computer Architecture, ISCA, pages 147–

157. ACM, 1996.

[102] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A Parallel Hash Join Algorithm for

Managing Data Skew. IEEE Transactions on Parallel and Distributed Systems,

4(12):1355–1371, 1993.

[103] M. Zhang and K. Asanovic. Fine-grain CAM-tag Cache Resizing Using Miss

Tags. In Proceedings of the 2002 International Symposium on Low Power Elec-

tronics and Design, ISLPED, pages 130–135. ACM, 2002.

[104] H. Zhong, S. A. Lieberman, and S. A. Mahlke. Extending Multicore Architec-

tures to Exploit Hybrid Parallelism in Single-thread Applications. In Proceedings

of the 13th International Symposium on High Performance Computer Architec-

ture, HPCA, pages 25–36, 2007.

154

	List of Publications
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Thesis contributions
	1.2 Thesis outline

	2 Related Work
	2.1 Heterogeneous multi-core architectures
	2.1.1 Static heterogeneous multi-core architectures
	2.1.2 Dynamic heterogeneous multi-cores

	2.2 Reconfigurable caches
	2.3 Task scheduling

	3 Bahurupi Adaptive Multi-Core
	3.1 Bahurupi execution model
	3.1.1 Sentinel instruction
	3.1.2 Execution model

	3.2 Architectural details
	3.2.1 Live-in register renaming
	3.2.2 Live-out register renaming
	3.2.3 Branch misprediction and exceptions
	3.2.4 Memory hierarchy
	3.2.5 Memory hazards
	3.2.6 Reconfiguration overhead
	3.2.7 Compiler support

	3.3 Experimental setup
	3.3.1 Simulator
	3.3.2 Compiler
	3.3.3 Benchmarks

	3.4 Experimental results
	3.4.1 Overall speedup
	3.4.2 Energy consumption
	3.4.3 Load balancing
	3.4.4 Global register file access
	3.4.5 Traffic on coalition bus
	3.4.6 Sentinel instruction overhead
	3.4.7 Area and delay overhead of coalition logic

	3.5 Bahurupi FPGA implementation
	3.5.1 Fabscalar synthesizable out-of-order core
	3.5.2 Core coalition logic
	3.5.3 Prototype synthesis and evaluation

	3.6 Summary

	4 Reconfigurable Data Cache Architecture
	4.1 Experimental setup
	4.2 Limitations of multi-ported shared L1 cache
	4.2.1 Area and energy overhead

	4.3 Limitations of single-ported shared L1 cache
	4.3.1 Simultaneous memory accesses
	4.3.2 Performance impact

	4.4 System reconfiguration
	4.5 Network reconfiguration and address mapping
	4.5.1 Network routing and reconfiguration examples
	4.5.2 Bank conflicts

	4.6 Cache reconfiguration
	4.6.1 L1 data cache miss rates
	4.6.2 Area and energy consumption
	4.6.3 Miss rate improvement and performance analysis

	4.7 Comparison with multi-ported shared L1 cache
	4.8 Summary

	5 Scheduling on Bahurupi Architecture
	5.1 Optimal schedule on ideal dynamic heterogeneous multi-core
	5.1.1 Optimal schedule with continuous resources
	5.1.2 Optimal schedule with discrete resources

	5.2 Task scheduling on Bahurupi
	5.2.1 Constraint C1
	5.2.2 Constraint C2
	5.2.3 Constraint C3
	5.2.4 Online schedule for Bahurupi

	5.3 Quantitative results
	5.3.1 Workload
	5.3.2 Multi-core configurations
	5.3.3 Speedup functions
	5.3.4 Scheduling on homogeneous and static heterogeneous multi-cores
	5.3.5 Limit study of dynamic heterogeneous multi-core
	5.3.6 Realistic performance benefit of dynamic heterogeneous multi-core
	5.3.7 Reconciling ILP and TLP

	5.4 Summary

	6 Conclusions
	6.1 Summary of the thesis
	6.2 Future work

	References

