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Summary  

Hematopoietic stem cells (HSCs) were first identified more than 50 years ago, 

but complex mechanisms involved in hematopoiesis have yet to be fully 

unraveled. My project aims to further understand early hematopoietic 

development in the mouse embryo, by studying the earliest sites of 

hematopoiesis: the yolk sac (YS) and para-aortic splanchnopleura (P-Sp), 

which develops to form the aorta-gonad-mesonephros (AGM), from which the 

first adult mouse- repopulating HSCs arise; as well as differentiated 

embryonic stem cells (ESCs) that recapitulate YS and P-Sp hematopoiesis. 

YS and P-Sp hematopoietic systems have different lineage potentials, yet 

have both shared and differentially-expressed genes. Based on the 

hypothesis that differentially-expressed genes are involved in determining 

hematopoietic fate, we compared the transcriptomes of hematopoietic 

populations via microarray, to identify these differentially expressed genes for 

further hematopoietic characterization. 

 

Transcriptome comparison of embryo-derived YS and P-Sp hemangioblast-

derived colonies revealed that despite their difference in hematopoietic 

potentials, both colony types do not have vastly different transcriptomes. 

Bex6 and several members of the placenta-related prolactin family were 

selected for further study, based on their differential gene expression in the 2 

colony types. Functional characterization of several differentially- expressed 

prolactin family members revealed their involvement in Wnt/Notch regulation 

of early erythropoiesis. Prolactins were not expressed in hematopoietic-

supporting E9.5 YS stromal cells, but instead in the FSClowSSClow population, 

which marks probable erythrocytes; suggesting that prolactins likely mark a 

more mature cell type rather than progenitor or hematopoiesis-supportive 
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stromal cells. Meanwhile, increase in Bex6 expression mirrored that of 

definitive hematopoietic marker CD45 in differentiated embryoid bodies 

(EBs), and Bex6 also marked intermediate and mature hematopoietic 

progenitors in fetal liver. We hypothesized that Bex6 was involved in 

regulating proliferation during definitive hematopoiesis, but siRNA knockdown 

of Bex6 in day 6 EBs generated no significant change in hematopoietic 

potential. A potential reason could be functional redundancy from homologue 

Bex4, which has 67% sequence similarity. 

 

Transcriptome analysis of the E8.5 primitive streak as it acquires 

hematopoietic potential identified Pcgf5, which belongs to the Polycomb 

group ring finger (Pcgf) family, which in turn is part of the Polycomb 

Repressive Complex 1 (PRC1) involved in epigenetic silencing. Knockdown 

of Pcgf5 resulted in a decrease in hematopoietic potential of day 4 EBs, and 

also revealed its involvement in PRC1 regulation of neural genes in the 

hemangioblast. Using an ESC differentiation system that recapitulates both 

YS and P-Sp hematopoiesis, we identify that Pcgf5 and its partner Cbx8 are 

preferentially expressed in the two derived Flk1+ cell populations that 

correspond to YS and P-Sp hematopoiesis. Chromatin immunoprecipitation 

followed by high-throughput sequencing (ChIP-seq) of PRC1 components 

identified shared targets between RING1B and PCGF5, supporting the 

involvement of a PCGF5-PRC1 variant in hematopoietic development. 

Together with BMI1-PRC1 and MEL18-PRC1, our results show that these 3 

PRC1 variants act simultaneously in the same environment, and have both 

shared and distinct targets. We also identify that BMI1-PRC1 is involved in 

epigenetic silencing of 5' Hox genes, which are associated with differentiated 

hematopoietic cells, in the d5.5 Flk1+ population. Finally, genomic annotation 
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of ChIP-seq peaks suggests that DNA looping is involved in recruitment of 

PRC1 to the target promoter, a novel discovery in mammals previously found 

only in D. melanogaster; and we identify two novel de novo motifs shared 

between PRC1 components that may serve as the mechanism for PRC1 

recruitment during early hematopoietic development.  

 

This work reveals that the different lineage potentials between YS and P-Sp 

hematopoiesis is controlled by only a small number of genes, and identifies 

PRC1 variants that regulate distinct targets during early hematopoietic 

development.  
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INTRODUCTION 
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1.1 Hematopoietic stem cells and their derived lineages 

 

Hematopoiesis begins early in embryogenesis, and is absolutely essential for 

normal development. Hematopoietic lineages are also responsible for 

inducing and maintaining the immune response against infections and 

injuries. Hence, hematopoiesis is a cornerstone of animal development and 

health, and defects in this system can lead to various debilitating or fatal 

disorders.  

 

The hematopoietic stem cell (HSC), which is identified by its ability to self-

renew and give rise to all blood cell types, stands at the top of the 

hematopoietic hierarchy. First discovered in bone marrow (BM) by Till & 

McCulloch1, HSCs are extremely rare, constituting only about 1 in 10,000 to 1 

in 100,000 cells in bone marrow2-4. Cell-surface markers include CD34lo/-

Sca1+ Thy1+ CD38+ Ckit+ Lin- 5,6 and CD34+CD59+Thy1+CD38lo/-Ckit+Lin- 7 to 

identify mouse and human HSCs respectively, but the gold standard for HSC 

identification remains the hematopoietic reconstitution of lethally irradiated 

mice. This method reveals the existence of two types of HSCs: long-term (LT-

HSCs) and short-term HSCs (ST-HSC). LT-HSCs are capable of long-term 

self-renewal, such that secondary transplantation of HSCs into another 

lethally- irradiated mouse also results in hematopoietic reconstitution. 

However, ST-HSCs are unable to sustain self-renewal over time, and may not 

reconstitute all hematopoietic lineages like the HSC. Hence, they are 

considered immature progenitor cells instead of true stem cells.  

 

HSCs give rise to 3 main lineages: erythroid, myeloid and lymphoid. Erythroid 

cells facilitate the movement and transfer of oxygen throughout circulation, 
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and are essential throughout life.  Primitive erythroid cells are named for their 

initial nucleated structures that resemble those observed in non-mammalian 

vertebrate species, while definitive erythropoietic cells are enucleated 

erythroid cells. Embryos lacking erythropoietin (Epo) or stem cell factor 

(SCF/kit-ligand) do not survive due to severe anemia8. Myeloid lineages 

include megakaryocytes, granulocytes, monocytes and mast cells, and are 

recruited to elicit both innate and adaptive immune responses against 

pathogens or other infections. Transcription factors involved in myeloid 

development include PU.1 and CCAAT/enhancer binding proteins, which, 

when knocked out, results in myeloid defects in mice9. Finally, lymphoid 

lineages comprise of natural killer cells (NKCs), B-cells and T-cells. Upon 

recognizing changes in cell-surface major histocompatibility complex (MHC) 

class I signatures, which are cell surface markers that mediate leukocyte 

interactions, NKCs expose infected cells to cytotoxic granules, while T-cells 

produce either cytotoxic granules or cytokines to induce apoptosis in infected 

cells. B-cells act as antigen-presenting cells (APCs) by making antibodies 

against antigens. Interleukin 7 (IL-7) is an essential cytokine for both T- and 

B-cell development. Loss-of-function mutations of IL7 receptor α (IL-7Rα) 

results in autosomal recessive severe combined immune deficiency (SCID), 

while gain-of-function mutations induce cytokine-independent growth of 

lymphoid progenitors in leukemia cell lines10-11. 

 

Cytokines play an important role in modulating the fate of HSCs. Upon 

binding to receptors on these cells, cytokines induce the activation or 

suppression of various cytokine signaling pathways, which are involved in 

cell-fate decisions ranging from self-renewal, quiescence, differentiation, 

apoptosis and mobilization12. Stem cell factor (SCF) binding to tyrosine kinase 
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receptor c-Kit is not essential for HSC generation, but it is involved in 

prevention of apoptosis13, and induction of HSC mobilization14. Self-renewal 

of fetal liver HSCs in vitro is also enhanced upon addition of SCF15. 

Thrombopoietin (TPO) is involved in HSC generation and expansion during 

definitive hematopoeisis16, and mice that lack TPO or its receptor Mpl have 

fewer repopulating HSCs17. Fibroblast growth factor 1 (FGF1) and FGF2 are 

required for supporting serum-free expansion of bone marrow HSC in 

vitro18,19, while FGF1 stimulates ex-vivo HSC expansion20. Insulin-like growth 

factor 2 (IGF2) stimulates ex-vivo expansion of both fetal liver and bone 

marrow HSCs, which express the receptors for IGF2; and the addition of 

IGF2, SCF, TPO and FGF1 enhances the expansion of HSCs in vitro by up to 

8 times21. Notch ligands Delta and Jagged support HSC expansion in culture, 

and Delta 1 does so in a dose-dependent manner- low amounts of Delta 1 

supports human cord blood SCID-repopulating cell numbers, while high 

amounts induced apoptosis instead22. However, conditional knockouts of 

Notch 1 and Jagged 1 do not have any effect on HSCs in vivo, indicating that 

Notch isoforms and their ligands are functionally redundant23. Bone 

morphogenic protein 4 (BMP4), a member of the transforming growth factor 

(TGF)-β superfamily, supports HSC expansion in vitro partly by modulating 

Sonic hedgehog expression24. BMP4/Smad signaling was also found to be 

involved in Scl- and Runx1-mediated HSC development25.  

 

Hence HSCs and their derived lineages play essential roles in development, 

and key cytokines that regulate their generation have been elucidated.  
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1.2 Hematopoietic development in the mouse embryo 

 

Mesodermal populations, including hematopoietic, cardiac, endothelial and 

skeletal muscle tissue, arise from the primitive streak (PS) following 

patterning of the PS by embryonic morphogen gradients. These morphogens 

include BMP4, which is a ventralizing factor required to attenuate dorsalizing 

signals during dorsoventral patterning26-27. BMP4 deficiency results in severe 

mesodermal defects, leading to embryonic lethality28. Wnt signaling is also 

essential for primitive streak development, and deficiency of canonical ligand 

Wnt3, Wnt co-receptors Lrp5/6 or β-catenin result in the lack of primitive 

streak and mesoderm formation29-31. BMP4 first induces ventral-posterior 

mesoderm, and subsequently commits mesoderm towards a hematopoietic 

fate by activating Wnt signaling as well as the Cdx-Hox pathway32.  

 

The first mesodermal cells from the PS migrate to the extra-embryonic region 

to differentiate and form the hematopoietic and endothelial cells of the blood 

islands33. T-box transcription factor Brachyury (Bry) is expressed in all 

nascent mesoderm and downregulated upon differentiation34-35, while fetal 

liver kinase 1 (Flk1), a vascular endothelial growth factor (VEGF) receptor, 

marks Bry+ mesoderm commitment towards hematovascular lineages36-38. 

Lineage-tracing methods revealed the importance of Flk1, by showing that 

Flk1+ mesoderm gives rise to both primitive and definitive hematopoiesis39. 

Knockout of Flk1 causes embryonic lethality by E9.5 due to lack of blood or 

vessels40, while Bry is essential for posterior mesoderm development, and 

Bry-/- mice have posterior truncation and no notochord41. 
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Hematopoietic and endothelial lineages were first observed to develop in 

close temporal and spatial proximity in chick embryo cultures42-43. Both 

lineages were also observed to express a large number of different genes in 

common, including CD34, Flk1, Tie2, Scl/Tal1 and Gata236, 38,44-50, leading to 

the proposal that hematopoietic and endothelial lineages arise from a 

common progenitor called the hemangioblast. Given its 2 lineage potentials, 

the hemangioblast is a critical stage at which key fate decisions are being 

made. The hemangioblast-containing population was found to arise from the 

posterior primitive streak, and can be identified by its co-expression of Bry 

and Flk151.  

 
 
The hematopoietic stem cell undergoes a complex developmental journey 

during early embryogenesis (Fig. 1) 52. The earliest known sites of embryonic 

hematopoiesis in the mouse are the yolk sac (YS) and the para-aortic 

splanchopleura (P-Sp). The YS blood islands, which appear from E7.5, give 

rise to the primitive and definite erythroid lineages as well as a restricted 

myeloid subset, but not HSCs. The P-Sp, which appears from E8.5 and 

develops later into the aorta-gonad-mesonephros (AGM) at E10.5, is an intra-

embryonic site of hematopoiesis38. It has no primitive erythroid potential, but 

instead possesses definitive erythroid, myeloid and lymphoid potentials, via 

HSC generation. The first adult-repopulating HSCs come from the AGM, 

which remains as the major site of hematopoiesis for only about 2 days, until 

E13.5 when the fetal liver becomes established as the major site of 

hematopoietic replication and expansion until birth. More recently, the 

placenta has also been identified as a hematopoietic niche53. Hence, key 

sites of hematopoiesis during early embryonic development have been 

identified.  
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Figure 1. Timeline of hematopoietic development in the mouse embryo 
Based on function, five classes of hematopoietic cells can be identified, and 
are subsequently generated in the mouse embryo, shown here between E7.5 
and E10.5. Primitive hematopoiesis arises from the hemangioblast, while pro-
, meso-, meta- and adult- definitive hematopoiesis is believed to arise from 
the hemogenic endothelium. Yolk sac blood islands are first observed in the 
E7.5 embryo. The P-Sp, which first appears at about E8.5, eventually forms 
the AGM by E10.5, which is the site of the first adult-repopulating HSC. The 
liver begins to be colonized by hematopoietic progenitors from late E9.0, and 
is established as a major hematopoietic organ by E13.5 (not shown). Figure 
adapted from Dzierzak and Speck52.  
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1.2.1 Yolk sac  

 

Consisting of a bilayer of visceral endoderm apposed to mesoderm-derived 

cells, the yolk sac is where hematopoiesis makes its first appearance in the 

form of blood islands at E6.5 of mouse embryonic development45, 54. This 

extra-embryonic structure is essential for normal development, and continues 

to be the primary source of red blood cells in the embryo until the 

establishment of AGM-derived hematopoiesis from E10.5 onwards. 

 

The yolk sac observes several stages of hematopoiesis. During the initial 

wave of primitive erythropoiesis, large nucleated erythroid cells that express 

embryonic hemoglobins (ζ, βH1 and εy) as well as adult (α1, α2, β1 and β2) 

globins during cell maturation arise from the EryP-CFC, which was first 

identified via culture of mouse embryonic yolk sacs in semisolid media55-56. 

These progenitors emerge during early gastrulation in the yolk sac, and 

undergo limited expansion within the yolk sac before eventually waning by 

E9.045. Primitive erythroid cells undergo enucleation and maturation in the 

bloodstream, which overlaps with the later emergence of definitive 

hematopoiesis57. Definitive erythroid progenitors (BFU-E) begin to emerge 

from the yolk sac at the start of somitogenesis (E8.25) 45, 58. Prior to the onset 

of circulation, BFU-Es expand in the yolk sac for 48h, following which they are 

observed in the bloodstream from E9.5 onwards and go on to colonize and 

establish the liver as a major hematopoietic organ from E10.5.  

 

The first myeloid cells in the mouse embryo appear in the E9.5 YS59, although 

macrophage progenitors can be detected at early as E7.045. These 

macrophage progenitors preferentially remain in the yolk sac even after 
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circulation is established; however specific microenvironments within the yolk 

sac have yet to be identified. Knockout of VE-cadherin (VECad) is embryonic 

lethal by E9.5 due to lack of vascular integration and subsequent blood 

circulation, but the yolk sac continues to retain its myeloid potential60-61, 

further supporting the emergence of myeloid lineages from the yolk sac.  

 

Whilst E10 YS cells do not contain adult-repopulating HSCs, Yoder et al 

identified that these cells contain a population that is able to reconstitute 

hematopoiesis in conditioned bulsulfan-treated neonates, which have 

depleted HSC numbers62. Donor-derived cells obtained from the bone marrow 

of primary neonatal recipients were further able to reconstitute hematopoiesis 

in conditioned secondary recipient adult mice, indicating that the YS is also a 

site of HSC generation, albeit HSCs that can only reconstitute hematopoiesis 

in conditioned neonatal but not adult recipients. Further study not pursued in 

this thesis will be needed to characterize the YS microenvironment involved 

in regulating YS HSC development. 
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1.2.2 P-Sp and AGM 

At around E8.5, the para-aortic splanchnopleura (P-Sp) develops from the 

lateral plate mesoderm in the caudal region of the embryo. The P-Sp 

gradually forms the aorta-gonad-mesonephros (AGM) by E10.5, which 

contains the dorsal aorta, genital ridges and mesonephros. The P-Sp/ AGM is 

the first intra-embryonic site of definitive hematopoiesis, generating 

multipotent hematopoietic progenitors with B and T lymphoid as well as 

myeloid potential as observed from single cell in vitro assays63-64. Importantly, 

the first adult-repopulating HSCs are generated in the AGM via the 

hemogenic endothelium, which is located on the dorsal aorta. 

 

Based on expression of endothelial marker Tie2 and hematopoietic markers 

cKit and CD41, a transient Tie2hicKit+CD41- endothelial population that can 

give rise to CD41+ hematopoietic progenitors was generated from both 

cultured ESC and in vivo65. This suggests that hematopoietic progenitors 

arise from hemangioblasts through a hemogenic endothelial stage, providing 

a direct link between the two proposed mechanisms of hematopoietic 

development. Time-lapse imaging further supported the potential of 

hemogenic endothelium to generate hematopoietic cells from both ESC- and 

embryonic E7.5- derived mesoderm66. Chen et al identified that transcription 

factor Runx1 is essential during the transition of VEcad+ vascular endothelial 

cells to HSPC, but not in cells that express Runx1 target Vav. Lineage 

tracing67 using a VEcad-Cre transgene and R26R-YFP reporter mice marked 

all subsequent VECad+ progeny as YFP+. 96% of CD45+ adult blood was thus 

observed to be derived from cells that had expressed VECad at some point in 

time68.   
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1.2.3 Fetal Liver 

The fetal liver (FL) diverticulum forms by E9 and expands into a recognizable 

liver bud by E10, and by E13.5 the FL is established as the major fetal 

hematopoietic organ, providing a rich microenvironment for the massive 

expansion of HSCs between E12 and E1669-71. However the FL is not a site of 

de novo HSC generation; instead, it is colonized from E10 by existing HSCs 

from either the YS or AGM, via the circulatory system.  Cumano & Godin 

postulate that the limited number of AGM HSCs and high level of 

hematopoietic activity even during early FL development suggest that the first 

HSCs that colonize the FL are of YS origin72. This rapid cycling of FL-derived 

HSCs outcompete even adult BM HSCs when transplanted in irradiated 

recipients, highlighting inherent differences between fetal and adult HSCs73-74.  

 

The FL also contains a large population of enucleated erythrocytes that 

predominantly express adult β-globins, but also low levels of embryonic βH1 

globins due to FL colonization by YS-derived erythromyeloid cells75. Together, 

these highlight the rich microenvironment of the fetal liver in supporting 

hematopoietic expansion and differentiation. Indeed, YS-derived HSCs more 

effectively reconstituted hematopoiesis in conditioned neonates when injected 

directly into the FL compared to via intravenous injection, suggesting that the 

FL provides an important microenvironment for YS HSC proliferation and 

differentiation62. The FL microenvironment consists of heterogenous stroma 

derived from mesenchymal cells. A primary human stromal cell line derived 

from fetal liver was shown to provide essential support of primitive HSPCs, 

and was more resilient in culture than BM cells76. In addition, FL hepatic 

progenitors that express SCF, which is important in hematopoiesis, as well as 

hepatic marker DLK, also express a range of factors involved in HSC 
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expansion and homing, including ANGPTL3, IGF2 and CXCL12, and have 

been shown to support HSC maintenance in ex vivo culture77, suggesting that 

these are the primary stromal cells that support HSC expansion in the fetal 

liver.  

 

In addition to isolating FL-derived hematopoietic-supporting stroma, 

identifying the key factors involved in generation and expansion of 

hematopoietic populations in the fetal liver could also potentially improve HSC 

expansion protocols. Sox17, which is a member of the Sry-related high-

mobility group box (Sox) transcription factors, is known to be required for fetal 

HSC maintenance. Germline deficiency for Sox17 results in complete loss of 

definitive HSCs, while postnatal deletion of Sox17 results in the rapid loss of 

neonatal but not adult HSCs78. Ectopic expression of Sox17 in adult mouse 

multipotent progenitors (MPPs) induced expression of fetal HSC surface 

markers and upregulation of fetal HSC genes in these cells, as well as 

conferred hematopoietic potential similar to fetal hematopoiesis, indicating 

that Sox17 is a key determinant of fetal HSC identity79. However, Sox17 alone 

does not fully convert adult hematopoietic progenitors into fetal HSCs, 

suggesting that other genes essential for the development of fetal HSCs 

remain unknown.  
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1.2.4 Placenta 

 

Developing extra-embryonically from trophoblast cells, the highly vascularized 

placenta plays a critical role in facilitating fetal-maternal exchange during 

pregnancy. The placenta has also been shown to be an important 

hematopoietic niche, containing multipotent hematopoietic progenitors that 

also go on to colonize the fetal liver. 

 

Hematopoiesis occurs in the mouse placenta from E9.0, when definitive multi-

lineage progenitors are observed80. This is soon followed by mature HSCs 

from E10.5 onwards81, which is significant as this occurs before intra-

embryonic HSCs are observed, suggesting that placental HSCs are 

generated in situ. Between E11.5-12.5, placental HSCs undergo rapid 

expansion that surpasses that of local progenitors, suggesting that a unique 

HSC-supportive microenvironment exists in the placenta70. The concurrent 

accumulation of HSCs in the fetal liver during this period also suggests that 

the placenta is an important contributor of HSCs that seed the fetal liver.  

 

Robin et al identified that the human placenta contains HSCs as early as 

week 6 of gestation, throughout fetal development, and at term. In addition, 

CD146+/ NG2+ placental stromal cell lines were found to support the 

expansion of cord blood CD34+ and progenitor cells in co-culture53, indicating 

the potential for placental-derived hematopoietic-supporting stroma in HSC 

expansion protocols. Hence, the placenta is an active hematopoietic site with 

potent clinical applications, both directly in HSC transplantation, as well as 

indirectly to expand HSCs in vitro.  
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Using a Sca1-GFP transgenic mouse that expresses the green fluorescent 

protein (GFP) under the regulation of HSC marker Sca1, Dzierzak et al 

identified that most Sca1-GFP-expressing cells co-express CD34, and are 

located within the vasculature of the placental labyrinth and the umbilical 

vessel81. Hematopoietic markers Gata2 and Runx1 also expressed in some 

endothelial cells surrounding the labyrinth vasculature, suggesting that HSCs 

and progenitors are localized within the labyrinth, and also that an 

intermediate hemogenic endothelial stage may also be involved in HSC 

generation in the placenta.  
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1.3 Hematopoietic transcription factors 

 
Transcription factors play a key role in regulating gene expression, and this is 

no different in the hematopoietic system. Transcription factors have been 

found to be involved in a variety of roles ranging from stem cell maintenance 

to lineage commitment and differentiation. Hematopoietic cell fate decisions 

are mediated by lineage-specific transcription factors such as SCL/TAL1, 

LMO2, RUNX1 and GATA1/GATA. Hence, understanding key transcriptional 

regulators is essential towards dissecting hematopoietic development.  

 

While differing in hematopoietic potentials, YS and P-Sp hematopoiesis share 

the requirement for several transcription factors, such as the T cell leukemia 

oncogene Scl/Tal1 and LIM-finger protein Lmo2, which are essential for both 

extra-embryonic and intra-embryonic hematopoiesis. Scl/Tal1 is a basic helix-

loop-helix transcription factor that is considered a master gene for the 

establishment of primitive and definitive hematopoiesis, and is also involved 

in vascular and central nervous system development82-86. Embryos lacking 

SCL die at E9.5-10.5 with a complete lack of blood87-88. Erythroid, myeloid 

and lymphoid lineages are absent in differentiated Scl/Tal1-/- ESC, and 

lymphoid rescue of Rag2-/- mice by Scl/Tal1 cDNA showed that Scl/Tal1 is 

essential for lymphopoiesis in vivo89. The Scl locus contains 3 hematopoietic 

enhancers which drive its expression in endothelial and fetal blood 

progenitors (-4 kb), HSPCs and endothelial cells (+19 kb), and erythroid cells 

(+40 kb)90-94, thus ensuring the timely and regulated expression of Scl. 

SCL/TAL1 function relies on its HLH domain to heterodimerize with class I 

bHLH such as the early region 2A (E2A) proteins, as well as its basic domain 

to bind the heterodimer to DNA on the E-box consensus sequence 

(CANNTG) for further induction of target genes95. Deletions and point 
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mutation experiments indicate that the DNA-binding domain is not required 

for SCL/TAL1-induced leukemogenesis in mice96.  

 

The Lim domain only 2 gene (Lmo2) is involved in chromosomal 

translocations in T cell leukemia, and is required for both yolk sac 

hematopoiesis and adult hematopoiesis104. Lmo2 expression in blood and 

endothelial progenitors is conserved across all vertebrate species, and mice 

lacking Lmo2 are severely anemic and die at E9-10 due to a failure in YS 

hematopoiesis97. The human LMO2 locus contains a proximal promoter that 

is active in several tissue types, as well as a hematopoietic-restricted distal 

promoter98. However, LMO2 binds DNA indirectly via other DNA-binding 

complexes involving transcription factors such as Scl/Tal1, E2A and Gata1 or 

Gata299-100.  

 

RUNX1 plays a crucial role in definitive hematopoiesis during embryonic 

development. The core binding factor (CBF) transcriptional complex 

consisting of Runx1 (also known as acute myeloid leukemia 1 [AML1]) and 

non-DNA-binding protein CBFβ has high DNA affinity via the Runt domain of 

Runx1, which recognizes the DNA consensus sequence YGYGGTY (where 

Y=pyrimidine)101-102. Runx1 is involved in the regulation of numerous 

hematopoietic-specific genes including T-cell receptor (TCR) chain genes and 

macrophage colony-stimulating factor (M-CSF) receptor103-107. Mice deficient 

for Runx1/CBFβ lack any definitive hematopoiesis and die by E12.5108-109. 

However, in contrast with Scl/Tal1 and Lmo2, Runx1 marks HSCs but is not 

essential for the primitive erythroid lineage110-111. Numerous chromosomal 

translocations involving Runx1 generate chimeric proteins have been 

associated with acute myeloid leukemia (AML)112-114, and some of these have 
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been targeted for therapeutic treatments with varying success. For example, 

anti-leukemic treatment resulted in long-term remission in about 50% of 

patients with AML associated with t(8;21) or inv(16), compared to 32% of 

patients with normal karyotype AML115. 

 

The GATA family consists of evolutionarily conserved proteins that bind the 

consensus DNA sequence (A/T)GATA(A/G) via two highly conserved zinc 

finger domains, hence their name116. GATA family members are well-

characterized for their roles as lineage-restricted transcription factors. In 

particular, GATA1 and GATA2 expression occurs mainly in hematopoietic 

lineages, and are essential in the development of several hematopoietic 

lineages, including erythrocytes and megakaryocytes117-120. The dynamic 

changes in GATA1 and GATA2 is the basis of the 'GATA factor switch' during 

erythroid differentiation. GATA2 acts as an enhancer and binds to its own 

promoter, regulating its transcription. During erythroid differentiation, GATA1 

is upregulated and GATA1 replaces GATA2 at the same motifs, thus 

inhibiting GATA2120-122. GATA2 is also required for the proliferation and 

maintenance of HSPCs123. Mutations in either Gata1 or Gata2 are both 

embryonic lethal, with respective defects in erythroid development117-118 and 

HSC proliferation and maintenance123-124 Gata2 is also able to rescue the 

embryonic lethal Gata1 mutation, indicating that certain GATA members are 

partially redundant125.  

 

In addition, extensive cross- and autoregulatory links between transcription 

factors and their cofactors are believed to contribute to the complexity of the 

hematopoietic transcriptional regulatory network126-127. Genome-wide binding 

patterns and combinatorial interactions for key regulators of HSPCs have 
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identified novel interactions between a heptad of hematopoietic transcription 

factors (SCL, LYL1, LMO2, GATA2, RUNX1, ERG and FLI1), as well as 

direct protein-protein interactions between RUNX1, GATA2, SCL and ERG to 

stabilize complex binding to DNA127. These results hint the potentially 

immense role of cross-interactions between known transcription factors in 

regulating hematopoietic gene expression, and indicate that genome-wide 

mapping of binding events need to be employed alongside functional assays.  
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1.4 Epigenetic regulation of hematopoietic development 

 
In addition to transcription factors, gene activity is also modulated by 

epigenetic mechanisms, which generate heritable changes in gene function 

that do not affect the underlying DNA sequence. These include DNA 

methylation, histone modifications, chromatin remodeling, and regulation by 

non-coding microRNA (miRNA)128-130.  Epigenetic regulation is essential for 

the maintenance and differentiation of HSPCs131-133, and understanding the 

mechanisms involved will benefit the diagnosis and treatment of blood and 

immune diseases.  

 

A central component of epigenetic regulation is the organization of DNA into 

higher order structures or nucleosomes, which represent the basic repeating 

unit of chromatin. Each nucleosome consists of 147bp of DNA wrapped 

around a core of eight histones, which comprise two molecules each of H2A, 

H2B, H3 and H4134. Individual nucleosomes are joined to each other by the 

linker histone H1 and about 200bp DNA to form a 10nm fiber. These can be 

further compacted via interactions between flexible histone tails that protrude 

from the nucleosomal disk, to form a helical structure called the 30nm fiber. 

Post-translational covalent modifications of these histone tails by acetylation, 

methylation, phosphorylation, glycosylation, SUMOlyation or ubiquitylation act 

in a concerted manner to induce structural changes in the chromatin fiber, 

thus regulating the accessibility of gene regulatory sequences by 

transcriptional components135-136.   

 

Histone acetylation is regulated by the opposing activities of histone 

acetylases (HATs), which catalyse the transfer of acetyl groups from acetyl-

CoA to lysine residues of target proteins, and histone de-acetylases 
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(HDACs), which catalyse the removal of acetyl groups. These modifications 

directly affect higher order chromatin structure- hyperacetylation of histones is 

associated with structurally 'open' chromatin and active gene transcription, 

while histone deacetylation is associated with heterochromatin formation and 

gene repression137. Hematopoiesis-specific transcription factor GATA1 is 

known to stimulate transcriptional activation by recruiting HAT-containing 

complexes to the β-globin locus138, while acetylation of Scl/Tal1 by co-

activators p300 and the CBP-associated factor (PCAF) is linked to increased 

transcriptional activation and differentiation of murine erythroleukemia (MEL) 

cells in vitro139-140.  

 

Small regulatory RNAs like miRNAs, small interfering RNAs (siRNAs) and 

Piwi-interacting RNAs (piRNAs) also regulate gene expression by  binding to 

sequence-specific target mRNA at the 3'UTR, resulting in mRNA degradation 

or inhibition of translation141-143. MiR-125b is an important miRNA in normal 

HSPCs.  It regulates HSC survival and promotes differentiation towards the 

lymphoid lineage144. Overexpression of miR-125b enhanced hematopoietic 

engraftment in humanized mice, and improved colony formation in primary 

mouse HSPCs145-146. MiR-144 and miR-451 are also involved in regulating 

erythropoiesis in zebrafish. MiR-144 specifically regulated the expression of 

embryonic α hemoglobin during primitive erythropoiesis147, while miR-451 

promotes erythroid maturation by targeting GATA2148. Both miR-144 and 

miR-451 can induce erythropoiesis by targeting GATA1 in zebrafish149, and 

have recently been identified in human erythropoiesis150-151. 

 

DNA methylation is the addition of a methyl group at position C5 of cytosine 

in CpG dinucleotides. DNA methyltransferases (DNMTs) such as DNMT1, 
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DNMT3A and DNMT3B are required for the maintenance of DNA methylation 

patterns152. The regulation of gene expression by DNA methylation of target 

gene promoters is crucial for the control of several developmental processes, 

including X inactivation153, genomic imprinting154, embryonic Hox gene 

patterning155 and in particular, hematopoiesis133, 136, 156-157. DNMT1 is 

important for the self-renewal of adult HSCs, and DNMT1-deficient HSCs 

tend to differentiate into myeloerythroid but not lymphoid cells157-158. Genome-

wide DNA methylation studies identified promoter demethylation in 

hematopoietic-specific genes during hESC differentiation to the hematopoietic 

lineage159, as well as changes in DNA methylation during the differentiation of 

HSPCs160. Specific DNA methylation profiles in HSPCs have also been found 

to be associated with AML, and the methylation status of the deleted in 

bladder cancer protein 1 (DBC1) is used as a predictor of AML with a normal 

karyotype161.  

 

Among epigenetic regulators, the repressive histone modifications by 

Polycomb group protein (PcG) complexes are best characterized in HSCs162. 

The canonical role of PcG is based on genetic evidence from Drosophila 

melanogaster, in which mutagenic studies first identified PcG complexes as 

regulators of Hox gene expression163-164. The two major PcG complexes are 

the Polycomb Repressive Complex 1 (PRC1) and PRC2. PRC1 consists of 4 

proteins: Polycomb (Pc), which contains a chromodomain that binds 

trimethylated histone H3 lysine 27 (H3K27); Polyhomeotic (Ph), which may 

associate with an external sterile α-motif (SAM); RING1, the enzymatic E3 

ubiquitin ligase that monoubiquitinates histone H2A lysine 119 (H2AK119); 

and Posterior sex combs (Psc), which forms a heterodimer with RING1 to 

promote H2AK119ub. PRC2 consists of 4 proteins: Enhancer of zeste (E(z)), 
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a H3K27 methyltransferase; Extra sex comb (Esc) and Suppressor of Zeste 

12 (Su(z)12), which interact with both the target and surrounding 

nucleosomes to regulate PRC2 activity; and Chromatin assembly factor 

1subunit (Caf1), a histone chaperone. Mammalian PRC2 consist of 

homologues Ezh1/2, Eed, Suz12 and Rbbp4/7165-167. 

 

In D. melanogaster, both PRC1 and PRC2 are recruited to mediate 

transcriptional repression of target genes. Polycomb response elements 

(PREs) at target genes recruit PRC1 and PRC2, possibly together with 

additional proteins such as Pho (a DNA-binding protein) that may enhance 

repression. PRC2 tri-methylates H3K27 (H3K27me3) at a target locus, 

preventing H3K27 acetylation and thus gene activation. The H3K27me3 mark 

is recognized by and subsequently recruits PRC1, which mono-ubiquitinates 

H2AK119 (H2AK119ub). This inhibits the progression of RNA polymerase II 

(Pol II) or prevents Pol II from forming the initiation complex168-169, and 

together with PCGF-mediated chromatin compaction170, the target gene is 

thus repressed.  

 

Mammalian homologues of PRC1 consist of the enzymatic RING1A/B; Ph 

homologues PHC1, PHC2 and PHC3; 8 Pc homologues chromobox protein 

(CBX); and 6 Polycomb group RING finger proteins (PCGF). Mammalian 

PRC2 contains EZH2, EED, SUZ12 and Caf1 homologues RBBP4 and 

RBBP7. Despite similar functions as in D. melanogaster, the method of 

recruitment of mammalian PcG complexes is still unknown, as PRE-like 

homologues have yet to be verified. PCGF and CBX proteins have also been 

shown to have partially- overlapping targets, indicating that PcG proteins are 

non-redundant and can form distinct PRC1 complexes with different 
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targets171-173. Consistent with this hypothesis, overexpression of CBX7, but 

not CBX2, CBX 4 or CBX8, appears to inhibit a specific set of target genes, 

promoting self-renewal in multipotent cells but not in more differentiated 

progenitors174. 

 

While Bmi1-deficient mice have normal fetal liver hematopoiesis, severe 

postnatal pancytopenia is observed due to progressive HSC depletion as 

long-term self-renewal is disrupted175. BMI1 binds directly to the promoter of 

the cyclin dependent kinase (CDK) inhibitor gene p16Ink4a and the tumour 

suppressor gene p19Arf as part of PRC1-mediated transcriptional repression. 

Deletion of both p16Ink4a and p19Arf in Bmi1-deficient mice restores the self-

renewal capacity of HSCs, indicating that these two genes are key Bmi1 

targets in HSCs176. On the other hand, overexpression of Bmi1 using 

conditional knock-in mice increases HSC resistance to oxidative stress, thus 

enhancing expansion of HSCs in ex vivo culture and maintaining HSC self-

renewal capacity during serial transplantation177. Meanwhile, Ring1B restricts 

the proliferation of progenitors and stimulates progeny differentiation by 

mediating expression of cell cycle activator cyclin D2 and p16Ink4a, and 

Ring1B-deficient mice develop a hypocellular BM containing an enlarged, 

hyperproliferating compartment of immature cells178-179. 

 

Non-canonical mechanisms of PRC1 have also recently been identified, 

including PRC2-independent activity and the formation of PCGF-RING1A/B 

complexes with RYBP, which inhibits the incorporation of other canonical 

PRC1 subunits like CBX and PHC172, 180. These results indicate that despite 

PcG proteins being identified close to 30 years ago, PRC1-mediated 

transcriptional repression remains a complex mechanism that has yet to be 
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fully elucidated, particularly towards the understanding of hematopoietic 

development.   
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1.5 Of mice and cells:  recapitulating hematopoiesis in vitro 

 

The orchestrated complexity in hematopoietic development warrants both 

temporal and spatial studies to elucidate the interactions involved; however, 

to carry out such studies only in vivo would be time-consuming and 

expensive, given the long generation time and high financial and ethical cost 

of using mice. Hence, in vitro systems that recapitulate different stages of 

development during in vivo hematopoiesis can be used to analyze how 

hematopoietic development occurs, particularly during early stages where 

critical fate decisions are likely to be made. As outlined by Keller, three 

criteria should be considered when using the ESC model for lineage-specific 

differentiation: I, the establishment of robust and reproducible protocols that 

generate the cell type of interest; II, the recapitulation of in vivo 

developmental programmes leading to generation of the target lineage; and 

III, the functional accuracy of mature cells both in culture and in appropriate 

animal transplants181. In this thesis we employ differentiation systems that 

recapitulate both YS and P-Sp hematopoiesis, to generate cell populations 

that can give rise to the respective erythroid, myeloid and lymphoid lineages.  

 

ESCs can be grown in co-culture with mouse embryonic feeder cells182-183, 

which function mainly to secrete leukemia inhibitory factor (LIF), which is 

essential to maintaining ESCs184-185. Feeder-free culture of ESCs can be 

maintained by the addition of recombinant LIF together with appropriate 

serum-containing ESC media184. ESCs differentiate when factors that support 

pluripotency are removed, and the addition of cytokines in appropriate 

conditions can direct differentiation towards particular lineages.  ESCs can be 

differentiated in liquid culture to form three-dimensional embryoid bodies 
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(EBs), which are heterogeneous units comprising of cells from several 

lineages, including the hematopoietic lineage.  

 

EBs express key hematopoietic transcription factors as they mature. For 

example, expression of Runx1 and Scl, which are important in embryonic and 

definitive hematopoiesis in the YS or AGM186-187, is induced at EB day 2.5 and 

subsequently peaks around day 4188-189. Bry is expressed in EBs prior to the 

onset of hematopoiesis, similar to its expression in the embryo191, 56, 190.  An 

ESC line with GFP cDNA targeted to the Bry locus (GFP-Bry) enabled 

Fehling et al to identify 3 distinct cell populations in d3.5 EBs based on GFP-

Bry and Flk1 expression: pre-mesoderm (Bry-Flk1-), pre-hemangioblast 

mesoderm or primitive streak (Bry+Flk1-), and the hemangioblast-containing 

population (Bry+Flk1+)78 (fig. 2).  

 

Culture of the d3.5 Bry+Flk1+ population in semi-solid methylcellulose blast 

colony assays generates blast colonies192, here also termed hemangioblast-

derived colonies, that have both hematopoietic and endothelial potential. 

These colonies are not an artifact of ESC differentiation, as a similar 

progenitor also expressing Bry and Flk1 has been found to arise in the 

posterior primitive streak in early mouse embryos51. The two lineage 

potentials can be further revealed by picking individual colonies using mouth 

pipettes and culturing them in liquid expansion assays in the presence of 

hematopoietic and vascular cytokines56. After 3-4 days of culture, two 

different cell types are observed: small round non- adherent cells represent 

the hematopoietic fraction, and culture of these cells in a methylcellulose-

based hematopoietic progenitor assay generates colonies from both erythroid 

and myeloid lineages. Meanwhile, adherent cells represent the endothelial 
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fraction, and express smooth muscle actin (SMA) and vascular marker CD31. 

D3.5 EB-derived BL-CFCs are thus observed to recapitulate YS 

hematopoiesis, in that they have only primitive and definitive erythroid and 

limited myeloid potential, but no definitive hematopoietic potential. In 

particular, the hematopoietic progenitor assay reveals that the primitive 

erythroid lineage is a transient population that is the first to arise, soon 

followed by the macrophage, definitive erythroid and mast cell lineages; 

which recapitulates the temporal order observed in the YS191. Lymphoid and 

HSC progenitors are not observed, providing further evidence that this 

programme indeed recapitulates YS hematopoiesis.  

 

Irion et al showed that 48h reaggregation of the d3.25 Bry+Flk1- EB 

population in the presence of cytokines activin A, bone morphogenetic protein 

4 (BMP4) and vascular endothelial growth factor (VEGF) generated a d5.25 

Flk1+ population that has decreased primitive erythropoiesis and increased 

potential for myeloid and lymphoid lineages, representing a distinct stage of 

hematopoiesis similar to that of P-Sp hematopoiesis193. While genes essential 

for hematopoietic development such as Scl/Tal1 and Runx1 were broadly 

expressed in both the hemangioblast-containing d3.5 Bry+Flk1+ population as 

well as the derived d5.25 Flk1+ population, only the latter population 

expressed both fetal liver HSC marker Sox17 as well as Hoxb4, which is 

associated with definitive hematopoietic induction, further indicating that this 

population recapitulates P-Sp hematopoiesis193. Hence both YS- and P-Sp- 

hematopoiesis can be recapitulated in vitro, thus providing powerful tools for 

elucidating hematopoietic development.  
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Figure 2. Distinguishing mesodermal populations in d3.5 EBs based on 
cell surface expression of Flk1 and GFP-Bry.  
FACS isolation of cell populations corresponding to uncommitted mesoderm 
(Bry-Flk1-), primitive streak (Bry+Flk1-) and hemangioblast-containing 
(Bry+Flk1+) populations from d3.5 EBs.  
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1.6 Why we need to elucidate HSC development & generation 

1.6.1 HSC transplants in clinical applications 

HSCs were first applied clinically for the treatment of blood cancers, i.e. 

leukemia and lymphoma. According to the Singapore Cancer Registry 2005-

2009, lymphoma was ranked the 8th and 9th most common cancer to affect 

men and women respectively, with an average of 368 cases reported per 

year during that period194. At the KKH Children’s Cancer Centre, leukemia 

makes up about 40% of pediatric cancer cases, and acute lymphoblastic 

leukemia (ALL) is the most common cancer in children and adolescents up to 

age 19195.  

 

Leukemia is divided into four categories, namely acute or chronic, and 

myeloid or lymphocytic. The acute form is characterized by a rapid increase 

in the number of immature hematopoietic cells, which are highly malignant 

and metastasize quickly to affect other organs in the body. Chronic leukemia, 

on the other hand, involves a slower accumulation of relatively mature blood 

cells due to excessive proliferation. 

 

Myeloid lineages are affected in myeloid leukemia, while circulating 

lymphocyte cells are affected in lymphoid leukemia. This is in contrast to 

lymphoma, which originates in the lymphatic system and most commonly 

results in tumour mass formation in the lymph nodes or organs with lymphatic 

tissue e.g. the stomach or intestines. Lymphomas are divided into two 

categories: Hodgkin’s lymphoma, which makes up about 12% of all 

lymphomas and is marked by the presence of the Reed-Sternberg B cell-

derived cell type; and non-Hodgkin’s lymphomas196.  
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HSC transplant following elimination of the patient’s cancerous hematopoietic 

cells via radiation or chemotherapy results in patient survival rate of about 

60%. Data from 146,800 patients in 72 countries between 2006-2008 

revealed that while a range of HSC transplant types (autologous/ allogenic 

bone marrow, peripheral blood/ cord blood stem cells) are now more widely 

available even in low- income countries, there is a widening difference in 

transplant rates between high- and low- income countries197, highlighting the 

need to optimize HSC transplantation both clinically and economically. While 

the therapy has improved by leaps and bounds, HSC transplantation still 

faces several bottlenecks towards clinical applications.  
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1.6.2 Bottlenecks in HSC transplantation 

Sources of HSCs 

HSCs are rare, numbering only about 1 in 100,000 peripheral blood cells. 

While cytokines such as granulocyte-colony stimulating factor (G-CSF) can 

be injected to mobilize HSCs in the donor before harvest, the limited volume 

of blood drawn constrains the number of HSCs available for use. Bone 

marrow contains a higher percentage of LT-HSCs, but the procedure involved 

is difficult, time-consuming and painful for the donor, resulting in the search 

for other sources of HSCs. This includes umbilical cord blood (UCB), which is 

easily obtained following delivery and has become an established HSC 

source for patients without matched donors, as mismatched donors are 

permitted and UCB are more easily available than matched unrelated donor 

grafts198. UCB HSCs also appear to have a lower risk of inducing graft-

versus-host disease199. However, UCB engraftment is delayed compared to 

BM or peripheral blood transplants, and the number of HSCs obtainable per 

UCB unit is limited, restricting the use of UCB to children and small adults.  

Placental HSCs are equally easy to obtain, and have the added advantage of 

possessing much more HSCs than in umbilical cord blood, increasing the 

pool of patients to include adults. 

 

Expansion of HSCs 

Attempts to optimize ex vivo expansion of HSCs have been ongoing for over 

a decade, based on CD34+ HSCs obtained from in vitro and mouse models. 

Protocols in 1991 resulted in HSC survival and 10 to 20-fold expansion of 

progenitor cells200-201. More recently, an automated closed-system process 

involving controlled ‘fed-batch” media dilution resulted in a 11-fold expansion 

of human HSCs in just 12 days202. The addition of cytokines such as SCL, FL 
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and TPO203-206 to expand HSCs and inhibit apoptosis, as well as co-culture 

with hematopoietic-supportive stroma e.g. mesenchymal stem cells (MSCs) 

further improve the ability to generate sufficient numbers of HSCs for 

transplants207-209. In addition, engraftment of expanded HSCs appears to be 

impeded whether the expanded product was used alone or together with un-

manipulated products210-211. Hence it remains a challenge to develop robust, 

rapid and efficient HSC expansion protocols for clinical transplants. 

 

Donor Matching 

Autologous transplants, in which cells for transplant are derived from the 

patient him/herself, avoid the risk of graft-versus-host disease but may re-

introduce the patient’s diseased cells into his/ her system. In addition, 

patients may not generate sufficient HSCs for autologous transplantation. 

Allogeneic transplants, which are derived from close relatives or matched 

donors, may induce a beneficial “graft-versus-tumor” effect that further 

eliminates remaining leukemic cells in the patient. However, allogeneic 

transplants are limited by the availability of matched donors. Up to 75% of 

patients lack matched family donors212, and unrelated donors are stringently 

screened based on human leukocyte antigen (HLA) genes of 5 loci (A, B, C, 

DR and DQ). In addition, as donor matching relies heavily on the size of 

donor banks, racial minority groups may be less likely to find allogeneic 

matches.  
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1.7 Experimental outline and significance of work 

 

As the sheer number of patients suffering from various debilitating 

hematopoietic diseases continues to rise, the demand for HSCs for 

transplants also increases. While vast improvements have been made in the 

field by identifying new and more effective sources of HSCs such as the 

placenta, transplantation of in vitro derived HSCs remain out of reach even as 

we continue to identify more factors that are involved in their generation, so 

as to optimize more robust and efficient expansion protocols.  

 

To this goal, we focused on early hematopoietic development in the mouse 

embryo, where my hypotheses are: 

1. Differentially expressed genes are involved in determining the distinct 

hematopoietic fates between YS and P-Sp hemangioblast-derived 

colonies.  

2. Differentially expressed genes are involved in specifying mesoderm 

commitment towards the hematopoietic fate. 

3. PRC1-mediated regulation is involved in YS and P-Sp hematopoietic 

development. 

 

My experimental approaches are: 

1. Transcriptome comparison of YS and P-Sp hemangioblast-derived 

colonies. 

2. Transcriptome comparison of hematopoietic and non-hematopoietic 

populations derived from E8.5 primitive streak.  

3. ChIP- sequencing of PRC1 components in in vitro populations that 

recapitulate YS and P-Sp hematopoiesis. 
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This thesis examines the developmental processes involved in early 

embryonic hematopoiesis, using both in vivo and in vitro derived populations. 

We identify that only a small number of genes differentiate the transcriptome 

profiles of hematopoietic- distinct YS and P-Sp hemangioblast derived 

colonies. We also uncover novel PCGF5 involvement in PRC1-mediated 

regulation, as well as a potential mechanism for PRC1 recruitment previously 

found only in D. melanogaster. We hope that future work based on the insight 

gained from these findings will someday improve clinical applications and 

benefit patients.  
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2.1 Mouse breeding and harvesting 

Timed matings were carried out between Bry-GFP male stud mice on an ICR 

background, and wild-type ICR females. Vaginal plugs were counted the next 

morning (d0.5), and embryos were harvested following euthanasia by CO2 

gas. Petra Kraus and Thomas Lufkin kindly generated chimeric Bex6-KO BL-

6 mice from KOMP Bex6tm1(KOMP)Vlgc cell lines. 

 

2.2 ESC maintenance and differentiation 

The mouse ES line Bry-GFP78 was used for EB differentiation. ESCs were 

maintained in serum-containing ESC media with the addition of LIF-

containing conditioned media (1%), on mouse embryonic feeder (MEF) cells 

in tissue culture-treated 6-well plates. To generate EBs, ESCs were feeder-

depleted by culturing on gelatin-coated plates for 3 days. ESCs were 

dissociated using 0.05% trypsin-EDTA, then washed and plated in 60mm low-

cluster plates (Corning) at a concentration of 3.5x104 cells/ml for d3.5 EBs. 

ESC differentiation media consists of IMDM, 2 mM glutamine, 4x10-4 M 

monothioglycerol (MTG) and 50 µg/ml ascorbic acid.  

 

2.3 siRNA knockdown 

siRNAs against Bex6 were purchased from Sigma-Aldrich. D5 EBs were 

dissociated using 0.05% trypsin-EDTA (Sigma), then washed with 1x PBS 

and treated with 40 um/ml siRNA before reaggregated for 36 h.  
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2.4 Generating inducible shRNA cell lines 

shRNA against Pcgf5 as well as scrambled shRNA were purchased based on 

Sigma design. The shRNA was subcloned into the pLox-mir126-intron-GFP 

vector213, and subsequently transformed together with pSalk-Cre into the 

AINV18 cell line214 via electroporation followed by antibiotic selection (G418). 

Single colonies were picked and expanded on OP9 feeder cells, and verified 

by induction with 1 ng/ml Dox followed by qPCR of the intended gene 

knockdown.  

 

2.5 Flow cytometry 

Cells were stained by standard protocols with the following antibodies: 

homemade biotinylated Flk1, PECy5-conjugated streptavidin (BD Biosciences 

#554062), PE anti-mouse CD45 (BD #553081), PE anti-mouse Tie2 (BD 12-

5987-83) and FITC anti-mouse CD41 (BD #553848) for the respective 

experiments. Briefly, cells were dissociated using trypsin to form a single-cell 

suspension. Serum was added to stop the dissociation, and cells were spun 

down and resuspended at 106  cells/ml. Cells were incubated with the 

antibody for 30 min on ice, and washed in between antibodies, with a final 

wash before passing the solution through a cell strainer. Cells were sorted on 

a BD FACSaria, Influx or MoFlo into 5 ml polypropylene tubes. Sorted cells 

were then manually counted using a hemocytometer for subsequent 

applications. 
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2.6 Hematopoietic colony growth and expansion 

The serum-based blast colony assay was as previously described78. In brief, 

E7.5 embryos, E8.5 embryonic caudal regions or d3.5 EBs were dissociated 

to single cell suspensions using 0.5% trypsin (Gibco) and a 26G needle and 

syringe. Cells were then plated in 53% methylcellulose containing 10% FCS 

(PAA), VEGF (5 ng/ml), interleukin 6 (IL6; 5 ng/ml) and 25% D4T endothelial 

cell-conditioned medium. Blast colonies were counted 4 days after plating, 

and colonies were collected via mouth-pipet using pulled glass capillary tubes 

directly into cell lysis buffer for RNA extraction (Qiagen RNeasy Microkit). For 

Wnt perturbation assays, 300 ng/ml Dkk1 and 100 ng/ml Wnt3 were added at 

d0. For hematopoietic progenitor assays, cells were cultured in in 53% 

methylcellulose containing 15% PDS, 10% PFHM, interleukin 3 (IL3; 10 

ng/ml), GM-CSF (3 ng/ml), IL-11 (5 ng/ml), EPO (10 ng/ml), IL-6 (10 ng/ml) 

and TPO (5 ng/ml). Primitive erythroid colonies were counted from day 4-5 

while definitive erythroid and myeloid colonies were counted after 7-10 days 

of culture. For expansion assays, blast colonies were transferred individually 

via mouth pipette into a matrigel-coated well of a 96-well plate, containing 100 

µl expansion media as previously described42. Adherent and non-adherent 

populations were scored at day 4 of expansion. All cytokines were purchased 

from R&D. 
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2.7 Microarray data acquisition and analysis 

RNA was harvested using Qiagen RNeasy Microkit, and quantified by 

Nanodrop. Samples selected for microarray had RIN >6 as determined by 

Agilent RNA 6000 Pico Kit. RNA was labeled using Epicentre TargetAmp 

Nano-g Biotin-aRNA Labelling Kit for the Illumina System. Where necessary, 

RNA was first concentrated to the required volume using an Eppendorf 

Speedvac. cRNA samples were hybridized to Illumina Mouse WG-6 v2 

Expression BeadChip genome-wide arrays. The arrays were scanned on an 

Illumina BeadArray Reader at scan factor 1. Raw data was subject to 

background subtraction using Illumina Beadstudio, and quantile normalization 

using Agilent GeneSpring software. The sample probe profile was analyzed 

by significance analysis of microarrays (SAM) using a two class unpaired 

approach and cutoff value of false discovery rate (FDR) <7%. 

 

Microarray of YS vs P-Sp hemangioblast-derived colonies: 

6 biological replicate sets of blast assays, each from culture of E7.5 or E8.5 

embryos derived from 6-11 timed-mated mice, were used to harvest the 

respective hemangioblast-derived colonies. 30ng RNA was then used from 

each of the 12 samples for microarray using 2x Beadchips.  

 

Microarray of d3.5 Bry+/ d3.5 Bry+Flk1+/ d5.5 Flk1+ EBs 

RNA was obtained from 2 biological replicates each of the 3 cell populations. 

50ng RNA was then used from each of the 6 samples for microarray using 1 

Beadchip. 
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2.8 High-Throughput Single-Cell qPCR 

RNA from individual blast colonies was obtained using Qiagen RNeasy 

Microkit. 10µl RNA was transcribed into cDNA using the High Capacity cDNA 

Reverse Transcription kit (Applied Biosystems). Inventoried TaqMan Gene 

Expression assays (Applied Biosystems) were pooled to a final concentration 

of 0.2X. cDNA was preamplified using the Taqman assay pool and Taqman 

PreAmp Master Mix (Applied Biosystems). These preamplified products were 

diluted 10-fold prior to analysis with Taqman Universal PCR Master Mix and 

inventoried TaqMan Gene Expression assays (Table 1), in 48.48 Dynamic 

Arrays on a BioMark system (Fluidigm). Ct values were calculated using the 

system’s BioMark Real-time PCR Analysis software.  

Gene Assay ID Gene Assay ID 

AA4.1 Mm00440239_g1 Hey1 Mm00468865_m1 

ACE Mm00802048_m1 HoxB4 Mm00657964_m1 

Actb Mm00607939_s1 Klf2 Mm00500486_g1 

BMP2 Mm01340178_m1 Klf4 Mm00516104_m1 

BMP4 Mm00432087_m1 Lhx2 Mm00839783_m1  

Bmpr1a Mm00477650_m1 Meis1 Mm00487664_m1 

Cbfβ Mm00491548_m1 Mib1 Mm00523008_m1 

CD150 Mm00443316_m1 Mll Mm01179233_m1 

Cdx4 Mm00432451_m1 Msx2 Mm00442992_m1 

c-myb Mm00501741_m1 Notch1 Mm00435245_m1 

Dll1 Mm00432841_m1 Pbx3 Mm00479413_m1 

Dll4 Mm00444619_m1 Pecam Mm00476702_m1 

Eng Mm00468256_m1 Plxdc2 Mm00470649_m1 

Fli1 Mm00484410_m1 Rac1 Mm01201653_mH 

Foxo1 Mm00490672_m1 Runx1 Mm01213404_m1 

Gapdh Mm99999915_g1 Sca-1 Mm00726565_s1 

Gata-1 Mm01352636_m1 Smad5 Mm03053603_s1 

Gata-2 Mm00492300_m1 Sox11 Mm01281943_s1 

Gata-3 Mm00484683_m1 Sox4 Mm00486317_s1 

Gata-6 Mm00802636_m1 Sox7 Mm00776876_m1 

Hand1 Mm00433931_m1 Tie2 Mm01256904_m1 

Hbb-b1 Mm01611268_g1 VE-cadherin Mm03053719_s1 

Hbb-bh1 Mm00433932_g1 Wnt3A Mm00437337_m1 

Hes1 Mm00468601_m1 Wnt5A Mm00437347_m1 
Table 1. List of Taqman Gene Expression probes used.  
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2.9 Quantitative reverse-transcription PCR (qPCR) 

RNA was extracted using Qiagen RNeasy Microkits according to 

manufacturer’s instructions, and then transcribed using Superscript II 

Reverse Transcriptase (Invitrogen). Primers were designed using PrimerBlast 

(NCBI) and verified against self-complementation and heterodimers using 

Oligocalc (Northwestern University) and OligoAnalyser (IDT). qPCR was run 

in triplicate using Sybr Green (Applied Biosciences) on an AB7500HT 

machine. Analysis of relative transcription levels was performed by the 2-

∆∆CT method with β-actin as the internal control for normalization. Standard 

deviation between 3 replicates was used to define error bars.   

 

2.10 Generating cell populations tracking mesoderm commitment to 

hematopoietic fate 

E8.5 Bry-GFP embryos were harvested from timed-mated mice, and PS 

(Bry+Flk1-) cells were isolated using FACS. These cells were then 

reaggregated in hematopoietic (15% FCS, 2 mM L-glutamine, 4.5 x 10-4 M 

MTG, 50 ng/ml ascorbic acid, 5 ng/ml VEGF, 1 ng/ml BMP4, StemPro-34 

SFM) and non-hematopoietic (2 mM L-glutamine, 4.5 x 10-4 M MTG, 50 ng/ml 

ascorbic acid, 5 ng/ml VEGF, 1 ng/ml bFGF, 1 ng/ml BMP4, 2 ng/ml activin, 

50 ng/ml Wnt3a) supporting conditions. Cells were cultured for 24 hours at a 

density of 103 cells/ ul in ultra low attachment 24-well plates (Costar). Cultures 

were maintained in a humidified chamber in a 5% CO2/air mixture at 37°C. 

 

2.11 Western Blot 

Cells were lysed in RIPA buffer (Pierce) containing protease inhibitors 

(Roche). 10 µg total protein for each sample was resolved on a 10% SDS-
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PAGE gel and transferred to methanol-activated PVDF membranes (GE 

Healthcare). After washing once with TBST (20 mM Tris, 500 mM NaCl, 0.1% 

Tween 20, pH 7.5), the membranes were blocked with 5% milk in TBST for 

1h at room temperature with mild shaking. The blots were then incubated with 

primary antibody at the appropriate dilution in 5% milk and TBST overnight 

with gentle shaking at 4°C. Blots were then washed 3x for 15 min with TBST 

and incubated with horseradish peroxidase-conjugated secondary antibody 

for 1 h at room temperature. The blots were then washed for 3x for 5 min with 

TBST and visualized using a chemiluminescent substrate (ECL Plus Western 

Blotting Substrate, Thermo Scientific Pierce). Primary antibodies used: 

H3K27me3 (Millipore 07-449), H2AK119ub (Cell Signaling 8240S/P), 

RING1B (Abcam AB3832), BMI1 (Bethyl Labs, A301-694A), PCGF5 (Abcam 

AB112000), MEL18 (Santa Cruz SC-10744), CBX8 (a kind gift from Adrian P. 

Bracken), CBX7 (Abcam AB21873), β-actin (Abcam AB8227).  

 

2.12 Co-immunoprecipitation (Co-IP) 

Cells were crosslinked with 1% paraformaldehyde in PBS for 10 min at 4ºC 

and quenched with 125 mM glycine. Cells were then lysed in 50 mM Tris-HCL 

pH 8.0, 350 mM NaCl and 0.5% NP40 (Buffer A) or 25 mM HEPES buffer pH 

7.5, 150 mM NaCl and 0.5% NP40 (Buffer B) at 4ºC for 30 min, and 

centrifuged at 13.2 kRPM for 15 min. Supernatant was then incubated with 

washed antibody-conjugated Protein G Dynabeads (Invitrogen) overnight at 

4ºC. Antibodies used are same as those listed for Western blot. The next day, 

beads were washed 4x with lysis buffer, then resuspended in SDS loading 

buffer and boiled at 95ºC for 6 min. Samples were then loaded onto an SDS-

PAGE gel for Western blot and transfer, and subsequent probing with 

antibody of interest.  



 

 

43

2.13 Chromatin Immunoprecipitation (ChIP) 

Protocol was based on small-scale ChIP-seq method described in Ng et al215. 

Briefly, 5x105 FACS-sorted EB cells were crosslinked with 1% 

paraformaldehyde in PBS for 10 min at room temperature and quenched with 

125 mM glycine. Cells were lysed in 50 mM HEPES-KOH pH 7.5, 2 mM 

EDTA, 1% SDS and protease inhibitors. Cell lysate was sonicated (30 s on/ 

30 s off cycle at low power) in a Diagenode Bioruptor to achieve a mean DNA 

fragment size of 200–400 bp. Lysate was precleared with protein G- 

Dynabeads (Invitrogen) for 1 h at 4°C. Supernatant was then incubated with 

antibody-bound Dynabeads overnight at 4 °C. Antibodies used are same as 

those listed for Western blot. The next day, Dynabeads were washed with 50 

mM HEPES-KOH pH 7.5, 2 mM EDTA and 0.1% SDS, then incubated with 

elution buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 1% SDS, proteinase K) 

at 68 °C for DNA elution. Pronase and SDS-elution buffer was then added to 

chromatin solution and incubated at 42°C for  2h and 68°C for 6 h for protein 

digestion and crosslink reversal. ChIP DNA was then purified by phenol-

chloroform extraction and ethanol precipitation, and DNA pellet was 

resuspended in MilliQ water. 

2.14 ChIP-qPCR 

ChIP DNA was obtained as above, and qPCR was run in triplicate using Sybr 

Green (Applied Biosystems) on an AB7900HT machine (Applied Biosystems). 

Quantitative PCR primer sequences were obtained from Luca Mazzarella and 

Masafumi Muratani, and are as listed in Table 2. Analysis of relative 

transcription levels was performed by the 2-∆∆CT method with β-actin as the 

internal control for normalization. 
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Gene Forward Reverse 

Gapdh 
CCCCAGATCCAGAAAGG
TCACAC 

GGCCAGGATGTAAAGGTCATTA
AGAGG 

Oct4 
GTGAGCCGTCTTTCCACC
AGG 

GGGTGAGAAGGCGAAGTCTGA
A 

Sox2 
CCATCCACCCTTATGTAT
CCAAG 

CGAAGGAAGTGGGTAAACAGC
AC 

Rex1 
TTTGCGGGAATCCAGCA
GT CGTCCCATCGCCACTCTAGAC 

Math1 
CCCTCACTCAGGTCGCCT
G CGTGCGAGGAGCCAATCA 

Nkx2.2 
CGAACCCTGCCACTGCTA
GA 

AGAGGAATAGGCTTGGACATG
C 

Nkx2.9 
CCACTTTGGTCTAATCAG
ACAATCG TGCTACTCGGAGGGCTTTGAA 

Sox1 
ACAAGAGGAGGCAGCGA
ACC TCGCAGGTGGAAAGTTTCTCC 

Bry 
TCACCCAGGAGGCTGGA
GAGTTT 

CACAACTTAGCAACCTTGCCGT
AG 

Flk1 
GGAAACCGGGAAACCCA
AAC 

GGAAACACAGCTTACTCTCTTG
GG 

Ikaros 
CCAGTTTCAGGGACTCG
GCT TCGGGGAACACGGGACAC 

Myf5 
GGAGATCCGTGCGTTAA
GAATCC 

CGGTAGCAAGACATTAAAGTTC
CGTA 

Negative 
 TGTTGGGTTCTTGCCAC
GAT  

 CCAAAACTTGTGCCAATGCA 

Table 2. List of ChIP-qPCR primers used.  
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2.15 ChIP-Sequencing 

ChIP DNA was amplified using Sigma GenomePlex Single Cell Whole 

Genome Amplification Kit (WGA4), followed by preparation for Solexa 

sequencing using NEBNext ChIP-Seq Library Prep for Illumina (NEB E6200) 

and NEBNext Multiplex Oligos for Illumina (Index Primers Set 1) (NEB 

E7335). Briefly, 10 ng of ChIP DNA was subject to end repair followed by dA-

tailing and adaptor ligation, and then PCR-amplified using Phusion High 

Fidelity DNA polymerase. 200-300 bp library fragments were then isolated 

using AMPure XP beads (Beckman Coulter). Quality and concentration of the 

purified library was verified using Agilent DNA 1000 LabChip on an Agilent 

Bioanalyser, and ChIP-sequencing was performed on an Illumina Solexa. 

Antibodies used: H3K27me3 (Abcam AB6002), H2AK119ub (Cell Signaling 

Technology D27C4). Remaining antibodies used are the same as that for 

Western blot and co-IP. 

 

2.16 ChIP bioinformatics analysis 

Peaks were mapped using DFilter216 (peak p-value cutoff 10-5, bin size 100bp) 

and targets with peak overlap of >1 kb were identified with GALAXY MACs 

software. HOMER software was used for genomic annotation of the binding 

sites, and Ingenuity Pathway Analysis (IPA) was used to identify related 

networks from the target list. Regulatory Sequence Analysis Tools (RSAT) 

oligo-analysis was used to generate de novo motifs (6-8bp lengths), and 

STAMP software was used to annotate identified motifs against TRANSFAC 

and JASPAR databases, following trimming of motif edges with information 

content <0.4. 
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CHAPTER 3: 

TRANSCRIPTOME ANALYSIS OF YOLK SAC VERSUS   

P-SP HEMANGIOBLAST-DERIVED COLONIES 
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3.1 INTRODUCTION 

“Begin at the beginning, and go on till you come to the end: then stop.” 

-Lewis Carroll, Alice’s Adventures in Wonderland 

 

Hematopoietic stem cells remain an enigma, their complete mechanism of 

development and specific cell-surface identity still being explored even 50 

years after first being identified by Till & McCulloch1. To further elucidate the 

developmental steps leading to HSC generation, I focused on the earliest 

hematopoietic sites in the mouse embryo, where the initial clues to 

hematopoietic fate decisions may lie: the E7.5 yolk sac, and the E8.5 P-Sp. 

Separated by both developmental space and time, these 2 sites possess 

distinct hematopoietic potentials- the yolk sac with erythroid and myeloid 

potential, and the P-Sp with the additional lymphoid potential, presumably 

arising from the HSC. These potentials are evident from in vitro culture 

assays such as the blast colony and hematopoietic progenitor assays, which 

reveal the lineage potentials of embryo hemangioblast-derived colonies.  

 

While differing in hematopoietic potentials, YS and P-Sp hematopoiesis share 

the requirement for a number of genes. For example, both the T cell leukemia 

oncogene Scl/Tal1 and LIM-finger protein Lmo2 are essential for both extra-

embryonic and intra-embryonic hematopoiesis.  In contrast, core-binding 

factor Runx1 marks HSCs but is not essential for the primitive erythroid 

lineage105-106. Hence, we hypothesize that differences in gene expression of 

key factors are involved in determining hematopoietic fate. 

 

Using gene expression microarray to profile the transcriptomes of YS and P-

Sp hemangioblast-derived colonies, we identified genes that are differentially 
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expressed in the 2 populations. Selected genes were then further studied to 

identify their role in hematopoietic development. 
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3.2 RESULTS 

3.2.1 Microfluidic gene expression profiling of single embryo hemangioblast-

derived colonies 

 

Based on the hypothesis that differentially expressed genes are involved in 

determining hematopoietic fate in YS and P-Sp hemangioblast-derived 

colonies, we performed single-colony gene expression profiling on 17 

hemangioblast-derived colonies each from blast assay culture of E7.5 and 

E8.5 mouse embryos. A selected panel of genes including hematopoietic, 

mesodermal and endothelial genes was queried to see if gene expression 

changes were associated with any particular lineages. Microfluidic qPCR 

followed by hierarchical clustering of results revealed that YS and P-Sp 

hemangioblast-derived colonies did not cluster into distinct groups (fig. 3). 

However, there appears to be a small subgroup of YS hemangioblast-derived 

colonies that express Bmp2, which is associated with the pre-hemangioblast 

stage191, and Sox7 and VE-cadherin, which are involved in development of 

the hemogenic endothelium221, suggesting that there may be some 

heterogeneity across individual colonies within groups.  

 

Key hematopoietic genes Runx1, Gata2, Pecam, Mll and Klf2 are highly 

expressed across all colonies, indicating that they are broadly required for 

hematopoiesis. On the other hand, Sox4 is broadly downregulated across the 

colonies, as per its association with pluripotency. The expression of 

remaining genes did not strongly associate with either colony type, 

suggesting that gene expression changes of these genes are not critical in 

specifying hematopoietic potential at this point. Hence, based on expression 

profiles of selected genes, YS and P-Sp hemangioblast-derived colonies 
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appear to be largely similar despite their differences in hematopoietic 

potential.  
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Figure 3. YS and P-Sp hemangioblast-derived colonies have similar 
gene expression profiles. 
Heat map followed by hierarchical clustering of individual YS and P-Sp 
hemangioblast-derived colonies based on gene expression of selected 
genes. 3 blast assay replicates, each involving culture of E7.5 or E8.5 
embryos from 2-4 timed-mated mice, were used to generate the respective 
hemangioblast-derived colonies. 17 colonies of each were then individually 
picked for microfluidic qPCR. X-axis: genes tested; Y-axis: (YS) YS 
hemangioblast-derived colony, (P-Sp) P-Sp hemangioblast-derived colony; 
Numerals refer to colony number. Red indicates increase in expression, 
green indicates decrease in expression. 
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3.2.2 Optimization of small-scale DNA microarray protocol 

 

To further study our hypothesis that differentially expressed genes are 

involved in determining hematopoietic fate, we sought to perform microarray 

transcriptome analysis of YS and P-Sp hemangioblast-derived colonies. 

Microarrays can query a greater number of genes than those previously used 

in qPCR, due to the physical constraints of using the microfluidic qPCR chip; 

thus providing a more detailed snapshot of the colonies’ gene expression 

profile. However, embryo hemangioblast-derived colonies are rare and 

require the sacrifice of numerous mice; hence the amount of RNA we could 

feasibly collect would be smaller than the amount required in standard DNA 

microarray protocols. Hence, we first needed to optimize a small-scale DNA 

microarray protocol and determine if we could derive sufficient numbers of 

embryo hemangioblast-derived colonies for microarray. To do so, we opted to 

use in vitro-derived hemangioblast-derived colonies for initial studies, which 

are easier to derive in much greater quantities.  

 

Sorted d3.5 Bry+Flk1+ EBs were cultured in blast assays to generate ESC 

hemangioblast-derived colonies. Analysis of RNA concentration of pools of 

20-400 colonies identified that a single hemangioblast-derived colony 

contained 1-5 ng RNA (fig. 4), indicating that we would require 6-30 colonies 

to obtain 30 ng RNA, and 80-400 colonies to obtain 400 ng RNA, which 

represent the lower and upper limits of the TargetAmp amplification kit used 

for microarray sample preparation. Comparison of microarray data using 30 

ng and 400ng ESC hemangioblast-derived colony RNA from a single sample 

of d3.5 Bry+Flk1+ EB showed high correlation between both sets of results, 

indicating that 30ng RNA is sufficient to obtain robust microarray data (fig. 5). 
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Hence, we would only require 6-30 colonies for each replicate to perform the 

microarray.  As these numbers can be feasibly obtained from embryo 

cultures, we proceeded to perform microarray analysis of embryo 

hemangioblast-derived colonies. 
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Figure 4. Calculating amount of RNA per hemangioblast-derived colony.  
Linear regression was applied to a graph of RNA quantities to derive the 
approximate RNA quantity of a single colony. 3 replicates of d3.5 Bry+Flk1+ 
cells were cultured in blast assay to generate ESC hemangioblast-derived 
colonies. Pools of 20-400 colonies were harvested for RNA, and quantified 
using Nanodrop. 

 

 

 

Figure 5. Small-scale DNA microarray generates robust data.  
Correlation plot comparing microarray results obtained using 30 ng and 400 
ng RNA from ESC hemangioblast-derived colonies. R2 value of best-fit line 
shown. 4 replicates of d3.5 Bry+Flk1+ cells were cultured in blast assay to 
generate ESC hemangioblast-derived colonies. Pools of colonies were 
harvested for RNA, and quantified using Nanodrop. 3 replicates each of 30 ng 
and 400 ng RNA were used for the microarray.  
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3.2.3 YS and P-Sp hemangioblast-derived colonies have similar 

transcriptomes 

Microarray comparison of YS and P-Sp hemangioblast-derived colonies, 

obtained from culture of E7.5 and E8.5 embryos respectively, revealed largely 

similar transcriptome profiles (17699 genes unchanged) with a relatively small 

subset of genes being differentially expressed (fig. 6). Of these, 107 were 

more highly expressed in YS hemangioblast-derived colonies compared to P-

Sp hemangioblast-derived colonies, and three vice versa.  

 

Three groups of genes that were higher expressed in YS compared to P-Sp 

hemangioblast-derived colonies were identified: hematopoiesis-related, 

endothelial-related, and prolactin family genes (Table 3). The high expression 

of hematopoietic and endothelial genes in YS hemangioblast-derived colonies 

validate our microarray results, as the major function of the YS programme is 

to generate a large number of erythroid cells in association with primitive 

erythropoiesis. In addition, YS hemangioblast-derived colonies were 

observed to have greater endothelial expansion, as compared to P-Sp 

hemangioblast-derived colonies (unpublished data).  

 

Unexpectedly, a number of prolactin family members were also highly 

expressed in YS hemangioblast-derived colonies (Table 4). Prolactins are 

most commonly studied in lactation and placenta development, which occurs 

at a later stage of embryogenesis. The placenta is an important site for 

embryonic hematopoiesis in both mice and humans80, hence the strong 

presence of prolactin family members in YS hemangioblast-derived colonies 

are both novel and of interest in the study of embryonic hematopoiesis. 

Amongst the 23 mouse homologues that share 5 conserved exons222, 
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members of the prolactin family are known to improve human CD34+ HPC 

development and enhance erythropoiesis in vitro223. Plf2 was previously 

found to enhance ex vivo expansion of HSCs224, while validated antibodies, 

including a homemade antibody from the Linzer lab verified in other 

publications225, exists for PLF1, thus ensuring available reagents for further 

study. During gene expression profiling of maturing hemangioblast-derived 

colonies, Csh1 expression pattern was similar to that of Plf2, while Prl4a1 had 

an opposite expression pattern, thus piquing our interest in these 2 members 

(fig. 12B, further analysis in section 3.2.6). Hence, we selected a total of four 

prolactin family members (Plf1, Plf2, Csh1 and Prl4a1) to study their potential 

role in hematopoietic development. 

 

The 3 genes more highly expressed in P-Sp hemangioblast-derived colonies 

compared to YS hemangioblast-derived colonies are an uncharacterized 

Riken, protease cathepsin G (Ctsg), and Brain-expressed gene 6 (Bex6). Due 

to the lack of commercially-available reagents to study the novel Riken and 

my lab’s unfamiliarity in characterizing enzymes, we decided to focus on 

Bex6 for further study. Little is known about the function of this gene, which 

was originally discovered in a study of ventral mesencephalic dopamine 

neurons226, and its expression uncovered here in early hematopoietic 

development is further studied later in this thesis (chapters 3.2.7-8).  

 

Hence from our microarray comparison, we identified that despite their 

differences in hematopoietic potential, YS and P-Sp hemangioblast derived 

colonies have vastly similar transcriptomes. Nonetheless, selected several 

prolactin family members and Bex6 are selected for subsequent 

characterization of their roles in early hematopoietic development.  
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Figure 6. YS and P-Sp hemangioblast-derived colonies have similar 
transcriptome profiles.  
Venn diagram of SAM identified-differentially expressed genes in YS and P-
Sp hemangioblast-derived colonies. FDR <6%, fold change >1.2 
 

Hematopoietic genes CD55, Epas1, Eraf, F8, Hbb-a1 Hbb-

y, Tspan33 

Endothelial genes Admr, Krt1-14, Krt1-18, Krt2-8, Tfpi 

Prolactin family genes Plf1, Plf2, Plf3, Plf4, Csh1, Plib, Plig, 

Prl4a1, Prlpm 

 
Table 3. Selected groups of genes more highly expressed in YS vs P-Sp 
hemangioblast-derived colonies.  
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Average microarray signal 

 

YS hemangioblast- 

derived colony 

P-Sp 

hemangioblast- 

derived colony 

Prl2c2 (Plf1) 5072.03 7.04 

Prl2c3 (Plf2) 4760.93 4.84 

Prl2c4 (Plf3) 3934.60 1.78 

Prl2c5 (Plf4) 12.00 -8.74 

Prl3d1 (Csh1) 240.7 -1.4 

Prl3d2 (Plib) 502.27 -1.54 

Prl3d3 (Plig) 3453.58 5.42 

Prl4a1 (Prlpa) 6949.60 1.04 

Prl2a1 (Prlpm) 2207.67 -5.18 

 
Table 4. Average microarray signal of prolactin family members in YS 
and P-Sp hemangioblast-derived colonies. 
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3.2.4 PLF1-responsive hemangioblast-derived colonies have increased 
primitive erythroid potential 

 

As embryo hemangioblast-derived colonies are rare and require the sacrifice 

of numerous mice, we performed initial functional characterization of 

prolactins in an in vitro system. However, despite their similarity in 

hematopoietic potential, ES hemangioblast-derived colonies do not express 

the high levels of prolactins observed in YS hemangioblast-derived colonies 

(fig. 7). This raised the question of whether in vitro-derived colonies are 

responsive to prolactins. To test this, we selected 50-500 ng/ml PLF1, as 

PLF1 lysate was commercially available, for addition into blast colony assay 

culture of d3.5 Bry+Flk1+ cells to observe if this induced any changes in 

hematopoietic potential. This resulted in a decrease in the number of 

hemangioblast-derived colonies generated, even at the lowest dose (50 

ng/ml) (fig. 8A).   

 

As colonies still remain in the culture even with doses of 500 ng/ml PLF1, I 

was interested to find out whether these colonies were normal or had been 

affected in any way. Gene expression analysis of these PLF1-treated blast 

colonies identified upregulated expression of hematopoietic genes Gata1 and 

CD41 compared to control colonies (fig. 8B). We hypothesize that the 

addition of PLF1 lysate resulted in the inhibition of PLF1-sensitive colonies, 

which do not develop in the presence of PLF1, resulting in the generation of 

only PLF1-responsive colonies. To see if the hematopoietic potential of the 

remaining PLF1-responsive colonies was affected, treated and control blast 

colonies were expanded in liquid culture containing hematopoietic cytokines. 

Both treated and control expansions had similar levels of adherent cells 

representing the non-hematopoietic endothelial population. However, the 



 

 

60

expansion of non-adherent round cells representing the hematopoietic 

fraction varied, with low, medium and high levels categorized as (+), (++) and 

(+++) respectively. The number of colonies in each category was tabulated 

and compared between control and treated colonies. Treated colonies appear 

to have greater hematopoietic expansion compared to control, as observed 

from treated expansions spanning both the (++) and (+++) categories but not 

(+). When these expansions from treated colonies are collected and 

subjected to qPCR for globins, they were found to express higher levels of 

primitive erythroid markers Hbb-γ and Hbb-bh1 (fig. 8C-E).  

 

Further hematopoietic progenitor assay culture of the non-adherent cells 

revealed that PLF1-responsive colonies generated greater primitive erythroid 

cells but fewer macrophage (Mac) and erythroid-macrophage (Emac) cells 

(fig. 8F), suggesting that PLF1-responsive colonies may preferentially expand 

the primitive erythropoietic lineage more rapidly, or at the expense of myeloid 

expansion. Mayani et al227 and Yang et al228 respectively identified that 

cytokine induction and osteoblastic miR17 were able to specifically expand 

the erythroid lineage during culture of cord blood-derived HSPCs. However, 

neither paper conclusively identified if this was a preferential effect over 

remaining lineages. Hence, the preferential expansion of primitive erythroid 

over the myeloid lineage appears to be novel, and will require future work to 

see if PLF1 has a similar effect on other hematopoietic populations to verify 

this effect. 

 

Autoregulation by rat prolactin (PRL) has been shown in the hypothalamus, 

pituitary and in somatoloactotroph cells229-230, in which PRL inhibited 

transcription and translation in a cell- and promoter-specific manner. The 
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prolactin receptor (PRLR) is a transmembrane protein comprising 

extracellular, transmembrane and intracellular domains, and prolactin binding 

to PRLR can activate signaling cascades including the JAK-STAT pathway, 

which induces DNA transcription and activity in the cell231-232. Hence, we were 

interested to find out whether the addition of PLF1 affects the transcription of 

the prolactins studied. Interestingly, addition of up to 100 ng/ml PLF1 

increases the expression of prolactin family members, but addition of 500 

ng/ml PLF1 does not further enhance this response (fig. 9). These results 

suggest that PLF1 is able to auto-regulate gene expression of prolactin family 

members, enhancing transcription only to a certain extent, following which the 

effect becomes inhibitory. 

 

Hence, the addition of PLF1 appears to select for a subset of PLF1-

responsive hemangioblast-derived colonies that enhances erythropoiesis at 

the expense of myeloid lineages, whilst inhibiting the development of PLF1-

sensitive colonies. This raises the question of the role of PLF1 in the YS, 

given the above results. The E7.5 YS is the earliest site of embryonic 

hematopoiesis, tasked to generate the initial wave of primitive erythropoiesis 

that, though transient, is essential for normal embryonic development233. This 

pool of primitive erythroid progenitors is poised to enter the embryonic 

bloodstream once circulation is initiated around E8.25234. PLF1 may function 

during this period to ensure great expansion of primitive erythropoiesis as 

required by the embryo. Regulation of its effects by the local 

microenvironment is also likely, so as to maintain the proper balance between 

promoting primitive erythropoiesis as well as myeloid lineages, which are also 

generated by the YS during the same period. It remains to be seen whether 

similar effects are observed with other prolactin family members.  
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Figure 7. Prolactins are more highly expressed in embryo-derived 
compared to ESC-derived blast colonies.  
QPCR of prolactin family members in ESC vs embryo hemangioblast-derived 
colonies. (*) indicates non-zero low expression. Expression relative to β-actin. 
 

  



 

 (A)   

(C)  

(D)   

 (F) 

Figure 8. PLF1-responsive colonies have greater primitive 
potential at the expense of myeloid lineages.
(A) Number of hemangioblast
PLF1. (B) QPCR of hematopoietic markers upon addition of PLF1, expression 
relative to β-actin. (C) Non
expansion of ESC hemangioblast
expansions belonging to non
erythroid markers Hbb
expansions. (F) Hematopoietic progenitor assay of non
colony expansions.  

0

50

100

150

200

+

A
v
e
ra

g
e
 #

 
c
o
lo

n
ie

s
/ 
2
x
1
0
4
 

c
e
lls

 63

  (B) 

 

 

  (E) 

  

responsive colonies have greater primitive erythroid 
potential at the expense of myeloid lineages.  

Number of hemangioblast-derived colonies obtained with addition of 
QPCR of hematopoietic markers upon addition of PLF1, expression 

. (C) Non-adherent cell categories +, ++ and +++ following 
expansion of ESC hemangioblast-derived colonies. (D) Percentage of colony 
expansions belonging to non-adherent cell categories. (E) QPCR of

Hbb-γ and Hbb-bh1 in non-adherent fraction of colony 
(F) Hematopoietic progenitor assay of non-adherent fractions of 

++ +++ ++ +++

Control +PLF1

Mix

ED

Emac

Mac

EP

 

 

erythroid 

derived colonies obtained with addition of 
QPCR of hematopoietic markers upon addition of PLF1, expression 

+, ++ and +++ following 
derived colonies. (D) Percentage of colony 

adherent cell categories. (E) QPCR of primitive 
adherent fraction of colony 

adherent fractions of 

Emac
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Figure 9. PLF1 auto-regulates gene expression of prolactin family 
members.  
QPCR of prolactin family members in day 4 ESC hemangioblast-derived 
colonies upon addition of PLF1 at day 0. Expression relative to β-actin. 
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3.2.5 Prolactins are not associated with E9.5 YS hematopoietic-supportive 

stroma 

 

Blast colony assays generate 2 types of colonies, the aforementioned 

hemangioblast-derived colonies, as well as morphologically different colonies 

here termed as endothelial-like colonies (ELCs) (fig. 10A, B). ELCs consist of 

only a round core, while hemangioblast-derived colonies have a similar core 

surrounded by small round cells. Previous studies have shown that the outer 

loose cells represent the hematopoietic component of the blast colonies, 

whereas the inner core contains the progenitors with endothelial and vascular 

potential. In an expansion assay, ELCs give rise to only the adherent 

endothelial fraction, but not the non-adherent hematopoietic fraction obtained 

when hemangioblast-derived colonies are expanded.  

 

Hematopoietic and endothelial lineages develop in close spatial and temporal 

proximity emerging from the hemangioblast; hence we wanted to study if 

prolactins contributed to the endothelial potential of hemangioblasts. The 

prolactins studied are particularly highly expressed in E7.5 embryo-derived 

ELCs, even more so than in the YS hemangioblast-derived colonies they 

were originally identified in (fig. 10C). The negligible expression of prolactins 

in both E8.5 ELCs and hemangioblast-derived colonies further supports the 

specific involvement of prolactins in YS hematopoiesis. We were interested to 

find out if prolactins are involved in hematopoietic-supportive endothelial 

stroma, which could explain their expression in both hemangioblast-derived 

colonies and ELCs, albeit higher expression in ELCs due to the homogeneity 

of cells found there. Prolactins are highly expressed in E9.5 YS. However, 

when E9.5 YS was isolated and sorted based on CD41, Tie2 and Flk1 
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markers, they were not found to be highly expressed in hematopoietic-

supporting CD41-Tie2-Flk1+ endothelial cells235, or in fact in any of the sorted 

populations (fig. 11A). Further analysis of the E9.5 YS revealed an 

unexpected association of prolactins’ expression in the FSClowSSClow 

population (fig. 11B). Given their small particle size and lack of cellular 

granularity, this population likely consists of mature enucleated erythrocytes. 

Indeed, this population expresses adult hemoglobin Hbb-b1, but not 

embryonic hemoglobins Hbb-γ or Hbb-bh1 (fig. 11C, D) 

 

Hence, we identified that whilst the selected prolactins are highly expressed 

in E7.5 ELCs, they are not associated with E9.5 YS-derived hematopoietic-

supportive stromal cells, but instead with mature definitive erythroid lineages.  
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(C) 

 

 
Figure 10. Selected prolactins are highly expressed in ELCs.  
Differential morphology of day 4 (A) hemangioblast-derived colony and (B) 
ELC and expansions of. (C) QPCR of prolactins in embryo-derived colonies. 
Colonies were picked at day 4 of blast assay culture of E7.5 or E8.5 embryos, 
and further expanded in liquid expansion assay for 4 days. ELC: endothelial-
like colony; blast: hemangioblast-derived colony. E: embryonic dpc. (*) refers 
to low, non-zero expression. Expression relative to β-actin. 
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(D) 

 

Figure 11. Prolactins are not associated with hematopoietic-supportive 
stroma derived from E9.5 YS.  
QPCR of (A, B) prolactin family members, (C) adult hemoglobin Hbb-b1 and 
(D) embryonic hemoglobins Hbb-γ and Hbb-bh1 in sorted E9.5 YS 
populations. Expression relative to β-actin. 
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3.2.6 Prolactins are involved in Wnt/ Notch regulation of early 
erythropoiesis. 

 

The impact on primitive erythroid development observed in section 3.2.4 is 

particularly intriguing, due to the fact that primitive erythropoiesis is a 

characteristic feature of YS but not P-Sp hematopoiesis. Wnt and Notch 

signaling pathways regulate the establishment of primitive and definitive 

erythropoiesis early in ESC hemangioblast-derived colony development, 

which recapitulates YS hematopoiesis236. Within 24 h of hemangioblast-

derived colony development, active Wnt signaling together with Numb-

mediated inhibition of Notch induces primitive erythropoiesis. This inhibition of 

Notch signaling is later lifted, leading to the inhibition of primitive 

erythropoiesis by activating Wnt pathway inhibitors such as Sfrp1, Sfrp2 and 

Sfrp5237. The expression of Axin2, a downstream target of Wnt signaling, 

decreases rapidly in developing hemangioblast-derived colonies, as the 

expression of Notch ligand Jag1 increases (fig. 12A). This results in primitive 

erythropoiesis eventually giving way to definitive erythropoiesis by 48h of 

hemangioblast-derived colony development236. Hence, we were interested to 

find out whether PLF1 interacts with Wnt/ Notch regulation of early 

erythropoiesis.  

 

As erythropoiesis is established and regulated early on in hemangioblast-

derived colony development, we sought to identify the gene expression 

profiles of studied prolactins from day 0-4 colonies. QPCR of developing 

hemangioblast-derived colonies showed that several prolactin family 

members are dynamically expressed as the colony matures (fig. 12B). 

Expression levels change around 48 h of blast colony development, which 

marks the transition from primitive to definitive erythropoiesis in the colony. 
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Prl4a1 is upregulated only during the window associated with primitive 

erythropoiesis and downregulated thereafter, while Plf2 and Csh1 are 

upregulated during the period of definitive erythropoiesis. Plf1 expression 

does not appear to be associated with either lineage. These results suggest 

that whilst prolactins are closely related and may be involved in 

erythropoiesis, their function may not be redundant, and individual members 

may be directed towards different targets and lineages. 

 

To study the effect of PLF1 on Wnt signaling in ESC hemangioblast-derived 

colonies, 100 ng/ml PLF1 was added to blast colony assay culture of d3.5 

EBs. This resulted in significant upregulation of Axin2 and a concurrent 

decrease in Wnt antagonists Sfrp1 and Nlk at day 1 of colony development, 

which is the period during which primitive erythropoiesis is induced. We next 

analyzed Wnt pathway expression at day 4 of colony development, which 

was the developmental stage at which colonies were picked for microarray 

analysis, and by which time primitive erythropoiesis has given way to 

definitive erythropoiesis. Sfrp1 and Nlk were significantly upregulated by day 

4 as expected, resulting in decrease in Axin2 expression (fig. 13). This 

suggests that PLF1 enhances the signaling through the Wnt pathway during 

the early window (day 1) but does not alter the overall pattern of Wnt activity, 

which decreases with colony maturation.   

 

To identify whether prolactins were similarly affected by perturbations in Wnt/ 

Notch signaling in YS hemangioblast-derived colonies, Wnt3 was added to 

blast assay culture of E7.5 YS. Unexpectedly, this caused downregulated 

expression across all 4 studied prolactins in day1 hemangioblast-derived 

colonies. On the other hand, addition of Wnt antagonist Dkk1, which inhibits 
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primitive erythroid development236, downregulated Plf1 and Plf2 but 

upregulated Csh1 and Prl4a1 gene expression in day 4 hemangioblast-

derived colonies (fig. 14). This indicates that whilst prolactins may be involved 

in early erythroid development, their close homology yet differential response 

to Wnt antagonism makes it challenging to identify the key member(s) 

involved and their exact function.  

 

Hence we identify that PLF-1 can modulate Wnt signaling in early 

hemangioblast-derived colonies. Given that Wnt signaling is an important 

regulator of early erythropoiesis and that earlier data show that addition of 

PLF1 to blast assays can enhance the number of derived erythroid colonies 

(fig. 8F), together these results indicate that PLF1, and potentially its related 

homologues, is involved in early erythropoiesis. However, individual 

prolactins appear to have discrete roles based on expression pattern, 

suggesting that a dynamic balance of prolactin activity is involved. 
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(A) 

 

 
(B) 

 

Figure 12. Prolactins have dynamic expression in maturing 
hemangioblast-derived colonies.  
QPCR of (A) Axin2 and Jag1 and (B) prolactin family members in ESC 
hemangioblast-derived colony development. EB: embryoid body; day: day of 
blast colony formation. Expression relative to β-actin. 
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Figure 13. Effect of PLF1 on day1 and day3 hemangioblast-derived 
colonies.  
QPCR expression profiles of Wnt/ Notch signaling factors in (top) day 1 and 
(bottom) day 4 hemangioblast-derived colonies, following addition of 100 
ng/ml PLF1 to hematopoietic assay culture. Expression relative to β-actin.  
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Figure 14. Perturbation of Wnt/Notch signaling in YS hemangioblast-
derived colonies.  
QPCR of prolactins in E7.5 YS hemangioblast-derived colonies at (top) day 1, 
upon addition of Wnt, and (bottom) day 4, upon addition of Dkk1. Expression 
relative to β-actin. 
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3.2.7 Bex6 marks hematopoietic progenitor populations in vivo 

 

One of only 3 genes identified from microarray analysis to be more highly 

expressed in P-Sp versus YS hemangioblast-derived colonies, Bex6 is highly 

upregulated in a HPC line overexpressing HoxB4, which enhances HSC self-

renewal and expansion238. Genome-wide ChIP-sequencing analysis of 10 

hematopoietic transcription factors indicate that 6 of these transcription 

factors, including Runx1 and Scl, have binding sites in the Bex6 locus239, 

suggesting a potential role of Bex6 in hematopoiesis.  

  

QPCR of hematopoietic sites in early embryos indicate that Bex6 is highly 

expressed in fetal liver from E10.5 onwards (fig. 15A). Section in-situ results 

using E13.5 embryos indicate similarly (fig. 15B). The fetal liver is the major 

embryonic site of definitive hematopoietic expansion from about E11-12 

onwards240. Expression of CD41 in the mouse embryo marks the initiation of 

definitive hematopoiesis. In addition, CD41 and CD45 can be used to track 

the developmental stage of hematopoietic progenitors (HPC)241 (fig. 16A). 

Early HPCs express only CD41. As HPC development progresses, CD45 is 

also expressed, while CD41 gradually decreases. Finally, mature HPCs 

express only CD45. QPCR of embryonic fetal livers sorted on CD41 and 

CD45 showed that Bex6 is specifically expressed on CD45+ E10.5 and E13.5 

fetal liver populations (figure 16B), indicating that Bex6 marks later definitive 

hematopoietic lineages. 
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(A) 

 

 
(B) 

 

Figure 15. Bex6 is highly expressed in fetal liver tissue.  
(A) QPCR of Bex6 expression in E7.5-E14.5 embryonic tissues and adult 
fetal liver. Data relative to β-actin expression. (B) Section in situ hybridization 
of E13.5 mouse fetal liver. (A, B) Negative control (no probe added). (C, D) 
Bex6 probe using coronal section. (E, F) Bex6 probe using sagittal sections. 
Insets indicate site of subsequent picture, e.g. B=inset of A. 
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(A) 

 

 

(B) 

 

Figure 16. Bex6 is associated with intermediate and mature 
hematopoietic progenitors.  
(A) Defining state of hematopoietic progenitors by CD41 and CD45 
expression. (B)FACS (i) and qPCR (ii) of Bex6 expression from E10.5 (a) and 
E13.5 (b) fetal liver sorted on CD41 and CD45. QPCR expression relative to 
Bex6 expression in whole fetal liver. 
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3.2.8 Bex6 knockdown does not affect hematopoietic potential in vitro 

 

Bex6 is expressed in EBs only from day 6 onwards (fig. 17), which is when 

hematopoietic progenitors are first observed from EBs191. siRNA knockdown 

of Bex6 decreased expression of Bex6 by 70-80%, along with CD45 

expression; however hematopoietic markers Runx1, Scl and CD41 increased 

with siRNA #1 knockdown of Bex6 (fig. 18A). In addition, knockdown of Bex6 

was not associated with significant change in hematopoietic precursors 

observed from methylcellulose assays (fig. 18B), suggesting that the transient 

effect of siRNA was insufficiently sustained to affect hematopoietic assay 

numbers, which are usually counted after more than 6 days. 

 

Bex6tm1(KOMP)Vlcg cell line, which has a targeted deletion at the Bex6 locus, was 

purchased from Velocigene for generation of knockout mice. 4 chimeric 

males (20%-80% by coat colour) were generated from 2 separate clones (fig. 

19); however none displayed germline transmission as observed by lack of 

offspring with homozygous mutation even after more than 6 litters. The lack of 

knockout mice prevented us from obtaining valuable functional observations 

of Bex6 and verifying the effect of Bex6 knockout in hematopoietic 

development.  
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Figure 17. Bex6 is associated with onset of hematopoietic potential in 
developing EBs.  
QPCR analysis of Bex6, CD41 and CD45 along EB development. ES: EB d0. 
Expression relative to gene expression in ES. 
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(A)  

 

 

(B) 

 

Figure 18. siRNA knockdown of Bex6 does not generate significant 
results.  
(A) QPCR analysis of Bex6 and hematopoietic markers 36 h after Bex6 
knockdown in day 5 EBs. Controls: no siRNA (Imax), scrambled siRNA 
(Scrambled), no siRNA/ transfection reagent (Negative). B1, B2, B3: 3 
different Bex6-targeting siRNAs. Expression relative to β-actin, asterisks 
indicate significant (p<0.05) change in expression compared to Imax control. 
(B) Average hematopoietic colony numbers obtained from hematopoietic 
progenitor assays 6 days after Bex6 knockdown. 
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(A) 

Knockout  

ES line 

Date of 

microinjection 
Date of birth #chimeras/ chimeric ε 

Bex6-KO#AB5 
12.08.2011 31.08.2011 

1 male (35%) 

1 female (15%) 

Bex6-KO#AF1 3 males (20/ 65/ 80%) 

 

(B) 

 

Figure 19. Unsuccessful generation of Bex6-KO mice.  
(A) List of Bex6-KO chimeras generated using 2 different cell lines obtained 
from KOMP. Chimeric ε refers to estimated contribution of transgenic cell line 
by observation of coat colour. (B) Examples of Bex6-KO chimeras generated.  
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3.3 SUMMARY AND DISCUSSION 

 

In summary, we performed a small-scale DNA microarray comparison of YS 

and P-Sp hemangioblast-derived colonies, which identified that despite their 

difference in hematopoietic potential, the two colony types have vastly similar 

transcriptomes. Prolactins were more highly expressed in the YS 

hemangioblast-derived colonies, even more so than in ESC-derived colonies 

that recapitulate YS hematopoiesis in vitro. PLF1-responsive hemangioblast-

derived colonies have greater EP potential at the expense of myeloid, and 

PLF1 appears to modulate the Wnt/ Notch regulation of early erythroid 

development. They are also highly expressed in ELCs that have only 

endothelial but not hematopoietic potential, but are not associated with 

hematopoiesis-supportive E9.5 YS stroma. Meanwhile, Bex6 expression is 

upregulated in P-Sp hemangioblast-derived colonies. Characterization of its 

expression in fetal liver links it to a more mature hematopoietic cell type, but 

knockdown of Bex6 did not result in perturbation of hematopoietic potential as 

assessed by in vitro hematopoietic assays.  

 

By selecting day 4 hemangioblast-derived colonies from the two embryonic 

stages, we hypothesized that a comparison of colonies with different 

hematopoietic potentials would reveal genes upregulated in the P-Sp 

hemangioblast-derived colonies, reflecting the induction of lymphoid and 

HSPC lineages. However, the small number of differentially- expressed 

genes identified by the microarray comparison suggests that only a brief, 

transient window, during which key fate decisions are being made, exists; 

which was missed in our approach in harvesting day 4 colonies which display 

the disparate lineages. Cheng et al236 showed that even by 12 h of 
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hemangioblast-derived colony development, dynamic interactions between 

Wnt and Notch signaling pathways actively regulate primitive erythropoiesis. 

Hence on hindsight, perhaps an earlier harvest could identify changes in key 

transcription factors responsible for hematopoietic fate decisions. Indeed, 

microfluidic qPCR revealed heterogeneous gene expression profiles across 

individual YS hemangioblast-derived colonies (fig. 3), suggesting that a 

subset of these colonies may have a slightly different developmental profile 

compared to the majority of colonies harvested. Advancements in single-cell 

analysis platforms such as Fluidigm now enables the tracking of more gene 

expression changes in more samples with greater accuracy. This means that 

we could potentially perform more extensive transcriptome profiling of 

hemangioblast-derived colonies as they develop from day 0, allowing for 

clearer and more detailed insights into the fate decisions made during 

hematopoietic development.  

 

The identification of PLF1-responsive and PLF1-sensitive colonies reflects 

the importance of cytokines in hemangioblast-derived colony development. 

Several cytokines have been well characterized for their use in culture to 

induce or enhance particular hematopoietic fates. Whilst both VEGF and 

bFGF are important for hemangioblast development from EBs, Faloon et al242 

identified that bFGF is not essential for the formation of hemangioblast-

derived colonies. Culture of Flk1+ cells with bFGF instead of VEGF resulted in 

a decrease in number of hemangioblast-derived colonies, while the addition 

of both VEGF and bFGF resulted in a slight, albeit non-significant decrease in 

colony number. Here, our results suggest that PLF1 may be another factor 

that can affect hematopoietic specification and development. The distinctions 

between colony responses to PLF1 also support the possibility of 
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heterogeneity within groups of hemangioblast-derived colonies, which may be 

due to slightly different developmental rates or biologically distinct 

populations.  Further study of such heterogeneity will be useful in elucidating 

hematopoietic development.  

 

The prolactin receptor (Prlr) is expressed in a large number of tissues 

including the liver and kidney243-244, and consists of an extracellular domain 

for ligand binding, a single transmembrane region, and an intracellular 

domain that activates signal cascades upon dimerization of the receptor, 

including the DNA transcription-inducing JAK-STAT pathway. Knockout of 

Prlr results in numerous deficiencies, including infertility in female mice and 

decreased bone formation245, but no effect on hematopoiesis has yet been 

reported. However, alternative gene splicing is known to generate long and 

short isoforms of PRLR246-247, which appear to have different signaling 

pathways and expression patterns, and can additionally be activated by 

human growth hormone (GH) and placental lactogen248-250. This indicates that 

further characterization of PRLR and its isoforms, whilst ruling out potential 

signal interference from GH and placental lactogen during hematopoietic 

development, is required to fully elucidate the role of prolactins during this 

period.  

 

In vitro cultures are widely used for their relative ease of culture, potential for 

scaling up, reproducibility and decreased reliance on live animals, and most 

importantly their recapitulation of in vivo systems. However, the latter largely 

depends on the extent of knowledge we know about the system, and the 

optimization of protocols towards those standards. In a way, in vitro models 

present a catch-22 situation, in which we can only identify dissimilar 
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characteristics when we encounter them. From our experiments, we identified 

that prolactins are greatly upregulated in YS hemangioblast-derived colonies, 

even more so than in ESC hemangioblast-derived colonies which recapitulate 

YS hematopoiesis in vitro. However, this should not detract from how 

invaluable the ESC differentiation system, which has been successfully used, 

characterized and validated in in vivo systems in numerous peer-reviewed 

publications; is towards elucidating hematopoietic generation and 

development. Rather, we have identified that while growth hormones such as 

prolactins can affect hematopoietic potential and development, they do not 

appear to be essential for normal hematopoiesis.  

 

Previous studies have described the successful use of αPLF antibody to 

knock down PLF for functional studies251-253. We attempted to similarly 

knockdown PLF1 using a commercially-available αPLF1 antibody252; however 

the antibody failed to identify E13.5 placenta as a positive control in Western 

blot, indicating that the antibody was not able to recognize the target protein 

(data not shown). Efforts to obtain validated homemade α-PLF1 antibody and 

Plf-expressing cell lines from another lab for knockdown and overexpression 

studies were also unsuccessful. Hence, we were unable to perform loss-of-

function studies on prolactins to determine their role in hematopoiesis. In 

addition, any future re-attempts to knockdown prolactins should take into 

consideration that perturbation of large gene families is complex and requires 

detailed analyses of the effects on all members so as to rule out redundancy 

and pinpoint the member(s) responsible for the activity in question. 

 

siRNA knockdown of Bex6 in day 6 EBs generated no significant change in 

hematopoietic potential. While this could be due to functional redundancy 
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from homologue Bex4, which has 67% sequence similarity to Bex6226, 

characterization of Bex members have revealed distinguishing features 

between them. Most Bex members are located on the X chromosome, but 

Bex6 is located on chromosome 16, and is included in the Bex family due to 

sequence similarity. Bex4 is also highly upregulated in the heart and skeletal 

muscle, in addition to the regular association of Bex genes with brain 

tissue226. These indicate that despite their sequence similarity, Bex4 and 

Bex6 may not function in the same environments, and whether Bex4 or any 

other Bex homologues are indeed able to function in place of Bex6 remains to 

be explored. 
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CHAPTER 4: 

TRANSCRIPTOME ANALYSIS OF MESODERM DURING 

HEMATOPOIETIC COMMITMENT 
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4.1 INTRODUCTION 

 

The path towards hematopoietic commitment of mesoderm can be 

recapitulated in vitro by tracking the expression of Bry and Flk1 in d3.5 EBs: 

Bry-Flk1-, which marks pre-mesodermal cells; Bry+Flk1-, which marks the 

primitive streak, and Bry+Flk1+ cells, which marks the hemangioblast-

containing population192. The PS population is of particular significance, as it 

contains cells that will soon develop into hematopoietic cells, yet do not yet 

have any hematopoietic potential. Hence, they are at a crucial point of fate 

determination. PS cells can give rise to multiple mesodermal lineages 

including cardiac, endothelial and hematopoietic cells254-255. By controlling 

culture conditions ex-vivo, PS cells may be directed towards a specific 

developmental program of interest.  

 

To uncover key regulators involved in hematopoietic commitment, PS cells 

from E8.5 mouse embryos were isolated and differentiated towards a 

hematopoietic or non-hematopoietic program. Based on the hypothesis that 

differentially expressed factors would be involved in determining 

hematopoietic potential, we performed microarray transcriptome comparison 

of the PS and the derived hematopoietic and non-hematopoietic populations, 

and selected Pcgf5 for further study of its potential role in hematopoietic 

development.  
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4.2 RESULTS 

4.2.1 Microarray analysis of mesodermal commitment towards 
hematopoietic fate 

 

Bry+ PS cells were isolated from E8.5 Bry-GFP embryos using FACS, and 

directed towards either a hematopoietic (H) or non-hematopoietic (NH) fate in 

serum-containing and serum-free conditions respectively. “H” cells, when 

plated on hematopoiesis-supporting OP9, can give rise to hematopoietic 

cells, while “NH” cells do not (fig. 20A). The hematopoietic potential of the 

derived “H” population rivals that of E8.5 Bry+Flk1+ cells with known 

hematopoietic potential, as observed from the similar production of myeloid 

and lymphoid lineages following culture on OP9 (Fig. 20B). Hence, these 3 

derived populations (PS, H and NH) are observed to have different 

hematopoietic potentials.  

 

Microarray transcriptome comparisons of PS, H and NH populations identified 

several genes that are differentially expressed in mesoderm cells directed 

towards the hematopoietic fate (fig. 21). In particular, we were interested in 

genes most highly expressed in the “H” group compared to the PS and “NH” 

populations, as these are most likely to be involved in hematopoietic 

specification. In addition, by excluding genes upregulated on commitment to 

the “NH” group, this sector of 322 genes was expected to narrow in on factors 

specific to hematopoietic development. Key hematopoietic genes Runx1 and 

Gata2, which are required for normal hematopoietic development, were found 

in this sector, validating the logic behind analysis of this sector, and providing 

evidence that the microarray went well. As the microarray was previously 

performed and analyzed by ex-colleague Dr. Brian Tan, this thesis will not 

cover detailed analysis of the remaining microarray results.  
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Polycomb ring finger protein 5 (Pcgf5) was identified in the same analysis 

sector as Runx1 and Gata2. Pcgf5 is one of 6 members of the Polycomb 

group ring finger (Pcgf) family, which also includes Bmi1 and Mel18. Given its 

unknown role in PRC1 regulation of hematopoietic development, we selected 

Pcgf5 for further characterization. Pcgf5 is highly upregulated in the “H” 

microarray population, not only compared to the PS and “NH” populations, 

but also compared to other Pcgf homologues (fig. 22A). In addition, given that 

PCGF5 is known to be associated with CBX8256-257, we studied the 

expression of Cbx8 in these populations. We found that Cbx8 is also 

upregulated in the "H" population (fig. 22B), providing evidence that Pcgf5 

may be involved in PRC1 regulation during hematopoietic development.  
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(A) 

 
 
(B) 

 
 
Figure 20. Hematopoietic potential of E8.5 Bry+Flk1+ (PS) and derived 
"H" and "NH" populations.  
(A) Schematic showing derivation of PS, H and NH populations from E8.5 
embryo, and subsequent generation of round, non-adherent hematopoietic 
cells from H but not NH population. (B) Myeloid and lymphoid potential of “H” 
population, and E8.5 Bry+Flk1+ hemangioblast-containing population. FACS 
plots of myeloid (CD45+Gr1+) and lymphoid (CD19+B220+ and IgM+B220+) 
populations obtained after 3-week culture of “H” (top row) and E8.5 Bry+Flk1+ 
(bottom row) populations on OP9.  
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Figure 21. Microarray analysis of genes upregulated during mesoderm 
commitment to hematopoiesis.  
Significance analysis of microarrays (SAM) was used to analyse the 
microarray results, using fold change >2 and false discovery rate (FDR) 
<0.05. Numbers of genes upregulated in the respective comparisons are 
shown in the Venn diagram. 
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(A) 

 

(B) 

 

 
Figure 22. Pcgf5 and partner Cbx8 are preferentially expressed in the 
hematopoietic "H" population.  
(A) Average microarray signal of Pcgf homologues. (B) Average microarray 
signal of Cbx8.  
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4.2.2 Pcgf5 knockdown disrupts the balance between hematopoietic and 
neural genes 

 

Pcgf5 and its known partner Cbx8 are expressed in EBs from d3.5 onwards, 

coinciding with the onset of hemangioblast development in EBs (fig. 23). This 

is in contrast to homologues Bmi1 and Mel18 as well as Ring1B, which 

appear to have stable or decreasing expression patterns. To study the effect 

of Pcgf5 knockdown in hematopoietic development, we generated an 

inducible Pcgf5kd-plox-GFP-Intron-miR cell line containing shRNA against 

Pcgf5, based on the plox-GFP-Intron-miR vector213. Dox- induction of shRNA 

against Pcgf5 resulted in up to 50% decrease in Pcgf5 expression in d4 EBs, 

but did not significantly affect expression of Ring1B or its homologues Bmi1 

and Mel18. These results indicate that the shRNA against Pcgf5 is not non-

specific, and also provide further proof that Pcgf homologues are non-

redundant, as Bmi1 and Mel18 do not compensate for the loss of Pcgf5 (fig. 

24A, B).   

 

Knockdown of Pcgf5 in day 4 EBs resulted in a decrease in hematopoietic 

genes Flk1 and Runx1, as well as upregulation of neuroectodermal genes 

NeuroD and Sox1, particularly using shRNA 2 (fig. 24C). These results 

corresponded with other data generated using lentiviral shRNA knockdown of 

Pcgf5, which also showed downregulation of endodermal genes Foxa2, 

Gata4 and Sox17 at d4 (fig. 25). Together, these results echo findings 

involving RING1B knockdown that PRC1 is required to regulate neural gene 

expression in bivalently-poised Bry+Flk1+ hemangioblasts, in which lowly-

expressed neural-specifying genes are marked by gene-silencing H3K27me3 

as expected, but surprisingly also by the activating H3K4me3 mark despite 

the cell population’s association with hematopoietic potential258. In addition, 
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induced day 4 Pcgf5kd-plox-GFP-Intron-miR EBs displayed a decrease in 

hematopoietic potential as assessed by blast colony assay and hematopoietic 

progenitor assays (fig. 26). Hence, these results suggest that Pcgf5 may be 

involved in PRC1 maintenance of the balance between hematopoietic and 

neuronal lineages in early hematopoietic development.  
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Figure 23. Dynamic expression of Pcgf homologues and selected Cbx 
genes during EB development.  
QPCR expression profiles of (A) Pcgf homologues Bmi1, Pcgf5 and Mel18, 
and (B) Cbx7 and Cbx8. Expression relative to β-actin. (C) Western blot of 
PCGF5 protein expression in ESC and maturing EBs. 
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Figure 24. Knockdown of Pcgf5 is specific and disrupts bivalently-
poised day 4 EBs.  
QPCR expression of (A) Pcgf5, (B) Ring1B, Bmi1 and Mel18, and (C) 
neuroectodermal and hematopoietic markers in induced and uninduced 
Pcgf5kd-plox-GFP-Intron-miR cell line. Expression relative to β-actin. 
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Figure 25. Lentiviral shRNA knockdown of Pcgf5 disrupts bivalently-
poised hemangioblast cells.  
QPCR expression of (A) meso-hematopoietic, (B) endodermal and (C) 
neuroectodermal markers upon lentiviral shRNA knockdown of Pcgf5. 
Expression relative to β-actin. Work done by Brian Tan. 
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Figure 26. Knockdown of Pcgf5 decreases hematopoietic potential.  
(A) Blast colony assay of day 4 hemangioblast-derived colonies and (B) 
hematopoietic progenitor assay of day 6 hemangioblast derived colonies in 
induced and uninduced Pcgf5kd-plox-GFP-Intron-miR cell line. Data obtained 
from average results of 3 biological replicates. 
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4.2.3 Differential targeting of lineage-specific genes by PCGF5 across YS 
and P-Sp hematopoiesis-recapitulating populations 

 

D3.5 Bry+Flk1+ EBs can recapitulate YS hematopoiesis in that both primitive 

and definitive erythroid as well as myeloid lineages can be generated. 

However, only d5.5 Flk1+ cells formed by 48 h reaggregation of d3.5 Bry+Flk1- 

cells (fig. 27A, B) in the presence of cytokines can generate the additional 

lymphoid lineage, thus recapitulating P-Sp hematopoiesis193. Hence, these 

distinct temporally separated populations provide a powerful tool with which 

hematopoietic development can be modeled and dissected in vitro. 

 

Pcgf5 is highly expressed in the reaggregated Flk1+ population representing 

P-Sp hematopoiesis (fig. 27C), even more so than the d3.5 Bry+Flk1+ 

hemangioblast-containing population. This suggests that Pcgf5 may be 

involved in regulation of early hematopoietic development, in particular that 

leading to generation of lymphoid cells via the HSC. Hence, we were 

interested to identify if PCGF5 is part of a PRC1 complex active during 

hematopoietic development. To do so, we first sought to identify if PCGF5 

binds to RING1B. Co-immunoprecipitation (co-IP) of day 4 EBs with 

αRING1B antibody followed by Western blot with αCBX7 or αBMI1 identified 

34 kDa and 37 kDa bands respectively. Thus, co-IP verified that RING1B was 

able to bind to each of these 2 known targets (fig. 28A). However, binding of 

RING1B to PCGF5 using the same method was not observed even after 

attempts to optimize the protocol (fig. 28B). The co-IP protocol is notoriously 

variable; over-fixation of protein complexes via formaldehyde cross-linking 

may result in loss of protein binding sites, while under- or lack of protein 

fixation may cause the target protein complex to dissociate. Thus, a lack of 

observed binding can potentially be a false negative result.  
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In order to address the question of whether PCGF5 was in a PRC1 complex 

from a different angle, we opted to proceed with chromatin 

immunoprecipitation followed by qPCR (ChIP-qPCR) to identify if there are 

overlapping targets in a RING1B- and PCGF5- ChIP-qPCR. Although this 

does not definitively prove that the two proteins form a binding complex 

together, the identification of shared targets via a specific 20-24bp DNA 

sequence indicates that the two proteins are located in close proximity, and 

are likely to form a complex together. Using ChIP-qPCR primers shared by 

Mazzarella et al, RING1B ChIP-qPCR of d3.5 Bry+Flk1+ EBs revealed the 

strong association of RING1B with ES (Sox2, Rex1), neural (Nkx2.2, Sox1), 

and mesodermal (Ikaros, Myf5) genes (fig. 29A). This is in line with published 

work by Mazzarella et al258 showing that PRC1 is required for repression of 

bivalently-poised neural genes in d3.5 Bry+Flk1+ hemangioblast cells, as 

previously explained.  

 

Meanwhile, ChIP-qPCR of PCGF homologues BMI1, PCGF5 and MEL18 

revealed that the homologues targeted similar as well as unique ES, neural 

and mesodermal targets in the d3.5 Bry+Flk1+ population (fig. 29A). ES 

targets Oct4 and Rex1 were strongly targeted by all 3 homologues, while only 

MEL18 additionally strongly bound Sox2. Neural genes Nkx2.2 and Sox1 

were strongly bound by PCGF5 and MEL18, but Sox1 binding by BMI1 was 

relatively low. Finally, only MEL18 strongly associates with mesodermal 

targets Flk1 and Ikaros. This not only reveals that RING1B and PCGF5 

indeed have shared targets, supporting the possibility that they form a binding 

complex together; but also that PCGF homologues, potentially as part of 

different PRC1 variants, appear to be active at the same time but do not have 
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identical targets. This supports the knowledge that PCGF members occupy 

distinct genomic loci, as observed from exclusive or predominant binding by a 

single PCGF to selected promoters259. Together, these results suggest that 

several distinct PRC1 complexes may be simultaneously involved in PRC1 

regulation in the hemangioblast. 

 

ChIP-qPCR of the same targets in the reaggregated d5.5 Flk1+ population 

showed that not only did ES, neural and mesodermal targets remain 

regulated by PRC1, but also that regulation of genes were dynamic in terms 

of which PCGF homologue dominantly targeted the lineage in that population 

(fig. 29B). BMI1 and MEL18 remained associated with targets from all 3 

lineages, albeit less strongly and widely in the d5.5 Flk1+ population 

compared to the d3.5 Bry+Flk1+ population. Most notably, PCGF5 targeted 

genes from all 3 lineages in the d3.5 hemangioblast population, but strongly 

targeted only mesodermal genes (Flk1, Ikaros and Myf5) in the reaggregated 

d5.5 Flk1+ population, suggesting that PCGF5 provides complex regulation of 

mesodermal lineages as development progresses.  

 

Hence, we show that PCGF homologues BMI1, PCGF5 and MEL18 are 

simultaneously active in in vitro-derived populations that recapitulate YS and 

P-Sp hematopoiesis, and that PCGF5 may be particularly involved in the 

regulation of developing mesoderm. Comparison of mesodermal (Bry, Flk1) 

and neural (Sox1) targets following Pcgf5 knockdown (fig. 25) as well as 

PCGF ChIP-qPCR (fig. 29A) shows that while Pcgf5 knockdown in d4 EBs 

resulted in decreased expression of Bry and Flk1 but upregulation of Sox1; 

RING1B and MEL18 bind strongly to all 3 targets in d3.5 Bry+Flk1+ 

population, while PCGF5 binds strongly to Bry and Sox1, but relatively weakly 
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to Flk1, and finally BMI1 binds strongly only to Bry but relatively weakly to 

Flk1 and Sox1. This suggests that when Pcgf5 is downregulated, homologues 

BMI1 and MEL18 are unable to rescue the effect on PCGF5 target genes 

despite binding to the same target, further supporting the non-redundancy of 

PCGF homologues. In addition, PCGF5 binding to Sox1 (fig. 29A) appears to 

directly inhibit expression of Sox1, as knockdown of Pcgf5 results in Sox1 

upregulation (fig. 25). However, despite binding of PCGF5 to Bry and Flk1 

(fig. 29A), knockdown of Pcgf5 results in downregulation of these 2 genes 

(fig. 25), suggesting that PCGF5 is not the only factor involved in regulating 

the expression of important hematopoietic genes Bry and Flk1 at this stage.  
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(C) 

 

Figure 27. Pcgf5 is highly expressed in reaggregated d5.5 Flk1+ 
population recapitulating P-Sp hematopoiesis.  
(A) Schematic of generation of in vitro populations that recapitulate YS and P-
Sp hematopoiesis. (B) FACS plot of d3.5 and reaggregated d5.5 EBs sorted 
based on expression of Bry and Flk1. Percentages indicate relative to 
population. (C) QPCR expression of Pcgf5 in d3.5 and reaggregated d5.5 Bry 
and Flk1- sorted EB populations. Expression relative to β-actin.  
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Figure 28. Co-IP does not reveal PCGF5 binding to RING1B in d4 EBs. 
(A) Co-IP of RING1B with CBX7 or BMI1. (B) Co-IP of RING1B (test) or 
PCGF5 (positive control) with PCGF5. All protein lysates obtained from day 4 
EBs. IgG: negative control. 
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 (A) 

 
 
(B) 

 
Figure 29. PRC1 components bind to shared and unique targets in 
populations recapitulating YS and P-Sp hematopoiesis.  
ChIP-qPCR of RING1B and PCGF homologues in (A) d3.5 EB Bry+Flk1+ cells 
and (B) reaggregated d5.5 Flk1+ cells. Enrichment levels are expressed 
relative to 10% input. Results calculated from average results of 3 technical 
replicates. 
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4.3 SUMMARY & DISCUSSION 

 
In summary, we performed a DNA microarray comparison of populations 

derived from E8.5 primitive streak, in order to identify differentially expressed 

genes that may be involved in definitive hematopoietic fate determination. 

Pcgf5 was more highly expressed in the derived hematopoietic population 

along with essential hematopoietic genes Runx1 and Gata2, suggesting its 

involvement in hematopoietic development. Knockdown of Pcgf5 resulted in 

increased expression of neuro-ectodermal genes and downregulation of 

hematopoietic genes, pointing to novel Pcgf5 involvement in PRC1-regulated 

hemangioblasts. ChIP-qPCR of RING1B and PCGF homologues BMI1, 

PCGF5 and MEL18 in in vitro populations that recapitulate YS and P-Sp 

hematopoiesis, also showed PCGF5 binding to known PRC1-regulated 

hemangioblast targets, as well as simultaneous activity of PRC1 variants as 

identified by RING1B-PCGF binding. These results highlight the involvement 

of Pcgf5 in hematopoietic development, as well as the complexity of 

epigenetic regulation involved. 

 

PCGF is involved in chromatin compaction as part of the Polycomb 

Repressive Complex 1 (PRC1). PRC1 is involved in epigenetic regulation in 

partnership with PRC2, whereby PRC1 monoubiquitylation of H2Ak119 

(H2AK119ub) stabilizes PRC2-mediated H3K27me3, resulting in chromatin 

compaction and inhibition of Pol II transcription initiation and elongation and 

subsequent silencing of the target gene. The main components of PRC1 are 

the E3 ubiquitin ligase RING1A/B, and a member from each of the PCGF and 

CBX families, the latter being involved in recognition of H3K27me3 to 

facilitate PRC1 recruitment. PRC1 is known to be involved in early 

development- Bmi1 and Mel18 knockout in mice result in hematopoietic 
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defects, while Ring1B knockout is embryonic lethal following gastrulation 

arrest259-261. No knockout data is currently available for Pcgf5, but its close 

homology to Bmi1 (80% sequence similarity) suggests that Pcgf5 could be 

similarly involved in hematopoiesis. Composition of PRC1 is dynamic and 

may comprise of different PCGF and CBX family subunits, allowing various 

PRC1 to differentially repress genes according to the cell’s developmental 

state. For example, during the proliferating ESC stage, activity of PRC1 

containing CBX7 and MEL18 inhibits CBX2, CBX4, CBX7 and CBX8, as well 

as BMI1. However, in differentiated ESC, the active PRC1 containing CBX2/4 

and BMI1 inhibits CBX7 and other genes associated with pluripotency173, 175. 

Hence the non-redundancy of PRC1 components contributes to PRC1 ability 

to form variants with different functions. 

 

Most Pcgf studies focus on the more prominent homologue Bmi1, which is 

known to be part of PRC1 and has been characterized in various roles 

ranging from hematopoiesis, skeletal patterning, cancer, as well as neural 

and liver development262-266. However, the role of Pcgf5 has yet to be well 

characterized, particularly in hematopoiesis; thus far it has only been 

described to regulate lymphoid cell size by modifying cell cycle 

progression267. As Bmi1 and Pcgf5 share high sequence similarity, we 

hypothesized that PCGF5 might similarly play an important, novel role in 

PRC1 regulation during hematopoietic development. ChIP-qPCR of RING1B 

as well as PCGF homologues revealed not only that PCGF5 and RING1B 

have shared targets, thus suggesting the activity of PCGF5-PRC1; but also 

that PCGF homologues are simultaneously active and do not have identical 

targets. This potentially allows for the formation of distinct PRC1 variants that 

target different lineages or targets. While this is only hinted at from ChIP-
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qPCR data in this section, we further provide evidence as such in subsequent 

ChIP-seq data. Such diversity gained from distinct PRC1 variants can allow 

for greater complexity in transcriptional regulation, as various combinations of 

active PRC1 variants can differentially regulate the system, thus resulting in a 

finely-tuned epigenetic environment than can better respond to changes.  
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CHAPTER 5: 

CHIP-SEQUENCING OF PRC1 IN IN VITRO-DERIVED 

HEMATOPOIETIC POPULATIONS 
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5.1 INTRODUCTION 

PRC1 complexes are involved in epigenetic regulation during development, 

and canonically monoubiquitinate H2AK119 in response to H3K27me3 at a 

target locus by PRC2. This inhibits the progression of RNA Pol II or prevents 

Pol II from forming the initiation complex169-170. Together with PCGF-mediated 

chromatin compaction171, the target gene is thus repressed.  

 

As previously described in section 4.2.3, ChIP-qPCR of PRC1 components in 

d3.5 Bry+Flk1+ and d5.5 Flk1+ EBs, which recapitulate YS and P-Sp 

hematopoiesis respectively193, identified that PRC1 variants are 

simultaneously involved in regulation of hematopoietic development. In 

particular, PCGF5 was found to bind to known PRC1-regulated 

hemangioblast targets, highlighting the involvement of Pcgf5 in hematopoietic 

development.  

 

Based on the hypothesis that PRC1 variants are involved in early mouse 

hematopoietic development by binding to and subsequently repressing 

targets, we sought to identify these targets to elucidate how and when PRC1 

variants regulate these genes, thus contributing to hematopoietic 

development. By comparing targets identified from chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) of 

PRC1 components, we identify and characterize the role of PRC1, in 

particular Pcgf5-PRC1, as hematopoietic development progresses. 
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5.2 RESULTS 

5.2.1 ChIP-seq of PRC1 in in vitro- derived hematopoietic populations  

 

Small-scale ChIP-seq215 against PRC1 and associated histone marks 

H3K27me3 and H2AK119ub was carried out on in vitro-derived populations 

that are generated in the recapitulation of YS and P-Sp hematopoiesis (Table 

5), namely d3.5 Bry+Flk1- (thereafter d3.5 Bry+) EBs, d3.5 Bry+Flk1+ EBs, and 

reaggregated d5.5 Flk1+ EBs. To identify targets bound by each of the PRC1 

components, reads were mapped to the mouse genome using DFilter, a 

detection algorithm for next-gen massively-parallel sequencing data that more 

accurately identifies regulatory features compared to assay-specific 

algorithms216. The top 3 targets by peak strength, as well as another 3 

randomly- selected targets, were validated using ChIP-qPCR (fig. 30-32). 

UCSC Genome Browser visualization also verified binding of PRC1 

components to Sox1, Sox2 and Nkx2.2 genes in d3.5 Bry+Flk1+ and d5.5 

Flk1+ populations (fig. 33A-C). This corresponded with earlier ChIP-qPCR 

data that identified these binding targets (fig. 29), and together with low 

microarray signal of Sox1, Sox2 and Nkx2.2 in all 3 cell populations (fig. 

33D), these results suggest that PRC1 targeting indeed mediates 

transcriptional repression of these genes. There was high correlation of 

H3K27me3 and H2AK119ub peaks in all 3 samples as expected (fig. 34A). 

Together with the high number of reads for each library (>40x106 reads) 

(Table 5) and subsequently- observed high peak values of targeted genes, 

these results indicate that the ChIP-seq went well.  
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To further verify the ChIP-seq results, we hypothesized that in order to 

provide a permissive environment for hematopoiesis to occur in 

hematopoietic populations, fewer genes associated with hematopoiesis would 

be epigenetically silenced in d3.5 Bry+Flk1+ and d5.5 Flk1+ populations, 

compared to the non-hematopoietic d3.5 Bry+ population. Using Ingenuity 

Pathway Analysis’ (IPA) Gene Ontology (GO) terms to identify the numbers of 

hematopoietic genes targeted in each ChIP-seq, we identified that the largest 

fraction of hematopoietic genes targeted by H3K27me3 and H2AK119ub 

were in the d3.5 Bry+ population (fig. 34B, C) as expected, compared to the 

remaining 2 hematopoietic populations.  

 

We also hypothesized that genes associated with particular hematopoietic 

fates would be differentially targeted by PRC1 across the 3 ChIP-seq 

populations. To test this, Model-based Analysis for Chip-Seq (MACs) was 

used to identify shared H3K27me3 and H2AK119ub ChIP-seq targets that 

overlap by >1 bp. Overlapping targets were then compared using a Venn 

diagram across the 3 ChIP-seq populations (fig. 35A). 

H3K27me3/H2AK119ub targets unique to the d3.5 Bry+ population are 

expected to include genes important for hematopoiesis. Indeed, we identified 

targets such as Bmp4, Runx1 and Lmo2, which are required for normal 

hematopoiesis218, 220, 268 in the sector of 3057 targets. H3K27me3/H2AK119ub 

targets found in both d3.5 Bry+ and d5.5 Flk1+ but not the hemangioblast-

containing d3.5 Bry+Flk1+ populations are expected to include genes 

associated with primitive hematopoietic lineages, but the only known 

hematopoietic factor identified is Gata2, which is essential for normal 

hematopoiesis and generation of primitive hematopoietic cells from 

mesoderm269-270. This may be due to the heterogeneity of the d3.5 Bry+ 
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population, which contains mesoderm as well as pre-hemangioblast cells192, 

thus introducing noise into the Venn comparison and obscuring the 

identification of more genes associated with primitive hematopoiesis. Finally, 

H3K27me3/H2AK119ub targets found in both d3.5 EB populations but not the 

d5.5 Flk1+ population are expected to include genes associated with definitive 

hematopoietic lineages, and this is supported by the identification of targets 

such as Fli1, Gata 3 and Scl/Tal1, which are known to be indispensable for 

normal HSC development271-275, in the sector comprising 865 targets. Using 

microarray of the 3 cell populations, we identified 13 candidate genes that are 

upregulated in d5.5 Flk1+ compared to the other two d3.5 populations (Fig. 

35B), which can be studied in future for their potential role in hematopoietic 

development. Hence, PRC1/2-mediated repression is involved in regulating 

hematopoietic factors to facilitate hematopoietic development. 

 

Hox genes are highly conserved homeodomain-containing transcription 

factors that are important in early development, including hematopoiesis276-

277. In addition, Hox genes are well-characterized targets of PRC1; polycomb 

genes were first discovered in D. melanogaster as key regulators of Hox gene 

expression279-280. Indeed, we identified a number of Hox genes differentially 

targeted by H3K27me3/H2AK119ub across the three ChIP-seq populations. 

Several targeted Hox genes were selected for validation by qPCR to identify if 

their gene expression matched the state of PRC1 targeting in that population 

(fig. 36). Hoxb8, which is targeted by H3K27me3/H2AK119ub across all 3 

ChIP-seq populations, was shown to have inhibited gene expression as 

expected. Hoxc13, which is targeted by H3K27me3/H2AK119ub only in d3.5 

Bry+ and d3.5 Bry+Flk1+ population, has significantly upregulated expression 

in d5.5 Flk1+. Similarly, Hoxa7 and Hoxb1, which are not targeted by 
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H3K27me3/H2AK119ub in any of the 3 ChIP-seq populations, show highly 

upregulated gene expression in all 3 populations. Hence, the gene 

expression of targeted Hox genes matches the state of PRC1 targeting in that 

ChIP-seq population.  

 

Hox genes are spatially regulated, in that anterior 3’ Hox genes (Hox 1-6) are 

highly expressed in primitive HSPCs, but are downregulated together with 

upregulation of 5’ Hox genes (Hox 7-13) upon cell differentiation and 

maturation280-281. Comparison of RING1B-BMI1 overlapping targets between 

d3.5 Bry+Flk1+ hemangioblast-containing population and d5.5 Flk1+, which is 

believed to give rise to the HSC, identified a number of 5’ Hox genes uniquely 

targeted in the latter population. DNA microarray verified that 3’ Hox genes 

are upregulated and 5’ Hox genes downregulated in d5.5 Flk1+ (fig. 37), 

suggesting that the BMI1-PRC1 complex is involved in Hox gene regulation 

during P-Sp hematopoiesis. Hence, BMI1-PRC1 is involved in the temporal 

regulation of Hox genes during hematopoietic development. 

 

In summary, we performed ChIP-seq of PRC1 components in ESC-derived 

populations that recapitulate YS and P-Sp hematopoiesis. We identify that 

hematopoietic genes are more frequently regulated by H3K27me3/ 

H2AK119ub in non-hematopoietic d3.5 Bry+, compared to hematopoietic d3.5 

Bry+Flk1+ and d5.5 Flk1+.  Comparisons of targets bound by 

H3K27me3/H2AK119ub in the 3 ChIP-seq populations identify hematopoietic 

genes associated with the expected hematopoietic fate of particular Venn 

comparison sectors. In addition, selected Hox genes targeted by 

H3K27me3/H2AK119ub across all 3 ChIP-seq populations display gene 

expression patterns that match their regulation by PRC1/2, and BMI1-PRC1 
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is found to be involved in the temporal regulation of Hox genes. Together, 

these results support the conclusion that the ChIP-seq went well, and that 

results obtained from the analyses are biologically relevant.  
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Cell Population ChIP-seq 
# of reads 

(x106) 
#of peaks called 

(x103) 

D3.5 Bry+ 
H3K27me3 42.06 38.63 

H2AK119ub 48.71 42.67 

D3.5  
Bry+Flk1+ 

H3K27me3 58.05 13.10 

H2AK119ub 50.03 23.79 

RING1B 90.42 41.72 

BMI1 84.06 42.45 

PCGF5 90.17 27.34 

MEL18 83.11 43.71 

D5.5 Flk1+ 

H3K27me3 55.97 17.16 

H2AK119ub 54.11 27.12 

RING1B 88.14 42.06 

BMI1 88.74 38.52 

  
Table 5. List of ChIP-seq samples. 
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Figure 30. Target validation of d3.5 Bry+Flk1+ ChIP-seq. 
ChIP-qPCR of selected targets from d3.5 Bry+Flk1+ ChIP-seq. Fold 
enrichment relative to 10% input. Results calculated from average results of 3 
technical replicates. 
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Figure 31. Target validation of d3.5 Bry+Flk1- ChIP-seq.  
ChIP-qPCR of selected targets from d3.5 Bry+Flk1- ChIP-seq. Fold 
enrichment relative to 10% input. Results calculated from average results of 3 
technical replicates. 
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Figure 32. Target validation of d5.5 Flk1+ ChIP-seq.  
ChIP-qPCR of selected targets from d5.5 Flk1+ ChIP-seq. Fold enrichment 
relative to 10% input. Results calculated from average results of 3 technical 
replicates. 
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(A) 
 

(B) 
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(C) 

 
(D) 

 Average microarray signal 
 D3.5 Bry+ D3.5 Bry+Flk1+ D5.5 Flk1+ 

Sox1 5.8 7.4 8.4 
Sox2 16.4 5.8 6.3 

Nkx2.2 3.6 2.3 5.6 
 
Figure 33. PRC1 component binding at selected genes.  
Binding of PRC1 components to (A) Sox1, (B) Sox2 and (C) Nkx2.2 in (left) 
d3.5 Bry+, (middle) d3.5 Bry+Flk1+ and (right) d5.5 Flk1+ populations. The 
input library is included as a control for background signal. Numbers indicate 
peak height. (D) Average microarray signal of Sox1, Sox2 and Nkx2.2 in 
respective cell populations.  
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(B) 

GO Terms 

Hematopoietic or lymphoid organ development 

Hematopoietic progenitor cell differentiation 

Hematopoietic stem cell proliferation 

Hematopoietic stem cell differentiation 

Hemangioblast cell differentiation 

Regulation of hematopoietic progenitor cell differentiation 

Regulation of hematopoietic stem cell migration 

 

(C)

 

Figure 34. ChIP-seq analysis of H3K27me3 and H2AK119ub targets.  
(A) Correlation of peak intersections between H3K27me3 and H2AK119ub 
targets in ChIP-seq samples. (B) List of hematopoietic GO terms used. (C) 
Number of hematopoietic genes targeted in ChIP-seq populations, as a 
fraction of total number of peaks called.  
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Figure 35. H3K27me3/H2Ak119ub shared targets in the 3 ChIP-seq 
populations.  
(A) List of targets identified by Venn comparison of H3K27me3/H2AK119ub 
shared targets supporting expected hematopoietic association. (B) 
H3K27me3/H2AK119ub targets located in sector shared by d3.5 Bry+ and 
d3.5 Bry+Flk1+ ChIP-seq, that have increased expression in d5.5 Flk1+ 
population according to microarray of the 3 cell populations.  
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 (A) 

 
D3.5 Bry+ D3.5 Bry+Flk1+ D5.5 Flk1+ 

Hoxb8 Y Y Y 

Hoxc13 Y Y - 

Hoxa9 Y - - 

Hoxa5 Y - - 

Hoxb4 Y - - 

Hoxa7 - - - 

Hoxb1 - - - 

 

 
 

 
 
Figure 36. Validation of selected H3K27me3/H2AK119ub Hox targets. 
(A) List of selected H3K27me3/H2AK119ub Hox targets, listed by presence of 
histone mark. (Y): targeted by H3K27me3/ H2AK119ub in sample population; 
(-): not targeted. (B) QPCR of repressed Hox genes. (C) Non-targeted Hoxa7 
and Hoxb1 have high expression levels in all 3 ChIP populations.  Expression 
levels relative to β-actin. 
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(A) 

 
 

(B) 

 
 
 
Figure 37. Validation of 5' Hox genes targeted by RING1B-BMI1.  
(A) Venn comparison of RING1B-BMI1 targets in d3.5 Bry+Flk1+ and d5.5 
Flk1+ ChIP-seq. (B) Average DNA microarray signal of selected 3’ vs. 5’ Hox 
genes in d5.5 Flk1+ population. 
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5.2.2 RING1B-PCGF complexes are functionally distinct, yet operate jointly 

 

The composition of PRC1 is dynamic and displays non-redundancy between 

paralogous members of the CBX and PCGF families, leading to the formation 

of PRC1 variants that are functionally distinct, with activity and binding targets 

depending on the cell state and environment172,174. Hence, following validation 

of the ChIP-seq data, we sought to determine whether RING1B-PCGF pairs 

regulate specific lineages and targets during hematopoietic specification. 

 

MACs analysis identified shared targets of RING1B and PCGF homologues 

in d3.5 Bry+Flk1+ ChIP-seq that overlap by > 1 bp. Gene Ontology (GO) 

analysis of these targets (tables 6-9) suggests that RING1B-BMI1 regulates 

neuronal lineages, while RING1B-PCGF5 is involved in regulating a number 

of mesodermal lineages. RING1B-MEL18 does not appear to regulate any 

particular lineage, suggesting that MEL18 may not be a major PRC1 member 

during this period.  

 

Comparison of genes targeted by RING1B-PCGF in d3.5 Bry+Flk1+ cells 

showed that target overlaps between RING1B-PCGF pairs ranged from 27% 

(RING1B-BMI1) to 61% (RING1B-MEL18), indicating varying levels of 

redundancy between PCGF homologues, with BMI1 displaying the least 

redundancy (fig. 38A). Further analysis identified a subset that is targeted 

only by RING1B-PCGF5, but not RING1B-BMI1 or RING1B-MEL18. Dkk1, a 

Wnt antagonist, and p63, which suppresses Notch signaling in mouse 

keratinocytes282, are uniquely targeted by RING1B-PCGF5 in d3.5 Bry+Flk1+ 

ChIP-seq (fig. 38A). DNA microarray of the 2 Flk1+ populations showed that 

both Dkk1 and p63 are repressed in the d3.5 Bry+Flk1+ population (fig. 38B), 
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albeit only slightly for Dkk1, which was more highly expressed in the d3.5 Bry+ 

population (data not shown). As the Wnt/ Notch signaling pathway is an 

essential system in hematopoiesis, we were keen to identify if PCGF5 

uniquely mediated PRC1 regulation of Dkk1 and p63. ChIP-qPCR of Dkk1 

and p63 in d3.5 Bry+Flk1+ and d5.5 Flk1+ populations validated the binding of 

PCGF5 to the 2 targets in the former population. P63 was released from 

repression by PCGF5 in the later d5.5 Flk1+ population (fig. 38C), 

corresponding to the increase in p63 expression (fig 38B). However, Dkk1 

was instead targeted by BMI1 (fig. 38C), resulting in a strong repression of its 

gene expression as shown by microarray (fig. 38B). This suggests that PCGF 

homologues may regulate targets either independently or in a coordinated 

manner.  

 

Hence we provide evidence that PRC1 variants are functionally distinct, by 

identifying that RING1B-BMI1 targets neural lineages, while RING1B-PCGF5 

targets mesodermal lineages in d3.5 Bry+Flk1+ cells. MEL18 binding has 

greater redundancy, suggesting a minor role in PRC1 activity. We also 

identify the joint regulation of Dkk1 by BMI1 and PCGF5 in a temporal 

manner, suggesting that PRC1 variants are coordinately involved in 

epigenetic regulation. 
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Overlap pairs GO term # genes P-value 

RING1B/BMI1 

behavior 46 1.06E-06 

learning 24 1.06E-06 

development of body axis 34 9.85E-06 

contextual conditioning 10 1.11E-05 

conditioning 15 1.19E-05 

concentration of norepinephrine 8 2.88E-05 

proliferation of cells 78 3.11E-05 

development of sensory organ 28 3.32E-05 

clonal expansion of fibroblast cell 
lines 

3 3.73E-05 

pathfinding of axons 3 3.73E-05 

RING1B/PCGF5 

hematologic cancer 5 1.88E-04 

growth of connective tissue 2 2.49E-04 

abnormal morphology of 
diencephalon 

3 4.12E-04 

abnormal morphology of limb bud 3 4.12E-04 

lymphohematopoietic cancer 7 4.82E-04 

hematological neoplasia 7 5.25E-04 

morphogenesis of embryonic limb 4 7.45E-04 

development of female 
reproductive tract 

5 9.07E-04 

proliferation of bone marrow cell 
lines 

4 1.06E-03 

tumorigenesis of melanoma 3 1.07E-03 

RING1B/MEL18 

release of lipid 6 2.69E-05 

behavioral flexibility 2 4.75E-05 

neurotransmission 10 4.76E-05 

apoptosis of enterocytes 3 6.79E-05 

behavior 19 6.94E-05 

synaptic transmission of cells 6 1.39E-04 

volume of lung tumor 2 1.42E-04 

cell death of intestinal cells 4 1.48E-04 

translocation of vesicles 2 2.83E-04 

replication of Vaccinia virus WR 2 4.69E-04 

Table 6. GO analysis of RING1B/ PCGF targets from d3.5 Bry+Flk1+ 
ChIP-seq. 
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Table 7. Top biological networks and pathways associated with RING1B-
BMI1 target genes.  
RING1B ChIP-seq peaks were identified with DFilter and overlapped with 
BMI1 ChIP-seq in D3.5 Bry+Flk1+ cells, and IPA was used to generate the list 
of networks associated with its biological, molecular and cellular functions. 
The network score is used to rank networks according to their degree of 
relevance to the network-eligible molecules in the dataset. 
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Table 8. Top biological networks and pathways associated with RING1B-
PCGF5 target genes.  
RING1B ChIP-seq peaks were identified with DFilter and overlapped with 
PCGF5 ChIP-seq in D3.5 Bry+Flk1+ cells, and IPA was used to generate the 
list of networks associated with its biological, molecular and cellular functions. 
The network score is used to rank networks according to their degree of 
relevance to the network-eligible molecules in the dataset. 
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Table 9. Top biological networks and pathways associated with RING1B-
MEL18 target genes.  
RING1B ChIP-seq peaks were identified with DFilter and overlapped with 
MEL18 ChIP-seq in D3.5 Bry+Flk1+ cells, and IPA was used to generate the 
list of networks associated with its biological, molecular and cellular functions. 
The network score is used to rank networks according to their degree of 
relevance to the network-eligible molecules in the dataset. 
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Figure 38. Dynamic regulation of Dkk1 and p63 by PRC1 variants.  
(A) Venn comparisons of RING1B/ PCGF targets from d3.5 Bry+Flk1+ ChIP-
seq. (B) DNA microarray signal of Dkk1 and p63 in d3.5 Bry+Flk1+ and 
reaggregated d5.5 Flk1+ populations. (C) ChIP-qPCR of Dkk1 and p63 in d3.5 
Bry+Flk1+ and d5.5 Flk1+ populations. Results calculated from average results 
of 3 technical replicates. 
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5.2.3 Ring1B-independent function of Pcgf5 

 
Analysis of the level of peak association between RING1B and PCGF 

homologues indicate that while many targets of BMI1 and MEL8 overlap with 

that of RING1B, the same is not so for PCGF5 targets (fig. 39A). This 

supports the lack of PCGF5 binding to RING1B observed in previous co-IP 

experiments (fig. 28B). Analysis of targets bound to both PCGF and 

H2AK119ub but not RING1B showed that while the majority of BMI1-

H2AK119ub targets co-bound to RING1B, only about half of PCGF5- and 

MEL18-H2AK119ub targets did the same (fig. 39B), suggesting that while 

BMI1 preferentially binds to RING1B, PCGF5 and MEL18 may bind equally to 

either RING1A or RING1B to form PRC1.  

 

To identify if there is a RING1B-independent function of PCGF5, we 

performed GO analysis which showed that whilst RING1B-PCGF5 shared 

targets are associated with mesodermal development such as hematopoietic 

and skeletal-muscular development; RING1B-independent PCGF5 targets, 

whilst still associated with mesoderm in the form of cardiovascular 

development, are additionally associated with metabolic processes such as 

protein synthesis and lipid metabolism (Table 10). The top 10 RING1B-

independent PCGF5 targets (Table 11) span a variety of lineages and 

processes. Microarray signal of these targets in d3.5 Bry+Flk1+ cells are 

mostly low, while non-targeted Bry displays a high microarray signal. This 

validates the hypothesis that PCGF5 is involved in repression. However, 

cross-reference of these 10 targets with H3K27me3 and H2AK119ub ChIP-

seq data in the same d3.5 Bry+Flk1+ population identified that only Cdh8 and 

Tbc1d30 are targeted by H3K27me3, and Lrrn3 and Dbpht2 are targeted by 
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H2AK119ub (Table 11), indicating that other gene regulatory mechanisms are 

likely to be involved in the control of these targets. 

 

To further identify PRC1-independent roles of PCGF, we identified PCGF 

targets that were not bound to H3K27me3, H2AK119ub or RING1B (Fig. 

40A). Although we cannot currently exclude the contribution of RING1A to 

this set of targets, we identified 1159 PRC1-independent targets of PCGF5, 

48 of which were identified by GO to be hematopoiesis-associated. 

Comparing the microarray data for each of the three cell populations (d3.5 

Bry+, d3.5 Bry+Flk1+ and d5.5 Flk1+), we further shortlisted 13 candidate 

genes that are more highly expressed in the two hematopoietic populations, 

compared to the non-hematopoietic d3.5 Bry+ population (fig. 40B). Future 

functional characterization of these candidate targets will reveal if they are 

involved in HSC generation and development.   
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(A) 

 
 
(B) 

 
 
Figure 39. PCGF5 peaks are not strongly associated with RING1B 
peaks.  
(A) Heat map of clustered density matrix showing binding densities of 
RING1B, BMI1, PCGF5 and MEL18 in the 2 Flk1+ ChIP-seq datasets, 
clustered according to RING1B binding sites. Each line represents a genomic 
location of a binding site ± 5-kb. (B) % of PCGF-H2AK119ub targets that co-
bind to RING1B.  

 

72 49 47

28
51 53

BMI1-H2AK119ub PCGF5-H2AK119ub MEL18-H2AK119ub

with RING1B no RING1B



 

 

138

 

Table 10. Top biological networks and pathways associated with 
RING1B-independent PCGF5 target genes. 
PCGF5 ChIP-seq peaks were identified with DFilter and overlapped with 
RING1B ChIP-seq in D3.5 Bry+Flk1+ cells. IPA was used to generate the list 
of networks associated with the biological, molecular and cellular functions of 
targets that do not overlap with RING1B. The network score is used to rank 
networks according to their degree of relevance to the network-eligible 
molecules in the dataset. 
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Table 11. List of top 10 RING1B-independent PCGF5 target genes.  
  

Gene Average microarray signal Function Targeted by  

Il15 10.37 
Regulates NKC, T-cell 
proliferation and activity 

- 

Fam98a N.A. 
Potential amplification 
of MAPK activation by 
EGF 

- 

Lrrn3 3.3 neuron-related H2AK119ub 

Ndufa4 5097.55 NADH dehydrogenase - 

Gm1140 4.95 No known function - 

Uty 5,1 Histone demethylase - 

Cdh8 3.9 

Mediates cell-cell 
adhesion; strongly 
expressed in dorsal 
claustrum 

H3K27me3 

Tbc1d30 N.A.  
GTPase-activating 
protein 

H3K27me3 

Nap1l3 9.45 

Modulate nucleosome 
structure & gene 
expression during brain 
development 

- 

Dbpht2 0.3 

Exclusively expressed 
in pituitary from E13.5-
15                                    
Downstream of Lhx3, 
which is critical for early 
pituitary development. 

H2AK119ub 

 
Bry 1338.75 Mesoderm marker - 
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(A) 

 

(B) 

 
 Figure 40. Potential PRC1-independent PCGF targets. 
(A) % of PCGF targets that do not simultaneously bind H3K27me3, 
H2AK119ub or RING1B. Numerals on each bar indicate numbers of PRC1-
independent targets in that group. (B) List of PRC1-independent PCGF5 
targets that are more highly expressed in hematopoietic populations d3.5 
Bry+Flk1+ and/or d5.5 Flk1+ compared to d3.5 Bry+, according to microarray of 
all three populations. 
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5.2.4 Potential novel method of RING1B-PCGF recruitment  
 

In D. melanogaster, PRC1 is recruited via Polycomb response elements 

(PREs). PRC1 is also believed to interact with H3K27me3 to recruit PRE-

bound complexes to the target gene via intralocus looping. However, 

equivalent PREs have yet to be identified in mammals283. Hence, the 

mechanism of PRC1 recruitment to target genes has yet to be fully solved. 

 

Analysis of the genomic annotation (fig. 41) and distance of peaks to 

transcriptional start site (TSS) (fig. 42) from d3.5 Bry+Flk1+ ChIP-seq samples 

indicates that whilst H3K27me3 and H2AK119ub peaks are located proximal 

to the TSS, the peaks of RING1B and PCGF homologues are spread out 

across the gene. The distal location of bound RING1B and PCGF suggests 

that DNA looping is also required to catalyze the H2AK119ub mark near the 

TSS during this stage. This is further supported by an increase in prevalence 

of the location of RING1B (71%) and PCGF (64-72%) peaks in intergenic 

regions, which are known to harbor enhancers284-285, compared to H3K27me3 

(39%) and H2AK119ub (49%) peaks (fig. 41). Enhancers also employ three-

dimensional DNA looping to facilitate proximal clustering of the locus control 

region, which may be located ten of kbs away, to the target promoter286-287. 

 

Regulatory Sequence Analysis Tools (RSAT) oligo-analysis programme was 

used to perform de novo motif finding based on peaks obtained from each 

ChIP-seq sample. Shortlisting the top 3 motifs by p-value, we identified a 

motif (TCCAGA) that was common to RING1B, BMI1 and PCGF5, but not 

MEL18 (Fig. 43) from d3.5 Bry+Flk1+ ChIP-seq data, as well as RING1B and 

BMI1 from d5.5 Flk1+ ChIP-seq data. This motif was found to contribute to 10-

20% of ChIP-seq target sequences (Table 12), and has low sequence 
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similarity to known motifs according to STAMP analysis288, which performs 

alignment, similarity and database matching for DNA motifs, suggesting that it 

is a novel motif that may be involved in PRC1 recruitment (fig. 44). In 

addition, another motif (CTTTCA) was identified as shared between RING1B, 

BMI1 and PCGF5 in only d3.5 Bry+Flk1+ ChIP-seq. This motif contributed to 

8-15% of ChIP-seq target sequences (Table 13), and also does not have high 

similarity to known motifs (fig. 45).  

 

Hence we identify a potential mode of recruitment of RING1B-PCGF variants 

to target promoters, involving DNA looping previously observed only in D. 

melanogaster but not yet in mammals.  
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Figure 41. Genomic annotation of d3.5 Bry+Flk1+ ChIP-seq targets. 
ChIP-seq peaks were annotated based on genomic location using 
Hypergeometric Optimization of Motif Enrichment (HOMER) software.   
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Figure 42. Distance of d3.5 Bry+Flk1+ ChIP-seq peaks to TSS.  
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Figure 43. Top 3 de novo motifs identified from RING1B and PCGF 
homologue ChIP-seq peaks.  
RSAT oligo-analysis software was used to perform de novo motif analysis on 
ChIP-seq data. Motifs are not listed in order.  
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Table 12. Rate of occurrence of TCCAGA motif in ChIP-seq samples.  
Number of times motif TCCAGA appears in ChIP-seq binding sequence 
identified by HOMER software. %occurrences calculated as a fraction of the 
total number of binding sequences.  
 
 

 

 
Figure 44. STAMP analysis of TCCAGA de novo motif. 
Identified motif TCCAGA was annotated with JASPAR and TRANSFAC 11.3 
databases, using information content trimming >0.4. 
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Table 13. Rate of occurrence of CTTTCA motif in ChIP-seq samples.  
Number of times motif CTTTCA appears in ChIP-seq binding sequence 
identified by HOMER software. %occurrences calculated as a fraction of the 
total number of binding sequences.  
 
 
 

 
 
Figure 45. STAMP analysis of CTTTCA de novo motif. 
Identified motif CTTTCA was annotated with JASPAR and TRANSFAC 11.3 
databases, using information content trimming >0.4. 
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5.3 SUMMARY & DISCUSSION 

 
In summary, we performed ChIP-sequencing of PRC1 components RING1B, 

BMI, PCGF5 and MEL18, as well as PRC1 and PRC2 histone marks 

H2AK119ub and H3K27me3 respectively, in ESC-derived differentiated cell 

populations that recapitulate YS and P-Sp hematopoiesis. Selected targets 

for each ChIP-seq were validated by ChIP-qPCR. We identified that a greater 

number of hematopoietic genes as determined by GO terms were repressed 

by PRC1 and PRC2, as identified by H3K27me3 and H2AK119ub binding 

respectively, in populations with less hematopoietic potential. Comparison of 

RING1B-BMI1 targets across all 3 ChIP-seq populations identified shared as 

well as unique targets for each population. Notably, several genes uniquely 

targeted in particular sectors were found to be associated with the expected 

hematopoietic program of that sector. RING1B-BMI1 was found to target 

several Hox genes, which are well-known targets of PRC1. The gene 

expression profiles of several PRC1-targeted Hox genes corresponded to the 

presence or absence of binding by gene-silencing histone marks H3K27me3 

or H2AK119ub. Together, these results provide evidence to support that the 

ChIP-seq went well, and that functionally accurate data can be derived from 

it.  

 

DNA microarray further verified the high expression of 3’ Hox genes not 

targeted by RING1B-BMI1, and low expression of 5’ Hox genes targeted by 

RING1B-BMI1 in the reaggregated d5.5 Flk1+ population, indicating the likely 

involvement of the Bmi1-PRC1 complex in Hox gene regulation during P-Sp 

hematopoiesis. GO analysis of PCGF-RING1B overlapping targets revealed 

that while BMI-RING1B appears to target neural lineages, PCGF5-RING1B 

targets mostly mesodermal lineages, while MEL18-RING1B does not appear 



 

 

149

to target any particular lineages, indicating that the different PRC1 variants, 

as differentiated by their partner PCGF subunit, may function simultaneously 

to regulate various targets or lineages during different stages of development. 

This was further supported by evidence that while PCGF5 targeting alone 

regulates p63 gene expression, both PCGF5 and BMI1 appear to be required 

to regulate Dkk1 across YS and P-Sp hematopoietic populations. In addition, 

the relatively large proportion of PCGF5 targets that do not overlap with 

RING1B targets suggests that a potential PRC1-independent role of PCGF5 

remains to be explored. PRC1-independent binding of BMI1 was previously 

suggested be involved in induction of DNA damage sites289, indicating that 

PRC1-independent functions may be common to PCGF homologues. Finally, 

evidence that PRC1 components and H2AK119ub/ H3K27me3 bind at 

different sites, as well as identification of a novel de novo motif common to 

RING1B, BMI1 and PCGF5, suggests that DNA looping may be required to 

recruit PRC1 for monoubiquitination at targets sites.  

 

Despite canonical knowledge that PRC1 is recruited in response to 

H327me3, the mechanism of PRC1 recruitment remains a mystery, 

particularly in mammals. In D. melanogaster, the DNA-binding proteins 

Pleiohomeotic (PHO) and PHO-like (PHOL) recruit PRC1 to the PRE 283,290-

291. Mutation of PHO or PHOL leads to Hox gene silencing defects, while 

mutation of PHO-binding sites inhibits silencing and dislodges PRC1 from the 

PRE292-293, reflecting the requirement of PHO or PHOL for PRE-mediated 

silencing. However, PHO-binding sites are not sufficient for Polycomb 

silencing; additional DNA-binding factors such as GAGA factor, Pipsqueak, 

Zeste, Protein dorsal switch 1 (DSP1), Specificity protein 1 (SP1), Luna and 

Grainyhead have also been identified, although their involvement in vivo has 
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yet to be verified167,294,.  On the other hand, in the mammalian system only 

several recruiters have been proposed. Yin and yang 1 (YY1), a PHO 

homologue, has been identified as a potential recruiter295. However, the 

limited overlap of YY1 and PRC2 in mouse ESCs suggests that YY1 is not a 

major recruiter180. PRC1 interaction with H3K27me3 has also been proposed 

to facilitate interlocus looping, allowing the PRE-bound complex to further 

silence the target locus283. Hence, the variety of mechanisms proposed 

suggests that PRC1 recruitment may be cell- and gene- specific, to allow for 

greater variation in regulating the more complex mammalian system.  

 

Our identification here of two novel DNA binding motifs shared between 

RING1B, BMI1 and PCGF5 is a step towards identifying a PRE-like unit in the 

mammalian system. The shared motif also highlights the potential competition 

between BMI1 and PCGF5 in PRC1-mediated repression. PCGF homologues 

are known to have non-redundant functions, with different family members 

pairing with RING1B exclusively to form distinct PRC1 variants with different 

targets. Our results suggest an added facet in the form of competition for 

target binding between PRC1 variants, further substantiating the non-

redundancy of PCGF homologues. Validation of the identified motifs and 

hypothesized method of PRC1 recruitment may be tested in future using 

methods including Chromosome Conformation Capture (3C), in which 

chromosomal interactions can be observed and quantified using PCR in 

cross-linked interacting DNA segments296-297; or Chromatin Interaction 

Analysis by Paired-End Tag Sequencing (ChIA-PET), which incorporates 

ChIP on top of 3C-type analysis, allowing it to analyze chromatin interactions 

between specific DNA- or chromatin-interacting proteins298-299. However, a 

major obstacle is the fact that standard protocols for these methods involve 
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large numbers of cells, which are not feasibly obtained with our current 

differentiation protocols. Hence, small-scale protocols of these methods will 

first have to be developed and optimized before we can further elucidate how 

PRC1 is recruited for epigenetic regulation during hematopoietic 

development. 

 

The PCGF family is involved in chromatin compaction, similar to the 

homologous Psc family found in Drosophila. While PCGFs are almost 

exclusively studied as part of PRC1, Psc is known to function in a PRC1-

independent manner, promoting follicle stem cell differentiation by inhibiting 

self-renewal300. From our experiments, we find that a large number of PCGF5 

targets do not overlap with RING1B targets. This may be due to several 

reasons: 

 

1. PCGF5 preferentially interacts with RING1A instead of RING1B 

2. PCGF5 has PRC1-independent function 

The canonical PRC1 complex contains RING1A/B, which are closely related 

and have overlapping functions in development301-302. However, Gao et al 

suggest that despite this widespread assumption, MEL18 appears to 

associate preferentially with RING1B, while BMI1 and PCGF5 associate 

preferentially with RING1A172. Despite this finding, numerous previous studies 

have successfully characterized and validated PRC1 function based on 

RING1B data alone173-175. In line with evidence that PRC1 function may be 

cell- and tissue- specific, future work including co-IP experiments can further 

verify if PCGF5 indeed preferentially binds to RING1A during hematopoietic 

development.  
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The second hypothesis presents an exciting, novel scenario: that PCGF5, like 

Psc, may have similar PRC1-independent functions. Bmi1 is known to be 

expressed in intestinal stem cells303, but similar non-PRC1 associated 

functions of PRC1 components have yet to be well characterized. Such a 

study would bring new insight into the role of PCGF homologues, for example 

whether repression previously attributed to PRC1 may in fact be mediated by 

RING1B-independent PCGF activity, and if so, how repression is executed. 

This may involve PCGF-mediated chromatin compaction that is sufficient for 

gene silencing, or recruitment of other repressors induced by PCGF binding. 

Alternatively, RING1B-independent PCGF may also be involved in entirely 

different functions aside from epigenetic regulation.  
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CHAPTER 6: 

CONCLUSION 
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6.1 Summary & concluding remarks 

 

This thesis focuses on the developmental processes involved in early 

embryonic hematopoiesis, using both in vivo and in vitro derived populations. 

The main conclusions derived from our study are that only a small number of 

genes distinguish the transcriptome profiles of YS and P-Sp hemangioblast 

derived colonies, despite their distinct hematopoietic potentials. We also 

characterized the simultaneous roles of PRC1 variants, including that of novel 

PCGF5-PRC1, in epigenetic regulation during the transition from YS to P-Sp 

hematopoiesis. We also identify a potential mechanism for PRC1 recruitment 

in mammals, previously found only in D. melanogaster.  

 

To provide a comprehensive view on the thesis, future work may include 

studying whether the PRC1 functions and mechanisms identified are similarly 

active during the developmental period described in part 1 of the thesis, i.e. 

during development of the YS and P-Sp hemangioblast-derived colonies. 

Preliminary data indicates that PRC1 components do indeed target Bex6 and 

selected prolactins in both d3.5 Bry+Flk1+ and d5.5 Flk1+ populations (Fig. 

46A, B). Bex6 is silenced in both populations according to microarray data 

(Fig. 46C), which may be explained by the ChIP-seq data that identifies 

strong PCGF5 binding to Bex6 in the earlier population, and slightly increased 

binding by BMI1 in the later population. Whether PCGF homologues similarly 

regulate Bex6 and other prolactin targets in the same coordinated manner 

identified in Dkk1 regulation remains to be identified. 

 

Our results have also thus far identified a correlation between PRC1 targets 

and transcriptional repression; however, further experiments are required to 
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validate this relationship. Knockdown of PRC1 components, particularly of 

PCGF homologues BMI1, PCGF5 and MEL18, in d3.5 Bry+Flk1+ and d5.5 

Flk1+ populations followed by ChIP-seq would verify PRC1 targets identified 

in our current screen, while that followed by ChIP-qPCR would validate the 

causal relationship between PRC1 component binding and transcriptional 

repression of the target. 

 

Whilst the initial goal of my project was to identify key factors important for 

HSC generation and development, my thesis has turned out to contribute 

more towards the understanding of PRC1 and its variants, particularly during 

hematopoietic development. The work described further supports published 

evidence of the redundancy of PRC1 components, particularly that of PCGF 

homologues; and further identifies the role of simultaneously active PRC1 

variants in regulating targets either independently or in a coordinated manner. 

While previous work by Tavares et al180 and Gao et a172 raises the question of 

how PRC1 is recruited, my results provide a potential answer in the form of 

two de novo motifs that may be involved in facilitating a looping mechanism 

that recruits PRC1 at a location distant from the epigenetically-targeted 

promoter. Identification of potential chromatin structures using 3C or ChIA-

PET, and site-specific mutation of the de novo motifs to determine if target 

binding is affected, are some experiments that can be carried out in future to 

validate this hypothesis.  These results would thus provide long-awaited 

insight to PRC1 recruitment in the mammalian system. 

 

With newfound insight derived from our results that hematopoietic fate 

specification may occur much earlier than at day 4 of hemangioblast-derived 

colony development, we now understand that transcriptome comparison of 
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earlier embryo-derived colonies (i.e. < day 4) might have yielded a greater 

number of differentially-expressed genes with greater potency in influencing 

hematopoietic fate. Indeed, with recent advancements in microfluidics, 

technologies such as Fluidigm’s powerful C1 Single-Cell Auto Prep system304 

can not only track single-colony gene expression profiles from day 0 to day 4 

of colony development, but also potentially enable ChIP-seq of PRC1 

components in single colonies, providing detailed snapshots of the 

transcriptome as well as epigenome previously unavailable at the time.  

 

We originally aimed to perform ChIP-seq on all the PCGF homologues, i.e. 

BMI1, PCGF5 and MEL18, across all three cell populations (d3.5 Bry+, d3.5 

Bry+Flk1+ and d5.5 Flk1+). Unfortunately, due to various reasons, including 

the limiting number of d5.5 Flk1+ cells that could be generated, we were 

unable to perform PCGF5 and MEL18 ChIP-seq on d3.5 Bry+ and d5.5 Flk1+ 

populations, comparisons of which would have yielded great insight into the 

roles of PCGF5 and its homologues in hematopoietic development. 

Nonetheless, the current dataset has proven to be biologically relevant and 

has generated several interesting questions regarding the role of PRC1 and 

its components in hematopoietic development. Future work aimed at further 

elucidating the function of PRC1 variants will benefit by building upon the 

current dataset with PCGF5 and MEL18 ChIP-seq in d5.5 Flk1+ cells, which 

would allow us to compare RING1B-PCGF targets across the 2 

hematopoietic populations recapitulating YS and P-Sp hematopoiesis; as well 

as RING1A ChIP-seq to fully exclude PRC1 involvement, to better identify 

and characterize PRC1-independent PCGF function in epigenetic regulation, 

as well as any potential non-epigenetic roles in hematopoietic development. 
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The goal of research is ultimately for the benefit of society, whether directly 

via translation into clinical applications, or indirectly by increasing the pool of 

knowledge that others may build on. While current results do not yet provide 

a direct link between Pcgf5 activity and hematopoietic diseases, it is known 

that deregulation of BMI1 can affect PRC1-mediated repression, and 

overexpression of BMI1 is associated with a range of solid tumours including 

lung, breast, colon and prostate, as well as in malignant hematopoietic 

cancers305-307. Given that PCGF5 is closely related to BMI1 and has high 

sequence similarity, it is possible that defects in PCGF5 are similarly involved 

in disease progression. If so, we hope that the insight gained from this work, 

as well as the novel finding of PCGF5-mediated regulation in hematopoietic 

development, will eventually benefit patients by improving the diagnosis and 

treatment of hematopoietic diseases.  
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 (C)  

  
d3.5 

Bry+Flk1+ 
d5.5 
Flk1+ 

Bex6 - - 

Plf1 8.5 6.5 

Plf2 19.2 12.15 

Csh1 - - 

Prl4A1 6.8 3.1 
 
Figure 46. PRC1 regulation of Bex6 and prolactin targets.  
UCSC Genome Browser peak values of Bex6 and selected prolactin targets 
in (A) d3.5 Bry+Flk1+ ChIP-seq and (B) d5.5 Flk1+ ChIP-seq. (C) Average 
microarray values of Bex6 and selected prolactins in d3.5 Bry+Flk1+ and d5.5 
Flk1+ populations. (-) indicates no expression value obtained for that gene.   
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