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Summary 

In this thesis we study different features of Graded-Index Media from 

the Geometrical Optics point of view and we explore effective techniques of 

analysis and design of interesting optical Meta-Devices. 

First, with the help of tensor analysis we generalize ray tracing 

machinery in a coordinate-free style and we show in detail how ray tracing in 

anisotropic media in arbitrary coordinate systems and curved spaces can be 

carried out. Writing Maxwell’s equations in the most general form, we derive 

a coordinate-free form for the eikonal equation and hence the Hamiltonian of a 

general purpose medium. The expression works for both orthogonal and non-

orthogonal coordinate systems, and we show how it can be simplified for 

biaxial and uniaxial media in orthogonal coordinate systems. In order to show 

the utility of the equation in a real case, we study both the isotropic and the 

uniaxially transmuted birefringent Eaton lens and derive the ray trajectories in 

spherical coordinates for each case. 

 Next, a reverse design schematic for designing a metamaterial 

magnifier with graded negative refractive index for both two-dimensional and 

three-dimensional cases is proposed. Photorealistic rendering is integrated 

with traced ray trajectories in example designs to visualize the scattering 

magnification as well as imaging of the proposed graded-index magnifier with 

negative index metamaterials. The material of the magnifying shell can be 

uniquely and independently determined without knowing beforehand the 

corresponding domain deformation. This reverse recipe and photorealistic 

rendering directly tackles the significance of all possible parametric profiles 

and demonstrates the performance of the device in a realistic scene, which 

provides a scheme to design, select and evaluate a metamaterial magnifier. 

Third, based on the optical behavior of gradient biaxial dielectrics a 

design method is described in detail which allows one to combine the behavior 

of up to four totally independent isotropic optical instruments in an 

overlapping region of space. This is non-trivial because of the mixing of the 

index tensor elements in the Hamiltonian; previously known methods only 

handled uniaxial dielectrics (where only two independent isotropic optical 

functions could overlap). The biaxial method introduced also allows three-



 

 

XII

dimensional multi-faced Janus devices to be designed; these are worked out in 

an example of what is possible to design with the method. 

Finally, the mechanical interaction between light and graded-index 

media (both isotropic and anisotropic) is presented from the geometrical optics 

perspective. Utilizing Hamiltonian equations to determine ray trajectories 

combined with a description of the Lorentz force exerted on bound currents 

and charges, we provide a general method that we denote “force tracing” for 

determining the direction and magnitude of the bulk and surface force density 

in arbitrarily anisotropic and inhomogeneous media. This technique provides 

the optical community with machinery which can give a good estimation of 

the force field distribution in different complex media, and with significantly 

faster computation speeds than full wave methods allow. Comparison of force 

tracing against analytical solutions shows some unusual limitations of 

geometrical optics which we also illustrate. 
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CHAPTER 1 Introduction 

1.1 Motivation and Background 

From the day that man first walked upon the earth, he started exploring 

his surrounding environment and learning how to manage his life. He was 

weak, alone and totally ignorant. But he had to face challenges, fight with 

natural disasters like volcanic eruptions, earthquakes, floods, and lightning. 

Wild beasts were his neighbors, and it was not easy to deal with these 

creatures. He did not have any knowledge about his body, the nature of viruses 

and diseases or their cures. He did not know how to sail, how to farm, how to 

hunt, how to love, or even how to talk. The wind looked like ghosts to him, the 

Sun and the Moon were two unknown gods, stars were believed to participate 

in his destiny, solar and lunar eclipses were considered to be the rage of gods 

and goddesses, and many other natural phenomena were sources of fear and 

divinity in his life. But he wanted to live with nature, and therefore he had to 

adapt himself to his surroundings. He was offered new experiences every day, 

and those exciting experiences could, at times, lead to the loss of his life. His 

only tools when facing those experiences were his five basic senses and his 

mind. He could see, hear, touch, smell and taste, and also think logically to 

answer his bewildering curiosities. However, among all his tools, his ability to 

see was the most important tool. His sophisticated vision was helping him 

perceive his world precisely, think, and then take an action. He was always 

scared by darkness, and night was frightful to him. Trivially, he had much 

appreciation for light and shining objects. Obviously he was also excited by 

light and he tried to know this strange and lovely friend around him. It can be 
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one of the main reasons that humans have studied light, its interactions with 

objects, and its applications since ancient times.  

Besides the countless undocumented studies of light that certainly took 

place over previous millennia, it was none other than Sir Isaac Newton who is 

largely thought of as the man who first studied light in a physical, scientific 

way. It was he whose study in 17th century was based on the assumption that 

light is corpuscular, which means that light can be thought of as a stream of 

tiny particles which spread out when light travels through space. This idea was 

considered in great detail, and inspired many other researchers to explore the 

physics of light from this point of view. However, in the early 19th century, in 

a very famous experiment by Thomas Young, it was shown that light can act 

like a wave, and produce diffraction patterns while travelling through narrow 

slits, though this fact was also previously seen in 17th century by Francesco 

Maria Grimaldi. Based on these observations and theoretical works by 

Christian Huygens and Augustin-Jean Fresnel, the theory of wave optics 

became more popular and later with the help of Maxwell’s equations, it was 

believed that it was, in fact, the only correct theory of the nature of light. 

Max Planck and Albert Einstein’s respective explanations of Black body 

radiation and Photoelectric effect led to the most recent conclusion that light 

has both wave and particle characteristics.    

The theory of optics can thus be considered an old, mature field of 

study, having been recognized by brilliant minds for many years. But in 

addition to its most basic and ancient function of allowing our eyes to function 

properly, light has, within just the last century, found use in myriad 

applications, especially in scientific applications. Different types of 
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microscopy and imaging techniques, lasers, optical transceivers, optical fibers, 

optical lithography, optical cooling processes, optical lenses and their 

tomography techniques, all and all, are signs of the enormous number of 

applications of optics in our scientific life. 

Due to the never-ending hunger of consumers to novel technologies, 

gadgets and luxuries in daily life, researchers are resorting to the interaction of 

light with novel and unusual materials and structures to bring about even more 

unusual and fascinating dimensions to human life. Illusions, cloaking and 

perfect imaging are examples of such attempts. To understand the excitement 

behind the astonishing physics of metamaterials and generally complex media, 

it is important to first review the global behavior of such media and 

comprehend their interaction with light. 

1.2 Complex Media 

Thanks to their rich physics and potential in future applications in optics, 

complex media have more recently become important research topics. The 

interaction of light and, in general, electromagnetic waves, with complex 

structures has led experimentalists to explore these materials in great depth 

after first observing many interesting phenomena. The negative refraction of 

light rays [1, 2], isotropic reflections [3], invisibility of cloaked objects and 

folding of visual space [4, 5], limitless imaging [6, 7], reversal of Cherenkov 

radiation [8], reversal of the Doppler effect [9], anti-parallelism of group 

velocity and phase velocity [10], strange shapes of the k-surface in a 

monochromatic propagation [11], and Fano resonances [12], etc., are 

examples of such interesting and unusual behaviors, which have already been 
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observed or are expected to be observed in complex media. While such 

anomalous behavior in complex structures is permissible because of symmetry 

and space-time invariance of Maxwell’s equations and is otherwise “natural” 

behavior, it is often surprising and unexpected, inspiring theoretical 

researchers to reconsider many fundamental properties of light, both in 

classical and quantum electrodynamics. As a consequence, a large number of 

papers on different aspects of complex media have been recently published. 

As can be seen through a simple literature review, extensive effort has been 

devoted by many different researchers and institutes to the exploration of the 

properties of complex media, their potentials in fabricating novel devices, and 

their potentials to overcome many preconceived limitations in different fields 

of electromagnetic wave theory, electronics, optics and acoustics. These 

researchers are primarily divided into two categories. The scientists in the first 

category are mainly theoreticians who are deeply involved in the foundations 

of complex media and are proposing new ideas and theories, while the second 

category of researchers are primarily involved in observing the properties of 

complex media and also fabricating devices consisting of complex structures.   

The main question then, is, what is the definition of complexity in 

materials? In what sense can a medium be called complex? How complex can 

a medium be? How is it possible to quantify the complexity in materials? How 

can we analyze complex structures to see whether we are able to engineer 

electromagnetic fields? What are the possibilities in fabricating complex 

optical structures and realizing them?  

Through common-sense notions, complexity in materials should have 

something to do with their structures or their chemistry. This can be the first 
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step in defining a complex medium. From a structural point of view, the 

complexity of a medium can be either due to the complex shape of its 

constituent components or the order/organization of the components within the 

medium. Complexity in the shape of components can often make it very 

difficult to model the structure geometrically and/or mathematically or to 

handle the corresponding physical equations analytically or numerically. 

The distribution of the constituent components can also cause a complex 

medium to have many different and sometimes anomalous properties. 

Existence of periodicity, for example, in the structure of a medium confers 

symmetrical properties which simplifies analysis and complexity of 

electromagnetic calculations and simulations. The composition of inclusions 

within a medium can also impart nonreciprocity to the complex medium, 

chirality being a prime example. Additionally, the use of active components 

may impose nonlinearity on the medium and affect its frequency response. 

The use of resonant type inclusions can also result in unusual physics which 

may not be normally observed in nature. So we see that the constituent 

components, i.e. their shapes or their organizations, in a medium can play an 

important role in the resultant properties of that medium. Besides the structural 

properties of a medium, its chemistry can cause interesting effects in its 

interaction with electromagnetic fields. Magnetoelectric materials [13], 

magnetodielectric materials [14], different types of ceramics [15], stealth 

materials [16], carbon nonotubes [17] and graphene [18] are examples of new 

kinds of materials which show interesting properties due to their chemistry. 

But unlike structural properties which emerge from composite materials, 

chemistry cannot really be engineered, so this is only a second concern in this 



Chapter 1                                                                                                                    Introduction 

 

 

6

work.     

As alluded to above, we are preparing to define “complex media”. A 

complex medium is a composite consisting of either structural variation, or 

component variation, which additionally possesses four distinct 

characteristics. The first characteristic is anomalous physics. A complex 

medium often shows new physical properties which at first glance might seem 

to be in contradiction with conventional physical laws. But in fact, it can often 

lead to a relook at fundamental definitions and concepts of physics, bring lots 

of skepticism and controversy, and finally open its own space among other 

well-known topics. The second one is scarcity or non-existence in nature. A 

complex medium does not usually exist in nature. The unusual physics that is 

ultimately what we are trying to harness requires specific sets of conditions in 

a medium that would be improbable to occur naturally. The third feature of a 

complex medium is in its fabrication. The fabrication of a complex medium is 

typically tedious and needs a lot of care to meet a high standard of accuracy in 

its structure. Finally the fourth characteristic of a complex medium is its tight 

design requirements, both in calculation of its structure and in mathematical 

models describing it. Analysis of a complex medium usually needs a huge 

amount of computer memory, advanced Computer Process Units (CPUs) and 

many complicated mathematical formulations and theorems. 

So, in general, complex media are called “complex” because of their 

remarkable physics, their unavailability in nature, their intricate structures and 

their unwieldy mathematical models. The abovementioned features for 

complex media may look a bit odd; for instance, one could claim that 

fabrication processes or mathematical models of many conventional materials 
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and structures are also extremely complicated, but we do not call them 

“complex media”. Likewise, many everyday objects, such as fruit juices, 

papers, and rubbers, etc., are extremely scarce in our universe as a whole, yet 

we do not call them “complex media”. In this sense, we have to confess that 

no definition in science, including our definition, is totally conclusive; all 

proposed definitions generally come along with arguments, exceptions and 

inconsistencies. But we believe that if a man-made medium possesses all four 

characteristics above, that medium is definitely a complex medium. There 

might exist some exceptional complex media which do not have all of the 

above-stated characteristics. A very detailed analysis on definition of complex 

media can be found in [19].  

We need to add one more point and that is our preference in 

terminology. We prefer the word “medium” for the purpose of our research to 

other words like “material” or “structure”. The reason is that, as explained 

above, complex media owe their properties to their organizations and 

structures, or to their chemical ingredients, atoms and molecules. The first 

group could be called “structures” while the second group could be called 

“materials”, so eventually the word “medium” is more general. 

1.3 Geometrical Optics at a Glance 

Geometrical Optics is the situation in optics where we practically solve a 

problem under the asymptotic situation that the wavelength goes to zero 

0   and the energy transport can be described by the language of geometry 

[20]. This approximate theory is reliable only where the electromagnetic fields 

have rapid changes in their phases and gradual variations in their amplitudes. 
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For the sake of accuracy in the limit of geometrical optics, the media 

parameters (permittivity, permeability, conductivity, etc.) should fluctuate 

slowly in the scale of at least one wavelength or more precisely,  

 
 

0 0

1, 1,
F F

k k

  
  

   (1.1) 

where 


 is standing for the electromagnetic constitutive tensors,   for the 

electromagnetic loss or gain, F


 for fields, 0 2k c    ,   is the angular 

frequency and c  is the velocity of light in free space. As a matter of fact, the 

propagating fields can be expressed in terms of locally plane waves (quasi-

plane waves). Based on Fermat’s principle and Lagrangian calculus, they can 

be traced beautifully by pencils of rays [20, 21]. 

In the domain of geometrical optics we are allowed to write the 

electromagnetic fields as  

 
   
   

0 0

0 0

, exp
,

, exp

E r t E ik k r i t

H r t H ik k r i t





   


  

  

    (1.2) 

where k


 is the wave vector and the magnitudes of both 0E


 and 0H


 are 

assumed to be approximately constant. Inserting the above expressions for E


 

and H


 in Maxwell’s equations and with the help of constitutive relations, we 

can find a dispersion relation in any medium [22]. The dispersion relation of a 

medium is basically called Hamiltonian of that medium. In the domain of 

geometrical optics with the use of the corresponding Hamiltonian  ,r k


H  in 

a specific problem, we arrive at the Hamilton’s set of differential equations,  
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 ,

dr

d k

dk

d r





  


   







H

H
 (1.3) 

where   is the ray tracing parameter. By solving the Hamilton’s equations, we 

can find  r   and  k 


 which all together make a path in the space. 

Traditionally a ray of light is defined as a geometrical path which is optically 

the shortest possible path (Fermat’s principle) and through which the energy 

is transported. 

1.4 A Review of Transformation Optics 

The concepts of conformal mapping [4] and coordinate transformation 

[5] were initially used to control light’s path effectively and make an object 

invisible. Soon after these invisibility papers were published which essentially 

introduced the topic of Transformation Optics, they motivated a huge number 

of researchers to explore different methods and tools related to this topic to 

engineer the behavior of light in graded complex media. As will be reviewed 

briefly in this section (a detailed analysis on the media-geometry equivalence 

can be found in [21]), based on the invariance of the Maxwell equations 

through coordinate transformation, it is shown that media can resemble 

geometries and vice versa. Relying on this equivalence, we can assume 

predefined functionalities in a virtual medium and then through the use of a 

proper coordinate transformation we are able to find the constitutive 

parameters of the corresponding physical medium. This is actually the main 

concept of transformation optics. In recent years, transformation optics has 

been invoked extensively and therefore a wide range of applications, such as 
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carpet cloaks [23], external cloaks [24], scattering enhancement [25], beam 

splitters [26], homogeneous nonmagnetic bends [27], field collimators [28], 

deep sub-wavelength waveguides [29], and super resolution devices [30] have 

been considered. In addition to all the efforts to realize the mentioned 

applications and many more, it has been shown that there exist several 

practical limitations on the performance of transformation optics devices [31]. 

Taking advantage of the mathematics of differential geometry [21], we 

can write the free space version of Maxwell’s equations (in the MKS system) 

in curved space as,  

  
,

0

1
,i

i
g

g




E  (1.4) 

  
,

1
0,i

i
g

g
B  (1.5) 

 , ,
i

ijk
k je

t


 


B

E  (1.6) 

 , 02

1
,

i
ijk i

k je
c t


 


E

B j  (1.7) 

where , , 1, 2,3i j k  , comma stands for vector differentiation, and 

  1/ijke g ijk  is the Levi-Civita tensor in which the plus sign is for the 

right handed and the minus sign is for the left handed coordinate system, and 

we use the Einstein summation convention on repeated indices. The symbol g  

is determinant of metric tensor ijg  of the corresponding coordinate system, 

  1ijk   for an even permutation of 123,   1ijk    for an odd permutation of 

123, and   0ijk  for any other case,   is the free charge density, and j  is the 

free current density. Writing the Maxwell equations in terms of solely 

covariant forms of E  and B  and expressing the Levi-Civita tensor in terms of 



Chapter 1                                                                                                                    Introduction 

 

 

11

permutation symbols, we have,  
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,ij
j
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1
,

ij
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k j

g g
ijk g
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

 
 



E
B j  (1.11) 

Table  1.1. Comparison between Maxwell’s equations in free space and in the equivalent 

macroscopic medium.  

Free Space (Top: Flat Space,  

Bottom: Curved Space) 

Macroscopic Medium (Cartesian 

Coordinates) 
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Now if we rescale the free charge and current densities as,  

 ,g    (1.12) 

 ,gJ j  (1.13) 

and also express the constitutive equations like  
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 0 ,i ij
j D E  (1.14) 

 0 ,i ij
j B H  (1.15) 

where the components of permittivity and permeability tensors are  

 ,ij ij ijg g     (1.16) 

then we see that Maxwell’s equations in free space and in an arbitrary 

coordinate system or geometry are the same as Maxwell’s equations in a 

macroscopic medium in the right handed Cartesian coordinate system. In other 

words, geometries are equivalent to media and vice versa. According to 

equation (1.16), these media are impedance matched to free space as the 

impedance of a medium is defined as /  , i.e. the impedance of free space 

and the equivalent medium both are equal to one. The equivalence explained 

in this paragraph has been summarized in Table 1.1. 

The expressed equivalence between the free space in Cartesian 

coordinates and the impedance matched macroscopic medium in arbitrary 

coordinates is the core idea behind the transformation optics. According to this 

equivalence, we can infer the transformation optics concept as follows. Let us 

assume a medium in an initial geometrical space. The medium can be free 

space and the initial medium can be assumed to be a right handed Cartesian 

coordinate system. Then if we transform the Cartesian system into a new 

arbitrary curved coordinate system, the electromagnetic fields will change and 

look like the electromagnetic fields in an equivalent macroscopic medium in a 

right handed Cartesian system. The former space is called virtual space and 

the later one is called physical space. More details on this interpretation can be 

found in [21]. On the basis of this equivalence, a recipe to design devices with 

extraordinary electromagnetic features can be proposed. A desired 
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extraordinary formation of electromagnetic fields or light rays, which are not 

violating Maxwell’s equations, can be thought of first. Then comparing the 

curved power flow lines or light rays with the straight lines in the globally flat 

right handed Cartesian space, a proper spatial transformation between these 

two spaces can be inferred. Then from the tabulated equivalence, the 

constitutive parameters of a physical space, which possesses the desired 

extraordinary electromagnetic features, can be obtained. An example of such a 

transformation is shown in Fig. 1.1. 

Fig.  1.1. An example of transformation of spaces. 

In the previous formulation, the Maxwell equations in the right handed 

Cartesian coordinate system were compared with those in an arbitrary curved 

coordinate system. However, if we assume another curved space instead of a 

Cartesian one, then the relationship between the constitutive parameters of the 

macroscopic medium and the metric tensor of the equivalent geometry needs 

to be modified as,  

 ,ij ijg
g 


   (1.17) 
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 ,ij ijg
g 


   (1.18) 

where    and   are constitutive parameters of the virtual space and   is 

determinant of the virtual space metric tensor. Finally if we transform a virtual 

space with coordinates ix   and constitutive parameters   and    to a physical 

space with coordinates ix  according to a transformation matrix 

 i i i
i x x 
     , then the constitutive parameters in the physical space 

would be [21],  

 
  1

,
det

Tg
 






g 


 (1.19) 

 
  1

,
det

Tg
 






g 


 (1.20) 

where g  is the metric tensor in the virtual space with determinant g ,   is 

the determinant of the metric tensor of the physical space, det  is the 

determinant of   and T  stands for the matrix transpose operator. Note that 

sometimes the transformation matrix is called the Jacobian matrix. 

 

(a) 

 

(b) 

Fig.  1.2. Two examples of transformation optics based devices: (a) simple cloaking; (b) 

cloaking in addition to 90 degree bending. 
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Two examples of the use of transformation optics are given in Fig. 1.2. 

In both cases the transformations are done for cloaking an object inside the 

inner sphere. However, for the first case the virtual space is taken as vacuum 

while for the second one it is assumed to be 90-degree bending lens medium. 

Many other examples can be found in the literature as well. 

1.5 Complementary Media and Space Folding 

We would like to briefly review the concept of complementary media 

and the process of space folding. If the juxtaposition of two different media 

leads to a vanishing of the optical effects of both media, then these two media 

are called complementary. As shown with details in [32], if the constitutive 

profiles of two media are inverted mirror image of each other, the two media 

act like complementary media and cancel the presence of each other. In other 

words, if in the Cartesian coordinate systems, we have two slabs with 

constitutive parameters like,  

 
   
   

1 1

2 2

, , , , 0 ,

, , , , 0 ,

x y x y d z

x y x y z d

   

   

      

     
 (1.21) 

then these two slabs cancel out each other and the interface at z d   can be 

translated to z d . However, for the non-Cartesian geometries (like spherical 

shells) we have to possibly transform them into the Cartesian slabs and figure 

out their mutual complementary slabs and finally transform the whole newly 

found stack of slabs back into the original geometry [32]. 
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(a)  

Fig.  1.3. (a) Cancelation of two complementary slabs, (b) Cascading two pairs of 

complementary slabs. 

Now let us consider the simplest case of complementary media. Assume 

we have a homogeneous slab with thickness d  and refractive index 1n    

(Fig. 1.3(a)). According to the theory of complementary media, this slab can 

make another slab of the same thickness but with 1n    vanish. As a result, 

in Fig. 1.3(a) planes 0z   and 2z d  have identical optical characteristics 

and the space between them acts like a null space. This translation of the 

optical characteristics of planes can be employed effectively in imaging. 

According to Pendry et al., since the space cancelation is complete, the loss of 

sub-wavelength information carried by exponentially decaying evanescent 

modes in the left slab can be compensated by the right slab and hence the 

finest optical features of the object located at 0z   can be imaged at 2z d ; 

therefore, the image formed at the interface 2z d  is perfect [6, 21, 32]. But 

it might be more desirable in practical applications to construct the image 

somewhere outside the negative index slab. To do so, we should move the 

source closer to the negative index slab. If we move the source as much as 1x  

(b) 

A B C D 
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closer to the negative slab, its perfect image is formed at a distance 1d x  

from the negative slab (Fig. 1.3(b)). In fact, as shown in Fig. 1.3(b), we are 

cascading the complementary slabs to move the perfect image further; slab 

“A” is cancelled out by slab “B” and slab “C” is cancelled out by slab “D”. 

If we use the complementary media in spherical geometries, not only do 

we obtain perfect imaging, but also the optical magnification of the image. As 

an example, suppose in Fig. 1.4 the medium in the shell 1 2r r r   is 

complementary to the medium filling the shell 2 3r r r  . As shown in Fig. 

1.4, if we put two point sources with a distance like x  in between them on the 

surface of the sphere 10 r r  , then their perfect images form on the outer 

boundary of the region 2 3r r r   and the distance between the point images is 

enlarged ( y x ). 

 
Fig.  1.4. Magnification of perfect images of two point sources in spherical geometry. 

The idea of complementary media can be applied in designing 

magnifiers. Assume one side of a negative index slab ( 1n   ) of thickness 1d  

is replaced by a mirror and a point source is located in vacuum at a distance 

like 2d  ( 2 1d d ) from the other side of the slab (see Fig. 1.5(a)). Since the 
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negative slab cancels a slab of vacuum with thickness 1d , the optical 

properties of the mirror interface is the same as the plane “AB” shown in Fig. 

1.5(a) and the mirror looks as if it were located closer to the source (at the 

distance 2 1d d ). Now if we translate this scheme into a spherical geometry, 

as illustrated in Fig. 1.5(b), we extend the virtual image of an illuminated 

sphere to bigger spheres and hence increase its scattering cross section. The 

detailed analysis of the spherical magnifier, which is usually called a 

superscatterer, is provided in [25] and we avoid repeating that here. 

 

(a) 

 

(b) 

Fig.  1.5. Image magnification with the use of complementary media; (a) flat mirror, (b) 

spherical mirror. 

At the end of this section, we would like to briefly consider the concept 

of space-folding and its role in the perfect imaging and superscattering. 

Interested readers are first referred to [21] in which the theory of space-folding 

and transformation media is explained comprehensively. First of all, let us 

consider the empty space in which the virtual space ( x ) and physical space 

( x ) are overlapping totally and they follow a linear relation with a slope of 

one (Fig. 1.6(a)). Now assume we are allowed to accept a fold in the diagram 

of the virtual space versus the physical space as shown in Fig. 1.6(b). As 
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shown in Fig. 1.6(b), within the fold each point of the virtual space is triple 

valued and the electromagnetic properties of the three corresponding points in 

the physical space are identical. It means that if we put a source on one of 

these points, what is seen in either of the other two points is perfectly like that 

which exists in the source point as if the source were tripled. According to the 

theory of transformation media, with the use of transformation  

 

  ,
,

,

x x x

y y

z z

 

 
 

 (1.22) 

the fold in the x x   diagram is equivalent to a medium with the profile 

parameters  

 , , ,
dx dx dx

diag
dx dx dx

 
      

 (1.23) 

 

(a) 

 

(b) 

Fig.  1.6. Virtual space versus physical space in (a) empty space, (b) folded space for perfect 

imaging 

Note that both the virtual and physical spaces are Cartesian spaces and have 

similar metric tensors and the transformation matrix is  ,1,1diag dx dx  . 

The simplest transformation which provides us the desired space folding is 

 x x x   . Using this transformation, according to equation (1.23), we get an 
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isotropic profile with 1n   . 

 
Fig.  1.7. Virtual space versus physical space in a folded space for superscattering. 

The idea of superscattering can also be explained via the theory of space 

folding. As shown in Fig. 1.7, if we transform the space “A” backed by a 

mirror (at x a ) via a monotonically descending function like 

 x f x  (where 0df dx   in region “A”), we will have a fold in the whole 

space and some part of the free space will be cancelled by region “A”. As a 

matter of fact, it seems as if the mirror were moved to x c  and a sufficiently 

far object on the left side of region “A” sees its image closer than what really 

is in the mirror. As said earlier, the detailed study of this idea and how to use it 

in designing a spherical superscatterer directly was presented in [25]. 

However, in the Chapter 3 we propose a recipe in designing two and three 

dimensional superscatterers in a reverse manner and we will explore their 

properties by using ray tracing techniques as well as full-wave simulations. 

1.6 Objectives 

Our major objective in this PhD research is to understand deeply the 

interaction of light with complex media. Nowadays, there exists a rising 

interest among researchers to employ complex media and metamaterials to 

A
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new optical applications and to explore the novel properties. Keeping the 

limitations of the usual materials and their capabilities in mind, researchers are 

seeking new types of media, which promise to overcome these limitations. 

Additionally, new sorts of applications are thought of and efforts are made to 

bring unusual phenomena into human life. However, there exist severe 

drawbacks in terms of loss, dispersion, and anisotropy in fabrication and 

application of known complex media. It is a worthwhile endeavour to consider 

the propagation of light inside complex media, to explain newly observed 

phenomena, and to explore novel behaviors. 

As a matter of fact, we are motivated to develop analytical tools to study 

the physics of complex media and to investigate techniques that help us bring 

the behavior of light in complex media under our control. We are specifically 

interested in the strong tool of ray tracing for studying the interaction of 

electromagnetic waves and light rays with complex media in the domain of 

geometrical optics. Since in recent years, more attention has been paid to 

complex media and/or geometries, the ray tracing method has to be able to 

handle more sophisticated situations. In fact, we aim to generalize the well 

established method of ray tracing so that it can be applied to non-Euclidean or 

non-orthogonal coordinate systems; which will be carried out in this thesis. 

Meanwhile, we are also interested in photorealistic ray tracing of optical 

devices, which visualizes the physics behind designed devices in lifelike 

scenarios, which can enhance understanding and learning. 

1.7 Contributions 

Several contributions from this report can be mentioned. Invoking the 
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mathematical machinery of differential geometry, a coordinate-free form for 

the eikonal equation and hence the Hamiltonian of a general purpose medium 

is derived to trace the trajectories of light within graded complex media. The 

generalized method works for both orthogonal and non-orthogonal coordinate 

systems. It is shown how the derived expressions can be simplified for biaxial 

and uniaxial media in orthogonal coordinate systems. With the help of 

algebraic manipulation, we factorize the Hamiltonian in biaxial media into two 

terms and break the corresponding Hamiltonian surface into two separate 

shells. Furthermore, in order to show the utility of the generalized formulation 

in a real case, both the isotropic and the uniaxially transmuted Eaton lens are 

studied. All these details were published in [33]. 

Using the transformation optics concept in the reverse direction, a 

formulation is given which can hold any arbitrary well-defined mathematical 

function to produce the constitutive parameters of a two or three dimensional 

superscatterer. According to the flexibility offered by the reverse method, 

different generating functions can be compared in terms of different features 

like isotropy, and inhomogeneity, etc. Consequently an isotropic two 

dimensional superscatterer is designed. Besides, utilizing the generalized ray 

tracing method, different photorealistic visualizations of the considered 

superscattering phenomena are depicted and the imaging aspects of the 

designed devices are reviewed. The obtained results in this section were 

published in [34] and presented in [35]. 

By using the simplified version of the factored biaxial Hamiltonian, we 

propose a recipe to control the formation of ray trajectories along two 

orthogonal planes with respect to their polarizations. This proposed method 
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can be used in any orthogonal coordinate system. As an example, we consider 

the spherical geometry and we design a spherical graded-index dielectric 

device with four different functionalities at the same time. Based on this four-

function device recipe, we design another spherical dielectric “Janus” device 

with two different functions along the two orthogonal planes for the 

unpolarized light. All these results were published in [36] and presented in 

[37, 38]. 

Traditionally a ray trajectory is the minimal path of energy transport 

which can be traced by the use of Lagrangian mathematics, provided the 

necessary conditions required by geometrical optics are met. But we show that 

in addition to the flow of energy, the flow of momentum can be traced along a 

ray trajectory and we propose a technique, that we call “force tracing”, to 

calculate the direction and magnitude of the optical force density within 

isotropic and anisotropic media under the geometrical optics approximation. 

By invoking the Lorentz force density acting on bound sources in a medium 

and employing the geometrical optics approximations, we derive regressive 

equations for the force field within isotropic and anisotropic media. In 

particular we show that the obtained optical force density in isotropic media is 

directly proportional to the curvature of the corresponding ray trajectory. For 

the case of anisotropic media the situation is more complicated and it is not 

easy to derive similar thing to what we have for isotropic media. To validate 

our analysis, we analyze the optical force density within two isotropic lenses, 

Eaton lens and Luneburg lens, and one anisotropic device, the Pendry cloak, 

and we show a reasonable agreement between our force fields under 

geometrical optics restrictions with those obtained by full-wave calculations. 
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Additionally, we talk about cases that the geometrical optics fails to calculate 

the optical force correctly. This is something which may lead to imposing new 

limitations on the borders of geometrical optics domain. All these facts and 

results were presented in [39] and have been accepted to be published as an 

article. 

1.8 Organization 

The outline of this thesis in the next chapters is as follows. In Chapter 2, 

we will generalize the ray tracing method in general coordinate-free style. We 

will review the optical Hamiltonian in isotropic, uniaxial and biaxial media. 

With the use of the generalized ray tracing technique, we will consider the 

Eaton lens as an example and we will transmute the optical singularity in this 

lens into a geometrical singularity. 

In Chapter 3, based on the theory of complementary media and 

transformation optics, we will propose a reverse method to design 2D and 3D 

superscatterers. With the proposed reverse method, we will acquire a freedom 

to design superscatterers with different considerations which might be 

important from practical point of view. Cylindrical and spherical 

superscatterers will be designed and their behavior will be examined from full-

wave and geometrical optics perspectives. Photorealistic rendering of the 

designed lenses will be demonstrated to show how they look like in a realistic 

situation. 

In Chapter 4, we will take graded-index biaxial dielectrics into account. 

With the use of the biaxial Hamiltonian factorization (which will be shown in 

Chapter 2), we will introduce a method to control the functionalities of the 
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possible polarizations along the principle planes in a biaxial dielectric device. 

As an example, we will consider the spherical geometry and we will design a 

radially symmetric device with four different optical functions at the same 

time. Furthermore, we will design a radially symmetric device with two 

different functions along its principle planes for the unpolarized light. 

In Chapter 5, we will first review the Minkowski-Abraham dilemma on 

the momentum of light in media. Then based on the general time-averaged 

Lorentz force density and with the use of geometrical optics elements, we will 

introduce a new method, which we call force tracing, to trace the bulk and 

surface force fields along the trajectories of light rays in isotropic and 

anisotropic media. Under the realm of geometrical optics, we will also show 

the analytical relation between the Lorentz force density and the curvature of a 

ray in an isotropic medium. We will examine the validity of the force tracing 

technique in isotropic and anisotropic examples, as well 

In Chapter 6, we will conclude the thesis and we will give several 

suggestions for future work. 
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CHAPTER 2   Generalization of Ray 

Tracing via a Coordinate-Free Approach 

2.1 Introduction 

Recently the advent of devices, such as perfect lenses [6, 7], invisibility 

cloaks [5, 40], and optical concentrators [41], has encouraged investigations 

into the foundations of optics, as well as attempts to engineer trajectories of 

light rays for any desired functionality. While it is relatively straightforward to 

calculate ray paths once one is given a certain index of refraction distribution 

in space  , ,n x y z , it is exceedingly difficult to go in the opposite 

direction―to command light to do certain things by engineering the refractive 

index profile. While the field of transformation optics continues to make 

headway toward this goal, the realm of geometrical optics represents a 

worthwhile field of investigation because of its potential to solve many 

problems to an acceptable degree of accuracy (invisibility cloaks with phase 

slips [42], for example, or universal retroreflection with Eaton lenses [21, 43, 

44]), but with significantly eased materials requirements compared to devices 

designed with transformation optics that must preserve wave behavior. 

In order to design devices in curved geometries, a comprehensive 

understanding of ray trajectory calculations via Hamilton’s equations inside a 

medium is necessary. Hamilton’s equations, which are useful in geometrical 

optics, classical and quantum mechanics, make a differential having roots in 

Fermat’s principle, which states that a light ray always traces the extremal 

(optically minimum) path between two spatial points. The complexity of a 
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medium, denoted by its constitutive relations and profiles, determines the 

degree of difficulty we face in dealing with such differential equations. For 

example, the solution of Hamilton’s equations in a homogenous isotropic 

medium is so simple that the ray trajectory in such a medium is trivially a 

straight line (light in any uniform dielectric travels in a straight line). But in an 

anisotropic/inhomogeneous gradient medium the equations can be unwieldy to 

handle, and ray trajectories can curve and/or split. 

It is worthwhile to note that anisotropic media in the limit of geometrical 

optics have been considered in the literatures for decades [45-49], and their 

physics in controlling the geometry of light is well understood. In [49], the 

problem of the Hamiltonian equation and ray tracing inside and at the surface 

of an inhomogeneous anisotropic medium have been studied comprehensively. 

However, the authors of [49] have considered only uniaxial media in Cartesian 

coordinates. 

Nevertheless, the previous works on ray tracing were mostly in 

Euclidean space and were done under specific constraints. Being free of all 

these constraints, in this chapter the ray tracing technique is generalized and 

optical limit is analyzed with arbitrary anisotropy in arbitrary geometries. 

While the results to be demonstrated here could of course have been carried 

out in Cartesian coordinates instead, it is worthwhile to demonstrate 

Hamiltonian in arbitrary coordinates because of the great utility of working in 

other coordinate systems when designing optical components. This utility is 

also present in non-Euclidean spaces and has already resulted in interesting 

device design [40]. This is the primary motivation of this work. 

Accordingly, we first briefly go through well-established geometrical 
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optics theory and derive the Hamiltonian of a general purpose medium in a 

coordinate free manner. The derived expression works for both orthogonal and 

non-orthogonal coordinate systems, and we show how it can be simplified for 

biaxial and uniaxial media in orthogonal coordinate systems. Then we use the 

ray tracing process to determine the ray trajectories in different media. Taking 

advantage of ray tracing in birefringent media, we also show how 

transmutation of the index profile singularity can be converted into 

geometrical singularity [44]. 

2.2 Hamiltonian in a General Purpose Medium 

If we consider the source-free Maxwell equations in a general form, we 

have  

 , ,
i

ijk
k je

t


 


B

E  (2.1) 

 , ,
i

ijk
k je

t





D

H  (2.2) 

 , 0 ,i
i D  (2.3) 

 , 0 ,i
i B  (2.4) 

where , , 1, 2,3i j k  . It should be noticed that E , H  are one-forms and D , B  

are vectors, respectively. If we consider   and   as relative permittivity and 

permeability tensors, respectively, then in a linear medium, we have  

 0 ,i ij
j D E  (2.5) 

 0 ,i ij
j B H  (2.6) 

where 0  and 0  are the vacuum permittivity and permeability, respectively. 

In the geometrical optics limit, we can assume the electromagnetic fields as 
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quasi-plane waves,  

  0exp ,m
j j mik i t E k rE  (2.7) 

  0
0

1
exp ,m

j j mik i t


 H k rH  (2.8) 

where 1,2,3m  , 0 /k c ,   is the frequency, c  is the light velocity in 

empty space, k  is the wave vector, r  is the position vector, and 

0 0 0/   . It should be noted that the quasi-plane-wave form (equations 

(2.7) and (2.8)) for the electromagnetic fields are true only in a small 

neighborhood of a given point. Farther from the point, the vector fields may 

depart the quasi-plane-wave form, for both the ray and the coordinate lines 

may be curved. With the use of equations (2.5) and (2.6), and after discarding 

several terms which are negligible under the geometrical optics 

approximation, equations (2.1) and (2.2) would be simplified as,  

 0 ,ijk ij
j k je  kE H  (2.9) 

 0.ijk ij
j k je  k H E  (2.10) 

Eliminating H from equations (2.9) and (2.10), we have,  

 0,pk
kM E  (2.11) 

where pk mi pn jk pk
n j m iM e e  k k , 1  , and all the subscripts or 

superscripts are from 1 to 3. Equation (2.11) is actually the well known 

eikonal equation in the wave vector domain, where the spatial derivatives of 

the eikonal have been replaced by the corresponding components of the wave 

vector. Avoiding a trivial solution to this equation, the determinant of M  

should be zero. As a matter of fact, the Hamiltonian is defined as  
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          = det ,p i q j r kM ijk M M MH  (2.12) 

where  pqr  is an even permutation of 123. It should be noted that the 

expressions obtained for the matrix M  and the Hamiltonian are independent 

of any coordinate system and can be used in both orthogonal and non-

orthogonal curvilinear coordinate systems. However, for non-orthogonal 

coordinate systems the basis vectors are not perpendicular to each other. Thus, 

the off-diagonal elements of the Levi-Civita tensor are not all zero, and the 

cross product of two basis vectors is not in the direction of the other basis 

vector. As a result, the expressions for the matrix M  and the Hamiltonian 

would have more terms and would be much more complicated than those of 

the orthogonal one. Since the Levi-Civita tensor is different for various non-

orthogonal coordinate systems, we cannot make our general Hamiltonian 

expression simpler for the non-orthogonal case. But as will be seen in the next 

sections, we can obtain simpler expressions for both biaxial and uniaxial cases 

in a general orthogonal coordinate system. It is also worth noting that for both 

dielectric ( 2n   and μ=the unit matrix) and impedance matched media, i.e. 

n   , where   and   are tensors in an orthogonal coordinate system, as 

shown in [50], the Hamiltonian would be  

       2T1
det det ,

det
M n n

n
  k kH  (2.13) 

which can also be derived from the given general expression (2.12) for the 

Hamiltonian ( T  stands for matrix transpose operation). 

After finding the general expression for the Hamiltonian of a linear 

inhomogeneous anisotropic medium, to actually calculate the ray trajectories 
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one can use the differential ray equations (Hamilton’s equations) which are  

 
d

d
 k

r
H ,  (2.14) 

 
d

d
 r

k
H ,  (2.15) 

where   parameterizes the ray paths. Hence we can find parametric ray 

trajectories by solving the above set of differential equations.   

In addition to solving the above differential equations, one more step 

must be taken to be able to carry out ray tracing in a general medium. Since 

generally the interfaces between two media are not impedance matched, there 

would be a sort of reflection and/or refraction in the k  vector trace at the 

boundaries. In cases where impedance matching at interfaces between 

different media exists, the incident rays would not be reflected, although there 

can still be refraction of the incoming rays at the boundary of the two optical 

media. In order to solve for the ray trajectories inside the medium of the 

transmitted rays, we need to be able to calculate the abrupt change in direction 

of the incident ray at the boundary. Therefore for the sake of completeness, 

one must solve this system of equations which results from boundary 

conditions at the interface:  

 

ˆ ˆ ˆ ,

( ) 0,

( ) 0,

ijk inc ijk ref ijk tran
j k j k j k

tran

ref
s

e e e 





k n k n k n

k

k

H

H

 (2.16) 

where H  and sH are the Hamiltonians of the device and the surrounding 

medium, respectively, and also inck  is the wave vector of the incident ray, 

refk is the wave vector of the reflected ray, trank  is the wave vector of the 
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refracted ray inside the medium, and n̂  is the unit vector normal to the 

boundary. Solving this system of equations, we are able to find the 

components of the refracted ray or rays inside the material at an interface. It is 

also obvious that for anisotropic cases, the equation ( ) 0tran kH  has more 

than one result for trank , and this means that multiple refraction and splitting 

of an incident ray into more than one ray inside the optical medium can occur. 

However, non-impedance matched media require more attention. During 

departure from a non-impedance matched medium, some parts of the rays 

would be reflected back into the incident medium. In order to obtain the 

reflected and transmitted wave vectors of the exiting rays, a system of 

equations similar to (2.16) should be solved as follows:  

 

ˆ ˆ ˆ ,

( ) 0,

( ) 0

ijk inc ijk ref ijk tran
j k j k j k

ref

tran
s

e e e 



 

k n k n k n

k

k

H

H

 (2.17) 

Finally we need to add that our general Hamiltonian study does not work for 

Bi media (bi-anisotropic, bi-isotropic and chiral) [22, 51] in which the 

constitutive equations are coupled to each other and modifications would have 

to be done in order to include such media in a future analysis, complicated as 

that may be. But because of their anomalies and additional degrees of freedom 

[51], chiral materials might be invoked to design more alluring devices in 

future.   

2.3 Hamiltonian in Dielectric Biaxial Media in Orthogonal 

Coordinate Systems 

It is known that in general the permittivity tensor   of a reciprocal 
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medium is symmetric and therefore we can always find a specific orthonormal 

coordinate system (i.e. principle coordinate system) in which the permittivity 

tensor can be written in the form of a diagonal matrix. So in the principle 

coordinate system  1 2 3, ,x x x , for a dielectric (i.e. permeability is equal to one 

1  ) biaxial medium we have  

 

2
1

2
2

2
3

0 0

0 0

0 0

n

n

n


 
 

  
 
 

 (2.18) 

Then the aforementioned matrix M  would be simplified as  

 

 ,M K   (2.19) 

where 

2 2
2 3 1 2 1 3

2 2
1 2 1 3 2 3

2 2
1 3 2 3 1 2

( )

( )

( )

k k k k k k

K k k k k k k

k k k k k k

  
 

   
   

 and ik  ( 1,2,3i  ) are the 

components of the wave vector. Hence the Hamiltonian would be  

 
      

      

4 2 2 2 2 2 2 2 2 2
1 1 2 3 1 2 2 3 2 3

2 2 2 2 2 2 2 2 2 2
1 2 2 1 1 2 3 3 1 3

det

,

M k n k k n k n k n n

k k n n n n n k n n

      

     

H
 (2.20) 

which is a quartic equation. The Hamiltonian in a biaxial medium is of degree 

four for each ik  and hence, in the wave vector domain it constructs a special 

surface which intersects each axis at four conjugate points. This surface, 

which is sometimes called wave surface or optical indicatrix [20], is the 

combination of a sphere and an oval. The three dimensional structure of the 

Hamiltonian surface and its intersections with each of the 0ik   planes are 

shown in Fig. 2.1. As seen in Fig. 2.1, the sphere and oval are concentric and 
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for the case of 1 2 3n n n  . In general these two meet each other at four points 

located in the 2 0k   plane. Similar to [52], we prefer to call these points 

diabolical points. The dashed lines connecting the origin to the diabolical 

points, as shown in Fig. 2.1(a), are along the optical axes. The direction of the 

optical axes can be found via the equations given in [53]. Except at the 

diabolical points, at all the other points the Hamiltonian concentric shells are 

distinguishable. Due to this fact, the phase matching process [22] makes any 

incident ray at the interface of the biaxial medium refract into at most two rays 

(double refraction), though in some occasions they may overlap or become 

evanescent. As discovered by Hamilton [54], the diabolical points are causes 

of one of the most interesting phenomena in optics, conical refraction. Since at 

the diabolical points there is a degeneracy in the direction of the normal to the 

Hamiltonian surface, the ray vectors at these points are infinite and build up a 

cone [20, 52]. Therefore if the wave vector of the incident light at the interface 

is along one of the optical axes, we will have a conical distribution of rays 

within the biaxial medium. 

Putting the conical refraction aside, we should be able to factorize the 

Hamiltonian into two terms which can have nontrivial roots. Now we try to 

find these two terms following the method of Born and Wolf [20]. We define 

1H  as  

 2
1 kH H ,=  (2.21) 

where 2 2 2 2
1 2 3k k k k    and H was given in equation (2.20). With some 

simple algebraic manipulations, we can write 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig.  2.1. Schematic of the Hamiltonian surface for a biaxial medium with 1 1n  , 2 2n   and 

3 3n  ; (a,b,c) intersection with 2 0k  , 3 0k   and 1 0k   planes, respectively, (d) three-

dimensional representation which is cut from the sides to show more details. 

 
( )( ) ( )( )

( )( )

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 3 2 2 3 1

2 2 2 2 2 2
3 3 1 2 .

k n n k n k k n n k n k

k n n k n k

H = - - + - -

+ - -
 (2.22) 

Then by defining 2 2
2g n k  , 2 2

1 1 2g n n   and 2 2
3 2 3g n n  , we have  

 ( ) ( )( ) ( )2 2 2 2 2 2
1 3 1 1 1 3 2 2 1 3 3 .g g g k n g g g g k n g g g k nH = - + + - + +  (2.23) 

Now we see that 1H  is a second degree polynomial function of g , i.e. 

( )1 1 g=H H . So we can express 1H  as  
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 ( )( )1 ,a bG g g g gH = - -  (2.24) 

where ag and bg  are zeros of 1H  and G  is a nonzero constant. From equation 

(2.21), we have  

 ( )( )1
2 2

.a b

G
g g g g

k k

H
H = = - -  (2.25) 

Or we can express the Hamiltonian as  

 ,a b cH = H H H  (2.26) 

where for aH , bH  and cH  we have  
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- + - + -

ù- + - úû

 (2.28) 

and in equation (2.28) the plus sign is for bH  and the minus sign is for cH . 

Equations (2.26)-(2.28) show the factorized form of the Hamiltonian in a 

biaxial medium, where bH  describes one ray and cH  describes the behavior 

of the other ray. At diabolical points, we have 0b c =H = H  and the ray 

trajectories cannot be defined. By factorizing the Hamiltonian, we have 

actually divided the Hamiltonian surface into outer and inner shells with true 

optical axes and obviously their combination gives us the whole Hamiltonian 

surface. It might be interesting to see the shape of the Hamiltonian surface and 

the corresponding shells according to these factorized terms. Of course the 

whole shape of the Hamiltonian surface would be the same as that shown in 



Chapter 2                                  Generalization of Ray Tracing via a Coordinate-Free Approach 

 

 

37

Fig. 2.1(d). But a b´H H  and cH  individually have different shapes rather 

than the oval and the spherical forms mentioned in Fig. 2.1. The three 

dimensional schematics of these two shells and their intersections with the 

0ik   planes are depicted in Fig. 2.2. It is seen that by combining the 

schematics in Figs. 2.2(a) and (b), we obtain the corresponding schematic 

shown in Fig. 2.2(c). As will be explained later in Chapter 4, the advantage we 

can take of such a factorization is the ability to control the biaxiality in order 

to design devices offering different responses to different polarizations. 

Functionalities which are not available in natural isotropic or anisotropic 

media can be readily achieved. 

 

 
 

 

 
 

 

 

Fig.  2.2. Schematic surfaces of the factorized terms and the shape of the full Hamiltonian; the 

intersections and three dimensional shapes of (a,I-IV) a b´H H , (b,I-IV) cH , (c,I-IV) 

a b c´ ´H = H H H . Note that the schematic in c(IV) is cut from the sides to show more details. 
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2.4 Hamiltonian in Dielectric Uniaxial Media in Orthogonal 

Coordinate Systems 

The case of the dielectric uniaxial material leads to significant 

simplification in the Hamiltonian equation. By letting 2 3 on n n  and 1 en n  

in (2.20), we have for a dielectric uniaxial medium,  

       2 2 2 2 2 2 2 2 2 2
1 2 3 1 2 3det ,o e o e e oM k k k n k n k k n n        H H H  (2.29) 

which means that the incident wave to such a medium is decomposed into 

ordinary ( 0o H ) and extraordinary ( 0e H ) waves. As seen, the uniaxial 

Hamiltonian equation consists of spherical and ellipsoidal equations in k-

space, respectively, and they meet each other at (0,0, )on . It is interesting to 

note that regardless of the orthogonal coordinate system, in which the 

birefringence of a medium occurs, we always have two Hamiltonians and “ray 

splitting” always occurs, although sometimes the rays may become 

degenerate.  

2.5 Example: Transmutation of the Singularity in the Eaton 

Lens  

On the basis of the general formulation of the ray tracing in the previous 

sections, we analyze several devices in the rest of this report. However, in this 

section we apply our general Hamiltonian and related mathematics in a real 

case as an example and try to demonstrate all the important features. To do so, 

we take the Eaton lens into account. The Eaton lens is a perfect retro-reflector 

that reflects back all incident light rays omnidirectionally. The index profile of 

the Eaton lens is spherically symmetric and is a function of r if we take the 
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center of the lens as the origin,  

   2
1,

a
n r

r
   (2.30) 

where a is the radial extent of the Eaton lens, r  r , and we let it equal 1 for 

our study. Since the device is spherically symmetric, the angular momentum 

of the rays is a fixed vector and all the incident rays that lie on a plane do not 

leave that plane when travelling inside the device [21, 55]. Hence, for 

simplicity, we take the / 2   plane in spherical coordinate  , ,r    as one 

plane of the rays to examine. As the profile index is isotropic, the Hamiltonian 

is  

  22 2 .rk k n r  H  (2.31) 

Solving the differential Hamilton’s equations (2.14) and (2.15) with 

proper initial conditions, we obtain the ray trajectories as shown in Fig. 2.3. It 

can be shown that the rays inside the lens are actually, as it is observed, 

ellipses with a common focal point [21, 55]. 

 
Fig.  2.3. Ray trajectories inside an isotropic Eaton lens. 

It is obvious that due to uniform deflection of light rays, the Eaton lens 
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profile has a singularity at the origin, and as r tends to zero, the refractive 

index goes to infinity and the speed of light vanishes. In order to avoid such a 

singularity, we need to transmute the material singularity into geometrical 

singularity, which is more feasible from practical point of view, as explained 

in [43, 44]. It should be noted that the idea behind this transmutation is based 

on the theory of transformation optics, which was explained with more details 

in the previous chapter. However, for transmutation of the singularity, a 

coordinate transformation from r-space to R-space is needed. After the still-

undecided coordinate transformation and rescaling [44], diagonal tensor 

elements (in spherical coordinates) are as follows: 

    
2 22 2

2 2
2

, , ,ii

n r dr dr
R n n

R dR dR


          
     

 (2.32) 

    
22

2
,1,1 ,ii

r dR
R

R dr


      
   

 (2.33) 

where n  is the original profile index and  R r  is the transformation function, 

and off-diagonal elements of the transformed permittivity and permeability are 

zero. It is seen that transmutation of the singularity inevitably inserts 

birefringence into the optical medium. It should be noted that despite the fact 

that the transmutation takes care of the singularity, it is clear that a dielectric 

cannot be used to implement this device unless 1rr   (clearly not the case). 

So if we force 1rr  , we actually sacrifice one polarization, and the 

performance of the lens is preserved only for one of the two possible 

polarizations, i.e. in-plane and out-of-plane polarization. 
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(a) 

 

(b) 

Fig.  2.4. Ray trajectories inside the Eaton lens transmuted via  R r  for the (a) in-plane 

polarization and (b) out-of-plane polarization. 

Transmuting the refractive index profile and accepting the expense of 

one polarization by allowing 1rr  , we can find the ray trajectories by 

solving the four coupled differential equations coming out of the Hamiltonian 

of the transformed medium,  

   2 2 2 2 ,rr r rr rr r rrk k k k                    H  (2.34) 

where after normalization 2
rr rn  , 2n     ,    rn n R r R R , 

  n n R dr dR  , 1    ,    2 2

rr r R dR dr  . However, as said 

earlier we are interested only in dielectrics, we assign 1rr  ; therefore the 

performance of the out-of-plane polarization (the second term on the right 

hand side of equation (2.34)) would be disturbed. Since the Eaton lens is a 

spherically symmetric device, we choose    1 / 2R r r r   as the 

transformation function to give a reflectionless boundary at the lens edge and 

therefore we obtain the ray equations by solving equations (2.14)-(2.16) as 
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shown in Fig. 2.4. It is seen that the Eaton lens acts like a perfect retro-

reflector for the in-plane polarization, while the out-of-plane polarization is 

sacrificed. The transmuted  rn R  and  n R  versus R are plotted in Fig. 2.5, 

where they do not demonstrate any singularity and achieve the value of one at 

the boundary 1R  , which is required for impedance matching. 

 

 

(a) 

 

(b) 

Fig.  2.5. Plots of refractive indices (a) before transmutation  n r  and (b) after transmutation 

 rn R and    n R n R  . 
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2.6 Conclusions 

The Hamiltonian equation is extremely important in determining the 

behavior of light rays in an optical device. The demand for anisotropic 

materials, extensive application of transformation optics, and increasing use of 

structures with unusual non-flat topologies, all in all, have made us resort to 

non-Euclidean and/or non-orthogonal coordinate systems. Accordingly, a 

comprehensive understanding of Hamiltonian optics and ray equations in a 

general curvilinear geometry independent of any coordinate system is 

required. In this chapter, we demonstrated the Hamiltonian equation of a 

propagating wave through a general purpose medium and in a coordinate-free 

style. Biaxial and uniaxial media were considered as two special cases, and the 

validity of our analysis was shown for the transmuted Eaton lens.  

The presented formulation in this chapter is the core of all calculations 

in this thesis and will be employed in analysis and design of different complex 

devices in the subsequent chapters. In addition to the simple ray tracing, 

photorealistic ray tracing is possible using the described method here and the 

next chapter will expand upon the applicability of these two in illustrating the 

performance of graded-index superscatterers. 
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CHAPTER 3 Design and Photorealistic 

Rendering of Graded-Index Superscatterers 

3.1 Introduction 

As mentioned earlier in Chapter 1, scattering enhancement and image 

magnification generally, are one of the proposed applications of 

transformation optics. Enhancement of scattering and absorption of light by 

optically small particles, i.e. particles which can be circumscribed in the 

sphere of radius 0 / 2  , is of fundamental interest from both the theoretical 

and practical points of view [56-59]. It is known that most of the energy of the 

light incident into a small particle is mainly stored in the near field and the 

radiation efficiency of such a particle is extremely low [58]. In order to 

overcome this undesirable near field energy storage, different techniques have 

been proposed [25, 56-59]. Recently the method of transformation optics on 

the basis of the concept of complementary media was invoked by Yang et al. 

[25] and followed by Wee and Pendry [59] to enrich the scattered or absorbed 

energy by a small particle, though their approach relies on the initial 

knowledge of the spatial transformation function. 

In this chapter, a reverse method based on a spatial transformation will 

be proposed to design a general superscatterer. This will make an excellent 

example in which the machinery developed and described in detail in Chapter 

2 can be applied. In fact it will be shown that any well defined function can act 

as a generating function to produce the required parameters for a 

superscatterer constitutive profile. Accordingly, the complementary media can 
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be uniquely determined without the prior knowledge of the corresponding 

spatial transformation. However, the resultant superscatterer profile is not 

unique and this reverse recipe is inclusive of all possible parametric profiles, 

and as a matter of fact, it can lead us to obtain the superscatterer’s constitutive 

profile for a desired field pattern in the complementary media. Thus, different 

generating functions can be examined and the generated superscatterer index 

profiles can be compared in terms of various factors like homogeneity, 

isotropy, non-singularity, ease of fabrication, cost, and loss. For instance, this 

concept provides a straightforward way to investigate the constitutive 

parameters of the superscatterer, which will be employed to obtain an isotropic 

retro-reflecting superscatterer with inhomogeneous negative refractive index.  

So in this chapter, the mathematical formulation of the reverse method 

will be presented in a regressive manner for both 2D and 3D structures. Along 

with these calculations, several full wave simulations of the designed 

superscatterers will be provided, in which different generating functions will 

be examined. The required parameters for the design of an isotropic 

superscatterer will be derived and its imaging characteristics will be studied. 

In addition to full wave simulations, ray tracing analysis will be conducted to 

provide a better estimation on how the designed superscatterers actually work. 

On the basis of the calculated ray trajectories, animations will be illustrated to 

give an idea on how the superscatterer may look like in real life. 

3.2 Two Dimensional Superscatterer Design 

First, let us assume that a circular region ( r a ) covered by 

complementary media ( a r b  ) in physical space ( )r  is transformed from 
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a circular region ( r c  ) in virtual space ( )r   via an unknown 

transformation function. The constitutive parameters of the complementary 

media are assumed to be equal for impedance matching, i.e. 

ˆ ˆˆˆ ˆˆ( ) ( ) r zr r rr zz        
 

. Since the transformation is in the radial 

direction, the Jacobian matrix of the transformation is diagonal, though we 

still have no information about the transformation. The relative parameters of 

the complementary media can be obtained as  T detA A A   
   

, where 

( , , ) ( , , )A r z r z     


 is the Jacobian matrix [21, 60]  , ,r z    and 

 , ,r z  represent the virtual and physical spaces, respectively. Then three 

principle values of  r  and  r  can be obtained as, 
d

dr

r r

r r






, 

1

r
 
  

and 
d

dz

r r

r r


 
 . By making use of the identities 2( '/ )r z r r    and 

[ ] /r z r z zr r r r       , one can obtain  

  2
0 1 1 12 ,

r

za
r C r r dr     (3.1) 

where 0C  is a constant to be determined. Due to the folding configuration 

( r c   when r a ), from equation (3.1) we have 2
0C c . The other 

constraint ( r b   when r b ) imposed by the radial folding leads to the 

normalization condition  

  
2 2

1 1 1 2

b

za

b c
r r dr 

   (3.2) 

Here, we introduce the generating function  g r , which is proportional to 

( )z r , i.e. 0( ) ( )z r d g r  , where 0d  is an arbitrary constant. Substituting 
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0( ) ( )z r d g r   into equation (3.2), we can obtain  

 
 

2 2

0

1 1 12
b

a

b c
d

r g r dr


 


 (3.3) 

Thus ( )z r  can expressed as  

      
 

2 2

1 1 1

.
2

z b

a

b c g r
r

r g r dr






 (3.4) 

From the aforementioned identity 2( '/ )r z r r    and equation (3.4),  r r  

can be determined  

  
 

 

2
1 1 1

2

2
.

r

za
r

z

c r r dr
r

r r







 

 (3.5) 

The unknown coordinate transformation for the corresponding complementary 

media can, therefore, be written as  

  2
1 1 12

r

za
r c r r dr     (3.6)  

To validate this method, we select a specific generating function 

  ng r r  ( 0, 1, 2,...n    ) as the representative demonstration. Then  z r  

can be derived as  

 

 
  

 

   

2 2

2 2

2 2

2

2
when  2,

2

when  2
2 ln /

n

z n n

z

n b c r
r n

b a

b c
r n

r b a





 

 
  




   

 (3.7) 

The corresponding coordinate transformation can be expressed as  
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  

   
 

2 2 2 2

2
2 2

2 2

2

when  2,

ln /
when  2.

ln /

n n

n n

b c r a
r c n

b a

b c r a
r c n

b a

 

 

 
    




    

 (3.8)  

 

 
Fig.  3.1. Snapshots of the total electric fields for the reversely designed superscattering 

magnifier; (a) bare circular PEC with radiuse c, (b) 2n   , (c) 10n   , (d) 10n  . And also 

0.1a  m, 2b a , and 3c a . 

The magnifiers designed via the proposed reverse method with the 

generating functions corresponding to different values of n ,   21/g r r  (i.e. 

2n   ),   101/g r r  (i.e. 10n   ), and   10g r r  (i.e. 10n  ), are shown 

in Figs. 3.1(b-d), respectively. It is seen that the electric fields outside the 

black dashed circular lines ( r c ) for these three types are equivalent to that 

of the bare Perfect Electric Conductor (PEC). In other words, the scattering 

pattern of a small circular PEC ( r a ) covered by the designed 
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complementary media is the same as that of the bigger one ( r c ). 

Fig. 3.1(d) reveals that in comparison to the other two cases, the 

generating function with 10n  gives the smallest scattering intensity inside 

the complementary medium and the area of white flecks is also minimal and 

confined just near the outer boundary ( r b ). It can be explained that the 

implied spatial transformation corresponding to the case of the generating 

function 10n   folds and compresses more virtual space into the area near the 

outer boundary in physical space, which can verified by plotting equation (3.8) 

for the different values of n  (see Fig. 3.2). 

 
Fig.  3.2. Comparison between the transformation functions for three values of n. It is seen that 

the ( 10n  ) case is more uniform and hence compresses more virtual space near the out 

boundary compared to two other cases. 

This reverse recipe can thus be a powerful tool to design isotropic and 

nonsingular magnifiers with retro-reflecting and imaging features by use of 

graded negative refractive index. From the condition 1/ r  , the isotropy 

imposes that 1r    in equation (3.5). By taking the derivative of 
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2 2
1 1 1( ) 2 ( )

r

z za
r r c r r dr      with respect to r , one thus has  g r T  (T  is 

a constant) or    2 ' 4 0r g r rg r  , respectively. In the case of  g r T  

corresponding to 1r   , the isotropy (under one polarization) implies 

2 2
0 /Td c a . However, the aforementioned normalization condition 

    2 2
0 1 1 12

b

a
d b c r g r dr    leads to    2 2 2 2

0Td b c b a   , which is 

contradictory. Hence,  g r T  is not possible for isotropic designs. In the 

case of    2 ' 4 0r g r rg r   corresponding to 1r   , the generating 

function becomes   41/g r r . After solving for the normalization, it is found 

that only when 2 /c b a , one can obtain isotropic complementary medium 

1r      and 4 4( ) /z r b r   . Therefore, an isotropic negative index 

magnifier can be realized for one polarization, e.g. 1    and 4 4/b r    for 

TM incidence and also 4 4/b r    and 1    for TE incidence. It is obvious 

that these isotropic profiles are nonsingular.  

To emulate how such an isotropic design behaves in practice, we took 

advantage of our developed method to carry out a ray tracing (photorealistic) 

process. Photorealistic ray tracing can also help foresee how a specific 

imperfection in media affects the device performance, though we only use it to 

visualize ideal performance in this chapter. Fig. 3.3(a) indicates that upper and 

lower rays intersect each other twice in the vicinity of the outer boundary 

( r b ) owing to the negative refractive index of the isotropic shell. Fig. 3.3(b) 

demonstrates the imaging properties in which only the images before and after 

paraxial rays intersections are shown. It reveals that the image inside the 
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isotropic shell (A”B”C”D”) is flipped. But the image outside the shell 

(A’B’C’D’) is preserved, which is in contrast to the Eaton lens, flipping the 

image upside down and is a positive point for our design. 

 

Fig.  3.3. Ray tracing of the isotropic negative index shell whose parameters are 4 4/b r    

and  1   , 0.2a  m, 2b a and 2 /c b a . (a) ray trajectories of light before hitting the 

PEC (red and blue) , after being reflected by the PEC (orange and green); red and orange lines 

correspond to rays in the upper half-space; blue and green lines for the lower half-space. (b) 

the images inside and outside the isotropic shell. 

In Fig. 3.4(a), a bare PEC rod of radius r b is placed inside a 

waveguide, so the wave is partially transmitted via the openings between the 

rod and the waveguide walls, as shown in Fig. 3.4(c). However, in Fig. 3.4(b), 

when a smaller PEC rod of radius r a  coated by the designed isotropic shell 

( a r b  ) effectively behaves like a magnified PEC rod of radius 2 /r b a . 

Therefore, even though the coated structure in Fig. 3.4(b) has its outmost 

radius physically identical to that in Fig. 3.4(a), it blocks whole the waveguide 

and the transmitted power through the waveguide drops down dramatically 

(the waveguide width is assumed to be 22b a ). This is verified from the field 

distribution in Fig. 3.4(b) and the transmission spectra in Fig. 3.4(c). 
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Fig.  3.4. The transmission of the electromagnetic waves through a waveguide partially 

blocked by a bare rod of radius r b and by a PEC rod of radius r a coated with the 

isotropic shell ( a r b  ). The width of the waveguide is 0.08 m, the simulation frequency is 

8 GHz, and the incident wave is TE polarized. (a) a snapshot of the magnetic field for a 

cylindrical bare PEC (r=b=0.02 m) in the waveguide, (b) a snapshot of the magnetic field for 

a cylindrical bare PEC (r=a=0.01 m) coated with an isotropic magnifying shell (outer radius 

b=0.02 m, refractive index 2 2/n b r  ), (c) transmission spectra for cases (a) and (b). 

3.3 Three Dimensional Superscattere Design 

The proposed reverse design method for the two dimensional 

superscatterer can be applied to the three dimensional case, as well. Suppose 

region a  in Fig. 3.5(a) is occupied by a PEC and is required to scatter the 

incident light in the same way as a bigger bare PEC structure represented by 

c  does. In order to achieve this goal, region a  should be covered by another 

region b . This shrinkage of one domain into another one can be described in 

an orthogonal coordinate system via an unknown transformation function 

 i ix U x   for 1, 2,3i  . According to the theory of transformation of optics, 
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the constitutive parameters in region b  can be expressed as [60],  

    1 2 3 1 2 3 2 1 3 3 1 2, , / , / , /
b b

diag diag                   (3.9) 

 

(a) 

                                    

(b) 

Fig.  3.5. (a) Shrinkage of c  space into a b  . a , b  and c  are boundaries; (b) 

Transforming a circular region r c   into an annular region r b . 

If we let one of the i  equal to an arbitrary but analytically integrable function 

 1 2 3, ,g x x x  in the region b , two algebraic equations are obtained for the 

other two i . Solving these two equations with boundary conditions  c U a  

and  b U b , the desired parameters can be found. As said before, the 

interesting point about this kind of design is that it leads to unlimited number 

of profiles which can do the job. It can also be interpreted through the above 

formulation, there is no theoretical limit on the size of regions a , b  and 

c which can be arbitrarily small or big, though their profiles might be 

mathematically complicated.  
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After the general formulation, we take the design of spherical 

superscatterer into consideration. Similar to the 2D case as shown in Fig. 

3.5(b), a spherical region ( r a ) covered by a metamaterial shell ( a r b  ) 

in physical space  r , can be transformed from a spherical region ( r c  ) in 

virtual space  r   via an unknown transformation function. The medium in 

the magnifying shell ( a r b  ) has the following relative permittivity and 

permeability  

    2, , / ,1/ ,1/  ,r t t r t r rdiag diag            (3.10) 

where / 'r dr dr   and / 't r r  . Since our shrinkage in the spherical 

coordinate system is in the radial direction, the transformation function is 

dependent only on r , i.e.  r U r  . Now, let us choose    0t r A g r  , 

where  g r  can be any arbitrary well defined function and 0A  is a constant. 

So we have  

    0

'
t

dr
r A g r

dr
     (3.11) 

Then if we solve for r , we get  

    1 0' .
r

a
r U r A A g d      (3.12) 

Satisfying the boundary conditions  ' r ar U a c    and  ' r br U b b   , 

leads respectively to 1A c  and  

 
 

0 b

a

b c
A

g d 


 


 (3.13) 

From equation (3.10), we also know that  
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    
2

'
r t

r
r r

r
     

 
 (3.14) 

Hence from equations (3.11) and (3.13), we obtain  

      
 

 
   

2
2

2
0

' 1
b

r
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r b a
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g dr b c
r c g d

r A g r b c r g rg d

 
  

 

 
             

 





 (3.15) 

Now, choosing   ng r r  as an example, we find the corresponding 

transformation function,  t r  and  r r  of the proposed spherical magnifier,  

      1 1 1 1

1 1
' ,

n n n n

n n

c b r b r a
r U r

b a

   

 

  
 


 (3.16) 

    
1 1

( 1)
,

n

t n n

n c b r
r

b a
  

 
 


 (3.17) 

  
    

   

2
1 1 1 1

1 1 21

n n n n

r n n n

c b r b r a
r

n c b b a r


   

  

  
  

  
 (3.18) 

Shown in Fig. 3.6(a) are the traces of rays impinging upon the PEC 

small sphere of radius 0.1a  m coated with the complementary medium 

2a r b a   , while the paths of the rays scattered by a single PEC sphere of 

radius 2 /c b a  are represented in Fig. 3.6(b). Comparing Fig. 3.6(a) with 

Fig. 3.6(b) reveals that the scattered rays from the coated small sphere follow 

the same traces as the rays scattered from the bigger PEC sphere. Therefore, it 

is interpreted that the scattering cross section of the small composite sphere is 

equal to that of the big PEC one. As mentioned earlier, there is no theoretical 

limit on a  and c , which means that they can be as small or big as possible, 

though the coating medium profile might be mathematically complicated. 

Note that since our structure is spherically symmetric, the corresponding 
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Hamiltonian of the TE and TM modes do not have any terms in common and 

therefore the designed structure can work for these two polarizations. 

Fig.  3.6. (a) Ray traces for a PEC sphere of radius a enclosed in a complementary medium 

with thickness of b-a (solid red lines), (b) ray traces for a bare PEC sphere of radius c (the 

solid red line). The blue and orange lines denote incident and scattered rays, respectively. 

A photorealistic demonstration of the designed spherical magnifier is 

presented in Fig. 3.7. As can be seen in this figure, a small spherical mirror of 

radius 0.1a  m with an annular coating of the outer boundary radius 2b a  

is compared with a non-coated single spherical mirror of radius 2b a  in a 

photorealistic manner. Both the spheres are actually placed in front of 

infinitesimally small virtual camera, which is circumscribed by a background 

scene of a garden pictured panoramically in Fig. 3.7(a). The distance between 

the camera and the center of the mirror in both Figs. 3.7(b) and (c) is assumed 

to be 1 m. As it is noticed from the comparison between Figs. 3.7(b) and (c), 

the non-coated mirror reflects a much wider and more compressed area of the 

reverse scene than the coated mirror, which magnifies the reverse scene and 

more details of this scene can be observed. In other words, the coated mirror 

(a) (b) 
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acts like a bigger but non-coated mirror, demonstrating the magnification of 

the scattering. This illustration indeed verifies the fact that the scattering cross 

section of the coated mirror is much larger than that of the non-coated one. 

   
Fig.  3.7. (a) Panoramic depiction of the background scene, (b) a snapshot of the coated mirror, 

(c) a snapshot of the non-coated mirror. The physical sizes of (a) and (b) are the same. The 

camera is assumed to be 2 m away from the background scene so as to achieve a balance 

between close and far parallax error. 

3.4 Conclusions 

In this chapter, we developed a reverse methodology to realize 

metamaterial magnifiers in both the cylindrical and spherical geometries. They 

can be designed and visualized by use of negative index metamaterials without 

(a) 

(b) (c) 
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knowing the required spatial deformation a priori. The numerical results 

confirm the validity of the proposed concept, and also they show the 

significance of choosing a proper generating function so as to control the field 

distribution pattern in the complementary medium. The photorealistic 

rendering of an interesting magnifying superscatterer has distinguished 

features against a conventional Eaton lens in terms of ray trajectories and 

image properties. This reverse transformation further allows us to efficiently 

optimize and simplify magnifier’s parameters by considering various 

generating functions rather than considering one specific set of parameters 

calculated from a given coordinate transformation each time. Nevertheless, 

besides the pros and cons of the developed reverse method of superscatterer 

design, the content of this chapter is a bright example of a standard ray tracing 

process and a sensible demonstration of photorealistic rendering in a practical 

situation. However, in the next chapter a more counterintuitive case of ray 

tracing applicability in graded complex device design will be studied, and it 

will be shown that a combination of inhomogeneity and anisotropy can lead to 

overlapping optical functionalities in a single device. What will come in the 

next chapter is an elaborate exploitation of the optical Hamiltonian and 

transformation optics in a graded-index anisotropic medium to solve a 

challenging problem. 
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CHAPTER 4  

Biaxial Devices with Multiple Functions 

4.1 Introduction 

It is remarkable in modern optics that there is still no general method 

of designing a gradient index device when presented with a desired optical 

behavior and the correct form of the Hamiltonian, even in the isotropic case. 

However, much can be learned from the case of spherical symmetry, where 

general design methods do exist, both for isotropic and uniaxial cases [21, 61].  

Spherically symmetric lenses are also of wide interest because of their unique 

ability to work equally well in all directions, and it stands to reason that there 

exist a number of spherically symmetric lenses that are “named” because of 

their great utility, viz. Maxwell’s fisheye [62], the Eaton lens, the Luneburg 

lens [55], the invisible sphere [21, 61], the Pendry cloak [5], and the Miñano 

lens [63], to name just a few. Spherical symmetry is also important because 

ray Hamiltonians have the same form in all orthonormal coordinate systems 

[20, 33], so results in Hamiltonian optics in this system can often be 

generalized to other coordinate systems. In this work, we explore the design of 

gradient-permittivity biaxial dielectrics in this special system, which is much 

more complicated than it may first seem: although the permittivity tensor 

contains only three diagonal elements, as seen in Chapter 2, they are not 

separable in the Hamiltonians that determine the ray trajectories—light 

traveling through a biaxial device will generally be affected by all three 

gradient index tensors, resulting in long and complicated Hamiltonians. This 
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occurs because light polarization can be continuously rotated in such a device. 

Though complex, biaxial optical instruments represent a potentially important 

way to achieve certain kinds of functionality in optics that would otherwise be 

impossible. In this work, for example, it will be shown that one can take any 

four independently-chosen spherically-symmetric lenses and combine their 

optical functions in an overlapping spherical region of space with a single 

biaxial lens, with each function assigned to a specific polarization and set of 

planes.  We define “optical function” here to include the behavior of any 

possible lens or optical instrument that can be designed with an isotropic 

permittivity. (Note that this is extremely general, since it encompasses 

anything that can be defined by a spatially-dependent refractive index profile.)  

Due to the mixing of the tensor elements, it will also be shown that four is the 

maximum number of independent isotropic lens functions that can be 

combined.  If more lens functions were desired in an overlapping region of 

space, symmetry would be broken.   

A successful attempt to combine two optical functions into a single 

device with uniaxial symmetry was previously shown in [61] and such a 

device was realized experimentally in [64].  The work of [61] was also 

general: it combined arbitrary lens functions in overlapping physical space 

(where light entering an arbitrary point of a lens may interact with the entire 

body of the lens, for all points on the lens) and it is this generality that made 

the finding significant.  In [61], through a regressive formulation on the basis 

of transformation optics, a new degree of freedom was induced into a 

dielectric uniaxial medium to make two polarizations do two different tasks 

simultaneously, while maintaining spherical symmetry.  Lenses could be 
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rotated arbitrarily without altering light trajectories at all. But unfortunately 

the integration over the physical extent of the device to determine the 

transformation function in [61] is not always convergent. Even in the 

converging cases, that method can provide only one transformation function 

for each pair of functionalities which means that method remains somewhat 

limited from an experimental point of view. 

The design method to be introduced here relaxes that constraint 

somewhat, and can be readily applied to improve existing designs in 

metamaterials.  For example, devices designed with transformation optics [5, 

21, 65] require a nonunity magnetic permeability resulting in either loss or 

sacrifice of device functionality for one polarization [4, 31, 61, 66, 67], but 

this polarization can be “recovered” with the biaxial method to take on new 

optical functions. Biaxial dielectrics could potentially be fabricated by creating 

composite materials (asymmetric air inclusions in glass, for example) that 

have practically no loss or dispersion at optical wavelengths. The field of 

dielectric device design, with no need for metals or chirality, remains rich for 

exploration. 

Another application of the biaxial method is to build upon interesting 

existing work in the area of “Janus” devices [68], where two-dimensional 

dielectric devices with two different optical functions in two different 

directions can be made. The authors of [68] employed transformation optics in 

two vertical directions independently and by invoking a quasi-conformal 

mapping technique [65], they achieved a nearly isotropic permittivity profile 

for their Janus device. However, the designed metadevice, like almost all 

transformation optics devices, was limited to only one polarization and 
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furthermore is restricted to only a few permissible optical functions. Here, we 

extend this work to three dimensions and encompass both polarizations. 

4.2 Controlling Biaxiality 

In this section, we discuss the details of how to control biaxiality in 

order to engineer the behavior of a biaxial device so that it can acquire 

different functionalities for each polarization. Due to double refraction at the 

interface of a biaxial medium, any unpolarized incident ray (wave) splits into 

two polarized rays (waves) with reference to the alignment of the electric 

field; the in-plane and out-of-plane polarizations [20]. In Chapter 2, the 

Hamiltonian in a biaxial medium was factorized into two terms which are 

individually taking care of either of the incident polarizations along a plane of 

interest and therefore, by manipulating these two terms, we would be able to 

control the performance of each polarization. Unfortunately along an arbitrary 

plane, the factorized expressions become very complicated and it seems to be 

a hard task to engineer the incident polarizations. However, along principle 

planes (i.e. one of ik  vanishes) of the biaxial medium, the factorized terms 

turn out to be simpler. Even along these planes the factorized expressions 

share some terms and in order to control the performance of the polarizations 

along the principle planes, we cannot simply play with the permittivity 

elements ad hoc, as random guessing may not lead to interesting functions for 

all polarizations. To get around this problem, we make use of transformation 

optics to basically open some space in the physical domain (the principle 

planes) for correcting the paths of the rays with the out-of-plane polarizations, 

while the opened space cannot be seen by the in-plane polarizations. Although 
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we believe this method can work in any orthogonal coordinate geometry, we 

will now use the spherical coordinate system as a specific example frame to 

depict the validity of this method. 

4.2.1 General Idea 

The main goal here is to design a dielectric graded-index sphere with a 

radially symmetric biaxial permittivity profile. This device is required to show 

different functions in its equatorial and polar planes. Due to two possible 

polarizations in each of these planes, the designed lens offers generally four 

functions in the planes of interest. This is the immediate interpretation, 

although the prospective biaxial profile of the sphere is radially symmetric and 

contains only three elements in its permittivity tensor. 

In order to obtain the desired profile, it would not be advisable to 

simply play with permittivity elements in a random or blindly numerical 

manner. By simply changing the permittivity elements, at most we can design 

the functions of in-plane polarizations in the main two planes and most likely 

the behaviors of the out-of-plane polarizations would be out of our hands 

(essentially they would be sacrificed, just as they generally would be in 

devices designed with transformation optics but implemented in dielectrics). 

To find a way out of this problem, we use transformation optics to open some 

space in the physical domain for correcting the paths of the rays with out-of-

plane polarizations, while the opened space cannot be seen by the in-plane 

polarized rays.  Therefore, we can still use transformation optics, but correct 

the paths of the otherwise sacrificed rays with out-of-plane polarizations. 
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Fig.  4.1. (a) Illustration of equatorial and polar planes in a sphere (the solid circle is the 

equatorial plane and the dashed circles are polar planes); (b) alignments of basis vectors along 

equatorial and polar planes. 

Before going further, we prefer to mention what we mean by equatorial 

and polar planes. If we assume north and south poles for a sphere in a 

coordinate system like ˆ ˆ ˆ{ , , }re e e  , the large circular plane which divides the 

sphere into northern and southern hemispheres is called the equatorial plane. 

All the longitudinal great circles which are perpendicular to the equatorial 

circle and crossing both poles are called polar planes. These two types of 

planes are shown in Fig. 4.1(a). It should be noted that in any sphere, we have 

a unique equatorial plane and an infinite number of polar planes and our 

designed device is supposed to represent two specific functions along the 

equatorial plane and two other functions along all the polar planes. According 

to Fig. 4.1(b), the normal vector to the equatorial plane at the boundary of the 

sphere is in the direction of ê , while along each of the polar planes the 

(a) (b) 
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normal vector is parallel to ê . If we break the incident fields into in-plane and 

out-of-plane polarizations, then despite its general complicated form, the 

Hamiltonian of a dielectric biaxial medium with the permittivity tensor 

 2 2 2, ,r rdiag n n n           in a spherical geometry along the 

equatorial and polar planes can be simplified as  

     2 2 2 2 2 2 2 2 ,equatorial r r rk k n k n k n n        H  (4.1) 

     2 2 2 2 2 2 2 2 ,polar r r rk k n k n k n n        H  (4.2) 

where ˆ ˆ ˆr rk e k e k e k     


 is the wave vector in the spherical coordinate 

system. It should be noted that we assume the designed spherical lens is 

radially symmetric, i.e.  i in n r  for , ,i r   , and also has a radius equal to 

one. Nonetheless the radius of the lens can have any value and we are able to 

rescale all the diagrams and equations represented in this paper. As noted 

earlier, we cannot trivially assign functions to the permittivity components, for 

according to equations (4.1) and (4.2) they are playing a coupled role in 

formation of the Hamiltonians governing each ray. In order to achieve the 

proposed device through this method, we have to overcome several 

restrictions as will be explained in the subsequent sections. 

4.2.2 Design for the In-plane Polarization 

It is well-known that with the use of transformation optics, one can 

open space inside a medium to cloak an object [5, 21]. Here, we can open a 

hole with radius a  at the center of our device to have some space to correct 

the ray trajectories for the out-of-plane polarizations. Now suppose for the in-

plane polarizations, we would like the spherical device to offer function “A” 
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for equatorial rays and function “B” for polar rays. And also suppose that 

these two functions can be individually implemented via isotropic and radially 

symmetric index profiles. Let us take the isotropic profiles of functions A and 

B as  en r  and  pn r , respectively, where these two profiles are impedance 

matched with the vacuum at the boundary, i.e.    1 1 1e pn r n r    . Then 

we consider  en r  and  pn r  as virtual indices and we apply transformation 

optics to them. If we employ transformation functions  r rr r R   and 

 r rr r R  , where 0 1rr    and 0 1rr    refer to the virtual space along 

equatorial and polar planes and 1a R   denotes the physical space, then 

after performing some sort of normalization similar to that shown in [61], we 

obtain the following equations for the transformed permittivity components, 

 
2 22 2

2 2 2 2 2 2 2, , ,r rr r
r e p p e

r drr dr
diag n n n n n n n

R R dR dR
  

 
                   

        
 (4.3) 

where en  and pn  should be expressed in terms of R , i.e.   e e rn n r R  and 

  p p rn n r R . Additionally, according to the basic theory of transformation 

optics, we should have    1 1 1r R r Rr R r R     and 

   1 1 1r R r Rdr dR dr dR    . We also let  1,1,1   in the physical 

space. 

It is important to note that in equation (4.3) we have used the 

transformation  rr R  in the equatorial plane and  rr R  in the polar plane of 

the virtual medium to find  n R  and  n R , respectively. However, through 

this trick we would normally obtain two expressions for  rn R , which is 
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physically impossible. Thus we have to choose proper expressions for  rr R  

and  rr R  so that the two expressions for  rn R  become equal to one 

another. Or simply from the first equality in equation (4.3), we should have 

 .e r p rn r n r   (4.4) 

If we take derivatives from both sides of equation (4.4), we obtain 

 .pr re r r
e p

r r

dndr drdn dr dr
n n

dR dr dR dR dr dR
   

 

    (4.5) 

At the boundary of the lens 1R  , we have then 

 
   

1 1 ,pe
r r

dn rdn r

dr dr   (4.6) 

where we have omitted the subscripts. Equation (4.6) actually inserts a 

restriction on the choice of en  and pn . Not any pair of well-known profiles 

like the Eaton lens, Maxwell fish-eye, and invisible sphere, etc. [21] may 

satisfy this condition. Here in order to overcome this obstacle, we break each 

of  en r  and  pn r  profiles into inner and outer layers, 

  
 
 

1 1

2 1

1
( , ) ,

0

i

i

i

n r r r
n r i e p

n r r r

  
 

 (4.7) 

where we can assign any value between 0 and 1 to 1r . However, for ease in 

later calculations, we prefer 1r  to be bigger than a , i.e. 10 1a r   . Then we 

have to design the respective profiles of these two layers so that they become 

continuous at 1r r  and also all the incoming rays spiral into the inner layer as 

shown in Fig. 4.2. 

In order to make all the rays spiral into the inner layer, we just need to 
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assign a function, which is equal to one at 1r   and bigger than 1 r  in the 

range 1 1r r   [61]. However, the assigned function should be the same for 

en  and pn  as we want to satisfy (4.6). As a consequence, an infinite number of 

functions can do the job for  1in r . One among these functions is 

  1 4 3

3 1
.

4 4in r
r

   (4.8) 

This specific function is shown in Fig. 4.3. It is seen that this function is equal 

to one at 1r   and also bigger than 1 r  in the range 0 1r   without 

considering what the value of 1r  might be. 

 

Fig.  4.2. The two layered profiles of  en r  and  pn r . As can be seen, all the incoming rays 

should spiral into the inner layer. 

 

Fig.  4.3. Diagrams of  1in r  and 1 r . 
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In order to design the index profile within the inner layer, we follow 

the implicit integration explained in [21, 69]. We identify the impact 

parameter b  of every spiraling ray at the boundary of the inner layer. 

According to the formation of ray trajectories corresponding to functions A or 

B, we would be able to determine the turning angle  b  toward the origin as 

a function of the impact parameter. Then we can calculate the profile index 

inside the inner region by solving the following integral equation for  2in r , 

 
 1

1

2

2 2 2
1 1

1
ln ,

r
i

r
outer

b dbn

n r b r


 

 
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 
  (4.9) 

where 2i outerrn Bn   and  
11outer i r rn n r  . 

Then with the use of transformation optics, we open a hole at the 

center of the device which is not seen by the in-plane polarized rays along 

both the equatorial and polar planes. But this opened hole is sensed by the out-

of-plane polarized rays. So we can use this space effectively to engineer the 

trajectories of rays with the out-of-plane polarizations without disturbing the 

performance of the in-plane polarized rays. To do so, we should let all the out-

of-plane polarized rays enter the central opened hole. As interpreted from 

equation (4.1) and (4.2), out-of-plane polarized rays in the equatorial plane 

(polar planes) act as if they were in an isotropic medium with a refractive 

index of n  ( n ). In order to make the out-of-plane polarized rays spiral into 

the central space, similar to before we should have 

     1
, 1.n R n R for a R

R      (4.10) 

As said earlier, we prefer to apply the transformation function over the inner 
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layers of the virtual space (i.e. a  to be smaller than 1r ), so that the 

transformation functions will not affect the outer layers and hence the physical 

and virtual spaces overlap in the range 1 1r R  . Consequently, the inequality 

in equation (4.10) should be slightly modified as 

     1

1
, .n R n R for a R r

R      (4.11) 

In addition, we also remember that in order to have a single expression 

for  rn R  at the end, equation (4.4) should be fulfilled. Therefore, enough 

care should be taken to choose appropriate transformation functions, rr   and 

rr  , such that both equations (4.4) and (4.11) would be satisfied. The 

transformation functions should basically have the following properties, 
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 (4.12) 

4.2.3 Design for the Out-of-plane Polarization 

Referring to the Hamiltonian of the biaxial medium, the out-of-plane 

polarized rays in equatorial and polar planes behave as if they were in 

isotropic media with refractive indices n  and n , respectively. In this part of 

the design we require both  n R  and  n R  to have values bigger than 1/ R  

over all the range 1a R r  . Additionally, we know that in the range 

1 1r R   along both of the two planes  n R  and  n R  are equal to  1in R , 

for the virtual and physical spaces are the same there. Hence, all the rays with 

the out-of-plane polarizations along these two planes spiral into the region 
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R a . Since this region is invisible to the in-plane polarized rays, we can use 

it to independently engineer the out-of-plane polarized ray trajectories. To do 

so, we resort to the integral equation (4.9) again. But for this time, we have in 

the equatorial plane  outer R an n R   and in the polar planes 

 outer R an n R  . Then considering two other arbitrary functions like “C” and 

“D” for the out-of-plane rays along equatorial and polar planes, we can 

calculate the turning angles  b and solve the related integral equations for 

 n R  and  n R  in the region R a . 

4.2.4 A Specific Example 

Now let us assume that function A (corresponding to en ) to be a 90 

degree deflector of rays and function B (corresponding to pn ) to be a 180 

degree deflector of rays (equivalent to the performance of an Eaton lens). Let 

us note at this point that these lenses have singularities in their index profiles 

in the isotropic case, but these singularities are unrelated to the discussion that 

follows.  (They are simply a feature of the lens index profile, and other lenses 

could also have been chosen instead.  We choose them as convenient 

examples only since their optical functions are simple to understand.)  For 

these two specific functions, we have calculated the refractive index 

distributions in the inner layers and the respective graphs for  2en r  and 

 2pn r  are given in Fig. 4.4, where we have taken 1 0.85r  . 

As said before, both  en r  and  pn r  have two parts which are 

continuous at the boundary of inner and outer layers. The inner parts are 
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 2en r  and  2pn r , which are touching each other at 1r r . The outer parts 

are set equal to  1in r , which is bigger than 1 r  to make the rays spiral from 

the outer layers into the inner layers. At 1r  , we have 1e pn n   and 

e pdn dr dn dr , which shows that the restriction of (4.6) is satisfied. The ray 

trajectories for these refractive index distributions are depicted in Fig. 4.5. 

 
Fig.  4.4. Refractive index distribution for functions in the outer and inner regions of the lens 

along equatorial (Function A) and polar planes (Function B) in the virtual medium. 

(a) 

 

(b) 

 

Fig.  4.5. Ray trajectories in virtual space; (a) 90 degree bending (function A) along the 

equatorial plane corresponding to  en r , (b) 180 degree bending (function B) along polar 

planes corresponding to  pn r . 

So far we have found two proper index profiles, which are satisfying 
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equation (4.6), along equatorial and polar planes in the virtual space. Now we 

are prepared to apply convenient transformation functions on these two 

profiles to obtain the permittivity elements according to equation (4.3) in the 

physical space. Writing the transformation functions  rr R  and  rr R  in a 

linear or nonlinear series of some basic mathematical functions and finding the 

corresponding coefficients with simple but tedious numerical techniques, we 

would be able to approach the proper transformation functions which can do 

the job. The transformation functions, which we have found for the case 

0.34a  , are shown in Fig. 4.6. It is seen that the obtained transformation 

functions are satisfying all the conditions described in equation (4.12). 

Without loss of generality, we added one more restriction on the 

transformation functions when we were calculating them and the reason will 

be clear soon. In fact we let first few derivatives of both transformation 

functions at r a  be zero. In calculating the transformation functions we 

actually searched for mathematically well-defined (continuous and integrable) 

functions which fulfill equation (4.4) firstly. Secondly we looked at the 

resulting profiles for  n R  and  n R  to see how well they satisfy the 

inequality expressed in (4.11). The profile indices (or equivalently the 

permittivity tensor elements)  rn R ,  n R  and  n R  according to the 

calculated transformation functions are depicted in Figs. 4.7(a)  and (b). The 

performance of the designed profiles for the in-plane polarizations along 

equatorial and polar planes are also provided in Figs. 4.7(c) and (d), 

respectively. 
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Fig.  4.6. The proper transformation functions which are obtained through a basic numerical 

manipulation for 0.34a   and 1 0.85r  . The dotted line r R  shows that the transformation 

functions are eventually tangent to this line. 

According to Fig. 4.7, the in-plane polarized rays in the polar planes 

bend 180 degrees around a central cloaked space and exit in a reverse 

direction with respect to the incoming rays. The trajectories of rays with an in-

plane polarization in the equatorial plane are turning by 90 degrees around the 

same circumscribed space. 

It is shown in Fig. 4.7(a) that with the help of the transformation 

functions depicted in Fig. 4.6, we can find a unique profile for  rn R . 

Through Fig. 4.7(b), it is seen that both  n R  and  n R  are zero at R a , 

which is expected due to the vanishing first few derivatives of the 

transformation functions. Moreover, according to Fig. 4.7(b) these two 

profiles are not bigger than 1/ R  (highlighted with the dot-dashed line) in the 

range a R a  , where 0.51a  . Unfortunately this is against what is 

required in (4.11), although  n R  and  n R  are satisfying this requirement 

over 1a R r   . Here is the place to explain why we chose the first few 
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derivatives of the transformation functions to be zero. Due to the quasi-

maximally flat nature of  

(a) (b) 

(c) 

 

(d) 

 

Fig.  4.7. (a,b) Profile indices in the range 1a R r   for the desired biaxial device, (c) The 

performance of the device for the in-plane polarization along a polar plane, (d) The 

performance of the device for the in-plane polarization along the equatorial plane.   

the transformation functions around R a  (Fig. 4.6), the radial index  rn R  

has very small values within a R a   range and it causes this region to work 

like some sort of null space and therefore, as is clear from Figs. 4.7(c) and (d), 

practically all the rays accumulate somewhere outside this region. So if we 

expand the size of the inner cloaked space from R a  to R a  (as shown in 

we can have  n R  and  n R  Fig. 4.7(c) and Fig. 4.7(d) by flashes), 
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fulfilling (4.11), as well as not deteriorating the performance of the device for 

in-plane polarizations. However, the invoked extension may lead to sacrificing 

rays with extremely low impact parameters, albeit these kinds of rays are 

usually discarded in graded-index optical devices anyway (and the percentage 

of affected rays can be designed to be made arbitrarily small). 

Having completed the design for in-plane polarized rays, we are now 

prepared to design the profile indices in the region 0 R a   to make our 

example device work for the out-of-plane polarizations. For this example, we 

have chosen function C to be a 360 degree deflector of incoming rays, which 

is similar to the performance of the invisible sphere explained in [21, 61]. We 

also can assign function D to be a 135 degree deflector of rays. Thanks to our 

extension of the cloaked area, both  n R  and  n R  have values bigger than 

1/ R  all over the range 1a R   . In order to find the profile indices in the 

region 0 R a   for the considered functions (C and D), we should use the 

integral equation (4.9). It should be noted that in computing the profile 

indices, we should let  outer R an n R   in the equatorial plane and 

 outer R an n R   in the polar planes. The calculated profiles for  n R  and 

 n R  over the range 0 R a   for these two functions are shown in Figs. 

4.8(a) and (b), and also the corresponding ray trajectories are shown in Figs. 

4.8(c) and (d). It is seen that all the incoming rays funnel into the innermost 

layer and get deflected by 360 and 135 degrees along equatorial and polar 

planes, respectively. After designing for the out-of-plane polarizations, in 

aggregate now we have four different functions along equatorial and polar 

planes (see Fig. 4.9) and in fact we have a three dimensional four-faced Janus 
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device! 

 
 

Fig.  4.8. (a,b) The obtained profile indices in the range of 0 R a   for the desired biaxial 

device, (c) The performance of the device for out-of-plane polarized rays along a polar plane, 

(d) The performance of the device for out-of-plane polarized rays along the equatorial plane. 

However, the presented four-faced Janus device is sensitive to 

polarization. If we would like to obtain a two-faced Janus device for 

unpolarized light, we just need to equate the in-plane and the out-of-plane 

polarization functionalities along each of the equatorial and polar planes. 

Shown in Fig. 4.10(c) is the performance of a Janus device along the 

equatorial plane, where the incoming rays split into two polarizations, travel 

along the plane, recombine again and go out with 360 degrees deflection. 

Through Fig. 4.10(d), it is also seen that along polar planes at 1R r , an 

unpolarized ray splits into the in-plane and the out-of-plane polarized rays. 

After traveling along two different paths, these two rays recombine at 1R r  

(b) (a) 

(c) (d) 
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again. It should be noted that as the profiles of the device are radially 

symmetric, the in-plane and the out-of-plane polarized rays are confined to the 

equatorial and polar planes and after traveling through the device they merge 

at 1R r  [21]. The obtained profile indices for this Janus device are given in 

Fig. 4.10(a) and Fig. 4.10(b). 

 

(a) (b) 

 
 

Fig.  4.9. (a,b) Index profiles for rn , n  and n . The middle and the inner layer radii are 0.85 

and 0.51, respectively. The profile rn  within the inner layer is undefined, as it has no role in 

the shown functionalities. (c) The performance of the device for the in-plane polarization 

along polar (red rays) and equatorial (blue rays) planes. (d) The performance of the device for 

the out-of-plane polarization along polar (red rays) and equatorial (blue rays) planes. 

(c) (d) 
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 (a) (b) 

(c) 

 

(d) 

 

Fig.  4.10. (a,b) The profile indices rn , n  and n  for the Janus device. In this design, the 

middle and the inner layer radii are 0.85 and 0.45, respectively. (c) The ray trajectories for in-

plane (brown rays) and out-of plane polarizations (black rays) along the equatorial plane. (d) 

The ray trajectories for in-plane (brown rays) and out-of plane polarizations (black rays) along 

polar planes. 

4.3 Conclusions 

In conclusion, on the basis of the factorization of the biaxial 

Hamiltonian, shown in Chapter 2, and with the use of transformation optics, 

we proposed a method to design a radially symmetric biaxial dielectric device 

which offers four different functionalities along equatorial and polar planes. It 

turns out that for arbitrary functionalities, this is the best that can be done in a 

biaxial dielectric medium. (We state this without proof, but it can be seen 
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readily – if any other plane were to have a different functionality, it would 

depend on those already designed because of orthogonality of the coordinate 

system.) Finally, based on the developed method, we designed a Janus device 

which represents two different functions for unpolarized light along equatorial 

and polar planes, respectively. As mentioned previously, the developed 

method of making use of biaxiality in dielectrics is a complex recipe which 

incorporates optical Hamiltonian and transformation optics beautifully to 

shape the formation of optical rays in anisotropic media and to create multi-

function optical devices. 

As said in Chapter 1, an optical ray is the direction of energy current 

density (or Poynting vector) in a medium and in the ray tracing machinery we 

actually calculate or control the direction through which optical energy flows. 

But one also may ask about the direction of the momentum flow in the 

medium. As is known from electrodynamics theory, an optical ray carries 

momentum and therefore a mechanical interaction will take place as the 

optical ray travels through a medium. As a matter of fact, one should be able 

to calculate such an interaction in the domain of geometrical optics and to 

trace the optical force distribution along a ray within a medium. It would be an 

astonishing complement to the described method in this chapter, if similar 

techniques can be developed to analyze and to engineer the mechanical 

interaction of light with optical devices. In Chapter 5, we will 

comprehensively investigate the optical force calculation from the geometrical 

optics perspective and briefly sketch the guidelines toward the ultimate goal of 

bringing optical force in complex media under control. 
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CHAPTER 5 Force Tracing 

5.1 Introduction 

Photon wave-particle duality, which states that photons, the quanta of 

light, exhibit both wave-like and particle-like characteristics, is responsible for 

almost all the subtleties attached to the behavior of light. Reflection, refraction 

and interference of light are all a consequence of wave-like behavior to some 

extent, while black-body radiation, the photoelectric effect and the Compton 

effect are related to the particle-like nature of photons. Distinguishing these 

two characteristics is crucial in gaining an intuitive understanding of the 

physics of light, but sometimes it can be baffling when these two views of the 

nature of light lead to contradictory conclusions in some circumstances. One 

such puzzling case is the long-lasting Abraham-Minkowski controversy which 

is related to the momentum of photons in matter and the distribution of optical 

force (or stress) and torque within a medium. 

From the early days of electromagnetic wave theory, the pressure 

exerted by light onto a body was of great interest. In 1891, Maxwell, using his 

celebrated equations, was able to calculate the momentum density of light in 

free space and predicted that “[concentrated] rays falling on a thin metallic 

disc, delicately suspended in a vacuum, might perhaps produce an observable 

mechanical effect” [70]. At the same time, using the second law of 

thermodynamics, Bartoli reached a similar conclusion [71]. Not long after 

that, the idea proposed by Maxwell and Bartoli was experimentally validated 

by Lebedev [72] and later confirmed by experiments carried out by Nichols 

and Hull [73, 74]. In 1908 Minkowski derived the momentum density of light 
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in dielectrics analytically, reaching a conclusion that a photon inside a medium 

of refractive index n  carries a momentum equal to np , where p  is the 

momentum of the photon in vacuum [75, 76]. Conversely, Abraham 

formulated electromagnetic momentum conservation in a different way which 

resulted in a conclusion of p n  for the momentum of the photon within a 

medium [77, 78]. This was the start of a controversy which lasted for a 

century; during this long period of time, there have been many efforts made by 

theoretical [79-91] and experimental [92-94] researchers to advocate either of 

the proposed formulations or to propose new expressions for the momentum 

of light in media. The literature concerning this controversy is vast, making it 

difficult to comprehensively review the various proposed solutions of the past, 

although we can refer the interested reader to several review papers which 

seem reasonably comprehensive [95-100]. Finally, it was Barnett who 

published a paper in 2010 [101] in which he showed how the Abraham-

Minkowski puzzle can be settled. We will review his resolution very briefly in 

the next section, because it is crucial that this be clear before we proceed to 

calculate force distributions with a ray optics approach. 

Leaving the controversy just mentioned aside for a moment, it must be 

mentioned that there exists a very rich field of research related to optical 

forces in different structures and devices. Optical tweezers [102], particle 

trapping by light [103, 104], tractor beams [105-109] and optical lift [110] are 

examples of very interesting applications of radiation pressure. In most 

analyses related to light pressure and optical torque, such as in analyses of 

these applications, researchers typically solve an electrodynamic problem 
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from a full-wave perspective and then use this as a starting point from which 

they can control mechanical interactions between light and media. Solving a 

full-wave scattering problem for complex media can be enormously 

cumbersome and time intensive computation. But because we know that 

geometrical optics is a strong tool that can be used in many different situations 

(provided the problem under consideration meets the necessary criteria of the 

geometrical optics domain), we propose its use to solve the problems of 

optical force density in graded media. In subsequent sections, we will present 

a general method to calculate the distribution of the bulk and surface force 

density within a medium on the basis of ray-tracing techniques; we call this 

force-tracing. This technique is useful for several reasons.  Firstly, working 

with rays is neater and more illustrative than full-wave descriptions. Secondly, 

in the geometrical optics limit, we need only to solve Hamilton’s equations to 

calculate ray equations and consequently the force felt by each point of the 

medium under investigation. These equations are much easier to handle than a 

wave-based field description of the propagating and/or scattered fields which 

requires constructing the energy-momentum density tensor and integrating it 

over the domain of interest. Thirdly, similar to what was introduced in 

references [21, 111], in the geometrical optics domain various tomographic 

methods can be applied to reconstruct proper electromagnetic profiles to 

potentially engineer mechanical interactions. As a matter of fact, the force-

tracing method could potentially yield a method of forcing an optical force 

distribution within a medium to be aligned with our interests; in other words, it 

may lead to a sort of “transformation optics” for forces.  Such a design 

methodology is likely possible only in the ray optics limit, because the wave-
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optics process of constructing the energy-momentum density tensor and 

integrating it creates a problem much less amenable to inversion.   

In the next sections, we first introduce the concept of bulk and surface 

optical force densities and briefly explain the Abraham-Minkowski 

controversy. Then we reach the main part of the work where a general 

formulation of force-tracing in isotropic and anisotropic media is presented 

followed by a few worked examples. 

5.2 Momentum of Photon in Media and Optical Force 

Let us consider Maxwell’s equation, 

 
, 0,

, ,

D B

B D
E H j

t t

    

 
     

 

   
       (5.1) 

where  and j


 are free charges and currents, respectively. If we consider the 

Lorentz force density exerted on free sources as sf E j B  
  

 and replace 

  and j


 by D
 

 and H D t  
  

 respectively, then after some vector 

algebraic simplification [22, 112-114], we obtain 

 0,M
M

g
T f

t


   



  
 (5.2) 

where Mg D B 
 

 is the momentum density, 

    1 2 1MT D E B H DE BH     
        

 is the stress tensor (momentum 

current density) and 1


 is the unit dyadic. In equation (5.2), b sf f f 
  

 is the 

Lorentz force density acting on both the free and bound sources and bf


 , 

which is the force density applied to the bound sources, can be written [112, 
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113]  

    0 0 ,b

P M
f P E B M H D

t t
  

        
 

         
 (5.3) 

where P


 is the polarization vector, M


 is the magnetization vector, 

bound
e P   

 
 is the bound electric charge density, 0

bound
m M    

 
 is the 

bound magnetic charge density, bound
ej P t  


 is the bound electric current 

density and 0
bound
mj M t   


 is the bound magnetic current density. 

Equation (5.2) is actually a demonstration of conservation of momentum in 

electrodynamics that was first derived by Minkowski. If in a dielectric with 

refractive index n  we write the electromagnetic energy density u  in terms of 

photons as u q V  , where q  is the average number of photons with 

angular frequency   in a volume V , and relate it to the electric field 

intensity, we can immediately obtain the momentum of a single photon in the 

dielectric medium as np  where p c   and c  is the velocity of light in 

vacuum. 

However, in general the stress tensor (or the energy-momentum tensor) 

in Minkowski’s formulation is not symmetric and it seems to be in 

contradiction with the conservation of angular momentum. This concern made 

Abraham introduce a different stress tensor and hence a different momentum 

density in the momentum conservation equation,  

 1 0,A
A

g
T f f

t


   



   
 (5.4) 

where 2
Ag E H c 

 
 is the Abraham momentum density, 

     1 2 1 1 2AT D E B H ED DE HB BH       
            

 is the Abraham stress 
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tensor and 1f


 is called the Abraham force density. In fact, 1f


 is the price to 

pay for having symmetry in the stress tensor in Abraham’s formulation and is 

exactly what is required to make both formulations equivalent to each other; 

i.e.    1 M A M Af g t g t T T        
     

. Like the previous case, if we 

express the energy density in terms of photons and use Ag


 for the momentum 

density, we find the momentum of photon in the dielectric medium as p n . 

Now we are left with a situation where two seemingly equivalent 

formulations give two different values for the momentum of a photon within a 

dielectric; this is the place where the Abraham-Minkowski dilemma appears. 

From a theoretical point of view, both formulations are accurate in some sense 

and are grounded in Maxwell’s equations. From an experimental point of 

view, unfortunately the momentum of a photon in a medium cannot be 

measured directly and it must be interpreted through measurement of other 

entities. In experiments reported, the momenta measured were affected by the 

interpretation used, which again can make both interpretations seem correct 

[97, 115]. Barnett [101, 115] solved this dilemma by recalling the fact that two 

types of momenta can be attributed to photons; kinetic momentum as the 

product of the photon associated mass and its velocity (owing to particle 

nature of photons), and canonical momentum as Planck’s constant divided by 

the photon de Broglie wavelength (owing to the wave nature of photons). The 

total momentum within a medium then is either the summation of the kinetic 

momentum of a photon and the kinetic momentum assigned to the matter or 

the summation of the canonical momentum of the photon and the canonical 

momentum assigned to the matter. According to Barnett, we have  
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 ,medium medium
canonical M kinetic Ap dV g p dV g   
   

 (5.5) 

where clearly Abraham’s momentum is identified as the kinetic momentum of 

light and Minkowski’s momentum is identified as the canonical momentum of 

light. In fact, all historical experiments seeming to favor either the Abraham or 

Minkowski momenta were missing a comprehensive inference of the photon-

matter interaction within the medium under observation; this can be traced to 

equation (5.5). 

Lastly, from a macroscopic point of view, any formulation, e.g. the 

formulation given by Abraham or Einstein-Laub, for conservation of 

momentum derived directly from Maxwell’s equations is equivalent to the 

Minkowski’s formulation provided it yields a correct force density (like 1f


 in 

Abraham’s formulation) exerted within or on a medium. This general 

equivalence was proven in [97] and its references. 

5.3 Force-tracing 

As said earlier, the total Lorentz force felt by a medium is the 

summation of the force acting on free sources ( sf


) and the force acting on 

bound sources ( bf


). In the absence of free sources within a medium sf


 

vanishes and bf


 is the force that affects the medium. In a linear non-dispersive 

medium we have the constitutive equations  

 0 0 0

0 0 0 0

,e

m

D E P E E

B H M H H

   

    

     


    

    
      (5.6) 

where e


 and m


 are the electric and magnetic susceptibility tensors, 

respectively. Using the above constitutive equations in (5.3), we have  
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 

   

   

      

 
       

 


        



   


               

         

       


  

     

 (5.7) 

If we take the electromagnetic fields as time harmonic fields, then in a linear 

non-dispersive medium the time-average of the last term in (5.7) becomes zero. 

Hence the time-averaged bulk force density within the source-free medium 

would be  

     0 0 0 0

1
Re

2
f P E M H i P H i M E                
          

 (5.8) 

where   stands for the complex conjugate and “ Re ” stands for the real part. 

Equation (5.8) is the same equation introduced in [112-114]. However, in a 

lossless medium, we have  

    0 0 0 0 0 .e mi P H i M E i E H E H                     
        

 (5.9) 

Under the geometrical optics assumption, the right hand side of equation (5.9) 

is pure imaginary and therefore the contribution of the last two terms in (5.8) 

is null. And also in source-free regions we can write  

 00 ,D P E       
     

 (5.10) 

  0 00 .B M H      
     

 (5.11) 

5.3.1 Isotropic Case 

Let us consider isotropic media first. According to Chapter 2, in the 

domain of geometrical optics we are allowed to write the electromagnetic 
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fields as,  

 
   
   

0 0

0 0

, exp
,

, exp

E r t E ik k r i t

H r t H ik k r i t





   


  

  

    (5.12) 

where   is the angular frequency, k


 is the wave vector and the magnitudes of 

both 0E


 and 0H


 are assumed to be approximately constant. In the isotropic 

media, we know that 0E


, 0H


 and k


 make a right triplet [22] and if we know 

enough about the directions of two of them, then we can calculate the direction 

of the third. In this sense, we can construct an arbitrary orthogonal coordinate 

system in which one of the basis vectors is along k


. If we call two other basis 

vectors ˆze  and t̂e , then we can decompose the electric field into its 

components, parallel (in-plane component) and perpendicular (out-of-plane 

component), to the plane defined by k


 and t̂e . For these two polarizations, we 

have  

 

0 0 0 0

0 0 0 0

ˆ
ˆ: &

ˆ
.

ˆ
ˆ: &

ˆ

z
z

z

z
z

z

e k
In plane H e H E E

e k

k e
Out of plane E e E H H

k e

 
  




     

 


 


 (5.13) 

Note that in inhomogeneous isotropic media, the direction of 0E


 ( 0H


) for the 

in-plane (out-of-plane) polarization is position dependent. As a result, the 

divergence of 0E


 ( 0H


) for the in-plane (out-of-plane) polarization is not zero,  

 0 0

0 0

: 0 & 0
.

: 0 & 0

In plane H E

Out of plane E H

       


       

   

     (5.14) 

However, in homogeneous isotropic media, both 0E


 and 0H


 are vectors of 
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constant amplitude and direction. So their divergences are zero and there 

exists a null bulk force density within such media. In homogeneous media the 

only thing which matters is the surface force originating from refraction of the 

fields at the media interfaces. 

Then for the in-plane polarized wave we have,  

 

 

 

0

0 0

0

0 0

ˆ
.

ˆ

ik k r i t

ik k r i t ik k r i tz

z

E E e

e k
E e E e

e k



 

 

   

    

    
  

 

  

   

  


 (5.15) 

Before going further we show that the first term in the right hand side of 

equation (5.15) does not have any contribution to the bulk force density. If we 

take 0 0 0ˆE e E


 and x y zk r k x k y k z   
 

, we have  

        0 0
0 0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ .ik k r i t ik k r i t

x x y y z zE e ik E e e k e e k e e k e            
   

 (5.16) 

We have to multiply right hand side of (5.16) by E


 in order to figure out the 

contribution of the first term of (5.15) in the bulk force density. Thus we have,  

 

 
     

     

0

0 0

0

0 0 0 0 0 0 0
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0 0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

ik k r i t

ik k r i t ik k r i t
x x y y z z

x x y y z z

E e E

ik E e e k e e k e e k e e E e

e ik E e e k e e k e e k



 

  

    



       
       

 

  

  

 (5.17) 

As it is clear,  0
0

ik k r i tE e E  
   

 is pure imaginary and after time-averaging, 

its contribution to the bulk force density vanishes. 

Then the time-averaged force density for the in-plane polarization with 

the help of equation (5.8) can be expressed as  

 
20

0

ˆ ˆ
.

2 ˆ ˆ
z z

z z

e k e k
f E

e k e k

      
   

  
   (5.18) 
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Similarly, for the out-of-plane polarization we can obtain the following 

expression for the force density,  

 
20

0

ˆ ˆ
.

2 ˆ ˆ
z z

z z

e k e k
f H

e k e k

      
   

  
   (5.19) 

It should be remembered that for the plane waves, we have 
2 2

0 0 0 0E H  . 

Adding these two, we can express the density of the bulk optical force of 

unpolarized light in an isotropic medium as  

 
20

0

ˆ ˆ
,

2 ˆ ˆ
z z

z z

e k e k
f E

e k e k

      
   

  
   (5.20) 

where 0E  is the magnitude of the electric field of the unpolarized light. After 

some mathematical simplification, we obtain the following expression for the 

bulk force density within an isotropic medium,  

 
 

2

0 0 2 2
3/22 2

ˆ
.

ˆ2

y yx x z
x y y x

zx y

k kE k k e k
f k k k k

x y y x e kk k

       
            


  (5.21) 

We know that the Hamiltonian in an isotropic medium is 

 22 2 ,x yk k n x y  H  and the ray trajectories are calculated on the surface 

0H . Regarding this surface, we can make some simplification as,  

 
2

,
2

x

x

y y

y

dk n
nk n nd x x

dyy k k x
d k





 
     

 


H

H
 (5.22) 

 
2

,
2

y

y

x x

x

ndk n
k n ny yd

dxx k k y
d k





 
     

 


H

H
 (5.23) 
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2

,
2

x

x

x x

x

dk n
nk n nd x x

dxx k k x
d k





 
     

 


H

H
 (5.24) 
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y y

y

ndk n
k n ny yd

dyy k k y
d k





 
     

 


H

H
 (5.25) 

Using the above simplification, we can obtain the x-components of the 

normalized bulk force density as,  
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      
             

   
    




 (5.26) 

On the Hamiltonian surface, we have  22 2 ,x yk k n x y  . So inserting this into 

(5.26) we have,  

 
 3

2

,

y
x y xnormalized

k n n
f k k

x yn x y

   
    


 (5.27) 

Similarly, for the y-component we have,  

 
 3

2
.

,
x

y y xnormalized

k n n
f k k

x yn x y

  
    


 (5.28) 

However we can go further in simplifying equations (5.27) and (5.28). Using 

the replacements  

 
   
   

2 1 2
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2 1 2

x x

y y

dk d x n n x n x n dk d

dk d y n n y n y n dk d

 

 

         


         

H

H
 (5.29) 
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in equations (5.27) and (5.28) we have,  

 
4

1
,y x

x y x ynormalized

dk dk
f k k k

n d d 
 

  
 


 (5.30) 

 
4

1
.y x

y x x ynormalized

dk dk
f k k k

n d d 
 

  
 


 (5.31) 

If we define    ˆk z x y y xL e k dk d k dk d    


, then we have  

  4

1
,x normalized x

f k L
n

 
  

 (5.32) 

  4

1
.y normalized y

f k L
n

 
  

 (5.33) 

Or in another word,  

  4

1
.

normalized
f k L

n
 

  
 (5.34) 

Now let us consider the isotropic spherically symmetric medium in 

which the refractive index profile depends only on r , i.e.  n n r , while 

2 2r x y  . For this type of index profile, we have,  

 ,
n r dn x dn

x x dr r dr

 
 

 
 (5.35) 

 .
n r dn y dn

y y dr r dr

 
 

 
 (5.36) 

If in equations (5.27) and (5.28), we replace n x   and n y   by what we 

have from (5.35) and (5.36), we have  

  3

2 1
,x y y xnormalized

dn
f k k x k y

n r dr


 


 (5.37) 

  3

2 1
.y x y xnormalized

dn
f k k x k y

n r dr


 


 (5.38) 
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Let us define y xq k x k y  . Then the derivative of q  with respect to   would 

be,  

 .y x
y x

dk dkdq dx dy
x k y k

d d d d d    
     (5.39) 

But from the Hamiltonian of an isotropic medium and also from equations 

(5.29), (5.35) and (5.36) we have,  

 2 ,x
x

dx
k

d k


 

H

 (5.40) 

 2 ,y
y

dy
k

d k


 

H

 (5.41) 

 2 2 ,xdk n x dn
n n

d x r dr


 


 (5.42) 

 2 2 .ydk n y dn
n n

d y r dr


 


 (5.43) 

If we replace the above four expression in (5.39), we have,  

 2 2 2 2 0.x y x y

dq xy dn xy dn
n k k n k k

d r dr r dr
      (5.44) 

It means that q  is independent of the ray parameter  or in another word 

   0q q q    . If we assume the ray is initially (at 0   ) incident into 

the medium at a point like  0 0,x y  and in a direction parallel to the positive x-

axis, i.e. 0 0yk   and 0 1xk  , then for q  we have,  

   0 0 0 0 0 00 0 .y xq q k x k y y y         (5.45) 

But 0y  is nothing but the impact parameter of the ray b [21]. So we have  

 .y xk x k y b    (5.46) 

Finally, the bulk force density components in the spherically symmetric 
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medium would be,  

 
 3

2
,x ynormalized

b dn
f k

drrn r
  (5.47) 

 
 3

2
.y xnormalized

b dn
f k

drrn r


  (5.48) 

Or in a more compact form,   

 
 

 3

2
ˆ .znormalized

b dn
f k e

drrn r
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 
 (5.49) 

It should be recalled that in the geometrical optics, fields are locally 

plane waves and hence, as can be seen in equations (5.34) and (5.49), we are 

always able to decompose the force into two components along a plane of 

interest and the force does not have any component perpendicular to this 

plane. However, the orientation of the plane changes along a ray trajectory and 

thus so do the directions of the introduced basis vectors. 

For the last word on the isotropic case, we refer back to equation (5.21). 

With the help of equations (5.22)-(5.25), we can write the magnitude of the 

normalized bulk force density as,  

 
 3/22 2

1
2 2 .y x

normalized
x y

n n
f k n k n

x yk k

              


 (5.50) 

From (5.29) we can rewrite (5.50) as,  

 
 3/22 2

1
.yx

y x
normalized

x y

dkdk
f k k

d dk k  
       

     


 (5.51) 

With knowledge of the Hamiltonian in the isotropic medium, we are allowed 

to make replacements like,  



Chapter 5                                                                                                                Force Tracing‘ 

 

 

96
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2 ,

2 2 2
x

x

dk d d dx d x
k

d d d d d    
    
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 (5.52) 

  
2

2

1 1 1
2 .

2 2 2
y

y

dk d d dy d y
k

d d d d d    
    
 

 (5.53) 

Utilizing the above replacements and also replacing xk  and yk  from equations 

(5.40) and (5.41), we can simplify equation (5.51) as,  

 

2 2

2 2

3 22 2
2 .

normalized

dy d x dx d y
d d d d

f
dx dy
d d
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 




        
     


 (5.54) 

Interestingly the fraction on the right hand side of equation (5.54) is an 

important geometrical quantity― the curvature ( ) of ray trajectories inside 

an isotropic medium. In other words,  

 2 .
normalized

f 


 (5.55) 

In consequence, the bulk force density is directly related to the curvature of 

the optical rays and therefore we can state a rule of thumb; the greater the 

curvature of a light ray, the stronger the bulk force density inside an isotropic 

medium! 

5.3.2 Anisotropic Case 

After settling down the force-tracing technique in isotropic media, now 

let us consider the anisotropic case. We know that in anisotropic media D


, B


 

and k


 make a right triplet [22]. In this part, we assign the in-plane and the 

out-of-plane polarizations with respect to the displacement field D


. In an 

anisotropic medium we have,  
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 0 0 0 0 0

1

0

1
,

e e r

r

D E P E E I E E

E D

       






         

  

         

   (5.56) 

 
 0 0 0 0 0 , 0

1

0

1
,

m m r

r

B H M H H I H H

H B

        






         

  

         

   (5.57) 

where r


 and r


 are the relative permittivity and permeability tensors, 

respectively. If we assume 0
0

ik k r i tD D e  
  

 and 0
0

ik k r i tB B e  
  

, then for the in-

plane and the out-of-plane polarizations we can write  
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 (5.58) 

According to equations (5.56)-(5.58), it is seen that the electric field 

0
0

ik k r i tE E e  
  

 and the magnetic field 0
0

ik k r i tH H e  
  

 inside the anisotropic 

medium are oriented as,  
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 (5.59) 

As a result, by inserting the electric and magnetic fields into equation (5.8), we 

obtain the following expression for the bulk force density of the in-plane 

polarization,  
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 (5.60) 

Similarly for the out-of-plane polarization we have,  
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 (5.61) 

5.3.3 Surface Force Density 

In addition to the bulk force, there exists another force, surface force. 

This force is due to discontinuities at media interfaces which reflect or refract 

incident light. At the interface of a medium, the force density equation (5.8) 

can be written as [22, 112-114],  

  1
Re ,

2 e av h avf E H   
  

 (5.62) 

where  0 ˆe n out ine E E   
 

,  0 ˆh n out ine H H   
 

,   2av out inE E E 
  

, 

  2av out inH H H 
  

, ˆne  is the unit vector normal to the interface pointing out 

of the medium, and  ,out outE H
 

 and  ,in inE H
 

 are the outside and inside fields 

at the interface of the medium, respectively. If we assume 0 2
2 0ˆ ik k r i t

in eE e E e  
 

, 

0 2
2 0ˆ ik k r i t

in hH e H e  
 

, 0 1
1 0ˆ ik k r i t

out eE e E e  
 

 and 0 1
1 0ˆ ik k r i t

out hH e H e  
 

, then we 

have,  
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  0 2 0 1
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1
ˆ ˆ ,

2
ik k r ik k r

av h hH e H e e H e  
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 (5.64) 

  0 1 0 2
0 1 0 2 0ˆ ˆ ˆ ,ik k r ik k r

e n e ee e E e e E e     
  

 (5.65) 

  0 1 0 2
0 1 0 2 0ˆ ˆ ˆ .ik k r ik k r

h n h he e H e e H e     
  

 (5.66) 

If we let 1ˆ ˆ cosn e ee e   , 2ˆ ˆ cosn e ee e    , 1ˆ ˆ cosn h he e    and 2ˆ ˆ cosn h he e    , 

for e avE 


 we have,  
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 (5.67) 

Due to the phase matching [22], the exponential terms can be set equal to one. 

Thus equation (5.67) can be written like,  

   2

0 0 2 1

1
ˆ ˆcos cos .

2e av e e e eE E e e      


 (5.68) 

Similarly for h avH 


, we have,  

   2

0 0 2 1

1
ˆ ˆcos cos .

2h av h h h hH H e e      


 (5.69) 

Finally, the surface force density would be  
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5.3.4 Results and Discussion 

After setting up the theoretical foundation of the force tracing process, 

in this section we work several examples. As a first example we consider the 

bulk force distribution in an Eaton lens. The ray trajectories in the Eaton lens 

are parts of ellipses which share a focal point at the center, and if the ambient 

medium is vacuum, the incident rays do not feel any disturbance at the Eaton 

lens boundary (i.e.   1n r   at the boundary). Due to this transparency, there 

exists no surface force at the boundary. But by gradual change of the index, 

the trajectories of the rays bend gradually and therefore an optical force 

proportional to the curvature of the rays would be felt inside the lens.  

In order to explain what really happens to a photon traveling inside an 

Eaton lens, we borrow the idea of Balazs [79] about photon-dielectric 

interaction. In the Balazs model, a photon of frequency   is propagating 

towards a transparent dielectric box of rest mass M  and refractive index n . 

The box is assumed to be located at rest on a frictionless surface. Before 

entering the box, the energy and the momentum of the photon is   and 

c  (the associated mass of the photon is 2c ) and therefore the total 

energy and momentum of the system is 2E Mc   and P c  . (It 

should be noted that this P  is different from what we used for the polarization 

vector in equation (5.8).) When the photon enters the box, its kinetic 

momentum would be nc  and hence the box picks up a momentum of 

  1 1c n   and starts to move with a velocity v  which can be calculated 

through conservation of momentum. When the photon later exits the box, its 

momentum would be c  and hence the box stops moving. We can consider 
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a similar story for a photon’s journey within an Eaton lens. Consider two 

adjacent points on a ray trajectory like iQ  and 1iQ   in an Eaton lens, as shown 

in Fig. 5.1. At point iQ  the photon has the kinetic momentum Qin c , where 

Qin  is the value of the Eaton index profile at iQ . When the photon travels 

from this point to point 1iQ  , its kinetic momentum changes to 1Qin c  . 

Because of this change, the Eaton lens picks up a kinetic momentum like 

   1Qi Qin c n c     and moves along a direction parallel to the difference 

of the two momentum vectors and at a speed determined by the conservation 

of energy and mass of the Eaton lens. Now let us consider 1N   points on the 

path of the photon which are uniformly distributed and located infinitesimally 

close to one another ( N  ). When the photon moves from point A to point 

0Q , it imposes a momentum like 0 0A Qp p p  
  

 on the lens. Then from its 

trip from point 0Q  to point 1Q , the photon offers the momentum 

1 0 1Q Qp p p  
  

 to the lens. This momentum interchange between the photon 

and the lens takes place recursively along the rest of the path till the photon 

reaches point B and exits the lens. In aggregate, the momentum grabbed by the 

lens due to the propagation of the photon would be,  

 
1

0

.
N

AB A B i
i

p p p p




      
 (5.71) 

where this momentum is proportional to the total force exerted on the lens. In 

the limiting case of N  , equation (5.71) can be written as,  

 

 AB

C

p dp optical force 
 

 (5.72) 
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where C  refers to the path of the photon. 

 

 

Fig.  5.1. The path of a photon within an Eaton lens. The photon enters the lens at point A and 

exits at point B. 

In order to find the optical force distribution inside an Eaton lens, we 

need to use equation (5.49). To do so, we can calculate the optical force 

density along an arbitrary ray which can be parameterized with parameter  . 

Shown in Figs. 5.2(a) and (b) are the bulk force density illustrated by black 

arrows along several ray trajectories and the bulk force distribution within the 

lens, respectively. One of the rays is shown in purple. The magnitude of the 

corresponding force density along this ray is depicted in Fig. 5.2(c). In 

addition, in order to show the validity of equation (5.55), the curvature ( 2  ) 

of the ray traced in purple is shown in Fig. 5.2(c) and as seen it is completely 

overlapping the normalized magnitude curve.  

The trajectories of light rays in isotropic media can be determined by 

the Euler-Lagrange equation [21] (which can be broken into the set of the 

Hamilton equations) and based on this equation the ray tracing parameter   is 

given by d dl n  , where dl  is the infinitesimal increment of the 

geometrical path length and n  is the refractive index. In order to find the total 
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force along a ray’s path we need to integrate the force density along the entire 

path and according to the previous mentioned note the total force would be 

 
normalized normalized

F f n d  


.  

 
 

  

Fig.  5.2. (a) The normalized bulk force density arrows (distinguished by their thicknesses) 

traced along rays within an Eaton lens of unit radius. (b) The distribution of the normalized 

bulk force density (magnitude) inside the lens. (c) The magnitude of the normalized bulk force 

density versus the ray curvature ( 2 ) along the ray depicted in purple. (d) The force arrows 

(distinguished by their lengths) and the distribution of the normalized bulk force density 

(magnitude) inside the Eaton lens calculated through full-wave simulation (wavelength of the 

simulation is 0.05 units). 

As seen in Figs. 5.2(a) and (b), the optical force increases at near the 

center of an Eaton lens where there is an index singularity. In other words, the 

optical force is proportional to the curvature of the rays and in the vicinity of a 

singularity the optical force in this region blows up. This is depicted at the 

centers of Figs. 5.2(a) and (b). This can also be vividly interpreted in Fig. 

5.2(c), where the curve shows a sharp peak near the middle of the ray 

(a) (b) 

(c) (d)
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curve and obviously the peak gets sharper and sharper as the impact parameter 

of the ray decreases. The other interesting thing about the Eaton lens is the 

symmetry of the force distribution with respect to the horizontal axis ( x  axis). 

As seen in Fig. 5.2(b), the rays with tiny impact parameters initially cause very 

small forces and as they approach the singularity they face a sudden change in 

their trajectory and their mechanical interactions with the lens jumps up 

abruptly. However, this fluctuation in the force density becomes smoother as 

the impact parameter of the rays increases. In order to validate our analysis, 

we performed a full-wave simulation with a finite element technique using 

commercial software COMSOL to numerically calculate the force density 

inside an Eaton lens. The simulation result is given in Fig. 5.2(d). It is seen 

that the force-tracing analysis is in a good agreement with the full-wave 

simulation; nevertheless in the full-wave simulation, some force arrows along 

each ray have different heights. This is related to wave interference within the 

lens, and the locations of the regions of reduced force density are wavelength 

dependent (the wavelength simulated was slightly too large for an exact 

comparison to the geometric optics case—this was unfortunately necessary 

however, because full-wave simulations with shorter wavelengths would 

require additional/significant computational resources). 

As another example, we consider the Luneburg lens in which incident 

parallel rays are focused at the back of the lens. The Luneburg lens is a 

spherically symmetric lens with the index profile   22n r r   where ray 

trajectories are (different) sections of ellipses [21]. Making use of equation 

(5.49), we can calculate the force distribution inside a Luneburg lens as 
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depicted in Fig. 5.3. Like the previous case, in Figs. 5.3(a) and (b) the force 

density along individual ray trajectories and the bulk force distribution are 

depicted, respectively. In Fig. 5.3(a), one ray is chosen arbitrarily and traced in 

purple. The magnitude of the force density and the curvature ( 2  ) for the 

ray highlighted in purple are depicted in Figure 5.3(c), which again confirms 

the validity of equation (5.55). The lens feels maximum pressure at initial and 

final points along the ray’s trajectory and minimum pressure exactly at the 

midpoint of the trajectory, for the curvature of the elliptic trajectory inside is 

the smallest there. It is seen that the rays with higher impact parameters 

impose higher force than those with lower impact parameters; the ray with 

zero impact parameter does not have any interaction with the lens. It can also 

be explained by the curvature of the trajectories. Shown in Fig. 5.3(d) is the 

full-wave calculation of force density inside the Luneburg lens in COMSOL, 

which is an indication of agreement between the proposed force-tracing 

method and the full-wave analysis. 

As shown in Fig. 5.3(a), when many parallel rays enter a Luneburg 

lens, they propagate along trajectories to accumulate at a single point and exit 

at various angles corresponding to their impact parameters, and as a result the 

lens is pushed by the incoming rays. This is somehow vivid, for the projection 

of the outgoing rays’ momenta along the horizontal axis is less than the 

corresponding momenta of the incoming rays and hence this reduction of their 

net momenta causes a pushing force. Conversely if many rays were to enter a 

Luneburg lens from a single point, they would exit in parallel and their 

momenta along one axis would increase during their trip within the lens and it 

would cause a pulling force on the lens along that axis [116-118]. These two 
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facts are illustrated schematically in Figs. 5.4(a) and (b). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig.  5.3. (a) The normalized bulk force density arrows (distinguished by their thicknesses) 

traced along the rays within a Luneburg lens of radius 1. (b) The distribution of the 

normalized bulk force density (magnitude) inside the lens. (c) The magnitude of the 

normalized bulk force density versus the ray curvature ( 2 ) along the ray depicted in purple. 

(d) The force arrows (distinguished by their lengths) and the distribution of the normalized 

bulk force density (magnitude) inside the Luneburg lens calculated via full-wave simulation 

(wavelength of the simulation is 0.05 units). 

In our final example, we examine the optical force within an invisible 

cloak [5, 37] designed through transformation optics; this is an anisotropic 

index profile. It is known that one can design an infinite number of cloaks to 

make an object invisible [119] but in this analysis we assume a simple case,  
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Fig.  5.4. (a) The pushing force case in the Luneburg lens. (b) The pulling force case in the 

Luneburg lens. 

  
2

2 1 2 2

2 1 2 1 2 1

, , , ,r r r

R r R R R
diag diag

R R r R R R R     
             

 
 (5.73) 

where diag stands for a diagonal tensor, and 2R  and 1R  are the radii of the 

outer and inner boundaries of the cloak, respectively. It should be noted that 

since r r  
 in the cloak, no reflection takes place at the boundary of cloak 

and all the light goes through the device. But there exists refraction at the 

boundary of cloak which causes light rays to bend abruptly at that point. 

Hence contrary to the two previous examples in which we had only a bulk 

force, in the case of this cloak a surface force also appears. Utilizing equations 

(5.60), (5.61) and (5.70), we calculate the force distribution along the 2   

plane for a cloak with dimensions 2 1R   and 1 0.25R  . Shown in Fig. 5.5 is 

the force distribution within the spherical cloak for in-plane polarized light. 

(a) 

(b) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig.  5.5. (a) The normalized bulk (black) and surface (green) force density arrows 

(distinguished by their thicknesses) traced along the rays within a cloak of inner radius of 0.25 

and outer radius of 1. (b) The distribution of the normalized bulk force density (magnitude) 

inside the lens. (c) The magnitude of the normalized force density along the ray depicted in 

purple. (d) The normalized bulk (black) and surface (green) force density arrows and the 

distribution of the normalized bulk force density (magnitude) inside the cloak calculated from 

analytical expressions. 

As seen in Figure 5.5(a), near the focal points of the ray trajectory 

(where the curvature changes its sign) we have a maximum in the force 

distribution and due to the spherical symmetry, there are two of these 

maximum force density points along each ray trajectory. In addition, as we go 

further from the cloaked region the rays feel less force; this makes sense, 

because the outer rays are not as curved as the inner rays. It is interesting to 

see that the surface force (the green arrows) is directed inward while the bulk 

force is pointing outward and also the surface force is an order of magnitude 
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less than the bulk force. The plot of the bulk force density is shown in Fig. 

5.5(b). At points near the cloaked region, the force is much larger than it is 

near the outer lens boundary and this is related to the presence of a singularity 

at 1r R . It should be noted that our calculation of the force density at points 

very close to the singularity may not be accurate enough―at such points we 

are out of the domain of geometrical optics. However, as can be seen from Fig. 

5.5(a), all the force density arrows cancel each other out and the total force on 

the perfect cloak is zero as it should be. To ensure the validity of our force-

tracing calculations, (as shown in Fig. 5.5(d)) we calculate the bulk and 

surface force densities from the analytical full-wave expressions given in 

[114]. It is seen that the agreement between our geometrical optics based 

analysis and the analytical analysis is quite acceptable. However, the force 

density distributions are clearly not the same. In the ray optics analysis that we 

have developed, the maximal bulk force density occurs when ray curvature is 

maximal and the maximal surface force density occurs where refraction is the 

greatest; in the full-wave analysis, these both occur along a vertical cutline 

through the cloak center. While the difference is not large between the two 

analyses, we find it to be an interesting limitation of geometrical optics, since 

all the conditions that would normally permit the use of geometrical optics 

have otherwise been met. Although we are unable to explain the specific 

reason for the differences in the two analyses in this example, we have found 

an even more remarkable example of this type of breakdown of geometrical 

optics which we will now describe. 

As is evident in Fig. 5.5(a), the force field is mirror symmetric about a 

vertical cutline through the cloak. When a ray enters the cloak from the 
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left side, in its first half trip, it causes a force with a negative horizontal 

component and in its second half trip, it exerts a force with a positive 

horizontal component and these two components cancel out each other. The 

surface force densities are at least ten times smaller than the bulk force 

densities. Now consider cutting the cloak in half so that only the left side 

remains.  With the right half gone, one might conclude that a half cloak could 

be pulled by an incident plane wave! It would be remarkable, if it were the 

case. But due to the inability of geometrical optics to account for some 

phenomena like diffraction, some part of truth has been hidden in such an 

interpretation (not to mention that it would violate conservation of 

momentum). In order to make it clear why such a half-cloak tractor beam is 

impossible even though force-tracing says it is possible, we compare the ray 

analysis and full-wave analysis of a half cloak in Figs. 5.6(a) and (b). In the 

ray analysis, a half cloak produces a completely dark shadow, or in other 

words, a perfect hollow beam, and the outgoing rays do not have any 

interference with one another. However, in reality the light exiting a half cloak 

is diffracted, which makes the shadow formed behind the half-cloak 

incomplete. So the diffraction, not predicted by the ray analysis, is responsible 

for creating some pushing forces which aggregately overcome the negative 

horizontal components of the bulk force density. Therefore the net force on a 

half-cloak by an incident plane wave is pushing. As it is beyond the scope of 

this chapter, we are not to calculate this pushing force, though it would be 

noteworthy if someone carries out the full computation of such a pushing force. 
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Fig.  5.6. (a) The ray trajectories of a half-cloak. (b) The full-wave simulation result for the 

magnitude of the electric field for a half-cloak; the magnitude of the electric field at a cutline 

located across the path of the outgoing wave is drawn to illustrate the diffraction pattern 

outside the half-cloak more clearly (wavelength of the simulation is 0.025). 

5.4 Conclusions 

In conclusion, we reviewed the conservation of light momentum in 

general and discussed the Abraham-Minkowski dilemma. With the aid of the 

geometrical optics toolset, we proposed a formulation for calculating the time-

averaged bulk and surface Lorentz force densities within linear optical 

materials. Owing to the genuine simplicity of geometrical optics machinery, 

the formulation is much simpler than full-wave analysis and the standard 

process of integrating the stress tensor(s). In order to demonstrate the 

(a) 

(b) 
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validity of our formulation, we considered two isotropic lenses (Eaton and 

Luneburg lens) and one anisotropic device (perfect spherical cloak) and 

calculated their bulk and surface force densities. It is hoped that this 

presentation of light-media interactions from a simple perspective can become 

a useful tool in calculating the optical forces within media under the 

constraints of geometrical optics; in many practical situations, it gives 

significantly identical solutions to much more cumbersome full-wave methods. 

As a future work, one may put an effort to propose a (probably semi-numerical) 

method to obtain isotropic or even anisotropic optical profiles with a desired 

force distribution. Moreover, complex theories like transformation optics and 

conformal mapping can be invoked in the prospective method(s) to shape the 

optical forces in anomalous ways useful for specific applications. 
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CHAPTER 6 Summary and Future Work 

6.1 Summary 

As alluded to in the introduction, the consideration of complex media, 

along with their accompanying fantastical properties, anomalies and subtleties, 

has made life much more exciting than it was in the recent past for the 

scientific community, and has brought the chance to the young as well as 

established researchers to reconsider the basics of electrodynamics and optics. 

With a temptation toward chasing after new ideas and challenges, fast and 

furious hunger for fame and publication, in addition to the excitement of 

revisiting old ideas and thoughts in new frames of reference, has caused a 

revolution in this field. As a result, being equipped with the luxury of complex 

media and the limitless power of creativity, designers have come up with 

many astounding optical devices and designs. However, in many of these 

works, fact and fiction can sometimes be difficult to tell apart, and that is 

exactly where the leading edge of technologies can be found. Borrowing the 

ideas from films and science fiction and translating them into the language of 

science and engineering, new technological objectives that require increasing 

structural complexity in their designs are pursued nowadays. Cloaking shells, 

optical lenses with unlimited resolutions, optical illusions, ultrathin foldable 

electronic devices and screens, extremely fast transistors and optical trapping 

and pulling are several examples of such objectives. In spite of immensely fast 

growth, everlasting debates and of course the involvement of practical issues, 

we found it interesting and instructive to explore the behavior of complex 

media from the geometrical optics point of view. Geometrical optics, with its 
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language of rays, is an old and strong method in analyzing optical devices. 

Even though there exists some must-meet criteria for its use to be valid, 

geometrical optics brings ease in terms of mathematical calculation 

complexity and provides the central inspiration required for optical designs, 

especially in the domain of complex media. 

We initiated this thesis with the definition of complexity in a medium 

and we addressed the necessary criteria according to which we can classify 

and model the complex media quantitatively. The foundation of 

transformation optics, complementary media and the space folding in complex 

media were also reviewed. We chose to follow a geometrical optics approach 

in our analyses and designs and to study light’s interactions with complex 

media with the language of rays. Hence at the first step, by employing the 

elements of tensor calculus we wrote the governing optical Hamiltonian and 

therefore the ray equations in a coordinate-free scheme which can be applied 

in orthogonal or non-orthogonal and Euclidean or non-Euclidean spaces and 

geometries. This generalized method was applied for uniaxial and biaxial 

media as special cases and with a straightforward algebraic method the 

Hamiltonian in biaxial media was factorized. The validity of the generalized 

formulation was also examined via studying the transmuted Eaton lens. 

Based on the theory of complementary media, we proposed a reverse 

method to design two-dimensional and three-dimensional superscatterers. As 

we then discussed in more detail, the proposed reverse method can bring about 

several benefits like controlling the isotropy of the designed lens and the light 

distribution in it. Additionally, photorealistic rendering of the superscattering 

mechanism was carried out and the corresponding ray formations as well as 
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the image properties within the designed lenses were discussed. 

Using the factorized expression for the Hamiltonian in biaxial media, 

we showed that how we can control the behavior of light in two orthogonal 

planes in a geometry. As an example, we designed a spherically symmetric 

lens which offers two functions in its equatorial plane and two functions in its 

polar planes according to the polarization of the applied light. Equalizing the 

two functions in each of the mentioned planes, we could design a Janus device 

for the unpolarized light. 

And finally we considered the interesting case of force tracing. Due to 

a connection between the energy current density and momentum current 

density through conservation equations in electrodynamics, we came to this 

idea that not only the energy flow (ray path) but also the momentum flow 

(force density) can be traced in a medium. With the help of the eikonal 

equation and the Lorentz force, we derived general expressions for the bulk 

and surface force densities in isotropic and anisotropic media under the 

geometrical optics approximation. We specifically showed that in isotropic 

media, the optical force density is directly proportional to the curvature of the 

ray trajectory. We studied the optical force in three example graded-index 

devices and showed the validity of our analysis. We also highlighted a 

situation (i.e. half-cloak) in which the estimations based on force tracing may 

not be reliable and full-wave analysis is unavoidable. 

6.2 Future Work 

In the previous chapters, on the basis of Fermat’s principle and the 

analogy of classical optics to Newtonian mechanics, we discussed the analysis 
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and design of graded-index devices, i.e. devices with position dependent 

profile indices. But in all the designs and even in our generalized formulation, 

we neglected nonlinearities present in media. As a step forward, it would be 

worthwhile to study nonlinear electrodynamics under the geometrical optics 

limitations. Revisiting Fermat’s principle in nonlinear media and relating it to 

the respective Lagrangian would possibly introduce new understandings in the 

physics of ray optics and may extend the domain of geometrical optics to new 

borders. Specifically, consideration of the complex features of the k-surface 

and the consequent multirefringence [120] in nonlinear media in addition to 

the unusual nature of reflection and refraction of light at the interfaces of 

nonlinear media due to the generation of harmonics [121], brings about a high 

chance to design interesting devices with unordinary optical properties, though 

the ray tracing analysis may be very tedious and demanding. As a matter of 

fact, contrary to its challenging physics and the pertaining complexities, the 

graded-index nonlinear metamaterial is a very rich area of exploration in 

physics and surely it is to lead to ground-breaking metadevices. 

Another interesting case to consider in future work in the realm 

geometrical optics is investigating the ray optics of bi-media: bi-anisotropic 

and bi-isotropic media. We know that in a bi-anisotropic medium we have [22, 

122],  

 0

1
D E H

c
     

  
 (6.1) 

 0

1
B E H

c
     

   
 (6.2) 

where 


 and   are the tensors relating H


 and E


 to D


 and B


, respectively. 
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If under the geometrical optics approximation, we consider quasi-plane waves 

with slowly changing magnitudes like,  

  0expE ik k r i t  
  
E  (6.3) 

  0
0

1
expH ik k r i t


  

  
H  (6.4) 

then according to the source-free Maxwell equations we have,  

 k      
    
E E H  (6.5) 

 k       
   
H E H  (6.6) 

Solving for 

H  in (6.5) and inserting it into (6.6) we have,  

        1 1 1 1ˆk k k k                         
           
E E E E  (6.7) 

Or equivalently we can write equation (6.7) as,  

 0pk
kM E  (6.8) 

where for pkM  we have,  

 
   

   

1 1

1 1

mi mpk pn jk pk pl k
m i n j ml

m mlpl nk k pn
m n l m nl

M e e k k

e k e k

    

   

 

 

  

 
 (6.9) 

To obtain a nontrivial solution for equation (6.8), we should have,  

  det 0pkM H  (6.10) 

where H  is the Hamiltonian of the bi-anisotropic medium. For a bi-isotropic 

medium, in which the constitutive parameters are scalar, equation (6.7) is 

simplified as,  

       0k k k          
    
E E E  (6.11) 

And consequently the matrix M  would be,  
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 
 

 

2 2
2 3 1 2 3 1 3 2

2 2
1 2 3 1 3 2 3 1

2 2
1 3 2 2 3 1 1 2

k k k k k k k k

M k k k k k k k k K X

k k k k k k k k

  

  

  

     
 
        
 
      

 (6.12) 

where K  is the same matrix as what we defined in Chapter 2, 

3 2

3 1

2 1

k k

X k k

k k

  
  
  

 
   
  

,      and     . 

Chiral materials are one well-known type of bi-media and they have 

been thoroughly investigated in the literature [51, 122-128]. In isotropic chiral 

media the constitutive equations are as follows [123, 124],  

 D E i B  
  

 (6.13) 

  1H i E B  
  

 (6.14) 

If we assume time harmonic monochromatic waves within chiral media, then 

based on Maxwell’s equation it is shown that [123, 124],  

 22 0E E k E    
     

 (6.15) 

where k   . Taking the electromagnetic waves in the chiral media as 

plane waves like    
0,

i h r t
E r t E e

 
  

, from equation (6.15) we obtain,  

  22 2 2 2 2 24 0k h h      (6.16) 

Equation (6.16) is the characteristic equation in the chiral media and solving 

this equation for h , we have,  

 2 2 2 2h k        (6.17) 

where the plus sign represents a right-handed circularly polarized wave and 

the minus sign is for a left-handed circularly polarized wave propagating 
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within the chiral media. So any plane wave impinging onto a chiral medium 

interface breaks into right and left-handed circularly polarized waves with 

different phase velocities. In other words we observe a sort of birefringence in 

the chiral media, though the media are assumed isotropic. By taking this fact 

into account in addition to employing proper inhomogeneities, one may come 

up with interesting ideas to control the formation of the polarized rays and 

design useful devices. 

On the basis of geometrical optics analysis in bi-anisotropic media, we 

also get prepared to study the behavior of rays and media in motion. It is 

known that a moving isotropic medium looks as if it were bi-anisotropic in a 

stationary laboratory reference frame and with the use of the special theory of 

relativity one can derive the constitutive relations for a moving isotropic 

medium as [22],  

 D A E H  
   

 (6.18) 

 B A E E  
   

 (6.19) 

where  

 
2 2

2 2 2
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 
 

  
    

   
 (6.20) 
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



 



 (6.21) 

where v c 
 

, v


 is the velocity of the medium, c  is the velocity of light in 

free space, and n  is the refractive index,   is the permittivity and   is the 

permeability of the medium at rest. It should be noted that for inhomogeneous 

media the permittivity and permeability are dependent of position coordinates 
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pertaining to the rest frame and these dependence should be transformed to the 

laboratory frame. Attaining the skill of ray tracing in bi-anisotropic media, one 

would then be able to analyze and to control the formation of optical ray 

trajectories in motion. As an example, the bi-anisotropic constitutive tensor of 

an Eaton lens in motion can be derived. Then with the use of that, the ray 

trajectories within the lens as well as geometrical deformation of the lens 

boundary at different velocities, from low to relativistic, can be compared and 

beautiful inspiring photorealistic animations can be rendered. Obviously, it 

goes without mentioning that the whole process in this example would be very 

challenging and demanding of lots of lengthy computations, though it is 

definitely worth it. 

In addition to ray tracing, analysis of the optical force on moving 

objects can be a good prospective task to consider. Energy and momentum of 

light have been studied for almost a century. As we know through classical 

work on the optical force, impinging light induces electric and magnetic 

dipoles inside small particles and these dipoles are new sources of radiation. 

So, finding these radiated fields and using energy and momentum 

conservation laws, the optical force can be calculated. This process has been 

done in some literature like [129], but considering the optical force on 

particles in motion or on particles immersed in moving media seems to be 

interesting and bring more physics into the game. As is well known [130-133], 

one of the two postulates in the special theory of relativity states that the 

velocity of light in any inertial system in vacuum is fixed and equal to 

0 01   . So for all inertial systems in a vacuum, we have  
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 0D E=
 

 (6.22) 

 0B H=
 

 (6.23) 

Now consider an isotropic, homogeneous and non-dispersive medium with 

permittivity  , permeability   and conductivity   to be moving with 

velocity v


 relative to the inertial system I . Then the constitutive relations in 

the inertial frame I  , in which the medium is assumed to be at rest, are  

 D E =
 

 (6.24) 

 B H =
 

 (6.25) 

 cJ E =
 

 (6.26) 

Writing the fields in the rest frame ( , , ,D E B H   
   

) with respect to the those in 

the moving frame ( , , ,D E B H
   

) according to the Lorentz transformation, we 

have the new constitutive relations in the moving frame as [133],  

  2

1
D v H E v B

c
   =

    
 (6.27) 

  2

1
B v E H v D

c
   =

    
 (6.28) 

  2

1
cJ E v v E v B

c
        

     
 (6.29) 

where 21 1   , /v c   and v v


. Lorentz transformations can be 

used to find such relationships for more complex media such as 

inhomogeneous or dispersive media. On the other hand, we know that the 

induced electric and magnetic dipole moments due to the incidence of a plane 

wave, i.e.  expi iE e ik r i t  
  

 and  expi iB b ik r i t  
  

, can be written 

in terms of the corresponding polarizabilities as,  
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 e ip e 
 (6.30) 

 m im b


 (6.31) 

where e  and m  are electric and magnetic polarizabilities, respectively. We 

also know that the time-averaged optical force on a small particle at rest and 

immersed in a host medium is [129],  

  Im
2 i i rS

k n
F p e m b S dS

c
      

     
 (6.32) 

where    8 Rer r rS c E H 
  

 is the time-averaged energy current density, 

rE


 and rH


 are the scattered electric and magnetic fields, n  is the refractive 

index of the host medium, S  is any closed surface circumscribing the particle 

and   stands for the complex conjugate operation. So according to the 

previous discussion, by employing Lorentz transformation we can find the 

constitutive relations and fields in a moving frame with respect to a frame at 

rest. So, intuitively we should be able to take the motion of particles or the 

host medium into account and find the optical force, radiation pressure, 

extinction cross section and in general the energy-momentum tensor. On the 

top of that that, with the help of ray tracing technique in bi-media, we would 

be able to trace the optical force distribution within moving objects under 

geometrical optics limitations.  
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