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Summary

Bayesian methods have become increasingly used in infectious disease modelling, both

statistical and mathematical models. This evolution of infectious disease modelling

has led to demands for more sophisticated models that make use of expensive, yet

messy, data as efficiently as possible. Fitting such models is challenging, however.

My thesis will address this issue by considering flexible hierarchical models, which

pool information from related datasets to provide more accurate estimates of key

parameters, and use appropriate algorithms to fit data for three infectious disease

applications.

First, we used Bayesian methods to analyse clinical data from patients admitted to

Tan Tock Seng Hospital, Singapore, for either dengue or Chikungunya, two mosquito-

borne infections that have similar presentation. In the first part of this analysis,

a Bayesian logistic regression model was developed to predict the aetiology using

the significant variables found in our previous publication (V. J. Lee et al., 2012),

with different prior distributions for regression coefficients. In the second part of

the analysis, hierarchical models are fitted to clinical or laboratory temporal data

from these patients to infer differences in these two similar diseases over time, to

guide clinical management and diagnosis. Just Another Gibbs Sampler (JAGS) was

used to estimate the key parameters in characterizing the observations trend that

were modelled hierarchically. The routine was repeated for four significant variables,

Haematocrit, Platelet Counts, Leukocytes and patient’s temperature.

Next, we developed a hierarchical model for the 2009 H1N1 pandemic in a network

or basket of countries. Data in relation to the influenza pandemic were collated via

a literature search and Bayesian evidence synthesis was used to combine information

from these data to infer accurate severity metrics. A hierarchical adaptation of the

common Susceptible-Infected-Removed (SIR) compartmental model was fitted to the

ix



Summary

datasets. Markov Chain Monte Carlo (MCMC) was used to establish an initial, rough

estimate of the parameters’ posterior distribution and sequential importance sampling

was used to perform parameter estimations more efficiently.

Last, we examined the age-specific prevalence of Enterovirus 71 (EV71) in Asian

countries using a hierarchical model. An MCMC algorithm is used to build the

posterior samples of the parameters and hyperparameters, which are used within a

Bayesian optimal design routine to plan future studies of EV71 seroprevalence in

other Asian populations. We probe the possibility of different optimization criteria

and design search methodologies. We finally selected the criterion that maximises

the reciprocal of the absolute determinant of the variance-covariance matrix from

a Weibull survival regression model fitted classically, allowing the use of prior in-

formation to design a study that would be analysed within a classical framework.

Using a good experimental design such as that developed in this thesis for expen-

sive serological studies can reduce costs without appreciably reducing information

content.
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Chapter 1

Introduction

1.1 Overview

Infectious diseases are of great concern for they impact public health and the economy.

Mathematical and statistical models can be developed to understand how diseases

spread and predict the severity of outbreaks in real-time for effective policy making.

Models for real-time analysis allow policy makers and hospitals to prepare by

forecasting the magnitude of outbreak before they happen. Preventive measures can

be assessed on computer experiments to decide the most appropriate response during

the course of the epidemic. The 2009 influenza pandemic illustrated the importance of

disease models, from assessing effectiveness of interventions in silico (Cook, Gibson,

Gottwald, & Gilligan, 2008) to forecasting burden and severity (Ong et al., 2010).

1.2 General Infectious Diseases Modelling

Accurate and useful forecasts require infectious diseases models that have been ap-

propriately selected and rigorously fitted to disease outbreak data. They must encap-

sulate the rate of infection and recovery from disease within host dynamics. Here, we

will discuss two typical infectious diseases models, the Susceptible-Infected-Removed

(SIR) and Susceptible-Infected-Susceptible (SIS) models.

The nature of the disease determines the appropriate model. If recovery confers

immunity, a Susceptible-Infected-Removed (SIR) model may be appropriate. In this

model, there are three classes of people in the population: Susceptible (S), Infected

(I ) and Removed (R). Prior to infection, individuals are classified under S. When
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infection occurs, they shift from S to I. Transition from S to I is controlled by the

rate of infection parameter. Upon recovery, or death, individuals move to the R

class, an event governed by the rate of removal. These two parameters determine

whether the epidemic might spread or become extinct as they determine the Basic

Reproduction Number (R0), a key quantity in infectious disease epidemiology.

R0 is the ratio of the total instantaneous rate of infection to the total instanta-

neous rate of removal in an immunonaive population (Lee, 1997). If R0 > 1, at the

start of an epidemic, each case typically causes more than 1 secondary infections over

his lifetime and thus the infectious disease might persist to cause a large outbreak.

On the other hand, if R0 < 1, more removals happen than infections, so the epidemic

will die out. R0 also determines the strength of the response as interventions must

bring R0 below 1 if they are to contain an outbreak.

Susceptible-Infected-Susceptible (SIS) model is another common infectious dis-

ease model appropriate if one can be reinfected after recovery. There are two groups

of people in the population: Susceptible (S) and Infected (I ). In contrast to the SIR

model, upon recovery, individuals return to the S class. The calculation of R0 in this

model is similar to that in the SIR model.

There are many other infectious disease models other than the two that were

discussed above. Thus, the behavior of the emerging disease outbreak has to be

known first so that the most appropriate model can be chosen and fitted, as described

in chapter 2, to give the most suitable analysis.

1.3 Bayesian Statistics

Parameters for rate of infection and removal are two of the key quantities charac-

terizing an epidemic. At the start of an epidemic, these parameters are unknown

but they must be estimated to understand and forecast the epidemic. Because even

simply stated epidemic models create complex likelihood functions, the difficulty in

parameter estimation is the main problem tackled in this thesis.

Prior information of the parameters can be drawn from observed data or past

experiences to provide information for the actual characteristic of the parameters. In

predicting the type of disease based on simple clinical and laboratory predictors and

observational time course analysis for Dengue Hemorrhagic Fever and Chikungunya
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(Lee et al., 2012), we will demonstrate how different priors of logistic regression

coefficients can affect the probability of making a correct prediction.

Often, the actual number of infected cases cannot be recorded. In the H1N1

example, we will utilise the idea of Bayesian evidence synthesis with strong priors to

gather information about the I and R classes of the SIR model from related data.

In Bayesian parameter estimation, Markov Chain Monte Carlo (MCMC) can be

used. The advantage of MCMC is its ability to fit a complex model without existing

solutions. There are several tools to perform MCMC: Just Another Gibbs Sampler

(JAGS) is a program that will work for simple models (Plummer, 2013). Due to the

rigidness of this program, the intricacy of some problems can only be resolved by

carrying out the analysis in another language, such as R (R Core Team, 2013).

1.4 Hierarchical Modelling

In analyzing an epidemic, observations from similar epidemics can be useful because

epidemics do not always happen in isolation, and so if a disease is affecting a different

population, aspects such as the rate of infection and removal might be similar across

different populations. Although the epidemic trajectories might not always be in

synchrony, some things will generalise, like the removal rate.

H1N1 is an example of a potentially infectious disease that needed to be analysed

while the pandemic was still at an early stage. Opportunities for prediction based

on other countries’ surveillance systems arise. In the early stage of the H1N1 pan-

demic at July 2009, Singapore’s Minster of Health, Mr Khaw had correctly predicted

the peak of the number of H1N1 infections in Singapore based on the information

collected from the New York City which had already experienced their peak (Chua,

2009). This simple approach motivates the formal use of scientific evidence synthesis

with hierarchical modelling for analysis of pandemic progression. We will show that

pooling information from different countries allows better analysis of the infectious

disease using hierarchical modelling via an application to the H1N1 pandemic exam-

ple where the influenza outbreak was observed in 15 different countries or territories

during the worldwide spread in 2009.

Other than forming hierarchical models for different populations, we can apply

the same idea by using data from patients to predict the course of disease better by
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pooling information from other patients. Information can be used to guide diagnosis

for unknown pathogen. This concept will be implemented in the Dengue example.

Daily information from each patient is contributed to the hierarchical model that will

characterise the time course of several symptoms for patients with Dengue Hemor-

rhagic Fever or Chikungunya (Lee et al., 2012). Because patients with each disease

are apprehended to provide similar information on the syndromes, a hierarchical

model was used to amalgamate this knowledge. Supplementary to the ability to bor-

row strength, hierarchical model can also measure the variability of the parameters

across different patients.

To decide on the control measures when faced with an outbreak, we need to

know the burden of the infectious disease. This is often done by using serological

studies to access past exposure which is very expensive. If a serological study were

badly designed, it would lead to a wastage of money. The flexibility of hierarchical

models allow parameter modelling for infectious diseases in different countries at

different time point if there is no available information from our country. This will

be demonstrated in the Enterovirus 71 (EV71) serology optimal design experiment.

A hierarchical model will provide information on the means and variances of the

parameters measuring the crucial rates in the epidemic for each population. This

gives insights for the current prevalence situation so that we can derive the best

design experiment that can save time and cost for the best experimental effect.

1.5 Structure of Thesis

In the next chapter, we will illustrate the methodologies that will be used in this

thesis. Following that we will demonstrate the Bayesian logistic regression and the

time course hierarchical modelling on Dengue Hemorrhagic Fever and Chikungunya in

chapter 3. In chapter 4, we will devise the hierarchical model for the H1N1 pandemic

in 2009 based on the Bayesian evidence synthesis techniques to combine multiple

sources of information. In chapter 5, we will analyse past EV71 serological studies

using hierarchical model to provide strong prior information for setting up an optimal

design to examine the prevalence of EV71 efficiently.
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Chapter 2

Tools and Methodology

2.1 Modelling of Infectious Diseases

Infectious disease epidemics are one of the leading causes of mortality. On top of

the direct impacts on society—in the form of mortality, admissions to intensive care

units, hospitalisations—are indirect impacts, such as work and school absenteeism

(Meltzer, Cox, Fukuda, et al., 1999), and impacts on tourism. For example, the 2003

SARS outbreak was estimated to have caused a drop of 0.47% to Singapore’s GDP

(Lee & McKibhin, 2004). Policy makers such as ministries of health have to make

decisions whether to implement counter-measures such as quarantine, vaccination, or

school closure, and when to step up and step down such interventions (Cauchemez

et al., 2006), which themselves have costs that impact the economy. Mathematical

modelling can play an important role in guiding these decisions (Hethcote, 2000).

Predicting the spread of an emerging disease outbreak and the effect of control

measures in silico is faster, cheaper and safer than waiting for an actual outbreak to

occur and performing a randomised controlled trial, which may be infeasible on ethical

and practical grounds. It can also play a role in providing real time information to

the public, satiating their demand for information on what is happening and how the

outbreak may evolve (Ong et al., 2010). Forecasting the progression of spread is also

essential for deciding the most appropriate measure against the infectious diseases in

the shortest possible time.

Hammond and Tyrrell (1971) demonstrated the use of deterministic mathematical

model to study upper respiratory tract infection outbreaks in Tristan da Cunha,

an island located in the Southern Atlantic Ocean where, due to its remoteness,

5



Chapter 2 Tools and Methodology

outbreaks of influenza and similar viruses would occur only after the arrival of a ship

from South Africa. Their approach used a series of ordinary differential equations,

fit to observed data on the number of islanders symptomatic using least squares.

As the solution of ordinary differential equations (ODE) is only one, fixed path for

fixed initial, or boundary, conditions and parameter values, their approach disregards

other possible trajectories that the epidemic might have taken, limiting its usefulness

for forecasting. However, for large outbreaks—unlike those on Tristan da Cunha,

for instance, influenza pandemics in large, globally connected cities—the trajectory

traced by ODE solutions will fall close to that of more complicated, stochastic models,

but with the deterministic model’s output requiring less computing power to derive.

As a result, deterministic mathematical models are popular and efficient, especially

when the involved population is large. This thesis will apply deterministic models to

model influenza A (H1N1-2009) later in Chapter 4.

In contrast to deterministic models, stochastic models are formulated to allow

chance events to impact epidemic trajectory. They are often set up as temporally

inhomogeneous Poisson processes, but may also use estimates of sojourn time to

parametrise non-exponential within-host event times. One method of simulation

uses Gillespie’s algorithm (Keeling & Ross, 2008; Gillespie, 1977) in which the rates

of successive events are recalculated after each event is simulated, reflecting the fact

that rates change with time in an inhomogeneous Poisson process. Such a procedure

has to be repeated until the end of the time period of interest, or until no further

events are possible, and is hard to parallelise, thus making it a computer intensive

process to simulate. Stochastic models are more suitable for small populations or

small outbreaks where chance events can happen. In principle, stochastic models

for large populations are possible, but they will look and behave like deterministic

model which is more computationally efficient for large populations. According to

Barbour (1974), the asymptotic properties of a stochastic model will approximate a

deterministic model by the Central Limit Theorem for a population growth model as

illustrated in the following figure.
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Figure 2.1: Comparison of Deterministic and Stochastic SIR model for
small population (in panel (a)) and large population (in panel (b)).
The solution of deterministic ODE for the number of infected individual is represented
by the solid black lines in both panels. The grey lines are the possible trajectories
simulated using Gillespie’s algorithm on 5 different trials. For both situations, the
rate of infection per Susceptible-Infected pair and rate of removal per infected in-
dividual is 0.25 and 0.2 respectively. The total population sizes used in panel (a)
and (b) are 1 000 and 10 000 respectively, where panel (a) started with 1 infected
individual and panel (b) started with 1 000 infected individual. Computation details
can be found in section 4.3.6.

Because parametrisation, which may involve simulation, will lead to much com-

plication, much work has focused on developing statistical methods to fit these to

observational data, as described in the following paragraphs.

Approximate Bayesian computation (ABC) has become widely used in population

genetics where likelihood cannot be calculated easily (Wilkinson, 2013; McKinley,

Cook, & Deardon, 2009; Marjoram, Molitor, Plagnol, & Tavaré, 2003). It has also

been used for epidemic models (Blum & Tran, 2010) where, similarly, the exact event

times or natures cannot be directly observed. This method works by measuring the

discrepancy between the simulated data, generated using proposed parameter values,

and the observed data. There are many variants but within a Markov chain Monte

Carlo approach, the proposed parameters will be accepted with higher probability if

the discrepancy is smaller (Wilkinson, 2013). On top of the metric for discrepancy, a

tolerance, ε > 0, should be set which governs the acceptance or rejection the simulated

parameters (Wilkinson, 2013). In many scenarios, this approach is highly efficient, for

it replaces the need to calculate likelihoods in a Metropolis-Hastings algorithm, which

would otherwise be required to calculate the posterior density. A weakness of ABC,

as described by Robert et al. (2011), is that theoretical discussions on its convergence

properties are missing due to the algorithm’s typical use of non-sufficient summary
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statistics, which lead to an unidentified quantum of loss of information. Robert et

al. (2011) have demonstrated that ABC methodology in some examples is unreliable

for Bayesian model selection, for instance.

Another approach for fitting stochastic models, as used Ross et al. (2006), is the

Cross-Entropy (CE) method to find the parameter that will maximise the likelihood

function of a model. CE involves simulating a large number of potential parameter

values, typically in a swarm around the current best guess, and using these to update

the best guess. The algorithm repeatedly explores the parameter space locally until a

criterion is met for stopping. This method will be presented in the serology example

in Chapter 5.

Another approach that is commonly used in other settings with partially observed

data is the expectation maximization (EM) algorithm. In EM algorithm, there are

two main steps. First, the E step will compute the expected value of the log like-

lihood based on the conditional distribution of the augmented data simulated from

the current set of parameters given the observed data. Second, the M step finds the

parameter that will maximise the expected value from the E step. These two steps

have to be repeated until the parameter converges. However, O’Neill et al. (2000)

have argued that the EM algorithm is not suitable for epidemic outbreak models as

the required conditional expectation is very difficult to compute with the heavily cen-

sored data from epidemics. Instead, they argue that data augmentation is required

for the computation of the likelihood, integrating over unobserved event times and

states. This approach has been widely used to fit temporal and spatio-temporal mod-

els (Cook, Otten, Marion, Gibson, & Gilligan, 2007; Gibson & Renshaw, 1998). It is,

however, extremely computationally expensive if the population is large or the time

frame is long since the augmented parameter space, including actual parameters and

the augmented variables, will in such cases be massive. To illustrate the difficulties,

consider the following example, based on incomplete data on pneumococcal infection

in school children (Cauchemez et al., 2006). They sampled 2 807 children, 3 to 6

years old, from 50 schools in France to collect 5 swabs over 5 months to investigate

transmission of 15 pneumococcoal serotypes. As, however, not all children provided

all 5 swabs, Cauchemez et al. (2006) used data augmentation to infer the missing

number of bacterial serotypes and actual event times. In that analysis, a Bayesian
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hierarchical model was added to reduce the heteroskedasticity of estimates of the

time course of infection for each child. This combination (of data augmentation and

hierarchical modelling) is valuable for the typically highly censored data that are

unavoidable in observational field studies of infectious diseases. In that context, the

approach was feasible as a mere 2 807 children formed the dataset, so the resulting

parameter dimensionality was not excessive. When the population or study size is

large, however, the amount of augmentation required may be prohibitively large.

Statistical modelling of outbreak progression can provide valuable information in

the course prediction for planning. At the early stage of an outbreak, there is insuf-

ficient information from that outbreak to appraise the risk appropriately, as evinced

by the initial uncertainty of the WHO and several governments in their response

to the H1N1 pandemic of 2009 (Chang, Southard, & Sullivan, 2010). However, if

information can be drawn from other sources in real time (to be presented in the

H1N1 example), or historical outbreaks (to be demonstrated in the serology exam-

ple) then better decision making can be made. Bayesian inference provides a natural

mechanism to do this.

2.2 Bayesian Inference

In this thesis, we use Bayesian statistical concepts to estimate model parameters

from, typically, messy and partially observed data. In this section, we will justify

our use of Bayesian statistics and why it is preferred for our applications, as well as

provide a brief overview of how Bayesian statistics works and the distinction with

Classical statistics.

Under the Classical paradigm, parameters are fixed, i.e. non-random, numbers;

in contrast, they are random variables in Bayesian statistics (O’Neill, 2002; Gelman,

Carlin, Stern, & Rubin, 2003), where their distribution characterises the uncertainty

in their values after observing data. Although in many cases, Classical approaches

perform well and may be preferable to Bayesian ones, in others they are too inflexible

for complex modelling problems. Unlike Classical approaches that are often based

on the asymptotic normality assumption, and hence rely on large enough samples to

justify their use, Bayesian methods typically are not (Congdon, 2001), and may be

used for small (or, non-infinite) samples. When its assumptions are violated by the
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data, the result from a Classical analysis may be unacceptably approximate. In such

cases, Bolstad (2004) has claimed that Bayesian methods often outperform Classical

methods, even when judged by Classical criteria.

We illustrate one advantage of Bayesian methods over Classical ones using the

example of the ALVAC/AIDSVAX HIV vaccine trial in Thailand (Rerks-Ngarm et

al., 2009). In their study, Rerks-Ngarm et al. (2009) vaccinated n = 8 197 individuals

of whom x = 51 were infected (similar numbers were given a placebo). If p is the

probability of HIV infection over the study time frame for a vaccinated individual,

we can assume a binomial model as x ∼ Bin(n, p). Under the standard, Classical

approach, p is estimated by p̂ = x
n = 0.00622, the maximum likelihood estimate and

the empirical fraction infected, and the 95% confidence interval of p is calculated by

p̂±1.96
√

p̂(1−p̂)
n , i.e. (0.00452, 0.00792). This confidence interval calculation assumes

that the sample size is sufficiently large that the MLE is normally distributed. (In

contrast, a Bayesian approach taking a uniform prior for p and using either Markov

Chain Monte Carlo sampling or direct calculation quantifies the full distributional

profile of the parameter without requiring the sample size be approximately infinite

(Congdon, 2001).)
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Figure 2.2: Comparison of Bayesian and Frequentist estimates for the Thai-
land HIV trial example.
The exact log likelihood of the data based on the binomial distribution is represented
by the solid line. The dotted line is the approximated log likelihood based on a
normal distribution where the mean is p̂ and standard deviation is the estimated
standard error

√
p̂(1−p̂)
n . The mean of posterior samples is represented by the solid

dot and the 95% credible interval is represented by the line in the lower panel. The
MLE p̂ and the Classical confidence interval is represented in the lowest panel by the
hollow dot and line.
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Even for the large sample size of 8 197 in the ALVAC/AIDSVAX trial, a pro-

nounced asymmetry in the likelihood can be discerned in figure 2.2, which is not ad-

equately characterised in the Classical confidence interval. In contrast, the Bayesian

credible interval can account for this asymmetry and arguably give a more accurate

depiction of the uncertainty in the parameter.

Typically both approaches employ the same fundamental statistical concept, the

likelihood function. Suppose the observed data are D and the parameter is θ, in

which case the likelihood (function) of θ is the probability of observing the data

given the parameter,

L (θ) = f(D|θ). (2.1)

In many non-infectious disease applications, the likelihood can be factorised into

a product of terms, one for each datum, but as infectious diseases are communicable,

the disease states of different individuals are positively correlated, and so in general

this factorisation cannot be assumed. If a parameter value of θ, and the model

it belongs to, fit the data D well, L(θ) will be relatively large, and this is often

exploited in Classical statistics by calculating the value of the parameter, θ̂, also

known as maximum likelihood estimate (MLE), that will give the largest L(θ), i.e.

θ̂ = arg max
θ
L(θ). (2.2)

Although loosely interpreted as the value which promises to be the ‘most likely’ given

the observed data, for that model, such probabilistic statements about parameters

are not permissible in Classical statistics and the term ‘maximum likelihood’ is un-

fortunate.

In contrast, Bayesian estimation uses Bayes’ theorem to combine both sources

of information, prior and data (Bolstad, 2004), by converting from the probability

distribution of the (known) data given knowledge of the (unknown) parameters, to

the probability distribution of the (unknown) parameters given knowledge of the

known data.

For events A and B, Bayes’ rule states that the joint probability of A and B can

be derived from the conditional probability

Pr(A,B) = Pr(A|B) Pr(B) (2.3)

= Pr(B|A) Pr(A). (2.4)
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Through simple manipulation, Bayes’ theorem states that

Pr(A|B) = Pr(B|A) Pr(A)
Pr(B) . (2.5)

Replacing variables, we obtain the posterior distribution, Pr(θ|D) (or, henceforth,

f(θ|D) as typically θ is continuous and therefore has a probability density). The prior

is the distribution of the parameter that we assume before accounting for the observed

data. In the Bayesian framework (Gelman et al., 2003), the density of the posterior

can be represented by

f(θ|D) = f(D|θ) · f(θ)
f(D) (2.6)

where

f(D) =
ˆ
θ
f(D|θ) · f(θ)dθ (2.7)

is a constant that can be found by integration but can sometimes be ignored (in

popular methods such as Markov Chain Monte Carlo and importance sampling)

to get a direct proportionality between the posterior density and the product of

likelihood and prior density:

f(θ|D) ∝ f(D|θ) · f(θ) (2.8)

Posterior ∝ Likelihood · Prior. (2.9)

2.2.1 Prior choice

A perceived limitation of Bayesian statistics is the requirement, and occasional diffi-

culty, to select a prior distribution for the parameters. As the posterior distribution,

which leads directly to reported estimates of model parameters, is proportional to

the likelihood and prior distribution, different prior distributions will lead to different

posterior distributions in an apparently subjective way. Although prior distributions

are chosen based on our preliminary beliefs (Lee, 1997), which may differ from analyst

to analyst, Bolstad (2004) and others have argued that in practice, although different

prior distributions may be used, the posterior distributions are typically similar as

the data will swamp the prior if they contain sufficient information content. With

adequate data, the effect of the exact choice of prior specification is minimal com-

pared to the effect of the data themselves (Bolstad, 2004). This will be shown in the
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subsequent example of logistic regression to distinguish Dengue from Chikungunya

infection.

Priors should be chosen based on the objective of the analysis. If there is suffi-

cient information in the data about all the parameters, a flat (or approximately flat)

non-informative prior is commonly used so that the posterior distribution is propor-

tional to the likelihood density. If external data are available and the information

is relevant to the current analysis, an informative prior can be derived from those

data to accumulate more evidence about the parameter values. An example of this

approach to developing an informative prior will be shown for the recovery rate of

H1N1 in Chapter 4, based on an analysis of the time course of infection in a volun-

teer challenge study by Carrat et al. (2008). Conversely, if a subjective prior is not

objectionable, for example if the analysis is being used as a guide to decision making,

it could be set from personal or experts’ belief. Hierarchical models, to be elaborated

in the next section, also act as an indirect form of informative prior, which allows

information to be borrowed between different parts of the datasets by assuming a

common distribution specified by hyper-parameters.

When there are insufficient details of parameter, a non-informative or flat prior,

which does not favour any value, is used to avoid undue influence on the posterior

distribution (Bolstad, 2004) and to allow the data to speak for themselves. By using

a flat prior distribution, no parameter values are given additional ‘weight’ beyond

the information in the data (Congdon, 2001). An extreme example of a flat prior is

a uniform distribution from negative to positive infinity, which gives the same prior

density for any real value. In such cases, the posterior is only proportional to the

likelihood.

Other non-informative priors can also be used, depending on the parameter sup-

port (Gelman et al., 2003). If a parameter should be positive, an exponential distri-

bution or log normal distribution could be used, for instance. For the exponential, a

small rate parameter gives a distribution with a large mean, that may be effectively

flat over the range of values with high likelihood.

Choosing a flat prior distribution is not always the best solution in situations

where we wish or need to pool information from multiple data sources, in which case

an informative prior distribution built from an earlier dataset can allow a better
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posterior distribution for the model parameters after analysing a later dataset (Lee,

1997).

If informative priors are chosen, it may be valuable to perform a sensitivity anal-

ysis, performing several analyses using different prior distributions, comparing the

resulting posteriors, and checking the robustness of the conclusions to these assump-

tions, in a similar way that sensitivity analyses of data-model assumptions are some-

times conducted (O’Neill & Roberts, 1999). If all posteriors are similar, any prior

distributions can be adopted with confidence, but if the results are contrasting, extra

care must be taken to ensure the prior used in the reported analysis is appropriate.

2.2.2 Computational issues

Markov Chain Monte Carlo (MCMC) is a technique for computing posterior distri-

butions that are not otherwise analytically tractable. The exact posterior density can

rarely be calculated, because although the posterior is proportional to the product

of prior and likelihood, it is hard to calculate the unknown proportionality constant

f(D) (cf. Section 2.2) for the integral of the posterior to be equal to 1. (This problem

is comparatively harder than maximising the likelihood in Classical statistics due to

the difference in complexity between maximisation and quadrature.) The problem is

especially severe in a high dimensional parameter space. However, for most purposes,

the problem is obviated using MCMC for two reasons, described below.

MCMC is an extension of the Monte Carlo (MC) technique, which involves draw-

ing samples from a distribution. If (large) samples are drawn directly from the

posterior distribution, the statistics required to describe the posterior can be cal-

culated with ease simply by calculating characteristics of the sample (thus avoiding

subsequent integration). For instance, instead of integrating to get the posterior

mean, E(θ|D) =
´
R θ · f(θ|D)dθ, it can instead be calculated using the average of

the sample {θi : i = 1, . . . , n} from the posterior, i.e. E(θ|D) = 1
n

n∑
i=1

θi. By the

Strong Law of Large Numbers, if {θi : i = 1, . . . , n} are pairwise independent and

identically distributed (i.i.d.) such that either E[(θ1)+] or E[(θ1)−] is finite, then,
1
n

n∑
i=1

θi → E(θ1) almost surely as n→∞ (Gilks, Spiegelhalter, & Richardson, 1996).

If the sample is large enough, the estimate from posterior sample is effectively the

actual quantity from the posterior.
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2.2 Bayesian Inference

However, except for special cases, it is difficult to sample from the posterior

distribution as its properties are not generally known. MCMC overcomes this by

drawing samples from a Markov Chain with the posterior as the stationary distribu-

tion. Under certain conditions (ergodicity, irreducibility, and aperiodicity), Markov

chains will converge to a stationary distribution (Gilks et al., 1996). Convergence

can be assessed heuristically after comparing different simulations (Gelman et al.,

2003), which if simulated independently should converge to the same distribution.

The Metropolis-Hastings algorithm is one way to construct a Markov chain such that

its stationary distribution is the posterior of interest, and requires only being able to

evaluate the (log) posterior to a constant of proportionality. The sampled posterior

distribution is a collection of values from a Markov Chain, and as a result the sampled

values are typically autocorrelated. The usual solution to mitigate the dependency of

successive simulations is to thin the posterior sample, where only the kth simulated

value (say, k = 10) is kept, so that the correlation between subsequent simulations

can be reduced (Gelman et al., 2003). Gelman et al. (1995) added that thinning

is beneficial as large numbers of parameters poses a problem for computer storage.

However, with today’s technology, this problem is less of an issue and throwing away

simulations wastes information, and thus thinning is avoided unless the number of

parameters to store is large and the mixing poor.

The general concept of MCMC is to set up a Markov Chain whose stationary

distribution is equal to the unknown posterior distribution. Because even if different

initial values θ0 are used, the resulting chains ought still to converge to the stationary

distribution, multiple chains with different initial values can be simulated and a

comparison of their apparent stationary distribution made to assess this property.

By simulating the Markov Chain, the set of {θt : t > n} is the posterior sample

for analysis of the model. The first n values of the Markov Chain are typically re-

moved from the posterior sample as they might precede convergence to the stationary

distribution. This process is called ‘burn in’. Usually, burn-in discards the first 1%

to 2% of the simulation, provided the simulations have shown convergence (Gilks et

al., 1996).

One way to obtain a Markov chain with the desired stationary distribution, is to

use the popular Metropolis-Hastings Algorithm:

15



Chapter 2 Tools and Methodology

1. Choose an initial value, θ0.

2. Calculate the posterior density under the chosen parameter, θ0, and represent

it by hold.

3. Simulate θnew using a proposal distribution, where the probability of proposing

θnew from θ0 is represented by q(θold → θnew).

4. Calculate the posterior density under the new parameter, θnew, and represent

it by hnew.

5. A decision to accept or reject θnew is made by calculating the acceptance

probability, Pacc. θnew, will be accepted as the next value in the chain, θ1, with

probability Pacc. Otherwise, θnew will be rejected with probability 1 − Pacc

and the next value in the chain remains as θ0,

Pacc = min
(

1, hnew
hold

·
q(θnew → θold)
q(θold → θnew)

)
. (2.10)

6. A random number U is generated from a uniform distribution with range [0,1].

If Pacc is more than U , accept θnew. Otherwise, reject θnew and retain θ0.

7. Step 2 to 6 is repeated as θi is updated as θi+1. The length of the chain

determines how many repetitions are required. As mentioned, the first fraction

(say 1%) of the chain will not be stored due to the requirement of burn-in. To

perform thinning, every jth value of the chain will be stored, where j will be

preselected.

The choice of the proposal distribution will affect the jumping rules and efficiency of

the simulations. The ideal Metropolis-Hastings algorithm will simulate parameters

directly from the posterior distribution, in which case the acceptance probability is

1 (Gelman et al., 2003) and the algorithm can be seen to be equivalent to vanilla

Monte Carlo. An alternative is to simulate one parameter, or a block of parameters,

from their conditional distribution given the data and all other parameters, in which

case, again, the acceptance probability is 1. This is known as Gibbs Sampling.

In principle, almost any distribution can be used for proposal distribution (Congdon,

2001). A normal distribution is usually preferred as it is symmetrical which allows

equal chance of positive and negative jumps, if its mean is set to the current value
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of the parameter. This also implies that q(θnew → θold) = q(θold → θnew) which

simplifies the calculation of the acceptance probability, Pacc, as the ratio of the pro-

posal distributions cancels. Thus, all the proposal distributions used in this project

will be normal distributions, unless otherwise stated. The calculation of Pacc for θ

in the Metropolis-Hastings Algorithm is, in this case:

Pacc = hnew
hold

·
q(θnew → θold)
q(θold → θnew) (2.11)

= hnew
hold

. (2.12)

The proportionality constant, where the posterior density is proportional to the

product of likelihood and prior density, will be cancelled in this ratio, making h be

just the product of likelihood and prior density and the acceptance probability:

Pacc = hnew
hold

(2.13)

= l(θnew|D) · f(θnew)
l(θold|D) · f(θold) . (2.14)

Because some probabilities have small values, the calculation of the acceptance

probability is typically done working with a logged likelihood function, log l(θ|D) and

log prior density log f(θ),

Pacc = exp
(

log l(θnew|D) · f(θnew)
l(θold|D) · f(θold)

)
(2.15)

= exp[log l(θnew|D)− log l(θold|D) +

log f(θnew)− log f(θold)]. (2.16)

The variance (or covariance matrix) of the normal distribution used as a proposal

needs to be chosen carefully. To be efficient when the posterior is unknown, the

proposal distribution should be sufficiently wide to allow large jumps so as to achieve

convergence quickly. If the jump steps were too small, i.e. if the proposal distribution

is too narrow, the trace plot will take a long time to reach convergence. However,

the proposal variance cannot be too large, as in this case most of the simulations

will be rejected. Thus, a proposal with appropriately intermediate variance should

be selected for good sized jump steps.

In models with a high dimensional parameter space, the Markov Chain may ex-

hibit ‘stickiness’. This can be due to a weirdly shaped posterior distribution, caused

by correlations between two or more parameters, a poor choice of proposal distribu-

tion, or strong correlations between a multitude of parameters. A ‘stuck’ chain may
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spend an inordinate time at a certain region of the parameter and take a long time to

reach another, well supported region. This is a great challenge faced in this project,

due to the complexity of the models used, and several attempted solutions will be

discussed.

2.3 Bayesian Hierarchical Modelling

Estimation in sparse, scattered datasets can be made more robust by borrowing

strength between the points where evidence, or information, accumulate. When pa-

rameters are analysed individually, similarities between different components of the

model are neglected. Hierarchical modelling allows related identities in different sam-

pling units to be brought together, reducing variability, or uncertainty, in parameters

from different submodels while at the same time measuring the irregularity between

these parameters using a hyper-distribution.

We need a set of parameters for each dataset to be coming from a distribution

that is governed by the second-level parameters called hyper-parameters (Schervish,

1995). The n sets of independently observed data and the parameters θi, i = 1, . . . , n,

are iid and governed by the hyper-parameters (for instance, µ and σ) which will also

have their own distribution.

The prior distributions of the parameters θi (or a transformation to make their

support the real line) are typically represented as normal distributions with mean µ

and standard deviation σ,

θi ∼ N(µ, σ2) (2.17)

where the hyper-prior distributions for η = (µ, σ) might be chosen to be uniform

distributions which are non-informative if there is no prior knowledge or beliefs for

them, for instance

µ ∼ U(−1000, 1000) (2.18)

σ ∼ U(0, 1000). (2.19)

Hence, from the posterior samples of the parameters and hyper-parameters, the char-

acteristics of the posterior distributions of the parameters of interest can be obtained.

MCMC can be used to explore the parameters space of (θi, µ, σ) based on the sta-

tionary property discussed earlier, with some extension to the posterior calculations.
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2.3 Bayesian Hierarchical Modelling

Using the Bayes’ theorem,

f(θ, η|D) ∝ f(D|θ, η) · f(θ, η) (2.20)

∝ f(D|θ, η) · f(θ|η) · f(η). (2.21)

The algorithm is:

1. Choose the initial values for all the parameters, (θi)0 for i = 1, . . . , n, and

hyper-parameters, η0 = (µ0, σ0).

2. Calculate the posterior density under the chosen parameters, (θi)0, and hyper-

parameters, η0 = (µ0, σ0), and represent it by hold.

3. Fixing the hyper-parameters at their current values, simulate (θi)new using a

proposal distribution, where the probability of proposing (θi)new from (θi)0 is

represented by q((θi)old → (θi)new).

4. Calculate the posterior density under the new parameter, (θi)new and the orig-

inal hyper-parameters, η0 = (µ0, σ0), and represent it by hnew.

5. Decision to accept or reject (θi)new is made by calculating the acceptance

probability, Pacc. The newly simulated parameter, (θi)new, will be accepted

as the next value in the chain, (θi)1, with probability Pacc. Or, (θi)new will be

rejected with probability 1 − Pacc and the next value in the chain remains as

(θi)0,

Pacc = min
(

1, hnew
hold

·
q((θi)new → (θi)old)
q((θi)old → (θi)new)

)
. (2.22)

6. A random number U is generated from a uniform distribution with range [0,1].

If Pacc is more than U , accept (θi)new. Otherwise, reject (θi)new and retain

(θi)0.

7. Having made the decision for (θi)1, use the calculated posterior density under

the parameters, (θi)1, and hyper-parameters, η0 = (µ0, σ0) as hold.

8. Fixing the parameters at their current values, (θi)1, simulate ηnew using a

proposal distribution, where the probability of proposing ηnew from η0 is rep-

resented by q(ηold → ηnew).
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9. Calculate the posterior density under the new hyper-parameters, ηnew, and the

current parameters, (θi)1, and represent it by hnew.

10. Decision to accept or reject ηnew is made by calculating the acceptance prob-

ability, Pacc. The newly simulated parameter, ηnew, will be accepted as the

next value in the chain, η1, with probability Pacc. Otherwise, ηnew will be

rejected with probability 1 − Pacc and the next value in the chain remains as

η0,

Pacc = min
(

1, hnew
hold

·
q(ηnew → ηold)
q(ηold → ηnew)

)
. (2.23)

11. A random number U is generated from a uniform distribution with range [0,1].

If Pacc is more than U , accept ηnew. Otherwise, reject ηnew and retain η0.

12. Step 2 to 11 is repeated as (θi)j is updated as (θi)j+1 and ηj is updated as

ηj+1. The length of the chain determines how many repetitions are required.

The first 1% of the chain will not be stored due to the requirement of burn-in.

To perform thinning, every kth value of the chain will be stored, where k is

preselected.

There are many calculations and some of them can be reused to save time. In step 5,

as the hyper-parameters are fixed, the hyper-prior densities, f(η), will be the same,

and so Pacc can be simplified to

Pacc = l((θi)new|D) · f((θi)new|η)
l((θi)old|D) · f((θi)old|η) . (2.24)

In step 10, the parameters are held fixed, and as a result the likelihood den-

sities, l((θi)1|D), will be the same for both proposed and current values. As long

as the hyper-parameters’ values fall within the interval in the uniform hyper-prior

distribution, f(ηnew) = f(ηold). Thus, Pacc can be simplified to

Pacc = f((θi)1|ηnew)
f((θi)1|ηold) . (2.25)

In step 10, f((θi)1|ηold) can be reused from step 5, taking the same value as

f((θi)new|η) if (θi)new was accepted or f((θi)old|η) otherwise. In the next round

of step 5, f((θi)old|η) can be reused from step 10 in the previous round, taking the

same value as f((θi)1|ηnew) if ηnew was accepted as η1 or f((θi)1|ηold) otherwise.
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With the information on the parameters and hyper-parameters provided by the

observed data, predictions can be done for other datasets. Based on the common de-

pendence of all the parameters on the hyper-parameters characteristic of hierarchical

models, random samples are collected from the hyper-parameters for representing

other similar models (Schervish, 1995). Each set of η = (µ, σ) sampled from their

respective posterior samples is used to generate θk, the parameter for the intended

kth dataset, using the normal distributions stated for the model.

This method can be repeated a large number of times to estimate the distribution

of the forecast θk. Having these as predictive posterior distributions, we can have a

good idea of the range of parameter values that might arise in a similar dataset. This

method of estimating the future when there is only limited information about the

model is known as forecasting (Kleczkowski & Gilligan, 2007). We will demonstrate

this in the dengue disease and serology examples.

Apart from predicting parameters for future data, hierarchical models can also

improve the estimation of parameters for partially collected data. This is more useful

in reality as incomplete real time data from similar populations may be available and

the parameters for these incomplete current data are of public health interest. Pooling

strength from each dataset to supplement the insufficient knowledge in other parts

of the data will be exemplified in the H1N1 example in chapter 4.

2.3.1 Importance Sampling

The expected value of any function g(θ) of the parameters may be represented by

the following integral,

E(g(θ)) =
ˆ
g(θ)f(θ)dθ (2.26)

where f(θ) is the posterior distribution.

This integration can be approximated by taking the average of a large sample of

size N of the parameters from the posterior,

E(g(θ)) ≈ 1
N

N∑
i=1

g(θi). (2.27)

If it is difficult to sample from the posterior itself, we might instead simulate θ

from another proposal distribution, q(θ). The expectation of g(θ) in this case can be
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represented as

E(g(θ)) =
ˆ
g(θ)f(θ)

q(θ) q(θ)dθ. (2.28)

The approximation of this expectation becomes

E(g(θ)) ≈ 1
N

N∑
i=1

(
g(θi)

f(θi)
q(θi)

)
(2.29)

where f(θi)
q(θi) is termed the weight of the ith draw, and denoted wi. As the large sample

size may still not be exactly a true representation of the actual model distribution,

these weights will compensate for the discrepancy. The larger the probability density

f(θi), the larger the weight wi will be for a higher contribution of the g(θi) in the

expectation approximation.
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Figure 2.3: Demonstration of how the weight wl can be larger for better
points with higher posterior density than those points with lower posterior
density in Importance Sampling.
In this example, the actual posterior distribution is represented in (a), normal with
mean 0.65 and standard deviation 0.15. In panel (b), 100 particles are simulated
from a normal proposal distribution with the same mean but the standard deviation
is doubled to 0.3 and the proposal density is represented y axis. In panel (c), we
calculate the weights for the simulated particles as the ratio of posterior to proposal
density. Panel (d) shows the kernel density estimate of the simulated particles based
on the weights in (c).
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The main concept of importance sampling is to sample from an arbitrary dis-

tribution, rather than the (unknown) posterior directly, and correct the sample by

allocating weights to all the sampled particles. The weights will distinguish the better

particles from the inferior ones, but also correct for over or under sampling in some

regions of the parameter space.

Resampling the initial sampled particles based on their weights resembles the

thinning process in MCMC by discarding particles with very low weights, as well

as reducing the problem of memory and storage. This resampling procedure also

converts the weighted samples into equally weighted samples, which allows methods

that require equal weights to be used within this context.

As demonstrated, weights can be associated with the ratio of the posterior density

to the proposal density, where the posterior density is proportional to the likelihood

and prior density.

In the hierarchical model context, many parameters will be involved and as a

result, it may be difficult to achieve convergence in the MCMC routine. We therefore

will demonstrate the use of (sequential) importance sampling in the H1N1 example

in chapter 4 to propose samples based on the output from an MCMC routine which

has not yet converged. Our approach was to approximate the distribution thus

obtained by the product of independent normals with the mean and variance of

each parameter estimated from the (unconverged) MCMC routine and used in the

importance sampler.

After sampling particles from this (multivariate) normal proposal distribution and

calculating the weights, the particles, together with their respective weights, will be

the information used to generate the next round’s multivariate normal proposal dis-

tribution, with weighted mean of the particles and weighted covariance matrix of the

particles. To facilitate gradual refinement of the proposal distribution, we introduce

a temperature variable, like the temperature in simulated annealing. Specifically, we

introduce a temperature variable T that flattens the likelihood function on initial

pilot runs. Under this scheme, the weight of the lth particle at every round, with

parameter values, θl, and intensity, T , is

wl = (f(D|θl))T f(θl)
q(θl)

. (2.30)

Taking logarithms, we can better see how the intensity T will be relating the
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likelihood to the weights

logwl = T log f(D|θl) + log f(θl)− log q(θl). (2.31)

In this way, the proposed values are more diffuse than they ought to be at early

pilot runs, allowing the proposal distribution to be gradually improved, but as the

number of rounds increases, this routine converges towards the desired posterior.

Thus, the values of T will increase stepwise from a small number (we used 0.1) to 1

in each subsequent sampling rounds. Only the sample from the round with T = 1

are used for inference.

As shown in Figure 2.3, parameter values that do not model the data well will

be represented by low weights. The few points that suit the data better will have

much larger weights. The temperature starts small to prevent over-concentration of

the few particles with good weights. As Sequential Importance Sampling progressed

from the first round to the tenth round, the particles will gradually become a good

realization of the posterior.

If we take exponential transformation to convert logwl back to wl for particle l,

many of the values will become 0 as the logwl is close to −∞. Hence, we overcome

numerical overflow issues by transforming the logwl to

(logwl)∗ = logwl −max(logw) (2.32)

before exponentiating to get

w∗l = exp (logwl)∗ (2.33)

and rescaling all w∗l by

wl = w∗l∑
w∗l

(2.34)

so that all the weights, wl, sum to 1.

This approach of flattening the likelihood and gradually returning it to its original

shape, as we develop a better idea of the posterior to sample from, is useful for com-

plex models like those discussed in this thesis where MCMC converge is problematic.

In chapter 4, we will use this technique to explore the high dimensional parameter

space in the H1N1 setting.
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Chapter 3

Dengue and Chikungunya

Infections in Tan Tock Seng

Hospital

Unlike many other infectious diseases which spread directly from infectious host to

another susceptible individual, both Dengue and Chikungunya are infectious diseases

that transmit through the bites of infected female Aedes mosquitoes (WHO, 2013).

Dengue infections can evolve into a more severe and life threatening condition, named

Dengue Hemorrhagic Fever. While Chikungunya is rarely life threatening, it has long-

term sequellae, and although caused by distinct viruses, the symptomology of the two

diseases is similar and they may be mistaken for one another in places where both

are endemic.

According to the World Health Organization (WHO) (2013), nearly half of the

world population is now at risk of dengue infection, and there is no treatment available

for the infected individuals, although clinical trials are ongoing (Debing, Jochmans,

& Neyts, 2013). As the WHO claim that giving appropriate medical care can reduce

the fatality rate of dengue fever to less than 1%, it is important to be able to develop

ways to identify the infection type as quickly as possible (WHO, 2013), particularly

in low resource settings. We will deal with this identification problem by developing

a Bayesian logistic regression model.

While the aetiological agent can often be classified using highly accurate diag-

nostic tests (Lee et al., 2012), in some settings such resources might not be available
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or affordable. The Times of India (2010) report that, in India, the gold standard

test (reverse transcriptome polymerase chain reaction [RT-PCR]) can cost up to 5000

Rupee (approximately 80 USD), pricing it out of the means of most Indians. There-

fore if an accurate diagnosis could be derived through symptomatic observations or

simple clinical tests, it could be very beneficial in such settings.

Even after diagnosis, patients also need to be monitored over the time course of

illness. Knowing the typical temporal trend of the infection can allow the attending

physician to ascertain changes and anticipate behaviours of the patients’ symptoms

during the time course of illness. It might also prevent misdiagnoses. To this end,

a hierarchical, temporal model of various clinical and laboratory characteristics will

be developed.

3.1 Bayesian logistic regression

This project involved 117 individuals diagnosed with Chikungunya and 917 other

Dengue Fever (DF) patients, including 55 individuals who had Dengue Hemorrhagic

Fever (DHF) (Lee et al., 2012). The symptoms are very similar, including the sudden

onset of an influenza-like illness with fever, muscle pain, headache and rashes, but

Chikungunya can cause joint pains that can continue for months (WHO, 2008). We

use the data collected from these observations on patients suffering from dengue or

Chikungunya when they presented at the hospital to develop a model to predict

what disease/infection the patient has upon admission to hospital, based on routine

data on their symptoms and simple laboratory tests that are available on the day of

admission itself.

These retrospective observations for the Chikungunya were made on hospitalised

patients from Tan Tock Seng Hospital, Singapore, during the dengue outbreak in

August 2008, while those observations for Dengue Fever were made on hospitalised

patients from the same location during the 2004 dengue outbreak (Lee et al., 2012).

The individuals were identified by reverse transcription-polymerase chain reaction

(RT-PCR) and their demographic, epidemiological, serial clinical and laboratory,

radiological, treatment and outcome data were collected but not recorded together

with the patient’s name for privacy issues (Lee et al., 2012).

Our exploration of the demographic and clinical factors associated with Dengue
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Fever (DF) or Chikungunya infection using classical multivariate logistic regression

has previously been published (Lee et al., 2012). In this thesis, we extend the analysis

to use a Bayesian approach.

3.1.1 Data Processing

The variables at our disposal in the multivariate logistic regression model are: age,

gender, hypertension, time since onset (in days), duration of fever (in days), presence

of fever, headache, myalgia/athralgia, rash, any bleeding, sore throat, cough, nausea,

vomiting, diarrhea, abdominal pain, anorexia, maximum temperature (◦C), tachycar-

dia (pulse >100/minute), leukocyte count, hemoglobin, serum hematocrit, platelet

count, lymphocyte proportion, serum sodium, potassium, urea, creatinine, bilirubin,

alanine (ALT) and aspartate aminotransferase (AST), alkaline phosphatase (ALP),

protein and albumin, as measured on the day of hospital presentation (Lee et al.,

2012). Because it involved retrospective chart review, some of these variables were

missing for some patients.

Usually, when faced with missing entries, those individuals’ data would be re-

moved from the analysis. Out of the 917 dengue patients, about 2.5% (23 patients)

have missing entries for the Hematocrit observations. But useful insights can be de-

rived from the entries of other variables, and such cases may arise in regular clinical

management of patients for whom a diagnosis is still required, so instead of discard-

ing such individuals, we replace missing values with the imputed value (Lee et al.,

2012): the mean for continuous variables and 0 for dichotomous variables coded 0

for absent and 1 for present. This will ensure the other variables of those individuals

continue to give information but the imputed values will not distort the information

from the available data. The side effect of this replacement is an unwanted reduction

of the standard error which is indirectly proportional to the sample size (Cohen &

Cohen, 1984).

Another important problem realised in this project is termed separation exhibited

by the independent variables (Heinze & Ploner, 2003; Shen & Gao, 2008). Separation

occurs when the binary outcome (Chikungunya or DF) can be perfectly separated

by a single covariate or combination of several covariates. Quasi-Complete Separa-

tion is a less extreme case, which occurs when some values of the binary outcome
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(Chikungunya or DF) overlap at a single covariate or several covariates. An example

is depicted in the following figure.

Figure 3.1: Differentiating a Quasi-Complete Separation (in panel (a)) from
a Complete Separation case (in panel (b)).
We artificially removed overlapping points which amounts to about 8% (78 out of
979 patients) of the total to achieve the complete separation in panel (b). Both plots
show two obvious regions on the plot of Albumin (g/L) versus Platelet counts (109/L)
that can differentiate the two different diseases.

Figure 3.1 shows that both Chikungunya and DF patients exhibit a similar albu-

min level, but they could be easily distinguishable as suffering from DF if a patient is

having low platelet counts (< 100×109/L) and Chikungunya otherwise. Specifically,

if the patient’s Albumin level in g/L is more than 0.15×Platelet Counts(×109/L)+20,

they are very likely to be infected with Dengue Fever. Although the plots show that

these two variables are highly predictive, there is no finite MLE in a logistic regres-

sion model that uses them as predictors. In simple logistic regression, the estimated

coefficients are the values that will maximise the likelihood. The algorithm used

in the R statistical environment uses a Newton-Raphson approach to search for the

coefficient. But when there is a Separation problem, no finite maximum likelihood

estimates exist (Heinze & Schemper, 2002). The Newton-Raphson method will stop

at the wrong parameter value when it has exhausted the maximum number of itera-

tions or when the difference in log-likelihoods is smaller than a threshold and report

a nonsensical estimate: an odds ratio that is too large, a standard error that is even

more too large, and a p-value that is non-significant despite the obvious wealth of

information (see figure 3.1). To visualise the problem, we present in table 3.1 esti-

mates for two near-identical datasets (illustrated in figure 3.1) with a small number
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(8%, or 78 out of 979) of patients removed from the second. The difference in the

estimates caused by Separation is stark.

Platelets Counts
Data coeff. OR Std. Err p-value

Panel (a) 0.04 1.04 0.003 0
Panel (b) 45 4.2× 1019 670 0.95

Albumin
Data coeff. OR Std. Err p-value

Panel (a) -0.29 0.75 0.045 0
Panel (b) -301 1.6× 10−131 4 500 0.95

Table 3.1: Comparison of the MLE of logistic regressions of Platelet and
Albumin for the dataset in figure 3.1 panel (a), before the removal of
patients with overlapping case, and in panel (b), where there is Complete
Separation problem.
The estimates were attained by fitting the disease outcome to the linear predictive
variables of platelet counts and albumin using a generalised linear model. The glm
function can be found in the stats package in R (R Core Team, 2013).

As demonstrated by Heinze and Schemper (2002), the separation problem often

depends on the sample size. Intuitively, the smaller the collected sample, the higher

the chance of having the responses separated by the independent variables. However,

it is often infeasible to collect more data to resolve what is really a statistical, not a

data, problem. The risk of observing separation also increases with the number of

independent variables (Heinze & Schemper, 2002).

One solution to the separation problem is combining classes of categorical vari-

ables, like classifying ethnicity into four groups—Chinese, Malay, Indian and Others

(Heinze & Schemper, 2002). Alternatively, continuous variables can be structured

into categorical variables which may rectify observed separation.

Another, sadly common, solution for the separation problem is to exclude the

variable responsible. This is unfortunate as the variable itself is typically highly

predictive of the outcome and so discarding it reduces the predictive power. In the

current context, this would lead to more misdiagnoses.

A more satisfying alternative is to used a form of penalised regression (Heinze

and Schemper (2002) recommend Firth’s penalised likelihood method (Firth, 1993),

to estimate adjusted odds ratios with reduced bias relative to maximum likelihood

estimation. If using Firth’s approach, one can derive p-values and confidence intervals

using the profile-penalised likelihood function that could be found from the algorithm
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of Venzon and Moolgavkar (1988) and the logistf package (Heinze, Ploner, Dunkler,

& Southworth, 2013) in the R statistical environment (R Core Team, 2013).

In particular, Firth (1993) proposed an approach that yields parameter estimates

by reducing the score function, U(θ), which is the gradient of the log likelihood, to

U∗(θ) and solving for U∗(θ) = 0. The modified score function,

U∗(θ) = U(θ)− i(θ)b(θ), (3.1)

is the reduction of the original score function, U(θ), by the product of the gradient

of the score function, i(θ), and a bias term, b(θ), that depends on the model. This

modification of the score function will lead to a modified estimate, θ∗, that satisfies

U∗(θ∗) = 0. In our paper, we applied Firth’s logistic regression to solve the Separation

problem without throwing away potentially precious information that was collected

during the study (Lee et al., 2012).

After solving the problem of non-existent MLE, we need to find a way to iden-

tify the significant variables in the model selection step. Two common methods for

determining the significant variables are forward and backward stepwise model se-

lection. The former starts off with the simplest model with no variables and adds

one variable, which provides the most information to the model, at a time until no

other variables can improve the model (Pasha, 2002). On the other hand, backward

selection starts off with all possible variables and removes the variable with least

benefit to the model until the best model is achieved (Pasha, 2002).

In our paper, the backward approach is used by including all the variables in the

logistic regression model at the first step. The variable which corresponds to the

maximum p-value of all parameters was removed one at a time from the model until

all the p-values were below the level α = 0.05. The remaining variables are deemed

statistically significant; they are the duration of illness, duration of fever, whether

there is fever at presentation of illness, any bleeding and platelet counts (Lee et al.,

2012). The variable of platelet counts was initially spotted to exhibit Quasi-Complete

Separation, which led to our adopting a penalised log likelihood approach to avoid

losing valuable information for classifying patients’ risk.

To demonstrate the effects of having the unnecessary, non-significant variables in

the model, we will model the multivariate logistic regression with significant variables

found in the paper (Lee et al., 2012), as well as some other non-significant variables
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with different prior distributions for the regression coefficients within a Bayesian

framework.

3.1.2 Methods

The number of significant variables for the multivariate logistic regression of Chikun-

gunya versus DHF and Chikungunya against DF were 5 and 16, respectively (Lee

et al., 2012), and for this thesis, because of the greater danger attributable to DHF

infections, we focus on predicting whether a patient has Chikungunya versus DHF. A

multivariate logistic regression model is fitted to the data, using variables determined

to be significant in the paper by Lee et al. (2012), as well as the last 5 non-significant

variables that were removed from the model in the backward stepwise model selection,

but this time using a Bayesian approach.

The response variable, Y , is binary and equals to 1 if the patient is diagnosed with

Chikungunya (via RT-PCR) and 0 if DHF (via RT-PCR). Potential predictors are

labelled as X = (X1, X2, X3, X4, X5, X6, X7, X8, X9, X10) which represents the dura-

tion of illness, duration of fever, whether there is fever at presentation of illness, any

bleeding, platelet counts, atypical lymphocytes counts, alkaline phosphatase (ALP)

measurements, whether there is rashes, whether the patient is a Singaporean and

whether the patient feels nausea respectively.

While this seems an odd choice, it makes considerable epidemiological sense for

several reasons. The first diagnosed case of Chikungunya only occurred in Singa-

pore in 2008 (Ng et al., 2009). Due to the lack of past exposure, the immunity of

Singaporeans against Chikungunya would be lower than those foreigners who come

from countries where Chikungunya is endemic. In addition, foreign patients are more

likely outdoor workers who are more likely to be bitten by Aedes albopictus, the pri-

mary vector for Chikungunya. Thus, citizenship will indirectly have an effect on

the probability of identifying whether the patient is infected with Chikungunya or

Dengue.

The model for the jth individual is as follows:

logit(Pr(Yj = 1)) = β0 + β1x1j + β2x2j + . . .+ β10x10j . (3.2)

The odds of Chikungunya (versus DHF) are

Pr(Yj = 1)
1− Pr(Yj = 1) = exp(β0 + β1x1j + β2x2j + . . .+ β10x10j). (3.3)
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Thus, the probability of individual j having Chikungunya conditional on the

model is

Pr(Yj = 1) = 1
1 + exp(−(β0 + β1x1j + β2x2j + . . .+ β10x10j))

. (3.4)

There are five binary and five discrete independent variables. Because the range

of these variables differ, it did not seem appropriate to use the same prior for the

parameters (β0, β1, β2, . . . , β10). Instead, we standardised all the covariates.

If xij is the ith covariate for the jth individual, then zij = xij−x̄i

si
is the standard-

ised value, where x̄i and si are the mean and standard deviation of the ith covariate.

This ensures that the estimated coefficients are the overall strength of the relationship

between the predictors and the response variable. The model for the jth individual

is changed to the following:

logit(Pr(Yj = 1)) = b0 + b1z1j + b2z2j + . . .+ b10z10j (3.5)

where bi is the new regression coefficient after the standardization.

Since regression coefficients can be positive or negative depending on the rela-

tionship between the predictor variable and the response variable, a Laplace prior

distribution (double exponential distribution) centred at 0 (i.e. bi ∼ Laplace(0, λ)

for i = 0, 1, 2, . . . , 10) was chosen to allow the regression coefficients to take any real

numbers. The probability density function can be represented by

f(bi|λ) = 1
2λ exp(−|bi|

λ
) (3.6)

where the mean and variance are 0 and 2λ2 respectively.

Using a Laplace prior distribution acts as a penalizing procedure, like that of the

LASSO estimator. The LASSO estimator can be expressed as

b̂ = arg max
b

logL(D|b) subjected to ‖b‖1 ≤ c (3.7)

= arg max
b

logL(D|b)− λ ‖b‖1 , λ ≥ 0. (3.8)

where L(D|b) is the likelihood density, ‖b‖1 =
∑
|bi|, and λ is the optimal penalty.

We can also represent the logarithm of posterior density by

log Pr(b|D) = c+ logL(D|b) + log f(b) (3.9)

= c′ + logL(D|b)−
∑
|bi|
λ

. (3.10)
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where f(b) is the Laplace prior density. With the similarity in the two methods,

imposing a Laplace prior distribution has the effect of penalizing the estimating

process. In a Bayesian framework, we will be characterising log Pr(b|D) instead of

finding the value of b̂.

Other than using a Laplace prior distribution to mimic a penalizing process, a

normal prior distribution with zero mean could also be used. This is similar to a

ridge estimator which is represented by

b̂ = arg max
b

logL(D|b) subjected to ‖b‖22 ≤ c (3.11)

= arg max
b

logL(D|b)− λ ‖b‖22 , λ ≥ 0. (3.12)

where ‖b‖22 =
√∑

b2i . Correspondingly, we can present the logarithm of posterior

density with a normal prior distribution with zero mean and variance σ2 as

log Pr(b|D) = c′ + logL(D|b)−
∑
b2i

2σ2 . (3.13)

Laplace distributions have fatter tails than normal distributions with the same

mean and variance. We need a prior distribution which does not overly favor regres-

sion coefficients values which is close to zero and at the same time allow deviation to

both ends of the real numbers. If the regression coefficients are allowed to take the

appropriate numbers, the probability of getting a correct prediction from the logistic

regression will increase.

To show the different swamping effects in informative and non-informative prior

distributions, the scale parameter, λ, of the Laplace prior distribution is allowed to

vary in the parameter model.

To illustrate the results of using different prior distributions on the Separation is-

sue, repeated Bayesian logistic regression Models with different values of the variance

parameter, λ, are explored.

The algorithm uses MCMC to do so, as follows:

1. Standardise the dataset for every covariate i and individual j by

zij = xij − x̄i
si

. (3.14)
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2. In the model specification, the disease type for jth individual will follow a

Bernoulli distribution with success probability

Pr(Yj = 1) = 1
1 + exp(−(b0 + b1z1j + b2z2j + . . .+ b10z10j))

. (3.15)

3. The posterior distribution of the parameters is sampled using JAGS (Just An-

other Gibbs Sampler) using the precision in the specification of the normal

distribution, instead of the usual standard deviation or variance (Plummer,

2013). Fixing the prior distribution scale parameter, λ, say to 0.001, we use

JAGS to get a posterior sample of bi, using 90% of the data, over four chains

with 1000 burn-in and 2500 iterations each. The training set of 90% of the data

is randomly chosen based on the index of the patient using the sample function

in R (R Core Team, 2013).

4. For each individual from the remaining 10% data, we estimate the probability

of getting Chikungunya by

P̂r(Yj = 1) = 1
1 + exp(−(b̂0 + b̂1z1j + b̂2z2j + · · ·+ b̂10z10j))

(3.16)

where a set of regression coefficients, b̂ =
(
b̂0, b̂1, b̂2, · · · , b̂10

)
, are randomly

sampled from the posterior sample for each individual.

5. The posterior predictive probability of correctly forecasting the aetiology is

p =
[
P̂r(Yj = 1)

]yj
[
1− P̂r(Yj = 1)

]1−yj
. (3.17)

The score for this λ, the scale parameter of the Laplace prior distribution which

we have fixed in Step 3, is obtained by taking the mean of these probability

values from the 10% data.

6. The mean of each bi, for i = 0, 1, 2, . . . , 10, from the posterior sample are

recorded.

7. Repeat step 3–5 for the same λ ten times, using a different set of 90% of the

data in each round by re-sampling again based on the patients’ index. The

mean of all the ten scores in step 5 for that particular λ is taken to be the

mean.
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8. Then, repeat step 3–7 with different λ taking values from 0.001 to 0.1 with

thinner spacing for smaller λ.
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Figure 3.2: Probability of correct diagnosis and odds ratio for different λ.
Panel (a) shows the mean of the probability of making a correct diagnosis, p, for
different λ, represented by tiny, coloured points, for ten different runs. The bigger,
black points are the mean of the ten values for each λ value. Panel (b) shows the
mean odds ratios, exp(bi) of all the 10 variables, Xi for i = 1, 2, . . . , 10, for different
λ.

As λ increases, the probability of making a correct diagnosis increases, implying

a more predictive logistic regression model. For large λ, the prior distribution for bi

is effectively flat. Because a flat prior does not give particular weights to any values,

the estimates of the parameters bi are governed by the data. From the second panel,

it further confirms that small λ will only make incorrect focus of bi near 0, which will

result in more failed diagnoses. Choosing the right prior distribution can help focus

the posterior to suitable values while an ill-suited prior may reduce the accuracy of

the model fit or forecast. Thus, when there is no prior belief for the parameter, a flat

prior should be adopted.

Since the regression coefficients are still adjusting themselves to take larger posi-

tive values and smaller negative values (which corresponds to larger odds ratio and

close to zero odds ratio) when the prior distribution permits in the second panel of

figure 3.2, the algorithm stated above is done again with λ taking values from 0.001

to 100.
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Figure 3.3: Probability of correct diagnosis and odds ratio for different λ.
This figure has the same features as in figure 3.2 where λ is extended to 100.

In the first panel of figure 3.3, the probability of making a correct diagnosis, p,

asymptotes between 0.9 and 1, indicating that the regression model cannot perform

any better for even larger values of λ. The odds ratio for the binary variable of

whether the patient is suffering from fever when presented with the illness, X3, and

whether the patient has any bleeding, X4, are still decreasing as presented in the

second panel. On the other hand, the odds ratio for the platelet counts, X5, is still

increasing. But the model’s diagnostic ability is still good for these data implying

that the effects of these deviating values cancel out and they will still continue to

grow if larger λ is used as they will give unnecessary weights to these extreme values.

We observe changes in ‘swamping’—the effect that occurs when the posterior

distribution is mostly driven by the data, and not the prior—as λ varies. In this

case, the predictive accuracy of the model is not influenced when the prior standard

deviation λ increases from 10 to 100, but when λ is smaller than 10, different degrees

of swamping are observed. If the prior distribution is too narrowly focused on 0, the

data are unable to swamp the prior, and the effects are worse predictions.

3.2 Hierarchical Modelling of Disease Time Course

Dengue Hemorrhagic Fever (DHF) and Chikungunya (Chik) have similar symptoms

and the diagnosis is expensive in locations where they cocirculate. It would be ben-

eficial if the symptoms or laboratory observations can be modelled with time from

the onset of illness. By modelling the disease time course for the symptoms or labo-

ratory observations, the daily progression can help to guide the clinical management
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for accurate diagnosis of different type of patients during their course of illness.

The hierarchical model accounts for the correlations within each patient’s obser-

vation. Here, the chosen variables are Haematocrit, Platelet Counts, Leukocytes and

the patient’s temperature. These measurements come from the same dataset. The

choice of these 4 variables was due to their clinical relevance: Haematocrit, Platelet

Counts and Leukocytes are major components of blood. Daily observations of these

variables are easily and readily obtainable through blood tests, while temperature

taking is routine in clinical care for Dengue and Chikungunya patients.

3.2.1 Model and Method

The model was fitted separately for each type of observation and disease. For no-

tational brevity, the measurement and virus are suppressed from the notation that

follows.

We assume that these observations are conditionally independent and follow nor-

mal distributions:

yij ∼ N(µij , σ2) (3.18)

where yij is the observation for patient i on day j, where day 0 corresponds to the day

of symptom onset, and yij may not be completely observed over the whole observation

period.

The observations have variance σ2 which neither changes over time nor differs for

each individual.

The mean observations represented by µij will have both time effects and random

effects. Correlations over time will be induced by the choice of prior. Details of µij

will be described below.

The unknown value of b0 is given a flat, normal prior distribution with large

standard deviation to accommodate different observation types,

b0 ∼ N(0, 1002). (3.19)

We believe, biologically, that bj for day j > 0 will be dependent on the previous

day j − 1. To force this, we set the prior for bj to depend on the previous time point

bj−1 as the mean of its normal distribution,

bj ∼ N(bj−1, σ
2
b ). (3.20)
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We expect each individual to have a similar values to the mean of all patients’

observations on each day of their time course. Differences between individuals are

characterised via a random effect parameter, βi. If the individual i had a larger ob-

servation than the others on day j, the mean observation µij will be an amplification

of the value of bj if eβi > 1 or a reduction if 0 < eβi < 1,

µij = eβibj . (3.21)

Since there is no existing knowledge of whether each individual i should have

observations greater or smaller than others, a normal prior centred at zero is used

for βi for equal chances of getting eβi > 1 and 0 < eβi < 1,

βi ∼ N(0, σ2
β). (3.22)

This project has been done using JAGS (Just Another Gibbs Sampler) where the

precision, σ−2, is used in the specification of normal distribution, instead of the usual

standard deviation σ (Plummer, 2013). The prior distribution for all the precision

values in the normal distribution should be positive and focus near to 0. The choice

used here is gamma distribution with both the shape and scale parameters taking

small value,

σ−2, σ−2
β , σ−2

b ∼ Γ(0.01, 0.01). (3.23)

The final model is thus

yij ∼ N(µij , σ2) (3.24)

µij = eβibj (3.25)

b0 ∼ N(0, 1002) (3.26)

bj ∼ N(bj−1, σ
2
b ) (3.27)

βi ∼ N(0, σ2
β) (3.28)

σ−2, σ−2
β , σ−2

b ∼ Γ(0.01, 0.01). (3.29)

The algorithm is thus:

1. Prepare the data and initialisation for running the MCMC in JAGS within the

R platform (Plummer, 2013).
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2. After the JAGS process, the posterior sample for the parameters mentioned in

the model can be used to get the 95% prediction interval for a certain observa-

tion.

3. Gather the parameter values from the posterior sample, including bj , βi, σ2.

4. Compute the µij for each set of posterior samples using the relation µij = eβibj .

5. µ̄j , the daily mean of all the µijs was computed and plotted in Figure 3.4.

6. The 95% credible interval for µij will be presented in Figure 3.4.

7. Simulate the predicted observation values ŷij from normal distribution with

mean µij and variance σ2.

8. With all the simulated values of ŷij as prediction, the 95% prediction interval is

obtained by calculating the 2.5% and 97.5% quantiles for the simulated values

at each day and plotted in Figure 3.4.

9. Step 1 to 8 should be repeated for the four chosen symptoms and observations

for each of the two diseases.

3.2.2 Results and Inference

The algorithm was executed and the results is shown in Figure 3.4 for both diseases

and the four chosen measurements.
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Figure 3.4: Prediction for time course of the four selected variables, namely
Haematocrit (in volume percentage) (Panel (a) & (e)), Leukocytes (in
volume percentage) (Panel (b) & (f)), Platelet Counts (in ×109/L) (Panel
(c) & (g)), and the patient’s temperature (in ◦C) (Panel (d) & (h)) for
Chikungunya and DHF respectively.
The actual observations of the patients over a period of two weeks were plotted as
light grey lines. The black solid lines show how the mean observations µ̄j of patients
changes along day j; the black dashed lines show the credible interval for the mean
µij . The black dotted line shows the credible interval for the predicted observations
ŷij .
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3.3 Conclusion

According to Nuraini (2012), haematocrit concentration will increase for dengue

infected diseases and decrease to normal level of 40–50% for males and 37–47% for

females upon recovery. In figure 3.4, panel (a) and (e) showed increment in haema-

tocrit concentration at the start of the time course and a decline near to the end of

observation for both diseases. The decrement in haematocrit concentration for DHF

patients is more obvious than that for Chikungunya patients.

Leukocytes values are predicted to dip faster in DHF patients than Chikungunya

patients (Lee et al., 2012). The normal percentage of leukocytes is 1% and figure

3.4 shows that patients of both diseases had leukocytes more than 1%, a response

to the immune systems defending the body from the disease (Alberts et al., 2002).

We can see that the mean observation µ̄2 at day 2 dropped quickly until µ̄6 for

Chikungunya in panel (b) whereas that for DHF in panel (f) did not decrease that

sharply. However, after the drop, leukocytes values for Chikungunya patients did not

bounce back as quickly as how the DHF patients would have recovered.

Platelet counts are inversely related to Haematocrit concentration (Nuraini &

Tasman, 2012).The predicted platelet counts decrease initially and rise towards the

end of the observation window for both diseases which agrees with the claim by

Nuraini (2012) for platelet counts to be in opposite direction of haematocrit concen-

tration. This time course analysis, presented in Figure 3.4 panel (c) and (g), supports

platelet count as the main variable for differentiating Chikungunya and DHF, as the

average platelet count barely dropped below 200 × 109/L in Chikungunya patients,

but fell below 100× 109/L in DHF patients.

In both diseases, temperature is anticipated to reduce and asymptote at normal

human temperature of slightly less than 37◦C after day 2. As the temperature data

collected from the Chikungunya patients are more coherent, the credible interval for

mean observation µ̄j is narrower as portrayed in panel (d). The temperatures of

DHF patients are more unsteady, leading to a wider credible interval for the mean

temperature µ̄j .

3.3 Conclusion

In the analysis of the clinical and laboratory predictors of Dengue and Chikungunya

Disease, the main issue was the Quasi-Complete Separation problem of the data. In

41



Chapter 3 Dengue and Chikungunya Infections in Tan Tock Seng Hospital

the publication, we explored the use of Firth’s penalised likelihood method with the

logistic regression to overcome separation (Heinze et al., 2013).

The alternative described herein is a Bayesian analogue, in which we have shown

the importance of using appropriate prior distributions for better performance in

predicting the correct type of disease.

Data collection is incomplete because data are collected based on clinical need

rather than for statistical purposes. As a result there are not always daily observa-

tions for each patient. The advantage of our hierarchical model is being able to set

the course observation trend with missing observations from certain days by borrow-

ing information from the other patients. This method of putting a hierarchical model

in time course will, we hope, guide clinical management by providing daily trends

for key variables for each type of illness. In the best case, the observation trend

could help physicians in accurate diagnosis of the different type of patients during

the course of illness and detect aberrant patterns that may indicate the patient’s

condition has changed unexpectedly.

The observations described in the hierarchical time course model were the major

indicators of Dengue or Chikungunya diseases. Future work could use other obser-

vations to identify trends of the different observations.
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Chapter 4

Hierarchical Model of 2009

Pandemic H1N1 Transmission

4.1 Introduction

In this increasingly globalised world, the volume of people traveling across borders

allows pathogens to spread rapidly from their place of emergence to all corners of

the world. When a new virus emerges and spreads to multiple countries, the World

Health Organization (WHO) will declare pandemic and differentiate the seriousness

with different stages (WHO, 2010).

Countries are mandated to have pandemic preparedness plans which detail their

own policies and measures to deal with the pandemic (Poggensee et al., 2010; Ujike

et al., 2011; Fuhrman et al., 2011). If the pandemic predictions can be improved,

these plans can be tailored to the predicted severity, and better decisions may pre-

vent unnecessary interventions while minimizing economic losses and morbidity and

mortality.

The first new pandemic of the 21st century was announced in early 2009, an

influenza A virus. The impact of this pandemic virus was so great that, in less than

a year, it resulted in more than 15000 confirmed deaths worldwide (Halder, Kelso, &

Milne, 2010).

Mexico was the first country to confirm cases of a novel variant of H1N1 (Trifonov,

Khiabanian, & Rabadan, 2009), thought to be a recombinant version of viruses circu-

lating in swine and birds (Neumann, Noda, & Kawaoka, 2009), in April of that year.
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The Mexican Ministry of Health discontinued all schooling to counteract the spread

of disease by reducing the contacts amongst the younger generations (Chowell et al.,

2011), who constituted the majority of both cases and confirmed deaths in the early

stages of the pandemic (Domínguez-Cherit et al., 2009). Further control measures

to minimise physical interaction included the closure of movie theaters, restaurants,

and other public assemblage locations (Chowell et al., 2011).

Figure 4.1: Singapore’s Health Promotion Board promotion poster.
This poster aims to inform the public about germs being transmitted by hand may
cause serious infection.

Other countries took different approaches to contain or mitigate the pandemic.

For instance, in Germany, improved sanitation methods were widely proposed, in-

cluding public health education on the correct way of hand cleaning (see for example

Singapore’s Health Promotion Board promotion poster reproduced in figure 4.1), the

use of face masks and the isolation of possible infected individuals to abate the cir-

culation of the disease (Poggensee et al., 2010), with claims that carrying out these

non-pharmaceutical interventions within 36 hours of symptom onset can reduce the

rate of diseases spread (Poggensee et al., 2010). In Japan, according to Ujike et al.
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(2011), the inventory of Oseltamivir during the pandemic was doubled. In France,

during the initial phase of the pandemic from 1 May 2009 to 30 June 2009, all verified

and possible cases of H1N1 were hospitalised, regardless of the degree of seriousness

of illness (Fuhrman et al., 2011). This extreme prevention during the containment

period resulted in the unsustainable rising need for hospitalization, requiring this

policy be later amended so that only patients in a critical condition be monitored in

hospitals (Fuhrman et al., 2011).

In contrast to past influenza pandemics, but similar to the situation following the

SARS outbreak of 2003 (Naylor, Chantler, & Griffiths, 2004), attributes of the H1N1

influenza virus from different countries were shared quickly worldwide for the speedy

development of a vaccine and identification of the viral strain (Ikonen et al., 2010).

However, the downside to this was the initial panic caused by the unduly pessimistic

estimates of the severity of the virus from Mexico (Goodwin, Haque, Neto, & My-

ers, 2009). Being able to merge, appropriately, data from multiple countries would

allow better decision making while overcoming the weaknesses or gaps in individual

countries’ surveillance data, reflecting differences in the extensiveness of localized

data.

The virulence of the pathogen, measured by the rate of infection and removal

or the reproduction number, should be similar in different parts of the world, and

although the pandemic virus might mutate during the outbreak, as it did in the

1918 pandemic (Taubenberger & Morens, 2006), we might assume that the viral

characteristic remain unchanged over the first wave of the outbreak, when the data

paucity is most severe. However, fatality, confirmation and hospitalization rates will

depend on countries’ healthcare capacity and surveillance systems and are expected

to differ.

A powerful model should address these similarities and differences. In this chap-

ter, we will present a framework to exploit valuable information on the spread of

a pandemic in different countries combining hierarchical with transmission dynamic

modelling, in particular, a Susceptible-Infected-Removed (SIR) model of a homoge-

neously mixing population is used to model observational data collected from different

countries. Demonstrating the use of this approach via data published on the H1N1

pandemic, we propose that a hypothetical network of surveillance systems could be
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set up to pool data from participating countries that would provide real-time data

for analysis and prediction for a pandemic outbreak.

Several platforms for reporting information on infectious diseases exist but they

do not have committed organizations from worldwide to provide actual real-time ob-

servational data. The Global Public Health Intelligence Network (GPHIN) has been

supplying information to WHO, international governments and non-governmental

organizations since 2004, using information extracted from reports of eight different

languages (Mawudeku & Blench, 2006). From 1994, Program for Monitoring Emerg-

ing Diseases (ProMed-mail) has been sourcing infectious diseases information from

the grey literature—media or official reports—and disseminating the materials to

subscribers by email (Victor & Madoff, 2004a). This has been useful, and it picked

up the emergence of SARS before the Chinese government shared data with the rest

of the world (Victor & Madoff, 2004b), but data are partial, messy, unconfirmed and

have many false alarms. With added languages for sourced documents, HealthMap

is able to collate information automatically in collaboration with ProMed-mail in a

quicker manner since 2006 (Brownstein, Freifeld, Reis, & Mandl, 2008). However,

accuracy problems may arise due to the mechanized routine for data compilation.

The most promising platform is the International Severe Acute Respiratory Infec-

tion Consortium (ISARIC), an international alliance with about 50 to 60 research

networks worldwide for real-time infectious diseases data sharing since 2011 (Yong,

2012). Yet, the synchronization of shared data may be a problem if data were not

collected based on fixed standard criteria, and data from academic institutes may

lack the completeness of national surveillance.

In the situation where many countries experience an outbreak, the experience

of each will differ, with differences in importation and establishment dates (Lau et

al., 2012), interventions, seasonality, and potentially severity indices. This requires

being characterised by a separate parameter vector for each country, resulting in a

high dimensional parameter space for exploration. To perform a model fit, Bayesian

solution can provide accurate information about the parameters using methods such

as the Markov Chain Monte Carlo (MCMC) algorithm. On top of this, hierarchical

modelling is commonly used in non-epidemic settings but heretofore has rarely been

exploited within the infectious disease setting (Kleczkowski & Gilligan, 2007). We
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build a hierarchical epidemic model with hyper-parameters to account for the vari-

ability between outbreaks of different countries and estimate the parameters using

MCMC and importance sampling methods. This approach is demonstrated to be

very successful in pooling information across multiple countries and in characteriz-

ing the variability between outbreaks, showing that non-epidemic methodology can,

with suitable adaptation and development, contribute by giving better estimations

for infectious disease epidemiology.

4.2 Literature review and data sources

On 23 April 2009, the first case of H1N1 was reported to WHO by Mexico (Chang

et al., 2010). H1N1 was the first virus in the 21st century that has spread to most

countries in the world, causing an influenza pandemic (Chang et al., 2010). Upon

contact with an infected individual, a susceptible individual may get infected, poten-

tially leading to confirmed death in the most serious cases (Zuno et al., 2009). The

main symptoms of H1N1 are fever, cough, headache, muscle aches, and rhinorrhoea

(Zuno et al., 2009), i.e. symptoms that are indistinguishable from a regular ‘cold’.

Typically each country collects and analyses their data in isolation. Limited

data, during the start of a pandemic, often may give a misleading impression and

when used in a forecasting routine might not give sensible predictions due to data

incompleteness. But a hierarchical model can be formed to pool information from

different sources, which may collect different types of data, such as on hospitalizations

or community transmission, simultaneously. To evaluate the utility of data sharing

networks for future worldwide outbreaks, H1N1 pandemic data were collected from

a literature review of research publications and government surveillance websites.

Individuals affected during the pandemic can be classified in several ways ac-

cording to the severity of their infection and their healthcare utilisation (see Figure

4.2).
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Figure 4.2: Venn diagram for differentiating individuals at time t during
the pandemic.
The yellow oval represents all the individuals who are infected with H1N1, It.
The aqua oval represents those who consulted a doctor and were reported to show
influenza-like illnesses (ILI) symptoms, Xt, Within these doctor consultations, the
outpatient ILI, Wt, is represented by the lime-green semi-oval; the hospitalised ILI,
Yt, are represented by the teal semi-oval. All patients who are confirmed to be in-
fected with H1N1, Zt, are represented by the indigo oval. The outpatient H1N1, Ut, is
represented by the turquoise semi-oval; the hospitalised H1N1, Vt, are represented by
the purple semi-oval. The red oval represents those who died due to H1N1 infection,
Dt.

Not all individual infected with influenza will visit a doctor, and not all who do

will be diagnosed as having an influenza infection (as opposed to another respiratory

virus), and as a result it is impossible to record all the individuals infected with H1N1

at time t, It, or who have recovered at time t, Rt. The number of ILI, Xt, in the

community is usually measured by a network of influenza sentinel clinics (Truscott et

al., 2012), who can give useful insights to It. Xt does not in general represent the full

number of ILI cases in the country or territory because the surveillance system would

typically not include all the physicians in the country, but as long as the coverage does

not vary over the course of an outbreak, we can justifiably assume proportionality in

the model to overcome this shortcoming.

Influenza sentinel clinics may be hospital-based or clinic-based. ILI patients re-

ported by doctors at outpatient clinics or general practitioners (GP) are represented

by Wt, depicted by the lime-green semi-oval in figure 4.2. Hospitalised ILI patients

are denoted as Yt depicted by the teal semi-oval in figure 4.2. If observed for the

whole population, Wt and Yt should be subsets of Xt, but most studies were done in

a limited number of hospitals, and so the numbers reported were only representative
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of those hospitals. As a result, due to the imperfect data collection and the differences

in the authorities’ practices, the observed data may not satisfy this relationship.

We denote all confirmed H1N1 cases as Zt, hospitalised H1N1 patients as Vt,

those who are not hospitalised as U t, and those who died due to infection as Dt. The

number of confirmed confirmed deaths due to H1N1, Dt, may be an under-recording

of the actual number as H1N1 might not be identified as the cause of confirmed death

for some patients. Among the sources that we have explored, data on Ut and Yt could

not be found, but the remaining data provide rich information for the missing data

of It and Rt. Notation for the states and data are provided in table 4.1.

States Description Availability
It Individuals infected with H1N1 at time t No
Rt Individuals recovered or died due to

H1N1 at time t
No

Dt All confirmed confirmed deaths due to
H1N1 at time t

Yes

Zt Patients diagnosed with H1N1 at time t Yes
Yt Hospitalised ILI patients at time t No
Xt All reported ILI patients at time t

(Hospitalised and outpatient)
Yes

Wt Outpatient ILI patients at time t
(Government clinic and GP)

Yes

Vt Hospitalised H1N1 patients at time t Yes
Ut Outpatient H1N1 patients at time t No

Table 4.1: Summary of the different states and data used in this project.
These are the states that we have considered and the availability column indicates
whether the data could be found in the literature reviews.

Differences in countries’ reporting systems led to non-systematic data for the

categories listed in table 4.1. We harvested data from publications from fourteen

countries with twenty-five datasets, of which Zt, the number of confirmed H1N1

cases, was the most common data type, whereas Ut, the number of outpatient H1N1,

and Yt, the number of hospitalised ILI, were not observed.

ILI counts are considered more reliable than confirmed H1N1 cases because typ-

ically they are collected under a consistent sampling protocol (Mark I-Cheng Chen,

personal correspondence). For countries with a proper surveillance system, ILI data

may be recorded consistently, even before an outbreak. Fox (2009) reports that there

was a sudden increase in demand for influenza tests in the early stage of the pan-

demic, leading to more capacity to confirm suspected infections at this stage. Thus,
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the number of confirmed H1N1 cases is subject to possible biases and might change

with the testing paradigm according to the changing risk perceptions. An example of

this was reviewed by the Australian Government Department of Health and Ageing

(2011), where extensive laboratory tests were carried out at the start of the pan-

demic, but to be more efficient, the protocol was modified to direct the tests towards

the more severe cases and vulnerable individuals to reduce the surge in demand for

tests. As a result, where ILI data were available, we included those alongside H1N1

confirmations, to validate the latter.

The WHO declared the end of H1N1 pandemic on 10 August 2010 (WHO, 2010),

though for most countries, the first wave—the time of greatest uncertainty—was

completed by late 2009. Because our basket of countries have different seasons, and

seasonality has been observed to influence the risk of influenza transmission (Balcan

et al., 2009), we truncated all datasets at 1 October 2009 which marks the common

change of seasons for countries in the northern and southern hemisphere. We initially

attempted to factor in the seasonal effect, but this was deemed unduly complicated,

as will be elaborated in the next subsection. As a result, our model focuses on the

period 23 April 2009 (Day 113 of the year) to 1 October 2009 (Day 274), i.e. an

interval of twenty-three weeks.

Countries were chosen such that they could form a good representation of the

world. They are countries and cities from four continents, namely North America,

South America, Eurasia and Australia; there is a marked paucity of data from Africa

and no good sources could be found. Among these countries, there was a mix of

middle and higher income countries. We will elaborate on how the data have been

collected in the order of the countries’ geographical latitude.

Finland: The first H1N1 confirmed cases occurred on 10 May 2009 (Ikonen et

al., 2010). The National Infectious Disease Registry collated the weekly numbers of

laboratory confirmed infections of the 2009 pandemic influenza A (H1N1) viruses, as

reported by Ikonen et al (2010). The number of H1N1 confirmed cases was digitised

using Engauge Digitiser from the article’s bar chart.

England: Three data types are available, namely, the number of H1N1 confirmed

deaths, the number of hospitalised H1N1 cases and the number of outpatient ILI

cases. During the pandemic, McLean et al. (2010) from the Health Protection
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Agency’s (HPA, now Public Health England) Centre for Infection claimed that the

General Registry Office of England reported daily numbers of confirmed deaths, based

on laboratory confirmation or classification on the confirmed death certificate. Figure

28 of the Epidemiological Report informs about the four countries in United Kingdom

(UK) but only England’s number of H1N1 confirmed death was digitised (McLean

et al., 2010) for consistency with the other sources for the UK.

In another HPA weekly report (McLean & Paterson, 2010), the number of hospi-

talised H1N1 cases and number of outpatient ILI cases for England were digitised from

the same diagram in Figure 8. Under the National Laboratory Reporting Scheme,

230 National Health Service, HPA and independent sector microbiology laboratories

provided data on the number of hospitalised H1N1 cases (McLean et al., 2010). The

outpatient ILI cases were provided by approximately 50 physicians from the Royal

College of General Practitioners (RCGP), who reported the weekly number of ILI

cases to the RCGP Research and Surveillance Centre to provide the data for the

HPA report regularly (McLean et al., 2010; McLean & Paterson, 2010).

France: The French GP sentinel surveillance system has been in place since 1984

to collect the number of ILI consultations and it is still ongoing (Sentinelles, 2012).

The system relies on a 1300 volunteer GPs who submit weekly number of ILI con-

sultations via secure internet connection (Sentinelles, 2012). Subsequently, average

numbers were estimated at the national level. We digitised the graph presented by

Fuhrman et al (2011) for the estimated number of ILI consultations.

New York: We found three datasets, including the number of H1N1 confirmed

deaths, the number of hospitalised H1N1 cases and the number of reported ILI cases.

The surveillance for H1N1 was in response to the expected severity of the pandemic

as the Department of Health and Mental Hygiene (DOHMH) appealed for all the

hospitalised H1N1 cases and confirmed deaths due to H1N1 to be reported (Lee et

al., 2010; Balter, Gupta, Lim, Fu, & Perlman, 2010). The surveillance system for

confirmed death due to influenza has been in place before the H1N1 pandemic but

only collecting data on influenza confirmed deaths in children (Lee et al., 2010).

According to Lee et al. (2010), the DOHMH removed the age criterion to make

the documentation suitable for the pandemic situation, and the surveillance system

was ready and credible for use. The bar chart on the number of H1N1 confirmed
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death in New York was digitised from the Lee et al. (2010) paper. DOHMH also

ensured the accuracy of the number of hospitalised H1N1 by following up with all

the 57 hospitals in New York daily by telephone to be notified of the total number of

hospitalised H1N1 patients within or outside the intensive care units (ICU) (Balter et

al., 2010). The number of ILI cases for New York was available from the United States

Centers for Disease Control and Prevention (CDC) website (CDC, 2009), which was

collected by the U.S. Outpatient Influenza-like Illness Surveillance Network made up

of more than 2,700 outpatient healthcare providers in all 50 states (CDC, 2009).

Japan: Ujike (2011) reports that the numbers of ILI and H1N1 cases were

collected by influenza sentinel and non-sentinel clinics in Japan. The number of

influenza cases per sentinel clinic was digitised and scaled to estimate the average

number per GP nationwide (Ujike et al., 2011). H1N1 cases were confirmed based

on random samples collected from the sentinel clinics and subjective samples in non-

sentinel clinics according to the different stages of surveillance rolled out at different

points in the pandemic (Ujike et al., 2011).

Republic of China, Taiwan: On 18 June 2009, Taiwan temporarily changed

their original influenza surveillance system to an influenza pandemic clinical surveil-

lance system which focuses on reporting the possible H1N1 cases (Chao et al., 2011).

This ad hoc surveillance system during the 2009 pandemic provides the number of

hospitalised H1N1 and confirmed H1N1 (Chao et al., 2011). Since Taiwan’s surveil-

lance is already extant, it is a natural node in our hypothetical network.

Singapore: The available data includes the number of H1N1 confirmed deaths,

the number of outpatient ILI and the number of confirmed H1N1 cases. The timing of

confirmed deaths were collated by reviewing news articles from Channel NewsAsia,

AsiaOne, and TR Emeritus, an independent Singapore online news site, since the

start of the pandemic until the end of 2009, 18 confirmed deaths were related to H1N1

(MOH, 2009) and cross checked against Ministry of Health (MOH) press releases for

completeness (MOH, 2009).

Since June 2009, Singapore started a sentinel GP network with 23 participating

GPs to report the number of ILI consultations on a daily basis (Ong et al., 2010).

We digitise the graph showing the average number of ILI consultations from each

GP and rescale by 2 138 times, the total number of GPs in Singapore in 2009 (Lee
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et al., 2011). Cutter et al. (2010) presented the number of imported and local cases

of H1N1 reported to MOH in a bar chart which we used as the number of confirmed

H1N1 cases.

Southern Hemisphere: Countries in the southern hemisphere only experienced

one pandemic wave in 2009 during their winter season and the countries explored in-

cludes Brazil, Peru, Bolivia, Australia, Chile, Argentina and New Zealand (Opatowski

et al., 2011). Opatowshi et al (2011) have extracted the number of confirmed H1N1

cases and ILI cases from the respective countries’ surveillance system websites or

public reports. We digitise the dataset from their graphical analysis for our use.

They also used a Bayesian approach with MCMC to find the posterior sam-

ple for the parameters of interest, but their parameters were distinguished by age

(Opatowski et al., 2011), while we assume the rate of infection and removal to be

the same for all age group. An additional move to build a hierarchical model could

easily exploit information from similar outbreaks from other areas. Our investigation

is more in depth as we have more countries in our analysis, involving countries from

most continents across the northern and southern hemispheres, as well as tropical

and temperate countries. We also have more types of surveillance data to provide

information to our model. We will also demonstrate that all these countries with dif-

ferent seasons can be modelled together using a hierarchical model for more accurate

predictions, by exploiting information from similar outbreaks of the same disease in

other countries.

4.3 Model

This project will explore the use of Bayesian hierarchical modelling on the 2009

H1N1 pandemic. MCMC techniques are used to sample the parameters and the

hyper-parameters over the large parameter space (Gilks et al., 1996). Advantages of

MCMC are that it allows model flexibility, for any distribution that suits the data

can be used, while it allows analysis of all parameters at the same time (O’Neill,

2002).

The unknowns that cannot be observed exactly at time t in the cth country are

the number of individuals infected with H1N1, Ic(t), and the cumulative number of
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recovered or dead individuals since the start of the observation, Rc(t).

In this analysis, the longitudinal observed statistics at time t in the cth coun-

try includes subsets of: the cumulative number of reported confirmed deaths due to

H1N1, Dc(t), the number of patients diagnosed with H1N1, Zc(t), the number of ILI

patients (Hospitalised and/or outpatient), Xc(t), the number of outpatient ILI pa-

tients (Government clinic and registered GP), Wc(t), and the number of hospitalised

H1N1 patients, Vc(t).

The observed statistics are either related to the number of infected individuals,

Ic(t), or the cumulative number of recovered or removed individuals, Rc(t), for the cth

country at time t. We show how evidence synthesis can be used to pool information

from these sources within the model to infer unknown quantities, such as Ic(t) and

Rc(t).

Parameters can inform about many severity estimates, like the Case Fatality Ra-

tio (CFR), Hospital Fatality Ratio (HFR), Case Hospitalization Ratio (CHR) and

Final Attack Rate (FAR). Because different types of data were collected, severity

estimates can be used to assess these different metrics of burden on the healthcare

system. Presanis et al. (2009) have demonstrated the estimation of CFR, CHR and

the Case Intensive care Ratio (CIR) by Bayesian Evidence Synthesis Framework.

Our approach can be seen as a generalisation of theirs, though excluding the severity

estimate for CIR which would require the data for number of H1N1 patients who

were admitted to the intensive care unit (ICU). The Bayesian Evidence Synthesis

Framework applied by Presanis et al. (2009) only considers each of these severity

ratios as probabilities of occurrences given symptomatic cases and using these prob-

abilities on a binomial model. It was also for the United States only, whereas our

approach used dynamic time series data, compartmental modelling and data from

many different countries.

The software used for this analysis is R (R Core Team, 2013).

4.3.1 Cumulative H1N1 Confirmed Deaths, Dc(t)

We model the cumulative number of confirmed deaths due to H1N1 as a negative

binomial distribution:

Dc(t) ∼ NB(nc(t), pc(t)) ∀c, t. (4.1)

A negative binomial distribution is preferred due to its support over the non-negative
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whole numbers, which is desirable for count data. Its flexibility in the shape of its

distribution, which is controlled by two parameters, nc(t) and pc(t), is also more

appropriate for providing different variance at different time points to account for the

magnitude difference within each of the collected data points. A Poisson distribution

is also not appropriate because of its inflexibility in the shape of the distribution

which is controlled by one parameter, λ. Similarly, a normal distribution is rejected

due to its support over the real numbers.

In the context of a negative binomial distribution, Dc(t) is the number of trials

until the occurrence of nc(t) number of successes based on the success probability of

pc(t). The parameters, nc(t) and pc(t), can be calculated from the mean, µc(t), and

variance, σ2
c (t).

The mean of the negative binomial distribution can be represented as

µc(t) = nc(t) (1− pc(t))
pc(t)

∀c, t (4.2)

and the variance as

σ2
c (t) = nc(t) (1− pc(t))

p2
c(t)

∀c, t. (4.3)

Manipulating the above equations, with the condition that 0 < pc(t) ≤ 1,

pc(t) = µc(t)
σ2
c (t)

∀c, t (4.4)

and n > 0

nc(t) = µc(t)pc(t)
1− pc(t)

∀c, t. (4.5)

The mean is taken to be proportional to the modelled number of removals Rc(t),

which includes both recoveries and confirmed deaths,

µc(t) = θD(c)Rc(t) ∀c, t (4.6)

and the variance is also related to Rc(t) by another parameter, ηD(c),

σ2
c (t) = ηD(c)Rc(t) ∀c, t. (4.7)

This parametrization ensures a manageable number of parameters while still cap-

turing the relationship between the model for infection and the mortality data. The

two additional parameters, θD(c) and ηD(c), were initially allowed to differ between
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countries to account for differences in each country’s population and health system

characteristics that might result in greater risk of adverse events: according to Barrau

et al. (2012), H1N1 patients with diabetes, cardiac insufficiency and morbid obesity

are more likely to become severe cases, requiring intensive care or even resulting in

confirmed death. As the prevalence of such risk factors differs in different settings

(Barrau et al., 2012) so too should in general the proportionality parameters differ.

In an emerging infectious disease outbreak, we are not sure what the proportion-

ality parameters ought to be. Case fatality ratios for different infections were 2.5%

(Spanish influenza (Taubenberger & Morens, 2006)), 14–33% (H5N1, estimated to

date, (Li, Choi, Sly, & Pak, 2008)) and roughly 90% (Ebola Virus, (King & Markan-

day, 2003)). Because of this, we assign the proportionality parameters for confirmed

death, θD(c) and ηD(c), uninformative prior distributions. The uninformative prior

for θD(c) is

θD(c) ∼ U(0, 1) ∀c (4.8)

because it is impossible to have more confirmed deaths than the actual number of

removed cases Rc(t). ηD(c) should be positive as variance is always positive, so the

prior distribution will be uniform over the non-negative range with an arbitrarily

large upper limit

ηD(c) ∼ U(0, 500 000) ∀c. (4.9)

Although θD(c) should take different values in different countries (see above),

the severity of the virus is unlikely to vary too greatly, and so evidence from one

country or setting should inform estimates for others. The parameters would ideally

be modelled hierarchically, but as we had data on mortality from three locations in

our hypothetical surveillance network (England, New York and Singapore), it proved

impossible to obtain good estimates on these parameters. We therefore changed the

mean to

µc(t) = θDRc(t) ∀c, t (4.10)

with the same prior for the proportionality parameter

θD ∼ U(0, 1). (4.11)
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To account for the longer time period between infection and confirmed death than

infection and recovery (Riley et al., 2003), an additional parameter δ is incorporated,

which is assumed to be the same for all countries. The mean and variance are then

related to the shifted number of removed individuals by

µc(t) = θDRc(t+ δ) ∀c, t (4.12)

σ2
c (t) = ηD(c)Ri(t+ δ) ∀c, t. (4.13)

Again, a non-informative prior for the latent period, δ, (a discrete uniform prior)

is used:

δ ∼ Ud(1, 100).

4.3.2 Confirmed H1N1 Cases, Zc(t)

A similar model can be built for the number of confirmed H1N1 cases, using a

negative binomial distribution

Zc(t) ∼ NB(nc(t), pc(t)) ∀c, t. (4.14)

The two parameters, nc(t) and pc(t), can be calculated from the mean, µc(t), and

variance, σ2
c (t), as illustrated in subsection 4.3.1.

Analogously, another pair of proportionality parameters, θZ(c) and ηZ(c), are used

for each country c. They should not be the same from country to country due to dif-

ferences in their testing regimes, partly due to different risk perceptions as explained

earlier. Since the parameter depends on the coverage of the surveillance network

more than biological factors, the knowledge from one country should not directly

affect the inference about other countries. Thus, the reporting parameters for these

data should be independent across locations. Although the testing paradigm can also

change within a country during the course of the pandemic, we will assume that the

proportionality parameter, θZ(c), will remain constant as time progresses. The mean

and variance for Zc(t) are proportional to the number of infected individuals, Ic(t)

by

µc(t) = θZ(c)Ic(t) ∀c, t (4.15)

σ2
c (t) = ηZ(c)Ic(t) ∀c, t. (4.16)
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Again, uninformative prior distributions are used on the parameters, θZ(c) and

ηZ(c). The observed data should be less than the actual number of people infected

with H1N1, and so the proportionality parameter θZ(c) should also take values only

from 0 to 1

θZ(c) ∼ U(0, 1) ∀c. (4.17)

The prior distribution of ηZ(c) should also be positive and have a large upper bound,

ηZ(c) ∼ U(0, 500 000) ∀c. (4.18)

4.3.3 Reported ILI Cases, Xc(t)

The parameters governing the number of reported ILI, Xc(t), as a fraction of the

actual number of H1N1 infections is expected to be independent for each country

as the number of doctors or healthcare organizations under the surveillance system

will deviate greatly due to social, not biological, factors. For example, there are only

1300 volunteering GPs in France, in contrast to the 5000 sentinel clinics in Japan

reporting the number of ILI cases (Sentinelles, 2012; Ujike et al., 2011).

Similarly, differences in risk perception or medical usage may affect the proportion

visiting the doctor in different countries. The highest weekly number of ILI cases

reported as of 1 October 2009 are about 136 thousands and 24 thousands for France

and Japan, respectively (Sentinelles, 2012; Ujike et al., 2011). The obligation of

the physicians to report the ILI cases, as well as the stability of the surveillance

network may result in differences in the reported ILI cases. Since France started their

surveillance system in 1984, whereas Japan only started their surveillance system in

1997, the consistency of the system and the engagement of the physicians will be

different (Sentinelles, 2012; NIID, 1998). The proportionality parameter, θX(c), that

governs the portion of reported ILI data out of all those infected with H1N1 cases,

Ic(t), is therefore taken to be different for each dataset. Using the same negative

binomial distribution,

Xc(t) ∼ NB(nc(t), pc(t)) ∀c, t. (4.19)

The two parameters, nc(t), and pc(t), can be calculated from the mean µc(t) and

variance σ2
c (t), as illustrated in subsection 4.3.1. In accordance with the above, the
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mean µc(t) and variance σ2
c (t) are also related to the number of people currently

infected with H1N1, Ic(t)

µc(t) = θX(c)Ic(t) ∀c, t (4.20)

σ2
c (t) = ηX(c)Ic(t) ∀c, t. (4.21)

As the number of ILI consultations will be under-reporting the actual H1N1

patients, θX(c) will be less than one and the prior distribution for θX(c) is chosen as

θX(c) ∼ U(0, 1) ∀c. (4.22)

Uninformative prior distributions with a large upper limit is also chosen for measuring

the spread as

ηX(c) ∼ U(0, 500 000) ∀c. (4.23)

4.3.4 Outpatient ILI Cases, Wc(t)

Surveillance systems in some countries only involved volunteer GPs to submit

the number of ILI consultations while some countries’ network relied on hospitals,

government clinics, as well as GPs. Data that come from the former will be classified

as outpatient ILI cases, Wc(t), and those from the latter will be categorised as the

reported ILI cases,Xc(t), described in the last section. Utilizing the negative binomial

distribution again,

Wc(t) ∼ NB(nc(t), pc(t)) ∀c, t (4.24)

where nc(t) and pc(t) are calculated from the mean µc(t) and variance σ2
c (t), as

illustrated in subsection 4.3.1, where µc(t) and σ2
c (t) are related to the actual number

of people infected with H1N1, Ic(t), by

µc(t) = θW (c)Ic(t) ∀c, t (4.25)

σ2
c (t) = ηW (c)Ic(t) ∀c, t. (4.26)

Similarly, flat prior distributions are used for the proportionality parameters θW (c)

and ηW (c) as

θW (c) ∼ U(0, 1) ∀c (4.27)

ηW (c) ∼ U(0, 500 000) ∀c. (4.28)
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4.3.5 Hospitalised H1N1 Cases, Vc(t)

Countries with better healthcare systems may have more hospitalised H1N1 cases.

Within each country, the number of hospitalised H1N1 cases is modelled under the

negative binomial distribution,

Vc(t) ∼ NB(nc(t), pc(t)) ∀c, t (4.29)

while nc(t) and pc(t) can be calculated similarly from the mean µc(t) and variance

σ2
c (t). The mean µc(t) and variance σ2

c (t) will be proportional to the number of

individuals infected with H1N1, Ic(t), as

µc(t) = θV (c)Ic(t) ∀c, t (4.30)

σ2
c (t) = ηV (c)Ic(t) ∀c, t. (4.31)

Because countries have a different proportion of patients being admitted into

hospital due to H1N1, they should have different proportionality parameter, θV (c),

but we assume this parameter to be hierarchical as the differences between countries

are likely to reflect biological differences and differences in health seeking behaviour

and not differences in the coverage of the surveillance system, so that similarities

between them can be measured and controlled by the hyper-parameters. The prior

distribution that is chosen for the θV (c) for the hospitalised H1N1 statistics, Vc(t),

will follow beta distribution,

θV (c) ∼ Beta(av, bv) ∀c (4.32)

to ensure that the parameter will only take values between 0 and 1. This prior dis-

tribution will be governed by the two hyper-parameters, av and bv, which represents

the shape parameters of the distribution. As these shape parameters should take

positive values, the hyper-prior is chosen to be

av ∼ Exp(1) (4.33)

bv ∼ Exp(1). (4.34)

Choosing the exponential parameters to be 1 will ensure that the (marginal) prior

distribution of θV (c) is uniform over 0 and 1, as the mean of both hyperparameters

is 1.
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There should also be a constraint of θV (c) > θD(c) for country c if the number

of hospitalised H1N1 Vc(t) and H1N1 confirmed deaths Dc(t) are both available.

Logically, there should be more hospitalised cases than confirmed deaths, which we

have verified against our datasets. To impose this, we reject parameter values that

do not meet this condition, i.e. the prior distributions are slightly modified to be

proportional to those described herein times the indicator function, I[θV (c) > θD(c)].

4.3.6 SIR Model

To impose a correlation between estimates of disease prevalence over successive

time points for country c, in particular in the number of H1N1 infections, Ic(t), and

the number of removals, Rc(t), at time t, a mathematical, compartmental model can

be used. The SIR model is the standard for large scale, respiratory outbreaks: in

this model, S(t) is the number of susceptible individuals, I(t) the number of sick

individuals and R(t) the number of recovered or dead individuals at time t.

4.3.6.1 Stochastic SIR Model

This model characterises the two most important epidemic changes to the population:

susceptible hosts becoming infected and infected hosts recovering or dying. The

parameters governing these changes are the rate of infection per susceptible-infected

pair, β, and the rate of removal per infected individual, α. Stochastically, the number

of individuals in the infected, I(t), and removed, R(t), state could be simulated using

the corresponding rates, β and α for each time t. These events simulation will then

be used in the likelihood calculation.

It is almost impossible for any surveillance teams to collect complete data of Ic(t)

and Rc(t) from the whole population, including the exact event time point and the

exact number of events. Censored data actually allow a window for all the events to

occur within the interval of data collection Hence, in this context, we will make use

of the representative subset as mentioned in the above data type and to synthesize

evidence for Ic(t) and Rc(t) by proportion.

If we are examining a small population, the problem of heavily censored obser-

vations can be overcome using data augmentation, a common inferential approach

for stochastic epidemic models (Cook, Gibson, Gottwald, & Gilligan, 2008; Cooper,

Medley, Bradley, & Scott, 2008; McKinley et al., 2009). This method of inference

regards the unknown events as parameters to be estimated alongside the other un-
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knowns in the model, typically with an MCMC routine in which unknown events are

changed at each iteration to explore the space of events that are consistent with the

data—for instance, having non-negative sizes in each category at all times.

If the exact event times and event types are not available, the likelihood cannot

be calculated directly. Data augmentation is a method to simplify the likelihood

(O’Neill, Balding, Becker, Eerola, & Mollison, 2000) as it allows the likelihood to be

replaced by the probability of the unobserved, augmented variables, which can be

calculated for most epidemic models. With the observed data D, event times can

be randomly generated based on the current parameter values θ and conditional on

these augmented data A, likelihood is available

f(D|θ) =
ˆ
A
f(D|A,θ) · f(A|θ)dA. (4.35)

Clearly, when the augmented events A do not agree with the observed data,

f(D|A,θ) = 0, giving f(D|θ) = 0. Else, if augmented events agree with data, it forms

a possible path for the epidemic, so f(D|A,θ) = 1. With the above, the posterior

distribution of all the parameters can be obtained by putting the idea of MCMC

and data augmentation together. Along with each set of parameter simulation using,

for instance, normal proposal distributions, a new set of augmented data are also

generated. They are checked for the consistency with the data. With a suitable

set of augmented times, the acceptance probability Pacc is calculated using the log

likelihood function log f(A|θ) and log prior density of all the parameters θ, log f(θ).

Then, the newly proposed parameter values θ∗ will be accepted with probability

Pacc.

Unfortunately, this approach is not feasible for an analysis of the H1N1 pandemic,

which affected the whole population, leading to too many event times and event types

to explore. According to the Population Reference Bureau 2009 World Population

Data Sheet (2009), the world population was 6.8 billion, and all of these individuals’

statuses would need to be explored by data augmentation. Most of the collected

data have a weekly frequency, which allows for even more variations in the number of

events that can take place. Moreover, it will be even more computationally extensive

if the number of individuals infected with H1N1 is computed separately for each

country. In this methodology, the trajectory can only be accomplished by including

every events in the each country based on their rate of infection and removal at each
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step of the MCMC iteration. Instead, we replaced the stochastic model described

above with a deterministic analogue, formed by solving a series of ODEs.

4.3.6.2 Deterministic SIR Model

In contrast to the stochastic model described in the last subsection, a deterministic

model treats the number of individuals in each state as a variable that can take

on any value and whose changing values over time are characterised by ordinary

differential equations (ODE). The structure of the ODEs for the SIR model for the

H1N1 pandemic is described below:

Infection can only occur when a susceptible individual is in contact with an in-

fected individual. There are Sc(t)×Ic(t) possible contacts that can result in infection

at time t. Thus, at any time t, the rate of decrease of Sc(t) for country i can be rep-

resented by the product of the rate of getting infected per SI pair in country c, βc,

and the number of SI pairs in country c, Sc(t)Ic(t),

dSc(t)
dt

= −βcSc(t)Ic(t). (4.36)

We assume that infection across countries is negligible compared to infection

within countries and each country is a homogeneous population where the people in

the same country will react similarly to the disease.

Despite evidence that risks do differ in different sub-segments of the population

(Chen et al., 2010; Lim et al., 2011), the assumption of homogeneity simplifies anal-

ysis tremendously, while the additional variability caused by heterogeneity can be

partially accounted for via the observation model.

Correspondingly, at any time t, the rate of increase of Rc(t) for country c can be

represented by the product of the rate of removal in country c, αc, and the number

of infected individuals in country c, Ic(t),

dRc(t)
dt

= αcIc(t). (4.37)

Since a susceptible individual S will become an infected individual I when in-

fected, the rate of decrease of Sc(t) will translate into the rate of increase of Ic(t).

Likewise, an infected individual I will become a removed individual R when recov-

ered or died, the rate of increase of Rc(t) will be interpreted as the rate of decrease
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of Ic(t). Together, the rate of change of infected individuals is

dIc(t)
dt

= βcSc(t)Ic(t)− αcIc(t). (4.38)

With these ODEs, the trajectories of Sc(t), Ic(t) and Rc(t) for any value of βc and

αc can be calculated numerically (we used the R package, odesolve (Setzer, 2012))

given initial conditions. As the time taken to compute the trajectory of the model

is non-trivial, it is important to design the inferential algorithm to be as efficient as

possible, since this solution of the ODEs will be required in every step of MCMC

for the calculation of likelihood. We will discuss how we achieved computational

efficiency for all the countries.

Because the rates of infection and removal are highly dependent on the number

of S and I, standard models which posit a constant incidence risk over the whole

period are inappropriate, as, for example, the risk of infection is much lower at the

start of a pandemic than at its peak when there are many infected individuals in the

population. One alternative, when data are informative enough, is to use a semi-

parametric model in which the per-capita rates of infection do not depend on the

state of the epidemic but are left to be free parameters that change over time, an

approach that multiplies the number of parameters to be estimated substantially.

This method has been successfully used by Cauchemez and Ferguson (2008) to study

measles transmission in London where the hazard changes fortnightly. The data used

by Cauchemez and Ferguson (2008) was collected fortnightly from 1948 to 1964. The

hazard rate for every fortnight will be used repeatedly for 16 years, allowing for

sufficient information to inform about the parameters. But, in our context, the

amount of information (over a few months and one epidemic wave) is insufficient to

do likewise.

4.3.6.3 Technical Challenges for solving ODE for Different countries

Because the data were collected in countries or territories of varying sizes, the

numbers in each compartment will vary substantially. One approach would be to

solve the system of ODEs separately for different countries. However, this would

increase the computation time of the algorithm as a whole. Hence, we worked with the

proportion of people in each disease state instead. In particular, we set Sc(t) = ncs(t),
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Ic(t) = nci(t) , and Rc(t) = ncr(t) where nc is the population size of the country in

year 2009 and the lower case variables are proportions. Most of the countries’ sizes

were taken from the World Population Policies 2009 (UN, 2010). The population sizes

of England, New York and Taiwan cannot be found from the above-mentioned report

as they are constituent parts of larger states (the United Kingdom, the United States,

and China, respectively) and so were taken from other sources; England’s population

size in 2009 was taken from their Office for National Statistics (2009), New York’s

was taken from the paper where we got the number of H1N1 confirmed death (Lee

et al., 2010) and Taiwan’s population size in 2009 was taken from the 2009 World

Population Data Sheet by the Population Reference Bureau (PRB, 2009).

It is assumed that the whole population is susceptible to the H1N1 disease before

the pandemic, so that s(0) = 1 − i(0) − r(0). (Although note that according to a

serological test of elderly in Finland, some had antibodies against this virus due to

the infection from previous influenza outbreaks due to a related virus, such as the

Spanish influenza (Ikonen et al., 2010). As the proportion was low, this complication

was omitted.)

We assumed an arbitrary small proportion of individual to be infected with H1N1

at the start of the pandemic, i(0) = 0.000001. The presumed small number of

infections prior to the declaration of the H1N1 pandemic by the WHO are ignored,

i.e. r(0) is set to 0. Using these initial conditions and different sets of values for α

and β, the trajectories of i(t) and r(t) at the indicated times t = 1, 2, . . . , 587—the

time from 1 Jan 2009 to 10 August 2010 when the WHO declared the end of the

pandemic—can calculated using the lsoda function in the odesolve package and

stored for use in the MCMC stage for all countries (Setzer, 2012) in an array, with a

grid of values for α and β and a set of times t.

Due to numerical approximations, it is possible for the solution to the ODEs to

take negative values towards the tail of the epidemic. To prevent this, we set all

negative entries of i(t) to 0.

As we store the solution of the ODEs to an array, there is a limit to the number of

sets of α and β that we can explore before storage becomes prohibitively expensive.

To allow other values to be used, apart from those stored, we used bilinear interpo-

lation on the two dimension space of α and β for the values of i(t) and r(t) for any
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values of α and β within a certain range. Both α and β are rates which should only

be positive. The upper limit for α is chosen to be smaller than or equal to 1 because

it is not biologically plausible that the number of days of being infective, represented

by the reciprocal of α, be less than 1. Suppose there is only 1 infected host and m

possible contacts with susceptible, the rate of infection per day is βm. If β is more

than 1, this infected host is able to infect more susceptible than he is able to meet.

Hence, we choose the upper limit for β to be less than 1.

Suppose the fifty values that we divide equally in the above range can be named

as α(1), α(2), . . . , α(50) and β(1), β(2), . . . , β(50). The solution of the ODE for the

i(t) trajectory with the simulated parameter α and β in the Metropolis-Hastings

Step that is lying between (α(j), α(j + 1)) and (β(k), β(k + 1)) will be represented

as i(t, α, β) in this bilinear interpolation context.

The first interpolation will be between the α(j) and α(j+1) while keeping β fixed

at β(k),

i(t, α, β(k)) = α(j + 1)− α
α(j + 1)− α(j) · i(t, α(j), β(k)) +

α− α(j)
α(j + 1)− α(j) · i(t, α(j + 1), β(k)). (4.39)

The same interpolation is done for α(j) and α(j + 1) while keeping β fixed at

β(k + 1),

i(t, α, β(k + 1)) = α(j + 1)− α
α(j + 1)− α(j) · i(t, α(j), β(k + 1)) +

α− α(j)
α(j + 1)− α(j) · i(t, α(j + 1), β(k + 1)). (4.40)

With these two sets, an interpolation can be done between β(k) and β(k + 1) to

get the final interpolation done by

i(t, α, β) = β(k + 1)− β
β(k + 1)− β(k) · i(t, α, β(k)) +

β − β(k)
β(k + 1)− β(k) · i(t, α, β(k + 1)). (4.41)
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Figure 4.3: Illustration of bilinear interpolation.
First, the values at the two grey crosses are calculated by interpolation between a(j)
and α(j + 1) while fixing at β(k) and β(k + 1) respectively. The black cross can be
computed by interpolating the values at the two grey crosses.

The above described bilinear interpolation is done for the trajectories for the

number of infected i(t, α, β) or r(t, α, β) over the required time t. If the simulated α

and β fall outside of the inspected range, we will use the odesolve to get the solution

(Setzer, 2012).

The basic reproduction number, the expected number of secondary infections

resulting from a single infected individual in a population otherwise susceptible

(Heffernan, Smith, & Wahl, 2005), R0 = f(α, β), is a threshold parameter which

is able to inform us whether the pandemic has the potential to take off (R0 > 1) or

will die out quickly (R0 < 1).

In this project, the historical data for the 2009 H1N1 pandemic will be analysed,

and prediction of the trajectory of Sc(t), Ic(t) and Rc(t) can be done and they could

be scaled to useful data type as described in the previous section. Nonetheless, we

focus on how hierarchical models can be implemented worldwide to improve estimates

for any emerging pandemic.

4.4 Hierarchical Model

In hierarchical modelling, information from multiple sources (here countries) is

pooled. In our context, there will be much variability between forecasts of the out-

breaks in each country if each country is modelled independently. However, if pa-

rameters across all countries take the same parameter value, differences between

countries’ experiences cannot be accounted for, and estimates will be unjustifiably

narrow. Hierarchical modelling can help to address this problem by introducing
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hyper-parameters to measure the variability of parameters for the different countries.

A hierarchical model also allows us to use information from countries which have

more data for countries which have limited local surveillance of the pandemic.

It is clear that βc should be different for each country c, since different countries

have different policies to deal with the rate of disease spreading. As forecast by

Kubiak and McLean (2012), if the control measure of school closure in England

had not been implemented, the number of infections by the end of the first wave

in England would have been much higher. To allow for such differences requires

the infection rate be different between countries with different control measures, but

if βc is nevertheless sufficiently similar for different countries, a hierarchical model

would be appropriate, because the infection rate per SI pair, βc, for country c should

still be exchangeable across different countries. Logarithmic transformation on the

parameters allowed a normal distribution to be used which takes continuous, real

values,

log(βc) ∼ N(µβ, σ2
β), (4.42)

where the mean, and standard deviation can be characterised by the hyper-parameters,

(µβ, σβ).

Although βc must be positive, they can be any real numbers after taking loga-

rithms. Therefore, the hyper-prior distribution of µβ is flat and allowed to take any

values over a large range,

µβ ∼ U(−1 000, 1 000). (4.43)

Because the standard deviation cannot be negative, a similar arbitrary range over

small to large positive values is chosen as the hyper-prior distribution for σβ,

σβ ∼ U(0, 1 000). (4.44)

We assume that all αc are equal (αc = α) because the rate of removal of the

disease should be the same in all countries, representing as it does a purely biological

phenomenon.

4.4.1 Informative prior for removal rate

In contrast to the rate of between-host transmission for a novel variant of influenza,

the within host dynamics of (seasonal) influenza are well understood. This would
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allow an informative prior for the removal rate, α, using data from previous studies.

Carrat et al. (2008) did a detailed analysis on the duration of the course of virus

infection for H1N1 from multiple published research studies. It was found that for

(pre-pandemic) H1N1, the average duration for illness was 4.50 days, with the 95%

confidence interval from 4.31 to 5.29 days.

The above conclusion was about how long the illness will last, but we are in-

terested in how long is the infected individual infectious. For a better estimate of

the length of infection period for our prior distribution for α, we looked into the

sources that they cited for possible information that we can make use of. In the

daily serological tests on the volunteers, the H1N1 antibodies titers were recorded.

If the recorded titers are above certain threshold, they will be considered as infected

individuals. Once it falls below again, that marks the end of the course of infection.

We digitised six log mean viral titers plots for use (Barroso, Treanor, Gubareva, &

Hayden, 2005; Fritz et al., 1999; Hayden et al., 1994, 1996, 1998; Treanor, Betts,

Erb, Roth, & Dolin, 1987). These papers were studying the physical response of the

volunteers to the use of placebo and drugs, and so we digitised only data from the

placebo arms of these studies.

Other than the log mean of the viral titers at each day, the standard error (SE)

and the number of volunteers (n) can also be found, either from the plot or stated

in the paper. For each plot that we digitised, we calculate the standard deviation

(σ) of the viral titers by σ = SE√
n
. Assuming that the log viral titers for day k of the

dataset l, Tkl, follow normal distributions,

Tkl ∼ N(µkl, σ2
kl) ∀k, l, (4.45)

the probability, pkl, that the log viral titers of day k of dataset l will exceed a given

threshold ε can be calculated for each day is

pkl = Pr(Tkl > ε) ∀k, l. (4.46)

The expected duration of infection for the dataset l is

Dl =
∑
k

pkl. (4.47)

The estimated duration of infection is estimated from the average and standard

deviation of Dl from all the six datasets. We trialed several different thresholds for
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infectivity, ε = {0, 1, 2}, selecting ε = 2 to be the most appropriate threshold based

on the face validity of the resulting infectious period. Note that this rate is actually

the recovery rate, but is used as a proxy for the removal rate, α, as the confirmed

death rate is close enough to 0 to be ignored.

At ε = 2, the mean and standard deviation of the expected duration of infec-

tion for all the dataset are 2.53 and 0.714 respectively. These values become the

information for the informative prior for the infectious period, 1
α ,

1
α
∼ N(2.53, 0.7142). (4.48)

4.4.2 Modification to Overall Model on initial analysis

On fitting the model described above using MCMC, the routine would not converge

despite many attempts. The countermeasures discussed here are very common solu-

tions for MCMC non-convergence. MCMC was tried independently on each country

to allow higher rate of acceptance of proposed parameters. This is because when a

large number of parameters were proposed for the data for so many countries, the

chances that they will all suit the available data, and yield a high likelihood, is low,

which will then result in rejection of the proposal. We also tried to get better initial

values for the Markov chain to reach convergence quickly, and experimented with

proposal distributions of different covariances as well as mixtures of distributions.

4.4.2.1 Multiple waves

According to Borja-Aburto et al (2012), there have been four waves of H1N1 since

2009 and the virus has displaced the pre-pandemic H1N1 as one of three main sea-

sonal influenza strains (including influenza A/H3N2 and influenza B) (Belshe, 2010).

A territory which shows clearly that there is a change in pandemic trajectory is Hong

Kong. As stated by news.gov.hk, an online news platform launched by the Govern-

ment of the Hong Kong Special Administrative Region, Hong Kong changed from the

containment phase to the mitigation phase on 12 June 2009.
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Figure 4.4: Number of hospitalised H1N1 in Hong Kong Public Hospitals
collated by Riley et al. (2011).
The number of hospitalised H1N1 in Hong Kong is double peaked in June 2009
and September 2009. The grey and black rectangles at the lower panel show the
containment period and the mitigation period adopted by The Government of the
Hong Kong Special Administrative region.

Figure 4.4 supports the claim by Wu et al (2010) that Hong Kong’s policy changed

on 30 June 2009 to the criteria for the admission to hospital for H1N1 patients to be

based on medical needs, rather than for isolation. Other than Hong Kong, Finland

and England also displayed two peaks for the number of confirmed H1N1 cases Zc(t)

and number of outpatient ILI cases Wc(t) respectively. Japan also had two peaks

for both the number of reported ILI cases Xc(t) and the number of confirmed H1N1

cases Zc(t). Thus, we decided to introduce a new parameter, τc, to identify the date

of policy change which would cause a change in the shape of the trajectory for each

country c. Note that the date which the policy change takes effect is not necessary

the date of phase change.

The phase change in Hong Kong should involve the relaxing of H1N1 hospital-

ization policies. To account for the reduction in the numbers of admissions, the

proportionality parameter, θV (c), should change accordingly.

This parameter should conceivably account for the time of either a second wave

or a change in the country’s surveillance policy which can affect any of the data type.

Using the hospitalised H1N1 cases, Vc(t), as an example, the reporting parameter,

θV (c) was split into two, one to report before the change and the other to report after

the change.

71



Chapter 4 Hierarchical Model of 2009 Pandemic H1N1 Transmission

Recall that the model is

Vc(t) ∼ N(µc(t), σ2
c (t)), (4.49)

where the mean is now characterised by the two proportionality parameters θ1V (c)

and θ2V (c)

µc(t) = θ1V (c)Ic(t)I (t < τc) + θ1V (c)θ2V (c)Ic(t)I (t ≥ τc) . (4.50)

Before the effective date of changes, τc, the proportion of individuals infected with

H1N1 should remain the same, and so the prior distribution for θ1V (c) is still

θ1V (c) ∼ U(0, 1). (4.51)

For a further reduction in the observations after τc, the prior distribution of θ2V (c)

should be

θ2V (c) ∼ U(0, 1). (4.52)

To avoid over-parametrization, parameters that measure the spread of the data

were kept the same as before

σ2
c (t) = ηV (c)Ic(t), (4.53)

where the prior distribution remains as

ηV (c) ∼ U(0, 1). (4.54)

However, this analysis did not work as there was insufficient evidence from the

datasets to inform (i) the degree of change and (ii) when change occurred. As a result,

we focused only on the first, main wave of H1N1, and assumed constant reporting

rates within countries across time.

4.4.2.2 Start dates

Because H1N1 virus has been circulating in other countries prior to the WHO an-

nouncement (Chao et al., 2011), a parameter is introduced to describe the start date

for country c, t0(c). This parameter will shift the ODE solution down the time line

and replace the gap from the first day, 1 Jan 2009, to day t0(c) by the initial values

72



4.4 Hierarchical Model

of the trajectory, Ic(0) and Rc(0). It is beneficial to observe that there is a different

connotation for τc and t0(c). The former changes the proportion of the number of

cases but the latter only changes the time where the outbreak starts in the country

c. Because there is no prior knowledge on the starting date for each country, a flat

discrete uniform prior distribution is used on t0(c) from 1 Jan 2009 (day 1) to the

day that WHO declared the end of pandemic on 10 August 2010 (day 587) (WHO,

2010).

4.4.2.3 Seasonality

We initially attempted to account for seasonality differences between countries, ac-

counting for countries that are not near the equator having different seasonal patterns

at different times of the year. The rate of infection, βc, previously taken to be a pa-

rameter, was reformulated as a function of time, t. A sine function of time t was used

to give the smooth oscillating effect to mimic the seasonal effect within a year. A scal-

ing parameter for country c, κc, is used to adjust for the difference in the magnitude

of the rate of infection in the different seasons. The exponential function ensures that

βc(t) remains positive by transforming negative sine values to values between 0 and

1, which will reduce the value of βc during the warmer season; it will also transform

positive sine values to values more than 1, which will increase the value of βc during

the cold season. As there are 365 days in a year, there is approximately one complete

cycle is time t is in terms of degree in the trigonometrical function. Either a cosine

curve or a translated sine curve will coincide with the climatic patterns for a year,

where the latter is chosen. The function of βc with seasonal effect becomes

βc(t) = βc exp
(
κc sin

(
(t+ 90.5)× π

180

))
. (4.55)
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Figure 4.5: Seasonality characterisation using a transformed sine function
of time t.
Different values of κc can affect βc(t). The grey dotted line is when βc is fixed at 0.5
(κc = 0) for no variation in βc(t) against time t. When κc < 0, the black solid line
shows the shape of the βc(t) function for the southern hemisphere and when κc > 0,
the black dotted and dotdash lines shows the shape of βc(t) function for the northern
hemisphere. The larger the value of κ, the more pronounced the variability in the
curve will be. At the lower panel, the grey rectangular box shows the range of the
days where the pandemic data is used if we do not want the seasonality to affect the
infection rate.

Recall that the trajectory of the pandemic is derived using the ODE solution from

an R package (Setzer, 2012). If βc becomes a function which varies with time, we

need to use a method such as Euler’s method (Atkinson & Kendall, 2008) to solve the

ODE. Similarly, Euler method can be a step-wise, deterministic way of finding the

trajectory of a pandemic. Presumably, the rate of occurrence, f ′(x), is the gradient

of the graph y = f(x), represented by

f ′(x) ≈ f(x+ ∆x)− f(x)
∆x . (4.56)

Suppose for a small time step, h, the rate of decrease of Sc(t) is stated earlier to

be βcSc(t)Ic(t). If the rate of infection can vary with time and displaying using the

above relation,

−βc(t)Sc(t)Ic(t) ≈
Sc(t+ h)− Sc(t)

h
. (4.57)

The approximate number of susceptible in the next time step can be derived from

the above relation,

Sc(t+ h) ≈ Sc(t)− βc(t)Sc(t)Ic(t) · h. (4.58)
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Similarly, the number of individuals infected with H1N1 can be calculated by

Ic(t+ h) ≈ Ic(t) + (βc(t)Sc(t)Ic(t)− αcIc(t)) · h. (4.59)

With the above relation for Sc(t) and Ic(t), the whole trajectory could be cal-

culated from the initial values Sc(0) and Ic(0). Intuitively, larger h will lead to a

coarser trajectory that is a greater approximation to the true trajectory implied by

the model. This seasonal effect, coupled with the Euler’s method to replace the ODE

solution, was explored but was eventually abandoned because the data did not dis-

play sufficient seasonal effects for the estimation of the newly introduced parameters

to work. We also realised that the seasonal effect with double humps in the Ic(t)

trajectory will only happen when the values of α and β are similar to each other: in

other scenarios a single epidemic wave resulted and so the increase in complexity did

not seem warranted.

4.4.2.4 Correlation between α and βc

Previously, the posterior samples in the MCMC routine showed that α and βc are

correlated for certain countries. We will change to propose the basic reproduction

number for country c, R0(c), and the rate of removal, α, and calculated the infection

rate, βc, based on those.

Because we assume that all individuals are susceptible at the start of the pan-

demic, i.e. sc(0) = 1, at the start of the H1N1 outbreak in country c, if the rate of

infection is βcsc(0)ic(0) and rate of removal is αic(0), the basic reproduction number

can be expressed as a ratio of infection rate to removal rate,

R0(c) = βcsc(0)ic(0)
αic(0)

= βc
α
, (4.60)

where βc can be calculated by βc = α · R0(c). The original hierarchical model for

(α, βc) will be changed to model R0(c) of different countries,

R0(c) ∼ N(µ, σ2). (4.61)

The hyper-parameters are reduced to µ and σ. As we have no prior information

we wish to use, and since R0(c) should only be positive (and take values a little more
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than 1), we set a uniform prior with an arbitrary large upper limit,

µ ∼ U(0, 100). (4.62)

Similarly, σ should also take positive values,

σ ∼ U(0, 100). (4.63)

4.5 Model Fitting

As mentioned before, we fit a Bayesian hierarchical model to multiple data types

relating to the H1N1 pandemic for a hypothetical network of countries. The parame-

ter space for this model is large and the likelihood expensive to calculate. MCMC is

a method to sample from the posterior distribution of parameter given the available

observed data (Cauchemez et al., 2006) and that is well suited for our problem as it is

a sampling methodology that efficiently draws from the actual posterior distribution

using the Metropolis-Hastings algorithm to decide whether a proposed parameter

should be included into the posterior sample.

4.5.1 Metropolis-Hastings Algorithm

For this particular project on H1N1, due to the complexity of the model, the

implementation of the algorithm is non-trivial and hence summarised in the following:

1. We need to prepare an array of the proportion of infected individuals, i(t), and

proportion of removed individuals, r(t), over time t after introduction of the

virus, for values of infection rate, β, and removal rate, α, over a grid from 0

to 1. This array of information will be stored for use in all countries for the

likelihood calculation. To make use of the odesolve package, the ODE have

to be defined as a function. The initial values of the trajectories, as well as the

vector of time steps for exploring, should also be specified with the values of βc

and α.

2. The initial value for each parameter is chosen to be in the vicinity of the pos-

terior by trial-and-error, using graphical comparison of the model against the

data. This makes the routine less computationally unwieldy, especially impor-

tant due to the many parameters in this model.
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3. The likelihood is calculated based on the current initial parameter values θ0.

a) Using the bilinear interpolation method, we can find the trajectory of

the proportion of infected individuals ic(t) and the proportion of removed

individuals rc(t) for each country c using the proposed (or initial) rates

of infection and removal, β0
c and α0. Recall that the number of H1N1

confirmed deaths, Dc(t), will relate to the removed individuals and the

other data types will relate to the infected individuals. Also, the rate of

infection β0
c will be computed deterministically from the parameter value

of R0
0(c) and α0.

b) We need to incorporate the latent period of confirmed death, δ0, from the

time when the individuals get infected by shifting the time of the trajectory

for each of the country c relative to the H1N1 confirmed death data. The

data time for the number of H1N1 confirmed deaths should be reduced by

δ0 days temporarily for this iteration and stored as a temporary confirmed

death data,

D′c(t) = Dc(t− δ0). (4.64)

c) Next we need to combine the delay in the trajectory for country c based

on t00(c). The trajectory will only start for country c from day t00(c). We

will insert a baseline of proportion of infected individuals before t00(c) to

be ic(0) = 0.000001 and proportion of removed individuals before t00(c) to

be rc(0) = 0.

d) With the relevant proportions
(
θ0
D(c), θ

0
Z(c), θ

0
X(c), θ

0
W (c), θ

0
V (c)

)
for the data

type for each country c, the proportion trajectories can be converted into

the actual numbers by multiplying with the population size of country c,

nc. For instance, the mean trajectory for the number of H1N1 confirmed

death cases for country c will be related by proportion to the modified

number of removed individuals by

µc(t) = θ0
D(c) × nc × rc(t). (4.65)

Similarly, the trajectory for the number of confirmed H1N1 cases (or other

data types) in country c will also be related by proportion to the modified
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number of infected individuals by

µc(t) = θ0
Z(c) × nc × ic(t). (4.66)

e) The parameter that measures the spread of the data from the trajectory is

computed. Recall the variance formula for the number of H1N1 confirmed

death cases is

σ2
c (t) = η0

D(c) × nc × rc(t). (4.67)

Similarly, for other data types, we relate the variance with the modified

number of infected individuals.

f) With mean, µc(t), and variance, σ2
c (t), the parameters necessary for the

negative binomial distribution can be calculated as

pc(t) = µc(t)
σ2
c (t)

(4.68)

nc(t) = µc(t)pc(t)
1− pc(t)

. (4.69)

g) The likelihood for the H1N1 confirmed death data type for country c

can be computed using a negative binomial distribution with the above

parameters pc(t) and nc(t).

h) The likelihood for all the different data types of the different countries will

be computed in a similar manner and the product of all these likelihood

values will be the overall likelihood for the data given the all the param-

eters θ0. Here, we assume that data from each data type is independent

from the other data type, conditioned on the parameters that have been

proposed. Similarly, the data from each country will be also assumed as

independent conditioned on the parameters, as the amount of trans-border

mixing of infectious hosts from one country to another will pale into in-

significance relative to the number of infections acquired locally within the

country. It will be easier to work with log-likelihood, which will then be

the sum of all the log-likelihood contributions for each country and each

data type.
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4. Other than the log-likelihood, log f(D|θ0), we also need to calculate the log

prior density log f(θ0) for all these initial parameters θ0. The pseudo log

posterior density log f(θ0|D) can also be calculate by adding log-likelihood and

log prior density, as the normalizing constant will cancel with the subsequent

log posterior density.

5. In pilot rounds of the MCMC algorithm where our proposal distribution is not

well tuned, the parameters will be proposed individually. The first parameter

value, α∗, will be proposed using a normal proposal distribution centered at

the initial parameter value, α0 and an arbitrarily specified standard deviation,

0.0001,

α∗ ∼ N(α0, 0.00012). (4.70)

The choice of normal distribution is due to the preference of a symmetrical pro-

posal distribution, q(α∗ → α0) for the simplification of acceptance probability

calculation,

Pacc = min
(

1, f(α∗|D,θ0)
f(α0|D,θ0)

· q(α
∗ → α0)

q(α0 → α∗)

)
(4.71)

= min
(

1, f(α∗|D,θ0)
f(α0|D,θ0)

)
, (4.72)

where D is the collected data and θ0 is the initial values of the other parameters

which were not yet proposed.

6. We will check the proposed parameter value of α∗ based on the model condi-

tions, i.e. α∗ > 0. If the conditions cannot be fulfilled, they can be rejected

straight away without wasting time in their likelihood calculation.

7. If they satisfy the criteria, we will use likelihood procedure mentioned earlier in

step 3 to find the value of the log-likelihood for the new proposal log f(D|θ∗)

where θ∗ represent the set of initial values with the newly proposed α∗.

8. The log prior density for the new set of parameter log f(θ∗) can also be calcu-

lated.

9. As we subsequently will draw a uniform(0,1) variable and compare it to the

acceptance probability, outlined below, we can neglect the requirement that
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the acceptance probability be ≤ 1 for notational brevity. The log acceptance

probability can be calculated as follows

Pacc = f(θ∗|D)
f(θ0|D)

(4.73)

logPacc = log f(θ∗|D)− log f(θ0|D) (4.74)

= log f(D|θ∗) + log f(θ∗)

− log f(D|θ0)− log f(θ0) (4.75)

where logPacc is essentially the difference between the pseudo log posterior

density under θ∗ and θ0.

10. A random number can be generated from r ∼ U(0, 1). The proposed parameter

values θ∗ will be accepted with probability Pacc. If log r > logPacc, we will

reject the proposed α∗ and α1 = α0, otherwise, we will accept the proposed α∗

and update α1 = α0.

11. After updating the rate of removal, α, we can propose for the next parameter

by repeating the step 5 to 10. The parameters change accordingly.

12. After all the parameters have been proposed and updated, we propose new

values for all the hyper-parameters. Because the acceptance probability for

hyper-parameters does not include the likelihood calculation, updating of the

hyper-parameters is faster. Suppose θ and η represent all the parameters and

hyper-parameters respectively and D represents the data, the acceptance prob-

ability is

Pacc = min
(

1, f(θ,η∗|D)
f(θ,η|D) ·

q(η∗ → η)
q(η → η∗)

)
. (4.76)

The ratio of proposal density for the hyper-parameters equal to 1 because a

normal proposal distribution centered at the current value is used. The ratio

of the posterior densities can be simplified by

f(θ,η∗|D)
f(θ,η|D) = f(D|θ,η∗) · f(θ|η∗) · f(η∗)

f(D|θ,η) · f(θ|η) · f(η) (4.77)

= f(θ|η∗) · f(η∗)
f(θ|η) · f(η) (4.78)

because the likelihood, f(D|θ,η), is not affected by the change of hyper-

parameters. As such, the hyper-parameters will be updated 20 times for every

complete round of parameter proposals.
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13. The whole routine will have to be repeated a large number of times to give us

the posterior sample for all the updated parameters.

4.5.2 Solution for Non Converging MCMC

On initial runs, the traceplots of the posterior samples did not show convergence.

We first attempted to preserve the model and change the proposal distributions

similar to the tuning of proposals in simple algorithms: If the proposal of the new

parameters is always far from the posterior, because the variance of the proposal

is too large, the proposed parameters will invariably be rejected. Likewise, if the

proposed values are too close, because the variance is small, it will take too much

steps to move around the posterior.

Moreover, the posterior distributions of many of the parameters are closely corre-

lated. If one of the proposed parameters is inappropriate, the other parameters will

also be affected. Although each parameter can be proposed separately and a differ-

ent acceptance probability can be calculated for each parameter, it will become too

computationally intensive as there were many countries involved and the trajectories

have to be interpolated at every proposal for the calculation of the likelihood. So, we

propose changes to all the parameters individually for a small amount of iterations,

2500, with 500 burn-in and thinning on every 10 iterations as described in the pre-

vious section. The burn-in is chosen to be small because suitable initial parameter

values were used.

After completing this first trial round of proposal, we tuned the standard deviation

of all the parameters and hyper-parameters proposal distributions with the respective

standard deviation of the posterior samples. Following this update of the proposal

standard deviation, the actual MCMC routine was conducted afresh with 100,000

iterations and no burn-in, as the routine will start with the parameters values from

the previous step, itself assumed a draw from the posterior.

In this step of MCMC with better proposal distributions, the parameter, α, is

proposed independently from the other parameters and hyper-parameters while the

other parameters and hyper-parameters are proposed together in batches, within

countries where appropriate. α and β (from R0) are capable of affecting the propor-

tional trajectories of all the countries. So, this proposal approach will only change
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the trajectories twice at every round. Proposing all other parameters and hyper-

parameters together will most likely result in rejection, so, we propose the remaining

parameters by country, followed by the hyper-parameters.

4.5.2.1 Sequential Importance Sampling

Even the modified algorithm described in the previous section did not lead to conver-

gence. We proceeded with an alternative solution, Sequential Importance Sampling.

In Importance Sampling, parameters are simulated from a proposal distribution and

weighted using the likelihood, prior and proposal density. If we can sample from the

posterior distribution directly, this gives an unweighted sample, but otherwise the

weights correct for sampling from an incorrect distribution. Although the previous

results of the non-converging MCMC may not be the exact posterior distribution, it

should still be close to the desired posterior distribution, and so by approximating

the MCMC sample by a suitable multivariate distribution, we can generate samples

from a distribution close to the target distribution.

Since it is vital to sample from a distribution that is close to the desired distribu-

tion, we will progressively improve the distribution that we sample from, using the

weighted samples from the previous rounds. In the initial rounds, when the proposal

distribution is still not so similar to the target distribution, we reduce the weight

contributed by the likelihood density by an intensity constant, T . The value of T

will gradually increase from 0.1 to 1 in the sequential steps to successively allow the

weighted samples to inform about the target distribution.

The Sequential Importance Sampling algorithm is:

1. Using the mean and variance of the posterior sample for each parameter and

hyper-parameter and assuming independence between all parameters (a con-

servative assumption), set up a multivariate normal proposal distribution with

covariance matrix only having entries on the diagonals and zero elsewhere.

2. Sample 100 000 particles from this multivariate normal proposal distribution

and calculate the weights for each particle. Weights are represented by the

ratio of the posterior to the proposal density, where the posterior is proportional

to the likelihood, prior and hyper-prior density. In importance sampling, the
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weight for the lth particle is

wl = f(D|θl)f(θl|ηl)f(ηl)
q(θl,ηl)

. (4.79)

Because the particles may not characterise the data well in the first round, the

intensity of the likelihood could be scaled down by T and the weight for the lth

particle becomes

wl = (f(D|θl))T f(θl|ηl)f(ηl)
q(θl,ηl)

. (4.80)

We let T = 0.1 in this first round and gradually increase this amount to 1 when

the proposal distribution has been improved to become close to the posterior

distribution.

3. Taking logarithms, we can better see how the intensity T will be relating the

likelihood to the weights

logwl = T log f(D|θl) + log f(θl|ηl)

+ log f(ηl)− log q(θl,ηl). (4.81)

If we take exponential transformation to convert logwl back to wl for lth parti-

cle, many of the values will become 0 if the logwl is small. Hence, we overcome

numerical overflow issues by transforming the logwl to

(logwl)∗ = logwl −max(logw) (4.82)

before exponentiating to get

w∗l = exp (logwl)∗ (4.83)

and rescaling all w∗l by

wl = w∗l∑
w∗l

(4.84)

so that all the weights, wl, sum to 1.

4. The particles, together with their respective weights, will be the information

for the next round’s multivariate normal proposal distribution, with weighted

mean of the particles and weighted covariance matrix of the particles. Repeat

step 2 to 3 and sequentially, increase the intensity, T , of the likelihood give

a better representation of the weights for the description of the next proposal

distribution.
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The intensity, T , started small to prevent over-concentration of the few particles with

good weights. As Sequential Importance Sampling progressed from the first round

to the tenth round, the particles will gradually become a good realization of the

posterior samples. In the final round, T = 1 and the routine above yields a weighted

sample from the correct posterior distribution; only this round is used for analysis.

Some challenges arose in the importance sampling step. The covariance matrix

that we calculated from the proposed samples was non-invertible, resulting in an

invalid proposal distribution in the next round. This problem was reduced by repa-

rameterising parameters by taking logarithms of rates and logit transformations of

probabilities.

After the transformation, the covariance matrix might occasionally still be non-

invertible. On investigation, we realised that for certain parameters, the weights

concentrate the proposed particles for certain parameters to a single value. This is

because the proposal distribution for that parameter became too focused due to the

weights in the previous rounds. This would lead to zero variance for the proposal

distribution in the next round, resulting in a singular covariance matrix. The solution

for this problem was to increase the sampling size sequentially and reduce the stepwise

increment of T , to ease the over-concentration at certain points.

This sequential importance sampling routine is repeated with the data available at

four different time points (1 June 2009, 1 July 2009, 1 August 2009 and 1 September

2009) to show the improvement in prediction and severity estimation with increasing

data in a real pandemic outbreak.

4.6 Results and Inference

This model for the outbreak of H1N1 at different territories has made used of

some fixed parameters, as well as parameters which were modelled independently

and hierarchically. To decide which parameters should be the same, one approach is

to use expert opinion. If they should be the same, the parameter can be fixed for

all the places, for example, the rate of removal, α, in the H1N1 project, due to the

similar biological capability of the infected individual to recover from the disease. On

the other hand, if the parameter should be different, for example, the proportionality

constant, θX(c), which accounts for the fraction of reported ILI patients in country
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c and that can be much affected by the capacity of the healthcare system in each

territories. The other proportionality constant, θZ(c), which represents the portion

of infected H1N1 who were confirmed by laboratory test for country c, would also

be affected by the testing paradigm in the different countries,and would be better

modelled independently.

In this case, we decide which parameter should be hierarchically modelled or

fixed depending on the amount of information we had. For example, there were only

three territories with mortality data, and so the information quantum to estimate

mortality rate was insufficient to allow useful hierarchical estimates. The solution for

the lack of data can be solved by using a fixed proportionality constant, θD, for all

territories. In contrast, as there were many areas with hospitalized H1N1 data, the

proportionality constant, θV (c), can be modelled hierarchically.

With a richer dataset, the ideal statistical approach is to model every parameter

hierarchically. This would allow us to estimate how similar or different they were. The

different ways of modelling can be compared against using the Deviance Information

Criterion (DIC). Using the posterior samples achievable from the MCMC simulations

(if convergence exists) or the sequential importance sampling (the alternative method

if there is non-convergence in MCMC), the average log likelihood of a sample of

parameters, D(θ̄) , and the average log likelihood from every set of parameters, D̄,

can be calculated. The DIC is pD + D̄ or D(θ̄) + 2pD where pD = D̄ − D(θ̄). The

model with the smallest DIC should be preferred out of all the trials, and this would

allow a statistically informed decision on whether a hierarchical model was needed.

The main motive of this model is to show that prediction of the severity of a

new outbreak at both a per country and global level can be done in real time using

a network of countries each providing their own outbreak information in real time.

This section assesses the feasibility of this goal by applying the method to the 2009

influenza pandemic as a case study.

Observing the peak for at least some countries is necessary to inform the param-

eters appropriately as there were no informative priors for the basic reproduction

number, R0. By the end of July 2009, about three months from the start of the pan-

demic, when some but not all of the countries had experienced their peak, the data

could give a good estimate to the parameters, which would lead to better prediction.
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We will present the results of each country sorted by latitude.

4.6.1 Finland

J F M A M J J A S O N D

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

0
10
20
30
40
50
60
70

Fi
nl

an
d

H
1N

1

J F M A M J J A S O N D

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●
●●

●●
●

●

J F M A M J J A S O N D

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●●

●

●
●●

●●
●

●

J F M A M J J A S O N D

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●●

●●
●

●

Figure 4.6: Forecasts of pandemic H1N1 confirmed cases in Finland.
Solid circles indicate data available at the point the forecast is made, hollow circles
indicate future data, black lines indicate best forecast, shaded regions indicate un-
certainty (dark) and observation error (light). The black bar at the bottom of each
panel shows the change in the countries policy to change from containment to miti-
gation phase. The four time points used are the beginning of June, July, August and
September, 2009.

In the first panel, there were only three available data points for analysis. The

forecast was vague because of the limited information. Despite this the shape of the

best forecast of the pandemic was close to the actual shape as the hierarchical model

is able to draw information from the other countries. However, the magnitude of the

number of H1N1 cases were over predicted, as θZ(c) was independent for each country

and the information on this Finland-specific parameter was insufficient at the time

the first estimate was made to yield a good estimate of θZ(c).

In the next panel, data up to 1 July 2009 were used. As there were more points

showing an upward trend, the pandemic was projected to spread by the increasing

H1N1 cases. However, with the extra information collected over June, the uncertainty

was greatly reduced compared to the first panel.

In the third panel, the available data were still showing upward trend, but other

countries or territories—such as New York, Bolivia, Argentina and Chile—provided

a fair amount of data by 1 August 2009 to show the epidemic had peaked and was

waning, affecting the common removal rate, α, and the mean and variance of the

basic reproduction number, R0(c). As a consequence, the model forecast that the

number of H1N1 cases would fall, while fitting closely to the observed data available

at that time, even when there was as yet no sign of the epidemic having peaked. The

forecast does not characterise the data after the peak well, but the post-peak data
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do not appear to be consistent with the data before the peak, or with the SIR model

we are fitting. This may result from changes to the way H1N1 cases were tested as

the country switched from the containment to the mitigation phase on 22 July 2009

(Saarinen, Järvinen, Haikala, & Ruutu, 2009).

By the beginning of September 2009, when most of the data were available for

use, the model is able to provide a satisfactory prediction, by informing the H1N1

peak for Finland at the correct time point.

4.6.2 England
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Figure 4.7: Forecasts of pandemic H1N1 confirmed deaths (cumulative),
H1N1 hospitalizations and ILI cases in England.
Features in this figure are as in figure 4.6.

The worst prediction for England occurs when early data up to 1 July is used. Because

of the change from containment to mitigation stage, there is a minor peak in the

outpatient ILI data up to 1 July, which the model misinterpreted and used to predict

a small magnitude pandemic that would end early (see the second column). The
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prediction performance of England for the other time points are similar to that of

Finland.

4.6.3 France
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Figure 4.8: Forecasts of ILI cases during the pandemic H1N1 in France.
Features in this figure are as in figure 4.6.

The prediction range for the first panel was as ambiguous as that in Finland because

no data were available by the beginning of June 2009, and so the sole information

was that pooled from the countries with available data. In the last panel, as the

data available to the end of August are not consistent with the sudden rise that

accompanied September, the forecast, though it fits the data until the end of August

well, does not predict the data well thereafter. It is not likely that this is due to

reporting biases as the surveillance data from France is considered robust (Sentinelles,

2012), and the rise may be due changes not present in the model, such as the end

of the long August holidays in France and the return of children to school (Merler,

Ajelli, Pugliese, & Ferguson, 2011).
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4.6.4 New York

J F M A M J J A S O N D

●●
●
●

●

●

●

●●

●

●

●

●

●●

0
10
20
30
40
50
60

N
ew

 Y
or

k
C

um
ul

at
iv

e 
H

1N
1 

D
ea

th

J F M A M J J A S O N D

●●
●
●

●

●

●

●●●

J F M A M J J A S O N D

●●
●
●

●

●

●

●●

J F M A M J J A S O N D

●●
●
●

●

●

●

●●

J F M A M J J A S O N D

●●●●●●●●●
●●
●●●●●

●●

●
●●

●●
●

●

●●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●●●●
●●●
●●●
●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●●●●
●●●
●●●
●
●0

10
20
30
40
50
60

N
ew

 Y
or

k
H

os
pi

ta
lis

ed
 H

1N
1

J F M A M J J A S O N D

●●●●●●●●●
●●
●●●●●

●●

●
●●

●●
●

●

●●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●●●●
●●●
●●●
●
●

J F M A M J J A S O N D

●●●●●●●●●
●●
●●●●●

●●

●
●●

●●
●

●

●●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●●●●
●●●
●●●
●
●

J F M A M J J A S O N D

●●●●●●●●●
●●
●●●●●

●●

●
●●

●●
●

●

●●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●●●●
●●●
●●●
●
●

J F M A M J J A S O N D

●
●

●

●

●

●

●
●
●●●●●●●●●●

●●●●●

●
●
●●●●●●●●●●

●●●●●

0

5

10

15

20

N
ew

 Y
or

k
R

ep
or

te
d

 IL
I (

00
0s

)

J F M A M J J A S O N D

●
●

●

●

●

●

●
●
●●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●

J F M A M J J A S O N D

●
●

●

●

●

●

●
●
●●●●●●●●●●

●●●●●
●●●●

●●●●●

J F M A M J J A S O N D

●
●

●

●

●

●

●
●
●●●●●●●●●●

●●●●●●●●●

Figure 4.9: Forecasts of pandemic H1N1 confirmed deaths (cumulative),
H1N1 hospitalizations and ILI cases in New York.
Features in this figure are as in figure 4.6. There is no grey bar at the bottom of each
panel because New York started off with the mitigation phase (Nicoll & Coulombier,
2009).

New York provided a very informative dataset. By the beginning of July 2009, the

available data were already sufficient to show that the pandemic was coming to an

end. The trajectories for the three data types for New York were reliable and precise,

with little noise. But we can still see a change in direction of the number of reported

ILI cases after 1 August 2009 which should not be due to the change in pandemic

phase. A possible reason for this mild increase in the number of reported ILI cases

could be due to the other influenza viruses that were also circulating in New York.
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4.6.5 Japan
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Figure 4.10: Forecasts of ILI cases and pandemic H1N1 confirmed cases in
Japan.
Features in this figure are as in figure 4.6.

Japan also shows a small peak before mitigation and another major peak after the

phase change in both available datasets. This resulted in a prediction that is not

able to capture the major peak when we are at the second time point. However, by

the third time point, the benefit of synthesizing evidence from multiple data type is

demonstrated. Because the number of confirmed H1N1 cases which has yet to show

an end to the pandemic, the trajectory of the pandemic was projected to peak at

September. By 1 September 2009, the available data shows the epidemic was still

growing but the hierarchical model provided information that the numbers should be

decreasing after that. An interesting fact for Japan is while the number of H1N1 cases

decreases starting from September, the number of reported ILI actually continued

to increase. This may also be due to the circulation of other influenza viruses, as

ILI is a syndrome caused by both influenza and non-influenza respiratory pathogens

(Babcock, Merz, & Fraser, 2006).
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4.6.6 Republic of China, Taiwan
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Figure 4.11: Forecasts of pandemic H1N1 hospitalised and confirmed cases
in Taiwan.
Features in this figure are as in figure 4.6.

The spread of H1N1 in Taiwan started quite late and there was only one data point

by 1 July 2009. This would be an example of how a country could benefit from the

hierarchical model without even a single data point being collected. Despite the bad

prediction of the magnitude of confirmed H1N1 cases, due to θZ(c) being independent

between territories, the shape of the projection of the number of confirmed H1N1 cases

was appropriate. Another advantage of modelling θV (c) hierarchically is being able to

provide us with constructive projections for the number of hospitalised H1N1 cases

in the first and second time point by pooling information from the other countries.

By the third time point, the peak was not predicted at the right time using the

limited data that is available by 1 August. By the fourth time point, there was

sufficient information which resulted in a befitting shape for both type of data. The

sudden jump in the number of hospitalised H1N1 cases in September could not be

accommodated by the epidemic model used. It is not clear whether this is due to a

change in the hospitalisation rate or due to a change in the virulence of the pathogen.
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4.6.7 Singapore
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Figure 4.12: Forecasts of pandemic H1N1 confirmed deaths (cumulative),
ILI cases and H1N1 confirmed cases in Singapore.
Features in this figure are as in figure 4.6.

Because the proportion of H1N1 confirmed deaths, θD, was treated as being constant

across territories, the cumulative number of H1N1 confirmed deaths was modelled

fairly well, even before there were available data on the mortality rate in the first two

time points. In the first column, the shape for the number of outpatient ILI and H1N1

cases was appropriate due to the common removal rate, α, and the hierarchically

modelled R0, but the magnitudes of these two projections were not consistent with

the subsequently observed data due to the independence of proportionality constants,

θW (c) and θZ(c) between countries and the paucity of data to estimate those for

Singapore at that time. Similarly, by 1 August 2009, the number of outpatient ILI

and H1N1 cases were still increasing, the model forecast an imminent decline by

borrowing information from other countries. However it was not able to predict

the sharpness of the decline observable in the data. By 1 September 2009, the

predictions for the number of outpatient ILI and H1N1 cases did not capture the
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observed patterns in the data, which may result from the two datasets not being

in synchrony. One possible explanation for this is that the outpatient ILI data was

collected by a small network of 23 Singapore GPs and so may be unreliable, while the

testing regime may have changed over time, leading to inconsistencies in the number

of confirmed cases.

4.6.8 Brazil, Peru and Bolivia
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Figure 4.13: Forecasts of pandemic H1N1 confirmed cases in Brazil, Peru
and Bolivia.
Features in this figure are as in figure 4.6.

These three countries in the southern hemisphere depicted similar patterns. When

there is no information yet available for analysis, the prediction is wide reflecting the

uncertainties in how the pandemic will evolve. If there is only an upward trajectory

at the second time point, the model will predict that the pandemic will be severe

in these countries. By 1 August 2009, only Bolivia’s data showed an end to the

outbreak and the model was able to model the shape of the trajectory well. With the

almost complete data for analysis in the fourth time point, the projection became
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very reliable.

4.6.9 Australia
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Figure 4.14: Forecasts of ILI cases and pandemic H1N1 confirmed cases in
Australia.
Features in this figure are as in figure 4.6.

The first four data points for reported ILI for Australia provide a misleading impres-

sion that the pandemic had already peaked in early May, affecting the forecasts as

a result. It is not clear whether this problem might have been caused by anomalous

data collection methods or just stochasticity. Similarly, the shape of the ILI data for

Australia do not follow the standard epidemic curve, which resembles a Gaussian,

and it is not clear whether this is due to changes in data collection protocols, the

merging of data from different outbreaks across this large country, or some other

reason. Regardless of the reason, the sudden rise in the number of reported ILI in

July and August caused a poor fit for the second time point. If a consistent protocol

were available that stratified data spatially, this problem might have been averted.
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4.6.10 Chile
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Figure 4.15: Forecasts of ILI cases and pandemic H1N1 confirmed cases in
Chile.
Features in this figure are as in figure 4.6.

By 1 June 2009, the prediction was considerably good with evidence from two data

points in number of H1N1 cases. The outbreak can be concluded by 1 August 2009

but the uncertainty in prediction was larger for the reported ILI than that of the

number of H1N1 cases. The predicted trajectory ‘tried’ to accommodate the number

of H1N1 cases more than the ILI data because there are more data points than the

number of reported ILI.

4.6.11 Argentina
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Figure 4.16: Forecasts of ILI cases and pandemic H1N1 confirmed cases in
Argentina.
Features in this figure are as in figure 4.6.
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Forecasts for Argentina suffer similar problems to most other Latin American coun-

tries, in that the H1N1 cases are predicted to grow rapidly at the second time point,

and the model fits well only at the end of the epidemic.

4.6.12 New Zealand
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Figure 4.17: Forecasts of ILI cases and pandemic H1N1 confirmed cases in
New Zealand.
Features in this figure are as in figure 4.6.

Similar to Australia, the number of reported ILI cases of New Zealand showed a

minor dip at the end of May, which might have misguided the model to think that

the pandemic started early and will be ending soon in the first time point analysis.

In the later time points’ analysis, it was shown that with sufficient data, the model

fits the rest of the data well.

Other than predicting the number of cases, hospitalisations and confirmed deaths,

have good, early severity estimates is essential when rolling out suitable changes to the

intervention strategies against the pandemic. These severity estimates are described

in the next subsection.
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4.6.13 Case Hospitalization Ratio (CHR)

2009

C
as

e 
H

os
pi

ta
liz

at
io

n 
R

at
io England

●

●
● ●

10−12

10−10

10−8

10−6

10−4

10−2

1

Jun Jul Aug

New York

● ● ● ●

Jun Jul Aug

Taiwan

●
●

●

●

Jun Jul Aug

Figure 4.18: Severity estimate of Case Hospitalization Ratio (CHR).
These are the real-time estimates if such a network had been established in 2009
for countries where hospitalised H1N1 cases are available. Dots represent posterior
medians and lines 95% equal-tailed credible intervals. CHR is the number of hospi-
talizations due to H1N1 over the estimated total H1N1 cases which is represented by
θV (c) in the model for the ith country.

The Case-Hospitalisation Ratio (CHR) is the ratio of the number of hospitalised

H1N1 cases, Vc(t), to the total number of individuals infected with H1N1, Ic(t).

Since the mean of Vc(t) is θV (c)Ic(t), CHR is represented by θV (c). Estimates are

available for three locations: England, New York and Taiwan.

The assessment of the CHR for England and New York are similar. At the last

time point, median estimate of CHR for England was 0.000219, or approximately

one hospitalised H1N1 case for every 5 000 H1N1 cases. For New York, the CHR was

0.000143, or one hospitalised H1N1 case for nearly every 7 000 H1N1 cases.

For Taiwan, wide credible intervals were found for the first two time points, due

to data scarcity then. However, for all three territories, the estimate of CHR would

have been precise by 1 August 2009.
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4.6.14 Hospital Fatality Ratio (HFR)
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Figure 4.19: Severity estimate of Hospital Fatality Ratio (HFR).
Features in this figure are as in figure 4.18.

The Hospitalisation Fatality Ratio (HFR) is the ratio of the estimated cumulated

number of confirmed deaths due to H1N1 to the estimated daily cumulated number

of hospitalization H1N1 cases. The cumulative H1N1 confirmed deaths is estimated

by the ODE solution of R(t) using posterior samples of R0(c) and α with the pro-

portionality parameter, θD. The hospitalised H1N1 cases are found from the ODE

solution of I(t) and the proportionality parameter, θV (c) and the cumulated values

form the denominator.

By the last time point, the median HFR estimates for England and New York

are 0.165 and 0.235 respectively. These estimates can be understood as having a

confirmed death for approximately every 6 and 4 hospitalised H1N1 cases for the two

countries respectively.

In the earlier explanation for CHR, there was only about 1 hospitalised H1N1

case for every 7000 H1N1 cases in New York, which might possibly mean that only

patients with severe conditions were admitted. This could have indirectly caused a

much larger HFR for New York as compared to England.
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4.6.15 Case Fatality Ratio (CFR)
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Figure 4.20: Severity estimate of Case Fatality Ratio (CFR).
Features in this figure are as in figure 4.18.

The real-time estimate of Case Fatality Ratio (CFR) is the cumulative number of

confirmed deaths over the cumulative number of H1N1 infections. Because the mor-

tality proportion, θD, was constant for all countries/territories, the severity estimate

of CFR is expected to be similar across England, New York and Singapore (we will

only present the estimates for Singapore in figure 4.20). At the last time point, the

median estimate of CFR for all three territories was 0.000033. This corresponds to

a fatal H1N1 case for approximately every 30 000 H1N1 cases.
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4.6.16 Basic Reproduction Number (R0)
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Figure 4.21: Basic reproduction number, R0(c).
Features in this figure are as in figure 4.18. Every country can benefit from this
estimate as the model is formulated to synthesize evidence for the actual number of
H1N1 Ic(t), as well as the actual number of removed H1N1 cases Rc(t).
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Let us focus on the R0 estimates (which represent the expected number of infections

caused by a single infected individual during his or her infectious period) for two

cities, New York and Singapore. New York exhibited a complete wave of the pandemic

within the shortest time. Their estimate for R0 was precise at around 1.25 for all

four time points considered.

In contrast, in Singapore, where there were absolutely no information at the first

time point, the R0 estimate was to be pooled from the other countries, which resulted

in an unduly wide credible interval from 1.08 to 1.51. However, when there were data

available at the next time point, the uncertainty reduced substantially.
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4.6.17 Final Attack Rate (FAR)
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Figure 4.22: Severity estimate of Final Attack Rate (FAR).
Features in this figure are as in figure 4.18. The values were computed by dividing
the predicted number of individuals in the removed epidemic class at the end of 2009
by the total population size.
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Most of the countries have showed that approximately 30% of the people will have

been infected by H1N1 by the end of 2009. We would like to draw the attention of

this figure to England and New Zealand where the initial FAR was predicted to be

higher at 0.398 and 0.358 and dropped to 0.299 and 0.218 at the last time point. The

first figures result from the time points when there were limited data available and

projections were over-predicted (Figure 4.7 and 4.17)

The higher peak in figure 4.7 for England may be due to the inaccurate propor-

tionality estimate but it was shown in figure 4.18 that θV (c) estimates for England

were similar across the four time points. Thus, a higher peak in figure 4.7 can be

translated to more predicted infections which led to a higher forecast FAR.

In figure 4.17 for New Zealand, not only is the peak of H1N1 cases larger in the

first time point than the other time points, the pandemic was also estimated to have

started on the 26 Jan 2009 based on the posterior sample of t0(c) for New Zealand.

If the prediction for New Zealand had started early, if would have also accumulated

more removed individuals Rc(t) by the end of 2009, resulting in a larger FAR.

By 1 August 2009, our model is able to estimate the median FAR of Singapore

to be 0.191, which is comparable to the results of FAR for all adults by Lee et al.

(2011) which they based on four different methods. This further suggests that our

model is promising in providing appropriate estimations for this H1N1 pandemic.
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Final Attack Rate
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Figure 4.23: Comparison of the estimated final attack rates for pandemic
H1N1 for each country or territory considered by the end of 2009 with
the estimate by van Kerkhove et al. (2013).
Van Kerkhove et al. (2013) used a meta-analysis of seroepidemiological studies,
which provide a proxy for the proportion infected and the result is represented by
the grey diamond. Dots represent posterior medians and lines 95% equal tailed cred-
ible intervals. The black diamond represents the pooled estimate from all countries
considered.

Our confidence interval, represented by the black diamond, is calculated by
(
x̄± t0.025,14−1

s√
14

)

where x̄ and s are the sample mean and sample standard deviation of the posterior

medians from the 14 countries. Figure 4.23 demonstrates that our results (using data

up to 1 September 2009) coincide with the result from the seroepidemiological studies

by van Kerkhove et al. (2013), which could only be realised at the end of pandemic

by testing the population subset (52 479 sera samples from 27 published/unpublished

serological studies from 19 countries/territories) for seropositivity.
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4.6.18 Worldwide confirmed death Estimation

2009
E

st
im

at
ed

 N
o.

of
 D

ea
th

s 
(0

00
s)

Worldwide

●

●
●

●

0

200

400

600

800

Jun Jul Aug

Figure 4.24: Estimated number of confirmed deaths worldwide by the end
of 2009.
Dots represent posterior medians and lines 95% equal-tailed credible intervals. The
estimated number of confirmed deaths worldwide is computed by multiplying the
world population (6.8 billion) by θD and the proportion in the removed state by the
end of 2009.

It is rewarding to see that the median estimated number of confirmed death by the end

of 2009 in the fourth time point is 181 300 (95% credible interval 87 200 to 271 900) is

comparable with the result found by Dawood et al. (2012) who concluded that the

estimated global confirmed deaths should amount to 201 200 (95% confidence interval

151 700 to 575 400). (Contrast to the number of laboratory-confirmed confirmed

deaths in 2009: 18 500.) Our forecast for the number of confirmed deaths worldwide

are comparable to those of Dawood et al. (2012) even if only the data available by

the end of June are used.

4.7 Considerations for Surveillance Network

In summary, although our model does not characterise all the epidemiological quirks

of each country’s data perfectly, our global estimates of attack rates and various

severity measures are accurate by the end of June 2009, a time in which Singapore (as

with many other countries) had seen just the beginning of community transmission

and there remained great uncertainty about how severe the pandemic would be and

what interventions to use. Our model succeeds in this regard by using a Bayesian

hierarchical model for a simple epidemic model (the SIR model) and synthesizing

information from various types of data that subsequently became available. Had
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they been available in real time, the impact of the pandemic control measures on

society and the economy might have been much less.

We believe that a network of surveillance data streams from a group of partic-

ipating countries would be invaluable to provide information on future pandemic

outbreaks. However, there may be some issues for considerations before this sys-

tem can be put up. Wrong or inappropriate data collection would lead to mistaken

conclusions, possibly resulting in inappropriate policies being implemented. It was

mentioned by Chao et al. (2011) that there was transmission of H1N1 in other parts

of the world before the confirmed case in Mexico, and so there is a real need for

the network of different countries to contribute surveillance data continuously rather

than merely reactively, so that any spread could be detected as early as possible.

The pandemic occurred in the Summer in the northern hemisphere, when when most

influenza surveillance programmes are on pause (they tend to run only during the

Winter months), and to have detected it early— and to have had information on its

severity—would require the data collection system to be in place year-round.

Currently, the numbers of cases reported from each country are based on their own

authorities’ criteria. Differences between countries’ criteria may affect the accuracy of

our model estimate and limit comparisons between countries. Hence, ideally criteria

should be standardised for all countries involved in the surveillance network to follow

in determining the classification of individuals and the coverage of each data stream

(for instance, the proportion of clinics that contribute within each territory should

be known and indicated in the network portal). This would ensure that the reported

number of cases can be compared appropriately, in contrast to the ad hoc approach

we were forced to use in extracting information from each country’s studies.

On top of this, the surveillance network should be validated on routine outbreaks,

such as seasonal influenza, before being used in a pandemic outbreak. Other than the

department that is responsible for collecting the data, another team could be set up

alongside with the involved organizations in each country at different times to collect

the data at the same time. A comparison between the data collected from both units

can be done and timely feedback could be given to the original data collection team

for improvement. This could ensure consistency if the same team is used to validate

the data collection from all the countries.
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The most feasible way to set up the network would be a confederation of perhaps

20 cities located in as many continents as possible, with a convenient and straight-

forward online portal for data submission and consistent protocols for data collection

and entry. This can boost the cooperation of the different organizations to share

data for the network without affecting their daily work routine. We also foresee a

great reduction in the time delay from data collection to data entry, permmitting

more time for analysis and incorporation within policy.

With a convenient data submission procedure, there would also be security and

confidential issues for consideration. We would need to keep the data secure to

encourage participation from all the countries and healthcare organizations. Fur-

thermore, in our model, we only need the daily or weekly number of cases from each

organization, not data on individual cases to reduce the risk of breaking confidential-

ity and also ease the management of these large scale data, though such data would

be valuable for analysis of clinical features.

Other than the confidentiality concerns, we should also be concerned about the

ethical issues of data collection. The main objective should always be treating the

patients and the questions or tests for classifying the patients into the various types

should not be done at the expense of the patients’ health condition or financing.

Although we believe that this proposed idea of a worldwide network of surveil-

lance, we would still need the mutual effort of all participating countries and organi-

zations to contribute to this data base. These collected data would belong to all the

countries, hence each country and organization involved in this program should also

be given easy access to the stored data. This will greatly encourage more countries’

voluntary involvement to get access to real time data for their own research purposes.

While giving access to use the collated data, there arises a problem of ownership

for all the data and who should be the provider of this network to hold the responsi-

bility of managing the network. In our opinion, the best candidate for organizing this

network would be the WHO, which has the relevant sophisticated technology and also

the experience to lead all the participating countries in this long term surveillance

project.

United in Tackling Epidemic Dengue (UNITEDengue) is an example of such long

term surveillance network which shares dengue surveillance information between their
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members (restricted to institution only), including Singapore, Malaysia and Indonesia

(Unitedengue, 2014). Another transnational collaboration in the European Union

(EU) is the European Centre for Disease Prevention and Control (ECDC) (ECDC,

2014). They will collect and share infectious diseases data between coordinating

competent bodies, for example POLYMOD study for new and re-emerging epidemics

(Mossong et al., 2008).

4.8 Future Work

With the above considerations for the surveillance network, the model described in

this chapter can be used to fit real time data to predict any potential pandemic

outbreak. However, future work can be done to improve the model against various

assumptions used here.

It was shown by Rhim et al. (2012) that 94% of all the H1N1 cases, from a

study conducted in one of the South Korea hospitals during the pandemic, were

children and young adults, younger than 40 years old. Similar results have been

found elsewhere, for instance in Singapore (Lee et al., 2011). Older people might

have a lower risk because of prior exposure to previous pandemics which resulted in

pre-existing immunity that are not detectable by cross-reactive antibodies (Dudareva

et al., 2011).

If the assumption of homogeneous population were relaxed, the rate of infection

should be set for each individual j in country c as

βcj = βcφj , (4.85)

where each individual can be differentiated by another risk score parameter φj which

informs whether the individual j is more easily infected by φj > 1. Without this ho-

mogeneity constraint, an enormous number of parameters would need to be explored.

Moreover, the ODE structure will not hold if each individual is allowed for different

risk. Instead, we might simulate this parameter from a log normal distribution,

log φj ∼ N
(
1, σ2

)
∀j. (4.86)

This distribution will guarantee a positive risk score, φj , that will either increase

the rate of infection for individual j if φj > 1 or decrease the rate of infection for
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individual j if φj < 1. There will be no difference in the infection rate if all the φj

are equal to 1 when σ2 = 0. As such, the estimated risk of the whole population will

be βc
∑
φj . From this approach, we will not be able to tell how the rate of infection

will differ from each of the different groups of individuals, but we will be able to tell

the discrepancy in the rate of infection across individuals by σ2. Larger σ2 implies

more inconsistency in the rate of infection.

One alternative solution would be to use an age-structured model, rather than

one model for the whole population or one rate per individual, with the application

of different rates for each groups of people. However the absence of good age-specific

data in many locations prohibit this approach, which would result in a substantial

increase in the number of parameters to be explored but little additional information

to do so. However, this would only be possible if the surveillance network is able to

collect these relevant age-specific data to model it, and if data on contacts between

people of different ages could be collected for more than the handful of high-income

countries that have done so so far (Mossong et al., 2008).

Future work could also involve the exploration of the proportion of people within

each country with immunity to counteract the weak assumption for initial susceptible

proportion, s(0) = 1. This would require a substantial amount of laboratory tests

to be conducted in these countries to estimate the required proportions before any

pandemic outbreak. Better inference could be made if an appropriate initial number

of susceptibles were used. But, we can foresee more technical challenges for solving the

ODE as each country would have a different initial condition and separate calculation

of ODE solutions is required for each country.

4.9 Conclusion

The results described in this chapter provide an enticing view of the use of hier-

archical modelling for emerging infectious disease outbreaks. Not only can we pool

information from countries with no or limited data, accurate severity estimates could

have been achieved much earlier than was actually the case.

We have also showed how different data types can be integrated together by

Bayesian evidence synthesis to capture the evolution of the spread of H1N1 in 2009.
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Although MCMC proved difficult to converge due to the high dimensional parame-

ter space, we have successfully incorporated the sequential importance sampling to

estimate parameters, pandemic trajectory predictions and severity estimates.

The predicted trajectory for the various data type of all countries in our basket

were also preferable after including the numerous factors, like the delay in trajectory

for country i since the 1 Jan 2009, t0(c), and the latent period between the occurrence

of the first confirmed death and the first removal event, δ. These estimated results

compared well with those by other research teams, using other data, in particular the

FAR (Lee et al., 2011) and the estimated worldwide confirmed death due to H1N1

(Dawood et al., 2012).
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Chapter 5

Bayesian Optimal Design of

Seroepidemiological Studies

5.1 Introduction

Seroepidemiological studies are important for judging population immunity to

various infectious diseases based on factors like age. Time and money are needed

to acquire and test sera from individuals and, as a result, studies should be de-

signed efficiently: specifically to provide the maximum information within any fixed

budget. Straight-forward or naïve designs may be inferior if sera are collected from

unnecessary population groups. For instance, for a childhood disease with near 100%

prevalence by age a, sampling additional children aged a+ 1 yields little useful infor-

mation. The objective of this chapter, therefore, is to demonstrate how to find the

best designed sample characteristics to estimate prevalence in different groups in the

population.

We apply the methodology to design studies to estimate the age-specific preva-

lence of Enterovirus 71 (EV71), making use of similar studies in other settings using

Bayesian hierarchical modelling and assuming the new study’s setting is exchange-

able with past studies’. This is achievable for this virus because many such serological

studies have been carried out in Singapore (Ooi, Phoon, Ishak, & Chan, 2002; Ang

et al., 2011) and other countries from East and South East Asia in which EV71 is

a topical public health issue, including China (Yu et al., 2011; Zeng et al., 2012),

Taiwan (Lu et al., 2002) and Vietnam (Tran et al., 2011).
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EV71 is one of the main viruses capable of causing Hand, Foot, and Mouth Disease

(HFMD), mostly affecting in children (Shih et al., 2004). The endemic caused by this

virus is predominant in children below 5 years old (Ang et al., 2011) and as a result,

most existing serological studies on EV71 have concentrated on young age groups.

Most seroepidemiological studies have collected purportedly ‘random’ samples

from healthy individuals without specifying the sampling strategy (Yu et al., 2011;

Lu et al., 2002; Tran et al., 2011). Only Zeng et al. (2012) sampled according to the

age distribution of Shanghai and Ang et al. (2011) determined the sample size based

on the estimated prevalence. None designed an optimal experiment.

Hierarchical models can be built on these data, collected from different countries

at different years. So doing facilitates the search for an optimal design as it pools

information from these different sources to represent better how the disease will affect

the population in the upcoming studies (Chaloner & Verdinelli, 1995). Inferring a

hyper-prior distribution for the parameters governing incidence/prevalence allows

the resulting information to be fed into a Bayesian optimal design framework whose

objective is to select the number of individuals in different demographic segments

to maximise the precision in the estimates of the parameters in the future study

(Atkinson, Donev, & Tobias, 2007). A well designed study, that in the context

of estimating age-prevalence samples some age groups disproportionately, will allow

more information to be obtained for the same cost, or the same amount of information

at lower cost. In a previous study of the spatio-temporal spread of plant disease by

Cook et al. (2007), 25% of the original observations can yield the same information

content as a more intensively observed population, if they were arranged carefully.

Although these optimal design methods are explored in other areas, especially in

engineering (Hollister, Maddox, & Taboas, 2002), it requires considerable adaptation

to make them work in the non-linear problems anticipated in seroepidemiology.

Serological studies are very expensive. The sequential serological study of about

2900 individuals from four different groups of people—namely the general population,

military personnel, staff from an acute care hospital, as well as residents and staff

from long-term care facilities—carried out during the 2009 influenza pandemic cost

around S$1.1 million to conduct (Mark I-Cheng Chen, personal correspondence).

At such costs, if the experimental study designs can be more efficient in providing
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more information per dollar spent, potentially the saving could be large. Even though

optimal design methods would need to be applied differently for each virus under

study, we predict that researchers will be able to adapt our methodology to their

pathogen and obtain the optimal design that is appropriate to the illness that they

are interested in.

5.2 Data from Past Studies on EV71

Data were extracted from previous serological studies performed in Singapore

(Ooi et al., 2002; Ang et al., 2011), the People’s Republic of China (Lu’an City (Yu

et al., 2011) and Shanghai (Zeng et al., 2012)), the Republic of China (i.e. Taiwan)

(Lu et al., 2002), and Viet Nam (Tran et al., 2011). They are collated from tables,

text or figures found in these journal articles. Due to the irregular structure of

the data, we standardised them before analysis. Since EV71 is dominant in young

children, we limited attention to data corresponding to children up to the age of 12.

As there may be carried over maternal immunity in newborns (Ooi et al., 2002), we

also limit attention to sera collected from children at least one year old.

Singapore: In the 1997 Singapore study, convenience sampling was done at a

paediatric clinic in the National University Hospital (NUH) (Ooi et al., 2002), among

healthy individuals aged below 12 who were attending regular visits to the clinic for

vaccination for which they gave a blood sample, residual sera of which was then used

in the study. A consequence of the study design is that it may result in a biased

sample as those who visit the NUH clinic may not be a good representation of the

whole population.

Subsequently, in 2008 to 2010, Singapore’s Ministry of Health administered a

serology study which acquired samples from 1200 individuals aged below 17 who

were at KK Women’s and Children’s Hospital and NUH for inpatient services or day

surgery but not concurrently diagnosed with HFMD (Ang et al., 2011). Based on an

estimated prevalence of 33%, they targeted a minimum of 340 sample size for each

age group (1–6, 7–12, and 13–17 years) (Ang et al., 2011). The minimum sample

size, n, was calculated by having 5% margin of error (ME), where z is 1.96,

ME = z

√
p̂(1− p̂)

n
. (5.1)

Note that this was the minimum sample size to obtain a specified accuracy without
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the smoothing of a model to borrow strength from nearby ages, and is not directly

optimising the design. Furthermore, due to the use of residual sera, there remains

the risk of unrepresentativeness.

People’s Republic of China: Before the large EV71 epidemic outbreak in

China in 2008, Yu et al. (2011) had collected 472 ‘random’ serum samples from

children below 15 years who stayed in Lu’an City and had no symptoms of HFMD.

The number of samples were equally distributed across each age group (<1, 1, 2–4,

5–7, 8–11, and 12–15 years). Using the same sample size for all age group may result

in unnecessary, or insufficient, sampling in certain age groups. After the outbreak,

83 additional serum samples were collected from healthy children below 15 years (Yu

et al., 2011). For this, the sampling method was not mentioned in the paper and the

sample sizes were no longer uniformly allocated across each age group.

Zeng et al (2011) was the only one amongst the past studies we identified to sample

according to the age distribution of the target population (Shanghai). This stratified

sampling design using proportional allocation is simple to apply and yet useful since

it will sample more from the larger age group to get a better representation of the

whole population. However, this might lead to wastage of resources if redundant

samples were taken from a large age group. They collected a total of 614 samples

from children below 5 years during their health check at the Children’s Hospital of

Fudan University (Zeng et al., 2012). Again, the samples might be biased due to the

single location of serum collection and possibly due to a selection bias in favour of

sicker children.

Republic of China: Serum samples were collected in Taipei City, Taiwan, in

1994, 1997 and 1999, the latter to compare the prevalence before and after the major

outbreak in 1998 (Lu et al., 2002). There was no mention about how the decision

was made for the experimental design in these three years. In 1994, 202 specimens

were collected from those above 4 years whereas in 1997 the focus was on those

below 4 years, among whom a total of 245 samples were taken (Lu et al., 2002).

Participants lived in Taipei but there was no mention if the samples were collected

during a routine health check or during a visit to the physician, for instance, due to

illness (Lu et al., 2002). Additional effort to guard against biased sampling was made

in 1999 by extending sampling to 1 258 participants from the city as well as nearby
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non-urban areas (Lu et al., 2002).

Viet Nam: 794 samples were collected from the Hung Vuong Obstetric Hospital,

Ho Chi Minh City, in 2007 (Tran et al., 2011). Again, there was no indication of how

the design was set up and it may be convenience sampling from those who visited

the hospital amounting to almost equal sample sizes in the three age groups.

As the age intervals of the samples vary across datasets, we represent the intervals

by their respective start and end age in months. The unit is chosen to be months

and not years because some datasets had age gaps in months, and so no information

would be lost in this representation.

5.3 Hierarchical modelling of past studies

Leveraging on past experimental studies, we fit a hierarchical model to those

data discussed in the previous section. Here, we use a discrete time survival analysis

approach to transform the data into information that will later be used to design an

optimal experiment using Bayesian decision theory.

T is defined as the age when an individual gets infected. In a continuous survival

analysis, the hazard function, h (t), is the instantaneous rate at which failure (here,

infection) occurs at time t. In our discrete time version, h (t) takes the form of a

probability of infection within the 1-year interval starting at integer time t (where

data are in fractions of a year, the hazard is assumed to be constant throughout the

year, see later for details) conditional on non-infection to time t−1 (Singer & Willett,

1993), i.e.

ht = Pr(T = t|T > t− 1). (5.2)

The infection risks are allowed to vary non-parametrically from one year to another,

from one country to another. Since ht is seen as a probability, the values are restricted

to 0 ≤ ht ≤ 1.

A negative serology test implies that infection has not occurred for this individ-

ual by age i. The survival function, S (t), is the probability of surviving (i.e. not

experiencing the event) to time t. In the discrete case, St is the probability of not

being infected by age t. By the conditional probability relationship, St can be related
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to the hazard rate by

St = Pr(T > t) (5.3)

= Pr(T > t|T > t− 1) Pr(T > t− 1) (5.4)

= (1− Pr(T = t|T > t− 1)) Pr(T > t− 1) (5.5)

= (1− ht)St−1. (5.6)

Iterating, the relationship between the survival function and hazard rate for a

discrete time survival model is

St =
t−1∏
j=0

(1− hj) . (5.7)

Intuitively, survival to age t means not having been infected at any age before t,

implying that the survival probability up to age t is the product of all the (1− hj)

up to age t−1, where (1− hj) represents the probability of not being infected at age

j.

The density (technically, mass) for the random variable T , represented by ft, is

the probability of an individual being infected at age t,

ft = Pr(T = t) (5.8)

= Pr(T = t|T > t− 1) Pr(T > t− 1) (5.9)

= htSt−1 (5.10)

= ht

t−1∏
j=0

(1− hj) . (5.11)

Our data include the number of positive samples for individuals from age t to

t+ 1 as x(t,t+1) and the total number of samples contributed by the individuals from

age t to t+1 as n(t,t+1). We will model x(t,t+1) as a binomial distribution with n(t,t+1)

trials and the probability of success as the probability of being identified as infected

in the age interval p(t,t+1),

x(t,t+1) ∼ Binomial
(
n(t,t+1), p(t,t+1)

)
. (5.12)

This may be appropriate if the number of individuals in the sample is small

relative to the population as a whole, so that the effects of non-independence can be

ignored. Being identified as infected at age t implies that the individual was infected
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in age t or before, so pt is represented by ft as follows:

p0 = h0

= f0 (5.13)

p1 = (1− h0)h1 + h0

= f1 + f0 (5.14)

pt = (1− h0) . . . (1− ht−1)ht + . . .+ (1− h0)h1 + h0

= ft + . . .+ f0. (5.15)

Most data come reported to a yearly interval, but there were some cases of ir-

regular intervals. In particular, we set p(t,t+1) = pt for the small number of datasets

with an age interval of less than a year, while if the interval is more than a year, we

will take the average of the yearly probabilities of being seropositive, which assumes

equal sampling across the age range. For example, the probability of being identified

as infected in a three year age interval from 7 to 10 is p(7,10) = 1
3 (p7 + p8 + p9).

Different datasets have information up to different maximum ages and in addition

may lack data for some age groups within the age range. However, hazards for

gaps in the data at earlier ages provide information at later ages by contributing

to the density calculation ft for the later age groups t. In addition, by taking a

hierarchical approach (using MCMC to sample the resulting parameter space) the

inference routine will pool information across different countries to fill the gaps for

countries with missing data for those countries.

Due to the condition of 0 ≤ htj ≤ 1 for hazard rate of age t in dataset j, the logit

transformation of htj ,

logit(htj) = log htj
1− htj

, (5.16)

will lead to parameters with support on the real line. This allows a multivariate

normal hyper-distribution for logit(hj) where hj = (h0j , h1j , . . . , htj) will be governed

by hyper-parameters characterizing the mean, standard deviation and correlation

between the parameters,

logit



h0j

h1j
...

htj


∼ MVN





µ0

µ1
...

µt


,



σ2
0 σ10 . . . σt0

σ01 σ2
1 . . . σt1

...
... . . . ...

σ0t σ1t . . . σ2
t




(5.17)
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where σkl = ρk,lσkσl and σkl = σlk.

As there is no prior knowledge for the hyper-parameters, non-informative hyper-

prior distributions are used. Since µk can be any real numbers, a normal distribution

with a wide range centred at 0 to allow for both positive and negative numbers is

used,

µk ∼ N
(
0, 1002

)
. (5.18)

Since the standard deviation should be positive, hyper-prior for σk is assigned an

exponential distribution,

σk ∼ Exp (1) (5.19)

where a larger hyper-parameter σk will indicate a more differences in the hazard rate

parameter between countries. Similarly, the correlation hyper-parameters ρk,l govern

the relationship between the parameters hk and hl. If they are positively correlated,

0 < ρk,l < 1; if they are negatively correlated, −1 < ρk,l < 0. A flat hyper-prior is

used on all the correlation hyper-parameter,

ρk,l ∼ U (−1, 1) . (5.20)

With the above model, we employ a Metropolis-Hastings algorithm with MCMC

methodology to explore the parameters and hyper-parameters. We discard 1% of

the sample as burn-in, select the choice of initial values to be close to the actual

posterior (see below), allowing the chains to converge quickly. Thinning is used to

reduce the correlation between subsequent stored values, by retaining only at every

10th iteration.

To make the initial values of the parameters suitable, we take a point estimate of

the hazard rate in an interval i to be

hi = di

li
(
ni−1 − 1

2di
) , (5.21)

where the number of positive samples in the interval is di, the length of the interval,

li, and the total number of samples is ni−1.

Having selected the initial values for the parameters, we take the following steps

in the MCMC routine:
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1. Using the initial values for the hazard rates h0
j =

(
h0

0j , h
0
1j , . . . , h

0
ij

)
for country

j where the maximum age of the collected data is i and the randomly cho-

sen initial values of the hyper-parameters
(
µ0,σ0,ρ0), calculate the log likeli-

hood density, log f
(
Dj |h0

j ,µ
0,σ0,ρ0

)
, log prior density, log f

(
h0
j |µ0,σ0,ρ0

)
,

log hyper-prior density, log f
(
µ0,σ0,ρ0), as well as the log posterior density,

log f
(
h0
j ,µ

0,σ0,ρ0|Dj

)
, for subsequent use.

a) The log likelihood density is calculated using the built-in binomial dis-

tribution function, dbinom, in R, where the data for country j, Dj , will

include the number of trials, n(i,i+1), and the actual number of infected,

x(i,i+1), and the probability of being infected in age i, f(i,i+1), using the

hazard rates h0
j =

(
h0

0j , h
0
1j , . . . , h

0
ij

)
.

b) The log prior density is calculated using the multivariate normal distri-

bution function, dmvnorm, from the mvtnorm package in R. Using the

hyper-parameters, µ0, as the mean vector, we also calculate the covari-

ance matrix using the other hyper-parameters
(
σ0,ρ0) as stated in the

model earlier. The covariance matrix is singular if there are non-positive

eigenvalues, in which case we let the log prior density be −999 999, an

arbitrary negative number which approximates 0 on exponentiation. The

hazard parameter is logit transformed before calculating the prior density.

c) The log hyper-prior density is calculated as normal distributions for µ0,

exponential distributions for σ0 and uniform distributions for ρ0 using

the build-in distribution function in R.

d) The pseudo log posterior density (ignoring a constant) is computed by

summing the three log densities. Note that posterior density is only pro-

portional to the product of the three densities,

f(h0
j ,µ

0,σ0,ρ0|Dj) ∝ f(Dj |h0
j ,µ

0,σ0,ρ0) ·

f(h0
j |µ

0,σ0,ρ0) · f(µ0,σ0,ρ0). (5.22)

The proportionality constant that leads to the actual posterior density is

not available but cancels in the step of calculating the acceptance proba-

bility.
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2. Propose new hazard parameter values, h∗
j , for country j from a multivariate

normal distribution with mean h0
j . In pilot runs, the covariance matrix of

the proposal distribution is initially a diagonal matrix, since the correlation of

hazard rates across ages is unknown. This covariance matrix will be improved

in subsequent rounds by the information from the posterior samples of previous,

pilot rounds, leading to better proposals in the later rounds as the covariance

matrix becomes a better representation of the actual posterior distribution of

the hazard rates. After proposing changes, the legality of the move is assessed

(i.e. that 0 < h∗
j < 1) and the proposal is rejected if the condition is not

fulfilled. A multivariate normal proposal distribution is preferred due to its

symmetrical property, in the Metropolis- Hastings algorithm, the acceptance

probability will reduce to

Pacc = min
(

1,
f(h∗

j ,µ
0,σ0,ρ0|Dj)

f(h0
j ,µ

0,σ0,ρ0|Dj)

)
(5.23)

= min
(

1,
f(Dj |h∗

j ,µ
0,σ0,ρ0) · f(h∗

j |µ0,σ0,ρ0)
f(Dj |h0

j ,µ
0,σ0,ρ0) · f(h0

j |µ0,σ0,ρ0)

)
. (5.24)

With probability Pacc, the proposed h∗
j will be accepted and updated as h1

j ,

otherwise, the proposal is rejected and we let h1
j = h0

j . This step will be

repeated for each dataset sequentially.

3. After updating all the hazard rates, we propose the hyper-parameters

(µ∗,σ∗,ρ∗) using independent normal proposal distributions with arbitrary

initial standard deviations for all the hyper-parameters. Proposed values should

satisfy σ∗ > 0 and −1 < ρ∗ < 1, and are otherwise rejected. The acceptance

probability can be determined by

Pacc = min
(

1, f(h1,µ∗,σ∗,ρ∗|Dj)
f(h1,µ0,σ0,ρ0|Dj)

)
(5.25)

= min
(

1, f(h1|µ∗,σ∗,ρ∗) · f(µ∗,σ∗,ρ∗)
f(h1|µ0,σ0,ρ0) · f(µ0,σ0,ρ0)

)
. (5.26)

This does not involve recalculating the likelihood and hence is computationally

efficient, so the hyper-parameters are updated 50 times for every round of

proposal for the hazard parameters.

4. Step 2 and 3 will be repeated 10 000 times and the covariance matrix and

standard deviations of posterior samples will be used in subsequent proposal

distributions.
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5. The improvement of proposal distribution will be done for 10 rounds. The final

round, with Markov chains that have apparently converged to the posterior dis-

tribution, is used to create samples of all the parameters and hyper-parameters,

which are stored for the second stage of the analysis—designing a future study

efficiently.

5.4 Optimal design of a future serological study

Instinctively, more information can be obtained as more samples are collected.

However, as the number of serological tests varies proportionally with the study

cost, and there is always a limit to the amount of money that can be spent on a

single epidemiological study (experiment), suggesting only a fixed total number of

serological tests can be performed. Naturally, a design for the experiment that gives

the most information using a fixed expense is preferred to one giving less.

Atkinson (2001) argues that, in this context, we should fix the total number of

serological tests while optimising over the characteristics of each participant to be

tested. Treating each age as a cluster, in Atkinson’s terminology, ni represents the

number of serological test needed for individuals of age i, which is subject to the

restriction on the total number of tests, n =
∑
i
ni. (This assumes no difference

in the cost for sampling in different age groups, which allows us to focus on the

number in each cluster rather than the cost). In this stage of the analysis, we will

explore different possible combinations of (n0, n1, . . . , n11), i.e. up to age 12, with

the condition that they should sum up to a certain sample size.

Optimal designs are dependent on the precise choice of model (Rasch, Pilz, Ver-

dooren, & Gebhardt, 2011). Later in this chapter, we show that the hierarchical

model described earlier gives a good characterisation of EV71 prevalence for coun-

tries with the same characteristics as those we obtained data for.

In classical optimal design, in the situation where the optimising of the function

that forms the design criterion relies on the exact values of the (hazard, in our case)

parameters, Berger and Wong (2005) argue that point estimates of the parameters,

i.e. from an extremely informative prior distribution, should be used to find the deter-

ministic solution of the objective function, as this might more efficiently achieve the
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best optimal design. In contrast, in Bayesian optimal design (Chaloner & Verdinelli,

1995), we typically sample parameter values from an informative prior, perhaps draw-

ing on an analysis of past data, and simulate multiple datasets for each design, taking

the average of a defined utility function over repeat Monte Carlo sampling for each

point in the design space to obtain the optimal design, a more computationally in-

tensive solution (Müller, Sansó, & De Iorio, 2004). The next subsection described

classical experimental design, followed by a description of Bayesian optimal design.

5.4.1 Classical optimal design

Classical optimal design is categorised according to the objective function using so-

called alphabetic optima. According to Atkinson (2007) , A-optimality is based on

the criterion of minimizing the sum or average of all the variances of the parameter

estimates (typically MLEs). The argument is that for an optimal design to provide us

with the most information on all parameters, the resulting sampling variance should

be small, which coincides with the A-optimality criterion.

If we only required a certain parameter to be precise, Ci-optimality will choose

the best design based on the decision that can minimise the variance of parameter

i (Rasch et al., 2011). A variant is E-optimality which minimises the variance of

the parameter with the poorest precision (inverse variance) (Atkinson et al., 2007).

This has a stronger benchmark than Ci-optimality criterion since it ensures that no

particular parameters will have too much sampling error under the selected optimal

design. It does however require that parameters have a common scale to facilitate

sensible comparison.

The D-optimality criterion is the most popular classical design criterion, and

motivates the optimal design in our project. According to the General Equivalence

Theorem, the optimal design will minimise the imprecision or in other words, max-

imise the expected utility where utility is the determinant of the information matrix

(Atkinson et al., 2007). As the expected utility for the design space may not be

smooth, we will probe into different approaches for exploring an uneven design space.

The observed Fisher Information is the expectation of the negative second deriva-

tive of the log likelihood. To see why this is a sensible choice of objective function,

consider the one dimensional case, where the reciprocal of the Fisher Information is

the variance of the MLE (Efron & Htnkley, 1978), and so maximizing the determinant
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of the information matrix will minimise the uncertainty in the parameter.

5.4.2 Bayesian optimal design

Classical experimental design makes use of point estimates for the parameters but

does not account for the uncertainty in them. The Bayesian framework provides a

more natural framework to overcome this problem by allowing the design to account

for the uncertainties in the parameters using their posterior distribution.

In the Bayesian paradigm, information on the model’s parameters is encapsulated

by the prior or posterior distribution. In the context of a decision problem, the

information prior to observing the outcome is relevant. If data are available to guide

the decision, this ‘prior’ is the distribution after observing them, i.e. the posterior.

The optimal decision, D?, is that which maximises the expected utility u (or objective

function) over the uncertainty in the outcome X and in the parameters, θ (Cook,

Gibson, & Gilligan, 2008), i.e.

D? = arg max
ˆ ˆ

u(X,D)p(X|θ,D)p(θ|D)dθdX. (5.27)

In practice, typically the integration is done using Monte Carlo sampling, assuming

the prior can be sampled, along with the data conditional on the prior. In the context

of experimental design, the decision is the design (Chaloner & Verdinelli, 1995).

This approach requires defining a utility function that allows a good design

that provides substantial information to correspond to a high expected utility value

(Atkinson et al., 2007; Verdinelli & Kadane, 1992). According to Bernardo (1979),

translated to the seroepidemiological scenario, whenD is the decision of how to divide

the sample size between age groups, p(θ|D) is the reported posterior density function

of the parameters resulting from the experiment conducted under the decision D, the

utility will be a function of the reported density function and the decision, u(X,D).

We foresee that the design space will be complicated due to its high dimension-

ality, which has implications for how the design space is searched for the optimum.

The method to explore the design space will be examined in the later subsections. As

the estimated expected utility for the design space will not be smooth, we will probe

different approaches for exploring the design space that account for this imperfect

observation of the expected utility.
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In simulating the utility for one realisation, for a specific design, we use the set of

sample sizes allocated for each age group defined by the design,(n0, n1, . . . , n11), draw

hazard rates from the hyper-posterior distribution of the hierarchical model, reflecting

an assumption that the study we are designing is exchangeable with those previously

analysed, and use these to simulate the number of positive samples, (x0, x1, . . . , x11),

in each group. If the experimental data are to be analysed classically, as is frequently

the case in epidemiological research, the appropriate objective function represents

how much information will be captured in a classical analysis. To derive this, the

likelihood function (of a model, either the generating model or a simpler model used

for reporting) under this experiment can be used to compute the MLE, ĥ. The utility

function, inspired by the D-optimality criterion, is the determinant of the information

matrix under the decision of D and the MLE ĥ, where L = log p(h|D) (Bernardo,

1979),

u(X,D) = det


−



d2L
dh2

0

d2L
dh0dh1

. . . d2L
dh0dh11

d2L
dh1dh0

d2L
dh2

1
. . . d2L

dh1dh11
...

... . . . ...
d2L

dh11dh0
d2L

dh11dh1
. . . d2L

dh2
11



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
h=ȟ


. (5.28)

The algorithm to maximise the expected utility over a set of designs is:

1. Set the first decision of sample sizes allocation, D1 =
(
n1

0, n
1
1, . . . , n

1
11
)
.

2. By assumption the logit of the hazard rates follows a multivariate normal dis-

tribution governed by hyper-parameters. We sample a set of hyper-parameters

from the hyper-posterior distributions and compute the covariance matrix.

With the mean vector, µ, and covariance matrix, Σ, simulate logit(hij) from

the multivariate normal distribution and perform an inverse logit transfor-

mation to derive the set of true hazard rates under this experiment, using

hij = 1
1+exp(−logit(hij)) .

3. With this set of simulated true hazard rates, the probability of having a positive

test at age i, pi, can be calculated from the hazard rates directly. The proba-

bility of having a positive test can be compared with the propensity, φ (to be

explained later) to simulate the experimental data, where φl < pi will indicates
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that individual l of age i has a positive test result. Tallying over individuals,

we will get the data of this experiment, x = (x0, x1, . . . , x11).

4. With the design, n and data, x, the MLE, ĥ, is found using a numerical method

(see later).

5. The utility value for these simulated data is the determinant of the information

matrix at the MLE.

6. Repeat step 2 to 5 for the same decision D1 =
(
n1

0, n
1
1, . . . , n

1
11
)
a large number

of times (I use 100). The expected utility for this decision is the mean of the

sampled utilities.

7. Repeat step 1 to 6 for the kth decisions Dk for k = 2, 3, . . . to acquire their

respective expected utilities. The same hazard rates and propensities will be

used for all decisions to reduce unnecessary variability in the expected utili-

ties. Thenceforth, the Bayesian optimal design can be identified by maximum

expected utilities.

Here, we shall demonstrate how to calculate the utility for a given dataset. The

number of positive samples for age i , xi, follows by assumption a binomial distribu-

tion with ni number of individuals of age i at risk and pi as the probability of being

identified as infected by age i. The likelihood of the experimental data up to age 12

is

l(n,x,p) =
11∏
i=0

(
ni
xi

)
pxi
i (1− pi)ni−xi . (5.29)

Taking logarithms of the likelihood function and dropping the constant of pro-

portionality that does not change with different values of pi,

log l(n,x,p) =
11∑
i=0

(xi log pi + (ni − xi) log(1− pi)) . (5.30)

The first derivative of the log likelihood function with respect to the hazard

parameters hj , where j = 0, 1, 2, . . . , 11, is

d

dhj
(log l(n,x,p)) =

11∑
i=0

(
xi
pi
· dpi
dhj

+ ni − xi
1− pi

·
(
− dpi
dhj

))
(5.31)

=
11∑
i=0

(
xi
pi
− ni − xi

1− pi

)
· dpi
dhj

. (5.32)
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Similarly, we can find the second derivative of the log likelihood function with

respect to the hazard parameter hk, where k = 0, 1, 2, . . . , 11

d

dhk

(
d

dhj
(log l(n,x,p))

)
=

11∑
i=0

(
−xi
p2
i

(
dpi
dhk

)
− ni − xi

(1− pi)2

(
dpi
dhk

))
· dpi
dhj

+
11∑
i=0

(
d

dhk

(
dpi
dhj

))(
xi
pi
− ni − xi

1− pi

)
(5.33)

=
11∑
i=0

(
−xi
p2
i

− ni − xi
(1− pi)2

)
· dpi
dhj
· dpi
dhk

+
11∑
i=0

(
d2fi

dhkdhj

)(
xi
pi
− ni − xi

1− pi

)
. (5.34)

We calculate the first and second derivatives of pi with respect to hj and hk as

a prelude to calculating the above second derivative of the log likelihood function.

Since pi =
i∑

j=0
fj and fi = hi

i−1∏
j=0

(1− hj), we let a pseudo function gi to represent

i−1∏
j=0

(1− hj) for the subsequent calculation. Then, the probability of being identified

as infected in age i is

∵ pi−1 = (1− h0) . . . (1− hi−2)hi−1 + . . .+ (1− h0)h1 + h0 (5.35)

pi = (1− h0) . . . (1− hi−1)hi + . . .+ (1− h0)h1 + h0

= gi−1hi + (1− h0) . . . (1− hi−2)hi−1 + . . .+ (1− h0)h1 + h0

= gi−1hi + pi−1. (5.36)

The first derivative can be obtained iteratively

dpi
dhj

=



hi
dgi−1
dhj

+ dpi−1
dhj

j ≤ i

gi−1 j = i

0 j > i

1 j = i = 0.

(5.37)

Likewise, the iterative technique can be applied to the second derivative where

d

dhk

(
dpi
dhj

)
=



hi · d
dhk

(
dgi−1
dhj

)
+ d

dhk

(
dpi−1
dhj

)
j 6= k, j 6= i, k 6= i

dgi−1
dhj

+ hi · d
dhk

(
dgi−1
dhj

)
+ d

dhk

(
dpi−1
dhj

)
k = i, j < i

dgi−1
dhk

j = i 6= 0, k < i

0 j = i = 0, j > i.

(5.38)
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This re-arrangement is beneficial because the derivative of the pseudo function gi is

simple. To elucidate this pattern, the first derivative of the function gi with respect

to hj can be represented by

dgi
dhj

=


− gi

1−hj
j ≤ i

0 otherwise.
(5.39)

Correspondingly, the second derivative of the function gi will result in the following

two cases

d

dhk

(
dgi
dhj

)
=


gi

(1−hj)(1−hk) j 6= k, j ≤ i, k ≤ i

0 otherwise.
(5.40)

Putting all of these together, we can calculate the second derivative of the log

likelihood with respect to hj and hk. Inserting the MLE then gives the utility.

The stochasticity in the utility surface makes identification of a maximum difficult.

To remedy this, we stabilised the information content between neighbouring design

points as follows. Before starting the algorithm, we simulate hazard rates from the

hyper-posterior sample to act as the true hazard rate, storing them and reusing them

across the design space. This induces correlation between neighbouring points that

makes identification of which is greater easier, for the same reason that paired t-

tests typically have more power than two-sample t-tests. Furthermore, to reduce the

variability in the information, we use fixed propensity scores for the individuals at

each design.

A propensity score φl is associated to each individual l. The propensity scores,

uniformly distributed from 0 to 1, are compared against the computed probability

of being identified as infected at age i, pi. Since each individual at age i will test

positive with probability pi, we can let the individual l of age i be tested positive

if φl < pi and contribute to the number of positive samples x. Using the same set

of propensity score to get the simulated datasets will induce a positive correlation

between them and result in smoother utility surface, while maintaining the correct

marginal distributions of the utility at any point, more computationally efficiently

than using larger number of sets of simulated data.

Apart from the above set-up to simulate potential future data, x, the MLE of

the hazard parameters is also required. In the one dimensional case, the MLE is the
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point where the likelihood is at its highest point, as evaluated numerically e.g. with

a grid search, which is also the solution of the first derivative of likelihood function

when equated to zero. But due to the complexity of the likelihood function, it is

difficult to solve for the MLE (and more to the point, time consuming). Thus, we

have explored several approaches to find the MLE.

5.4.3 MLE search using Newton-Raphson method

The Newton-Raphson method is a numerical approach to get to MLE through a

deterministic series of iterative moves (Ypma, 1995). This method often works well

for multidimensional problems. For demonstration, consider just two age groups to

improve cognitive ease of visualization. Let the number of samples from age i be

ni = 250 where i = 0, 1, the true hazard rate is set at 0.1 and 0.05 respectively. The

steps are as follows.

1. Using the true hazard rate, calculate the probability of being infected at each

age and simulate the number of infected individuals using a binomial distribu-

tion. The initial parameters values are chosen to be the true hazard rate values,

h0
0 = 0.1 and h0

1 = 0.05. Because the Newton-Raphson method is a stepwise

procedure, we can get to the MLE faster if appropriate initial parameter values

are chosen (Lauritzen, 2008). In this case, because the data were simulated,

the true values are known.

2. Calculate the first derivative of the log likelihood function, d
dhj

(log l(n,x,p))

for j = 0, 1, and the second derivative of the log likelihood function
d
dhk

(
d
dhj

(log l(n,x,p))
)
for j = 0, 1 and k = 0, 1 using the initial values of h0

0

and h0
1. These are commonly termed the score S(h) and observed information

J(h) respectively.

3. The parameter values of the next iterative step, h1 =
(
h1

0, h
1
1
)
, are set to be

h1 = h0 + λJ(h0)−1S(h0), (5.41)

where 0 < λ ≤ 1 is a constant that varies directly with the size of the steps.
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4. Repeat step 2 and 3 until the sum of the absolute first derivative is less than

a small preselect value ε = 0.0001. If all the first derivatives are close to zero,

the parameter values will be close to the MLE.

Figure 5.1: Effects of different λ (controlling the size of steps) used in the
Newton-Raphson method.
Panel (a) shows the stepwise moves when λ = 0.01, (b) is when λ = 0.1 and (c)
is when λ = 0.9. Panel (d) shows the hazard distribution when we simulate 500
points from multivariate normal distribution centred at the MLE parameter values
and covariance matrix from the observed information based on the MLE parameter
values. In the background image plots in all the panels yellow corresponds to a
high magnitude of the likelihood, and red low. The grey dots represent the stepwise
movement of the particles, with increasing intensity of darkness, whereas the light
blue cross shows the position of the MLE.

In figure 5.1, we explored the values of λ that control the size of the stepwise

movement of the parameter values. Because of the small value of 0.01 used in panel

(a), the steps are so small that it required 1 373 steps to reach the MLE. The moves

of the dots were so close that they overlapped. This is inefficient as computer time

will be wasted to compute the score statistics S(h) and observed information J(h)

at every step when there is not much change in every subsequent iterations.

In panel (b), λ = 0.1 only required 132 reasonable steps to reach MLE. Although

λ is increased tenfold, it is clear that the path is effectively the same as that in panel

(a). Panel (c) shows that if λ is larger, λ = 0.9, it only required 9 steps to reach
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MLE. But the big steps had a high chance of moving immediately out of the region

of high likelihood. Propitiously, in the subsequent steps, the algorithm is still able

to bring the point back to the MLE parameter values as long as the routine has not

stop. However, we experienced problems in the high dimensional case as the routine

did not recover from overly big steps.

In panel (d), we tried to validate the complicated calculation of the second deriva-

tive of the log likelihood function. The inverse of the observed information matrix

will represent the covariance matrix. The black dots represent h̃ which are simulated

from the multivariate normal distribution, centred at MLE ĥ and covariance matrix

Σ calculated based on ĥ,

h̃ ∼ MVN
(
ĥ,Σ

)
, (5.42)

where Σ = J(ĥ)−1 and L = log l(n,x,p)

Σ =

−
 d2L

dh2
0

d
dh0

(
dL
dh1

)
d
dh1

(
dL
dh0

)
d2L
dh2

1



−1

. (5.43)

Since the simulated h̃ are located around the region of high likelihood, the in-

formation matrix calculation using the expressions that we have derived is correct.

This empirical demonstration is important for confirming the accuracy of the in-

formation matrix, an important factor in determining the optimal design, and the

implementation of the computer algorithm.

5.4.4 MLE search using Cross Entropy

Unlike the deterministic approach in Newton-Raphson method, which exploits the

gradient of the (log) likelihood to determine good subsequent parameter values to

search, Cross Entropy is a stochastic, and hence more volatile, method of optimising

functions. Implementing Cross Entropy is straightforward even in high dimensional

problems. The steps are adopted from De Boer et al. (2005) and applied to the same

two dimensional problem where the number of samples of age i is ni = 250 where

i = 0, 1, and the true hazard rate is set at 0.1 and 0.05 respectively.

1. Since the MLE should be close to the true hazard rate, we let the initial hazard

rate be h0
0 = 0.1 and h0

1 = 0.05 (for this simulation, these are the true param-
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eters). The log likelihood for this initial set of hazard rates is calculated and

stored as l0.

2. Simulate npart particles containing h∗, the hazard rates, from independent

normal distribution, centred at the current set of hazard rate h0 =
(
h0

0, h
0
1
)

and variance σ2 = 0.012,

h∗i ∼ N
(
h0
i , σ

2
)
∀i = 0, 1. (5.44)

3. For each particle, calculate the log likelihood based on h∗. Amongst all these

points, the mean hazard rates of the top ntop particles with the highest log

likelihood will be calculated and stored as h1.

4. If the maximum log likelihood, l∗, of all these npart sets of particles is larger

than the current log likelihood l0, we will update the log likelihood for the next

stage l1 = l∗ and also update the current best hazard rate ȟ1 with the values

of the particle that corresponds to the maximum log likelihood. Otherwise,

l1 = l0 and ȟ1 = h0.

5. The Cross Entropy procedure is terminated if the consecutive hazard values

differ by less than ε,

∣∣∣h1
i − h0

i

∣∣∣ :


< ε∀i Stop

≥ ε∀i Continue.

6. Repeat step 2 to 5 until the routine stops. The estimated MLE will be the

particle with the maximum log likelihood, ȟ.

In round j of particles simulations, the normal distribution is centred at hj , the mean

of the top ntop particles with the highest log likelihood, and not the current best

hazard rate ȟj . Because the best hazard rate ȟj will only be updated if the maximum

log likelihood of the current round is more than the maximum log likelihood of all the

previous rounds, ȟj may stay the same for several rounds, resulting in inefficiency in

exploring the whole parameter space.
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Figure 5.2: Effects of different argument values in the Cross Entropy
method.
Image plots are as in figure 5.1, but the grey dots represents the stepwise move-
ment of the mean of the top ntop particles, hj . Panel (a) is the result of(
σ = 0.01, npart = 500, ntop = 10, ε = 0.0001

)
, (b) is the result of changing ε in (a)

to 0.01, (c) is the result of changing σ in (a) to 0.1, (d) is the result of changing ntop
in (c) to 25, (e) is the result of changing npart in (a) to 100 and (f) is the result of
changing ntop in (a) to 25.

The arguments
(
σ, npart, ntop, ε

)
will also affect the efficiency of the procedure

in finding the MLE. In panel (a) of figure 5.2, we tried more particles, npart = 500,

while keeping the other arguments small σ = 0.01, ntop = 10, ε = 0.0001. This trial

required 21 rounds of simulations. This is computer-time-consuming because the log

likelihood will be calculated 500 times but only the top ten particles’ information

will be used. From the plot, the points around the MLE are very dark, symbolizing

hj was at the similar location for many rounds. Because the top ten particles are

used, the variability between the means hj at each round will be large, resulting in

difficulty for the stopping condition
∣∣∣hj − hj−1

∣∣∣ < ε to be fulfilled.
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Then, we increased ε to 0.01 so that the routine can stop once it is close to the

actual MLE. Results presented in panel (b) only required six rounds of simulations to

attain the MLE. But the size of ε affects the precision of MLE. To achieve accurate

MLE, it is still advisable to keep ε small.

In panel (c), we raised σ to 0.1 for the proposed values to be more dispersed.

The routine is able to reach the region of high likelihood immediately. Because

ntop = 10, the inconsistency in consecutive mean values resulted in 1992 simulation

rounds before termination.

Panel (d) demonstrated the improvement in performance when ntop is increased

to 25, while keeping the standard deviation σ = 0.1. As expected, the routine required

many (308) more simulation rounds near the MLE than that in panel (c) to stop.

Therefore, a larger ntop will draw more information from the simulated particles and

be more efficient in getting to the MLE.

In panel (e), we reduced the number of simulations, npart, to 100, while the

other arguments stayed the same as that in panel (a). This reduced the number

of log likelihood calculation at every round. Because fewer particles were simulated

at every round, the chances of them having a high likelihood are reduced. This is

justified by the smaller initial steps in panel (e) as compared to those in the earlier

trials. Considering the small and cautious steps taken, this set of arguments required

221 steps before coming to a stop. It can be observed that the routine got near to

the MLE within 5 steps but could not terminate because the condition was not met

easily. This problem is likely to escalate when the dimension of the parameter space

increases. So, we stay with the initial choice of npart = 500.

In the last panel, we increased ntop from panel (a) to 25 to leverage on the

information provided by the 500 particles at each round. When comparing panels

(e) and (f), steps became larger due to the amount of information extracted from

the proposed particles. Although it is faster, it still required 20 steps before the

routine stopped. This performance in panel (f) is similar to that in panel (a), but,

the steps in (f) appeared more regular. Thus, the argument in (f) was preferred since

we wanted the search to have regular steps and terminate without wasting too many

computation rounds, as well as not losing precision of the MLE result.

The details of the six trials may differ slightly due to the randomness in Cross En-
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tropy algorithm, but we expect the qualitative interpretations of different arguments

should still be valid.

The Cross Entropy method only works for uni-modal surfaces. If the log likelihood

is multi-modal, the routine might stop at one of the local maxima which need not

be the global maximum. Conservatively, then, Cross Entropy should be initialised at

several starting points to verify that the same or similar ȟ results.

5.4.5 MLE search using Monte Carlo Method

In Bayesian inference, Monte Carlo is a methodology which samples from the

posterior distribution as discussed in Chapter 2. We can reduce the size of the

parameter space if we simulate from the posterior distribution, rather than simulating

over its whole support, in most of which the MLE is unlikely to be (for instance the

same hazard example, if we only know 0 < hi < 1, we might sample uniformly over

0 and 1 even if the posterior is focused around 0.1). Although this is not equivalent

to finding the MLE, if the posterior sample is large, the MLE can be estimated by

the draw from the posterior with maximum (log) likelihood.

MCMC is a typical variant of Monte Carlo, but it is implausible to do MCMC on

every simulated dataset to get the posterior sample, as for every dataset, there will be

a different posterior distribution for the parameters, and the MCMC routine may need

tuning to each. However, we could sample from a pseudo-‘posterior’, an appropriately

selected Beta distribution (with support over [0,1]) where the shape parameters are

formulated to focus on plausible hazard functions based on the simulated data.

Using the same two dimensional problem, where the number of samples of age i

is ni = 250 for i = 0, 1, the true hazard rate is set at 0.1 and 0.05 respectively. We

assume a pseudo posterior distribution for the hazard rate for age i to be

hi ∼ Beta (αi, βi) , (5.45)

where the shape parameters will relate its mean at the estimated hazard rate

αi
αi + βi

= ĥi. (5.46)

Recall that hazard rate can be related to the probability of being identified as in-

fected pi = gi−1hi + pi−1 where gi =
i−1∏
j=0

(1− hj). The estimated hazard rate can be
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computed iteratively by

ĥi = p̂i − p̂i−1
ĝi−1

, (5.47)

where pi can be estimated by the ratio of the number of positive samples to the total

number of samples, xi
ni
. Using the data of (xi, ni), the relation can be formulated for

αi

αi =



xo i = 0

n0x1
n1
− x0 i = 1(∏i−1

j=0 nj
)
xi
ni
−
(∏i−2

j=0 nj
)
xi−1 i > 1

(5.48)

and βi

βi =


n0 − x0 i = 0
∏i−1
j=0 (nj − xj)− αi i > 0.

(5.49)

Certain combinations of ni and xi may result in non-positive αi and βi, violating

the condition of the shape parameters of a beta distribution. If this happens, we

apply αi = βi = 1 for the beta distribution to transform into a uniform distribution.

This implies that if an informative posterior distribution does not exist, a vague

distribution is used as a replacement.

We can simulate a large number of hazard rate particles from the pseudo poste-

rior distributions and calculate the log likelihood value based on the corresponding

dataset. The MLE could be identified as the particle with the largest log likelihood.
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Figure 5.3: Demonstration of how different proposal distributions affect the
MLE search by Monte Carlo method.
The image plot is as in figure 5.1. The simulated points are represented by the grey
points. In panel (a), we sample 250 particles from the beta distribution, described
in equations 5.48 and 5.49, where most particles are located at the region of high
likelihood. In panel (b), we sample 25 particles from the same beta distribution,
there were fewer points in the yellow region. To illustrate for other distributions in
panel (c) and (d), we increase the range of the plot. In panel (c), we do a larger
sample of 1000 particles from uninformative uniform distribution ranging from 0 to
1. In panel (d), we do the same large sample of 1 000 particles from a wrongly focused
distribution: N

(
0.5, 0.152).

In figure 5.3, we demonstrate the importance of proposing particles from a distri-

bution that is akin to the likelihood. In the first panel (a), we only need 250 particles

to obtain an estimated MLE that is consistent with the numerically calculated one.

Comparing with panel (b) with 25 particles, having more particles will increase the

chance of getting an accurate MLE. If more particles are preferred, computation for

likelihood should be vectorised to reduce processing time.

The distribution in panel (c) can explore the whole parameter space but the

chances of the simulated particles getting high likelihood are low. This will result in

a poor MLE despite using 1 000 particles. The problem is analogous to that in panel

(d) where the informative proposal distribution is targeted at the wrong part of the

parameter space. For the same number of particles, the possibility of capturing a

point with high likelihood is even lower.

In conclusion, with the consideration of computational time, we will search for
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MLE using this Monte Carlo method. For higher dimensional problems, like in the

original problem, we will need to increase the number of particles to be simulated to

prevent a problem analogous to that faced in panel (b).

5.4.6 Design search using Grid Search

An experiment with three age groups and total sample size of n = 500 has
500(500+1)

2 = 125 250 possible decisions. It will be very computational expensive to

compute expected utilities for all decisions and we can expect the number of decisions

to magnify with more age groups.

Atkinson et al. (2007) suggested searching the decision space by adding and sub-

tracting 1 to the sample sizes of two randomly chosen age groups, but this mechanism

took a long time to explore the decision space when tried on a simplistic three age

group example. Instead, we use an iterative grid search, where initially a coarse grid

is formed and the expected utility assessed on each point, and then the design space

is restricted to high utility parts of the grid with increasingly fine grids overlaid.

Assuming the expected utility is uni-modal and smooth over the entire decision

space, we form a grid of sample sizes for the first two age groups. The third age

group will depend on the first two groups to satisfy the total sample size condition.

1. Setting the gap between each decision points to be 50 for the initial grid, the

expected utilities of the decisions lying on the grid will be calculated.

2. With the expected utilities of the decisions on the grid, the decision with the

highest expected utility is identified.

3. The next grid is re-centred at that decision with neighbouring points as limits

and with the gap between new decision points reduced by 2
3 . This allows us to

sequentially focus at the point where we believe the maximum expected utility

will be.

4. Repeat step 2 and 3 until the gap is 1.
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This is only feasible if the number of age group is small. For increased number of

age groups, there will be too many decision points on the grid even if the gap is big.

An optimal design might be missed in large grid gap when the mode is not close

enough to the preselected decision points. It is also risky to use this method due to

the assumption of uni-modal expected utility.

5.4.7 Design search using Cross Entropy

We use the Cross Entropy idea brought up in section 5.4.4 on the design search

in 12 age groups, where the ith age group will have ni samples.

1. To simulate npart equally likely design points, a Dirichlet distribution is consid-

ered. The k dimensional Dirichlet distribution is multivariate and has support

over the unit simplex, i.e. [0, 1]k while ensuring that the simulated entries sum

to 1. If the Dirichlet’s concentration parameters, α, are the same, the mean for

each dimension is 1
k , with the magnitude of the α determining the spread. We

multiply the total sample size, n = 500, to the simulated values from Dirichlet

distribution. After rounding each entry to the nearest whole number, we alter

the last entry such that they total to n = 500.

2. After calculating the expected utility for each design, we identify the point with

the maximum expected utility, u1, as ň1. The mean of the top ntop designs

with the largest expected utility is stored as the current best design n1.

3. We simulate the npart new particles, n∗, from the algorithm in step 1 using

Dirichlet distribution centred at the current best design n1,

n∗

n
∼ Dir(α), (5.50)

where α is the concentration parameters which relates the centre location of

the distribution to the current best design by

α = θ × n1, (5.51)

and θ controls the dispersion of particles from n1. The bigger the value of θ,

the more concentrated the simulated n∗ will be from n1.
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4. We calculate the expected utility for all new designs. If the maximum expected

utility of these designs is larger than the current maximum expected utility u1,

it will be updated as u2 and its corresponding design as ň2, otherwise, u2 = u1

and ň2 = ň1. The current best design, n2, is updated with the mean of the

top ntop designs.

5. The routine stops if the absolute distances between subsequent best design

points for all age groups are less than ε,

∣∣∣n2
i − n1

i

∣∣∣ :


< ε∀i Stop

≥ ε∀i Continue.

6. Repeat step 3 to 5 until the routine stops. The optimal design experiment is

the design with the maximum expected utility, ň.

Unfortunately this methodology arrived at completely different design points for three

different seeds and was therefore not considered further.

5.4.8 Changes to Optimization Criterion

Currently, the optimization criterion is to maximise the estimated expected utility,

which is the determinant of the information matrix under the decision of D and

the MLE ĥ. However, utilities calculated based on the MLE of the hazard rate

demonstrated a high volatility due to the dimensionality of the parameter vector h.

In the optimal design search, the ‘best’ design is the one which corresponds to the

maximum expected utility. If the expected utility is unstable, the optimal design

will be difficult to estimate accurately. We therefore sought a less unstable objective

function.

In changing the optimization criterion, we aim to reduce the irregularity in the

estimation of the expected utility for each decision, D. Instead of depending on the

larger number of parameters in h, we fit a parametric survival regression model to the

simulated data, characterised by only two parameters. This can readily be effected

using built-in functions in R using the survival package (Therneau, 2013). This

reduction in the number of parameters will alleviate the problem of volatility in the

utility calculation.
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Fitting survival regression models in R requires creating a ‘survival object’ which

indicates the type of censoring for each individual, the start and end of event time.

If an individual is seropositive at age i, infection has happened between birth and

age i when the serum was collected. We categorise this event as left-censored. The

likelihood for such individuals will be accounted by the density of the lower tail,

P (T ≤ i). Otherwise, it is right-censored if the individual is seronegative at age i,

as infection has not taken place. In such cases, the upper tail, P (T > t), will be

required since the event might take place after the specimen was collected.

In the survival regression model, we do not regress on any covariates and the

survival times are assumed to follow a Weibull distribution, whose support is over the

non-negative range, and whose distribution is characterised by the shape parameter,

κ, and scale parameter, λ, both positive. These parameter estimates can be derived

from the scale estimate in survival regression model, b, and intercept, a,

b = 1
κ

(5.52)

a = log λ. (5.53)

The Weibull distribution parameters are less uncertain if the chosen design experi-

ment can provide much information. If the parameters are dispersed, the determinant

of the variance-covariance matrix will be large, symbolising a large parameter area.

Thus, we change the optimization criterion to be based on a utility that is the recip-

rocal of the absolute determinant of the variance-covariance matrix. Maximising the

utility value will correspond to the best design point that leads to the least dispersed

Weibull distribution parameters.

The problem of randomness in the survival regression model could be reduced

by using the same idea of propensity and prevalence to simulate the data. In this

survival regression model, the Weibull distribution parameters and the corresponding

variance-covariance matrix will be estimated deterministically and classically for each

set of simulated data.

5.4.9 Design search using Monte Carlo Method

Since both the grid search and Cross Entropy were not feasible or reliable from

one run to the next in our high dimensional (and possibly multi-modal space), we

used the Monte Carlo method to search the whole design space for the best design.
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This algorithm took ca. 20 days to explore ca. 40 000 design points on a standard

desktop computer with four processors, and yielded in three independent runs ‘opti-

mal’ designs that were rather consistent with each other. Note that to allocate 500

individuals into 12 groups, we need to choose 11 partitions. These partitions are

considered as individuals to be added to the total 500 individuals. Hence, it was not

feasible to explore all
(500+11

11
)

= 1.4× 1022 designs.

The algorithm is as follows:

1. A large number of design points are simulated for exploration. The same de-

scription can be found in section 5.4.7 step 1.

2. For each design, compare a set of propensity φ and the prevalence p for all the

n individuals. If φl < pl, the lth individual is seropositive. Set up the survival

object for these simulated data by creating appropriate censoring and event

times according to the test results.

3. Run the survival regression model for the survival times and compute the re-

ciprocal of the absolute determinant of the variance-covariance matrix as the

utility for this simulated data.

4. Repeat step 2 and 3 for every set of propensity and prevalence and represent

the expected utility of this design point with the average of the utilities.

5. Repeat step 2 to 4 for each design points simulated in step 1. The design

point with the maximum expected utility is the optimal design based on this

criterion.

This time-consuming approach could be improved by running the routine in parallel

on a server.

5.5 Result and Discussion

The optimal design experiment is an interesting mixture of methods Bayesian
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and Classical. In the first step, we use hierarchical modelling to synthesize data

from historical studies; in the second step, we used Bayesian decision making with a

Frequentist objective function to seek for the optimal design.

Results from the hierarchical model are presented in figure 5.4. Within country

estimates are provided in the first 8 panels, with the hierarchical model fits in blue

and empirical confidence intervals (based on the usual p̂ ± 1.96
√

p̂(1−p̂)
n formula) in

red. The goodness of fit can be readily observed. The hierarchical model also allows

the posterior distribution of the true prevalence for a subsequent study, such as the

one being designed, in a similar country using the hyper-parameters. This may be

found in the green panel in figure 5.4. Note that although we are concerned about the

hazard rate from age 1 to 12, i.e. the pre- and primary school years, not all datasets

in our literature review have the necessary length. Hierarchical modelling has been

shown to draw information from available data to provide information for gaps such

as this, or other potential datasets, based on the assumption that the populations

are similar (i.e. exchangeable) across these countries and that seropositivity has not

changed much across the time period 1994–2011.
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Figure 5.4: Seropositivity of the eight datasets, as well as the projection
using the hyper posterior from the hierarchical model.
The light blue shades are the projection of the seropositivity using the posterior
samples of the hazard rates hi for age 0 < i < 12 where the median of the pro-
jection is symbolised by the blue lines. The thick red lines represent the empirical
mean seropositivity calculated from the dataset and the thinner red lines represent
the confidence interval. The last plot of green shades shows the seropositivity for
any randomly chosen country, simulated from the hyper-posterior sample, where the
median is also illustrated by the green line.

The simulated seropositivity is narrow for age below 2 because of the abundance

of information below age 2. If less information is collected for certain ages, the

prediction will be vague. There were only three datasets with information up to age

12. Almost 90% of the older children from China Lu’an in 2010 were projected to

be seropositive by age 12, in contrast to the estimates in the same location at 2006–

2007 and Singapore in 1997 which were about 80% and 60% respectively. Due to

this variability, the prediction from the hierarchical model using the hyper posterior

samples is less precise, as shown by the wide green prediction for older children in

the last panel.
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Figure 5.5: Optimal sample sizes for each age.
The black dots represent the optimal designs from each of the three runs and the
grey bars represent the mean from the three optimal designs. Panel (a) and (b) are
the results when maximum sample size is set at 500 and 1000 respectively. Panel (c)
are the sample sizes used in Singapore from 2008 to 2010.

Both sample sizes considered (500 and 1 000) are consistent and have a ‘U’ shaped

optimal design with approximately the same proportions in each age group. In the

2008–2010 study by Ang et al (2011), the design had a minimum of 340 sample size

for each age group (1–6, 7–12, and 13–17 years), where we dropped the information

above age 12 for proper comparison with our optimal design. Fortuitously, the Ang

et al. (2011) study had a large number of samples at age 2 (close to the spike age

3 in the optimal design) and again around 10–12 (close to the second spike in the

optimal design), and as a result, we expect the dataset from Singapore in 2008-2010

to be very informative.
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Figure 5.6: Comparison of the performance of 3 different experimental
designs.
The result of sample sizes used by Singapore in 2008–2010 is presented in panel (a)
and (b); one of our optimal designs scaled up to the same total as that in Singapore
(729 sera samples) in panel (c) and (d), and equal sample size for all ages in panel (e)
and (f). Assuming the underlying prevalence is coming from our hierarchical model,
the first row shows the plot of prevalence against age. The grey shades represent
the prediction interval of the prevalence for each age. The red line is the underlying
prevalence that is simulated from our hierarchical model. The blue lines are the result
of the survival regression where the solid lines are computed from the parameters
estimated from the model and the dotted blue lines are the 95% confidence interval of
the computed prevalence using the Weibull parameters simulated from multivariate
normal distribution with mean and variance-covariance from the estimates in the
regression model. The second row is showing heat map of the Weibull parameters κ
and λ. Yellow represents the point where likelihood is the highest and red when it is
the lowest.

The grey shades in figure 5.6, panel (a), (c) and (e), are the 95% prediction interval

of prevalence computed by dividing the simulated number of infected based on the

underlying prevalence and the chosen sample sizes using a binomial distribution, by

the sample sizes.

As expected, the grey shades for the sample size used by Singapore in 2008–2010

show a nice fit in panel (a). The wider grey shades for optimal design in panel (b) is

due to the poorer prevalence estimation for older children. Due to an equal sample

size for all ages used in panel (e), the size of the prediction intervals were consistent

across ages.

The dotted blue lines in figure 5.6 are prevalence estimates computed using the
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result of survival regression. They are narrowest for our optimal design in panel (c),

followed by Singapore’s design in panel (a) and the widest in equal sample size in

panel (e).

The heat map in figure 5.6 is based on the likelihood that is computed from the

densities of all the survival times from the samples based on a Weibull distribution.

Panel (d) with the optimal design has the narrowest spread of the Weibull param-

eters, followed by panel (b) from Singapore 2008–2010 samples and the least precise

parameter estimates from panel (f) of equal sample size.
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Figure 5.7: Comparison of the performance of 3 different experimental
designs using a different underlying prevalence.
This is done by assuming the underlying prevalence comes from the Singapore 2008–
2010 dataset. The features in this figure is the same as that in figure 5.6.

Although the grey shades are still wider for our optimal design in panel (c) as

compared to the design used by Singapore in 2008–2010 in panel (a) and the equal

sample size design used in panel (e), the Weibull parameters estimates for the survival

time is still the sharpest for our optimal design as seen in panel (d). Our optimal

design is still the one that provides the best information about the parameters that

can inform about the survival time.

The ability of having the focused Weibull parameter estimates supports the cri-

terion that was used to achieve this optimal design. Recall that our optimal designs

were identified as the design with the maximum expected utility, where utility is
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the reciprocal of the absolute determinant of the variance-covariance matrix of the

Weibull parameter estimates derived from the survival regression model.

5.6 Conclusion

In this example, different seropositivity estimates in different Asian populations will

lead to a wide seropositivity projection for any future seroepidemological studies.

Because the optimal design is solely based on the efficiency in the seropositivity

projection, the performance of the optimal design may deteriorate if the past stud-

ies cannot properly represent the population that the optimal design experiment is

constructed for. To boost the performance of our optimal design might require more

datasets with information on older children from more directly comparable studies be

fitted in the hierarchical model. This will narrow the seropositivity estimates for the

prevalence in the country being investigated which will lead to a more appropriately

tailored design.

One discovery, not anticipated when we started this chapter, was the importance

of the specific choice of optimality criterion. Clearly, optimal designs under different

criteria will differ. We anticipated that the results using an objective function based

on a parametric survival analysis would provide good estimates even under a more

complex non-parametric model, but while our optimal designs did minimise the width

of confidence/credible intervals for the survival function conditional on a Weibull

model, the prevalence estimates using the non-parametric approach were sometimes

broader under the optimal design than under an equal sampling approach. Thus,

it is important to understand the motivation for the new serology experiment and

choose the appropriate optimal criterion accordingly.
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Chapter 6

Conclusion and Future Work

6.1 Summary

We have demonstrated that hierarchical models can boost the accuracy of parameters

estimates and prediction in the area of infectious diseases. We applied the method

to clinical data from patients with Dengue and Chikungunya, epidemiological data

from multiple countries on pandemic influenza A H1N1 and seroepidemiological data

on EV71 to design optimal future studies. Hierarchical models were fitted to the

available data flexibly and the algorithms have been illustrated in this thesis.

In chapter 3, we encountered the separation problem in data from patients with

Dengue or Chikungunya when first presented at Tan Tock Seng Hospital, Singapore’s

main referral centre for infectious diseases. In a previous publication, we resolved this

problem using Firth’s penalised likelihood logistic regression method (Firth, 1993).

Without using some form of penalty, whether classical or Bayesian (via an informa-

tive or semi-informative prior), the significantly predictive variable of Platelet counts

would have been excluded before the regression model was developed as being not

statistically significantly different from 0. A hierarchical model was established for

characterizing the time course of laboratory and clinical measurements of Dengue and

Chikungunya patients. The precise analysis of the trend of disease course can facili-

tate the diagnosis and treatment of the patients of these two diseases with otherwise

similar symptoms.

Subsequently, a hierarchical compartmental model was developed for data from

the 2009 H1N1 pandemic for a basket of countries that would have allowed early and

accurate severity estimates. Several factors of this worldwide pandemic outbreak
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were encompassed in the model formation. Different forms of data type collected

by independent research groups or government agencies in different territories were

used to synthesize evidence for the unobservable components in the SIR model. This

involved extending the methodology used when the MCMC algorithm would not lead

to convergence. The technique of importance sampling solved this problem, providing

necessary parameter information for updating the severity estimates of the pandemic

in real time.

In chapter 5, we explored how hierarchical models can be used to improve the ac-

curacy of the posterior estimates for hazard rates of EV71, using previously collected

serological data from several Asian countries. The search for an optimal experiment

design for any Asian country was done based on the hierarchical model, assuming

exchangeability between past and future epidemic conditions. The idea is to sample

from the appropriate population group to get the most desirable age effect estimates

in a serological study, rather than using convenience sampling which may be wasting

resources by over-sampling age groups that are no longer at risk of infection.

6.2 Future Work

Here we discuss possible extensions of our work.

In the hierarchical modelling for trends in observation for Dengue and Chikun-

gunya patients, future work can involve integration of the hierarchical model with

real time data. Importance sampling can be done by using the current weighted sam-

ples as a hyperprior distribution and new weights can be calculated based on new

and incoming patients’ data. This allows the project to be ongoing and the weighted

samples can be constantly refined. However, we should manually exclude patients

with abnormal observations. These type of observations might give higher weights

to inappropriate parameter values, leading to distortion of the parameters samples.

Hierarchical models could be integrated with risk calculators which can be de-

veloped to predict risk of complications in dengue (risk of developing Dengue Hem-

orrhagic Fever, and risk of requiring to the Intensive Care Unit or of death). This

could be done if data collection could be improved by being more organised. Pa-

tients’ observations were recorded daily but at irregular times. The model could be

more precise by replacing the discrete time model with a continuous time model to
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leverage on the information of the measurement times.

As mentioned in chapter 4, the data collection from each country was based on

different criteria. If a surveillance network can be set up for each country to submit

the data counts based on a standardised criteria conveniently, real-time analysis can

be done and data can be fitted better to the SIR trajectory. For analysis in real-time,

a different approach should be done to replace the sequential importance sampling

which will take a long computational time.

The earlier importance sampling routine was inefficient and not able to analyse

the pandemic in real-time. Ong et al. (2010) have demonstrated in the context of

Singapore how real-time analysis can be done by sequential importance sampling for

a stochastic model. Parameters’ particles could be simulated independently for each

country and weight could be calculated daily based on the likelihood and proposal

density, presuming that data from every country was entered into the system daily.

For the period with no data input, there will be no addition to the weights. The

cumulated weights can be representative for each particle and the credible interval

for each parameter at each day can be achieved by resampling the particles based

on the cumulative weights. Since each country can be analysed in parallel at this

stage, computation time could be reduced. For each country, the same number of

set of particles is resampled and a set of hyper-parameters are simulated to pair up

with the particles from all countries. Weights could be calculated daily based on the

hierarchical model and the sets of parameters and hyper-parameters can be resampled

based on this weight. The result of this can be used for trajectory projection and

severity estimation and we anticipate that this development into a two stage process

will greatly reduce the computation time and the ability to provide daily credible

interval and estimations will be more beneficial than having a monthly prediction in

a real pandemic outbreak.

If such a network were established, age specific estimates of attack rates and

severity indices could be established if the age of patients were also collected auto-

matically. This would require extension to an age structured model in which case

estimates of mixing between different age groups would be useful (Mossong et al.,

2008). At the moment, these are lacking in most countries especially low to middle

income ones.
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In the last analysis for EV71, the countries that we have chosen to fit the hierar-

chical model have relatively different prevalence for older children. This resulted in a

wide prediction interval for prevalence in any future serological study. This might be

addressed by introducing additional structure in the hierarchical model where cities

have random errors about their country’s mean, while all countries still remain to

be modelled by the hierarchical model. Alternatively, hazard rates can be regressed

based on each country’s risk factors before being combined with the hierarchical

model. The risk factors which account for the difference in the prevalence for older

kids can be explored/identified based on the school attendance (i.e. age of attending

pre-school). This would allow better designs in a country with the risk factors being

accounted for.

Other than the above applications of hierarchical model to the context of in-

fectious diseases, other works could involve assessing the differences in outbreaks

of Hand, Foot, and Mouth Disease in preschools across Singapore or other small,

closed populations like army camps. Each of these small, closed populations could

be governed by parameters which would be modelled hierarchically. Dengue cluster

outbreak with more than 2 cases within 2 weeks of onset and 150m radius (usually

from patients’ homes) might also be modelled hierarchically if the data, collected

by the Singapore Government, could be made available for research purposes. The

analysis of dengue infection forms the basis for vector control operations in different

regions of Singapore, allowing prioritisation of mosquito control, especially during

a large outbreak like that in 2013. By more sophisticated application of statistical

methodologies, the impact of diseases such as dengue, influenza and hand, foot and

mouth disease could be mitigated.
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