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SUMMARY

This dissertation contains three chapters on the contracting prob-

lem under subjective performance evaluation. The first two chap-

ters mainly deal with the money burning contract in a single agent

model, complementing the existing literature in understanding the

optimal contract form under subjective performance evaluation. The

third chapter extends the work into a multi-agent model, investi-

gating the implications of subjective performance evaluation and

money burning in a team environment.

In chapter one, I review the work of William Fuchs (2007, AER),

who proposes that to implement that an agent exerts effort in ev-

ery period of a finitely repeated 0-1 effort choice game, the prin-

cipal should penalize the agent by money burning only when he

observes low-performance signals in every round. While he is min-

imizing the expected money burning, we show that Fuchs’ mecha-

nism also often maximizes the up-front payment that the principal

has to incur for his objective. This dichotomy arises because min-

imizing expected money burning is not necessarily the dual of the

principal’s profit maximization problem. For the latter, the principal

is better off to rely, most of the time, on disciplining the agent by

burning money at even the slightest hint of shirking in any round

and increase it with more and more evidence of shirking. In law

and economics, this mechanism is known as penalty fitting the

crime. Also it is shown that the principal is (weakly) better off not

to carry out interim performance evaluation or engage in interim

money burning. These results are derived in a two-period game.

In chapter two, I further investigate the more fundamental prob-

lem in the literature on subjective evaluation: the result of wage

compression, based on the work by MacLeod (2003, AER), in ad-

dition to the previous observation on Fuchs (2007). Optimal effort

incentives in contracting under subjective evaluation recommend
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that the principal should burn money to slash rewards only when

the agent’s performance is at its worst possible, but otherwise there

should be no penalty and the rewards should be uniform. This ex-

treme wage compression hypothesis has been established in two

alternative formulations: (i) a static model of a profit-maximizing

principal dealing with a risk-averse agent whose utility of money

is unbounded from below (MacLeod, 2003), (ii) a finitely repeated

game with risk-neutral agent but the principal pursues a social effi-

ciency objective (Fuchs, 2007). Modifying the principal’s objective

from social efficiency to profit maximization in Fuchs’ model, and

in MacLeod’s model by allowing for more general risk preferences

(including risk neutrality) and dropping the assumption of ruin (neg-

ative unbounded utility/Inada condition at zero consumption), the

optimal contract is shown to be either of the pay for performance

type where rewards gradually improve with performance (Holm-

strom, 1979; Harris and Raviv, 1979), or one of moderate wage

compression with zero reward below a threshold performance and

full reward above the threshold, similar to Levin’s (2003) termina-

tion contract. The extreme wage compression result with money

burning (or penalty) restricted to a single low incidence, worst per-

formance signal is thus a special case of more general possibilities.

In chapter three, I study the optimal contracting problem under

subjective performance evaluation in teams. We find that, absent

verifiability the principal relies on subjective evaluation of team per-

formance and must burn money for poor performance, which can

be interpreted as passing on the rewards to non-critical employees.

Such “must spend” mechanisms along with discriminatory treat-

ment of agents tend to create a culture of sabotage that it might not

be possible for the principal to prevent. And even when sabotage

can be deterred, its very possibility may increase the costs of im-

plementing full team efforts. Ultimately, the power of subjective per-
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formance evaluation gets eroded due to back-stabbing and schem-

ing within teams. Given that money burning, or blatantly wasteful

spending, is not really a choice for most organizations, one might

be left with only a scheming group. This is in addition to the familiar

problem of collusion encountered in team settings.
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CHAPTER 1

Revisiting Money Burning in Performance Evaluation

1.1 Introduction

Asking an agent to perform a task repeatedly, exert effort or shirk, when

the principal privately observes (signals of) the agent’s performance but

not effort choices is a natural extension of the issue of subjective per-

formance evaluation, earlier studied by Bentley W. MacLeod (2003) and

Jonathan Levin (2003). William Fuchs (2007) analyzes this incentive

provision problem with a number of interesting observations on: (i) how

the agent should be rewarded or penalized over time as the principal

closely follows the agent’s track record, (ii) should the agent be given

real time feedback, (iii) how sensitive the rewards should be to the inter-

temporal structure of performance, etc. Among these, one particular ob-

servation is quite striking. The author notes that in the finitely repeated

game the principal should penalize the agent by burning money only

when the agent’s performance exhibits the extremely unlikely sequence

of all low signals. Taken literally, when T = 10 the principal penalizes the

agent when (σLσL...σL︸ ︷︷ ︸
10 times

) materializes whereas in all other 210 − 1 other

sequences of signals involving at least one σH , the agent is completely

let off the hook, i.e., no money will be burnt to slash a prior committed

exogenous reward of w. See Proposition 3 in Fuchs’ article.
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In this paper, we review the above recommendation of Fuchs. The

observation is striking because most organizations, we believe, are un-

likely to adopt such a ‘generous’ approach to incentivize their employees.

One may also want to be careful in labelling the incentive as generous

because when all low signals do materialize, the money burnt will be sub-

stantial. That is, the penalty is huge. But then the principal-committed

rewards must be very large too unless, of course, the agent puts up

a significant amount in bond before agreeing to work for his employer.

Let’s say most employment situations do not require such bonds. Then

the principal must fork out the big rewards mainly to threaten the agent

to blow it up when all signals stack up against the agent. We are going

to argue that if the objective of the incentive mechanism is to minimize

the principal’s implementation costs of inducing the agent to exert efforts

in all of T rounds, the principal ought to penalize the agent at the slight-

est hint of shirking and follow the standard law-and-economics doctrine

of penalty fitting the crime (see, for instance, James Andreoni (1991),

or Steven Shavell (1991)). Our suggested mechanism is noteworthy as

it contrasts sharply with the one in Fuchs (2007). And in terms of de-

scription of organizational behavior ours is perhaps closer to the actual

practice than one prescribed by Fuchs, although we do not claim to take

a definite stand on this.

At this stage we should note that Fuchs’ result derives from an en-

tirely different premise, maximization of the objective of social optimality

rather than minimization of principal’s costs. Social optimality requires

minimization of expected money burning, as it is a deadweight loss, sub-

ject to implementation of agent efforts in all T rounds. But if one wants

to understand organizational behavior, the relevant objective should be

the principal’s profit maximization or, equivalently for any sequence of

efforts, cost minimization, which under appropriate assumption amounts
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to minimizing the maximal amount of money burning needed over all

sequences of signal realizations for the targeted efforts. Only in some

situations with rather weak associativity between effort and high perfor-

mance signal, the two objectives will yield identical penalties (or money

burning). In this paper, we complement Fuchs (2007) by shifting the

focus from social optimality to principal’s cost minimization.

Besides suggesting that the agent’s penalty based on performance

should be of the more conventional type, we also show that for the mod-

ified objective the principal should provide no interim feedback just like

what Fuchs has argued. Instead, the principal should wait till the end

and burn money in proportion to the evidence of low performance in all

the rounds combined.

The rest of the paper is organized as follows. In the next section we

present the model. Our main analysis and the results are contained in

sections 3 and 4. We close with some final remarks in section 5. Proofs

appear in the Appendix.

1.2 The model

A risk-neutral principal involves a risk-neutral agent in a T -period re-

peated efforts game. In each period the agent can either exert one unit

of effort or shirk, et ∈ {0, 1}, with effort costing the agent c > 0. There is

no discounting by the principal or the agent. The principal does not ob-

serve the agent’s effort choice but receives a private signal σt ∈ {σH , σL}

of agent performance that cannot be disclosed verifiably. During a par-

ticular round the performance signal depends only on the effort in that

round as follows:

Pr[σt = σH | et = 0] = p0, Pr[σt = σH | et = 1] = p1,

with 0 < p0 < p1 < 1.
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At the end of T periods, the principal will report the performance

signals ST ∈ Σ = {σ1σ2...σT}. Let wP (ST ) be the amount of money

pre-committed to be spent by the principal for any reported profile of

performance signals. Due to the subjective performance evaluation, the

principal has to pay a fixed amount regardless of the signal profile in or-

der for him not to misreport the signals. However, to incentivize the agent

to exert effort, the reward should be contingent on the reported perfor-

mance ST . Thus, the agent should not receive all the money paid by the

principal under some circumstances so that budget balance may break

down, which formally amounts to money burning.1 Denote the fixed bud-

get for the principal as wP (ST ) = W , the contingent reward for the agent

as wA(ST ), and the amount of money burning as z(ST ). We use bold

symbols wA(Σ) and z(Σ) to denote vectors of rewards and money burn-

ing corresponding to signal profiles ST ∈ Σ. Formally, the contract is

defined as:

ω ≡
(
W, z(Σ),wA(Σ)

)
, where

W = wA(ST ) + z(ST ) ∀ST . (1.1)

Given the above, we will write simply ω ≡ (W, z(Σ)) to refer to the incen-

tive mechanism.

Let e = (e1, · · · , eT ) be the agent’s efforts over T rounds. Denote the

probability of signal profile ST conditional on e by P (ST | e). Given the

incentives, the agent’s expected reward can be written as:

V (e) = E
(
wA(ST ) | e

)
− cΣ

t
et

= W − Σ
ST
z(ST )P (ST | e)− cΣ

t
et. (1.2)

1See MacLeod (2003), who proposed the idea of money burning to solve the prob-
lem of subjective performance evaluation. Fuchs (2007) also shows a similar result.
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We assume that no interim feedback or payment/money burning is

allowed.2 The time line of the game is as follows:

1. At time zero, a contract (W, z(Σ)) is signed between parties;

2. At each period t = 1, 2, ..., T , the agent decides whether to exert

effort on the principal’s project or shirk and the principal receives a

performance signal at the end of the period;

3. At the end of T periods, the principal reports the performance sig-

nal profile ST and makes the payment wA(ST ).

The incremental expected value of output in any period following

change from e = 0 to e = 1 in that round is assumed to be large enough

so that the principal wants to design an incentive compatible rewards

scheme (W, z(Σ)) to uniquely implement e∗ = (1, 1, ..., 1) at minimal W .3

Formally, the principal solves the following problem:

min
W,z(Σ)

W (P1 )

s.t. (Incentive Compatibility) e∗ ∈ arg maxV (e), (1.3)

(Limited Liability) W − z(ST ) ≥ 0 ∀ST , (1.4)

z(ST ) ≥ 0 ∀ST . (1.5)

Incentive compatibility (1.3) and limited liability (1.4) will guarantee agent’s

participation constraint V (e∗) ≥ 0. Let us denote by ω? := (W ?, z?(Σ)) the

optimal money burning contract solving problem (P1 ) that implements

e∗.
2We will relax this assumption later.
3Proposition 3 in Fuchs (2007) mentions implementation of agent exerting efforts in

all periods. In his Lemma 2, Fuchs states that the principal can always offer a payoff-
equivalent contract with the agent exerting efforts in every period.
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1.3 The optimal mechanism of Fuchs (2007)

Fuchs (2007) studied the same T -rounds effort implementation problem

using a money burning contract but with an important difference: instead

of principal’s reward costs, the author minimized expected money burn-

ing. The idea must have been that since money burning is a social loss,

minimizing its expected value solves the second-best program.4 Thus,

Fuchs actually solved the social planner’s problem and his optimal con-

tract characterization is not necessarily the same as maximizing the prin-

cipal’s selfish surplus maximization objective. It is this latter task that we

focus on. In order to highlight the contrast between our optimal mecha-

nism and that of Fuchs, next we report Fuchs’ formulation of the problem,

the associated mechanism and some of its properties.

Fuchs’ principal solves:5

min
z(Σ)

E
(
z(ST ) | e∗

)
(P2)

s.t. (1.3) and (1.5).

We can now see the difference between our optimization problem (P1 )

and Fuchs’ problem ( P2 ). Take any solution z(Σ) to ( P2 ) and define

W = maxST {z(ST )} so that it satisfies, by construction, (1.4); thus so-

lution to problem ( P2 ) cannot dominate, in terms of principal’s imple-

mentation costs, the solution to problem (P1 ). But it is possible that
4Fuchs first defined the optimal contract without money burning from the principal’s

point of view to be one that maximizes expected discounted value of output net of the
wages (see section I), then he looked at the case with money burning (section II). For
the latter, his optimal contract exhibits two characteristics: no interim feedback and
transfers or money burning until in the last period (Lemma 1), and the agent exerts
efforts in every period (Lemma 2). In our formulation, initially we assume no-interim-
feedback and incremental per-period output from effort to be high enough to justify
implementation of e∗ = (1, 1, ..., 1) as part of the principal’s cost-minimizing contract
under no discounting that would also maximize his net private surplus. Later on we
verify no-interim-feedback to be optimal.

5Here we take it as given that the principal would induce e∗.
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there is some other z̃(Σ) satisfying (1.3) and (1.5) that do not solve

problem ( P2 ), yet maxST {z̃(ST )} < maxST {z(ST )}; such a case is il-

lustrated in Fig. 2.1 in section 5 and will be more explicitly shown in

Proposition 2. Now define W̃ = maxST {z̃(ST )} so that (W̃ , z̃(Σ)) satisfy

(1.3)-(1.5) and thus strictly dominates (W, z(Σ)) for the principal’s cost-

minimization problem (P1 ). In other words,

PROPOSITION 1 (Failure of Fuchs’ mechanism for cost minimiza-

tion). Fuchs’ optimal money burning mechanism may fail to achieve

the minimal e∗-implementation costs for the principal and can never do

strictly better than the solution to problem (P1 ).

The above observation does not tell us yet when Fuchs’ mechanism

might fail in achieving principal’s cost-minimization objective. To answer

this we need to solve for the optimal money burning mechanism for the

problem (P1 ), which we address in the next section. Below we study

Fuchs’ mechanism more closely.

Fuchs’ money burning mechanism can be explicitly written as follows

(derives from Proposition 3 in Fuchs (2007)):



wA = W − Z if ST = σLσL...σL (i.e. σt = σL ∀t)

wA = W otherwise,

where Z =
c

(p1 − p0)(1− p1)T−1

W = max

{
c

(p1 − p0)(1− p1)T−1
, T c+

(1− p1)c

(p1 − p0)

}
.

To minimize the expected amount of money burning, the agent’s penalty

takes a positive value, Z, only when the signals in all T periods are low,

and in all other cases with at least one high signal the money burning

is zero. The probability that all signals will be low is very small, imply-

ing Z must be very high for it to threaten the agent to exert efforts in all

the periods. This becomes clear from Fuchs’ optimal contract: Z upon
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worst performance is increasing very fast with T or p1. Along with this,

W is pushed up by the requirement that the agent’s reward must be non-

negative: wA = W − Z ≥ 0. Intuitively, by penalizing the agent with

an extremely low frequency, the money burning upon the worst situation

and the corresponding budget to cover for the money burning becomes

very large. After all, the principal would design incentives with his own

costs in mind rather than just saving wasteful money burning in expected

terms. The point of our exercise is to clarify this aspect, the contrast be-

tween what might be socially optimal and what the organization should

prefer. Social optimality, as shown by Fuchs’ analysis, recommends an

extreme and unlikely penalty prescription. As we will see in the next

section, an organization should like to adopt a more routine approach to

penalty: find out the number low signals of performance and penalize in

an increasing order.

1.4 Cost-minimizing money burning: Two-period

case

In this section, we analyze the optimal money burning incentives for the

cost-minimization objective of the principal. The basic message can be

easily conveyed by studying a two-period effort implementation problem.

Initially we proceed under the assumption of no interim money burning,

then we discuss its plausibility.

� No interim money burning. A principal hires an agent to work

for two periods without discounting. The agent’s strategies are (e1, e2) ∈

{(1, 1), (1, 0), (0, 1), (0, 0)}, and possible signals, ST , are {σHσH , σHσL, σLσH , σLσL}.

The incentives can be written as ω = (W, z(Σ)), where z(Σ) = {zHH , zHL, zLH , zLL}.

The agent’s payoffs in the repeated efforts game is illustrated in Fig. 1.1.
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AGENT

0

0

V (0 , 0 )

1

V (0 , 1 )

1

0

V (1 , 0 )

1

V (1 , 1 )

Figure 1.1: Repeated efforts game

The principal wants to induce (e1, e2) = (1, 1) at minimal costs:

min
W,z(Σ)

W

s.t. (1, 1) ∈ arg maxV (e1, e2),

W − z(ST ) ≥ 0,

z(ST ) ≥ 0.

Solving the principal’s problem, we can characterize the optimal con-

tract as follows:

PROPOSITION 2 (Optimal money burning contract).

(I) If p1 >
1
2

and p1 + p0 > 1,

W = 2c
(p1+p0)(p1−p0)

, zHH = 0 , zLH = zHL = zLL = 2c
(p1+p0)(p1−p0)

.

(II) a. If p1 >
1
2

and p1 + p0 = 1,

W = 2c
p1−p0 , z

HH = 0 , zLL = 2c
p1−p0 ,

zLH , zHL ∈ [ c
p1−p0 ,

2c
p1−p0 ] and p1z

HL ≥ p0z
LH + c , p0z

HL ≥

p1z
LH − c .

b. If p1 >
1
2

and p1 + p0 < 1,

W = 2c
p1−p0 , z

HH = 0 , zLH = zHL = c
p1−p0 , z

LL = 2c
p1−p0 .

c. If p1 = 1
2
,

9



W = c
(1−p1)(p1−p0)

, zHH = 0 , zLH = zHL ∈ [0, c
p1−p0 ] , zLL =

2c
p1−p0 .

(III) If p1 <
1
2
,

W = c
(1−p1)(p1−p0)

, zHH = zLH = zHL = 0 , zLL = c
(1−p1)(p1−p0)

.

Thus, the optimal money burning scheme depends on the signal gen-

erating technology. When p1 >
1
2

and p1 +p0 > 1, the punishment is most

severe and extensive: all money will be burnt unless good signal is re-

ceived for both periods. This technology implies that, either p1 is quite

high or both p1 and p0 are fairly high. If p1 is close to 1 say, exerting

efforts will generate high signals almost surely, so a low signal is an indi-

cation of shirking rather than bad luck; if both p1 and p0 are high, shirking

also has a good chance of generating a high performance signal, thus

shirking should be deterred by penalizing when at least one low perfor-

mance signal is realized. When p1 >
1
2

and p1 + p0 ≤ 1, it implies that the

difference in the probabilities of generating a high signal when the agent

exerts effort vs. when he shirks is going to be non-trivial (p1 > 1
2

but

p0 <
1
2
), thus the choice of effort or shirking is very likely to be reflected

in the signal generated: signals, although imperfect, are informative. In

this case, the money burning scheme is also realistic: all money is burnt

if both periods see the low signals; partial money is burnt upon a combi-

nation of one low and one high signal. That is, penalty is proportional to

(or fits) the “crime” – a general dictum of the law and economics literature

(Andreoni, 1991; Shavell, 1991). When p1 ≤ 1
2

so that the high signal is

less likely than the low signal with agent exerting effort, i.e. in the case of

weak informativeness of high signal, money burning happens only when

both periods have low signals, which coincides with Fuchs’ social effi-

ciency maximization prescription:

Minimization of expected money burning. When T = 2, the expected

10



money burning minimization contract of Fuchs (2007) is given by:

W =
c

(1− p1)(p1 − p0)
, zHH = zLH = zHL = 0 , zLL =

c

(1− p1)(p1 − p0)
.

In this last case, while high signal does not suggest a strong evidence

of agent’s effort, low signal on the other hand would imply a high chance

that the agent did not exert effort: p0 <
1
2
. That is, rather than the high

signal, its absence is more indicative. With p0 < p1, the principal can rely

on the signals’ informativeness (as monotone likelihood ratio property

[Milgrom, 1981] will be satisfied) to determine money burning.

Comparing the two contracts – ours and that of Fuchs – we can see

that when T = 2, the solution to Fuchs’ problem is optimal for our prin-

cipal only if p1 ≤ 1
2

as illustrated in part (III) of Proposition 2. In parts

(I) and (II) when the chance of generating high signal upon effort is high

(p1 >
1
2
), it is necessary for the principal to burn money upon medium

signal profile. Otherwise, it results in insufficient incentives: the agent

would work only for one period with the plan of generating either sig-

nals σHσL or σLσH . However, when the probability of generating the high

signal is not very high even if effort is exerted, money burning does not

happen for medium signals since maximum efforts may also lead to this

situation. Therefore, any punishment upon medium signal profile would

be damaging for effort incentives. In this case, the problem of minimizing

expected money burning coincides with our principal’s problem.

It is also clear that Fuchs’ socially efficient contract often results in a

“maximal” budget for the principal. That is, whenever our optimal con-

tract differs from Fuchs’ optimal contract (as in parts (I) and (II) of Propo-

sition 2), the following two hold:

1. Maximum money burning across all signal profiles in Fuchs’ contract

11



> maximum money burning in our setting;

2. Expected money burning in Fuchs’ contract < expected money burn-

ing in our setup.

Observation [1] above was already hinted at in Proposition 1.

� Interim money burning. We now address the question of interim

performance evaluation.6 With that in mind, consider interim money

burning in the two-period game. Suppose after period one the principal

announces the realized signal, and carries out the corresponding first-

period money burning z1 ∈ {zH1 , zL1 }; after period two, the second signal

is reported and the follow-up money burning z2 ∈ {zHH2 , zHL2 , zLH2 , zLL2 }

takes place. Now the agent’s incentives can be structured in a more

piecemeal manner targeted towards each period’s effort separately. Is it

any better than trying to control two individual efforts with one penalty in-

strument? In Proposition 4 below we answer this in the negative, but first

we report the optimal incentives under interim performance evaluation.

PROPOSITION 3 (Optimal contract with interim money burning). For

full efforts implementation e∗ = (1, 1), the interim money burning contract

that minimizes principal’s budget is as follows:

W =
2c

p1 − p0

zH1 = 0 , zHH2 = 0 , zHL2 =
c

p1 − p0

zL1 ∈ [0,
c

p1 − p0

] , zLH2 =
c

p1 − p0

− zL1 , zLL2 =
2c

p1 − p0

− zL1 .

It is reasonable not to punish the agent if first period’s or both periods’

performance is good (zH1 = 0, zHH2 = 0). However, if the first-period

6Issues of interim performance evaluation are starting to gain recognition in for-
mal models with the works of Alessandro Lizzeri, Margaret Meyer and Nicola Persico
(2003), Alex Gershkov and Motty Perry (2009), and Masaki Aoyagi (2010), among oth-
ers.
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performance signal turns out to be bad, the optimal contract shows that

the principal need not burn interim money: zL1 can take the value of 0.

It is the total money burning that matters to the principal (zL1 + zLH2 =

c
p1−p0 and zL1 + zLL2 = 2c

p1−p0 ). Whatever amount of money is burnt in

the first period, the principal will ‘top up’ the penalization in the second

period to the targeted total amount. This observation tells us that interim

feedback (only information communication without actual actions) and

actual interim money burning have the same effect. This is intuitive as

the agent can account for the expected wage reduction at the end of

period 1 following an interim report of a bad performance, when it is not

followed by immediate (or interim) money burning.

Next, we show that sometimes interim money burning can actually be

an inefficient arrangement from principal’s point of view:

PROPOSITION 4 (Sub-optimality of interim money burning). For full

efforts implementation e∗ = (1, 1), interim money burning contract takes

the same form as the optimal contract without interim money burning if

p1 ≥ 1
2

and p1 + p0 ≤ 1; otherwise, it leads to a higher budget for the

principal.

One way to understand why interim feedback and the associated

money burning may increase principal’s costs is to go back to the incen-

tives in Proposition 2. There, money burning without interim feedback

sometimes prescribed either no money burning if at least one of the

two signals is high (part III), or burning all money if at least one of the

two signals is low (part I). With this extreme penalty structure, if interim

feedback is introduced then keeping the total amount of money burn-

ing unchanged over the same two-period signal profile(s) will damage

the agent’s first- and/or second-period effort incentives as follows. Con-

sider case (I) and let us recall our observation following Proposition 3

that interim money burning is equivalent to interim feedback with only

13



one-time money burning in the end. Now let us see what happens if we

were to take the incentives of Proposition 2 and apply it after engaging

in only interim feedback. This will clearly destroy the agent’s second-

period effort incentive following low realization of the first-period signal,

as whether the second-period signal is low or high the money burning

will be the same: the entire reward is to be blown off. This means to

restore the agent’s second-period effort incentive, we must reset a new

money burning pair (zLL2 , zLH2 ) 6= (zLL, zLH) such that zLL2 > zLH2 . This

re-configuration will be costly for the principal as he faces more incentive

hurdle. In the case of (III), both the first and second period incentives get

harmed with interim feedback: zH1 +zHL2 must be strictly positive because

zHL2 must be strictly positive as otherwise there is no incentive to exert

effort in the second period; but then zL1 + zLL2 must rise above zLL be-

cause [zL1 + zLL2 ]− [zH1 + zHL2 ] provides the incentive for first-period effort

and now zH1 +zHL2 is strictly positive; if zL1 +zLL2 were at the same level as

zLL, the agent’s first-period effort incentive would have been weakened

and thus failed (since in the original solution for Proposition 2, the agent’s

first-period effort incentive constraint V (1, 1)−V (0, 1) ≥ 0 will be binding;

for details refer the proof). This means principal’s implementation costs

would increase.

As an alternative explanation, we can say that the principal providing

the agent with an extra bit of information in the interim period (whether

his performance signal is low or high) while keeping the two-period ter-

minal payoffs following each signal profile unchanged can only improve

the agent’s situation and definitely not worsen relative to when no such

interim feedback is provided. This means such information communica-

tion will make the principal’s incentive provision problem harder and thus

more costly.

Under subjective performance evaluation the principal not wanting to
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carry out interim performance evaluation is puzzling. Many aspects of

job evaluations in real life involve subjective assessments by supervisors

or managers. Most organizations are also likely to have human resource

departments that carry out annual reviews. To suggest that such reviews

do not touch upon subjective components of job assessments is clearly

unrealistic. The model of subjective performance evaluation used in this

paper and Fuchs (2007) should therefore be viewed as a simplification

that can be improved further in future works.

1.5 Final remarks: Fuchs’ mechanism vs. ours

Why is the money burning scheme (0, 0, ..., 0, Z) proposed by Fuchs

(2007) ideal in minimizing expected money burning but the same mech-

anism performs so poorly for the cost minimization objective? To under-

stand the first part, let us start with an arbitrary money burning scheme:

burn money z0 upon the worst signal profile {σLσL · · · σL}, burn zj when

there is only one high signal at the jth period {σLσL · · ·σH · · ·σL}, and

for all other profiles burn zero money. For this scheme, assuming the

agent exerts efforts in every period the expected money burning is given

by P0z0 + Pjzj, where P0 and Pj are the probabilities corresponding to

the above two specific signal profiles.

For the above scheme reuse of punishment is not applicable, so we

need to consider the jth period incentive besides how to deter 1st period

deviation.7 The marginal cost of shirking in the jth period is the differ-

ence between money burning upon {σLσL · · ·σL} and {σLσL · · · σH · · ·σL},

i.e. z0− zj, times the increased probability of getting low signal in jth pe-

riod. By lowering the amount zj down to 0, and increasing z0 by a small

7The reusable punishment idea was originally introduced in the repeated games
literature by Abreu, Milgrom and Pearce (1991), which was used by Fuchs (2007) for
his optimal mechanism construction. For reusable punishment, the principal only needs
to ensure that the agent will not deviate to shirking in the first round which, in turn,
guarantees that the agent will not deviate to shirking for any number of T rounds.
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∆ > 0, the marginal cost of shirking is pushed up, so that the agent will

be more reluctant to shirk at the jth period, while keeping the other peri-

ods’ incentives unchanged.8 Now the expected money burning becomes

P0(z0 +∆)+Pj ·0 = P0(z0 +∆), which is smaller than P0z0 +Pjzj given ∆

is small and the probability P0 is also small.9 Thus, modifying the incen-

tives back towards Fuchs’ mechanism with the reusability feature lowers

expected money burning while implementing full efforts.

Also it is straightforward to see why Fuchs’ mechanism fails for the

cost minimization objective as already explained in the Introduction. Ba-

sically, instead of the very lop-sided punishment scheme of Fuchs, if

money burning were spread out with less variance although in an in-

creasing order according to the number of low signals, agent’s effort in-

centives can be preserved and at the same time the maximum level of

money burning can be brought down.10

8By manipulating the value of ∆, one is able to maintain the incentives for the first
period, which is sufficient to support the equilibrium. This can be achieved analytically,
and we skip the steps to keep the discussion short.

9Recall, P0 is the probability of the worst signal profile {σLσL · · ·σL} given full efforts,
which is the lowest among all possible signal profiles so long as p1 > 1/2.

10This will increase expected money burning relative to Fuchs’ mechanism.
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CHAPTER 2

Extreme vs. Moderate Wage Compression or Pay for

Performance: Subjective Evaluation with Money Burning

2.1 Introduction

Most assessments by our superiors involve subjectivity and discretion.

In fact when objective measures of performance are hard to obtain or

not immediately available, employers must rely on subjective opinions or

impressions of their subordinates’ work to decide on the rewards: some

assessment is better than no assessment and, as Baker et al. (1994)

have argued, some element of subjectivity is better even when assess-

ment can be made entirely objective. We ask how sensitive the rewards

should be to performance when only subjective evaluation is possible.

We consider a principal-agent setting with agent moral hazard and

subjective performance evaluation (spe). As is well known, under spe

the principal has to ensure that he does not understate the agent’s good

performance, so he must be prepared to burn money. We will argue that,

under appropriate assumptions, the optimal money burning scheme is

either of the pay for performance type with the reward decreasing as

performance drops (e.g., Holmstrom, 1979; Harris and Raviv, 1979), or

one of moderate wage compression similar to Levin’s (2003) termina-

tion contract.1 The more extreme wage compression, where the agent
1Moderate wage compression typically involves, respectively, full and zero money
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is penalized through money burning only when the performance is at

its worst but otherwise receives a uniform reward, is more due to either

agent’s utility becoming unboundedly low (i.e., large negative) at very low

(almost zero) consumption as shown in MacLeod (2003), or a principal

maximizing social efficiency as in Fuchs (2007). Our twin results alluded

to above, Propositions 2 and 6, open up new optimal contracting pos-

sibilities in the same environments considered by MacLeod (2003) and

Fuchs (2007), and the results shift the balance, roughly, towards Levin’s

style of contracting – wage compression around a non-extreme thresh-

old performance. Given perhaps the greater prevalence of this threshold

based contracting in real life, this shift in results should improve our un-

derstanding of the wage compression hypothesis in principal-agent envi-

ronments. Table 2.1 is a summary of various results. To place our paper

properly in context, below we first review the related literature.

Table 2.1: spe models: wage compression & pay for per-

formancea

Profit max./cost min. Social efficiency/joint surplus max.

Risk neutrality Pay for performance Moderate wage compression: Levin

or moderate wage compression: (infinite repeated games)

this paper (two-period game)c Extreme wage compression: Fuchsb

(both finite & infinite repeated games)

Risk aversion Extreme wage compression:

MacLeod (one-shot game) –x–x–x–x–x–x–

Risk aversion Moderate wage compression: MacLeod 1-shot

or Risk neutrality game minus u(0) = −∞ (this paper) –x–x–x–x–x–x–

a Wage compression: extreme = no money burning except for worst performance; moderate = money burning
below a cutoff performance (above the worst).

b Our interest is in the finite repeated version.
c Chan and Zheng (2011) show pay for performance assuming ‘no limited liability’ of the agent that converts

principal’s obj. from profit max. to social efficiency.

burning below and above a threshold performance, and occasionally partial money
burning at the threshold performance.

18



MacLeod (2003) studies a static principal-agent problem in which a

risk-averse agent exerts a continuum of efforts in a project that yields a

binary outcome, success or failure, not directly observable to anybody

and contingent on outcome the effort translates into one of a finite num-

ber of performance signals (hinting at the project’s likelihood of success)

that is observed privately by the principal.2 To provide effort incentives

rewards must vary with performance but risk aversion should also limit

the variability in rewards. What MacLeod finds, however, is quite strik-

ing: to maximize profits the principal ought to penalize the agent and

burn money only when the performance is the worst possible, and for all

other performance the rewards should be equalized that we refer as ex-

treme wage compression (Proposition 6, MacLeod, 2003). While some

amount of wage compression is natural, not penalizing at all for close-

to-worst performance calls into question the power of incentives as one

understands it from standard contract theory. We will see that such con-

centrated punishment has, surprisingly, nothing to do with the agent’s

risk aversion. Instead, an assumption of unbounded utility at zero con-

sumption, along with a natural ordering on the informativeness of perfor-

mance signals (monotone likelihood ratio condition), makes the specific

flat reward structure optimal. Risk aversion should favor shifting some

punishment towards better-than-the-worst but worse-than-the-best per-

formance signals. But this economic reasoning doesn’t seem to have

any pivotal role. On the other hand, if the unbounded utility assumption

is dropped, irrespective of whether the agent is risk averse or risk neutral,

the optimal rewards structure will move away from MacLeod-postulated

extreme compression.

Levin (2003) shows that the optimal contract in an infinite repeated

principal-agent setting with moral hazard and spe involves a one-step
2The author also considers the case where the agent might observe a signal that is

correlated with the principal’s information.
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termination contract:3 a base wage w with contract termination if pri-

vately observed performance level, yt, falls below a threshold level ŷ, or

continuation with an additional bonus b if yt ≥ ŷ (Proposition 7);4 this

pattern we refer as moderate wage compression to distinguish it from

extreme wage compression. The agent in Levin’s analysis is risk neutral.

The repeated relationship, through continuation values, helps to endog-

enize money burning triggered by costly disputes and termination of the

relationship.

Fuchs (2007), like Levin (2003), studies a repeated principal-agent

game where in each round the agent either exerts one unit of effort or

shirks. Assuming that the principal wants to minimize (expected) money

burning the author shows that when the repeated game involves a finite

number of T rounds, in each of which the (risk-neutral) agent should be

induced to exert effort, the principal should burn money only when the

privately observed evidence of agent performance in all T rounds are

low. This, again, is a form of extreme wage compression in the mould

of MacLeod (2003): burn money a lot but very infrequently or otherwise

don’t burn money at all.5,6

Our principal-agent models borrow some features of the above three

studies and departs in others. The first of two models to be studied is

a simplified version of Fuchs (2007), but permits the more noisy perfor-

mance evaluation of MacLeod (2003).7 A principal hires an agent to work
3Levin defines a self-enforcing incentive program to be optimal if it maximizes per-

period expected joint surplus of the principal and the agent. An incentive program (or
contract) specifying agent compensation for all possible histories is self-enforcing if it
induces Nash equilibrium play of the infinite repeated game following each history.

4Levin addresses an even more general problem with the additional issue of adverse
selection. Our comparison is with the simpler version of his analysis.

5Fuchs also considers the infinite repeated version.
6Prendergast (1993) and Prendergast and Topel (1996) also analyze subjective

evaluation – an agent reports information relevant for the principal’s decision which
is evaluated against principal’s own information – and sometimes the optimal contract
breaks down agent performance into two categories, acceptable and unacceptable,
thus exhibiting compression in (agent) rating.

7Fuchs’ (2007) model, in turn, shares some features of Levin (2003).
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over two periods in each of which the agent either exerts effort or shirks.

The principal wants to implement full efforts over two rounds at mini-

mal cost by promising rewards contingent on his subjective assessment

of the agent’s performance in each round; either he directly observes a

nonverifiable output performance or a signal of performance. By restrict-

ing to two periods we keep the analysis tractable but it also reflects the

fact that most employment relations are of finite length. This is the first

point of departure from Levin (2003) and to an extent Fuchs (2007). By

not allowing infinitely long relationship our model will not be able to en-

dogenize money burning in the way Levin (2003) does. Our principal will

thus use money burning directly as an incentive instrument.8 Organiza-

tions rarely deal with only a single agent, thus money burning to disci-

pline one agent can always be passed onto another agent or some other

department within the organization, an interpretation that is both realis-

tic and similar in spirit to MacLeod’s (2003) interpretation that the burnt

money is given to a “third-party” (see p. 222).9 In a second formulation,

we use MacLeod’s (2003) static game but drop the assumption of agent

ruin near zero consumption by assuming utility bounded from below and

broaden the applicable preferences to allow for utility of money to be lin-

ear as a second possibility (i.e., u′′(·) ≤ 0). Third, different from Fuchs

(2007) and Levin (2003) but more like MacLeod (2003), our principal

minimizes his reward costs (or maximizes profit) rather than maximizing

social efficiency or joint surplus.

We will see that the above modelling differences will combine to yield,

often, the pay for performance incentives (Proposition 5). This conforms

to our casual understanding that if the year-end meeting between an

employer and an employee comes to conclude that the agent has not
8This was also the case in MacLeod (2003), in the finite repeated game model of

Fuchs (2007), and Chan and Zheng (2011).
9The use of bonus pools to incentivize a group of employees is a standard practice

(Rajan and Reichelstein, 2006; 2009).
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performed well over a certain period by whatever subjective assess-

ment conducted by the employer, the compensation is likely to reflect

in adjusted salaries and/or bonuses in relation to the degree of under-

performance. This is especially so if the organization has a fixed salary

or bonus pool that must be distributed in an equitable manner across its

employees. Although we are not explicitly modelling the determination

of reward of an agent within a group, the incentives of an agent can be

viewed informally in an employment setting involving other employees.

Empirically, ‘performance pay’ under subjective assessment has been

known to perform well (Kahn and Sherer, 1990).10,11 Thus, variable pay

and bonuses can be optimal outside the earlier hypothesis of employer

bias or arbitrary discretion (Prendergast, 1993, 1999; Prendergast and

Topel, 1996).

The simple modification of MacLeod’s (2003) contracting game by

dropping the Inada condition leads to a softening of his extreme wage

compression hypothesis (Proposition 6). This result brings performance-

pay back into play and makes wage compression moderate by extend-

ing full money burning beyond the worst performance scenario. As noted

earlier, this wage compression, which is perhaps more realistic, is similar
10Murphy and Oyer (2003) find, while evaluating the costs and benefits of subjective

performance evaluation relative to objective measures, that discretion is more important
in determining executive bonuses at larger and privately held firms.

11Governments in the United Kingdom and at various state levels in the
USA are increasingly relying on performance-related pay for teachers, where au-
thorities assess teacher effectiveness from student grades but also based on
other criteria that can introduce subjectivity. See the UK government press
release on 29 April, 2013: “New advice to help schools set performance-
related pay” (https://www.gov.uk/government/news/new-advice-to-help-schools-set-
performance-related-pay). It states: “The advice published today highlights fac-
tors schools could consider when assessing teachers performance. This includes
a teacher’s impact on pupil progress, impact on wider outcomes for pupils, contri-
bution to improvements in other areas (e.g. pupils’ behaviour or lesson planning),
professional and career development, wider contribution to the work of the school,
for instance their involvement in school business outside the classroom. Schools
could consider evidence from a range of sources, including self-assessment, les-
son observations, and the views of other teachers and of parents and pupils.” For
the USA, see http://www.latimes.com/local/teachers-investigation/#axzz2ut1ScDxw;
http://files.eric.ed.gov/fulltext/ED535859.pdf; and the works of Neal (2011), and Neal
and Barlevy (2012).
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to Levin’s (2003) result but is obtained in a static game with money burn-

ing used as an instrument.12 Explaining wage compression in a static

game should be a useful exercise given that most relations are of finite

duration.13 Thus, Proposition 6 should be seen as complementary to

MacLeod (2003), further expanding the reach of his model.

We do a robustness check of the performance-pay hypothesis when

the agent observes a signal correlated with the principal’s information

(Proposition 7). For this test we follow Chan and Zheng (2011), who

study principal-agent dynamic moral hazard and contracting under spe

and show a similar performance-pay result under the restrictive assump-

tion that the agent is not subjected to ‘limited liability’. Their analysis is

equivalent to a principal maximizing social efficiency (as opposed to our

cost-minimizing principal) and they show that the principal should reward

an improving performance trajectory more than a declining trajectory.

Our analysis yields performance-pay without necessarily the bias due to

specific upward or downward trajectory identified by Chan and Zheng

(Proposition 8). Further, to suggest that our performance-pay result is

not an anomaly due to the specific two-period formulation, through nu-

merical simulation we demonstrate how performance pay can dominate

extreme wage compression in a three-period game; see Fig. 2.1.

The rest of the paper is organized as follows. In the next section

we present the model. Our main analysis and the results are contained

in sections 3-5, with conclusions appearing in section 6. Proofs are in-
12Other explanations of wage compression are in the more traditional setting of firms

determining relative pay of employees; see, for example, Lazear (1989), and Fang and
Moscarini (2005). Lazear argues that equal pay reduces non-cooperation and sabotage
within the organization, whereas Fang and Moscarini exploit the theme of workers’
low morale (or confidence) following revelation of their true ability as most workers
are overconfident and so through wage non-differentiation employers can perpetuate
workers’ misperception and maintain a positive attitude to work.

13Much of the insight for a finite repeated agency model can be derived from our mod-
ified static game analysis: the common thread between Propositions 5 and 6 should
become clearer.
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cluded in Appendix.

2.2 The model

A risk-neutral principal involves a risk-neutral agent in a two-period re-

peated efforts game. In each period the agent can either exert one unit

of effort or shirk, et ∈ {0, 1}, which is not observable to the principal,

with effort costing the agent c > 0. There is no discounting by the prin-

cipal or the agent. The output in each period can be either high or low,

yt ∈ {yL, yH}, depending on the effort in that period:

Pr[yt = yH | et = 0] = β0, Pr[yt = yH | et = 1] = β1.

Instead of directly observing output, the principal may observe only

some signal of agent performance, σt ∈ {σH , σL}, which is private and

cannot be disclosed verifiably. The probability of σt given the output is

high is γHσt , and given the output is low it is γLσt. Given the binary signals

in each state, we have γHσH + γHσL = γLσH + γLσL = 1. Further, the following

monotone likelihood ratio condition (Milgrom, 1981) will be assumed:

γHσH
γLσH

>
γHσL
γLσL

.

Therefore, during a particular round the probability of observing any per-

formance signal depends only on the effort in that round as follows:

p0 ≡ Pr[σt = σH | et = 0] = β0γ
H
σH

+ (1− β0)γLσH ,

p1 ≡ Pr[σt = σH | et = 1] = β1γ
H
σH

+ (1− β1)γLσH ,

with 0 < p0 < p1 < 1.

Suppose the principal’s expected wage payment for two periods is
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E(W ), then his profit is given by:

Π =
∑
t

E(yt | et)− E(W ).

Let e = (e1, e2) be the agent’s efforts over two rounds. To solve the

principal’s problem, the first step is to minimize his cost E(W ) of inducing

any effort profile e; then the second step is to determine the optimal e∗

to maximize the profit Π. To simplify our analysis, we assume that the

incremental expected output in any period following change from e = 0 to

e = 1 is large enough so that the principal wants to uniquely implement

e∗ = (1, 1) at minimal wage costs.

If the principal observes the output, as assumed by Fuchs (2007),

then the reward scheme and the principal’s expected wage cost should

be contingent on the output profile y = (y1, y2); if the principal observes

only the performance signal, as assumed by MacLeod (2003), then his

cost should be a function of the signal profile s = (σ1σ2). Throughout our

analysis we use the latter formulation but the first interpretation is also

possible.

At the end of two periods the principal will report the performance

signals s. Let wP (s) be the amount of money pre-committed to be spent

by the principal for any reported profile of performance. Due to the sub-

jective performance evaluation, the principal has to pay a fixed amount

regardless of his private observation of signals in order for him not to

misreport the agent’s performance. However, to incentivize the agent

to exert effort, the reward should be contingent on the reported perfor-

mance. Thus, the agent should not always receive all the money paid

by the principal; under some circumstances the budget balance may

break down, which formally amounts to money burning.14 Denote the

principal’s (fixed) budget wP (s) = W , the agent’s reward as wA(s), and

14MacLeod (2003) proposed the idea of money burning under spe.
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contingent money burning as z(s). Let the set of all signal profiles be

Σ = {s} = {(σ1σ2)}, and bold symbols wA and z be vectors of rewards

and money burning corresponding to different signal profiles s. Formally,

the payment scheme is defined as:

(
W,wA(Σ), z(Σ)

)
, where

W = wA(s) + z(s) ∀s ∈ Σ. (2.1)

We may simply write (W, z(Σ)) to refer to the incentive mechanism.

Given the incentives, the agent’s expected utilty (or payoff) of exerting

effort profile e can be written as follows:

V (e) = E
(
wA(s) | e

)
− c

∑
t

et

= W −
∑
s∈Σ

z(s) Pr(s | e)− c
∑
t

et. (2.2)

Then the principal solves the following problem:

min
W,z(Σ)

W (2.3)

s.t. (Incentive Compatibility) e∗ ∈ arg maxV (e), (2.4)

(Limited Liability) W − z(s) ≥ 0 ∀s ∈ Σ, (2.5)

z(Σ) ≥ 0. (2.6)

Incentive compatibility (2.4) and limited liability (2.5) will guarantee agent’s

participation constraint V (e∗) ≥ 0.

We assume no interim feedback or payment/money burning. The

time line of the game is as follows:

1. At time zero, a contract (W, z(Σ)) is signed between parties;

2. At each period t = 1, 2, the agent decides whether to exert effort
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on the principal’s project or shirk and the principal receives a per-

formance signal at the end of the period;

3. At the end of two periods, the principal reports the performance

signal profile s and makes the payment wA(s).

The model presented above is a two-period variant of Fuchs’ (2007)

finite period model with a more noisy subjective assessment as in MacLeod

(2003). The more important difference, however, is in the specification

of the principal’s objective – he minimizes effort implementation costs

rather than maximizing social efficiency. This change is a natural one

given our interest in an incentive mechanism for a profit-seeking princi-

pal. To implement efforts the principal should like to minimize his own

costs. As we will see, the different objectives may lead to a sharp differ-

ence in the optimal contracts.

2.3 Pay for performance or moderate wage com-

pression vs. extreme wage compression

In this section, we solve for the optimal money burning contract for a

profit-motivated principal and show that the optimal contract often ex-

hibits the pay-for-performance principle.

As analyzed in Chapter 1, solving the principal’s problem (2.3) subject

to (2.4)-(2.6) yields the following characterization of the optimal contract:

PROPOSITION 5 (Optimal contract: complete characterization). Un-

der subjective evaluation a profit-seeking principal often relies on the

pay for performance principle or moderate wage compression, although

in some situations extreme wage compression is still a possibility. More

specifically, the principal’s optimal contract is as follows:
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(I) [Moderate compression] If p1 >
1
2

and p1 + p0 > 1,

W = 2c
(p1+p0)(p1−p0)

, zHH = 0, zLH = zHL = zLL = 2c
(p1+p0)(p1−p0)

.

(II) (a) [Pay for performance/moderate compression] If p1 > 1
2

and

p1 + p0 = 1,

W = 2c
p1−p0 , zHH = 0, zLL = 2c

p1−p0 ,

zLH , zHL ∈ [ c
p1−p0 ,

2c
p1−p0 ], and p1z

HL ≥ p0z
LH+c, p0z

HL ≥

p1z
LH − 2c.

(b) [Pay for performance] If p1 >
1
2

and p1 + p0 < 1,

W = 2c
p1−p0 , zHH = 0, zLH = zHL = c

p1−p0 , zLL = 2c
p1−p0 .

(c) [Pay for performance/extreme compression] If p1 = 1
2
,

W = 2c
p1−p0 , zHH = 0, zLH = zHL ∈ [0, c

p1−p0 ], zLL = 2c
p1−p0 .

(III) [Extreme compression] If p1 <
1
2
,

W = c
(1−p1)(p1−p0)

, zHH = zLH = zHL = 0, zLL = c
(1−p1)(p1−p0)

.

Note that given the partition of the signal generating technology, [0, 1]×

[0, 1], the conditions stated above are actually a complete, if and only if,

characterization of the optimal contract.

Next, let us explain why extreme wage compression need no longer

be an optimal choice for the principal. In Fuchs (2007), like ours, the

agent had to be induced to exert efforts but the principal’s main concern

was to do so at minimal expected money burning. Our principal, on the

other hand, is interested in minimizing his own reward cost that equals

the maximum of the burnt money. Since minimizing expected money

burning is not necessarily the dual of the principal’s profit maximization
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problem, solution to Fuchs’ implementation program does not necessar-

ily minimize principal’s costs.

Let us now return to the economic intuitions for different wage com-

pression schemes for different constellations of parameters (or signal

generating technology).

When is moderate wage compression optimal? This is the first case

in Proposition 5, and can be described, paradoxically, as the rule of:

“one strike and you are out”.15 Taking the heavy punishment scheme

as given, let us first see when this scheme is likely to uniquely im-

plement e = (1, 1). Intuitively, such punishment must imply that the

probability of wrongfully penalizing the diligent agent (for suspicion of

shirking) is less, and perhaps considerably so, than the probability of

mistakenly letting the shirking agent get away free. To see when this

might be true, consider pr(at least one low signal|e = (1, 1)) = (1−p1)2 +

2p1(1−p1); pr(at least one low signal|e = (0, 0)) = (1−p0)2 + 2p0(1−p0);

and pr(at least one low signal|e = (1, 0)) = (1 − p1)p0 + (1 − p0)p1 +

(1 − p1)(1 − p0). Now suppose (i) pr(at least one low signal|e = (1, 1))

is very low, (ii) pr(at least one low signal|e = (0, 0)) is high, and (iii)

pr(at least one low signal|e = (1, 0)) is such that the agent would rather

switch from e = (1, 0) to e = (1, 1) than to e = (0, 0). The first two condi-

tions will ensure that the agent should choose e = (1, 1) over e = (0, 0),

which can happen only if (1 − p1)2 + 2p1(1 − p1) < (1 − p0)2 + 2p0(1 −

p0), which reduces to: p1 + p0 > 1. Coming to requirement (iii), we

must have pr(at least one low signal|e = (1, 1)) “sufficiently” less than

pr(at least one low signal|e = (1, 0)), which, in turn, must be “sufficiently”

15Moderate wage compression can be of a less extreme nature, in principle, when
contract spans over more than two periods. With a two-period contract, overall signals
can contain only one or two low signals and thus there is not much room for varied types
of moderate wage compression – either the contract is of moderate wage compression
(uniform money burning with one low signal or more) or agent compensation is strictly
improving in performance. In section 4, with any number of signals, n > 2, moderate
wage compression compensation can be a bit more forgiving.
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less than pr(at least one low signal|e = (0, 0)). These last two will hold,

it is easy to verify, only if p1− p0 > 0 is sufficiently high, which, combined

with the requirement that p1 + p0 > 1, implies p1 >
1
2
. Thus, moderate

wage compression implementing e = (1, 1) uniquely, implies p1 + p0 > 1

and p1 >
1
2
.

Now to understand why with p1 > 1
2

and p1 + p0 > 1 the principal

should adopt flat and heavy punishment, note that either p1 must be

quite high especially when p0 is low, or both p1 and p0 are fairly high. If p1

is close to 1 say, exerting efforts will generate high signals almost surely,

so low signal in any round is a clear indication of shirking in that round

rather than bad luck; if both p1 and p0 are high, shirking also has a good

chance of generating a high performance signal. In either of these two

signal generating scenarios, there is little to differentiate between one

low signal and two low signals, such are the smallness of their respective

likelihoods. This implies it might not be in the principal’s interest to make

a nuanced differentiation between one and two low signals, and hence

he should penalize the agent uniformly. And the maximal punishment

follows because with two low signals the principal must come down on

the agent in the strongest possible manner and not leave the agent with

any positive surplus ex post.

The intuition for performance pay can be understood as follows. When

p1 >
1
2

and p1 + p0 ≤ 1, it implies that the difference in the probabilities of

generating a high signal when the agent exerts effort vs. when he shirks

is going to be non-trivial (p1 >
1
2

but p0 <
1
2
), thus the choice of effort

or shirking is very likely to be reflected in the signal generated: signals,

although imperfect, are informative and hence the scope for nuanced re-

wards/punishment; all money is burnt if both periods see the low signals,

whereas partial money is burnt upon a combination of one low and one

high signal.
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Finally, while the extreme wage compression remains a possibility,

the environment might be considered less natural. When p1 ≤ 1
2
, the

high signal is less likely than the low signal with the agent exerting effort.

This is a case of weak informativeness of high signal. While high signal

does not suggest a strong evidence of agent’s effort, low signal, on the

other hand, would imply a high chance that the agent did not exert effort:

p0 <
1
2
. That is, rather than the high signal, its absence is more indicative

of lack of effort. With p0 < p1, the principal can rely on the signals’

informativeness (as monotone likelihood ratio property [Milgrom, 1981]

will be satisfied) to determine money burning. The principal chooses to

burn money only when signals in both periods are low; when only one

signal is low, it could be that the agent did exert effort in that round yet he

was unlucky (recall p1 ≤ 1
2
) and the principal does not want to wrongfully

penalize the agent.

To summarize, the first two cases burn money whenever there is at

least one low signal. This represents what we may call, broadly, the

pay for performance principle, and is similar to standard contracts with

verifiable performance (Holmstrom, 1979; Harris and Raviv, 1979).16

The second case is more discriminating with the agent’s penalty (or

money burning) strictly increasing in the number of low signals. And the

last case is same as the extreme wage compression result of MacLeod

(2003) and Fuchs (2007).17

In view of Proposition 5, it is not unreasonable to suggest that the

extreme wage compression result in Fuchs (2007) was largely driven by

the principal’s social efficiency maximization hypothesis. The two-period
16There is some parallel with the familiar law-and-econ doctrine of “penalty fitting

the crime” (Andreoni, 1991; Shavell, 1991). One should recognize though that money
burning is never an issue for the law-and-econ doctrine. There the main concern is
fairness but equally important is the implication for deterrence of more serious crimes.

17When T = 2 in Fuchs (2007), his expected money burning minimization contract is
given by: W = c

(1−p1)(p1−p0)
, zHH = zLH = zHL = 0 , zLL = c

(1−p1)(p1−p0)
.
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model is a special case of Fuchs’ T -period model, and the only change

in our analysis is in the principal’s objective from social efficiency to profit

maximization (equivalently, cost minimization).

� Pay for performance in a three-period model: an illustra-

tion. Instead of the extreme wage-compression scheme, if money burn-

ing were spread out with less variance although in an increasing order

according to the number of low signals, agent’s effort incentives can be

preserved and at the same time the maximum level of money burning,

and thus principal’s cost, can be brought down. Below we provide a

numerical illustration of a three-period contract.

Let Z ≡ (z(1), z(2), z(3)) be a money burning scheme, where z(i)

refers to the amount of money burning upon #i observation(s) of low

signal(s). Then it is sufficient to consider the agent’s decision of ex-

erting effort for how many periods out of three, regardless of the order.

The incentive compatibility conditions for the agent V (1, 1, 1) ≥ V (1, 1, 0),

V (1, 1, 1) ≥ V (1, 0, 0) and V (1, 1, 1) ≥ V (0, 0, 0) where V (·, ·, ·) is defined

similar to V (·, ·), can be written in terms of expected money burning and

effort costs, given the fixed wage paid by the principal. Explicitly,

3p21(1− p1)z(1) + 3p1(1− p1)2z(2) + (1− p1)3z(3) + 3c

≤ [p21(1− p0) + 2(1− p1)p1p0]z(1) + [p0(1− p1)2 + 2p1(1− p1)(1− p0)]z(2) + (1− p1)2(1− p0)z(3) + 2c;

3p21(1− p1)z(1) + 3p1(1− p1)2z(2) + (1− p1)3z(3) + 3c

≤ [p20(1− p1) + 2(1− p0)p0p1]z(1) + [p1(1− p0)2 + 2p0(1− p0)(1− p1)]z(2) + (1− p0)2(1− p1)z(3) + c;

3p21(1− p1)z(1) + 3p1(1− p1)2z(2) + (1− p1)3z(3) + 3c

≤ 3p20(1− p0)z(1) + 3p0(1− p0)2z(2) + (1− p0)3z(3).

Let Z1 be a wage-compression scheme so that Z1 = (0, 0, z1(3)).

Consider Z2 to be the money burning scheme whenever at least two
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low signals are observed, i.e. Z2 = (0, z2(2), z2(3)), and Z3 be the money

burning scheme whenever at least one low signal is observed so that

Z3 = (z3(1), z3(2), z3(3)). Set the following parameter values: p0 = 0.25,

p1 = 0.625 and c = 1. Then using Mathematica the following sample

solutions are generated and plotted in Fig. 2.1:

z(1) z(2) z(3) W = max{z(i)}

Z1 0 0 18.96 18.96

Z2 0 2.56 13.00 13.00

Z3 3.19 4.29 10.72 10.72
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Figure 2.1: Different money burning schemes

The above example shows that our pay-for-performance hypothesis is

applicable beyond the two-period model studied. So long as the agency

relationship is of finite length, similar incentives linking pay to perfor-

mance (via the signals) should work because money burning takes care

of the principal’s incentives to misreport.
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2.4 Beyond MacLeod (2003): More general risk

preferences, u′(0) <∞, and moderate com-

pression

In this section, we revisit MacLeod (2003) to point out the critical role of

the assumption that the agent is ruined when consumption is very low

for his extreme wage compression result. We are going to argue that if

instead the agent’s utility is bounded below so that the Inada condition

is violated, MacLeod’s mechanism will be dominated by more moderate

wage-compression incentives.

MacLeod (2003) considers a static principal-agent game in which the

agent privately chooses an effort λ ∈ [0, 1) into a project leading to its

success (state H) with probability λ and failure (state L) with probability

1 − λ. The principal observes only a non-verifiable signal t ∈ T of the

agent’s performance, with |T | = n > 2. The probability of signal t real-

ization given effort λ is γt(λ) = λγHt + (1− λ)γLt , where γHt (or γLt ) is the

probability of signal t given that the project is a success (or failure).

At the time of signing the contract, the principal commits to spend

wt = w̄ as potential reward part of which, b, will be burnt if the perfor-

mance signal t is not satisfactory. The agent receives ct = w̄ − b.

MacLeod further makes the following assumptions:

Assumption 1-MacLeod: The Bernoulli utility function of the agent satis-

fies U(c, λ) = u(c)− V (λ), where c > 0, λ ∈ [0, 1) and u′ > ε > 0, u′′ < 0,

limc→0 u(c) = −∞, V ′ > 0, V ′′ > 0 and limλ→1 V (λ) = ∞. That is, the

agent is risk averse (utility is concave in consumption) and effort cost is

convex.

Assumption 2-MacLeod (Generic monotone likelihood ratio condition):

γHt+1/γ
L
t+1 > γHt /γ

L
t > 0 for t = 1, . . . , n− 1, and for no t is it the case that
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γHt /γ
L
t = 1.

MacLeod then shows the following result (the descriptive title added

by us).

Proposition 6-MacLeod (2003) (Penalty as a last resort & extreme

wage compression). Suppose Assumptions 1 and 2 in MacLeod (2003)

hold, and there is no correlation in the principal’s and the agent’s beliefs.

Then the optimal contract implementing any effort λ ∈ (0, 1) based on

subjective evaluations entails wage payments that do not depend upon

the principal’s evaluation:

wt = w̄ ∀t ∈ T ,

while the agent receives:

ct =


w̄, if t > 1

w̄ − b, if t = 1

(2.7)

where 0 < b < w̄ and t = 1 corresponds to the lowest performance level,

i.e., the signal with the lowest likelihood ratio among all γHt /γLt .18

We now drop the assumption that limc→0 u(c) = −∞ and replace it by

limc→0 u(c) > −∞ and limc→0 u
′(c) < ∞, and further assume u′′(c) ≤ 0

(i.e., utility of money can be linear).19 This opens up more room for

performance related information to influence agent compensation.

Given that γHt /γLt 6= 1, the set of signals T can be partitioned as

follows:

T = T +
⋃
T −,

18In MacLeod (2003), optimal w̄ and b are determined solving the incentive and par-
ticipation constraints, both of which are binding.

19Thus, the agent can be risk averse or risk neutral – a generalization of the risk
preference of MacLeod’s agent.
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where T + = {t : γHt − γLt > 0} and T − = {t : γHt − γLt < 0}. Further, by

monotone likelihood ratio condition, we have:

LEMMA 1.

(i) γHt −γLt
γt(λ)

is strictly increasing in t.

(ii) If for some t = t̂, γH
t̂
− γL

t̂
< 0, then for all t < t̂, γHt − γLt < 0.

Proof of (i) follows applyingMLRC to: γHt −γLt
γt(λ)

=
γHt −γLt

λγHt +(1−λ)γLt
= 1

λ+
γLt

γHt −γ
L
t

=

1/[λ+ 1/(
γHt
γLt
− 1)]. Then (ii) follows from (i).

From Lemma 1,

T − = {1, 2, . . . , K} and T + = {K + 1, K + 2, . . . , n},

where at t = K, γHK − γLK < 0 and at t = K + 1, γHK+1 − γLK+1 > 0.

LEMMA 2. The principal should burn money only upon signals such that

γHt < γLt , i.e.

T MB = {t : money burning > 0} ⊆ T −.

Proof. Suppose the contract implementing effort λ involves money burn-

ing at some signal t̆ ∈ T +, implying ct̆ < w̄, where w̄ is the fixed budget

for the principal. Suppose also that both the incentive compatibility and

participation constraints are binding:

[Incentive Constraint]

n∑
t=1

u(ct)(γ
H
t − γLt )− V ′(λ) = 0,

[Participation Constraint]

n∑
t=1

u(ct)γt(λ)− V (λ)− ū = 0.

Then increasing ct̆ by ∆ = w̄ − ct̆ > 0 will make both constrains relaxed

since γH
t̆
− γL

t̆
> 0 and γt̆(λ) > 0. Now start lowering w̄ and with it any ct

that was previously set at ct = w̄ until one of the two constraints, IC and
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PC, binds, at which point λ is implemented with a new lower cost for the

principal. This means the original contract with ct̆ < w̄ could not have

been optimal. Q.E.D.

The following result contrasts with the extreme wage compression re-

sult of MacLeod (2003). The optimal contract is one of moderate wage

compression: wages are uniform in two segments separated by a thresh-

old performance.

PROPOSITION 6 (2-fold wage compression). Consider MacLeod’s (2003)

static spe contracting model with a more general u(c), where u′′(c) ≤ 0

so that utility can even be linear in c. Further, different from MacLeod,

assume that limc→0 u
′(c) < ∞ (violation of the Inada condition) and

u(0) = 0.20 Then the optimal contract implementing any effort λ ∈ [0, 1)

can be characterized as follows:

(i) If V ′(λ)
V (λ)+ū

≤
∑n
t=K+1(γHt −γLt )∑n
t=K+1 γt(λ)

,

ct =


0 if t < t′,

w̄ − b if t = t′,

w̄ if t > t′,

where 0 < b ≤ w̄ and a unique t′ ∈ T − binding the agent’s incentive

and participation constraints.

(ii) If V ′(λ)
V (λ)+ū

>
∑n
t=K+1(γHt −γLt )∑n
t=K+1 γt(λ)

,

ct =


0 if t ∈ T −,

w̄ if t ∈ T +,

20This is equivalent to dropping MacLeod’s condition that limc→0 u(c) = −∞ and
limc→0 u

′(c) = ∞. Also note that our assumption that u(0) = 0 can be replaced by
u(0) > −∞, without changing any of the results. The normalization simplifies the proof.
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with the agent’s incentive constraint binding and a slack in the par-

ticipation constraint (so that the agent earns a rent).

(The precise values of u(w̄) and u(w̄ − b) are derived explicitly in the

proof.)

Proof. To implement any effort λ ∈ [0, 1), the principal’s problem can be

stated as follows:

min
w̄,{ct}

w̄ subject to:

[Incentive Constraint]

n∑
t=1

u(ct)(γ
H
t − γLt )− V ′(λ) ≥ 0,

[Participation Constraint]

n∑
t=1

u(ct)γt(λ)− V (λ)− ū ≥ 0,

w̄ − ct ≥ 0 ∀ t,

[Non-negativity Constraint] ct ≥ 0 ∀ t,

where ū is the value of the agent’s outside option.

Compared with the principal’s problem in MacLeod (2003), we have

the additional non-negativity constraints ct ≥ 0. (Under the assumption

of limct→0 u(ct) = −∞, which implies the Inada condition that limct→0 u
′(ct) =

∞, consumption must be positive.21)

The Lagrangian can be written as:

L = −w̄ + µ0

[
n∑
t=1

u(ct)γt(λ)− V (λ)− ū

]
+ µ1

[
n∑
t=1

u(ct)(γ
H
t − γLt )− V ′(λ)

]

+
n∑
t=1

βtγt(λ)(w̄ − ct) +
n∑
t=1

αtγt(λ)ct.

21See MacLeod (2003), pp. 219.
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The first-order conditions are:

∂L

∂w̄
= −1 +

n∑
t=1

βtγt(λ) = 0 i.e.,
n∑
t=1

βtγt(λ) = 1, (2.8)

∂L

∂ct
= µ0u

′(ct)γt(λ) + µ1u
′(ct)(γ

H
t − γLt )− βtγt(λ) + αtγt(λ) = 0,

(2.9)

and
∂L

∂µ0

≥ 0,
∂L

∂µ1

≥ 0,
∂L

∂βt
≥ 0,

∂L

∂αt
≥ 0,

µ0, µ1, βt, αt ≥ 0,

µ0
∂L

∂µ0

= 0, µ1
∂L

∂µ1

= 0, βt
∂L

∂βt
= 0, αt

∂L

∂αt
= 0, ∀t.

From (2.8), for some t signal(s) it must be that βt > 0, which implies

w̄ = ct. However, this cannot be true for all t, otherwise there will be no

incentive to exert any effort.

Denote t̄ to be any signal for which there will be no money burning,

i.e. w̄ = ct̄ > 0. By complementary slackness, αt̄ = 0 for t̄. Then (2.9)

can be simplified as:

[No money burning] µ0 + µ1

γHt̄ − γLt̄
γt̄(λ)

=
βt̄

u′(ct̄)
=

βt̄
u′(w̄)

> 0. (2.10)

Now consider all t such that w̄ > ct, which implies βt = 0. Then (2.9)

can be written as:

µ0 + µ1
γHt − γLt
γt(λ)

= − αt
u′(ct)

. (2.11)

Denote t to be any signal such that consumption is zero, i.e. ct = 0,

a case of full money burning where αt ≥ 0; and t′ to be any signal such

that there is only partial money burning, i.e. w̄ > ct′ > 0 where αt′ = 0.
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By Lemma 2, t, t′ ∈ T −. Then divide the case pertaining to (2.11) into:

[Partial money burning] µ0 + µ1
γHt′ − γLt′
γt′(λ)

= 0, (2.12)

[Full money burning] µ0 + µ1

γHt − γLt
γt(λ)

= −
αt

u′(ct)
= −

αt
u′(0)

≤ 0.

(2.13)

The last inequality of (2.13) holds true since the marginal utility of zero

consumption is bounded without the Inada condition.

Now from (2.10), (2.12) and (2.13) we have:

µ0 + µ1

γHt̄ − γLt̄
γt̄(λ)

> 0 = µ0 + µ1
γHt′ − γLt′
γt′(λ)

≥ µ0 + µ1

γHt − γLt
γt(λ)

. (2.14)

Since µ1 ≥ 0, from the first inequality it is clear that µ1 6= 0 and µ1 > 0.

By Lemma 1, the above inequalities imply that:

t̄ > t′ ≥ t.

Further, the equality in the above chain in (2.14) holds for only a unique

t′. At t′, µ0 = −µ1
γH
t′ −γ

L
t′

γt′ (λ)
> 0.

If t′ = t, the optimal consumption is w̄ − b or higher and there might

not be any t with full money burning (i.e., in effect, then, t will fail to exist).

Note also that t (6= t′) exists if and only if αt > 0.

Now we solve the principal’s problem. Since µ0, µ1 > 0, the IC and

PC constraints hold with equality. Let22

ct =


0, if t < t′

w̄ − b, if t = t′

w̄, if t > t′.

(2.15)

22If t′ = 1, the contract degenerates to MacLeod’s contract.
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Then we have:

[IC] u(0)
t′−1∑
t=1

(γHt − γLt ) + u(w̄ − b)(γHt′ − γLt′ ) + u(w̄)
n∑

t=t′+1

(γHt − γLt ) = V ′(λ),

[PC] u(0)
t′−1∑
t=1

γt(λ) + u(w̄ − b)γt′(λ) + u(w̄)
n∑

t=t′+1

γt(λ) = V (λ) + ū.

(2.16)
Then we can explicitly solve:23

u(w̄) =
V ′(λ)γt′ (λ)− [V (λ) + ū](γH

t′ − γ
L
t′ ) + u(0)

[
(γH
t′ − γ

L
t′ )
∑t′−1
t=1 γt(λ)− γt′ (λ)

∑t′−1
t=1 (γHt − γLt )

]
γt′ (λ)

∑n
t=t′+1(γHt − γLt )− (γH

t′ − γ
L
t′ )
∑n
t=t′+1 γt(λ)

,

u(w̄ − b) =

[V (λ) + ū]
∑n
t′+1(γHt − γLt )− V ′(λ)

∑n
t′+1 γt(λ)− u(0)

[(∑t′−1
t=1 γt(λ)

)(∑n
t′+1(γHt − γLt )

)
−
(∑n

t′+1 γt(λ)
)(∑t′−1

t=1 (γHt − γLt )
)]

γt′ (λ)
∑n
t=t′+1(γHt − γLt )− (γH

t′ − γ
L
t′ )
∑n
t=t′+1 γt(λ)

.

Assuming that u(0) = 0, then it is easy to show that 0 < b ≤ w̄, if and

only if:

∑n
t=t′(γ

H
t − γLt )∑n

t=t′ γt(λ)
<

V ′(λ)

V (λ) + ū
≤
∑n

t=t′+1(γHt − γLt )∑n
t=t′+1 γt(λ)

. (2.17)

Let

φ(t̃) =

∑n
t=t̃(γ

H
t − γLt )∑n

t=t̃ γt(λ)
, where t̃ ∈ T − ∪ {t = K + 1}.

Note that φ(1) = 0 and it is easy verify that φ(t̃) is increasing in t̃. Given

that V ′(λ)
V (λ)+ū

> 0, the left-hand inequality in (2.17) will be true for at least

one t′. Therefore, if V ′(λ)
V (λ)+ū

≤ φ(K + 1), then t′ ≥ 1 is uniquely deter-

mined by the inequality (2.17). This formally establishes (2.15) to be the

optimal contract for the principal, completing the proof for part (i).

23If the utility function is linear, the solution is as follows:

b =
V ′(λ)γG(λ)− (V (λ) + ū)(γHG − γLG)

(γHG − γLG)γt′(λ)− (γHt′ − γLt′ )γG(λ)
, w̄ =

V ′(λ)γt′(λ)− (V (λ) + ū)(γHt′ − γLt′ )
(γHG − γLG)γt′(λ)− (γHt′ − γLt′ )γG(λ)

,

where γHG =
∑n

t=t′ γ
H
t , and γLG and γG(λ) are defined accordingly.
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If, on the other hand, V ′(λ)
V (λ)+ū

> φ(K + 1), then no t ∈ T − will qualify

as t′. However, for the time being let us force t′ = K in solving b and

w̄ as done above. This means that besides all money w̄ burnt for t =

1, 2, . . . , K−1, money burning given by our artificially constructed solution

b at t = K has to exceed the principal’s budget w̄ in order to make

both the IC and PC constraints bind (as in (2.16)). However, this is not

possible as b must not exceed w̄. This means the possibility of partial

money burning cannot be sustained in the optimal contract, so it must be

either a case of full money burning or no money burning:

ct =


0 if t ∈ T −,

w̄ if t ∈ T +.

Now using the same w̄ as artificially constructed above and lowering

b to equal w̄ in (2.16), we will see that this last all-or-nothing money

burning contract will create a slack in PC but will fail IC. So to restore the

IC, w̄ must be raised until IC binds and the slack in PC increases further,

as follows:

[new IC]

n∑
t=K+1

u(w̄)(γHt − γLt )− V ′(λ) = 0,

[new PC]

n∑
t=K+1

u(w̄)γt(λ)− V (λ)− ū > 0.

This new w̄ with u(w̄) = V ′(λ)∑n
t=K+1(γHt −γLt )

is the minimal budget that will

implement λ. This completes the proof of part (ii). Q.E.D.

That is, below some threshold performance signal all money will be

burnt and above the threshold the agent receives the full reward. Given

monotone likelihood ratio condition, the principal gradually works up the

signal ladder to burn money starting from the signal that is most indica-

tive of lack of effort until the agent’s marginal effort incentive condition
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binds (for the particular λ). Further, money burning happens only when

a signal is more likely following the project’s failure than if it is a success.

If instead money is burnt for some t such that γHt > γLt , this would clearly

dampen agent’s effort incentive: a higher chance of success (from incre-

mental effort) and thereby an improved chance of the signal t realizing

means a higher probability of a strictly lower reward.

MacLeod (2003) gave us a fresh direction in a departure from classi-

cal contract theory models. He had argued that the constraints of subjec-

tive evaluations could be damaging as the principal will have much less

freedom in incentives design. His extreme wage compression hypothe-

sis embodies this idea. What was not very clear though is exactly what

aspects of MacLeod’s model were critical to the extreme wage compres-

sion result. Three assumptions distinguished his analysis – agent risk

aversion, the monotone likelihood ratio property of signals, and agent

ruin near zero consumption. Risk aversion suggests that perhaps the

principal should not lump the penalty to just the lowest signal, as an ap-

propriately small transfer of penalty from the lowest to the second-lowest

signal should improve the agent’s expected utility by lowering dispersion

in consumption which ultimately would have been beneficial for the prin-

cipal. So by assuming risk aversion, perhaps, MacLeod made it more

difficult to derive extreme compression. If one were to drop risk aver-

sion in favor of risk neutrality, there is no sound economic reason why

the extreme wage compression result should be any harder to establish;

on the contrary, the case for extreme compression should gain an addi-

tional ground. This leaves us with the remaining two explanations – ruin

near zero consumption and the MLRC assumption. The ruin assump-

tion was forcing the principal not to push the agent’s consumption down

to zero. But still it does not explain why the principal should not go up

the information ladder to burn money for signals higher than the lowest
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signal. We will argue that it is precisely here that MLRC comes to play

an important role. A first pass at why money burning does not happen at

signals t > 1 would be as follows: given that at signal t = 1 money burn-

ing is only partial, for any money burning at t = 2 (or higher), part of it

can be transferred to t = 1 signal and by doing so the principal would rely

on the greater informativeness of t = 1 signal than t = 2 signal (MLRC).

But then risk aversion counters this manoeuver, as noted earlier. To fully

understand how MLRC wins over the opposite force of risk aversion, we

need a more careful argument, which we detail below.

Starting with MacLeod’s optimal mechanism, let us see how any at-

tempt to extend money burning beyond the lowest signal is counter-

productive for both the agent and the principal. For our argument, we

relax MacLeod’s requirement that the consumption at the lowest signal

must be strictly positive, and instead let us assume that at t = 1 the

agent consumes w ≥ 0. The agent’s expected utility and marginal effort

incentives are then given by, respectively,

γ1(λ)u(w) + γ2(λ)u(w + b) +
n∑
t=3

γt(λ)u(w + b)− V (λ)− ū ,

(γH1 − γL1 )u(w) + (γH2 − γL2 )u(w + b) +
n∑
t=3

(γHt − γLt )u(w + b)− V ′(λ) .

Now increase consumption at t = 1 by δ1 > 0 and lower consumption at

t = 2 by δ2 > 0 suitably (while keeping consumption at t > 2 the same)

such that the agent’s expected utility, hence PC, does not get hurt:

γ1(λ)[u(w + δ1)− u(w)] + γ2(λ)[u(w + b− δ2)− u(w + b)] ≥ 0. (2.18)

This last adjustment in the rewards hurts the agent’s effort incentive
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(IC), if

(γH1 − γL1 )[u(w)− u(w + δ1)] + (γH2 − γL2 )[u(w + b)− u(w + b− δ2)] > 0,

i.e.,
u(w + b)− u(w + b− δ2)

u(w)− u(w + δ1)
<

γH1 − γL1
γH2 − γL2

. (2.19)

From (2.18) it follows that

u(w + b)− u(w + b− δ2)

u(w)− u(w + δ1)
≤ γ1(λ)

γ2(λ)
<︸︷︷︸

(by Lemma 1)

γH1 − γL1
γH2 − γL2

,

thus verifying (2.19).

We can now see that if the principal tries to shift money burning from

the lowest signal to any other signal while maintaining the same maxi-

mal reward, he is going to damage the agent’s effort incentive, which ul-

timately will hurt his own objective. This negative implication is all driven

by the MLRC property and holds irrespective of whether the agent is

risk averse or risk neutral. Another way to view the above is to say that,

if the principal had a way to lower money burning at any t > 1 (from,

say, w + b − δ2) and replace it with increased money burning at t = 1

(say from a strictly positive consumption), he would do so. This implies,

positive money burning at any t > 1 cannot be an optimal response in

MacLeod’s model so long as consumption at t = 1 is strictly positive. But

then the Inada assumption in MacLeod’s model forces the consumption

at t = 1 to be strictly positive. This rules out positive money burning at

any signal other than the worst signal. In contrast, in our formulation,

dropping of the Inada condition implies that the principal can already set

money burning to be maximal (or full) at t = 1, if he wishes so. So

the only way our principal can manoeuver incentives further, in terms of

shifting money burning around, is to go up the signal order, starting from

t = 1. If our principal does not extend money burning beyond the lowest
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signal, then to provide marginal (effort) incentive to the agent the princi-

pal will have to increase the overall reward from w+ b to some w+ b+ ∆

and then set full money burning at b + ∆ at t = 1, but this is more costly

than the alternative of extending money burning beyond t = 1.

To summarize, so long as MLRC is viewed as a very basic assump-

tion in any moral hazard model of contracting, the main difference be-

tween extreme and moderate wage compression comes from the as-

sumption of Inada condition (or its absence). On the face of it, Inada con-

dition is usually not considered such a serious imposition in most models

(such as growth model) and its main purpose is to ensure interior solu-

tions. However, in our contracting environment under spe, the condition

turns out to be both necessary and sufficient for extreme wage compres-

sion. And if the agent possesses some wealth of his own or sometimes

a minimal positive consumption is guaranteed by the state through the

social welfare program, then we recover moderate wage compression

even with the Inada condition.

� Comparison of two-period model with the static model. Our

modification of MacLeod’s model should also be useful for comparison

with the finite repeated game models. Without interim feedback and in-

terim money burning (that are shown to be optimal in Propositions 3-

??), the repeated efforts model can be seen in the same way as a static

game: in the most discriminating case of Proposition 5 (i.e., part (II)),

the signals {σHσL, σLσH} can be viewed as the cutoff t′ with w̄ = 2c
p1−p0

and b = c
p1−p0 in part (i) of Proposition 6; part (I) of Proposition 5 paral-

lels part (ii) of Proposition 6; and part (III) of Proposition 5 parallels the

extreme wage compression result of MacLeod (Proposition 6-MacLeod

(2003)). It may be noted that the pay for performance in our two-period

model is part of the more general 2-fold wage compression incentives in

the static model.
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2.5 Robustness check: Impact of agent infor-

mation

Chan and Zheng (2011) (in short, CZ) study a principal-agent contracting

problem similar to ours but they introduce the possibility that the agent

might have some information about his own performance.24 By incorpo-

rating agent information that is correlated with the principal’s signal, the

optimal money burning mechanism is shown by the authors to reflect the

pay for performance principle. In a two-period example, they show that

money burning should be more substantial when the performance is de-

clining over time (signal profile “high-low”) than if it is improving (signal

profile “low-high”).

CZ’s model differs from ours in the principal’s objective similar to

the difference between our model and Fuchs (2007). CZ assume that

the agent might be asked by the principal to pay upfront a lump-sum

amount before period 1 which the agent may forfeit following low perfor-

mance. This violates the agent’s limited liability and converts the princi-

pal’s profit-maximization problem into maximization of the social surplus.

Thus whether the pay-for-performance result will hold when the agent

has additional information and the principal maximizes profits and the

agent is subjected to limited liability, remains to be seen. In this section,

we do this verification.

CZ derive the following optimal incentive scheme when ρ > 0:

W =
1 + ρ(1− p1)

1− p1

c

p1 − p0

zHH = 0, zHL = ρ
c

p1 − p0

, zLH = 0, zLL =
1 + ρ(1− p1)

1− p1

c

p1 − p0

,

24CZ’s analysis is for finite T period repeated games with specific result for T = 2
relevant for comparison with our results.
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where ρ ∈ (0, 1) is the correlation between the agent’s and the principal’s

signals.25

Now let us introduce agent private information to our two-period model

of section 3. Let the agent receive a binary signal s1 ∈ {sG, sB} after pe-

riod one. This private signal, when realized, together with the private

effort chosen, will form the agent’s first-period posterior belief of the prin-

cipal’s first-period signal: Pr[σ1 = σH | (e1, s1)].26 The posterior is defined

as follows:27

q1G = Pr[σ1 = σH | (1, sG)] = p1 + ρ(1− p1)

q1B = Pr[σ1 = σH | (1, sB)] = p1 − ρ(1− p1)

q0G = Pr[σ1 = σH | (0, sG)] = p0 + ρ(1− p0)

q0B = Pr[σ1 = σH | (0, sB)] = p0 − ρ(1− p0).

We have the following implications:

q1G > p1 > q1B , q0G > p0 > q0B.

To simplify the analysis, we further impose the following assumption:

ASSUMPTION 1 (Limited correlation between signals). Let q1B > q0G,

or equivalently, 0 < ρ < p1−p0
2−p1−p0 .

What this assumption means is that while the agent’s self-evaluation

possibly reflects also the principal’s evaluation, the information that the

agent exerted effort means a higher likelihood of principal receiving a

high signal even when accompanied by a bad signal on the agent’s side
25Since the intertemporal discounting is assumed away in this work, the correspond-

ing case in CZ is when ρ > 1− δ. We report only this case.
26Communication or renegotiation between the agent and the principal after period 1

is not considered.
27Recall that p1 and p0 refer to the prior probabilities that the principal will receive a

high performance signal with and without effort exerted in that particular period.
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compared to when the agent does not exert effort but observes a good

signal.

With the introduction of agent information the time line of the game

changes as follows:

1. At time zero, a contract (W, z(Σ)) is signed between parties;

2. In period 1, the agent decides whether to exert effort or shirk; at

the end of the period, the agent and the principal each privately

observe a performance signal;

3. In period 2, the agent chooses effort once more based on first-

period performance; at the end of the period, the principal reports

the performance signal profile {σ1σ2} and makes the payment ac-

cordingly.

The principal’s objective is to minimize the reward costs of imple-

menting full efforts by the agent over two rounds, (1, 1). Using backward

induction, start from the second period. The information based on which

the agent makes the second-period effort decision is defined by first-

period effort and signal pair (e1, s1). From each such pair, there is a

proper subgame for the agent as illustrated in Fig. 2.2. To implement the
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Figure 2.2: Subgame following (e1, s1)

second-period effort, the rewards (and money burning amounts) should
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be designed such that upon first-period effort, i.e., at either information

of (1, sG) or (1, sB), the agent should have higher expected continuation

value (or lower expected cost) from choosing e2 = 1 than e2 = 0. This will

give us the incentive compatibility conditions for exerting effort in the sec-

ond period. Then, going back to the first period we need to make sure

that the expected value for the agent is the highest (or expected cost

is lowest) for the effort profile (1, 1), among {(1, 1), (1, 0), (0, 1), (0, 0)}.

This will lead to the incentive compatibility conditions for full efforts for

two periods. Then imposing the participation constraints in equilibrium,

as well as the non-negativity constraints, we can write the principal’s

cost-minimization problem formally (see Appendix). Solving this problem

yields the optimal money burning mechanism as shown in Table 2.2.28,29

(i) p1 + p0 > 1 (ii) p1 + p0 = 1 (iii) p1 + q1G ≤ 1

W = 2c
(p1+p0)(p1−p0) W = 2c

p1−p0 W = 1+ρ(1−p1)
1−p1

c
p1−p0

zHH = 0 zHH = 0 zHH = 0

zHL = 2c
(p1+p0)(p1−p0) zHL = c

p1−p0 zHL = ρ c
p1−p0

zLH = 2c
(p1+p0)(p1−p0) zLH = c

p1−p0 zLH = 0

zLL = 2c
(p1+p0)(p1−p0) zLL = 2c

p1−p0 zLL = 1+ρ(1−p1)
1−p1

c
p1−p0

Table 2.2: Optimal money burning mechanism with agent’s information

Table 2.2 illustrates three different cases. In cases (i) and (ii), money

burning is necessary whenever there is a low performance signal; also,

the money burnt following “high-low” signals is same as the one follow-

ing “low-high” signals, i.e., the order of signals does not matter given the

same number of low signals – a result in contrast with Chan and Zheng
28Note that full efforts need not always be implementable, so the cases in Table 2.2

are mutually exclusive but not necessarily exhaustive.
29The detailed derivations are provided in the Appendix.
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(2011). In case (iii), money burnings upon σHσL and σLσH are asym-

metric, the former positive and the latter equal to 0 – a result similar to

CZ’s result. Given these observations, next we address two questions:

first, how do changes in agent’s private information impact on the optimal

mechanism as derived in our Proposition 5; second, with agent informa-

tion added, how does the principal’s implementation cost compare with

the one in CZ (where the principal effectively minimizes expected money

burning).

When p1 + p0 > 1, under the mechanism derived in the absence of

agent information (see case (I) in Proposition 5), the agent strictly prefers

exerting effort to shirking in the second period, i.e., the incentive com-

patibility condition for choosing (1, 1) over (1, 0) is slack. Now with the

introduction of agent’s self-evaluation, he knows more information about

the principal’s first-period signal, and additional incentive compatibility

conditions are required for implementing second-period effort. However,

no matter his information is good (sG) or bad (sB), it turns out that the

original mechanism still makes him strictly better off exerting effort rather

than shirking. Therefore, the private signal of the agent does not change

the original optimal mechanism in this case. When p1 + p0 = 1, the ad-

ditional IC conditions imposed for second period agent effort happen to

also bind under the mechanism proposed in case (II) of Proposition 5,

so that agent information does not alter the previous optimal mechanism

in this case too. Therefore, if p1 + p0 ≥ 1, which implies the principal’s

signal reflects, on average, agent’s effort,30 the principal behaves as if

there is no agent information.

When p1 + q1G ≤ 1, which implies p1 < 1/2 i.e. that the principal’s

signal is not as informative, introduction of agent’s private information

does alter the optimal mechanism. In particular, for all p1 ≤ 1/2, the orig-

30Note that p1 + p0 ≥ 1 implies p1 > 1/2 since p1 > p0.
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inal mechanism in Proposition 5 suggests burning money only upon the

worst signal realization σLσL, and the incentive compatibility conditions

for full efforts (1, 1) over both (1, 0) and (0, 1) are binding. Now with the

agent’s private signal, for example a good signal sG, the probability that

the agent believes σH is received by the principal is higher than its prior

(i.e., q1G > p1); as a result, the incentive provided by the previous mecha-

nism without the agent’s information, zHL = 0, becomes insufficient: the

agent would now strictly prefer shirking in the second period. Therefore,

any positive chance of getting sG necessitates positive money burning

upon σHσL signals, discouraging the agent from shirking after any sign

of first-period success. Furthermore, with zHL positive, the original value

of zLL has to be pushed up too in order to maintain the incentives pro-

vided by zLL − zHL, otherwise the agent would strictly prefer shirking in

the first period. Therefore, the principal’s cost is pushed up accordingly.

Below we summarize these observations.

PROPOSITION 7 (Impact of agent’s information). Suppose Assump-

tion 1 holds.

(i) If p1 + p0 ≥ 1, the optimal mechanism is not affected by the agent’s

private information and may exhibit the pay for performance prin-

ciple (cases (i) and (ii) in Table 2.2).

(ii) If p1 + q1G ≤ 1, the optimal mechanism depends on the fact that

the agent also has some private information about his own per-

formance: the principal has to incur a higher implementation cost

to induce full efforts with more frequent money burning than if the

agent were ignorant. Again, the optimal mechanism exhibits the

pay for performance principle (case (iii) in Table 2.2) that depends

on the specifics of time structure of progress similar to Chan and

Zheng’s (2011) result.
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Now let us turn to a comparison with CZ’s optimal mechanism re-

ported earlier. It can be seen that the mechanism is identical to that

in case (iii) of ours: both result in higher implementation costs (than

the mechanism derived without agent information), and punish the agent

asymmetrically upon σHσL and σLσH . However, in some circumstances,

say as in cases (i) and (ii), our objective of minimizing principal’s cost

results in a lower cost and more frequent but symmetric money burning

than CZ’s mechanism, which is derived from the objective of minimizing

expected money burning. When p1+p0 ≥ 1, as noted in Proposition 7, the

principal ignores agent’s information and burns money whenever a low

signal is observed. By punishing the agent more frequently, our mech-

anism requires less amount being burnt per incident, at the expense

of more total expected money burning. However, to minimize expected

money burning, as CZ’s principal seems to target, would require invoking

the “reuse of punishment” principle, i.e., shift money burning from some

circumstances to the worst signal profile. This practice pushes up the

principal’s cost. When p1 + q1G ≤ 1, it might not be optimal to punish

the agent whenever a low signal is observed, which is more likely to be

a consequence of bad luck rather than zero effort. In this case, minimiz-

ing principal’s cost yields identical solution to the one when the principal

minimizes the social cost (due to the deadweight loss of money burning).

PROPOSITION 8 (Comparison with Chan & Zheng’s mechanism). Sup-

pose Assumption 1 holds.

(i) If p1 + p0 ≥ 1, the objective of minimizing principal’s cost leads to a

mechanism with more frequent money burning that is also symmet-

ric, i.e. money burning amount is the same whether for improving

or declining performance, in contrast to Chan and Zheng’s result.

Overall, our mechanism involves a lower implementation cost for

the principal than their money burning mechanism.
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(ii) If p1 + q1G ≤ 1, our mechanism and Chan and Zheng’s mechanism

yield identical recommendations.

2.6 Conclusion

Annual adjustments in base salaries and bonuses following performance

review meetings with department managers or heads is a common oc-

currence in most organizations. Human resource departments mostly

gather hard information about employee performance but when it comes

to real decision making about pay adjustments, the words of someone

with real authority often carry substantial weight. The earlier literature on

subjective evaluation has argued that the performance based reward ad-

justments, especially when information about performance is soft, should

be less common but more sharp that has come to be known as the (ex-

treme) wage-compression hypothesis. This paper returns to this hypoth-

esis.

We have argued that so long as employment relations are of finite

duration (modelled as a two-period repeated efforts game or a static

game), employees are risk averse or risk neutral but do not go broke at

zero consumption, and employers seek to maximize profits rather than

social efficiency, more sensitive performance pay or a threshold based

wage compression is typically the optimal strategy for employers. Thus,

the additional optimal contracting possibilities tend to be relatively more

discriminating as in Levin (2003), as opposed to the single-incidence

based punishment schemes of MacLeod (2003), and Fuchs (2007).

While this paper is definitely not about how to endogenize money

burning, which we accept as the one shortcoming of our analysis, it is

not difficult to contemplate money burning in practice as organizations

do rely on fixed salary/bonus pools to reward their employees. Analyzing
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single-agent incentive schemes against such a backdrop is a plausible

step forward to understand better organizational practices. This work

should be seen as complementary to MacLeod (2003), Levin (2003), and

Fuchs (2007) on subjective evaluations, wage compression and perfor-

mance pay.
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CHAPTER 3

Subjective Performance Evaluation and Perils of Favoritism

3.1 Introduction

Favoritism in organizations, if not rampant, is not uncommon. In team

settings treating identical agents differently can have economic efficiency.

This is shown by Winter (2004) in a multi-agent, moral hazard problem

involving multiple tasks where agents perform one task each and the

team project succeeds for sure if all tasks are completed successfully.

To minimize the incentive costs, the principal rewards the agents differ-

entially if the overall project succeeds but otherwise the agents receive

the same zero reward. In Winter’s analysis team performance is verifi-

able but individual efforts are not.1

We consider a static, one-period team problem where team perfor-

mance is not immediately known, nor are individual efforts. Instead, the

principal privately observes only a signal, high or low, of the team’s col-

lective performance. The agents either exert effort or shirk, and with an

additional effort the positive signal of performance is more likely. Since

the signal is not verifiable and hence not contractible, the performance

evaluation and eventual distribution of rewards are essentially subjective.

We first show that, like in Winter, the principal would discriminate be-
1In an experimental work on Winter’s model, Sebastian, Sebastian, and Zultan

(2010) show that unequal rewards can potentially increase productivity by facilitating
coordination.
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tween ex-ante identical agents by promising differential positive rewards

if he observes a positive signal of performance, but otherwise give zero

rewards. Zero rewards necessitate money burning. Then we ask the fol-

lowing question: how should an organization deal with money burning?

It is well known that for subjective performance evaluation, in short

spe, money burning is a necessary evil especially in static environments.

Organizations rarely, if at all, engage in explicit money burning. After all,

there is always the question of accountability: how would the manager

justify money burning? Economic reasons cannot persuade outsiders,

be they tax payers in the case of governmental organizations or share-

holders for private firms, about the need for clear wastage. One explana-

tion put forward by MacLeod (2003) (who studies a one-period principal-

agent problem with agent moral hazard and spe) is that the principal can

transfer the ‘burnt money’ to a third party or equivalently hire an extra

agent. In concrete terms what this means is that the principal will have

employees who, despite not being central to the team’s core activity in

question, could become the lucky beneficiaries. Or a more plausible sce-

nario is one where the principal openly identifies his favorite employee

(or it becomes common knowledge who is the favorite employee) who re-

ceives higher rewards in each contingency and more so when the team

performs poorly.2 But such favoritism or organizational bias will lead

to another problem, that of sabotage, that seriously undermines an or-

ganization’s attempt at incentive provision (as suggested by Winter) or

avoidance of wastage in money burning (as hinted by MacLeod). And

worse still, sometimes there might not be any sabotage-proof mecha-

nism (when money burning is replaced by a balanced budget mecha-

nism) by which all key members of a team can be induced to put in pro-
2Rasmusen (1987) studies moral hazard problem in risk-averse teams and proposes

a “massacre” contract: all but one randomly selected agent are punished and the lucky
one gets rewarded upon bad team performance. His work is not in the spe context nor
does he consider the possibility of sabotage or its implications.

57



ductive efforts rather than shirk. Ultimately, an organization may have

to choose between two evils – money burning and back-stabbing and

scheming within its workforce. If money burning is not a choice, one

could be left with only a scheming group. This is in addition to the famil-

iar problem of collusion encountered in team settings as earlier noted by

Eswaran and Kotwal (1984) (see the discussion at the end of section 4).

There are a number of important contributions on subjective perfor-

mance evaluation but the paper that prompts us to go further on the issue

of favoritism and its incentive role is MacLeod (2003), following the lead

from Winter (2004).3 We extend his (MacLeod’s) principal-agent problem

under spe to team problems as in Holmstrom (1982). Given that individ-

ual contributions are difficult to ascertain in a team game, the notion

of spe should be adapted to team’s collective performance. The princi-

pal obtains a private signal of team performance and gives rewards to

team members based on the observed signal.4 MacLeod had observed

that (refer p. 222), “...the role of a good subjective evaluation system is

not the elimination of socially wasteful conflict, but rather to find an opti-

mal trade-off between the imposition of costs ex post on the relationship

and the provision of performance incentives.” In static, one-shot environ-
3Baker, Gibbons and Murphy (1994) consider the complementary role of subjective

performance measure along with imperfect objective measures for employee incen-
tives. Levin (2003) studied subjective performance evaluation in a repeated interaction
principal-agent model, where the principal’s assessment of the agent’s performance
in each period is private (see section IV). The author focused on simple truth-telling
contracts in which the principal submits an accurate report of the performance signal
observed. Levin doesn’t concern with money burning, instead future payoff consid-
erations incentivize the principal to report performance related information accurately.
In our static environment on the other hand, only money burning can ensure truthful
reporting.

4Giving rewards to a group of employees based on subjective impressions of the
group’s performance is not unusual. A close-to-home example is in academics where a
department may be given its pool of annual bonus or salary increments by the Dean of
the Faculty based on indicators about how the department as a collective unit is doing,
where the indicators need not be objectively verifiable. For instance, the Dean may
seek an external’s opinion where there is quite a bit of subjectivity involved.

The CEO of a corporate firm may determine the rewards to the members of a re-
search division on the basis of progress reports on hand about the team’s activities.
Assessment of performance related reports can be very subjective.
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ments ex-post costs are due to money burning. Here we argue that how

one models money burning (social waste), and in that regard adoption

of a plausible formulation of one of MacLeod’s suggestions (i.e., budget

balancing via a third party), can have serious negative implications for in-

centives. Favoritism to avoid money burning may lead to instability even

when there might be a prior compelling economic argument in favor of

favoritism. Overall, our analysis suggests that there could be an upward

bias in assessing the power of money burning for organizational incen-

tives. This is not to deny other more congenial interpretations of money

burning such as costs through conflicts in a repeated principal-agent re-

lationship as in Levin (2003), but such models usually rely on the infinite

game structure. For finitely repeated games (and ours is a one-shot

game), money burning must be internalized through budget balancing

for it to be credible as an organizational incentive mechanism. This will

bring us back to the kind of team game modeled in this paper.

To the best of our knowledge, the only other paper to consider sub-

jective performance evaluation in teams is by Rajan and Reichelstein

(2006). They, like us, look at the problem of endogenizing money burn-

ing in a team moral hazard setting. Unlike in our case, which is the

most significant difference, their principal obtains separate, independent

signals of team members’ performance. While the signals are private,

the principal is still able to punish each agent according to his/her per-

formance based on individual signals (budget balance within the team

avoids money burning). The individualized punishment in Rajan and Re-

ichelstein thus eases to a great extent the difficulties of incentive provi-

sion associated with free riding in teams. In fact, under suitable assump-

tions about the precision of signals the authors implement second-best

and sometimes first-best efforts. Also, the authors do not consider sab-

otage. Thus, ours is a more traditional ‘moral hazard in teams’ problem
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with the focus on a coarse team-based subjective evaluation.5 The sharp

implications of favoritism and related sabotage incentives allow us to of-

fer a much clearer perspective to the literature on subjective performance

evaluation.6

The earlier works on favoritism in organizations (Prendergast and

Topel, 1996; 1993; Prendergast, 1996) address the problem of supervi-

sory bias in subjective evaluations of subordinates (due to a preference

for exercising authority) and how organizations should respond to it by

making agent incentives less or more high-powered. Money burning was

never an issue in the above works. But relating favoritism to subjective

evaluations remains a compelling account of organizations. In ours, sub-

jectivity in evaluations gives rise to money burning and favoritism.

The rest of the paper is organized as follows. Subjective performance

evaluation is introduced in section 2. In section 3, the principal’s optimal

money burning mechanism is derived when agents can engage only in

productive efforts, followed by an analysis of sabotage in section 4. In

section 5, we look more closely at the issue of fair treatment vs. effort im-

plementation costs. Closing remarks are contained in section 6. Proofs

appear in the Appendix.
5With individual signals and fixed total rewards budget agents can be incentivized by

relative performance evaluation, whereas with coarse information a joint performance
evaluation seems a natural choice. See Che and Yoo (2001) for this distinction.

6Sabotage in contests is a well-studied topic (see, for example, Konrad (2000)).
For team problems, Eswaran and Kotwal (1984) had pointed out the possibility of a
principal colluding with an agent to induce him to lower his effort when budget balance
is broken by giving the entire team output to the principal (or a third party) for poor
performance. We do not consider collusion between the third party and any of the core
team members but instead give the third party, who is different from the principal, an
active role in sabotage through costly effort and study whether this sabotage incentive
can be carefully controlled by the principal and how it impacts on the effectiveness of
subjective performance evaluation.
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3.2 The model

A principal organizes a team of two or more workers (or agents), i =

1, 2, 3, in a joint project in a static one-shot game. The agents simul-

taneously decide whether to exert effort or shirk, ei ∈ {0, 1}. Exerting

one unit of effort will incur a cost c for the agent. The principal does not

observe agents’ actions but receives a private signal about team perfor-

mance which is either high or low: σ ∈ {σH , σL}. The performance signal

depends on the aggregate effort of the team as follows:

Pr[σH | (ei)] =


p0, if Σei = 0

p1, if Σei = 1

p2, if Σei ≥ 2.

We thus assume that for the team project under consideration, only the

best two efforts matter. Throughout this paper, the principal will be as-

sumed to be interested in implementing two units of effort by involving

two or at most three agents. In the case of three agents, the principal

wants two specific agents to coordinate in exerting efforts as otherwise

there will be too little or too much efforts.

Further, we impose the following assumptions on the technology:

[A1] p2 > p1 > p0,

[A2] p2 − p1 > p1 − p0.

That is, the likelihood of a high performance signal is increasing in total

efforts and the efforts are strategic complements.

Due to non-observability of agents’ actions, the principal can reward

the agents based only on team performance: agent i will receive rHi if σH

is reported, and rLi if σL is reported; the rewards can be discriminating.
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The total budget for the principal upon different signal realizations:

WH =
∑
i

rHi WL =
∑
i

rLi .

The time line of the game is as follows:

1. A self-enforcing implicit (or explict) contract involving performance

related rewards is agreed to between the principal and the agents

as a collective unit.

2. The agents simultaneously and privately choose their effort levels

for team production.

3. The principal receives a signal of team performance.

4. The principal reports the performance signal and rewards the agents

as he sees fit.

3.3 Money burning and favoritism

In this section, we consider alternative forms of implementation with prin-

cipal inducing two units of efforts. The principal designs incentives to

minimize implementation costs.

Under subjective evaluations, signals of team performance are not

third-party verifiable and therefore the principal will report them truthfully

provided he does not strictly gain from non-truthful reporting. The follow-

ing implication is straightforward:

LEMMA 3. The principal should commit to a fixed total budget W regard-

less of the realized signal.

The intuition is simple. With the reward commitment being invariant

to his reports, the principal should tell the truth. The result appeared in

MacLeod (2003).
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� Benchmark case. Initially we consider only two agents. The principal’s

budget should satisfy:

W = rH1 + rH2 = rL1 + rL2 . (3.1)

To implement (e1, e2) = (1, 1), agent 1 should be rewarded more upon

high signal than low signal as effort on his part implies marginally a

higher probability of high signal. But then, given fixed budget, agent

2’s reward should be less upon high signal than if it is a low signal. This

implies agent 2 will have an incentive to shirk. The following result sum-

marizes this dilemma.

PROPOSITION 9 (Non-existence of incentive compatible mechanism).

With two agents and private evaluation of team performance, there does

not exist an incentive compatible reward scheme such that both agents

will exert efforts with the rewards satisfying budget balance as in (3.1).

This negative result is well known in the team implementation liter-

ature (Holmstrom, 1982). To restore incentive compatibility, the budget

balance must be broken with the principal burning money upon receiving

a signal of poor team performance.

� Money burning mechanism. Suppose now the principal destroys some

surplus by paying to a third party upon receiving each performance sig-

nal.7 The modified budget constraint is then:

W = rH1 + rH2 + zH = rL1 + rL2 + zL, (3.2)

where zH and zL are the money burnings for high and low signals.
7MacLeod (2003) addresses the optimal contract design problem in a single agent,

one period game with the possibility that part of the budget will be paid to a third party.
In Bag and Qian (2013), we study the optimal money burning mechanism in a single
agent, repeated efforts game.
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As σH is a signal of good performance, there is no reason to burn

any money, so set zH = 0. Thus the incentives are augmented by money

burning: (rHi , r
L
i , z

L). The induced effort game is as in G1.

Agent 2

0 1

Agent 1
0 p0r

H
1 + (1− p0)rL1 , p0r

H
2 + (1− p0)rL2 p1r

H
1 + (1− p1)rL1 , p1r

H
2 + (1− p1)rL2 − c

1 p1r
H
1 + (1− p1)rL1 − c , p1rH2 + (1− p1)rL2 p2r

H
1 + (1− p2)rL1 − c , p2rH2 + (1− p2)rL2 − c

Figure 3.1: Two-agent game G1

We next determine the incentive compatibility [IC] conditions such

that (e1, e2) = (1, 1) is the unique Nash equilibrium of G1. Based on the

[IC] conditions we then solve the principal’s budget minimization prob-

lem.

Incentive compatibility constraints. For (1, 1) to be a unique Nash equi-

librium, we first require agent 1 to exert effort as his dominant strategy,

and then agent 2 exerts effort as a Nash best response. The relevant

conditions are as follows:

[IC1] rH1 − rL1 ≥
c

p1 − p0

[IC2] rH2 − rL2 ≥
c

p2 − p1

.

Participation constraints. The expected reward net of effort cost should

be weakly greater than the opportunity cost of time, normalized to zero:

[PC1] p2r
H
1 + (1− p2)rL1 − c ≥ 0

[PC2] p2r
H
2 + (1− p2)rL2 − c ≥ 0 .

Finally, we solve the principal’s cost minimization problem subject to
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[ICs], [PCs], and the natural non-negativity conditions:

min
{rHi , rLi , zL}

W (P)

s.t. [IC1], [IC2], [PC1], [PC2] and rHi ≥ 0, rLi ≥ 0, zL ≥ 0,

to derive the optimal mechanism.

PROPOSITION 10 (Money burning for unique Nash implementation). For

the two-agent team, the money burning mechanism implementing (e1, e2) =

(1, 1) in a unique Nash equilibrium at minimal cost to the principal is as

follows:

(Principal’s cost) WMB =
c

p1 − p0

+
c

p2 − p1

(Rewards) rH1 =
c

p1 − p0

, rH2 =
c

p2 − p1

, zH = 0

rL1 = 0 , rL2 = 0 , zL =
c

p1 − p0

+
c

p2 − p1

.

The above result extends the principal’s optimal money burning mech-

anism of MacLeod (2003), and Bag and Qian (2013), from single-agent

to a team setting. The optimal mechanism exhibits asymmetric treat-

ments of identical agents. The basic argument follows Winter (2004):

To uniquely implement two units of efforts, sufficient reward should be

provided to one of the agents in order for him to have a dominant strat-

egy to exert effort; then the other agent will exert effort with less reward,

since the marginal benefit of his effort is higher given the guarantee of

the first agent’s effort due to complementarity of efforts. Our result thus

extends Winter’s (2004) asymmetric treatment of identical agents result

for subjective performance evaluation.

� Adding a third agent to the team. Money burning, despite its com-

pelling economic intuition, is hard to justify in organizations. Taking a

lead from MacLeod’s (2003) suggestion, we probe how endogenizing
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money burning with the help of an additional non-functioning agent al-

ters the incentives. We stress that while MacLeod’s suggestion prompts

us to look at an extra agent, eventually we empower this agent with an

active role to influence team production by engaging in subversion of

other team members’ efforts.

With three agents, Lemma 3 still applies and the principal’s budget

constraint becomes:

W = rH1 + rH2 + rH3 = rL1 + rL2 + rL3 . (3.3)

The normal form for the three-agent team is shown in the game G2.

Since only two best efforts matter in generating team’s performance

signal, an agent would shirk if the other two choose to exert effort. There-

fore, inducing three units of effort is neither possible, nor necessary:

LEMMA 4. With three agents in the team, the principal is not able to

incentivize all agents to engage in productive efforts at the same time.

We will thus focus on inducing two agents to exert efforts, leaving the

third to shirk. Let agent 3 be the one who is not expected to work, and

the principal’s objective is to implement (e1, e2, e3) = (1, 1, 0) at minimal

cost.

In designing the optimal mechanism, the principal may also be con-

cerned about other issues such as fairness among team members, strate-

gic independence, etc. The trade-offs can be different with various types

of implementations. We address these issues next.

� Unique Nash implementation. Initially the third agent serves to simply

absorb the burnt money, receiving it as a reward when team performs

poorly but otherwise receives nothing. As one can see immediately from

Proposition 10, the same incentives implement in a unique Nash equilib-

rium the effort profile (1, 1, 0); agent 3’s dominant strategy is to shirk.
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PROPOSITION 11 (Optimal three-agent mechanism: Unique Nash imple-

mentation). An optimal reward scheme inducing two agents (agents 1

and 2) to exert effort and the third agent to shirk is as follows:

WU =
c

p1 − p0

+
c

p2 − p1

rH1 =
c

p1 − p0

, rH2 =
c

p2 − p1

, rH3 = 0

rL1 = 0 , rL2 = 0 , rL3 =
c

p1 − p0

+
c

p2 − p1

.

In this reward scheme, agents 1 and 2 are treated asymmetrically, while

agent 3 picks up the entire budget when the team performs poorly.

Use of an alternative beneficiary for diversion of resources, in case

the originally intended group does not perform well, is not that uncom-

mon in organizations: annual bonus allocated for one business unit may

be shifted to another unit with the former failing to meet a threshold per-

formance level.

One drawback of the above implementation mechanism is that agents

1 and 2 are treated asymmetrically. For a principal concerned about

fairness issues, there are two ways to deal with this problem to which we

turn next.

� Weak Nash implementation. In the unique Nash implementation mech-

anism above, agent 1 receives a higher reward than agent 2 so that ex-

erting effort is a dominant strategy for agent 1 and in response agent 2

exerts effort. It is possible, however, to lower agent 1’s reward down to

agent 2’s reward and induce him to exert effort so long as agent 2 is also

exerting effort. This might open the door for a second Nash equilibrium

with both agents shirking. Thus while implementation costs might be

lower with symmetry between the two players restored, the uniqueness

of equilibrium can no longer be guaranteed. Formally, for weak Nash

implementation of (1, 1, 0) the incentive compatibility conditions are less

68



stringent for agent 1 as follows:

[IC′1] rH1 − rL1 ≥
c

p2 − p1

,

[IC′2] rH2 − rL2 ≥
c

p2 − p1

.

Using the [IC′] conditions, and the same participation constraints ([PC1]

and [PC2]) and non-negative conditions on the rewards as in the problem

(P),8 the optimal mechanism can be characterized as follows (deriva-

tions can be found in the Appendix):

WN =
2c

p2 − p1

rH1 = rH2 =
c

p2 − p1

, rH3 = 0

rL1 = rL2 = 0 , rL3 =
2c

p2 − p1

.

It can be checked that for the above incentives, both (1, 1, 0) and

(0, 0, 0) are Nash equilibria. Thus the principal gains in terms of fairness

and cost efficiency but loses control due to the coordination problem.

� Unique symmetric implementation. One may be interested in a sym-

metric mechanism treating only agents 1 and 2 identically that imple-

ments the desired effort profile uniquely.9 For uniqueness, the incentive

compatibility conditions for the agents should be the same as [IC1] and

[IC2] in the problem (P). For a weak form of symmetry, we require that

the rewards to agents 1 and 2 be equal for high signal realization while

for low signal the rewards can be different. Then the principal’s cost

minimization yields the following result (derivations can be found in the
8It can be easily verified that agent 3’s IC and PC constraints will be satisfied.
9Later on in section 5 we extend symmetric treatment of rewards to agent 3 as well,

upon high signal, that we call complete symmetry.
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Appendix):

W S =
2c

p1 − p0

rH1 =
c

p1 − p0

, rH2 =
c

p1 − p0

, rH3 = 0

rL1 = 0 , rL2 ∈
[
0,

c

p1 − p0

− c

p2 − p1

]
, rL3 =

2c

p1 − p0

− rL2 .

From the above solution, one can see that the combined requirement

of uniqueness of Nash equilibrium and (weakly) symmetric treatment of

agents 1 and 2 lead to principal’s implementation costs being the highest

among the three mechanisms studied here. Also note that if rL2 is set at 0

(along with rL1 = 0), exerting effort is a dominant strategy for both agents

1 and 2.

In all (weakly) symmetric mechanisms, the incentive compatibility

condition need not be binding for agent 2. The observation is true be-

cause, symmetric rewards upon high signal is an additional require-

ment which distinguishes the problem from unique Nash implementation.

Therefore, from the optimal mechanism in Proposition 11, rH2 is pushed

up to match agent 1’s reward, which creates a room for flexibility for rL2 .

In this sense, incentive compatibility constraint may be slack and thus

some surplus may accrue to agent 2. From the perspective of the prin-

cipal, pursuing fairness is costly and makes the mechanism suboptimal

among the class of unique implementation mechanisms.

Table 3.1 summarizes comparison of the different mechanisms ana-

lyzed.
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Implementation Cost Uniqueness Symmetry between 1 & 2

Unique Nash Medium ! %

Weak Nash Low % !

Unique Symmetric High ! ! (weak)

Dominant Strategies High ! !

Table 3.1: Trade-offs among three-agent mechanisms

3.4 Money burning or sabotage: Choosing be-

tween two evils

So far the third agent has acted merely to endogenize money burning

without actually burning money. This idea, while it originally appeared

in MacLeod (2003) in a principal-agent setting, we integrate explicitly

in the teams problem. Our main objective is to look beyond just the

facilitating role of agent 3 in endogenizing money burning. Given that

agent 3 stands to benefit when the team performs poorly suggests that

it should be in his interest to sabotage team performance. So, in this

section, we model sabotage formally and look at its implications. We

will see that expanding the role of agent 3 to engage in sabotage may

expose the limitations of subjective evaluations and money burning in a

way that has not been considered in MacLeod (2003), or in the related

relations contracting model of Levin (2003).

Let us start with the modification that agent 3 can now exert one

unit of sabotage effort, which costs the same as the productive effort, to

reduce the team’s chances of sending a high performance signal from

p0, p1, p2 to some respectively lower values p′0, p′1, p′2 satisfying p′0 < p′1 <

p′2.10 We do not consider the possibility of sabotage by agents 1 or 2

10So long as the cost of sabotage effort does not exceed the cost of productive effort,
our main negative result in this section (Proposition 12) will be unaffected. Obviously if
sabotage effort is more costly, its attractiveness for the saboteur will lessen.
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as not only they have nothing to gain but will definitely lose from such

activities. We call this game, the sabotage-augmented game.

Our first result is a negative one casting doubts on the implementabil-

ity of full efforts objective:

LEMMA 5. Given any three-agent mechanism, full team efforts, (1, 1, 0),

is not implementable due to agent 3’s deviation to sabotage if and only if

11

(p2 − p′2)(rL3 − rH3 ) > c (3.4)

holds.

Proof. Given a reward scheme, the LHS of (3.4) is the benefit of sabo-

tage for agent 3 while the RHS denotes the cost, and whenever benefit

exceeds cost the agent will deviate and sabotage. This can also be di-

rectly verified by rewriting (3.4) as

p2r
H
3 + (1− p2)rL3 < p′2r

H
3 + (1− p′2)rL3 − c,

which implies the agent gets more reward from sabotage than by simply

shirking.

To see that some of the implementation mechanisms derived in the

earlier section might fail due to sabotage, consider the unique Nash im-

plementation mechanism:

rL3 − rH3 =
c

p1 − p0

+
c

p2 − p1

.

Now if (and only if)

c

p2 − p′2
<

c

p1 − p0

+
c

p2 − p1

(3.5)

11When agent 3 is indifferent between sabotage and not sabotage, which would then
imply he exerts zero effort, we assume that he will break the indifference by not sabo-
taging.
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holds, then it is clear that the three-agent mechanism that was con-

structed without any consideration of sabotage will indeed open the door

to sabotage by agent 3. Note that this last condition is purely a tech-

nological condition, after dropping the variable c. The condition is likely

to hold if the drop in the probability of high signal following sabotage is

significant so that p2 − p′2 is sufficiently high. Similar conditions can be

obtained for sabotage for the other mechanisms derived in section 3: the

contributory role of p2−p′2 remains the same, only the incremental reward

due to sabotage, rL3 − rH3 , will differ.

Generally, if condition (3.4) holds, we cannot implement full efforts

(1, 1, 0) unless the rewards are modified to construct a sabotage-proof

mechanism. With that objective in mind, denote e3 = −1 as one unit

of sabotage effort. The new normal form game is shown in Fig. 3.3.

Lemma 4 still applies and exerting one unit of productive effort (work-

ing) is a dominated strategy for agent 3. So we only need to consider

whether agent 3 will shirk or sabotage. If for some incentive mechanism

the strategy profile (e1, e2, e3) = (1, 1, 0) can be implemented, we say that

the mechanism is sabotage-proof.

Next we are going to argue that given condition (3.4) holds (i.e.,

given that the originally derived mechanisms are not sabotage-proof), a

sabotage-proof mechanism does not exist in any of the implementation

cases analyzed in section 3.3, except for the unique symmetric imple-

mentation.

� Non-existence of a sabotage-proof mechanism. Note that the oc-

currence of sabotage for any given mechanism depends on its relative

cost and benefit specific to the mechanism. For example, if (3.5) does

not hold, the unique Nash implementation mechanism is essentially a

sabotage-proof mechanism. But what we are interested in is the com-

plementary situation of condition (3.5), i.e., allowing that sabotage does
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destroy the implementability of a derived mechanism, whether there is

any way to remedy the situation. Let us now assume the optimistic sce-

nario that there indeed exists an alternative sabotage-proof mechanism,

and use r̂i to denote the reward scheme specified by this mechanism.

From Lemma 5 it follows that agent 3 will be deterred from sabotage if

only if

(p2 − p′2)(r̂L3 − r̂H3 ) ≤ c. (3.6)

Given that agent 3 will exert zero effort rather than sabotage in the

posited sabotage-proof equilibrium, agents 1 and 2’s incentive compat-

ibility conditions are similar to ones in the case without sabotage. Let

us consider once again the unique Nash implementation mechanism of

section 3 for illustration:

[IC1] r̂H1 − r̂L1 ≥
c

p1 − p0

,

[IC2] r̂H2 − r̂L2 ≥
c

p2 − p1

.

However, given the budget constraint as in (3.3), we have the follow-

ing: [
r̂H1 − r̂L1

]
+
[
r̂H2 − r̂L2

]
= r̂L3 − r̂H3 . (3.7)

Therefore,

c

p1 − p0

+
c

p2 − p1

≤
[
r̂H1 − r̂L1

]
+
[
r̂H2 − r̂L2

]
= r̂L3 − r̂H3

≤ c

p2 − p′2
, (by (3.6))

i.e.,
c

p1 − p0

+
c

p2 − p1

≤ c

p2 − p′2
. (3.8)

This implies that a sabotage-proof mechanism exists only if (3.8) is true.
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But then it contradicts with (3.5), which is our starting hypothesis that

sabotage will occur in the originally derived unique Nash implementation

mechanism of section 3. Therefore, once sabotage occurs, we are no

longer able to rectify it by any alternative reward scheme. A similar anal-

ysis for weak Nash and dominant strategy implementations will lead to

the same conclusion. The following proposition summarizes one of our

main results.

PROPOSITION 12 (Non-existence of Sabotage-proof mechanism). For

(weak or unique) Nash or dominant strategy implementation, if the op-

timal mechanism derived in section 3 where sabotage was not consid-

ered fails to implement efforts from agents 1 and 2 and deter sabotage

by agent 3 in the sabotage-augmented game, then there does not exist

any sabotage-proof mechanism that can rectify the problem of sabotage.

The intuition for Proposition 12 is as follows. In the game without any

consideration of sabotage, the principal could freely transfer the rewards

from agents 1 and 2 to agent 3 upon bad performance in order to in-

centivize agents 1 and 2 to exert efforts without worrying about agent 3

undoing the incentives. This allowed the principal to tighten the incentive

compatibility conditions of agents 1 and 2 to bind in the optimal mech-

anism derived in section 3. However, once sabotage is allowed, agent

3’s reward has to be restricted too such that his benefit from sabotage is

(weakly) below his sabotage effort cost (see (3.6)). But this goes against

agents 1 and 2’s incentives: LHS of (3.7) determines, collectively, ef-

fort incentives of agents 1 and 2 that equals the sabotage incentive of

agent 3 (RHS). The higher is the potential benefit of sabotage to agent

3 (p2 − p′2 is large), the more restrictive are the incentives for agents 1

and 2, which finally breaks down the incentive compatibility conditions for

inducing efforts. The incentives provided by the original optimal mech-

anisms already reached the lower bound of the combined IC conditions
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for agents 1 and 2 that had induced agent 3 to sabotage. Then in order

to deter sabotage by decreasing agent 3’s incentive, which equals the

sum of agents 1 and 2’s incentives, any attempt will lead to insufficient

incentives for one or both of them.

� A special case of deterring sabotage. Proposition 12 shows the ten-

sion between incentivizing agents 1 and 2 for efforts and dissuading

agent 3 against sabotage. This tension was finely balanced such that

agents 1 and 2 were indifferent between exerting effort and shirking.

However, in the case of unique symmetric implementation, for the opti-

mal mechanism in section 3 agent 2 strictly prefers to exert effort over

shirking while agent 1 is indifferent. This means there is still some room

to transfer rewards back from agent 3 to agent 2 following a low sig-

nal. Now, if sabotage occurs in the optimal mechanism, with a marginal

transfer from agent 3 back to agent 2 the latter’s effort incentive can be

maintained at least for a while. This gives rise to the possibility of restor-

ing sabotage-proofness. In the following we show this possibility.

Consider the following implementation mechanism as derived in sec-

tion 3 with rL2 = ∆, where 0 < ∆ < c
p1−p0 −

c
p2−p1 :

[Mechanism Mo]



W S =
2c

p1 − p0

rH1 =
c

p1 − p0

, rH2 =
c

p1 − p0

, rH3 = 0

rL1 = 0, rL2 = ∆, rL3 =
2c

p1 − p0

−∆.

Further suppose sabotage arises given Mo so that condition (3.4) can be

rewritten as:
c

p2 − p′2
<

2c

p1 − p0

−∆. (3.9)

Now we claim that for some technologies, i.e., some values of c
p2−p′2

, the

rewards can be adjusted to induce efforts by agents 1 and 2 and deter
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sabotage by agent 3, even without pushing up the principal’s cost. Let

c

p2 − p′2
=

3

2

c

p1 − p0

+
1

2

c

p2 − p1

− ∆

2
,

which satisfies condition (3.9). Then consider the following mechanism:

[Mechanism M̂]



Ŵ S =
2c

p1 − p0

r̂H1 =
c

p1 − p0

, r̂H2 =
c

p1 − p0

, r̂H3 = 0

r̂L1 = 0 , r̂L2 =
c

p1 − p0

− c

p2 − p1

, r̂L3 =
c

p1 − p0

+
c

p2 − p1

.

It can be verified that [IC1], [IC2] and agent 3’s no-sabotage condition

(3.6) are all satisfied, while the principal’s cost remains the same as in

Mo. Thus, sabotage is deterred under the new mechanism M̂.12 Another

way to deter sabotage in this example would be to reduce rH2 rather than

increase rL2 . This may also lead to a sabotage-proof mechanism but it

breaks the symmetric treatment of agents 1 and 2.

� Collusion between agent 3 and any of the other agents. That poten-

tial collusion between the parties who are being incentivized could pose

a problem has earlier been noted by Esawaran and Kotwal (1984) in a

standard verifiable production team problem. Besides direct sabotage,

which is the main focus in this paper, collusion can pose a similar prob-

lem in our setting. To see how, consider a side-deal between agent 3 and

any of agents 1 and 2 who are expected to put in efforts in the optimal

incentives. If agent 3 can convince them that following poor performance

they will be more than adequately compensated for the loss in rewards

by agent 3, then they will shirk. This will increase the possibility of poor

team performance and if that eventuality were to happen, all of them will

have saved up their effort costs – agent 3 not engaging in sabotage and

12Note that M̂ itself is an optimal unique symmetric implementation mechanism with-
out considering sabotage, which is shown to be sabotage-proof given that Mo is not.
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the other agents not engaging in team production. This will upset the

principal’s objective of saving money burning through budget balance

and favoritism and totally undermine the effectiveness of subjective per-

formance evaluation. This problem is different from team performance

being low in the verifiable team production model of Eswaran and Kot-

wal (1984), as for the latter poor team performance means there will

be very little to share among the team members, whereas in our case

principal-committed rewards being fixed all three agents stand to gain

collectively at the principal’s expense. Thus, collusion poses a greater

challenge in the subjective evaluation formulation of the team problem

than in the standard verifiable production team problem. The principal

will now face the challenge of double incentivization: deter sabotage

as well as collusion.13 But since we already pointed out that sabotage-

proofness might fail, achieving both collusion-proofness and sabotage-

proofness becomes a difficult proposition.

3.5 Variations of three-agent model without sab-

otage

In this section, we study some variations of the three-agent model to

endogenize money burning (but without the considerations of sabotage)

to approximate more closely real-life organizations.

� Favoritism. In the three-agent mechanism, the third agent is favored

by the principal on receipt of a bad performance signal. However, in

many applications there might be a clear favorite of the boss, something

if unrelated to superior productivity is viewed as nepotism. Since in our

model one cannot ascribe team performance one-to-one to any specific
13Deterring collusion means the principal will have to undertake costly monitoring to

make side-contracting difficult.
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agent’s efforts, we will analyze the case of clear favoritism to be one

where one agent, say agent 3, receives a higher reward than any other

agent under all circumstances:

rH3 ≥ max{rH1 , rH2 } and rL3 ≥ max{rL1 , rL2 }.

The incentive compatibility and participation constraints remain the same

as in the problem (P) (agent 3’s IC and PC can also be easily verified).

Solving the principal’s problem leads to:

W FM =
2c

p1 − p0

+
c

p2 − p1

rH1 =
c

p1 − p0

, rH2 =
c

p2 − p1

, rH3 =
c

p1 − p0

rL1 = 0, rL2 = 0, rL3 =
2c

p1 − p0

+
c

p2 − p1

.

Principal ranks the agents according to: Agent 3 � Agent 1 � Agent

2. The marginal reward upon good performance is the highest for agent

1 who exerts effort in a dominant strategy, followed by a lower marginal

reward for agent 2 who exerts effort as a Nash best response to agent

1’s effort and the lowest marginal reward is for the most favored agent 3

whose dominant strategy is to shirk. Here agent 3 can either exert effort

positively or shirk but cannot sabotage. Compared with the unique Nash

implementation mechanism of Proposition 11, the principal spends more

resources due to the additional payment to the favored agent.

� Symmetry. As another extreme, consider a completely symmetric

treatment among the agents regardless of high or low performance sig-

nal: rHi = rLi = W
3

. In this case, none will have any incentive to work

since effort only incurs a cost to an agent but never generates additional

rewards. A more sensible situation is to treat the agents equally if per-

formance is good but reward them differently upon bad performance.
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Again, let agent 3 be the one who is not expected to work. Then sym-

metric treatment implies that the reward for agents 1, 2 and 3 should be

the same if a high performance signal is reported:

rH1 = rH2 = rH3 .

If a low performance signal is reported, the favoritism condition still ap-

plies:

rL3 ≥ max{rL1 , rL2 }.

Solving the principal’s cost minimization problem subject to these con-

straints as well as the same [ICs] and [PCs] conditions yields a stronger

form of complete symmetric mechanism:

W SC =
3c

p1 − p0

rH1 = rH2 = rH3 =
c

p1 − p0

rL1 = 0 , rL2 ∈
[
0,

c

p1 − p0

− c

p2 − p1

]
, rL3 =

3c

p1 − p0

− rL2 .

This mechanism imposes strict symmetry across all agents upon high

performance signal, which is more fair and realistic than the previously

derived favoritism mechanism. However, it costs the principal highest

among all mechanisms we have studies so far.

The main message to take away is that as the principal introduces

more and more symmetry in the treatment among team members, imple-

menting desired efforts becomes costly. This is to be expected given that

maintaining budget balance (and thus avoiding money burning) together

with inducement of agent efforts is impossible if one starts from full sym-

metry. Thus the tradeoff between fairness and cost efficiency remains

a key problem for the principal under subjective performance evaluation,

just like the tension pointed out in Winter’s (2004) article even when team
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performance could be verified.

3.6 Conclusion

Our analysis in this paper conveys a negative message for incentives

in organizations, where a group of agents need to work cooperatively

to a common team goal but team performance not measurable. Due to

complementarity between agents’ efforts, economic efficiency dictates

that identical agents be treated asymmetrically. In addition, subjectiv-

ity in performance assessment implies organizations must be prepared

to throw away resources to incentivize the agents. This calls for further

discriminatory treatment and even blatant favoritism, if wastage of re-

sources are to be avoided. But even if one were to sacrifice fairness for

economic efficiency, the loss in economic efficiency may be unavoidable

due to perverse sabotage incentives generated due to discrimination.

One difference between the concern for budget balance in team pro-

duction with objective performance measure and budget balance under

subjective evaluation as in this paper is that, in the former total team out-

put must be distributed exhaustively among the team members whereas

in this paper principal-committed rewards must be distributed. Both pose

problems for the organization: in the first case the main concern is imple-

mentation of first-best efforts, whereas in ours the difficulty is to induce

all important team members to exert efforts. Ensuring budget balance

with the help of a third party tends to undermine both these objectives.

Ultimately, the agents may have to be monitored for any subversive ac-

tivity that could undermine the team’s objective.
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APPENDIX A

Proofs for Chapter 1

Proof of Proposition 2. The agent’s payoffs in the repeated efforts game

are as follows:

V (1, 1) = W − p1p1z
HH − p1(1− p1)zHL − (1− p1)p1z

LH − (1− p1)(1− p1)zLL − 2c

V (1, 0) = W − p1p0z
HH − p1(1− p0)zHL − (1− p0)p1z

LH − (1− p1)(1− p0)zLL − c

V (0, 1) = W − p0p1z
HH − p0(1− p1)zHL − (1− p1)p0z

LH − (1− p0)(1− p1)zLL − c

V (0, 0) = W − p0p0z
HH − p0(1− p0)zHL − (1− p0)p0z

LH − (1− p0)(1− p0)zLL.

For full efforts implementation, the agent’s incentive compatible condi-

tions are:

p1(zHL − zHH) + (1− p1)(zLL − zLH) ≥ c

p1 − p0

(A.1)

p1(zLH − zHH) + (1− p1)(zLL − zHL) ≥ c

p1 − p0

(A.2)

p1(zHL − zHH) + (1− p1)(zLL − zLH) + p0(zLH − zHH) + (1− p0)(zLL − zHL) ≥ 2c

p1 − p0

.

(A.3)
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Thus the principal’s problem can be written as follows:

min
{W,zHH ,zHL,zLH ,zLL}

W

s.t. (A.1), (A.2), (A.3)

zHH , zHL, zLH , zLL ≥ 0

W − zHH ,W − zHL,W − zLH ,W − zLL ≥ 0.

Write the Lagrangian:

L = −W +A

[
p1(zHL − zHH) + (1− p1)(zLL − zLH)− c

p1 − p0

]
+B

[
p1(zLH − zHH) + (1− p1)(zLL − zHL)− c

p1 − p0

]
+ C

[
p1(zHL − zHH) + (1− p1)(zLL − zLH) + p0(zLH − zHH) + (1− p0)(zLL − zHL)− 2c

p1 − p0

]
+DzHH + EzHL + FzLH +GzLL

+H(W − zHH) + I(W − zHL) + J(W − zLH) +K(W − zLL).

First-order conditions are:

∂L

∂W
= −1 +H + I + J +K = 0 (A.4a)

∂L

∂zHH
= −Ap1 −Bp1 − Cp1 − Cp0 +D −H = 0 (A.4b)

∂L

∂zHL
= Ap1 −B(1− p1) + Cp1 − C(1− p0) + E − I = 0 (A.4c)

∂L

∂zLH
= −A(1− p1) +Bp1 − C(1− p1) + Cp0 + F − J = 0 (A.4d)

∂L

∂zLL
= A(1− p1) +B(1− p1) + C(1− p1) + C(1− p0) +G−K = 0.

(A.4e)

Since D ≥ 0, suppose D = 0. From (A.4b), D = Ap1 + Bp1 + C(p1 +

p0) +H, which implies A = B = C = H = 0. Then we have the following:


I + J +K = 1 by (A.4a)

E = I , F = J , G = K by (A.4c), (A.4d), (A.4e).
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Since I, J,K ≥ 0, at least one of I, J or K should be strictly positive. For

the time being, suppose I > 0. Then we have E = I > 0, thus

zHL = 0 and W − zHL = 0,

which implies W = zHH = zHL = zLH = zLL = 0, contradicting (A.1),

(A.2) and (A.3). So E = I = 0. If alternatively we suppose J or K > 0,

the same argument applies. Therefore, D = 0 should not hold and we

must have D > 0, which implies

zHH = 0.

Then we have W − zHH > 0, which implies H = 0.

Now (A.4b) can be written as D = Ap1 + Bp1 + C(p1 + p0) > 0, and

at least one of A, B or C should be strictly positive. Then by (A.4e),

K = A(1− p1) +B(1− p1) +C(1− p1) +C(1− p0) +G > 0. This implies

W − zLL = 0, thus

W = zLL > 0 and G = 0.

So far the first-order conditions can be simplified as follows withD > 0

and K > 0:

[FOCs]


D = Ap1 +Bp1 + C(p1 + p0) D + E = B + C + I

I + J +K = 1 D + F = A+ C + J

D + E + F = 1 D +K = A+B + 2C.

With at least one of A, B or C being strictly positive in mind, we discuss

different cases in the next steps.
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i. A > 0 , B = C = 0. [FOCs] become


D = Ap1 > 0

D + E = I > 0 ⇒ W − zHL = 0 ⇒ W = zHL = zLL

D + F = A+ J ⇒ F = A(1− p1) + J > 0 ⇒ zLH = 0.

Using these values in (A.2) leads to a contradiction, so there is no

solution in this case.

ii. B > 0 , A = C = 0. [FOCs] become


D = Bp1 > 0

D + E = B + I ⇒ E = B(1− p1) + I > 0 ⇒ zHL = 0

D + F = J > 0 ⇒ W − zLH > 0 ⇒ W = zLH = zLL.

Using these values in (A.1) leads to a contradiction, so there is no

solution in this case.

iii. C > 0 , A = B = 0. This implies D = C(p1 + p0), so we have the

following subcases.

(a) p1 + p0 = 1. This implies D = C , E = I , F = J . Suppose E =

I > 0, and this leads to the same contradiction as discussed

earlier. Therefore, we must have E = I = 0, and similarly F =

J = 0. Then we can further conclude that C = D = K = 1.

Since (A.3) is binding (by C = 1 > 0), we have:

p1(zHL−zHH)+(1−p1)(zLL−zLH)+p0(zLH−zHH)+(1−p0)(zLL−zHL) =
2c

p1 − p0

,

which implies

W = zLL =
2c

p1 − p0

. (by p1 + p0 = 1)
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Then consider (A.1) and (A.2). By A = B = 0 and p1 + p0 = 1,

we have the following:


p1(zHL − zHH) + (1− p1)(zLL − zLH) ≥ c

p1−p0 ⇒ p1z
HL ≥ p0z

LH + c

p1(zLH − zHH) + (1− p1)(zLL − zHL) ≥ c
p1−p0 ⇒ p0z

HL ≤ p1z
LH − c,

which imply

zHL ≥ c

p1 − p0

and zLH ≥ c

p1 − p0

.

This yields the following solution for the case of p1 + p0 = 1:



W =
2c

p1 − p0

zLH , zHL ∈ [
c

p1 − p0

,
2c

p1 − p0

] and p1z
HL ≥ p0z

LH + c , p0z
HL ≥ p1z

LH − c

zHH = 0 , zHL = zLH =
c

p1 − p0

, zLL =
2c

p1 − p0

.

(b) p1 + p0 > 1. This implies


C(p1 + p0 − 1) + E = I > 0 ⇒ W = zHL > 0 ⇒ E = 0

C(p1 + p0 − 1) + F = J > 0 ⇒ W = zLH > 0 ⇒ F = 0.

Since (A.3) is binding (by C > 0),

p1(zHL−zHH)+(1−p1)(zLL−zLH)+p0(zLH−zHH)+(1−p0)(zLL−zHL) =
2c

p1 − p0

.

Using W = zHL = zLH = zLL and zHH = 0 in the above equa-

tion, we have:

W = zHL = zLH = zLL =
2c

(p1 + p0)(p1 − p0)
.

It can be verified that these values will satisfy the constraints
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(A.1) and (A.2). We thus obtain the solution for the case of

p1 + p0 > 1:


W =

2c

(p1 + p0)(p1 − p0)

zHH = 0 , zHL = zLH = zLL =
2c

(p1 + p0)(p1 − p0)
.

(c) p1 + p0 < 1. This implies


E = C(1− p1 − p0) + I > 0 ⇒ zHL = 0 ⇒ W − zHL > 0 ⇒ I = 0

F = C(1− p1 − p0) + J > 0 ⇒ zLH = 0 ⇒ W − zLH > 0 ⇒ J = 0.

Using zHH = zHL = zLH = 0 and W = zLL in the IC condition

(A.3) with equality (by C > 0), we have:

W = zLL =
2c

(2− p1 − p0)(p1 − p0)
.

Using these values, the IC conditions (A.1) and (A.2) will be vi-

olated, a contradiction. Hence, there is no solution in this case.

iv. A > 0 , C > 0 , B = 0. This implies D = Ap1 + C(p1 + p0), and we

need to discuss different cases for p1 + p0 again.

(a) p1 + p0 = 1. This implies


I = Ap1 + E > 0 ⇒ W = zHL

F = A(1− p1) + J > 0 ⇒ zLH = 0 ⇒ W − zLH > 0 ⇒ J = 0.

Using zLH = zHH = 0 and W = zHL = zLL in (A.2) leads to a

contradiction, so there is no solution in this case.

(b) p1 + p0 > 1. This implies

I = Ap1 +C(p1 + p0− 1) +E > 0 ⇒ W = zHL > 0 ⇒ E = 0.
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Using W = zHL = zLL and zHH = 0 in the IC conditions (A.1)

and (A.3) with equalities (by A,C > 0), obtain:

W =
(1− p1 + p0)c

p0(p1 − p0)
and zLH =

c

p0(p1 − p0)
.

This contradicts W − zLH > 0, so there is no solution in this

case.

(c) p1 + p0 < 1. This implies

F = A(1− p1) + C(1− p1 − p0) + J > 0 ⇒ zLH = 0

Using zLH = zHH = 0 in the IC conditions (A.1) and (A.3) with

equalities, obtain:

W = zLL =
(1 + p1 − p0)c

(1− p0)(p1 − p0)
and zHL =

c

1− p0

.

Using these values in (A.2) leads to a contradiction, so there is

no solution in this case.

v. B > 0 , C > 0 , A = 0. This implies D = Bp1 + C(p1 + p0).

(a) p1 + p0 = 1. This implies


E = B(1− p1) + I > 0 ⇒ zHL = 0

J = Bp1 + F > 0 ⇒ W = zLH .

Using these values in (A.1) leads to a contradiction, so there is

no solution in this case.

(b) p1 + p0 > 1. This implies

J = Bp1 + C(p1 + p0 − 1) + F > 0 ⇒ W = zLH .
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Using W = zLH = zLL, zHH = 0 in the IC conditions (A.2) and

(A.3) with equalities (by B,C > 0), obtain:

W =
(1− p1 + p0)c

p0(p1 − p0)
and zHL =

c

p0(p1 − p0)
,

which contradict W − zHL ≥ 0. So there is no solution in this

case.

(c) p1 + p0 < 1. This implies

E = B(1− p1) + C(1− p1 − p0) + I > 0 ⇒ zHL = 0.

Using zHL = zHH = 0 in the IC conditions (A.2) and (A.3) with

equalities, obtain:

W = zLL =
(1 + p1 − p0)c

(1− p0)(p1 − p0)
and zLH =

c

1− p0

,

which, when used in (A.1), leads to a contradiction. Thus, there

is no solution in this case.

vi. A > 0 , B > 0 , C = 0. This implies D = Ap1 + Bp1 and D + E =

B + I.

(a) E > 0 and I > 0. This leads to a contradiction as shown earlier.

(b) E = 0 and I > 0. This implies W = zHL. Insert W = zHL =

zLL, zHH = 0 into (A.1) and (A.2) with equality (by A,B > 0) and

we obtain:

W = zHL = zLL =
c

p1(p1 − p0)
and zLH =

c

p1(p1 − p0)
,

which values contradicts (A.3). Hence, there is no solution in

this case.
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(c) E > 0 and I = 0. This implies zHL = 0. Insert zHL = zHH = 0

into (A.1) and (A.2) which are binding due to A,B > 0, and we

obtain:

(1−p1)(zLL−zLH) =
c

p1 − p0

and p1z
LH+(1−p1)zLL =

c

p1 − p0

.

The two equations lead to

W = zLL =
c

(1− p1)(p1 − p0)
and zLH = zHL = zHH = 0.

Since W − zLH > 0, we have J = 0. Therefore, D + F = A and

D+E = B. Combined with D+E +F = 1 and D = Ap1 +Bp1,

we obtain D = p1
1−p1 . Then

E + F = 1−D = 1− p1

1− p1

> 0,

which implies p1 <
1
2
.

Therefore, we have the solution for the case of p1 <
1
2
:


W =

c

(1− p1)(p1 − p0)

zHH = zHL = zLH = 0 , zLL =
c

(1− p1)(p1 − p0)
.

(d) E = 0 and I = 0. This implies D = B > 0. Therefore, we have

B = Ap1 +Bp1 and B+F = A+J , which imply J = 2p1−1
p1

B+F .

We will discuss the different cases of p1.

• p1 = 1
2

, so that A,B > 0. By inserting zHH = 0 into (A.1)

and (A.2), we obtain:

1

2
zHL+

1

2
(zLL−zLH) =

c

p1 − p0

and
1

2
zLH+

1

2
(zLL−zHL) =

c

p1 − p0

,
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which leads to

W = zLL =
2c

p1 − p0

and zHL = zLH .

By (A.3), we have zHL and zLH ≤ c
p1−p0 . Therefore, we

have the solution for p1 = 1
2
:


W =

2c

p1 − p0

zHH = 0 , zLH = zHL ∈ [0,
c

p1 − p0

] , zLL =
2c

p1 − p0

.

• p1 <
1
2

, so that F = J + 1−2p1
p1

B > 0 and zLH = 0. Using

W = zLL and zHH = zLH = 0 in the IC conditions (A.1) and

(A.2) with equalities, obtain

p1z
HL+(1−p1)(W−0) =

c

p1 − p0

and (1−p1)(W−zHL) =
c

p1 − p0

.

Thus,

W = zLL =
c

(1− p1)(p1 − p0)
and zHL = 0.

Check (A.3) and other constraints, and we will have the

solution for p1 <
1
2
:


W =

c

(1− p1)(p1 − p0)

zHH = zHL = zLH = 0 , zLL =
c

(1− p1)(p1 − p0)
.

• p1 > 1
2

, so that J > 0 and W = zLH . By inserting W =

zLH = zLL and zHH = 0 into (A.1) and (A.2) with equality,

we have:

W = zLH = zLL = zHL =
c

p1(p1 − p0)
.
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These values contradict (A.3), so that there is no solution in

this case.

vii. A > 0 , B > 0 , C > 0. This implies that (A.1)-(A.3) are binding, so

that



p1z
HL + (1− p1)(zLL − zLH) =

c

p1 − p0

p1z
LH + (1− p1)(zLL − zHL) =

c

p1 − p0

p1z
HL + (1− p1)(zLL − zLH) + p0z

LH + (1− p0)(zLL − zHL) =
2c

p1 − p0

.

Therefore, W = zLL =
2c

p1 − p0

and zHL = zLH =
c

p1 − p0

.

SinceW > zHL = zLH > 0, which impliesW−zHL, W−zLH , zHL, zLH >

0, we must have E = F = I = J = 0. Then

D = K = 1, A+ C = 1

Ap1 +Bp1 + C(p1 + p0) = 1, B + C = 1.

These imply


C = 2p1−1

p1−p0 > 0 ⇒ p1 >
1
2

A+B = 2(1− 2p1−1
p1−p0 ) > 0 ⇒ p1 + p0 < 1.

Therefore, the solution for the case of p1 >
1
2

and p1 + p0 < 1 is:


W =

2c

p1 − p0

zHH = 0 , zHL = zLH =
c

p1 − p0

, zLL =
2c

p1 − p0

.

Summarizing the discussions, we have the solution for the principal’s

problem as follows:

(I) If p1 >
1
2

and p1 + p0 > 1,
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W = 2c
(p1+p0)(p1−p0)

, zHH = 0 , zLH = zHL = zLL = 2c
(p1+p0)(p1−p0)

.

(II) a. If p1 >
1
2

and p1 + p0 = 1,

W = 2c
p1−p0 , z

HH = 0 , zLL = 2c
p1−p0 ,

zLH , zHL ∈ [ c
p1−p0 ,

2c
p1−p0 ] and p1z

HL ≥ p0z
LH + c , p0z

HL ≥

p1z
LH − c .

b. If p1 >
1
2

and p1 + p0 < 1,

W = 2c
p1−p0 , z

HH = 0 , zLH = zHL = c
p1−p0 , z

LL = 2c
p1−p0 .

c. If p1 = 1
2
,

W = c
(1−p1)(p1−p0)

, zHH = 0 , zLH = zHL ∈ [0, c
p1−p0 ] , zLL =

2c
p1−p0 .

(III) If p1 <
1
2
,

W = c
(1−p1)(p1−p0)

, zHH = zLH = zHL = 0 , zLL = c
(1−p1)(p1−p0)

.

Q.E.D.

Proof of Proposition 3. We first write the agent’s IC conditions.

Period 2. For the agent to exert effort rather than shirk, we require that

the continuation value in the second period from effort is no less

than from shirking for both first-period states:


W − zH1 − p1z

HH
2 − (1− p1)zHL2 − c ≥ W − zH1 − p0z

HH
2 − (1− p0)zHL2

W − zL1 − p1z
LH
2 − (1− p1)zLL2 − c ≥ W − zL1 − p0z

LH
2 − (1− p0)zLL2 .

Period 1. Given that effort will be induced in period two, we consider the

following first-period incentive for the agent:

V (1, 1) ≥ V (0, 1)

⇒W −
{
p1

[
zH1 + p1z

HH
2 + (1− p1)zHL2

]
+ (1− p1)

[
zL1 + p1z

LH
2 + (1− p1)zLL2

]}
− 2c

≥ W −
{
p0

[
zH1 + p1z

HH
2 + (1− p1)zHL2

]
+ (1− p0)

[
zL1 + p1z

LH
2 + (1− p1)zLL2

]}
− c.
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The above IC conditions can be rewritten as:

(zL1 − zH1 ) + p1(zLH2 − zHH2 ) + (1− p1)(zLL2 − zHL2 ) ≥ c

p1 − p0

(A.5)

zHL2 − zHH2 ≥ c

p1 − p0

(A.6)

zLL2 − zLH2 ≥ c

p1 − p0

. (A.7)

The principal’s problem can be written as:

min
{W,zH1 ,zL1 ,zHH2 ,zHL2 ,zLH2 ,zLL2 }

W

s.t. (A.5), (A.6), (A.7)

W − zH1 − zHH2 ,W − zH1 − zHL2 ,W − zL1 − zLH2 ,W − zL1 − zLL2 ≥ 0

zH1 , z
L
1 , z

HH
2 , zLH2 ≥ 0.

Write the Lagrangian:

L = −W + A

[
(zL1 − zH1 ) + p1(zLH2 − zHH2 ) + (1− p1)(zLL2 − zHL2 )− c

p1 − p0

]
+B

[
zHL2 − zHH2 − c

p1 − p0

]
+ C

[
zLL2 − zLH2 − c

p1 − p0

]
+D(W − zH1 − zHH2 ) + E(W − zH1 − zHL2 ) + F (W − zL1 − zLH2 ) +G(W − zL1 − zLL2 )

+HzH1 + IzL1 + JzHH2 +KzLH2 .

Write the first-order conditions:

∂L

∂W
= −1 +D + E + F +G = 0 (A.8a)

∂L

∂zH1
= −A−D − E +H = 0 (A.8b)

∂L

∂zL1
= A− F −G+ I = 0 (A.8c)

∂L

∂zHH
2

= −Ap1 −B −D + J = 0 (A.8d)

∂L

∂zHL
2

= −A(1− p1) +B − E = 0 (A.8e)

∂L

∂zLH
2

= Ap1 − C − F +K = 0 (A.8f)

∂L

∂zLL
2

= A(1− p1) + C −G = 0. (A.8g)
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From (B.4b) and (B.4c), D +E + F +G = H + I. By (B.4a), we have

H + I = 1. (A.9)

From (B.4d) and (B.4e), −A − D − E + J = 0. By (B.4b), we have

H = J . Similarly, by (A.8f), (A.8g) and (B.4c), we have I = K. Since

H, I ≥ 0, we can discuss different cases based on (A.9).

i. H = 1 , I = 0. This implies H = J = 1 > 0 and I = K = 0. Then

zH1 = zHH2 = 0.

Since W > 0, we have W − zH1 − zHH2 > 0 and D = 0. Therefore,


A+ E = 1, Ap1 +B = 1

A = F +G, Ap1 = C + F

E + F +G = 1.

Now consider A + E = 1. Since A,E ≥ 0, we have the following

possibilities:

(a) A = 0, E = 1. This leads to B = 1 and C = F = G = 0. By

B = E = 1 > 0 and zH1 = zHH2 = 0, the binding constraint will

lead to:

W = zHL2 =
c

p1 − p0

.

Since
zLL2 ≥ zLH2 + c

p1−p0 ≥
c

p1−p0 by (A.7)

zLL2 ≤ W − zL1 ≤ W = c
p1−p0 by W − zL1 − zLL2 ≥ 0 ,
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therefore

zLL2 =
c

p1 − p0

and zL1 = zLH2 = 0.

This turns out to be contradicting with (A.5), so there is no solu-

tion in this case.

(b) A = 1, E = 0. This implies B = 1− p1 > 0 ((A.6) is binding). By

zHH2 = 0,

zHL2 =
c

p1 − p0

.

Since F+G = 1 and C+F = p1, which implyG = 1−p1+C > 0,

we have

W = zL1 + zLL2 .

From (A.7) , zLL2 ≥ zLH2 + c
p1−p0 > zLH2 . Thus

W = zL1 + zLL2 > zL1 + zLH2 ,

which implies F = 0. Then C = p1 > 0, and (A.7) is binding.

Then we have

zLL2 = zLH2 +
c

p1 − p0

and W = zL1 + zLL2 = zL1 + zLH2 +
c

p1 − p0

.

(A.10)

Since A = 1 > 0, (A.5) is binding. Inserting zH1 = zHH2 = 0 and

zHL2 = c
p1−p0 ,

LHS of (A.5) =p1(zL1 + zLH2 ) + (1− p1)(zL1 + zLL2 )− (1− p1)
c

p1 − p0

=zL1 + zLL2 − p1
c

p1 − p0

− (1− p1)
c

p1 − p0

(by (A.10))

=W − c

p1 − p0

=RHS of (A.5) =
c

p1 − p0

.
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Therefore,

W =
2c

p1 − p0

.

Now we have the solution for the problem in this case:

W =
2c

p1 − p0

zH1 = 0 , zHH2 = 0 , zHL2 =
c

p1 − p0

zL1 ∈ [0,
c

p1 − p0

] , zLH2 =
c

p1 − p0

− zL1 , zLL2 =
2c

p1 − p0

− zL1 .

(c) A > 0, E > 0. This implies 0 < A < 1, and so B > 0. With both

B,E > 0, the same contradiction as in (a) applies. Therefore,

there is no solution in this case either.

ii. H = 0 , I = 1. This implies H = J = 0 and I = K = 1 > 0. Then

zL1 = zLH2 = 0 ,

which also implies F = 0. Therefore


A+D + E = 0, A+ 1 = G

Ap1 +B +D = 0, Ap1 + 1 = C

D + E +G = 1.

Then we have A = B = D = E = 0 and C = G = 1 > 0, which

implies


zLL2 = zLH2 +

c

p1 − p0

=
c

p1 − p0

W = zL1 + zLL2 = zLL2 =
c

p1 − p0

.

(by zL1 = zLH2 = 0)
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Since
zHL2 ≥ zHH2 + c

p1−p0 ≥
c

p1−p0 by (A.6)

zHL2 ≤ W − zH1 ≤ W = c
p1−p0 by W − zH1 − zHL2 ≥ 0 ,

we have

zHL2 =
c

p1 − p0

.

However, these values lead to contradiction with (A.5), so that there

is no solution in this case.

iii. H > 0 , I > 0, this implies H, I, J,K ∈ (0, 1) and it must be

zH1 , z
L
1 , z

HH
2 , zLH2 = 0.

These imply that D = F = 0 (since W > 0), and then C = Ap1 +K >

0, i.e. (A.7) is binding:

zLL2 = zLH2 +
c

p1 − p0

=
c

p1 − p0

.

These values lead to contradiction with (A.5) again, and there is no

solution in this case either.

Summarizing the above discussion, we have the solution for the princi-

pal’s problem with interim money burning as follows:

W =
2c

p1 − p0

zH1 = 0 , zHH2 = 0 , zHL2 =
c

p1 − p0

zL1 ∈ [0,
c

p1 − p0

] , zLH2 =
c

p1 − p0

− zL1 , zLL2 =
2c

p1 − p0

− zL1 .

Q.E.D.

Proof of Proposition 4.
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(i) When p1 >
1
2

and p1 + p0 ≤ 1, the optimal contracts are the same for

the two scenarios.

(ii) When p1 >
1
2

and p1 + p0 > 1, 2c
(p1+p0)(p1−p0)

< 2c
p1−p0 .

(iii) When p1 ≤ 1
2
, c

(1−p1)(p1−p0)
≤ 2c

p1−p0 .

For the cases (ii) and (iii), LHS is the total budget for the principal

without interim money burning (see Proposition 1), and RHS is the bud-

get with interim money burning (see Proposition 2). It can be seen that

the principal saves cost without interim money burning. Q.E.D.

Proof of Proposition ??. Without interim money burning, we can write the

incentive compatibility conditions in terms of agent’s total cost: TC(1, 1) ≤

min{TC(1, 0) , TC(0, 1) , TC(0, 0)}. Explicitly,

p2
1z
HH + p1(1− p1)zHL + (1− p1)p1z

LH + (1− p1)2zLL + 2c

≤ p1p0z
HH + p1(1− p0)zHL + (1− p1)p0z

LH + (1− p1)(1− p0)zLL + c ;

(A.11)

p2
1z
HH + p1(1− p1)zHL + (1− p1)p1z

LH + (1− p1)2zLL + 2c

≤ p0p1z
HH + p0(1− p1)zHL + (1− p0)p1z

LH + (1− p0)(1− p1)zLL + c ;

(A.12)

p2
1z
HH + p1(1− p1)zHL + (1− p1)p1z

LH + (1− p1)2zLL + 2c

≤ p0p0z
HH + p0(1− p0)zHL + (1− p0)p0z

LH + (1− p0)(1− p0)zLL .

(A.13)

With interim money burning, the continuation incentive compatibility

conditions can be written as:

p1z
HH
2 + (1− p1)zHL2 + c ≤ p0z

HH
2 + (1− p0)zHL2 (A.14)

p1z
LH
2 + (1− p1)zLL2 + c ≤ p0z

LH
2 + (1− p0)zLL2 . (A.15)
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Given effort in period two, we have the first-period constraint:

TC(1, 1) ≤ TC(0, 1)

i.e., p1z
H
1 + (1− p1)zL1 + p1

[
p1z

HH
2 + (1− p1)zHL2

]
+ (1− p1)

[
p1z

LH
2 + (1− p1)zLL2

]
+ 2c

≤ p0z
H
1 + (1− p0)zL1 + p0

[
p1z

HH
2 + (1− p1)zHL2

]
+ (1− p0)

[
p1z

LH
2 + (1− p1)zLL2

]
+ c.

(A.16)

Let
zHH = zH1 + zHH2 , zHL = zH1 + zHL2 ,

zLH = zL1 + zLH2 , zLL = zL1 + zLL2 ,

(A.17)

we will show that any {zH1 , zL1 , zHH2 , zHL2 , zLH2 , zLL2 } that satisfy (A.14)–

(A.16) imply (A.11)–(A.13).

i. By (A.16),

LHS of (A.16)

= p1
[
p1(zH1 + zHH

2 ) + (1− p1)(zH1 + zHL
2 )

]
+ (1− p1)

[
p1(zL1 + zLH

2 ) + (1− p1)(zL1 + zLL
2 )
]

+ 2c

= p21z
HH + p1(1− p1)zHL + (1− p1)p1z

LH + (1− p1)2zLL + 2c = LHS of (A.12)

≤ RHS of (A.16)

= p0
[
p1(zH1 + zHH

2 ) + (1− p1)(zH1 + zHL
2 )

]
+ (1− p0)

[
p1(zL1 + zLH

2 ) + (1− p1)(zL1 + zLL
2 )
]

+ c

= p0p1z
HH + p0(1− p1)zHL + (1− p0)p1z

LH + (1− p0)(1− p1)zLL + c = RHS of (A.12).

By the above series of inequalities we have shown that (A.16) implies (A.12).

ii. By (A.14) and (A.15),

p1z
H
1 + (1− p1)zL1 + c+ p1

[
p1z

HH
2 + (1− p1)zHL

2 + c
]

+ (1− p1)
[
p1z

LH
2 + (1− p1)zLL

2 + c
]

≤ p1zH1 + (1− p1)zL1 + c+ p1
[
p0z

HH
2 + (1− p0)zHL

2

]
+ (1− p1)

[
p0z

LH
2 − (1− p0)zLL

2

]
,
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which can be rewritten as:

p1
[
p1(zH1 + zHH

2 ) + (1− p1)(zH1 + zHL
2 )

]
+ (1− p1)

[
p1(zL1 + zLH

2 ) + (1− p1)(zL1 + zLL
2 )
]

+ 2c

≤ p1
[
p0(zH1 + zHH

2 ) + (1− p0)(zH1 + zHL
2 )

]
+ (1− p1)

[
p0(zL1 + zLH

2 ) + (1− p0)(zL1 + zLL
2 )
]

+ c

⇔

p21z
HH + p1(1− p1)zHL + (1− p1)p1z

LH + (1− p1)2zLL + 2c

≤ p1p0zHH + p1(1− p0)zHL + (1− p1)p0z
LH + (1− p1)(1− p0)zLL + c.

By this we have shown that (A.14) and (A.15) imply (A.11).

iii. Similarly, by (A.14) and (A.15),

p0z
H
1 + (1− p0)zL1 + p0

[
p1z

HH
2 + (1− p1)zHL

2 + c
]

+ (1− p0)
[
p1z

LH
2 + (1− p1)zLL

2 + c
]

≤ p0zH1 + (1− p0)zL1 + p0
[
p0z

HH
2 + (1− p0)zHL

2

]
+ (1− p0)

[
p0z

LH
2 − (1− p0)zLL

2

]
which can be rewritten as:

p0
[
p1(zH1 + zHH

2 ) + (1− p1)(zH1 + zHL
2 )

]
+ (1− p0)

[
p1(zL1 + zLH

2 ) + (1− p1)(zL1 + zLL
2 )
]

+ c

≤ p0
[
p0(zH1 + zHH

2 ) + (1− p0)(zH1 + zHL
2 )

]
+ (1− p0)

[
p0(zL1 + zLH

2 ) + (1− p0)(zL1 + zLL
2 )
]

⇔ p0p1z
HH + p0(1− p1)zHL + (1− p0)p1z

LH + (1− p0)(1− p1)zLL + c

≤ p20zHH + p0(1− p0)zHL + (1− p0)p0z
LH + (1− p0)2zLL.

By (A.12),

p21z
HH + p1(1− p1)zHL + (1− p1)p1z

LH + (1− p1)2zLL + 2c

≤ p20zHH + p0(1− p0)zHL + (1− p0)p0z
LH + (1− p0)2zLL.

Therefore, (A.14), (A.15) and (A.12) imply (A.13).

In conclusion, by manipulating the money burning terms as in (A.17),

any contract with interim money burning can be replicated by a contract

without interim money burning (in terms of incentives). Q.E.D.
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APPENDIX B

Proofs for Chapter 2

Proof of Proposition 5. The agent’s payoffs in the repeated efforts game

are as follows:

V (1, 1) = W − p1p1z
HH − p1(1− p1)zHL − (1− p1)p1z

LH − (1− p1)(1− p1)zLL − 2c

V (1, 0) = W − p1p0z
HH − p1(1− p0)zHL − (1− p0)p1z

LH − (1− p1)(1− p0)zLL − c

V (0, 1) = W − p0p1z
HH − p0(1− p1)zHL − (1− p1)p0z

LH − (1− p0)(1− p1)zLL − c

V (0, 0) = W − p0p0z
HH − p0(1− p0)zHL − (1− p0)p0z

LH − (1− p0)(1− p0)zLL.

For full efforts implementation, the agent’s incentive compatibility (IC)

conditions are:

p1(zHL − zHH) + (1− p1)(zLL − zLH) ≥ c

p1 − p0

(B.1)

p1(zLH − zHH) + (1− p1)(zLL − zHL) ≥ c

p1 − p0

(B.2)

p1(zHL − zHH) + (1− p1)(zLL − zLH) + p0(zLH − zHH) + (1− p0)(zLL − zHL) ≥ 2c

p1 − p0

.

(B.3)
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Thus, the principal’s problem can be written as follows:

min
{W,zHH ,zHL,zLH ,zLL}

W

s.t. (A.1), (A.2), (A.3)

zHH , zHL, zLH , zLL ≥ 0

W − zHH ,W − zHL,W − zLH ,W − zLL ≥ 0.

Write the Lagrangian:

L = −W +A

[
p1(zHL − zHH) + (1− p1)(zLL − zLH)− c

p1 − p0

]
+B

[
p1(zLH − zHH) + (1− p1)(zLL − zHL)− c

p1 − p0

]
+ C

[
p1(zHL − zHH) + (1− p1)(zLL − zLH) + p0(zLH − zHH) + (1− p0)(zLL − zHL)− 2c

p1 − p0

]
+DzHH + EzHL + FzLH +GzLL

+H(W − zHH) + I(W − zHL) + J(W − zLH) +K(W − zLL).

FOCs are:

∂L

∂W
= −1 +H + I + J +K = 0 (B.4a)

∂L

∂zHH
= −Ap1 −Bp1 − Cp1 − Cp0 +D −H = 0 (B.4b)

∂L

∂zHL
= Ap1 −B(1− p1) + Cp1 − C(1− p0) + E − I = 0 (B.4c)

∂L

∂zLH
= −A(1− p1) +Bp1 − C(1− p1) + Cp0 + F − J = 0 (B.4d)

∂L

∂zLL
= A(1− p1) +B(1− p1) + C(1− p1) + C(1− p0) +G−K = 0.

(B.4e)

Applying the complementary slackness conditions to FOCs (Kuhn-

Tucker method), we obtain the following solution :

(I) If p1 >
1
2

and p1 + p0 > 1,

W = 2c
(p1+p0)(p1−p0)

, zHH = 0 , zLH = zHL = zLL = 2c
(p1+p0)(p1−p0)

.

(II) a. If p1 >
1
2

and p1 + p0 = 1,
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W = 2c
p1−p0 , z

HH = 0 , zLL = 2c
p1−p0 ,

zLH , zHL ∈ [ c
p1−p0 ,

2c
p1−p0 ] and p1z

HL ≥ p0z
LH + c , p0z

HL ≥

p1z
LH − c .

b. If p1 >
1
2

and p1 + p0 < 1,

W = 2c
p1−p0 , z

HH = 0 , zLH = zHL = c
p1−p0 , z

LL = 2c
p1−p0 .

c. If p1 = 1
2
,

W = c
(1−p1)(p1−p0)

, zHH = 0 , zLH = zHL ∈ [0, c
p1−p0 ] , zLL =

2c
p1−p0 .

(III) If p1 <
1
2
,

W = c
(1−p1)(p1−p0)

, zHH = zLH = zHL = 0 , zLL = c
(1−p1)(p1−p0)

.

Q.E.D.

DERIVATION OF TABLE 2.2: Optimal mechanism with agent’s informa-

tion. We first analyze the incentive compatibility conditions using back-

ward induction.

Period 2. We need to impose money burnings such that the agent is to

exert effort in the second period no matter what private signal he

receives for the first period, i.e., in both information sets (1, sG) and

(1, sB) :

W−q1G[p1z
HH + (1− p1)zHL]− (1− q1G)[p1z

LH + (1− p1)zLL]− 2c

≥ W − q1G[p0z
HH + (1− p0)zHL]− (1− q1G)[p0z

LH + (1− p0)zLL]− c

W−q1B [p1z
HH + (1− p1)zHL]− (1− q1B)[p1z

LH + (1− p1)zLL]− 2c

≥ W − q1B [p0z
HH + (1− p0)zHL]− (1− q1B)[p0z

LH + (1− p0)zLL]− c.

Period 1. Consider the following first-period incentive for the agent:

V (1, 1) ≥ V (0, 1) and V (1, 1) ≥ V (0, 0),
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i.e., W−p21zHH − p1(1− p1)zHL − (1− p1)p1z
LH − (1− p1)2zLL − 2c

≥ W − p0p1zHH − p0(1− p1)zHL − (1− p0)p1z
LH − (1− p0)(1− p1)zLL − c

W−p21zHH − p1(1− p1)zHL − (1− p1)p1z
LH − (1− p1)2zLL − 2c

≥ W − p0p0zHH − p0(1− p0)zHL − (1− p0)p0z
LH − (1− p0)(1− p0)zLL.

Manipulating the conditions above, we have to distinguish two cases.

� Case 1:

zLL − zLH ≥ zHL − zHH . (B.5)

Since q1G > q1B > q0G > q0B, given (B.5) it can be shown that once the

agent chooses second period effort upon (1, sG), he will always choose

effort upon (1, sB), (0, sG) and (0, sB). Therefore, the incentive compati-

bility conditions can be simplified to:

[IC1] q1G(zHL − zHH) + (1− q1G)(zLL − zLH) ≥ c

p1 − p0

,

[IC3] p1(zLH − zHH) + (1− p1)(zLL − zHL) ≥ c

p1 − p0

.

Then the principal’s problem can be written as:

min
W,zHH ,zHL,zLH ,zLL

W s.t. [IC1], [IC3]

W − zHH ≥ 0, W − zHL ≥ 0, W − zLH ≥ 0, W − zLL ≥ 0

zHH ≥ 0, zHL ≥ 0, zLH ≥ 0, zLL ≥ 0.

The Lagrangian is:

L = −W + A

[
q1G(zHL − zHH) + (1− q1G)(zLL − zLH)− c

p1 − p0

]
+B

[
p1(zLH − zHH) + (1− p1)(zLL − zHL)− c

p1 − p0

]
+ C(W − zHH) +D(W − zHL) + E(W − zLH) + F (W − zLL)

+GzHH +HzHL + IzLH + JzLL.

Now the first order conditions can be written as follows:
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∂L

∂W
= −1 + C +D + E + F = 0 (B.6a)

∂L

∂zHH
= −Aq1G −Bp1 − C +G = 0 (B.6b)

∂L

∂zHL
= Aq1G −B(1− p1)−D +H = 0 (B.6c)

∂L

∂zLH
= −A(1− q1G) +Bp1 − E + I = 0 (B.6d)

∂L

∂zLL
= A(1− q1G) +B(1− p1)− F + J = 0. (B.6e)

From (B.6b), G = Aq1G + Bp1 + C. If G = 0, then A = B = C = 0,

which imply D = H, E = I, F = J and D + E + F = 1. By the last

equation, all D, E and F cannot be zero. Suppose D > 0, which implies

also H > 0, then by complementary slackness we have W − zHL = 0

and zHL = 0. Thus W = zHL = 0, which will lead to contradiction to the

incentive compatibility conditions. Therefore, it must be that D = 0. The

same argument applies to E and F , so that it cannot be D + E + F =

1 > 0, and thus G = 0 should not hold. Hence we have G > 0, and

then zHH = 0. By a similar analysis, F can be determined to be positive,

which tells that W − zLL = 0 and thus W = zLL. Now the FOCs can be

simplified to:
D + E + F = 1

Aq1G −B(1− p1)−D +H = 0 , A(1− q1G)−Bp1 + E − I = 0

G = Aq1G +Bp1 > 0 , F = A(1− q1G) +B(1− p1) > 0.

Since Aq1G + Bp1 > 0, both A and B cannot be zero. Then we have

the following discussions.

• If A > 0 and B = 0, then D = Aq1G + H > 0 and I = A(1 − q1G) +

E > 0. These imply W = zHL and zLH = 0. Substituting the

values together with W = zLL and zHH = 0 into [IC3] leads to a

contradiction. So there is no solution in this case.

• If A = 0 and B > 0, then H = B(1 − p1) + D > 0 and E = Bp1 +
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I > 0. These imply zHL = 0 and W = zLH . Substituting the

values together with W = zLL and zHH = 0 into [IC1] leads to a

contradiction. So there is also no solution in this case.

• If A > 0 and B > 0, then both [IC1] and [IC3] are binding, and we

have the following equations:

q1GzHL + (1− q1G)(W − zLH) =
c

p1 − p0

(B.7)

p1z
LH + (1− p1)(W − zHL) =

c

p1 − p0

(B.8)

Now we need to discuss D and E.

i. D > 0 and E > 0. These imply W = zHL = zLH . Using the values

in (B.7) and (B.8) yields q1G = p1, which is a contradiction to the

assumption. So there is no solution in this case.

ii. D > 0 and E = 0. The former implies W = zHL, which can be

used in (B.7) and (B.8). Then we obtain zLH = c
p1(p1−p0)

and W =

1−q1G+p1
p1

c
p1−p0 , which leads to W − zLH = p1−q1G

p1
c

p1−p0 < 0, a contra-

diction. So there is no solution in this case.

iii. D = 0 and E > 0. The latter implies W = zLH . Substituting it into

(B.7) and (B.8) gives us zHL = c
q1G(p1−p0)

and W = 1+q1G−p1
q1G

c
p1−p0 .

However, now zHL− zHH = c
q1G(p1−p0)

> zLL− zLH = 0, which contra-

dicts (B.5), so there is still no solution in this case.

iv. D = 0 and E = 0. In this case, if H > 0, then zHL = 0, which leads to

zLH = p1−q1G
1−q1G

c
p1−p0 < 0 after substituting into (B.7) and (B.8). Hence

it must be H = 0. Then we have F = 1 and Aq1G = B(1 − p1), so

that F = A(1 − q1G) + B(1 − p1) = A(1 − q1G) + Aq1G = A = 1 and

B = q1G

1−p1 , I = A(1 − q1G) − Bp1 = 1−q1G−p1
1−p1 . Since I ≥ 0, we must

have p1 + q1G ≤ 1.
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- When p1 + q1G < 1, this implies I > 0. Hence zLH = 0 and (B.7)

and (B.8) can be solved:
W =

1− p1 + q1G

1− p1

c

p1 − p0

=
1 + ρ(1− p1)

1− p1

c

p1 − p0

zHL =
q1G − p1

1− p1

c

p1 − p0

= ρ
c

p1 − p0

.

- When p1 + q1G = 1, (B.7) and (B.8) can be written as:

(1−p1)zHL+p1(W−zLH) = c
p1−p0 and p1z

LH+(1−p1)(W−zHL) =

c
p1−p0 ,

which gives us

W =
2c

p1 − p0

=
2(p1 + q1G)c

p1 − p0

=
1 + ρ(1− p1)

1− p1

c

p1 − p0

.

Given a range of money burning values, we pick the one with

the lowest expected value:

zLH = 0 and zHL =
(1− 2p1)c

(1− p1)(p1 − p0)
= ρ

c

p1 − p0

.

It can be verified that the solutions derived above satisfy (B.5).

� Case 2:

zLL − zLH ≤ zHL − zHH . (B.9)

Now given (B.9), once agent chooses second period effort upon (1, sB),

he will also choose effort upon (1, sB). Then the incentive compatibility

conditions are:

[IC2] q1B(zHL − zHH) + (1− q1B)(zLL − zLH) ≥ c

p1 − p0

,

[IC3] p1(zLH − zHH) + (1− p1)(zLL − zHL) ≥ c

p1 − p0

,

[IC4] p1(zLH − zHH) + (1− p1)(zLL − zHL)

+ p0(zHL − zHH) + (1− p0)(zLL − zLH) ≥ 2c

p1 − p0

.
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Then the principal’s problem can be written as:

min
W,zHH ,zHL,zLH ,zLL

W s.t. [IC2], [IC3], [IC4]

W − zHH ≥ 0, W − zHL ≥ 0, W − zLH ≥ 0, W − zLL ≥ 0

zHH ≥ 0, zHL ≥ 0, zLH ≥ 0, zLL ≥ 0.

The Lagrangian is:

L =−W +A

[
q1B(zHL − zHH) + (1− q1B)(zLL − zLH)− c

p1 − p0

]
+B

[
p1(zLH − zHH) + (1− p1)(zLL − zHL)− c

p1 − p0

]
+ C

[
p1(zLH − zHH) + (1− p1)(zLL − zHL) + p0(zHL − zHH) + (1− p0)(zLL − zLH)− 2c

p1 − p0

]
+DzHH + EzHL + FzLH +GzLL

+H(W − zHH) + I(W − zHL) + J(W − zLH) +K(W − zLL).

Now the first order conditions can be written as follows:

∂L

∂W
= −1 +H + I + J +K = 0 (B.10a)

∂L

∂zHH
= −Aq1B −Bp1 − Cp1 − Cp0 +D −H = 0 (B.10b)

∂L

∂zHL
= Aq1B −B(1− p1)− C(1− p1) + Cp0 + E − I = 0 (B.10c)

∂L

∂zLH
= −A(1− q1B) +Bp1 + Cp1 − C(1− p0) + F − J = 0 (B.10d)

∂L

∂zLL
= A(1− q1B) +B(1− p1) + C(1− p1) + C(1− p0) +G−K = 0.

(B.10e)

Following the similar arguments as in the first case, it can be determined

that D > 0 and K > 0, which imply zHH = 0 and W = zLL, as well as

H = 0 and G = 0. Then we have D = Aq1B + Bp1 + C(p1 + p0) > 0, so

that all A, B and C cannot be zero, and the following cases are possible.

i. A > 0, B = C = 0. This implies I = Aq1B+E > 0, and thusW = zHL.

Also we have F = A(1−q1B)+J > 0, and thus zLH = 0. Using these

values together with zHH = 0 and W = zLL in [IC3], it turns out to be

a contradiction. So there is no solution in this case.
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ii. B > 0, A = C = 0. Following a similar argument as in case i above,

it leads to a contradiction with [IC2]. So there is also no solution in

this case.

iii. C > 0, A = B = 0. This implies

p1(zLH−zHH)+(1−p1)(zLL−zHL)+p0(zHL−zHH)+(1−p0)(zLL−zLH) =
2c

p1 − p0

,

(B.11)

and D = C(p1 + p0). Then we need to discuss different values of

p1 + p0.

(a) If p1 + p0 = 1, then we can derive from (B.11) that W = zLL =

2c
p1−p0 . By (B.9), we have W − zLH ≤ zHL − 0, i.e., zHL + zLH ≥

2c
p1−p0 . Substituting the values of zLL and zHH = 0 into [IC2] and

[IC3], the following should hold:


q1BzHL − (1− q1B)zLH ≥

[
1− 2(1− q1B)

] c

p1 − p0

p1z
LH − (1− p1)zHL ≥ [1− 2(1− p1)]

c

p1 − p0

.

Since p1 +p0 = 1 and 1−q1B = 1−p1 +ρ(1−p1) = p0 +ρp0 = q0G,

the above can be re-written as:
q1BzHL − q0GzLH ≥ (q1B − q0G)

c

p1 − p0

p1z
LH − p0z

HL ≥ (p1 − p0)
c

p1 − p0

.

i.e.,

q1B

(
zHL − c

p1 − p0

)
≥ q0G

(
zLH − c

p1 − p0

)
p1

(
zLH − c

p1 − p0

)
≥ p0

(
zHL − c

p1 − p0

)
.

Suppose zHL − c
p1−p0 < 0, then zLH − c

p1−p0 < 0. The above two

inequalities lead to:

zHL − c
p1−p0

zLH − c
p1−p0

≤ q0G

q1B
< 1 and

zHL − c
p1−p0

zLH − c
p1−p0

≥ p1

p0

> 1,
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which are contradicting with each other. So it must be zHL −
c

p1−p0 ≥ 0. By a similar argument, we also have zLH − c
p1−p0 ≥ 0.

Then picking the smallest values of zHL and zLH , we have

zHL = zLH =
c

p1 − p0

.

In this case, both [IC2] and [IC3] bind with equalities.

(b) If p1 + p0 > 1, then we have I = C(p1 + p0 − 1) + E > 0 and

J = C(p1 + p0 − 1) + F > 0, which imply that W = zHL and

W = zLH . Since zHH = 0 and W = zLL, we can now derive from

(B.11) the solution as follows:

W = zHL = zLH = zLL =
2c

(p1 + p0)(p1 − p0)
, zHH = 0.

It can be verified that [IC2] and [IC3] hold with strict inequality in

this case.

(c) If p1 + p0 < 1, then we have E = I + C(1 − p1 − p0) > 0 and

F = J+C(1−p1−p0) > 0, which imply that zHL = 0 and zLH = 0.

Since W = zLL and zHH = 0, it yields zLL−zLH > zHL−zHH = 0,

which is a contradiction to (B.9). So there is no solution in this

case.

iv. A > 0, B > 0 and C = 0. These imply that
q1B(zHL − zHH) + (1− q1B)(zLL − zLH) =

c

p1 − p0

p1(zLH − zHH) + (1− p1)(zLL − zHL) =
c

p1 − p0

.

Since q1B > p0, by (B.9) we obtain:

p0(zHL−zHH)+(1−p0)(zLL−zLH) < q1B(zHL−zHH)+(1−q1B)(zLL−zLH) =
c

p1 − p0

.

Therefore,
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p1(zLH−zHH)+(1−p1)(zLL−zHL)+p0(zHL−zHH)+(1−p0)(zLL−zLH) <
2c

p1 − p0

,

which contradicts [IC4]. So there is no solution in this case.

v. A > 0, B = 0 and C > 0. These imply that
q1B(zHL − zHH) + (1− q1B)(zLL − zLH) =

c

p1 − p0

p1(zLH − zHH) + (1− p1)(zLL − zHL) + p0(zHL − zHH) + (1− p0)(zLL − zLH) =
2c

p1 − p0
.

(B.12)

Further, we have D = Aq1B + C(p1 + p0). Again we need to discuss

different values of p1 + p0.

(a) If p1 +p0 = 1, then I = Aq1B +E > 0 and F = A(1− q1B) +J > 0,

which imply W = zHL and zLH = 0. Substituting the values into

[IC3] yields a contradiction, so that there is no solution in this

case.

(b) If p1 + p0 > 1, then I = Aq1B + C(p1 + p0 − 1) + E > 0, which

implies W = zHL. Using the value in (B.12) we obtain:

W − zLH =
p1 + p0 − 2q1B

p1 + p0 − q1B

c

p1 − p0

.

Since p1 + p0 − 2q1B = p1 + p0 − 2[p1 − ρ(1 − p1)] < p0 + ρ(1 −

p0)− p1 + ρ(1− p1) = q0G− q1B < 0, we have W − zLH < 0, which

is a contradiction. So there is no solution in this case.

(c) If p1 +p0 < 1, then F = A(1− q1B) +C(1−p0−p1) +J > 0, which

implies zLH = 0. Then, by (B.9) we have:

W − 0 ≤ zHL − 0.

since W − zHL ≥ 0, it must be that W = zHL. However, using

these values in [IC3] leads to a contradiction. So there is still no

solution in this case.
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vi. A > 0, B > 0 and C = 0. These imply that
q1B(zHL − zHH) + (1− q1B)(zLL − zLH) =

c

p1 − p0

p1(zLH − zHH) + (1− p1)(zLL − zHL) =
c

p1 − p0

.

Since q1B > p0, by (B.9) we obtain:

p0(zHL−zHH)+(1−p0)(zLL−zLH) < q1B(zHL−zHH)+(1−q1B)(zLL−zLH) =
c

p1 − p0

.

Therefore,

p1(zLH−zHH)+(1−p1)(zLL−zHL)+p0(zHL−zHH)+(1−p0)(zLL−zLH) <
2c

p1 − p0

,

which contradicts [IC4]. So there is no solution in this case.

vii. A = 0, B > 0 and C > 0. These imply that
p1(zLH − zHH) + (1− p1)(zLL − zHL) =

c

p1 − p0

p0(zHL − zHH) + (1− p0)(zLL − zLH) =
c

p1 − p0

.

(B.13)

Further, we have D = Bp1 + C(p1 + p0). Again we need to discuss

different values of p1 + p0.

(a) If p1 + p0 = 1, then E = B(1− p1) + I > 0 and J = Bp1 + F > 0,

which imply zHL = 0 and W = zLH . Substituting the values into

[IC2] yields a contradiction, so that there is no solution in this

case.

(b) If p1 + p0 > 1, then J = Bp1 + C(p1 + p0 − 1) + F > 0, which

implies W = zLH . Using the value in (B.13) we obtain:

W − zHL = − c

p0

< 0,

which is a contradiction. So there is no solution in this case.

(c) If p1 + p0 < 1, then E = B(1− p1) +C(1− p1− p0) + I > 0, which
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implies zHL = 0. Then, by (B.9) we have:

W − zLH ≤ 0− 0.

since W − zLH ≥ 0, it must be that W = zLH . However, using

these values in [IC2] leads to a contradiction. So there is still no

solution in this case.

viii. A > 0, B > 0 and C > 0. The same argument as in case iv applies

here and there is no solution in this case.

Summarizing the above analysis, we have the solution for our prob-

lem as follows:

(i) p1 + p0 > 1 (ii) p1 + p0 = 1 (iii) p1 + q1G ≤ 1

W = 2c
(p1+p0)(p1−p0)

W = 2c
p1−p0 W = 1+ρ(1−p1)

1−p1
c

p1−p0

zHH = 0 zHH = 0 zHH = 0

zHL = 2c
(p1+p0)(p1−p0)

zHL = c
p1−p0 zHL = ρ c

p1−p0

zLH = 2c
(p1+p0)(p1−p0)

zLH = c
p1−p0 zLH = 0

zLL = 2c
(p1+p0)(p1−p0)

zLL = 2c
p1−p0 zLL = 1+ρ(1−p1)

1−p1
c

p1−p0

Q.E.D.

Proof of Proposition 7 & 8 follows from Proposition 7 and Table 2.2.
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APPENDIX C

Proofs for Chapter 3

PROOF OF PROPOSITION 9. Given budget equation (3.1):

W = rH1 + rH2 = rL1 + rL2 .

Since effort implies a higher probability of achieving signal σH , to incen-

tivize agent 1 to exert effort, we must have rL1 < rH1 . Then by budget

equation (3.1), rL2 > rH2 , which will encourage agent 2 to exert zero effort

since shirking implies a higher chance of low signal and thus higher re-

ward (rL2 ). Therefore, with budget balanced as in (3.1), it is impossible to

induce both agents to exert effort. Q.E.D.

PROOF OF PROPOSITION 10. Given the simultaneous move efforts game

in Fig. 3.1, for (1, 1) to be a Nash equilibrium the following conditions

must be satisfied:

p2r
H
1 + (1− p2)rL1 − c ≥ p1r

H
1 + (1− p1)rL1 ,

and p2r
H
2 + (1− p2)rL2 − c ≥ p1r

H
2 + (1− p1)rL2 ,

which can be simplified to:

rH1 − rL1 ≥ c

p2 − p1

,

and rH2 − rL2 ≥ c

p2 − p1

.
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For (1, 1) to be a unique Nash equilibrium, we need to further impose

a dominant strategy condition for one of the agents, say agent 1, to exert

effort:

p1r
H
1 + (1− p1)rL1 − c ≥ p0r

H
1 + (1− p0)rL1 ,

which can be simplified to:

rH1 − rL1 ≥
c

p1 − p0

.

By complementary effort assumption (see [A2]), the above inequali-

ties lead to the following incentive compatibility conditions:

[IC1] rH1 − rL1 ≥
c

p1 − p0

[IC2] rH2 − rL2 ≥
c

p2 − p1

.

For each agent to participate, we require the expected payoffs in equi-

librium be greater than or equal to the opportunity cost of labor (normal-

ized to zero) for both, that is:

[PC1] p2r
H
1 + (1− p2)rL1 − c ≥ 0

[PC2] p2r
H
2 + (1− p2)rL2 − c ≥ 0.

Finally, the rewards and money burning must be non-negative:

[NCs] rHi ≥ 0, rLi ≥ 0, zH , zL ≥ 0.

It is easy to verify that given rLi ≥ 0, [IC1] and [IC2] imply that rH1 ≥ 0

and rH2 ≥ 0. On the other hand, since zH = 0 and W = rH1 + rH2 + zH =

rL1 + rL2 + zL, [IC] conditions also imply that:

zL = rH1 + rH2 − rL1 − rL2 > 0.

117



Further,

LHS of [PC1] = rL1 + p2(rH1 − rL1 )− c

≥ rL1 + p2
c

p1 − p0

− c (by [IC1])

≥ p2 − p1 + p0

p1 − p0

c (by [NCs])

≥ 0, (by [A1])

which shows that [PC1] is implied by [IC1] and [NCs] conditions. The

same argument applies to [PC2]. Therefore, the principal’s problem can

be simplified to:

min
rHi ,r

L
i

rH1 + rH2 ( ∗ )

s.t. rH1 − rL1 ≥
c

p1 − p0

, rH2 − rL2 ≥
c

p2 − p1

rL1 ≥ 0 , rL2 ≥ 0.

Write the corresponding Lagrangian:

L = −rH1 −rH2 +A

[
rH1 − rL1 −

c

p1 − p0

]
+B

[
rH2 − rL2 −

c

p2 − p1

]
+CrL1 +DrL2 .

The first-order conditions are:

∂L

∂rH1
= −1 + A = 0 ,

∂L

∂rL1
= −A+ C = 0

∂L

∂rH2
= −1 +B = 0 ,

∂L

∂rL2
= −B +D = 0,

which imply A = C = B = D = 1. Therefore, by the complementary
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slackness condition, all the constraints in Problem ( ∗ ) are binding:

rH1 − rL1 =
c

p1 − p0

, rL1 = 0,

rH2 − rL2 =
c

p2 − p1

, rL2 = 0.

Thus, the solution to the principal’s problem can be summarized as

follows: 

WMB =
c

p1 − p0

+
c

p2 − p1

rH1 =
c

p1 − p0

, rH2 =
c

p2 − p1

, zH = 0

rL1 = 0 , rL2 = 0 , zL =
c

p1 − p0

+
c

p2 − p1

.

Q.E.D.

PROOF OF PROPOSITION 11. The principal’s objective is to implement

(1, 1, 0) at minimal costs. From Lemma 4, no additional incentive is

needed for agent 3.

For (1, 1, 0) to be a unique Nash equilibrium, the incentive compatibil-

ity conditions for agents 1 and 2 are the same as in the money burning

case:

[IC1] rH1 − rL1 ≥
c

p1 − p0

[IC2] rH2 − rL2 ≥
c

p2 − p1

.

Given the non-negativity of rewards, it can be shown that agents 1

and 2’s participation constraints are implied by the [ICs], using a simi-

lar argument as in the proof of the optimal money burning mechanism.

Agent 3’s participation constraint in equilibrium is also guaranteed by the

non-negativity of rH3 and rL3 , since he does not exert any effort.

Since W = rH1 + rH2 + rH3 = rL1 + rL2 + rL3 , rL3 is determined by the
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other choice variables:

rL3 = rH1 + rH2 + rH3 − rL1 − rL2 ≥ 0.

Again, non-negativity of rHi is implied by [IC] conditions.

Now the principal’s problem can be written as:

min
rH1 ,r

L
1 ,r

H
2 ,r

L
2 ,r

H
3

rH1 + rH2 + rH3

s.t. rH1 − rL1 ≥
c

p1 − p0

, rH2 − rL2 ≥
c

p2 − p1

rL1 ≥ 0 , rL2 ≥ 0 , rH3 ≥ 0

rH1 + rH2 + rH3 − rL1 − rL2 ≥ 0.

Using the standard Kuhn-Tucker method to solve the principal’s prob-

lem yields:



WU =
c

p1 − p0

+
c

p2 − p1

rH1 =
c

p1 − p0

, rH2 =
c

p2 − p1

, rH3 = 0

rL1 = 0 , rL2 = 0 , rL3 =
c

p1 − p0

+
c

p2 − p1

.

Q.E.D.

PROOF OF PROPOSITION 12. In the text, we have already shown that

sabotage-proofness will fail for unique Nash implementation. To show

a similar result with weak Nash or dominant strategy implementation,

we only need to change the incentive compatibility conditions for agents

1 and 2 to correspond to the respective implementation type. Then by

exactly the same argument, we obtain the non-existence result. Q.E.D.
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