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Summary  

The benzylideneindolinone scaffold is historically linked to the inhibition of receptor tyrosine 

kinases (RTKs) and several functionalized analogs have shown promising anticancer activity 

by inhibiting the aberrant activities of oncogenic RTKs. The compound, E/Z 6-chloro-3-(3-

trifluoromethyl-benzyliden)-1,3-dihydroindol-2-one (Compound 47) identified in the 

candidate  laboratory was of particular interest. It exhibited potent and selective growth 

inhibitory effects on hepatocellular carcinoma (HCC) cells, inhibited selected RTKs, 

intercepted prosurvival and proliferation mechanisms and showed in vivo efficacy in 

xenograft models. However 47 was hampered by its poor physicochemical profile. It was a 

lipophilic molecule (ClogP 5.08) with poor aqueous solubility (0.09 µM or 0.03 μg /mL, pH 

7.4) and limited permeability when assessed by the parallel artificial membrane permeation 

assay (PAMPA).  Thus the aim of this thesis was to test the hypothesis that structural 

elaboration of the underfunctionalized 47 would provide a means of uncovering drug-like 

compounds with greater potency and selectivity on HCC. It was envisaged that the enhanced 

potency would arise from kinase or sirtuin inhibition, or possibly, through inhibition of both 

targets. To this end, 115 compounds across 8 series of functionalized benzylideneindolinones 

were designed, synthesized and evaluated for their effects on the viability of liver cancer cell 

lines (HuH7, Hep3B, HepG2). The focus of the design strategy was to enhance the drug-like 

character of the lead compound 47, notably its poor solubility and excessive lipophilicity.  

The approach was to introduce polar substituents at two sites of the scaffold, namely the 

indolinone ring A and the benzylidene ring B.  

Based on the growth inhibitory activities on HuH7 cells, a comprenhensive structure activity 

relationship was deduced for the benzylidene indolinone scaffold. The main points were (i) 

The E/Z configuration of the exocyclic methine (=C-) bond did not appear to play a major 

role in influencing activity; (ii) Replacement of the exocyclic methine with azomethine (=C- 

 =N-) abolished activity; (iv) Substitution on the lactam N did not adversely affect activity; 

(iv) On the indolinone ring A, there was a preference for substitution at position 6 (6-F > 6-Cl) 

as compared to position 5. Difluoro substitution (at positions 4,5 or 5,6) improved activity but 
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only when the benzylidene ring was substituted with 3’CF3. (v) Series 5 compounds which 

were substituted on ring A with 6-methoxy had exceptionally potent activity but may have a 

“cytostatic” component in their growth inhibitory effects. (vi)The choice of substituents on 

the benzylidene ring B had a marked effect on activity, possibly exceeding that of the 

indolinone ring A.  Two substituents were associated with potent activity: 3’CF3 and 3’N-

substituted aminosulfonyl. There was a significant regioisomeric preference for position 3’.  

Optimal ring A and ring B combinations for potent activity were evident: For 6-F and 6-

methoxy on ring A, the N-substituted aminosulfonyl was preferred, whereas for 6-Cl on ring 

A, both CF3 and N-substituted aminosulfonyl sidechains were acceptable. For other 

halogenated ring A analogs (5-Cl, 4,5-F, 5,6-F), the CF3 on ring B was preferred. One 

difference between the two ring B side chains was that analogs with CF3 were selectively 

more potent on HuH7 cells compared to non-malignant IMR90 cells;  (vii) A robust SAR was 

observed for compounds bearing the N-substituted aminosulfonyl side chain, namely a 

distinct preference for mono N-substitution, an increase in growth inhibitory activity on 

homologation (H > N-methyl > N-ethyl > N-n-propyl), and the negative impact on potency 

imparted by branching (propyl  isopropyl) and reversal of the aminosulfonyl side chain 

(MeNHSO2-  MeSO2NH-).  

Selected compounds were screened on other hepatoma cells and in general, compounds that 

were potent on HuH7 (IC50 < 1 µM) were equipotent on Hep3B but less so on HepG2. 

Interestingly, HuH7 and Hep3B were mutated p53 cell lines whereas HepG2 harboured wild 

type p53. p53 is the most frequently mutated gene in HCC and the greater susceptibilities of  

cells bearing mutated p53 may suggest that signaling pathways associated with the loss of 

function or gain of a new function due to p53 mutations were targeted by  these compounds. 

Several potent compounds induced apoptotic cell death, further underscoring their anticancer 

potential for HCC.  
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Compound 3-12 (EZ-[(6-fluoro-2-oxoindolin-3-yl)methyl]-N-propylbenzenesulfonamide) 

was one of the more potent and selective compounds affecting the viability of HCC cells. It 

inhibited  the phosphorylation of FGFR4 and HER3 in HuH7 cells at low concentrations (0.5, 

2 µM). Levels of phospho-HER3, phosphor-FGFR4 and phospho-Akt were also reduced at 

comparable concentrations. Molecular docking on a homology model of FGFR4 showed that 

3-12 adopted favorable poses at the hinge region of FGFR4. Both the indolinone ring and the 

N-propylaminosulfonyl side chains were involved in productive binding interactions. 

Inhibition of FGFR4 and HER3 may contribute to the growth inhibitory effects of 3-12 on 

HuH7 cells. 

Several members of the library inhibited SIRT2 activity. Notably 47 and 3-12 were 

comparable to AGK2 (a selective SIRT2 inhibitor) in their inhibitory potencies. However, the 

most potent inhibitors were the benzylideneindolinones substituted at position 6 with methoxy 

(Series 5) and N-substituted analogs of 47 (Series 8). Several members in Series 5 were also 

found to be moderately active SIRT1 inhibitors. Inhibition by representative members (5-1, 8-

7) promoted the hyperacetylation of physiological sirtuin substrates (p53 and α-tubulin) and 

induced the apoptotic cascade in HuH7 cells. Molecular docking on the X ray structure of 

human SIRT2 provided insight into the interactions of the scaffold with the binding pocket of 
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the co-factor NAD+. sirtuin inhibition may contribute to the growth inhibitory effects of the 

Series 5 and 8 compounds but may not play a major role for 3-12, 47 and other potent analogs. 

Physicochemical characterization of selected potent analogs showed that many of these 

compounds, in particular those with N-substituted aminosulfonyl side chains on ring B (1-18, 

3-10, 3-12) had better solubilities and PAMPA permeabilities than 47. This was attributed to 

the presence of the H bonding N-alkylaminosulfonyl side chain. Unfortunately, the side chain 

was a likely metabolic hotspot, thus rendering analogs like 3-12 more susceptible to 

microsomal metabolism. On the other hand, 3-12 and other benzylidene indolinones were not 

toxic or mutagenic and did not form aggregates at pharmacologically relevant concentrations. 

3-12 was well tolerated in mice up to a dose of 60 mg/kg (IP, twice weekly for 2 weeks).  

Taken together, the investigations reported in this thesis reinforced the notion that it was 

possible to improve on the growth inhibitory potencies and drug-like properties of 47 by 

structural modification. These findings provide a useful platform for future investigations 

which should focus on more extensive structural elaboration of the scaffold to enhance 

activity and drug-like profiles. 

 

 



 

xii 
 

Abbreviations List 

AceCS1 Cytoplasmic acetyl-coa synthetase exist in the cytoplasm 
AceCS2 Cytoplasmic acetyl-coa synthetase exist  in mitochondria 
Akt Protein kinase B 
APE1 Apurinic/apyrimidinic endonuclease-1 
Bad Bcl-2-associated death promoter 
Bak Bcl2-antagonist/killer 
BAX Bcl-2-associated X protein 
Bcl-2 B-cell lymphoma 2 
Bcl-xl B-cell lymphoma-extra large 

c-Met Cell surface protein-tyrosine kinase receptors for hepatocyte 
growth factor 

CPS1 Carbamoyl phosphate synthetase 1  
E2F1 E2F transcription factor 1 
EGFR Epidermal growth factor receptor 
Era Estrogen receptor a 
Erk Extracellular signal-regulated kinases 
FOXO Forkhead box O 
FXR Farnesoid X receptor 
GAL Galanin receptor 
GDH  Glutamate dehydrogenase 
GRB2 Growth factor receptor-bound protein 2 
GSK-3β Glycogen synthase kinase 3 beta 
HER Human epidermal growth factor receptor  
HIF Hypoxia-inducible factors 
IGFR Insulin-like growth factor receptor 
IL-8 Interleukin 8  
JAK Janus kinase 
LXR Liver X receptor  
MAPK Mitogen-activated protein kinases 
Mcl-1 Myeloid cell leukemia 1 
Mek Mitogen activated protein kinase kinase 
mTOR Mammalian target of rapamycin 
NBS1 Nijmegen breakage syndrome protein 
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells 
PCAF  P300/CBP-associated factor 
PDGFR Platelet-derived growth factor receptor 
PER2 Period 2 
PGC1a Proliferator-activated receptor c coactivator 1 α 
PI3K Phosphoinositide 3-kinase 
PIP3 Phosphatidylinositol 3,4,5-trisphosphate 
PPARγ Peroxisome proliferator-activated receptor gamma 
PTEN Phosphatase and tensin homolog 
Ras Rat sarcoma 
SMAD7 
(MADH7) Mothers against decapentaplegic homolog 

STAT Signal Transducer and Activator of Transcription 
SUV39H1 Suppressor of variegation 3-9 homologue  



 

xiii 
 

TERT Telomerase reverse transcriptase 
TGF-β Transforming growth factor beta 
TIP 60  Type 1-interacting protein with molecular weight at 60 kda 
TNF  Tumor necrosis factor alpha 
VEGFR Receptors for vascular endothelial growth factor 
WRN  Werner syndrome, recq helicase-like 
XPA/C Xeroderma pigmentosum group A/C 

 

  



 

xiv 
 

List of Figures 

Figure 1-1 Structure and nomenclature of sorafenib 

Figure 1-2: Modes of actions of sorafenib in HCC. 

Figure 1-3:  PI3K/Akt/mTOR pathway 

Figure 1-4. Cartoon illustrating epithelial mesenchymal transition. 

Figure 1-5:  c-Met signaling pathway in hepatocellular carcinoma. 

Figure 1-6: Substrates and products of sirtuin catalyzed deacetylation 

Figure 1-7: Mechanism of sirtuin-catalyzed deacetylation of lysine residues. 

Figure 1-8: Dual roles of SIRT 1 as tumor promoter and suppressor 

Figure 1-9:  Structures of benzylidene indolinones as sirtuin inhibitors 

Figure 1-10: Interactions of (A) SU 4984 and (B) SU 5402 with the FGFR1 hinge region. (C) 

Structure of adenosine triphosphate (ATP). 

Figure 1-11: (A) 3-(1H-Pyrrol-2-yl)methylene]indolin-2-one and (B) 3-

[phenyl(phenylamino)methylene]indolin-2-one scaffolds. 

Figure 1-12:  Structures of sunitinib,  torceranib , semaxinib, hesperadin and BIBF1120 

Figure 1-13: Intramolecular H bonding in (A) sunitinib and (B) BIBF1120 locked the 

exocyclic double bond in its Z configuration. (C) E and Z isomers exist in equilibrium in 

benzylidene indolinones.  (D) The pyrrolylmethylindolinone B5 has an E configuration due to 

the absence of intramolecular H bonding. 

Figure 1-14:  Structure activity relationships of indolinones with (A) pyrrolymethylene and (B) 

benzylidene at position 3 for inhibition of RTKs.  

Figure 1-15: Substituted phenyl(phenylamino)methylene indoline-2-ones. 



 

xv 
 

Figure 1-16:  Structures of Transforming Growth Factor β receptor 1 inhibitors V, VI and VII 

Figure 1-17:  E/Z-6-Chloro-3-[3-(trifluoromethyl)benzylidene]indolin-2-one (47) 

Figure 2-1: Benzylideneindolin-2-one scaffold with modifications made at R1, R2 and R3. 

Structure of 47 is given on the right. 

Figure 2-2: X-ray structure of Compound 6-6 

Figure 2-3:  1HNMR spectra (amide proton and aromatic protons only) of compound 47: (A) 

Freshly prepared in d6 DMSO and (B) After 12 hr of standing at room temperature (24oC), 

protected from light. 

Figure 2-4: 1HNMR spectra (amide proton and aromatic protons only) of compound 6-6: (A) 

Freshly prepared in d6 DMSO and (B) After 12 hr of standing at room temperature (24oC), 

protected from light.  

Figure 2-6: LC-MS spectrum of 47  

Figure 2-7:  LC-MS spectrum of 1-18  

Figure 2-8:  LC-MS spectrum of 6-6 

Figure 3-1: Dose response curves of determination of (A) IC50 and (B) GI50 of 5-9 on HuH7 

cells, 72 h incubation.   

Figure 3-2: Dose response curves of determination of (A) IC50 and (B) GI50 of 3-12 on HuH7 

cells, 72 h incubation.  

Figure 3-3: Comparison of IC50 values of benzylidene indolinones and 

phenyliminoindolinones.  

Figure 3-4: IC50 values of 47 and its N-substituted analogs 



 

xvi 
 

Figure 3-5: Representative figures showing FACS analysis of HuH7 cells treated with 47, 3-

12 and 5-1. 

Figure 3-6:  3-12 (A), 5-1 (B) and 8-7 (C) induced apoptosis in HuH7 cells as seen from the 

increased levels of apoptotic markers cleaved caspase 3 and cleaved PARP induced by 

incubation with these compounds. 

Figure 3-7: Graphical summary of the effect of substituents on growth inhibitory potency of 

benzylidene indolinones on HuH7 cells. 

Figure 3-8: Summary of major SAR findings for the growth inhibitory activity of benzylidene 

indulines on HuH7 cells. EW: Electron withdrawing. 

Figure 4-1 (A) Activity versus concentration of SIRT2 at different incubation times (15 min, 

30 min, 45 min) (B) Representative dose response curve of 5-1 on SIRT1 activity  

Figure 4-2: 5-1 induces hyper-acetylation of p53 and α-tubulin in (A) HepG2 and (B) HuH 7 

cells after 12 h incubation. 

Figure 4-3: 8-7 induces hyper-acetylation of p53 and α-tubulin in (A) HepG2 and (B) HuH7 

cells after 12 hr treatment. 

Figure 4-4: 5-1 decreased the expression of the pro-apoptotic protein Bax and increased the 

expression of anti-apoptotic proteins Bcl-2 and Bcl-xl in HuH7 cells. 

Figure 4-5: Cofactor NAD+ in SIRT2 pocket (PDB 3ZGV). 

Figure 4-6: Bond lengths between lactam moiety (NHCO) of indolinone ring and residues Tyr 

104 and Arg 97: 

Figure 4-7: The indolinone ring is stacked against the phenyl ring of Phe 96 and well 

positioned for ππ interactions. Illustrated with compound 2-7 



 

xvii 
 

Figure 4-8: Cation- π interactions between benzylidene ring B and guanidinium side chain of 

Arg 97 as shown in (A) Compound 3-12 and (B) Compound 5-6.  

Figure 4-9: Orthogonal multipolar interactions are formed between C-F bonds in 47 and 

guandinium side chain of Arg 97 and carbonyl O of Ser 263.   

Figure 4-10: H bonding between (A) sulfonyl O atoms of 3-12 and Arg 97, Ser 263. Phe 96; 

(B) Nitro O atoms of III and Ser 263. (C) Overlap of 3-12 and ADP ribose in sirtuin 2 binding 

pocket (PDB 3ZGV).  

Figure 4-11: (A) Overlap of top poses of representative Series 5 compounds (shown in 

different colors) in SIRT2 pocket. (B) Pose of Compound 5-7 shows H bonding of the lactam 

NH to amide carbonyl of Gln 167 and lactam CO to NH of imidazole in His 187. 

Figure 4-12 Overlap of best poses of compound 47, 8-7, 8-8 and 8-9. 

Figure 4-13: (A) 7-Cl of indolinone ring of Compound III is involved in halogen bond 

formation with carbonyl O of Phe 119. (B) 4-F of Compound 6-6 is oriented towards carbonyl 

O of Asn 168 (F- - -O 2.39 Å) and head on orientation is likely to be destabilizing. 

Figure 4-14: (A) Docking poses of 47Z (yellow) and 47E (green) in SIRT2 binding pocket.  

(B) Orientations of 47Z (yellow) and 47E (green) in SIRT2. 

Figure 4-15:  Docking poses of (A) Compound 47E in SIRT2 binding pocket. (B) Compound 

5-1E in SIRT2 binding pocket.  

Figure 4-16: Edge to face pp interactions (bracketed) between Ring B of 47 E and phenyl ring 

of Phe 235 

Figure 4-17:  Docking poses of (A) Compound 3-12 and (B) Compound III in SIRT2 pocket. 

Figure 4-18: Overlap of best poses of compound 8-7, 8-8 and 8-9 in SIRT 2 pocket. 

Figure 4-19: Summary of SAR for SIRT2 inhibitory activity. 



 

xviii 
 

Figure 5-1: Cartoon depicting the principle underlying the detection of phosphorylated RTKs 

in the Phospho-RTK Array Kit 

Figure 5-10: Docking pose of 47Z in the FGFR4 binding pocket. 

Figure 5-11: Docking pose of 47E in the FGFR4 binding pocket. 

Figure 5-12: Orientation of SU 4984 in (A) FGFR1 (PDB 1AGW) and (B) FGFR4 homology 

model. 

Figure 5-2: Coordinates of the antibody array 

Figure 5-3: Intensity of blots obtained from (A) untreated HuH7 cells and HuH7 cells treated 

with (B) 47 at 10 µM, (C) 3-12 at 0.5 µM and (D) 3-12 at 2 µM. 

Figure 5-4: (A) 3-12 reduced the phosphorylation of HER3 at Tyr1289 in HuH7 cells after 24 

h incubation. Total HER3 protein levels were unchanged under similar treatment conditions. 

(B) 3-12 reduced the phosphorylation of FGFR4 at all tyrosine sites in the protein. 

Figure 5-5: 3-12 reduced the phosphorylation of Akt in HuH7 treated cells (24 h, 37oC, 5% 

CO2). Phospho-Akt and total Akt levels were probed by Western blotting. Loading control 

was total Akt. p-AKt/Akt is the ratio of  the signal intensities of respective bands, normalized 

against the ratio obtained in untreated cells.  

Figure 5-6: Structure of SU 4984 (4-[4-(-2-oxo-1,2-dihydroindol-3-ylidenemethyl)-phenyl]-

piperazine-1-carbaldehyde) 

Figure 5-7: Docking pose of SU 4984 in the FGFR4 binding pocket. 

Figure 5-8: Docking pose of 3-12Z in the FGFR4 binding pocket. 

Figure 5-9: Docking pose of 3-12E in the FGFR4 binding pocket. 

Figure 6-1 Percentages of test compounds and positive control midazolam relative to initial 

amounts (t = 0) in rat liver microsomes on incubation at 37 °C for 5, 15, 30 and 45 min.  



 

xix 
 

Figure 6-2: Changes in (A) body weight, (C) % feed consumption and (C) % water 

consumption of Balb-c mice treated with 3-12 at 60 mg/kg, 50 mg/kg, and 30 mg /kg. 

Figure 7-1: Summary of major SAR findings for the growth inhibitory activity of benzylidene 

indolinones on HuH7 cells. 

  



 

xx 
 

List of Schemes 

Scheme 2-1:  General synthesis pathway for Series 1 to 7, 8-1, 8-3 and 8-7. 

Scheme 2-2: Knoevenagel reaction between benzaldehyde and malonic acid 

Scheme 2-3: Reaction sequences involved in synthesis of 3-formyl-N-substituted 

benzenesulfonamides   

Scheme 2-4: Reaction scheme for synthesis of 5,6-difluoro-oxindole 

Scheme 2-5 Syntheses of 1-methyl-oxindole and 6-chloro-1-methyl-oxindole 

Scheme 2-6: Syntheses of 1-methyl-oxindole and 6-chloro-1-methyl-oxindole 

Scheme 4-1:  Reaction involved in the sirtuin in vitro enzyme assay. 

  



 

xxi 
 

List of Tables 

Table 1-1 Major non-histone and non-chromatin substrates 

Table 1-2 Examples of biologically active indolinones 

Table 2-1: Structures, ClogP and estimated solubilities (pH 7.4)  of Series 1 compound 

Table 2-2 : Structures, ClogP and estimated solubilities (pH 7.4)  of Series 2 to Series 5 

compounds 

Table 2-3: Structures, ClogP and estimated solubilities (pH 7.4) of Series 6 and Series 7 

compounds 

Table 2-4: Structures, ClogP and estimated solubilities (pH 7.4) of Series 8 compounds 

Table 2-5: Configuration of Series 1-8 compounds based on chemical shifts and peak areas of 

ortho protons in fresh and aged samples analyzed by 1H NMR.  

Table 2-6 Optimized source-dependent and compound-dependent MS parameters. 

Table 3-1: IC50 of Series 1 compounds on HuH7 cells.  

Table 3-2: σm values and IC50 values of 3’-substituents on phenyl ring B of Series1 

Table 3-3: IC50 of Series 2, 3 and 4 compounds on HuH7 cells.   

Table 3-4: IC50 values of ring B 3’-substituents (R1) in Series 1-4 

Table 3-5: IC50 of Series 6 and 7 compounds on HuH7 cells.  

Table 3-6: IC50 values of ring B 3’-substituents (R1) in Series 1-4 

Table 3-7: IC50 values of Series 5 compounds. Mean ± SD for n= 3 determinations.  

Table 3-8: IC50 of Series 8 compounds on HuH7 cells. 

Table 3-9: IC50 of selected compounds on HepG2 and Hep3B cells. 



 

xxii 
 

Table 3-10: 3’Substituents in potent HuH7 and Hep3B compounds (IC50 ≤  1 µM) 

Table 3-11: IC50 of selected compounds on non-malignant human fibroblast cells IMR90 

Table 3-12: Selectivity ratios (SR) of potent compounds (IC50 values ≤  1 µM) against HuH7 

and Hep3B. 

Table 3-13:  Distribution of HuH7 into normal, apoptotic and necrotic categories on 

compound treatment, as assessed by FACS analysis. 

Table 4-1: Inhibition of SIRT2 and SIRT1 activities by potent HuH7 compounds (IC50 < 1 

µM) 

Table 4-2: Peak ratios of acetylated protein/total protein induced by test compound (5-1, 8-7) 

in HepG2 and HuH7 cells. 

Table 5-1: RTKs corresponding to the coordinates in the antibody array 

Table 5-2: Effects of 47 and 3-12 on the intensities of blots (determined by densitometry) 

corresponding to phosphorylated RTKs that were upregulated in untreated HuH7 cells. 

Table 6-1: Aqueous solubilities and effective permeabilities (Pe) of selected benzylidene 

indolinones  

Table 6-2: Estimated half-lives (T1/2) and clearance values of test compounds deduced from a 

plot of ln (% compound) versus time.  

Table 6-3 IC50 values of test compounds on mouse hepatocyte (TAMH) and mouse 

cardiomyocyte (HL-1) cells after 24 h incubation. 

Table 6-4:  Number of TA98 and TA 100 colonies observed in the presence of test 

compounds (1 mM, 10 µM) after 48 h of incubation. 

Table 6-5:  Dynamic light scattering (DLS) count rates of test compounds in phosphate buffer 

(pH 7.4) containing 1% DMSO 



 

1 
 

Chapter 1 Introduction 

1.1. Background of Hepatocellular Carcinoma (HCC): Epidemiology, risk 

factors and management 

Liver cancer is one of the leading causes of cancer deaths worldwide.1 The most common 

type of primary liver cancer is hepatocellular carcinoma (HCC) which accounts for 70%-85% 

of reported cases.2 HCC is particularly widespread in Asia and it was estimated that there 

would be at least a year 600 000 new cases by the year 2015.3 An analysis of a population-

based cancer registry in the United States of America from 1992 to 2004 showed that HCC 

incidence was highest among Asians, exceeding that of white Hispanics and Caucasians.4 

While host genetics may have played a role, there are other factors that are associated with the 

susceptibility of Asians to HCC. Foremost is the high incidence of chronic hepatitis B and 

hepatitis C infections in Asia.  Both viral hepatic infections are recognized as significant risk 

factors of HCC.4  Aflatoxin-B1 is another contributory factor. Consumption of aflatoxin B1-

conteminated grain is common in Asia due to climatic factors and poor food processing 

practices.  

HCC is an aggressive cancer characterized by high rates of recurrence and a poor 5-year 

survival record. Detection of HCC is based on serological markers (alpha-fetoprotein, des-

gamma-carboxy prothrombin)5 and screening by ultrasound6 but these methods are known to 

detect only about 69% of patients with early stage HCC (defined as 1 tumor or up to 3 

nodules < 3cm3 based on the  Barcelona Clinic Liver Cancer Staging Classification).7 Those 

not detected thus miss out on urgently needed early treatment. When diagnosed at its latter 

stages, surgical resection,8  liver transplantation9 and percutaneous ablation10 are first line 

treatment options. However, less than 30% to 40% of these patients are eligible due to the 

advanced stage of the disease.11  Standard chemotherapeutic agents (doxorubicin, cisplatin, 5-

fluorouracil) would then be deployed but outcomes were generally poor, largely due to the 
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increased expression of drug resistance genes and the nullifying effects of transporter/efflux 

proteins.12, 13 

1.2. Molecular targeted therapy for HCC 

A better understanding of the processes and signaling pathways that regulate proliferation, 

differentiation, angiogenesis, invasion and metastasis of tumors have led to the identification 

of target proteins that are key drivers of oncogenesis and which if intercepted, would suppress 

tumor growth or induce regression. The term “molecular targeted therapy” is used to describe 

this approach and it offers the promise of higher efficiency and less adverse effects compared 

to conventional chemotherapy. The “ideal” target should have the following characteristics: (i) 

Overexpressed in cancer cells but present at low or negligible levels in normal cells; (ii) 

Overexpression should be associated with disease initiation and progression. The corollary 

would be that inhibition of the target should halt or slow down the process; (iii) The target 

should be druggable, that is it can be easily screened for small molecule inhibitors or targeted 

by antibodies. Enzymes and membrane bound receptors are druggable targets.  

Viewed in this context, HCC is well placed for molecular targeted therapy. 

Hepatocarcinogenesis is a multistep process initiated by external stimuli that lead to genetic 

changes in hepatocytes or stem cells, proliferation and abnormal growth. As mentioned, HCC 

is strongly associated with chronic viral infections. The mechanisms by which the hepatitis B 

virus (HBV) and hepatitis C virus (HCV) induce malignant transformation of heptatocytes are 

illustrative. The viral protein HBx upregulates various oncogenes such as c-myc14, c-jun15 and 

transcription factors NF-kB.16 It stimulates pro-survival pathways like MAPK 17 and 

JAK/STAT18 and activates promoters of genes such as TGF-β19, EGFR20, and IL-8.21 In the 

case of HCV, the core protein upregulates Wnt-1 expression.22 Subcellular localization of the 

core protein had a moderating effect on p21, hence determining the fate of cells.23 
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1.3. Sorafenib as targeted therapy for advanced HCC 

 

Figure  1-1 Structure and nomenclature of sorafenib 

At present, only one drug – sorafenib- is available as a targeted therapy for advanced HCC. 

Sorafenib is a bi-aryl urea developed by the pharmaceutical companies Bayer and Onyx in 

1995. Its discovery was the outcome of high throughput screening of nearly 200 000 

compounds against a serine threonine kinase Raf1, made possible by the timely availability of 

a scintillation proximity assay. Raf1 is the first member of the prosurvival MAPK pathway 

which is upregulated in HCC.24 This pathway transduces extracellular signals from membrane 

bound tyrosine kinase receptors (EGFR, IGFR, PDGFR, c-MET) to the nucleus. Growth 

factor binding to these receptors initiates a sequence of events starting with receptor 

phosphorylation, activation of an adapter molecule complex (GRB2/SHC/SOS) and activation 

of the G protein Ras. Downstream from Ras is the family of Raf kinases (ARaf, BRaf, Raf1) 

which trigger a phosphorylation cascade that eventually leads to the transcription of genes 

that promote cell proliferation. In retrospect, the decision to target Raf was a timely choice 

because dysregulated Raf signaling was later found in  approximately 30% of cancers25 and in 

HCC, Raf is activated even in the absence of  oncogenic mutations.26 

Figure 1-2 summarizes the molecular mechanisms involved in the anticancer activity of 

sorafenib. Sorafenib inhibits tumor cell proliferation mainly through the inhibition of Raf 

kinases (BRaf, Raf1). Once inhibited, signaling down the MAPK pathway (Raf Mek  

Erk  Myc) is curtailed. Myc is involved in the transcription of cyclin D1 gene. As cyclin D1 

levels fall due to diminished Myc, cell proliferation slows down. Sorafenib also inhibits the 

tyrosine receptor kinases PDGFR and VEGFR which have important roles in promoting 
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angiogenesis. Due to the highly vascularized nature of HCC, the formation of new blood 

vessels delivering nutrients and oxygen is critical for continued tumor growth. Inhibition of 

PDGFR and VEGFR prevents Ras activation and consequently signaling down the MAPK 

pathway which is required for the transcription of angiogenesis-promoting genes.   

Besides intercepting cell proliferation and angiogenesis, sorafenib induces apoptotic cell 

death by inhibiting the translation of the prosurvival factor Mcl-1, a member of Bcl-2.  Mcl-1 

inhibits Bak, a protein that promotes apoptosis, but with less Mcl-1 protein, this inhibition is 

lifted and apoptotic cell death ensues.  

 

Figure  1-2 Modes of actions of sorafenib in HCC. 

1.3.1. Resistance to sorafenib treatment in HCC 

Clinical experience with sorafenib has shown that it increases mean survival time by 

approximately 3 months and it usually fails to induce remission of the disease. This is chiefly 

due to resistance brought about by the upregulation of certain prosurvival signaling pathways 

in the tumor, possibly to compensate for those inhibited by sorafenib.  These are described 

briefly in the following paragraphs: 
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The PI3K/Akt/mTOR pathway is involved in cell growth, survival regulation, metabolism and 

anti-apoptotis.27 PI3K is activated when growth factors like IGF and EGF bind to their cell 

surface receptors.28 PI3K subsequently produces the 2nd messenger PIP3 which then activates 

the serine threonine kinase Akt. Activated Akt phosphorylates several cytosolic proteins, 

notably m-TOR and Bad.29  Activated mTOR increases cell proliferation. Bad is normally 

present as a heterodimer with Bcl-2 and Bcl-xl (anti-apoptotic proteins) and when sequestered 

in the heterodimer, Bcl-2 and Bcl-xl are unable to prevent cytochrome c release through the 

mitochondrial pore which is required for apoptosis. When Bad is phosphorylated by Akt, it 

forms the Bad protein homodimer, thus freeing Bcl-2 which is now able to inhibit cytochrome 

c release, hence curtailing apoptosis.  Therefore, activation of the PI3K/AKT/mTOR 

enhances cell proliferation (via m-TOR) and inhibits apoptosis (via Bad). In non-malignant 

tissue, the PI3K/Akt/mTOR pathway is suppressed by PTEN which directs PIP3 for 

dephosphorylation.  In HCC, PTEN expression is diminished, resulting in the constitutive 

activation of the PI3K/Akt/mTOR pathway.30 The pathway is also activated by the higher 

expression of IGF and IGFR in HCC. Upregulation of Akt has been observed in sorafenib 

resistant HCC cell lines.31  

 

Figure 1-3:  PI3K/Akt/mTOR pathway 
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An increase in EGFR (a member of the human epidermal growth factor receptor HER) may 

also contribute to sorafenib resistance.32  EGFR contains an intracellular tyrosine kinase 

domain that can trigger transduction through the MAPK and PI3K/Akt/mTOR pathways. A 

combination of sorafenib and gefitinib, a drug that inhibits EGFR and HER2 was found to be 

more effective in inhibiting tumor growth in xenografts than either drug used singly.32  

 

Figure 1-4. Cartoon illustrating epithelial mesenchymal transition. 

Epithelial mesenchymal transition (EMT) is another factor contributing to sorafenib 

resistance. Briefly, EMT occurs when cells lose their polarity and adhesion properties. 

Constriction of the epithelial layer occurs and mesenchymal cells which have enhanced 

migratory and invasive properties are released (Figure 1-4).  Sorafenib is known to restrain 

EMT but not in resistant cells.33 

Sorafenib resistance has also been linked to autophagy which involves degradation of 

redundant or dysfunctional cellular components.34 Tumors that were treated with a 

combination of sorafenib and chloroquine (an inhibitor of autophagy) were suppressed to a 

greater extent than when treated with sorafenib alone.34 On the other hand, when sorafenib 

was combined with an antifolate pemetrexel that stimulates autophagy, suppressed tumor 

growth was observed.35 Autophagy may promote cancer growth by providing cells with 

needed nutrients in the face of cellular stress and increased metabolic demands.36 It also 

suppresses tumor growth by removing damaged organelles and proteins, hence limiting cell 
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growth and genomic instability.37 Hence, the role of autophagy in cancer remains 

controversial. 38 

Besides the aforementioned signaling pathways, c-Met and the canonical WNT/ β catenin 

pathways are also upregulated in HCC and may elicit resistance.  

Overexpression of c-Met is prevalent in HCC where it is linked to diminished survivability.28  

C-Met is the tyrosine kinase receptor for the HGF ligand. When activated, it ultimately 

triggers downstream effectors in the prosurvival pathways MAPK, PI3K/AKT/mTOR and 

JAK1/STAT (Figure 1-5). 

 

Figure 1-5:  c-Met signaling pathway in hepatocellular carcinoma. 

Abnormal regulation of the transcription factor β-catenin which is a key component of Wnt 

signaling is associated with HCC linked to viral hepatitis (HBV, HCV).39, 40Viral infection 

induce mutations of β catenin, possibly via the core proteins of the virus.39, 41 It is proposed 

that β catenin mutation triggers Wnt/ β catenin signaling by stabilizing β catenin, leading to 

its translocation to the nucleus where it activates genes involved in cell proliferation.41 
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1.4. Other molecular targeted therapies for HCC 

Several targeted therapies for HCC have followed in the wake of sorafenib.  Sunitinib42 and 

linifanib43 are inhibitors of VEGFR and PDGFR but failed to prolong  overall survivability in 

phase III clinical trials. Brivanib44 inhibited VEGFR, PDGFR, and FGFR and had an 

improved objective response rate and time-to-progression (time to progression refers to the 

period starting from the point of diagnosis to the point when the cancer deteriorates or 

undergoes metastasis) compared to sorafenib.  The EGFR inhibitor erlotinib when used in 

combination with sorafenib in a Phase III clinical trial of advanced HCC improved overall 

survivability to a limited degree.45 c-Met is overexpressed in about 20-48% of HCC patients. 

These patients typically displayed an aggressive phenotype, had poor prognosis and low 5-

year survival rates.28, 46 Tivantinib, a c-Met inhibitor, was particularly effective in this group 

of patients. It lengthened the time to progression and improved overall survival compared to 

placebo in a Phase II trial.47 Not surprisingly, it was only modestly effective in HCC patients 

that do not exhibit c-Met overexpression.47 Other c-Met inhibitors failed to exhibit superior 

efficacies compared to sorafenib.48  

mTOR inhibitors have also been investigated for their therapeutic efficacy in HCC. 49 The 

most widely investigated mTOR inhibitor is everolimus, However it failed to extend overall 

survival compared to placebo when given to patients who had advanced or metastatic HCC or 

who were not suited for sorafenib treatment.50 Another mTOR inhibitor sirolimus was found 

to be toxic and prematurely terminated at phase II.51  

Taken together, the somewhat disappointing clinical outcomes with kinase inhibitors designed 

to be targeted therapeutic agents draw attention to the limitations of the target-based 

strategy.52 Most cancer cells are reliant on a relatively small number of “driver genes” that 

initiate tumorigenesis, sustain aberrant proliferation and bring about metastasis. Targeting 

these driver genes and their protein products would enhance the likelihood of success but the 

task of identifying and validating these genes remain daunting. Thus, the success of targeted 
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therapy is highly reliant on the selection of the appropriate target protein. However, it is 

highly unlikely that a compound acts exclusively on one target. A reasonable expectation 

would be selective activity on the desired target that would translate to minimal adverse 

effects when the agent is employed in the clinics. Unfortunately, most hit compounds are 

screened on a limited number of in vitro assays which cannot provide the comprehensive 

information needed to understand their activities on a disease model. Thus, many off-target 

effects remain undetected at the stage of screening/lead optimization, only to surface with 

devastating consequences at the later stages of clinical trials. Furthermore, compounds that 

have potent in vitro activity do not necessarily retain potent activity in vivo, usually due to 

pharmacokinetic liabilities. This is a common problem encountered in drug development. 

Therefore potent compounds against HCC are still required, in spite of the many potent target 

based kinase inhibitors that are currently available. 

1.5. Sirtuins as emerging therapeutic targets for HCC 

sirtuins are an ancient family of proteins with a highly conserved structure and function that is 

maintained in all forms of life.  The first member of this family to be identified was Sir2 

(silent mating-type information regulator 2) in yeast. It is a histone deacetylase and causes 

chromatin silencing.53 Interest in Sir2 grew when it was shown that in lower organisms, 

delivering more Sir2 gene resulted in an extension of lifespan.54 

Seven mammalian homologs of Sir2 (sirtuins) have been identified. They are found in 

different subcellular compartments: nucleus (SIRT 1, 6, 7), cytosol (SIRT 2) and 

mitochondria (SIRT 3, 4, 5). This is a reflection of the varied roles carried out by the different 

members in spite of their highly conserved structure and their common role as histone 

deacetylases involved in the deacetylation of lysine residues in histone and non-histone 

proteins. Unlike other HDACs that catalyze deacetylation through zinc mediated hydrolysis,55 

sirtuins are dependent on NAD for deacetylation. sirtuins cleave the glycosidic bond between 

the ADP-ribose and nicotinamide in NAD, and in the process, nicotinamide is released and 
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the acetyl group is transferred from lysine to ADP ribose to give O-acetyl ADP ribose (Figure 

1-6).56 The cleavage of NAD is reversible and the nicotinamide that is released is capable of 

binding to the enzyme again to regenerate NAD in a process called nicotinamide exchange. 

The latter may prevail over acetyl transfer, resulting in inhibition of the enzyme by 

nicotinamide.56-58  

 

  Figure 1-6: Substrates and products of sirtuin catalyzed deacetylation 

A more detailed look at the mechanism of the deacetylation reaction is given in Figure 1-7. 

The initial step involves nucleophilic attack of the acetyl oxygen at C1’ of the nicotinamide 

ribose to give a C1’-O alkylamidate intermediate with concurrent displacement of 

nicotinamide in an SN2-like reaction. The 3’OH group of the NAD+ ribose is activated by a 

conserved histidine residue at the active site. Consequently, the 2’OH is primed for an 

intramolecular attack on the azomethine linkage of the alkylimidate to give a 1’,2’- bicyclic 

intermediate which is then attacked by a base-activated water molecule to give deacetylated 

lysine and O-acetyl-ADP ribose (OAADPr).56, 59, 60 
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Figure 1-7  Mechanism of sirtuin-catalyzed deacetylation of lysine residues. 

Besides deacetylation, some sirtuins function as mono-ADP-ribosyltransferases, either 

exclusively (SIRT4) or in conjunction with deacetylase activity (SIRT 1-3,6). 61, 62 

1.5.1. Functions of sirtuins 

The substrates of sirtuin family fall into two categories: histones and non histones. The 

histone substrates are H4 acetylated on lysine 16 (H4K16),63-65  H3 acetylated on lysine 9 

(H3K9Ac),66 lysine 18 (H3K18)67 and lysine 56 (H3K56)68and H1 acetylated on lysine 26 

(H1K26).63 The most studied histone substrate is H4K16 which is deacetylated by SIRT 1, 2 

and 3.63-65   It is involved in maintaining DNA integrity,69  and cell cycle progression.70 

Hyperacetylation of H4K16 is recognized as a hall mark of cancer.71 H4K16 is deacetylated 

by SIRT1 during formation of constitutive and facultative heterochromatin,63 by SIRT 2 when 

SIRT 2 translocates to the nucleus during G2/M transition,64 and by a small population of 

nuclear SIRT 3.65  

The non-histone substrates are broadly classified into 6 groups based on their functional roles 

as transcription factors, DNA repair machinery elements, nuclear receptors, histone 

modifying enzymes, cell signaling molecules or metabolic enzymes in the mitochondrial 

matrix. Table 1-1 lists these substrates and their biological roles.  
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Table 1-1 Major non-histone and non-chromatin substrates 

Group    of protein 
substrate 

Name of the 
protein substrate 

sirtuin 
regulation 

Biological roles 

Transcription 
factors 

p53 SIRT 1,72, 73 
SIRT 2,74  
SIRT375 

Promoting cell survival; 
 Inhibition of senescence and apoptosis 

FOXO SIRT 176, 77,
SIRT 278, 79, 
SIRT 380 

Facilitating cell cycle progression; 
Reducing oxidative stress 
Promotion of cancer.  

 NF-kB SIRT 1,81 
SIRT 2 82  
SIRT 683 

Reducing NF-κB transcriptional activity 
and NF-κB-dependent gene expression ; 
Enhancing  apoptosis in response to 
TNFα 

c-MYC SIRT 1,84, 85 
SIRT 286 

Surpressing cell senescence, Inhibiting 
c-MYC induced apoptosis, and 
promoting cell proliferation 

HIF-1α,HIF-2α SIRT 1 ,87 
SIRT 688 

Impairing the hypoxic response of 
HCC; Promoting cell survival in 
hypoxic environment and nutrient 
deprivation 
 

E2F1 SIRT 189 Forming mutual loop of regulation of 
cell proliferation and cell cycle 

DNA repair 
machinery 
elements 

Ku 70 SIRT 190 , 
SIRT 391 

Mitigating the BAX-dependent intrinsic 
apoptosis pathway  

NBS1, APE1, 
XPA/C, & WRN 

SIRT 192-95 Maintaining genomic stability 

Nuclear receptors, 
circadian clock & 
related factors 

PGC1a, PPARγ, 
LXR, FXR, ERa, 
AceCS1& PER2 

SIRT 196-102 Regulation of fatty acid oxidation 
cholesterol and lipid homeostasis, 
glucose profiles during nutrient 
deprivation; Prolonging the life span 

Histone-modifying 
enzymes 

SUV39H1 SIRT 1103 Protecting the cell and genome in the 
oxidative stress 

p300 SIRT 1104, 
SIRT 2105 

Maintenance of heterochromatin 
structure 

TIP 60 & PCAF SIRT 1106, 107 Inhibiting the acetylation of p53 and 
apoptosis by inhibiting TIP 60  

Cell-signaling 
molecules 

STAT3 SIRT 1108 Stimulation of gluconeogensis by 
inhibiting Stat 3 

β-catenin SIRT1 109, 
SIRT 2110 

Promoting cell proliferation by 
inhibition of β-catenin 

SMAD7 SIRT 1111 Mitigating the TGF-β induced 
apopotosis by deacetylating SMAD7  

TNF SIRT 6112 Promoting cell migration 
Metabolic 
enzymes in 
mitochondrial 
matrix 

 CPS1 SIRT 5113 Regulation urea cycle 
GDH SIRT 3;114 

SIRT 4115 
Regulation TCA cycle 

 AceCS2 SIRT 3101 Promoting AceCS2 activity and 
metabolism 

 

The diversity of non histone substrates reflect the wide ranging regulatory roles of sirtuins in  

cellular metabolism, cell proliferation and differentiation, DNA damage and stress responses, 

genome stability, cell survival and  apoptosis.116 
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(i) c-Myc:  The c-Myc gene encodes a protooncogenic transcription factor that regulates cell 

proliferation, growth, apoptosis and stem cell self renewal. c-Myc binds to the SIRT1 

promoter and induces SIRT1 expression. However, SIRT1 deacetylates c-Myc and reduces its 

stability.121  

(ii) HIF: HIF1 and HIF2 are activated in cancer cells because of the chronically low oxygen 

levels in tumors. HIF1 activates many genes that promote angiogenesis, survival and glucose 

uptake. HIF-1α is the regulatory subunit of HIF1 and is subjected to post translational 

acetylation. SIRT1 deacetylates HIF1α and represses its tumor promoting properties. 122 

Cancer cells are known to reprogram their glucose metabolism by diverting it from 

mitochondrial oxidative phosphorylation to glycolysis (Warburg Effect).123 SIRT3 counteracts 

this switch by destabilizing HIF1α through downregulation of ROS.124, 125 

(iii) β-Catenin: SIRT1 downregulates the pro-growth transcription factor β-catenin by 

deacetylation. Overexpression of SIRT1 prevented the nuclear accumulation of β catenin.109 

There is a considerable body of evidence to support the tumor promoter activity of SIRT1.  

SIRT1 promotes the key features characteristic of cancers: resistance to cell death, sustaining 

proliferative signaling, evasion of growth suppression, induction of angiogenesis, activation 

of invasion and metastasis and deregulation of cellular energetic and tumor 

microenvironment.117, 126  The tumor suppressor p53 is the most widely known substrate of 

SIRT1. It is also a substrate of SIRT2 which has many common substrates to SIRT1.79, 127-130 

SIRT1 deacetylates lysine 382 on p53, thereby reducing its binding affinity for DNA and its 

ability to initiate transcription of downstream genes. Cells that would normally undergo 

apoptosis when challenged by DNA damage signals are thus able to bypass p53-mediated 

apoptosis.72, 73 This contributes to the ability of cancer cells to resist cell death and evade 

growth suppression.  SIRT1 promotes sustained proliferative signaling mainly through a 

positive feedback loop involving N-Myc and SIRT1.100 N-Myc induces the expression of 

SIRT1 which in turn deacetylates and stabilizes N-Myc, thereby promoting tumor growth. 



 

15 
 

1.5.3. Sirtuins in HCC 

1.5.3.1. SIRT 1 in HCC 

Several reports have surfaced in recent years to support a role for SIRT1 overexpression in 

HCC tumorigenesis. Significantly higher SIRT1 levels were found in HCC cell lines and 

patient derived tissues.131-134 In one study, SIRT1 overexpression surpassed that of other 

sirtuins in HCC cells.132 The elevated level of SIRT1 was attributed to a post translational 

event, since SIRT1 mRNA levels were not significantly increased in tumor vis-à-vis normal 

tissues.131, 133, 135 Silencing or inhibiting SIRT1 with small molecule inhibitors in HCC cells 

impaired proliferation, induced cellular senescence and apoptotic cell death.131, 132 These 

approaches when applied to orthotopic models reduced the tumor progression in animals.132 

Silencing SIRT1 was shown to sensitize HCC cells to doxorubicin, pointing to a potential 

therapeutic advantage of a sirtuin inhibitor-doxorubicin combination for SIRT1 

overexpressing tumors.131 Thus, there is proof of concept supporting the therapeutic potential 

of inhibiting SIRT1 in HCC.  Chen et al 131 proposed that telomeric dysfunction and genetic 

instability were the major factors contributing to the suppressed proliferation of HCC cells 

with silenced SIRT1. They found that SIRT1 silencing induced significant reductions in the 

expression of telomerase reverse transcriptase (TERT), an enzyme involved in adding back 

telomere repeats to chromosomes to prevent telomere shortening, and PTOP, a telomere-

binding protein essential for telomere protection.  Choi et al 134 noted that there was no 

correlation between p53 mutation status and expression levels of SIRT1 in HCC cell lines 

when probed by immunoblotting. Interestingly, they noted that Srt1 silencing in cells with 

wildtype p53 caused G1 arrest but this was not observed in cells with mutated p53. The 

relationship between p53 mutations and SIRT1 remains perplexing with contradictory 

findings from different investigators.136-138  

In contrast to the above mentioned reports that supported a tumor promoter role for SIRT1 in 

HCC, Srisuttee et al 139  reported that ectopic expression and enhanced activity of SIRT1 
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(stimulated by an activator, resveratrol) sensitized a HCC cell line that overexpressed the 

hepatitis B virus X protein (HBX) to oxidative stress-induced apoptosis. Conversely, when 

SIRT1 activity was suppressed, oxidative stress-induced apoptosis was diminished. Since 

these findings were made on a specially engineered cell line, it would be necessary to re-

confirm them in clinically relevant situations. 

1.5.3.2. SIRT 2 in HCC 

Dysregulation of SIRT2 has been reported in HCC.110, 140 SIRT2 was overexpressed in patient 

samples110, 140 and overexpression in primary HCC tumors was positively correlated to 

vascular invasion and adverse prognosis. 110 Functional studies showed that suppression of 

SIRT2 reduced cell motility and invasiveness, and hence diminished epithelial-mesochymal 

transition (EMT).110 The authors proposed a mechanistic role for SIRT2 in EMT, namely that 

SIRT2 regulated Akt deacetylation and activity and hence impinged on the GSK-3β/ β-

catenin signaling cascade which regulates EMT and cell migration. 

In summary, there is support for the view that SIRT1 and SIRT2 are oncogenic proteins that 

contribute to growth and progression in HCC. They may thus be potentially novel targets for 

therapeutic intervention. Peck et al 141 proposed that a clinically useful sirtuin inhibitor should 

inhibit both SIRT1 and SIRT2 to induce acetylation of p53 and cell death. This is a 

reasonable requirement since SIRT1 and SIRT2 are found in the same intracellular 

compartments (SIRT1 in nucleus, SIRT2 in cytosol) as most of the cell cycle and death 

regulators, besides having prominent roles in controlling cell growth and survival.  

1.5.4. Functionalized indolin-2-ones as sirtuin inhibitors 

6,7-Dichloro-3-substituted benzylidene indolin-2-ones (I-III)  have been reported to be SIRT2 

inhibitors (Figure 1-9).118  The authors investigated this scaffold because of an earlier report 

that identified an oxindole GW5074 as a SIRT2 inhibitor (> 60% inhibition at 12.5 uM), 

whose discovery arose from a screening exercise of known compounds that targeted enzymes 

or receptors that bind adenosine containing co-factors or ligands.142 Thus the screened library 
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contained a large number of kinase inhibitors (including indolinones). A follow study was 

carried out on a small series of compounds which were evaluated for SIRT1-3 inhibitory 

activity.143  Compounds I-III were identified as the most potent SIRT2 inhibitors in this series.  

 

Figure 1-9:  Structures of benzylidene indolinones as sirtuin inhibitors 

The functional relevance of sirtuin inhibition by I and II was confirmed when they were found 

to promote the hyperacetylation of α-tubulin,144 a substrate of SIRT2. A docking study using 

the human SIRT2 apoenzyme (PDB1J8F) was undertaken to rationalize the SIRT2 inhibitory 

activity of these compounds. Interestingly, the compounds docked into pocket C in the NAD+ 

binding site which was normally occupied by nicotinamide, and not pocket A which was the 

binding site of the adenine ring of NAD+. Thus functionalized oxindoles were unlikely 

adenosine mimetics, at least when competing with NAD+ for occupancy of its binding pocket.  

More recently, GW5074 was reported to inhibit the mitochondrial SIRT5 with an impressive 

IC50 of 19.5 µM.145 SIRT5 is unusual among sirtuins in that it has NAD+ dependent 

deacetylase as well as deacylase (demalonylase, desuccinylase) activities The biological 

significance of SIRT5 is unknown.117 GW 5074 was described as the “first pharmacological 

scaffold for development into SIRT5 specific inhibitors.” 

1.6. Functionalized indolin-2-ones as inhibitors of kinases  

The substituted indolin-2-one scaffold is outstanding for its success in yielding a large 

number of clinical candidates with receptor tyrosine kinase (RTK) inhibitory activity.   The 

privileged status of this scaffold was attributed to the ability of the indolin-2-one core to 

occupy a site (hinge region which connects the two kinase lobes) which binds the adenine of 

ATP whereas the  substituents attached to the indolin-2-one core contact residues in the 



 

18 
 

vicinity of the hinge region.146 This was demonstrated in the co-crystalized structures of 

FGFR1 with SU4984 and SU 5402 (Fig 1-10).146 The oxindole NH (N1) and carbonyl oxygen 

(O2) was H bonded to the backbone carbonyl of Glu562 and amide NH of Ala564 

respectively. Glu562 and Ala564 were found in the hinge region (residues 563 to 568) 

connecting the two lobes of FGFR1. The same back bond groups were H bonded to N1 and 

N6 of the ATP adenine. Thus, the indolinone ring may be considered to be bioisosteric to 

adenine.  

 

 

Figure 1-10: Interactions of (A) SU 4984 and (B) SU 5402 with the FGFR1 hinge region. (C) Structure 

of adenosine triphosphate (ATP). The docking poses of the two compounds were obtained from PDB 

files 1AGW146 and IFGI146 and displayed in a ligand interaction map using MOE (Ver 2011.10, 

Chemical Computing Group). 

SU5402 was found to selectivity inhibit FGFR1, compared to SU 4984. This was explained in 

part by two features in its docking pose in FGFR1.107 (i) The carboxyethyl group in SU 5402 

was H bonded to Asp568. Interestingly, this H bonding interaction was not possible in IGFR 

and PDGFR because the residue corresponding to Asn568 in these RTKs was the acidic Asp 

residue. Thus SU5402 was not an outstanding inhibitor of IGFR or PDGFR.  (ii) Phe489 on 

A B

C
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the nucleotide binding loop which was involved in ATP coordination, extended towards the 

indolinone ring, capping the hydrophobic pocket in which the indolinone ring was found. The 

latter caused the nucleotide binding loop to be advantageously well-ordered in the FGFR1-

SU5402 complex, but poorly ordered in FGFR1-SU4984 and FGFR1-ATP.   

Examination of the docking pose of co-crystalized SU 4984 in FGFR1 showed that the side 

chain of SU 4984 did not establish as many productive interactions as SU 5402.107 SU4984 

was however a more potent inhibitor of PDGFR than FGFR1.  Ala564 (present in FGFR1) 

was replaced by Cys564 in PDGFR. When cysteine was modeled in place of Ala564 in the 

FGFR1-SU4894 complex, it was advantageously positioned for a favorable interaction with 

the phenyl ring in SU4894, and this may explain the greater inhibition of PDGFR by SU4894.  

These findings highlighted the critical role played by ring substitution of the indolinone core 

in imparting selectivity and potency towards RTKs.   

Of the large number of indolin-2-ones that been evaluated for kinase inhibitory activity, two 

of the most successful scaffolds were 3-(1H-pyrrol-2-yl)methylene]indolin-2-one and 3-

[phenyl(phenylamino)methylene]indolin-2-one (Figure 1-11).  

 

Figure 1-11: (A) 3-(1H-Pyrrol-2-yl)methylene]indolin-2-one and (B) 3-

[phenyl(phenylamino)methylene]indolin-2-one scaffolds. 

The pyrrolylmethyleneindolinone scaffold was the core structure of kinase inhibitors 

developed by Pfizer (Sugen), of which sunitinib, torceranib and semaxinib are in clinical use 

(Figure 1-12). Boehringer Ingelheim focused on the phenyl (phenylamino) methylene indolin-

2-one scaffold and their leading compounds were BIBF1120 (Vargate®) and hesperidin 

(Figure 1-12).  
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Figure 1-12:  Structures of sunitinib,  torceranib , semaxinib, hesperadin and BIBF1120 

A shared feature of these two scaffolds was the retention of the Z isomer as the predominant 

(or only) isomer. This wass due to intramolecular H bonding as shown in Figure 1-13 (A,B) 

for sunitinib and BIBF1120.  
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Figure 1-13: Intramolecular H bonding in (A) sunitinib and (B) BIBF1120 locked the exocyclic double 

bond in its Z configuration. (C) E and Z isomers exist in equilibrium in benzylidene indolinones.  (D) 

The pyrrolylmethylindolinone B5 has an E configuration due to the absence of intramolecular H 

bonding. 

The Z isomer of indolin-2-ones was proposed to be the active isomer for inhibition of PDGFR 

and VEGFR. 147 The Z isomer was achieved in pyrrolylmethyleneindolin-2-ones by 

intramolecular H bonding as shown in sunitinib. In the case of benzylideneindolin-2-ones, 

there was no strict preference for the E or Z isomer because steric interactions occurred in 

both isomers (Figure 1-13C).147 Thus EZ isomers were in equilibrium. Sun et al147 cited an 

example of a benzylideneindoline whose binding configuration to VEGFR was Z but existed 

in the predominant E form in solution.108 They proposed that the E isomer would isomerize to 

the Z form before or during binding, and once bound, the EZ equilibrium would shift to give 

more of the Z form.  Inhibition would understandably be weaker for these compounds.   

The importance of the EZ configuration was further highlighted in B5, which is a 

pyrrolylmethyleneindolinone with an E configuration (Figure 1-13D). Intramolecular H 

bonding was not possible in B5 because the pyrrole ring was attached to the indolinone core 

at position 3’. B5 was a weak inhibitor of PDGFR, FGFR, VEGFR and other RTKs but an 

exceptionally potent inhibitor of CDK1 and CDK2.148 

Besides the pivotal role played by the EZ configuration of the exocyclic double bond, other 

features of the indolinone scaffold that affected PDGFR/VEGFR inhibition have been 

proposed.147 These are summarized separately for pyrrolylmethylene-indolinones and 

benzylideneindolinones in Figure 1-14. 
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Figure 1-14:  Structure activity relationships of indolinones with (A) pyrrolymethylene and (B) 

benzylidene at position 3 for inhibition of RTKs. 149 ED = Electron donating; EW = 

Electronwithdrawing. 

BIBF1000 and BIBF 1120 were substituted phenyl (phenylamino) methylene indolin-2-ones 

which inhibited the pro-angiogenic kinases VEGFR, PDGFR and FGFR (angiokinases).150  

The fore-runner of both BIBF1000 and BIBF 1120 was the 6-amido substituted indolinone IV 

(Figure 1-15) 

 

Figure 1-15: Substituted phenyl(phenylamino)methylene indoline-2-ones. 
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 Compound IV was a highly selective and potent (nanomolar) inhibitor of VEGFR2 and 

initial SAR identified the 6-amido (CONH2) substituent as a key contributor to inhibitory 

activity. Molecular docking of IV in the VEGFR2 binding pocket (a homology model) 

showed that besides the typical canonical H bonds between the lactam moiety and the hinge 

region, the 6-amido moiety was directed towards the specificity pocket of VEGFR2 which 

was flanked by the gatekeeper residues Val916 and Lys868. The docking pose showed H 

bonding between Lys868 and NH of the 6-amido side chain. Since the specificity pocket was 

lined by hydrophobic residues, analogs of IV were prepared in which the primary 6-amido 

was N-substituted to give secondary amides. Unfortunately, activity was lost with this 

modification but was paradoxically restored when small polar moieties such as 6-nitro and 6-

carboxymethyl were introduced. The 6-carboxymethyl moiety (an ester) proved to be 

surprisingly resilient to metabolic degradation and thus it was retained in subsequent lead 

modification approaches which eventually resulted in BIBF1120. BIBF1120 had a good 

pharmacokinetic profile and encouraging efficacy in xenograft models. Part of its in vivo 

efficacy was attributed to its sustained inhibition (up to 32 h) of VEGFR phosphorylation.  

 

Figure 1-16:  Structures of Transforming Growth Factor β receptor 1 inhibitors V, VI and VII 

Although the secondary amides of IV proved disappointing as angiokinase inhibitors,  they 

were subsequently found to be good lead structures for inhibition of Transforming Growth 

Factor β receptor 1 (TGFβR1) which was sought after for the treatment of idiopathic 

pulmonary fibrosis and cancer.151 The most promising compounds to date were V, VI and VII 

(Figure 1-16). The structure of a representative member co-crystalized with TGFβR1 showed 

typical binding to the hinge residues in the ATP binding pocket (via the indolinone lactam) 
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while the 6-amido side chain was directed towards the specificity pocket flanked by 

gatekeeper residues Phe262 and Lys232, as observed for IV in the VEGFR2 pocket. The 

central phenyl moiety was found in the region that is normally occupied by ribose of ATP. 

The basic side chain on the adjacent phenyl ring projected towards the water phase and is thus 

a potential site for structural change. 

In spite of the extensive patent coverage of the indolinone scaffold, typified by the clinical 

candidates sorafenib and BIBF 1120, medicinal chemists have continued to undertake novel 

structural modifications of the scaffold and in some instances, to uncover unexpected targets 

and good potencies for their compounds. A brief summary is provided in Table 1-2. 

Table 1-2 Examples of biologically active indolinones 

               Compound structure Major targets Other remarks 

             

N

N

O

 

GAL 3 receptor antagonist 
152 

Feeding,metabolic 
regulation and  
noniception 

      
N
H

O

HO

CH3

H3CO
 

Unknown 153 Inhibited proliferation of  
MCF 7 and PC 3 cell lines  

N
H

O

N
H

N

N
N

Cl

C2H5

 

Angiokinase inhibitor 154 Acceptable PK and toxicity 
profile; 
effective in several 
xenograft model; 
 

N
H

O

N
H

O

N
H

O N(C2H5)2

F

 

VEGFR-2 
inhibitor 155 

G1 phase arrest and 
apoptosis of HCT116  
cells. 

N
H

O

N
H

O

H
N

S
O2

(H3C)2N

 

Aurora B kinase 
inhibitor 156 

Inhibited proliferation 
of HCT116 and HT29 cells
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H
N

O

N

NS

H3CO

  

Inhibitors of tubulin;
Inhibition of Akt  
Phosphorylation157 

Inhibited proliferation 
of HT-29; G2/M phase 
arrest  

N
H

O

N
HHN

H3C

C2H5
O

 

Irreversible Nek2 kinase 
inhibitor 158 

 

N
H

O

N
H

O2
S

H3C

CH3

NH
O

F

N(C2H5)2

FGFR2 inhibitor 159 Inhibit HUVEC tube 
formation 

1.7. Compound 47:  A multi-targeting kinase inhibitor with growth 

inhibitory effects on a panel of HCC cells.  

c 

Figure 1-17:  E-6-Chloro-3-[3-(trifluoromethyl)benzylidene]indolin-2-one (Compound 47) 

E-6-Chloro-3-(3-trifluoromethyl-benzyliden)-1,3-dihydroindol-2-one (Compound 47, Figure 

1-17) was first reported as an inducer of NAD(P)H quinone oxidoreductase I (NQO1), an 

enzyme widely monitored as a biomarker for cancer chemoprevention.160  It also exhibited 

low micromolar antiproliferative activity on malignant colon (HCT116) and breast (MCF7) 

cells. Subsequently, it was found to selectively curtail viability of HCC cell lines (HuH7 IC50 

0.5 µM; HepG2 IC50 0.6 µM) compared to non-malignant liver cells (THLE2, IC50 > 10 µM. 

Compound 47  repressed α-fetoprotein (AFP)  transcription in HuH7 cells which may imply 

that it intercepted regulatory pathways controlling AFP gene expression.  AFP is a tumor 

associated antigen that is silenced in normal hepatocytes but reactivated in HCC.  Yang et al 

have reported that silencing AFP expression induced growth arrest and apoptosis in HuH7. 161 

Compound 47 was screened for inhibition of phosphorylation of RTKs in HuH7 cells using a 

phosphor-RTK array.  It was found to suppress the phosphorylatin of IGF1R, Tyro3 and 

EphA2.  IGF1R was reported to control downstream cell cycling and cell death pathways in 

HCC. 162-164 There are fewer references to the oncogenic roles of Tyro3 and EphA2 in 
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HCC.165 166  Thus, they may be novel oncogenes in HCC.  The functional significance of the 

diminished phosphorylation of these RTKs was validated by gene silencing which abolished 

the cytotoxicity of 47 on HuH7. When 47 was administered  at 60mg/kg (weekly)  

intraperitonealy (IP) to mice bearing HCC xenografts, it suppressed the tumor burden to the 

same extent as sorafenib which was given at greater frequency (30mg/kg, daily, IP).  Taken 

together, 47 has a promising anticancer profile as shown from its potent and selective growth 

inhibitory effects on HCC cell lines, interception of prosurvival and proliferation  

mechanisms (angiogenesis, cell migration) and in vivo efficacy.  Notwithstanding its 

promising profile, 47 was a lipophilic molecule (ClogP 5.08) with poor aqueous solubility 

(0.08 μM or 0.03 μg /mL) when determined at 25oC, pH 7.4 after 24 h agitation.  Such 

physicochemical features are portents of poor oral bioavailability. The structure of 47 shows 

that it was exceptionally underfunctionalized compared to other biologically active 

indolinones (Figure 1-16). Its SAR as a RTK inhibitor (IGFR1, Tyro3, EphA2) and growth 

inhibitory agent has not been comprehensively explored and in the absence of such 

information, it would not be possible to undertake rational improvement of its activity profile. 

1.8. Statement of purpose 

The intent of this thesis is to explore the potential of functionalized benzylidene indolin-2-

ones for their anti-cancer activity on HCC. It is motivated by two related factors. 

First, the versatility and productiveness of the indolin-2-one scaffold yields analogs with 

potent growth inhibitory activities on a wide range of malignant cells. Furthermore, the 

structural diversity of functionalized analogs was matched by their ability to intercept varied 

kinase targets. The scaffold was clearly a validated privilege motif for kinase inhibition.  

There was also evidence of non-kinase targets of this scaffold, as shown by the SIRT2 

inhibitory activity of some benzylidene indolinones.  SIRT 1 and SIRT2 have been shown to 

promote HCC progression. Functionalization of the scaffold would undoubtedly play a key 

role in deciding target preference (kinase versus non-kinase). Dual or multiple targeting 
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members would be desirable given the problems posed by drug resistance in cancer 

chemotherapy when single agents or single-targeting agents are employed.  

Second, the candidate’s laboratory had contributed to the discovery of 47, a multi-kinase 

inhibitor with good in vitro and in vivo growth inhibitory activities on HCC.  Compound 47 

was identified though a process in which compounds were shortlisted on the basis of potency 

and selectivity on cell based assays and subsequently validated by in vitro kinase assays. This 

approach had the advantage of economy and addressed in part the problem of compounds that 

had potent in vitro kinase inhibitory activity but failed to adequately suppress malignant cell 

growth. Notwithstanding the promising activity profile of 47 in HCC, its poor aqueous 

solubility and underfunctionalized structure were of major concern.    

Thus, it was hypothesized that structural elaboration of compound 47 would provide a means 

of uncovering drug-like compounds with greater potency and selectivity on HCC. It was 

envisaged that the enhanced potency would arise from greater kinase or sirtuin inhibition, or 

possibly, through inhibition of both targets. While it was reasonable to anticipate analogs of 

47 to retain kinase inhibitory activity, the question remained as to whether the same kinases 

would be affected by the structural changes. The sirtuin inhibitory activity of 47 had not been 

explored.  Concurrent inhibition of kinase and non-kinase targets in the same molecule would 

be a novel finding with possible therapeutic potential.  Even if the investigations did not 

succeed in identify such a compound, the SAR established for sirtuin and kinase inhibition 

would help direct future medicinal chemistry efforts.  

To examine this hypothesis, a series of functionalized benzylidene indolinones that were 

structurally related to 47 and designed to have an improved solubility-lipophilicity balance 

were synthesized and characterized. The compounds were evaluated on a panel of HCC cell 

lines to establish structure activity requirements. The more promising analogs were evaluated 

separately for sirtuin and kinase inhibitory activity to assess their respective impact on the 

growth inhibition of HCC.  The aqueous solubility, permeability, in vitro metabolic 
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susceptibility and in vivo toxicity of selected compounds were also examined to determine if 

the design strategy employed here had met its desired objectives.  
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Chapter 2 Design and Synthesis of Target Compounds: 3-substituted 
Indolin-2-ones 

2.1. Introduction 

The design and synthesis of target compounds are described in this chapter. The compounds 

are functionalized benzylidene indolin-2-ones with broad structural resemblance to 47 (Figure 

2-1). Some of the compounds presented in this chapter were synthesized by Dr Yang 

Tianming (8-8, 8-9) and undergraduate students (1-25, 2-15, 2-16, 3-14, 4-17, 4-18, 5-9, 5-10, 

6-11, 6-12, 7-11 and 7-12) mentored by the candidate for their Honors Year Project.  

 

Figure 2-1: Benzylideneindolin-2-one scaffold with modifications made at R1, R2 and R3. Structure of 
47 is given on the right. 

2.2. Rationale of design 

115 compounds were synthesized and characterized by the candidate in the present study. Of 

these, 91 compounds were not reported when checked on SciFinder Scholar (December 2013). 

These compounds were organized into eight groups (Series 1-8), depending on the 

substitution of the indolinone Ring A.   

Series 1 compounds closely resembled 47 which is 1-10 in Table 2-1. These compounds 

retained the 6-Cl substituent of 47 on Ring A but had different substituents on the benzylidene 

Ring B. The ClogP (5.08) and estimated solubility (3.4 µM) of 47 indicated that it was a 

lipophilic molecule with poor solubility.  Lipophilic compounds are arguably promiscuous in 

their choice of targets and associated with a higher incidence of nonspecific toxicity. 167 Poor 

solubility in a compound would hamper its passage across biological membranes and lead to 

limited oral absorption.  Thus, a key motivation of the design strategy was to improve the 

drug-like profile of 47. One approach was to replace the lipophilic trifluoromethyl (CF3) with 
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less lipophilic groups. To this end, the electron withdrawing and lipophilic CF3 of 47 was 

replaced by polar H bonding groups cyano (CN), methanesulfonyl (MeSO2-),  

aminosulphonyl (NH2SO2-), N-alkylaminosulfonyl (RNH2SO2-), methoxy (MeO-) and 

methanesulfonylamino (MeSO2NH-) which were electron withdrawing, and which methyl 

(Me-) was electron donating. Non-H bonding groups that were less lipophilic than CF3 (π 

0.88) were also included and these were methyl Me (π 0.56), chloro Cl (π 0.71) and fluoro F 

(π 0.14).168 A more lipophilic substituent trifluromethoxy CF3O- (π 1.04) was also included as 

activity might be dependent on a lipophilic entity. CF3O is electron withdrawing and likely to 

be a poor H bond acceptor. 

The estimated lipophilicities (clogP) and aqueous solubilities of the Series 1 compounds are 

given in Table 2-1.  As anticipated, except for compounds bearing CF3O (1-13 to 1-15) and 

the regioisomers of 47 (1-9, 1-11), the other compounds were less lipophilic (lower ClogP 

values) and more soluble than 47.  

Table 2-1: Structures, ClogP and estimated solubilities (pH 7.4)  of Series 1 compound 

 
No R1 Clog Pa Estimated

solubility
(µM)b 

No R1 Clog 
Pa 

Estimated
solubility 

(µM)b 
1-1 H 4.2 27 1-14 3'OCF3 5.23 2.8 
1-2 2'F 4.34 11 1-15 4'OCF3 5.23 3.1 
1-3 3'F 4.34 8.9 1-16 3'SO2Me 2.56 15 
1-4 4'F 4.34 6.3 1-17 3'SO2NH2 2.36 25 
1-5 3'Me 4.7 12 1-18 3'SO2NHMe 2.98 39 
1-6 2'OMe 4.12 14 1-19 3'CN 3.63 7.9 
1-7 3'OMe 4.12 17 1-20 3'SO2NMe2 3.4 27 
1-8 4'OMe 4.12 19 1-21 4'SO2NHMe 2.98 43 
1-9 2'CF3 5.08 3.3 1-22 3'SO2NHEt 3.3 18 

1-10 (47) 3'CF3 5.08 3.4 1-23 3'SO2NHPr 3.76 7.9 
1-11 4'CF3 5.08 3.1 1-24 3'SO2NHiPr 3.76 8.9 
1-12 3'4'F 4.41 2.1 1-25c 3'NHSO2Me 3.01 51 
1-13 2'OCF3 5.23 2.3     

a   Estimated from ChemDraw Ultra 7.0. Compounds with large ClogP values are more lipophilic. b 
Estimated values from ACD Labs Version 12.00, Toronto, Canada. c Not synthesized by candidate. 

The 6-Cl on the indolinone Ring A of 47 was replaced by 5-Cl in Series 2, 6-F in Series 3, 5-

F in Series 4 and 6-MeO in Series 5. As F and MeO have lower π values than Cl, Series 3,4 
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and 5 compounds were expected to be more polar than their Series 1 counterparts. The 

estimated ClogP and solubility values in Tables 2-2 supported this notion.  The position 5 

regioisomers of 6-Cl and 6-F were also explored to determine if there was a positional 

preference for activity. It should be noted that not all the benzylidene Ring B substituents in 

Series 1 were investigated in Series 2-5. Notably, the positional isomers of MeO-, CF3O- and 

NH2SO2- groups were not explored. In addition, only the N-methylaminosulfonyl substituent, 

and not other N-alkyl substituents, was investigated. 

Table 2-2 : Structures, ClogP and estimated solubilities (pH 7.4)  of Series 2 to Series 5 compounds 
Series 2 

N
O

H

R1

A

B

Cl

 

No R1 Clog Pa 
Estimated 
solubility 

(µM)b 
No R1 Clog Pa 

Estimated 
solubility 

(µM)b 
2-1 H 4.2 28 2-9 3'4'F 4.41 7.2 
2-2 2'F 4.34 11 2-10 3'OCF3 5.23 3.0 
2-3 3'F 4.34 9.3 2-11 3'SO2Me 2.56 15 
2-4 4'F 4.34 6.6 2-12 3'SO2NH2 2.36 26 
2-5 3'OMe 4.12 18 2-13 3'CN 3.63 8.2 
2-6 2'CF3 5.08 3.4 2-14 3'SO2NHMe 2.98 41 
2-7 3'CF3 5.08 3.5 2-15c 3'SO2NHPr 4.03 8.3 
2-8 4'CF3 5.08 0.6 2-16c 3'NHSO2Me 3.01 54 

Series 3 

N
O

H

R1

A

B

F
 

No R1 Clog Pa 
Estimated 
solubility 

(µM)b 
No R1 Clog Pa 

Estimated 
solubility 

(µM)b 
3-1 H 3.63 54 3-8 3'OCF3 4.66 5.5 
3-2 2'F 3.77 21 3-9 3'SO2Me 1.99 28 
3-3 3'F 3.77 18 3-10 3'SO2NHMe 2.41 76 
3-4 4'F 3.77 12 3-11 3'SO2NHEt 2.93 34 
3-5 2'CF3 4.51 6.3 3-12 3'SO2NHPr 3.46 15 
3-6 3'CF3 4.51 6.6 3-13 3'SO2NHiPr 3.46 17 
3-7 4'CF3 4.51 6.1 3-14c 3'NHSO2Me 2.44 98 
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Series 4 

 
No R1 Clog Pa Estimated 

solubility 
(µM)b 

No R1 Clog Pa Estimated 
solubility 

(µM)b 
4-1 H 3.63 48 4-10 3'CF3 4.51 5.8 
4-2 2'F 3.77 18 4-11 4'CF3 4.51 5.4 
4-3 3'F 3.77 16 4-12 3'4'F 3.84 3.6 
4-4 4'F 3.77 11 4-13 3'OCF3 4.66 4.9 
4-5 2'Me 4.13 21 4-14 3'SO2Me 1.99 25 
4-6 3'Me 4.13 21 4-15 3'CN 3.06 14 
4-7 4'Me 4.13 21 4-16 3'SO2NHMe 2.41 67 
4-8 3'OMe 3.54 30 4-17c 3'SO2NHPr 3.46 13 
4-9 2'CF3 4.51 5.6 4-18c 3'NHSO2Me 2.44 88 

Series 5 

 

No R1 Clog Pa Estimated 
solubility (µM)b No R1 Clog Pa 

Estimated 
solubility 

(µM)b 
5-1 H 3.31 81 5-6 3'CF3 4.19 10 
5-2 2'F 3.45 31 5-7 4'CF3 4.19 9.4 
5-3 3'F 3.45 26 5-8 3'SO2NHMe 2.08 120 
5-4 4'F 3.45 19 5-9c 3'SO2NHPr 3.14 25 
5-5 2'CF3 4.19 9.8 5-10c 3'NHSO2Me 2.11 150 
a   Estimated from ChemDraw Ultra 7.0. Compounds with large ClogP values are more lipophilic. b 
Estimated values from ACD Labs Version 12.00, Toronto, Canada. c Not synthesized by candidate. 

Series 6 and 7 were difluoro benzylidenindolinones (Table 2-3). The indolinone ring A was 

4,5-di-fluoro substituted in Series 6 and 5,6-di-fluoro substituted in Series 7.  Sun et al 

reported that the exocyclic double bond in the scaffold existed in an equilibrium of E and Z 

forms.147 They noted that when the indolinone Ring A was substituted at position 4 (as in 

Series 6), the Z isomer predominated because the steric interactions between the substituted 

C4 position and the ortho H of ring B in the E isomer were stronger than the interactions 

between the indolinone carbonyl (C=O) and the ortho H of Ring B in the Z isomer. Thus, it 

was reasoned that Series 6 compounds should be predominantly Z, while Series 7 compounds 
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would exist as E/Z mixtures.  Thus, these two series would provide insight on the role of E/Z 

isomerism on growth inhibitory activities. Caveats are that a 4-F group may not be 

sufficiently bulky to completely displace the E/Z equilibrium towards the Z isomer as F is 

small and widely considered an isostere of hydrogen. On the other hand, while a larger group 

could have a greater impact on the E/Z equilibrium, it would also cause a greater than desired 

increase in lipophilicity.  Second, substitution at C4 had been noted to adversely affect 

inhibitory activities against PDGFR and VEGFR.147 The underlying cause of this negative 

impact may be stereochemical (displacement of E/Z equilibrium towards Z) or due to other 

factors such as an effect on electron density. Hence, loss of activity among Series 6 

compounds may not necessarily be due to stereochemical factors.  

Table 2-3: Structures, ClogP and estimated solubilities (pH 7.4) of Series 6 and Series 7 compounds 
Series 6 

 
No R1 Clog P1 Estimated 

solubility (µM)2 No R1 Clog P1 Estimated 
solubility (µM)2

6-1 H 3.79 8.7 6-7 4'CF3 4.68 0.98 
6-2 2'F 3.94 3.3 6-8 3'OCF3 4.82 0.90 
6-3 3'F 3.94 2.8 6-9 3'SO2Me 2.15 4.6 
6-4 4'F 3.94 2.0 6-10 3'SO2NHMe 2.57 12 
6-5 2'CF3 4.68 1.0 6-11 3'SO2NHPr 3.63 2.5 
6-6 3'CF3 4.68 1.1 6-12c 3'NHSO2Me 2.60 18 

Series 7 

 
No R1 Clog P1 Estimated 

solubility (µM)2 No R1 Clog P1 Estimated 
solubility (µM)2

7-1 H 3.79 22 7-7 4'CF3 4.68 2.5 
7-2 2'F 3.94 8.6 7-8 3'OCF3 4.82 2.3 
7-3 3'F 3.94 7.3 7-9 3'SO2Me 2.15 12 
7-4 4'F 3.94 5.1 7-10 3'SO2NHMe 2.57 32 
7-5 2'CF3 4.68 2.6 7-11c 3'SO2NHPr 3.63 6.4 
7-6 3'CF3 4.68 2.7 7-12c 3'NHSO2Me 2.60 45 
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a   Estimated from ChemDraw Ultra 7.0. Compounds with large ClogP values are more lipophilic. b 
Estimated values were from ACD Labs Version 12.00, Toronto, Canada. c Not synthesized by 
candidate. 

Series 8 was designed to investigate the structure activity relationship (SAR) at the exocyclic 

methine (C=C) bond and the indolinone nitrogen (N1) (Table 2-4).  The exocyclic double 

bond (C=C) was modified to an azomethine (C=N) to give 3-phenylimino indolin-2-ones. E/Z 

isomerism was present in this scaffold but as reported by others, 152 the EZ isomers were not 

readily separated.  As seen from the ClogP and solubility values (Table 2-3), 

phenyliminoindolinones were polar compounds. It should be noted that the azomethine N is a 

weak base (estimated pKa 1.2) and unlikely to be a strong H bond acceptor.  Modifications at 

the indolinone N involved N-substitution with groups of increasing size, namely methyl, ethyl 

and benzyl.  

Table 2-4: Structures, ClogP and estimated solubilities (pH 7.4)  of Series 8 compounds 
Series 8 

 
No R2 R3 X Clog P1 Estimated 

solubility (µM)2

8-1 H H CH 4.11 14 
8-2 H H N 3.53 28 
8-3 H Me CH 4.79 19 
8-4 5Cl H N 4.25 7.3 
8-5 5F H N 3.68 30 
8-6 6Cl H N 4.25 6.8 
8-7 6Cl Me CH 5.64 4.5 
8-8c 6Cl Et CH 6.17 2.1 
8-9c 6Cl Bn CH 6.94 0.08 

 a   Estimated from ChemDraw Ultra 7.0. Compounds with large ClogP values are more lipophilic. b 
Estimated values were from ACD Labs Version 12.00, Toronto, Canada. c Not synthesized by 
candidate. 
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2.3. Chemical considerations 

2.3.1. Syntheses of benzylidene indolinones of Series 1-8 

This section describes the syntheses of target compounds by the candidate. Compounds that 

were synthesized by other members of the group (1-25, 2-15, 2-16, 3-14, 4-17, 4-18, 5-9, 5-10, 

6-11, 6-12, 7-11, 7-12, 8-8, and 8-9) are described in Appendix II.  

The benzylidene indolinones of Series 1-8 were synthesized by a Knoevenagel reaction 

between a benzaldehyde and an oxindole (Scheme 2-1).   

Scheme 2-1 : General synthesis pathway for Series 1 to 7, 8-1, 8-3 and 8-7.  

N
R2 O +

CHO

R1

N
OR2

R1

R3

R3

a

Reagents and conditions: (a) piperidine (cat.), ethanol, microwave, 140℃, 15 min.

4
5

6
7

2'

3'4'

  

The classical Knoevenagel reaction is a base-catalyzed reaction between an aldehyde or 

ketone and malonic acid (Scheme 2-2). The characteristic feature of the reaction is the 

presence of two electron-withdrawing groups flanking the methylene in the carbanion-

forming reactant (malonic acid) which allows the condensation to be effected by weaker bases 

than those used in conventional aldol condensations.  Condensation is followed by 

dehydration to give the αβ unsaturated dibasic acid which is decarboxylated to give cinnamic 

acid as product. 

Scheme 2-2: Knoevenagel reaction between benzaldehyde and malonic acid 

CHO
+

HO

O

OH

O

Piperidine

OH

O OH

O

OH

-H2O

O OH

O

OH -CO2

O

OH
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In the present context, the oxindole is the carbanion-forming reactant (Scheme 2-1). The 

acidic methylene of the oxindole is flanked by the electron-withdrawing amide carbonyl and 

the sp2 hybridized carbon of the indolinone Ring A, so it broadly resembles the carbanion-

forming malonic acid in the classical Knoevenagel reaction. The condensation was carried out 

in the presence of piperidine as base catalyst. Piperidine has two important roles in this 

reaction. First, it promotes the formation of the resonance stabilized C3 carbanion on the 

oxindole by facilitating deprotonation of the enolic OH.  

N
H

O
N
H

O

N
H

O

N
H

O
B

Oxindole (keto) Oxindole (enol)

Enolate anion

H

 

Second, piperidine enhances the electrophilicity of the carbonyl carbon on the benzaldehyde 

by forming an iminium intermediate. 

H

Ph

O
N

N
OH

H
Ph

-OH- N
H

Iminium intermediate

H

Ph

 

Hence, the benzaldehyde is primed for reaction with the nucleophilic enolate anion . The 

resulting intermediate undergoes 1,2-elimination to give the 3-substituted indolin-2-one. 

N
Ph

H

N
H

O
N
H

Ph
H N

O

N
H

N
H

O

Ph
H

H
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2.3.2. Syntheses of 3-formyl-benzenesulfonamide and 3-formyl-N-

substituted-benzenesulfonamide 

These compounds were required for the synthesis of indolinone compounds with 

aminosulfonyl and N-substituted aminosulfonyl groups. The synthesis of 

formylbenzenesulfonamide started with the reaction of commercially available 3-

chlorosulfonylbenzoic acid and ammonia or other amines to give the sulfamoylbenzoic acid 

(or N-substituted sulfamoylbenzoic acid). The carboxylic acid was then reduced with borane-

THF to the corresponding alcohol and then oxidized to the aldehyde with pyridinium 

dichromate (Scheme 2-3)  

Scheme 2-3: Reaction sequences involved in synthesis of 3-formyl- N-substituted benzenesulfonamides   
O2
S

COOH

Cl

O2
S

COOH

NRR'

O2
S

CH2OH

NRR'

O2
S

CHO

NRR'

R=H, Me, Et, Pr, iPr

a b c

R'=H or Me  
Reagents and conditions:  (a) NH3, Me-NH2, Me2NH, Et-NH2, Pr-NH2, iPr-NH2 (4 eqv, amine, ), 0 deg 
C, 0.5 hr. (b) Borane/THF (1M), 25 deg C, 15 hr(c) Pyridinum dichromate (5 eqv), 25 deg C, 6 hr 

The sulfonamides were synthesized by reaction at the electrophilic sulfur by the nucleophilic 

ammonia or aliphatic amine. The acid HCl released in the course of reaction was neutralized 

by the excess amine present in the reaction pot.   

S

COOH

Cl

O O

NH3

S Cl
NH3

OO

COOH NH3

S Cl
NH2

OO

COOH

S
OO

COOH

-NH4 NH2

 
 
The reduction of the carboxylic acid moiety by borane proceeds by the formation of a 

triacylborate with evolution of hydrogen gas. The exact mechanism by which the reduction 

occurs has not been clearly established. A possible reaction sequence in given as follows: 169 

The reaction starts with the attack of boron by the π electrons in the p orbital of the carboxylic 

carbonyl (C=O), with loss of hydride as hydrogen gas. The reaction proceeds until all the H 

atoms of borane have been replaced by acyl groups. 
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Borane then attacks the carbonyl oxygen on one of the acyl groups in triacylborane. At this 

stage, the carbonyl carbon gains its first proton. Following subsequent reactions with borane 

and transfer of protons to the carbonyl carbon, reduction is complete and upon hydrolysis 

with water, the alcohol is liberated along with the formation of trihydroxyborane. 170 

The primary alcohol of the benzenesulfonamide was then oxidized to the aldehyde with 

pyridinium dichromate (PDC).  

 
PDC is not as acidic as CrVI reagents. In PDC, pyridinium (pKa5, a weak acid) is the acidic 

moiety. The mechanism of reaction is shown as follows:  

 

The dichromate ion from PDC forms HCrO4 – ions in water and these form chromate esters 

with the alcohol. The ester decomposes to release the aldehyde and chromous acid H2CrO3 

(Cr IV) which reacts with other chromium ions of different oxidation states to finally yield Cr 

III oxides, the final metal containing by-product.  

2.3.3. Synthesis of 5,6-difluoro-oxindole 

Scheme 2-4: Reaction scheme for synthesis of 5,6-difluoro-oxindole 
 

F

F NH2

+
Cl

Cl

O F

F N
H

O F

F N
H

O
a b

Cl

Reagents and conditions:  (a) Toluene, pyridine (1 eqv), 5 o C, overnight; (b) neat reaction, AlCl3 (4 
eqv), 220 o C, 4h. 
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5,6- Difluoro-oxindole, required  for the synthesis of Series 7, was  synthesized in a two-step 

reaction. The first step involved amide formation and the second step was a   Friedel-Crafts 

alkylation reaction. In the first step, chloroacetylchloride reacted with 3,4-difluoroaniline to 

form the 2-chloro-N-(3,4-difluorophenyl)acetamide.  The reaction involved an initial attack 

by the base catalyst pyridine on the acid chloride to give the reactive intermediate (2-chloro-

1-pyridin-1-yl-ethanone).  The carbonyl carbon of the latter was then attacked by the weakly 

nucleophilic aniline N of 3,4-difluroaniline to give the amide 2-chloro-N-(3,4-

difluorophenyl)acetamide. 

 

In the subsequent step, the Lewis acid aluminium chloride removed the chlorine atom from 

the amide to generate a terminal electrophilic carbonium ion. An aromatic electrophilic 

substitution takes place with intramolecular cyclization to give the indolin-2-one scaffold. 

FF

HN

O

Cl

AlCl3

FF

HN

O

Cl AlCl3

FF

HN

CH2
O

FF

HN

O

H
Cl

-HCl

HN

FF

O
 

2.3.4. Syntheses of 1-methyl-oxindole and 6-chloro-1-methyl-oxindole 

1-Methyloxindole and 6-chloro-1-methyloxindole were required for the syntheses of 8-3 and 

8-7 respectively.  N-Methylation of the oxindole N was achieved by deprotonation of the 

oxindole NH by sodium hydride followed by an SN2 reaction between the nucleophilic N and 

a methyl carbonium from dimethylsulphate. The reaction was facilitated by the good leaving 

group property of the sulphate anion of dimethylsulphate. 

Scheme 2-5 Syntheses of 1-methyl-oxindole and 6-chloro-1-methyl-oxindole 
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N
H

N
CH3

O O
R R

R= Cl or H

a

 

Reagents and conditions:  (a) Toluene, NaH (1 eqv), Me2SO4 (1 eqv), 100 oC, 2 h. 

2.3.5. Synthesis of 3-arylimino-2-indolones of Series 8 

Scheme 2-6: Syntheses of 1-methyl-oxindole and 6-chloro-1-methyl-oxindole 
 

N
H

R1 O +

NH2
N
H

OR1

N

O CF3

CF3

b

 

Reagents and conditions: (a) neat reaction, microwave, 140 o C, 15 min. 

The 3-arylimino-2-indolones of Series 8 (8-2, 8-4, 8-5, 8-6) were synthesized by a 

condensation reaction between the aniline and isatin to give an iminium salt which was the 

desired product. The nucleophilic aniline nitrogen attacked the electron deficient non-amide 

carbonyl carbon of isatin, followed by dehydration to give the arylimino product. 
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2.4. Assignment of configuration 

EZ isomerism is present in the 3-benzylideneindolin-2-ones.  The EZ isomers may be 

distinguished by the Nuclear Overhauser Effect (NOE).  In the E isomer, irradiation of the 

proton at C4 of Ring A leads to the NOE enhancement of signals attributed to the aromatic 

protons at the ortho positions 2’ and 6’ of Ring B. In the Z isomer, irradiation of the C4 

proton of Ring A results in the enhancement of the vinyl proton signal.  
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N
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O N
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E
Z

 

They are also distinguished by the chemical shifts of the ortho protons.147 In the Z isomer, the 

ortho protons on Ring B would be deshielded by the carbonyl group of the indolinone ring 

and hence appear at high ppm (downfield) than the ortho protons in the E isomer. In the E 

isomer, the ortho protons are shielded by aromatic protons of the indolinone ring A. Thus, 

analysis of the chemical shifts of the ortho aromatic protons of ring B is a useful means of 

distinguishing the E and Z isomers. Sun et al.147 reported that  the chemical shifts of  the ortho 

protons on ring B of the Z isomer were found at 8.53 -7.85 ppm and the chemical shifts of  the 

ortho protons on ring B of the E isomer were found upfield at 7.84-7.45 ppm .  

Zhang et al 6 reported that 47 and 3-6 were present as a mixture of E and Z isomers. 6 

However, when separated by column chromatography, they were found to comprise a major E 

isomer (ortho protons: 7.90-8.01 ppm) and a minor Z isomer (ortho protons: 8.4-8.5 ppm). 

When 47 and 3-6 were re-synthesized by the candidate, both E and Z isomers were also 

obtained but they could not be separated by flash column chromatography, possibly due to the 

small amounts of the minor isomer. The chemical shifts of the ortho protons in the major 

isomer were found at 7.90-8.01 ppm which agreed with the findings of Zhang et al.6 Based on 

chemical shift values, it was deduced that the major isomer in 47 and 3-6 was E.    

While this approach worked for 47 and 3-6 because they had been previously reported, it 

could not be applied to the newly synthesized compounds. This was because in spite of many 

attempts at separating the major and minor isomers by column chromatography, only the 

major isomer could be successively separated. To depend on the chemical shifts of only one 

(major) isomer for assignment of configuration, in the absence of the minor isomer, would not 

be entirely reliable.  



 

42 
 

To overcome this problem, another approach was considered. This was based on the tendency 

of benzylidene indolinones to reach an equilibrium of E and Z isomers in polar solvents such 

as methanol or DMSO or when exposed to light.147 Thus, it was reasoned that monitoring the 

NMR spectra of a freshly prepared sample in DMSO and the same sample after 12 h (aged 

sample) would provide clues on the dominant isomer in the freshly prepared sample. This was 

because the ortho protons of ring B generally had the highest chemical shifts among the 

aromatic protons.  If the aged sample showed additional peaks that were downfield of the 

original ortho protons, it would imply that the major isomer in the freshly prepared sample 

was E.  If the new peaks appeared upfield, then the major isomer in the freshly prepared 

sample was deduced to be Z. 

Besides the aforementioned changes in chemical shifts, certain characteristic changes were 

observed in the peak areas of the ortho protons relative to the lactam NH proton of the 

indolinone ring.  This is elaborated in the following paragraph.   

The lactam NH proton of the indolinone ring was observed at 10.00 ppm in the NMR spectra 

of freshly prepared DMSO solutions of 47 and 6-6.  The predominant forms of 47 and 6-6 

were E and Z respectively. The Z configuration of 6-6 was confirmed by X ray 

crystallography (Figure 2-2), which was anticipated since the C4 of 6-6 position was occupied 

by 4-F.  

 
Figure 2-2: X-ray structure of Compound 6-6 

 
The NH peak was used as a standard for integration and its area was assigned a value of 1.00. 

The chemical shifts of the ortho protons of 47 (freshly prepared) were found at 8.01 (peaks of 

the two protons overlapped) and their combined area (integrated against NH) was 2.24 
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(Figure 2-3 A). When the spectra was collected for the same solution 12 h later, two changes 

were observed: (i) Two “new” peaks appeared downfield from the original peak at 8.88 and 

8.46 ppm and (ii) the area of the original peak was decreased to 1.61 (Figure 2-3 B). 

 

 
Figure 2-3:  1HNMR spectra (amide proton and aromatic protons only) of compound 47: (A) Freshly 
prepared in d6 DMSO (B) After 12 hr of standing at room temperature (24oC), protected from light. 

(A) 

(B) 
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In the case of compound 6-6, the chemical shifts of the ortho protons were 8.76 and 8.33 ppm 

and their areas were 0.94 and 0.96 respectively (Figure 2-4 A). After 12 hr, new peaks were 

observed upfield from the original peaks and interestingly the areas of the original peaks 

diminished only slightly to 0.73 and 0.74 respectively (Figure 2-4 B).   

 
Figure 2-4: 1HNMR spectra (amide proton and aromatic protons only) of compound 6-6: (A) Freshly 
prepared in d6 DMSO 

 
Figure 2-4: 1HNMR spectra (amide proton and aromatic protons only) of compound 6-6: (B) After 12 
hr of standing at room temperature (24oC), protected from light.  

(A) 

(B) 
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Based on the changes in the spectra of 47 and 6-6 which were taken as representative E and Z 

isomers respectively, it was reasoned that the chemical shifts of the “new” peaks and the peak 

areas of the original ortho protons could be used to deduce if the original compound was 

predominantly E or Z. If it was E, the new peaks (Z isomer) would appear downfield and the 

peak area of the original ortho protons would decrease. If the original compound was Z, then 

the new peaks (E isomer) would appear upfield and the peak areas of the original ortho 

protons would show a smaller decrease.  The changes in the chemical shifts of the ortho 

protons could be explained by differential shielding/deshielding in the E and Z isomers. The 

changes in the peak area of the original ortho protons could be reflect the preference for E or 

Z isomer. Thus, when the E isomer was the dominant form (as in the fresh sample of 47), a 

large proportion of it was converted to the Z isomer with time, as seen from the decrease in 

the original peak area. But when the Z isomer was the dominant form (as in the fresh sample 

of 6-6), equilibration to the E isomer did not occur to the same degree, as reflected by the 

smaller decrease in peak area of the original ortho protons in the Z isomer.  

By monitoring changes in chemical shifts and peak areas of ortho protons in fresh and aged 

samples, the test compounds were classified into 3 categories: Category A ( predominantly E), 

Category B (predominantly Z) and Category C (no predominant isomer, mixture of E and Z). 

Compounds in these categories are listed in Table 2-5.   

Table 2-5: Configuration of Series 1-8 compounds based on chemical shifts and peak areas of ortho 
protons in fresh and aged samples analyzed by 1H NMR.  

Category A: E isomers  

 

No R1 R2 R3 No R1 R2 R3 

1-1 H 6Cl H 3-9 3'OCF3 6F H 

1-2 2'F 6Cl H 3-10 3'SO2Me 6F H 

1-3 3'F 6Cl H 3-11 3'SO2NHMe 6F H 

1-4 4'F 6Cl H 3-12 3'SO2NHEt 6F H 
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No R1 R2 R3 No R1 R2 R3 

1-5 3'Me 6Cl H 3-13 3'SO2NHPr 6F H 

1-6 2'OMe 6Cl H 3-14 3'NHSO2Me 6F H 

1-7 3'OMe 6Cl H 4-1 H 5F H 

1-8 4'OMe 6Cl H 4-2 2'F 5F H 

1-10 3'CF3 6Cl H 4-3 3'F 5F H 

1-11 4'CF3 6Cl H 4-4 4'F 5F H 

1-12 3'4'F 6Cl H 4-5 2'Me 5F H 

1-13 2'OCF3 6Cl H 4-6 3'Me 5F H 

1-14 3'OCF3 6Cl H 4-7 4'Me 5F H 

1-15 4'OCF3 6Cl H 4-8 3'OMe 5F H 

1-16 3'SO2Me 6Cl H 4-10 3'CF3 5F H 

1-17 3'SO2NH2 6Cl H 4-11 4'CF3 5F H 

1-18 3'SO2NHMe 6Cl H 4-12 3'4'F 5F H 

1-19 3'CN 6Cl H 4-13 3'OCF3 5F H 

1-20 3'SO2NMe2 6Cl H 4-14 3'SO2Me 5F H 

1-21 4'SO2NHMe 6Cl H 4-15 3'CN 5F H 

1-22 3'SO2NHEt 6Cl H 4-17 3'NHSO2Me 5F H 

1-23 3'SO2NHPr 6Cl H 5-1 H 6OMe H 

1-25 3'NHSO2Me 6Cl H 5-2 2'F 6OMe H 

2-1 H 5Cl H 5-3 3'F 6OMe H 

2-2 2'F 5Cl H 5-4 4'F 6OMe H 

2-3 3'F 5Cl H 5-5 2'CF3 6OMe H 

2-4 4'F 5Cl H 5-6 3'CF3 6OMe H 

2-5 3'OMe 5Cl H 5-7 4'CF3 6OMe H 

2-6 2'CF3 5Cl H 5-8 3'SO2NMe2 6OMe H 

2-7 3'CF3 5Cl H 5-9 3'SO2NHPr 6OMe H 

2-8 4'CF3 5Cl H 5-10 3'NHSO2Me 6OMe H 

2-9 3'4'F 5Cl H 7-1 H 5,6F H 

2-10 3'OCF3 5Cl H 7-2 2'F 5,6F H 

2-11 3'SO2Me 5Cl H 7-3 3'F 5,6F H 

2-13 3'CN 5Cl H 7-4 4'F 5,6F H 

2-14 3'SO2NHMe 5Cl H 7-6 3'CF3 5,6F H 

2-16 3'SO2NHPr 5Cl H 7-7 4'CF3 5,6F H 

3-1 H 6F H 7-8 3'OCF3 5,6F H 

3-2 2'F 6F H 7-9 3'SO2Me 5,6F H 

3-3 3'F 6F H 7-10 3'NHSO2Me 5,6F H 

3-4 4'F 6F H 8-1 3'CF3 H H 

3-5 2'CF3 6F H 8-3 3'CF3 6Cl Me 

3-6 3'CF3 6F H 8-6 3'CF3 6Cl Me 
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No R1 R2 R3 No R1 R2 R3 

3-7 4'CF3 6F H 8-8 3'CF3 6Cl Et 

3-8 3'OCF3 6F H     
Category B: Z isomers 

 
No R1 R2 R3 No R1 R2 R3 
6-1 H 4,5F H 6-6 3'CF3 4,5F H 
6-2 2'F 4,5F H 6-7 4'CF3 4,5F H 
6-3 3'F 4,5F H 6-8 3'OCF3 4,5F H 
6-4 4'F 4,5F H 6-10 3'SO2NHMe 4,5F H 

Category C: Confirmed mixture of E and Z isomers 

N
O

X

R2

R1

R3  
No R1 R2 R3 X 

1-24 3'SO2NHiPr 6Cl H CH 
2-12 3'SO2NH2 5Cl H CH 
2-15 3'SO2NHPr 5Cl H CH 
4-17 3'SO2NHPr 5F H CH 
6-5 2'CF3 4,5F H CH 
6-9 3'SO2Me 4,5F H CH 

7-11 3'SO2NHPr 5,6F H CH 
8-2 3'CF3 H H N 
8-4 3'CF3 6Cl CH3 N 
8-6 3'CF3 5Cl CH3 N 
8-7 3'CF3 5F CH3 N 
8-9 3'CF3 6Cl Bn CH 

 

The category C compounds comprise the 3-phenylimino indolin-2-ones (8-2, 8-4, 8-5, 8-6) 

and miscellaneous compounds from different series (1-24, 2-12, 2-15, 4-16, 6-5, 6-9, 7-11, 8-

9.) The phenylimino indolin-2-ones are known to exist as inseparable E and Z isomers due to 

rapid interconversion at room temperature 152.  Thus, their presence in Category C was 

anticipated. As for the miscellaneous compounds, the isomers could not be separated by 

column chromatography and thus, no major isomer was isolated from the reaction mixture.  

Consequently, their NMR spectra could not be analyzed in the same way as the Categories A 
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and B compounds. However, the E and Z isomers of some of these compounds (1-24, 2-12, 6-

5, 6-9, 8-9) could be separated by HPLC. The chromatogram of the test compound showed 

two major peaks and LC-MS confirmed that they had the same mass. Since the total area of 

the two peaks exceeded 95% of total peak area, it was deduced that they were sufficiently 

pure (> 95%) for biological evaluation. 

Next, LCMS was investigated as a means of monitoring the E /Z isomerization process. In 

this approach, the test compound was analyzed by LC and the mass of the eluting peaks were 

assigned by mass spectrometry.   If a compound was present as the E isomer, it should present 

only one peak with a specific mass on the chromatogram.  If the E isomer converted to the Z 

isomer with time, then the chromatogram should show an additional peak (Z isomer) with an 

identical mass to the 1st peak.  

This investigation was carried out on selected compounds 47, 1-18 and 6-6. Except for 6-6 

which was assigned a Z configuration based on its X ray structure (Figure 2-2), the other 

compounds were assigned an E configuration based on the NMR criteria described earlier. 

The investigations involved monitoring the LCMS of samples that were freshly prepared in 

methanol or DMSO and after 12 hours of storage at 24oC. As DMSO could not be directly 

injected into the instrument, the sample was diluted with water and extracted with ethyl 

acetate. The solvent was removed by evaporation under reduced pressure. The residue was 

reconstituted in methanol and injected into the LCMS.  The time taken for this procedure was 

approximately 10 minutes. 
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Figure 2-6 A: LC-MS spectrum of 47 (freshly prepared in methanol) MS peak: [M-H]-=322.2. 

 

Figure 2-6 B:  LC-MS spectrum of 47 (after 12h in methanol) MS peak: [M-H]-=322.2. No new peak 
was observed in the LC after this time. Mass of original peak was unchanged.  
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Figure 2-6 C: LC-MS spectrum of 47 (freshly prepared in DMSO) MS peak: [M-H]-=322.2. 

 

Figure 2-6 D:  LC-MS spectrum of 47 (after 12h in DMSO).  MS peak: [M-H]-=322.2. A new peak was 
observed in the LC (retention time 13.38 min). % Area of new peak (52.3) was close to that of original 
peak (% Area = 47.2) Mass of the new peak (322.0) was identical to the original peak. 
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Figure 2-7 A:  LC-MS spectrum of 1-18 (freshly prepared in methanol) MS peak: [M-H]-=347.9. 

 

Figure 2-7 B:  LC-MS spectrum of 1-18 (12h in methanol), MS peak: [M-H]-=347.9. No new peak was 
observed in the LC after this time. Mass of original peak was unchanged.  
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Figure 2-7 C:  LC-MS spectrum of 1-18 (freshly prepared in DMSO), MS peak: [M-H]-=347.9 

 

Figure 2-7 D:  LC-MS spectrum of 1-18 (12h in DMSO), MS peak: [M-H]-=347.9. A new peak (347.1) 
was observed in the LC (retention time 6.0 min). % Area of new peak (42.7)was close to that of 
original peak. Mass of the new peak (347.1) was identical to the original peak (% Area 56.0). 
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Figure 2-8 A LC-MS spectrum of 6-6 (freshly prepared in methanol) MS peak: [M-H]-=324.2 

 

Figure 2-8 B: LC-MS spectrum of 6-6 (12h in methanol), MS peak: [M-H]-=324.2. No new peak was 
observed in the LC after this time. Mass of original peak was unchanged.  
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Figure 2-8 C: LC-MS spectrum of 6-6 (freshly prepared in DMSO), MS peak: [M-H]-=324.2. 

 

Figure 2-8 D:  LC-MS spectrum of 6-6 (12h in DMSO), MS peak: [M-H]-=324.2. A new peak was 
observed in the LC (retention time 7.68 min). % Area of new peak (25.9) was approximately one-third 
that of the original peak (% area = 73.4). Mass of the new peak (324.1) was identical to the original 
peak. 

The results as shown in Figures 2-6 to 2-8 are summarized as follows.  The LCMS spectra of 

the freshly prepared samples in methanol or DMSO showed a single peak with the expected 

mass. Thus, only one isomer was present in each of the analyzed compounds. After 12 hr, the 
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LCMS spectra of 47, 1-18, and 6-6 in methanol were similar to the spectra of freshly prepared 

solutions, indicating the absence of isomerization. On the other hand, isomerization was 

evident in the aged DMSO solutions of 47, 1-18 and 6-6, as seen from the appearance of a 

new peak with the same mass as the original peak in the spectra of these compounds.  The 

ratios of the areas of the two peaks were approximately the same (1:1) for 47 and 1-18. In 

contrast, the ratio was significantly different in 6-6, where the new peak was approximately 

1/3rd that of the original peak in terms of % area under the curve. It may signify that only a 

small proportion of the original isomer was converted to the other isomer after 12 h. 

Further investigations should focus on the effect of concentration on the isomerization 

process. Another area that should be explored was isomerization in the matrix used for 

biological testing. For example, to determine antiproliferative activity of test compounds, a 

stock solution in DMSO was prepared and subsequently diluted with growth media to the 

desired concentration. Therefore, it would be of interest to determine the rate of E/Z 

isomerization in DMSO-growth media or if this is not feasible, DMSO-aqueous buffer pH7.4 

or DMSO-water solutions.  

2.5. Summary 

115 Functionalized benzylidene indolinones or related analogs were successfully synthesized 

and characterized. They were purified to at least 95%, with purity evaluated by reverse phase 

HPLC, using two different mobile phases. The EZ configuration of final compounds was 
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assigned, where possible, by x-ray crystallography, 1H NMR or LCMS. 

2.6. Experimental methods 

2.6.1. General details 

The reacting oxindoles (except 4,5-difluoroxindole) and benzaldehydes (except 3-formyl- and 

3-formyl-N-methyl-benzenesulfonamides), isatins and 3-(trifluoromethyl)aniline were  

purchased from Sigma-Aldrich (St. Louis, MO, USA).  Other reagents were of synthetic 

grade or better and were used without further purification. 

Microwave reactions were carried out on the Biotage Initiator ® Microwave Synthesizer. 

Merck silica 60 F254 sheets and Merck silica gel (0.040-0.063 mm) were used for thin layer 

chromatography (TLC) and flash chromatography respectively. 1H NMR spectra (300 MHz or 

400 MHz) were determined on a Bruker DPX 300 spectrometer and Bruker ADVIII 400 

spectrometer and peaks were referenced to residual d-chloroform (δ 7.260) or d6-DMSO (δ 

2.500) as internal standards. 13C NMR spectra (75 MHz or 100 MHz) were determined on the 

same instruments and reported in ppm (δ) relative to residual DMSO (δ 39.43). Coupling 

constants (J) were reported in hertz (Hz). Proton (1H) NMR spectral information was 

tabulated in the following format: multipilicity, coupling constant, number of protons. 

Multiplicities were reported as follows: s=singlet, d=doublet, t=triplet, q=quartet, dd=doublet 

of doublets, td= doublet of triplet, m= multiplet. Mass spectrum was captured on a Sciex API 

3000 Qtrap (Applied Biosystems) equipped with a chemical ionization (APCI) probe and m/z 

values for the molecular ion was reported.  

Spectral characteristics of final compounds are given in Appendix I. Purity of final 

compounds is given in Appendix VI (page 238). Purity was determined by reverse phase 

HPLC using with two different mobile phase compositions for each compound. Compounds 

were found to have purity of ≥ 95%, unless indicated otherwise. 

LC-MS was captured by Agilent 1100 HPLC system couple to Sciex API 3000 Qtrap mass 

spectrometer with APCI probe. Chromatographic separations were carried out on a Hewlett 
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Packard HPLC column (200×4.6 mm, 10 µm, C18 reversed phase). The optimized mobile 

phase was an isocratic solution of 40 % of water and 60% of acetonitrile or methanol. The 

mobile phase flow rate was 1.0 mL/min. Quadrupole-based single mass spectrometry (Q1 Ms) 

were performed using negative APCI ionization mode. The optimized source dependent and 

compound dependent MS parameters for the analytes are shown in Table 2-6. 

Table 2-6 Optimized source-dependent and compound-dependent MS parameters. 
Curtain gas (psi) 10.0 Ion gas 2 (psi) 10.0 
Nebulizer current  -1.0 Declustering potential -60.0 
Temperature (deg C) 200 Entrance potential 10.0 
Ion gas 1 (psi) 20.0   
 

2.6.2. X-ray crystal structure of Compound 6-6 

Crystals of 6-6 were grown in t-butanol and mounted on glass fibers. X-ray data were 

collected with a Bruker AXS SMART APEX diffractometer, using Mo Ka radiation at 223 K, 

with the SMART suite of Programs (SMART version 5.628 (200), Bruker AXS Inc., Madison, 

WI). Data was processed and corrected for Lorentz and polarization effects with SAINT 

(SAINT+ version 6.22a (2001) Bruker AXS Inc., Madison, WI), and for absorption effects 

with SADABS (SADABS, version 2.10, 2001, University of Götingen). Structural solution 

and refinement were carried out with the SHELXTL, suite of programs (SHELXTL, Version 

6.14 (2000), Bruker AXS Inc., Madison, WI). The structure was solved by direct methods to 

locate the heavy atoms, followed by difference maps for the light, non-hydrogen atoms. All 

non-hydrogen atoms were generally given anisotropic displacement parameters in the final 

model whereas H-atoms were placed at calculated positions. Crystal data and information on 

structure refinement of 6-6 are given in the Appendix III. 
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2.6.3. General procedure for the synthesis of 3-benzylidene indolin-2-ones 

of Series 1-8 

The method described by Zhang et al.160 was followed. Briefly, oxindole (1 mmol) and 

benzaldehyde (1 mmol) were dissolved in ethanol (6 mL), a drop of piperidine (20 μL) was 

added and the reaction mixture was heated in a sealed 10 mL vial on the microwave 

synthesizer for 15 min at 140oC. The mixture was then cooled to room temperature on an ice 

bath. If precipitation was observed, the precipitate was removed by filtration under reduced 

pressure, washed with cold ethanol and recrystallized with acetonitrile to afford the desired 

product. If no precipitation was observed, the mixture was then concentrated under reduced 

pressure and the residue was purified by flash column chromatography with hexane-ethyl 

acetate.  

2.6.4. Synthesis of  sulfamoyl and N-substituted sulfamoyl benzoic acids  

The method of Shen et al. 171 was followed with some modifications. To a saturated solution 

of 3-chloro sulfonyl benzoic acid (8 mmol) in ethyl acetate (4 mL) was added cold 

concentrated alkylamine or an aqueous solution of the ammonia or alkylamine. After stirring 

for 30 min at 0 oC, the mixture was neutralized with a solution of HCl in dioxane (4M) and 

extracted with ethyl acetate. The organic phase was concentrated under reduced pressure to 

give a solid which was recrystallized from acetonitrile to give desired compound. 

3-Sulfamoyl-benzoic acid: 

White solid, yield 64.6%, 1HNMR (300 MHz, DMSO-d6) δ ppm, δ 8.38 (s, 1H, Ar-H), 8.12 (d, 

J=8.1Hz, 1H, Ar-H), 8.03 (d, J=7.8Hz, 1H, Ar-H), 7.71 (t, J=7.5Hz, J=7.8Hz, 1H, Ar-H), 7.5 

(s, 2H, SO2NH2) 

3-N-Methylsulfamoyl-benzoic acid 

white solid, yield 54%, 1HNMR (300 MHz, DMSO-d6) δ ppm, δ 8.30 (s, 1H, Ar-H), 8.17 (d, 

J=7.8Hz, 1H, Ar-H), 7.99 (d, J=8.1Hz, 1H, Ar-H), 7.75 (t, J=7.8Hz, 1H, Ar-H), 7.62 (d, 

J=4.8Hz, 1H, NH), 2.4 (s, 3H, Me). 
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4-N-Methylsulfamoyl-benzoic acid 

White solid, yield 59.0%, 1H NMR (400 MHz, DMSO-d6) , δ ppm, δ 8.17-8.08 (m, 2H, Ar-H), 

7.92-7.84 (m, 2H, Ar-H), 7.64 (dd, J = 9.9, 4.9 Hz, 1H, NH), 2.43 (d, J = 5.0 Hz, 3H, Me). 

3-N,N-Dimethylsulfamoyl-benzoic acid 

White solid, yield 90.6%, 1H NMR (400 MHz, DMSO-d6) δ ppm, δ 8.22 (ddd, J = 14.1, 1.4 

Hz, 2H, Ar-H), 8.03-7.90 (m, 1H, Ar-H), 7.79 (t, J = 7.8 Hz, 1H, Ar-H), 2.63 (s, 6H, Me). 

3-N-Ethylsulfamoyl-benzoic acid 

White solid, yield 68.1%, 1H NMR (400 MHz, DMSO-d6), δ ppm δ 8.32 (t, J = 1.6 Hz, 1H, 

NH), 8.20-8.12 (m, 1H, Ar-H), 8.06-7.96 (m, 1H, Ar-H), 7.73 (dd, J = 15.1, 6.9 Hz, 2H, Ar-

H), 2.78 (dq, J = 7.2, 5.8 Hz, 2H, CH2), 0.96 (t, J = 7.2 Hz, 3H, Me). 

3-N-n-Propylsulfamoyl-benzoic acid 

White solid, yield 53.1%,1H NMR (400 MHz, DMSO-d6), δ ppm δ  8.31 (t, J = 1.59 Hz, 1H, 

NH), 8.19-8.13 (m, 1H), 8.00 (ddd, J = 7.83, 1.87, 1.16 Hz, 1H, Ar-H), 7.80-7.69 (m, 2H, Ar-

H), 2.69 (dd, J = 12.95, 6.99 Hz, 2H,N-CH2), 1.42-1.28 (m, 2H, CH2), 0.77 (t, J = 7.39 Hz, 

3H, Me). 

3-N-Isopropylsulfamoyl-benzoic acid 

White solid, yield 38.5 %, 1H NMR (400 MHz, DMSO-d6),δ ppm δ8.19-8.12 (m, 1H, N-H), 

8.34 (t, J = 1.6 Hz, 1H, Ar-H), 8.03 (ddd, J = 7.8, 1.8, 1.2 Hz, 1H, Ar-H), 7.79-7.67 (m, 2H, 

Ar-H), 3.24 (ddd, J = 25.0, 12.5, 6.1 Hz, 1H, N-CH), 0.94 (d, J = 6.5 Hz, 6H, Me). 

2.6.5. Synthesis of formyl benzenesulfonamides  

To a solution of the sulfamoyl or N-substituted sulfamoyl benzoic acid (2 mmol) in anhydrous 

tetrahydrofuran (6 mL) was added borane-tetrahydrofuran (6 mL) complex (1M). After 

stirring for 15 h at 25oC the mixture was diluted with 10 mL brine and 5 mL water. The 

organic phase was separated, dried with anhydrous Na2SO4 and concentrated under reduced 

pressure to give the desired alcohol which was used for the next step without further 

purification. 
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 The crude alcohol (2 mmoL) was suspended in anhydrous tetrahydrofuran (12 mL) and 

stirred. Activated 4A molecular sieves (4 g) and 5 mmol of pyridinum dichromate was added 

and the mixture was stirred for 3 h at 25oC. Another portion of pyridinum dichromate (5 

mmol) was added and the mixture was stirred for 3 h. The mixture was filtered through silica 

gel and the filtrate was concentrated under reduced pressure to give the product which was 

purified by column chromatography with hexane-ethyl acetate (1:1) as eluting solvents. 

3-Sulfamoyl-benzaldehyde: 

White solid, yield (after 2 steps from 3-Sulfamoyl-benzoic acid) 43.4%; 1HNMR (300 MHz, 

in DMSO-d6) δ ppm δ 10.1 (s, 1H, CHO), 8.32 (s, 1H, Ar-H), 8.13 (t, J=6.9Hz, J=6.0Hz, 2H, 

Ar-H), 7.82 (t, J=7.8Hz, 1H, Ar-H), 7.55 (s, 2H, NH2)  

3-Formyl-N-methyl-benzenesulfonamide 

White solid, yield (after 2 steps from 3-N-Methylsulfamoyl-benzoic acid) 42.5%, 1HNMR 

(300 MHz, in DMSO-d6) δ ppm δ 10.10 (s, 1H, CHO), 8.26 (s, 1H, Ar-H), 8.18 (d, J = 7.6 Hz, 

1H, Ar-H), 8.07 (d, J = 7.7 Hz, 1H,Ar-H), 7.85 (t, J = 7.7 Hz, 1H, Ar-H), 7.65 (s, 1H,N-H), 

2.44 (s, 3H,Me) 

4-Formyl-N-methyl-benzenesulfonamide: 

White solid, yield (after 2 steps from 4-N-Methylsulfamoyl-benzoic acid) 38.9%, 1HNMR 

(300 MHz, in DMSO-d6) δ ppm δ 10.09 (s, 1H, CHO), 8.18-8.06 (m, 2H, Ar-H), 7.97 (d, J = 

8.3 Hz, 2H, Ar-H), 7.68 (s, 1H, NH), 2.44 (s, 3H, Me). 

3-Formyl-N,N-dimethyl-benzenesulfonamide, N-ethyl-3-formyl-benzenesulfonamide, 3-

formyl-N-propyl-benzenesulfonamide and 3-formyl-N-isopropyl-benzene-sulfonamide were 

oils and were used without further purification for the next step of reaction.   

2.6.6. Synthesis of 5,6-difluoro-oxindole 

The method of Cervena et al.172 was followed. To a stirred solution of 3,4-difluoroaniline (10 

mmol) in toluene (5 mL) and pyridine (10 mmol) maintained at 5-10oC was added 

chloroacetyl chloride (10 mmol) in toluene (5 mL) dropwise.  The mixture was allowed to 

stand overnight at room temperature. The organic layer was then separated and the residue 
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was mixed with water (60 mL). The separated solid product was recrystallized from toluene 

to give N-(3,4-difluorophenyl) chloroacetamide as a light purple solid, yield 84.3%; 1HNMR 

(300 MHz, CDCl3) δ ppm δ 8.24 (s, 1H, NH), 7.63 (td, J=8.1 Hz, 1H, Ar-H), 7.16-7.12 (m, 

2H, Ar-H), 4.19 (s, 2H, COCH2Cl).  

A mixture of N-(3,4-difluorophenyl) chloroacetamide (14 mmol) and aluminum chloride (54 

mmol) was stirred and heated to 200-210 oC in a silicon oil bath for 4.5 h. On cooling, 40 mL 

of ice cold hydrochloric acid was added to the reaction mixture. The solid residue was 

removed by vacuum filtration and purified by column chromatography with hexane-ethyl 

acetate (1:1) as eluting solvent to give 5,6-difluoro-oxindole as a beige solid, yield 40.7%; 

1HNMR (300 MHz, in DMSO-d6) δ ppm δ 10.46 (s, 1H, NH), 7.33 (t, J=8.7 Hz, 1H, Ar-H), 

6.82 (q, J=6.9 Hz, 1H, Ar-H), 3.47 (s, 2H, ArCH2CO). 

2.6.7. Synthesis of 1-methyl-oxindole and 6-chloro-1-methyl-oxindole 

The method of Liégault et al.173 was followed. A suspension of sodium hydride (2mmol, 60 % 

dispersion in mineral oil) in toluene (4 mL) was heated to 100 oC in an atmosphere of argon. 

A solution of the oxindole (2 mmol) in toluene was added to the stirred mixture and stirring 

was continued for 1 h at 100oC.  Neat dimethylsulphate (2 mmol) was added dropwise and the 

mixture was stirred for 2 h at 100oC.  On cooling, the mixture was thoroughly washed with 

distilled water and the aqueous phase was extracted with ethyl acetate. The organic phase was 

dried with anhydrous Na2SO4, concentrated under reduced pressure and purified by column 

chromatography with hexane-ethyl acetate (3:1) as eluting solvent.  

1-Methyl-oxindole: 

White solid, yield 45.2%, 1HNMR (300 MHz, in DMSO-d6) δ ppm δ 7.27 (t, J=7.8Hz, 

J=7.5Hz, 2H, Ar-H), 6.98 (q, J=15.8, 2H, Ar-H), 3.53 (s, 2H, ArCH2CO), 3.11 (s, 3H, N-Me).  

6-Chloro-1-methyl-oxindole: 

Light pink solid, yield 76.7%, 1HNMR (300 MHz, in DMSO-d6) δ ppm δ 7.24 (d, J=7.8Hz, 

1H, Ar-H), 7.10 (s, 1H, Ar-H), 7.05 (d, J=7.8Hz, 1H, Ar-H), 3.54 (s, 2H, ArCH2CO), 3.11 (s, 

3H, N-Me) 
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2.6.8. General procedure for the synthesis of 3-phenylimino-2-indolones 

(8-2, 8-4, 8-6, 8-7) 

The method of Konkel et al.152 was followed with some modification. Briefly, a mixture of 

isatin/substituted isatin (3 mmol) and 3-(trifluoromethyl)aniline (15 mmol) was heated in a 

sealed 10 mL vial on the microwave synthesizer for 15 minutes at 140 oC. On cooling, the 

product was filtered and washed with cold methanol to give the desired product as an orange 

or red solid. 
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Chapter 3:  Investigations into the growth inhibitory activities of Series 1-8  
compounds on malignant liver cancer cell lines 

3.1. Introduction 

This chapter describes the growth inhibitory activities of the Series 1-8 compounds on a panel 

of malignant liver cancer cell lines. Compounds were evaluated for their half maximal growth 

inhibitory concentrations (IC50) on a colorimetric tetrazolium (MTT) assay. Investigations 

were first carried out on HuH7 cells and compounds that had low micromolar to 

submicromolar IC50 values were shortlisted for further screening on two other malignant liver 

cells (HepG2, Hep3B) and a non-malignant cell line (diploid primary human fibroblasts, 

IMR90). 174 Selected potent compounds were investigated for the induction of apoptosis in 

HuH7 cells.  

3.2. Materials and Methods 

3.2.1.   Reagents  

3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) was purchased from 

Duchefa Biochemie (Denmark). Penicillin G and streptomycin were from Sigma–Aldrich. 

Cell culture media were from Sigma–Aldrich (Singapore). Test compounds were prepared in 

DMSO (ACS grade, purchased from NUS Laboratory Supply) at 10 mM as stock solutions 

and stored at room temperature (25oC). Annexin V-FITC apoptosis detection kit was 

purchased from Sigma–Aldrich (Singapore). The following were purchased from Santa Cruz 

Biotechnology (CA, USA):  rabbit monoclonal antibodies to PARP and caspase 3; goat anti-

rabbit-horse radish peroxidase (HRP) conjugate and goat anti-mouse HRP.  Rabbit 

monoclonal antibodies to cleaved caspase 3 were purchased from Cell Signaling (MA, USA). 

Fetal bovine serum (FBS) and mouse monoclonal antibodies to β-actin were purchased from 

Invitrogen Life Technologies (CA, USA).  
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3.2.2.  Cell Lines and cell culture.  

 Hep3B was a gift from Dr Ho Han Kiat, Department of Pharmacy, NUS. HuH7 was 

purchased from Japanese Collection of Research Bioresources Cell Bank (Japan).  HepG2 and 

IMR90 were purchased from American Type Culture Collection (VA, USA).   

HuH7, HepG2 and Hep3B cells were cultured in Dulbecco's Modified Eagle Medium 

(DMEM, high glucose, with HEPEs) with 10% v/v fetal bovine serum (FBS), 100 mg/L 

penicillin G and 100 mg/L streptomycin. IMR 90 cells were cultured in EMEM (Eagle's 

Minimum Essential Medium), with 10% v/v FBS and 100 mg/L penicillin G. The cells were 

sub-cultured when the following densities in a T75 mL flask were reached: HuH7 and HepG2: 

60-80 ×105 cells; Hep3B: 35-40 ×105 cells; IMR 90: 10 ×105 cells.  Cells were maintained 

within 2-10 passages for experiments. 

3.2.3. MTT assay for determination of cell growth inhibition 

The antiproliferative activities of the compounds were determined by the MTT assay. The 

assay monitored the conversion of a tetrazolium dye MTT to its insoluble purple colored 

formazan product. This conversion was catalyzed by NAD(P)H dependent cellular 

oxidoreductases found in viable /proliferating cells. Thus, loss of cell viability or non-

proliferating cells would result in less formazan, the formation of which was monitored by 

visible spectroscopy (570 nm)  

 An aliquot of cells in media  (200 μL, 3 ×104 cells/mL of  HuH7, 3.75 ×104 cells/mL of 

HepG2, 5.5 ×104 cells/mL of Hep3B, or 2 ×104 cells/mL of IMR 90) were added to each well 

in a 96-well microtitre plate. After 24 h incubation at 37o C, 5% CO2, the cells formed an 

adherent layer on the floor of the well. The media was removed from each well and replaced 

by fresh media (200 μL) containing a known concentration of test compound. The final 

concentration of DMSO in each well was maintained at 0.5% v/v or 1% v/v, depending on 

compound solubility. The test compounds were incubated with the cells for another 72 h at 

37o C, 5% CO2.  After this time, the media was removed and replaced with FBS free media 
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(200 μL) and MTT (50 μL of 2 mg/mL solution in phosphate buffer saline, pH 7.4). The 

phosphate buffer saline comprised 10 mM phosphate buffer and 137 mM NaCl.  After 

incubation (3 h) at 37o C, 5% CO2, the supernatant was removed from each well and a 

solution of 200 μL DMSO and 25μL Sorenson buffer (0.1 M glycine, 0.1 M NaCl, adjusted to 

pH 10.5 with 0.1 M NaOH) was added to dissolve the formazan crystals. Vehicle controls 

were cells grown in 0.5 or 1% v/v DMSO/media for 72 h, 37 o C, 5% CO2 while blank 

controls were wells that contained 200 μL DMSO and 25 μL Sorenson buffer. Absorbances 

were measured at 570 nm on a microplate reader (Tecan Infinite 200). The % viability of cells 

at a given concentration of test compound was determined from the expression: 

Percentage Cell Viability  =
[Absorbance_Compound] - [Absorbance_Blank]

[Absorbance_Vehicle Control] - [Absorbance_Blank]
x   100

 

where Absorbance_Compound = absorbance of wells containing cells and test compound, 

Absorbance_Vehicle Control = absorbance of vehicle control (cells + DMSO/media) and 

Absorbance_Blank  = Absorbance of blank control (DMSO/media). 

Each concentration of test compound was evaluated at least 3 times on separate occasions, 

using two different stock solutions. The IC50 (concentration required to reduce cell viability to 

50% of that observed in control/untreated cells) was determined from the sigmoidal curve 

obtained by plotting percentage viability versus logarithmic concentration of test compound 

using GraphPad Prism 5 (San Diego, USA).  

3.2.4. Detection of Apoptosis by flow cytometry 

The Annexin V-FITC Apoptosis Detection Kit (Sigma Aldrich) was used following the 

manufacturer’s instructions. Briefly, HuH7 cells were seeded at a density of 3.0×105 cells/mL 

in each well of a 6-well plate and treated with a known concentration of test compound for 48 

h, 37oC, 5% CO2. Cells were trypsinized, centrifuged at 500 g for 5 min, the cell pellet rinsed 

with chilled PBS and resuspended in 1×binding buffer at a density of 106 cells per mL. 

Annexin V-FITC conjugate protein (5 μL) and propidium iodide (PI) solution (1 μL) were 
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added to an aliquot (500 μL) of cell suspension and incubated on ice for 10 min. Cells were 

then immediately analyzed by cell cytometry. Flow cytometry was carried out using 

fluorescence activated cell sorting on BD LSR Fortessa Flow Cytometry Analyser (Beckton 

Dickinson, USA).Unstained treated cells, treated cells stained with AnnexinV-FITC and 

treated cells stained with PI were used for calibration and compensation. 10000 cells were 

read for each sample determination. At least three repetitions were made for each test 

concentration.  

3.2.5. Preparation of HuH7 cell lysates 

HuH7 cells were incubated with test compounds for 48 h, 37oC, 5% CO2. After this time, the 

adherent cells were gently scraped from the walls of the petri dish with a cell scraper. The cell 

suspension was centrifuged at 500 g for 5min, supernatant was discarded and the cell pellet 

was washed twice with 1×PBS. The washed cells (106) were dissolved in 70 μL lysis buffer 

(20 mM Tris pH 7.4, 250 mM NaCl, 2 mM EDTA pH 8.0, 0.1% Triton X-100, 0.01 mg/ml 

aprotinin, 0.005 mg/ml leupeptin, 0.4 mM PMSF, and 4 mM NaVO4) and incubated at 0℃ 

for at least 20 min. After the incubation, the lysates were spun at 13 300 g for 10 min to 

remove the cell debris. 3μL of the supernatant was retained for protein determination (Section 

3.2.6) while the remaining solution was served as solvent to dilute the 4×SDS solution (0.2 M 

Tris pH 6.8, 0.28 M SDS, 40 % v/v glycerol, 0.59 M β-mercaptoethanol, 50 mM EDTA, 1.1 

mM bromophenol blue) to give 1×SDS solution which was then deactivated at 99oC, 5 min 

and subsequently stored for no more than 1 week at  -80 oC.  

3.2.6. Protein quantification 

Protein quantification was carried out using the Braford Protein Assay Kit (Bio-Rad 

Laboratories Inc, CA, USA). The cell lysate was diluted 200-fold with Milli-Q water  and 160 

μL of the diluted solution was mixed with 40 μL of Bradford dye in a 96-well transparent 

plate. The standard curve was prepared in a similar way using bovine serum albumin (BSA) 

solution at the concentration range from 25 μg/mL to 0 μg/mL. The solutions were incubated 

at 25oC, 10 min and their absorbances were read at 595 nm on a Tecan Plate Reader.  Protein 
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concentration of lysate was determined from the BSA standard curve. At least three 

absorbance readings were obtained for each concentration of BSA or cell lysate.  

3.2.7. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-

PAGE)  

Cell lysates were separated on the SDS-PAGE Bio-Rad Mini-Protean II system (Bio-Rad 

Laboratories Inc, CA, USA).  Briefly, SDS-polyacrylamide gels were cast using a Mini-

Protean gel caster. Resolving gels (10% or 15%) were prepared and allowed to set for 30 min. 

Stacking gels were prepared and allowed to set for another 30 min before being assembled in 

the electrophoresis chamber. The inner and outer chambers of the unit were filled with 1× 

SDS-PAGE running buffer (25mM Tris–base, 192 mM glycine, 0.1% SDS w/v). Protein 

1×SDS solutions were then loaded into the wells and electrophoresis was carried out at 25 ℃ 

at a constant current of 10 mA through each stacking gel and increased to 20 mA through 

each resolving gel. After electrophoresis, the gels were subjected to Western blotting (Section 

3.2.8). 

3.2.8. Western blotting 

After electrophoresis, separated protein samples were transferred to nitrocellulose membranes 

using the wet transelectroblotting system (Bio-Rad Laboratories Inc, CA, USA) at a constant 

voltage of 90V, 2 h, 4oC using ice-cold 1× transfer buffer (48 mM Tris-base, 37mM Glycine, 

10% MeOH v/v). Membranes were blocked with blocking buffer for 30 min at 25 oC and then 

incubated with primary antibodies at appropriate dilutions in 2.5% BSA in TBST (50 mM 

Tris, 150 mM NaCl, 0.1% Tween 20) solution overnight at 4oC. Membranes were than 

washed thrice with TBST (10 min per wash), incubated for 1 hr with secondary antibodies in 

TBST at 25 oC, and followed by washing in TBST (thrice, 10 min per wash). The 

immunoreactive bands were detected by the ECL reagent (GE Healthcare, Little Chalfont, 

UK) using Bio-Rad Universal Hood II Gel Doc. If needed, the membranes were stripped with 
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stripping buffer, blocked with blocking buffer for 30 min at 25 oC, and re-probed with other 

antibodies.  

3.3. Results 

3.3.1. Growth inhibitory activities of Series 1-8 on HuH7 cells 

The growth inhibitory activities of Series 1-8 compounds were first evaluated for their IC50 on 

HuH7 cells.  Based on the working hypothesis that the synthesized compounds would have 

RTK inhibitory activity, like 47 (1-10 in Table 3-1), a kinase inhibitor sorafenib was included 

as a positive control. Its IC50 was found to be 5.4 ± 0.5 µM on HuH7.   The growth inhibitory 

activities of Series 1-8 were discussed in the following paragraphs. Compounds that did not 

reduce cell viability by more than 50% at 30 µM and those that had no activity at the highest 

soluble concentration were not explored further. Growth inhibitory activities of Series 1 

compounds 

Table 3-1: IC50 of Series 1 compounds on HuH7 cells. Mean ± SD for n= 3 determinations.  

N
O

H

R1

A

B

Cl
 

No R1 IC 50 (µM)  No R1 IC 50 (µM)  
1-1 H 17.5 ± 3.5 1-14 3'OCF3 5.1 ± 0.7 
1-2 2'F N.A. a 1-15 4'OCF3 10.1 ± 1.7 
1-3 3'F 10.0 ± 0.9 1-16 3'SO2Me 10.8 ± 3.7 
1-4 4'F 12.9 ± 1.0 1-17 3'SO2NH2 3.1 ± 0.2 
1-5 3'Me 11.0 ± 0.3 1-18 3'SO2NHMe 0.97 ± 0.09 
1-6 2'OMe >30 1-19 3'CN 7.4 ± 0.3 
1-7 3'OMe 12.2 ± 0.6 1-20 3'SO2NMe2 4.9 ± 0.4 
1-8 4'OMe >30 1-21 4'SO2NHMe 15.3 ± 0.6 
1-9 2'CF3 N.A. a 1-22 3'SO2NHEt 0.70 ± 0.03 

1-10 3'CF3 0.46 ± 0.16 1-23 3'SO2NHPr 0.28±0.09 
1-11 4'CF3 11.0 ± 1.8 1-24 3'SO2NHiPr 1.9 ± 0.3 
1-12 3'4'F 16.7 ± 3.4 1-25 3'NHSO2Me 7.4 ± 0.2 
1-13 2'OCF3 N.A. a    

a No activity at the highest soluble test concentration 
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Series 1 compounds were designed to investigate the structural importance of the 3’-CF3 of 47 

(1-10 in Series 1).  IC50 values of the 25 members in this series, the largest among the 

investigated series, ranged from 0.23 µM to >30 µM, an 80 fold (or more) variation in 

inhibitory activity. The striking variation in IC50 arising from a single modification 

underscored a special role for the substitution on phenyl ring B on growth inhibitory activity. 

Key SAR trends in Series 1 are as follows: 

(i) There was a clear preference for substitution at the 3’ position of ring B, irrespective of the 

stereoelectronic or lipophilic character of the subsituent. Thus, the growth inhibitory activities 

of 3’-F (mildly lipophilic, electron withdrawing), 3’-OMe (polar, electron withdrawing), 3’-

CF3 (lipophilic, electron withdrawing), 3’-SO2NHCH3 (polar, electron withdrawing) exceeded 

that of 2’ and/or 4’ regioisomers.  As the preference for the 3’ position was noted early, the 

subsequent series were populated with more 3’-substituted analogs.  

(ii) Among the 3’-substituted analogs, activity decreased in the following order: 

3’-CF3 (47, most active) > 3’-SO2NH2 > 3’-OCF3> 3’-CN, 3’-NHSO2CH3 > 3’F > 3’-

SO2CH3 > 3-Me > 3-OMe (1-7, least active)  

This sequence did not include the functionalized aminosulfonyl derivatives (1-18, 1-20 to 1-

24) which are discussed separately in the following paragraph. Table 3-2 lists the IC50 and 

Hammett σm values of these substituents. 168 

Table 3-2: σm values and IC50 values of 3’-substituents on phenyl ring B of Series1 

Substituent 
(Cpd No) 

σm IC50 
µM 

Substituent 
(Cpd No) 

σm  IC50 
µM 

Substituent 
(Cpd No) 

σm IC50 
µM 

CF3 
(47, 1-10) 

0.43 0.46 CN 
(1-19) 

0.56 7.3 SO2 Me 
(1-16) 

0.52 10.8 

SO2NH2 
(1-17) 

0.46 3.1 NHSO2Me 
(1-25) 

0.20 7.4 CH3 
(1-5) 

-0.07 11.1 

OCF3 
(1-14) 

0.38 5.1 F 
(1-3) 

0.34 10.0 O Me 
(1-7) 

0.12 12.2 

 

Although the top ranking compounds (47, 1-17, 1-14) had electron withdrawing groups on 

ring B, there was no apparent correlation between the magnitude of electron withdrawal and 

IC50.  Nitrile CN (σm 0.56) and methylsulfonyl SO2Me (σm 0.52) were strongly electron 
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withdrawing but were not highly ranked in terms of IC50. The least active compounds were 

Me (1-5) and OMe (1-7) analogs. Methyl Me is weakly electron donating (σm -0.07) but 

OMe (σm 0.12) is electron withdrawing because of its meta location. Taken together, the 

electronic nature of the ring B substituent is deemed to have a minor influence on activity.  

(iii) The most potent compound in Series 1 was the 3’-N-n-propylaminosulfonyl analog 1-23 

(IC50 0.28 µM). Specific structural requirements for the aminosulfonyl side chain were 

evident : First, the aminosulfonyl moiety must be N- substituted. The aminosulfonyl SO2NH2 

analog 1-17 (IC50 3.1 µM) was only weakly active. Second, mono N-substitution was 

preferred to di-N,N-substitution. The N,N-dimethylaminosulfonyl analog (1-20, IC50 4.9 µM) 

was 5x less potent than the mono substituted counterpart (1-18, IC50 0.97 µM) . Third, 

homologous extension of the mono N-substituent (methyl  ethyl  propyl) had a positive 

impact on activity, but branching of the alkyl side chain (1-24, IC50 1.9 µM) was not helpful. 

Lastly, “reversing” the N-methylaminosulfonyl side chain (1-18, IC50 0.97 µM) to 

methylsulfonylamino (1-25, IC50 7.4 µM) caused a significant loss in potency, highlighting 

the singular importance of retaining the N-monosubstituted aminosulfonyl motif. 

3.3.1.1. Growth inhibitory activities of Series 2, 3 and 4 compounds 

Table 3-3: IC50 of Series 2,3 and 4 compounds on HuH7 cells.  Mean ± SD for n= 3 determinations.  

Series 2 

N
O

H

R1

A

B

Cl

 

No R1 IC 50 (µM) ± S.D No R1 IC 50 (µM) 
2-1 H 21.3±2.2 2-9 3'4'F 11.4 ± 1.5 
2-2 2'F >30 2-10 3'OCF3 3.8 ± 0.3 
2-3 3'F 15.1 ± 2.9 2-11 3'SO2Me 6.5 ± 0.5 
2-4 4'F 12.7 ± 2.8 2-12 3'SO2NH2 9.7 ± 1.6 
2-5 3'OMe >30 2-13 3'CN 10.4 ± 2.0 
2-6 2'CF3 >30 2-14 3'SO2NHMe 3.1 ± 0.1 
2-7 3'CF3 0.81 ± 0.11 2-15 3'SO2NHPr 7.4 ± 0.3 
2-8 4'CF3 7.9 ± 1.5 2-16 3'NHSO2Me 11.4 ± 0.8 
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Series 3 

N
O

H

R1

A

B

F
 

No R1 IC 50 (µM)  No R1 IC 50 (µM)  
3-1 H N.A. a 3-8 3'OCF3 7.5 ± 0.2 
3-2 2'F N.A. a 3-9 3'SO2Me 12.7 ± 1.5 
3-3 3'F N.A. a 3-10 3'SO2NHMe 0.48 ±  0.01 
3-4 4'F N.A. a 3-11 3'SO2NHEt 0.39 ± 0.07 
3-5 2'CF3 >30 3-12 3'SO2NHPr 0.093±0.029 
3-6 3'CF3 1.4 ± 0.1 3-13 3'SO2NHiPr 2.3 ± 0.1 
3-7 4'CF3 8.4 ± 0.3 3-14 3'NHSO2Me 15.3 ± 1.1 

Series 4 

N
O

H

R1

A

B

F

 

No R1 IC 50 (µM)  No R1 IC 50 (µM)  
4-1 H 21.4 ± 1.7 4-10 3'CF3 4.0 ± 0.5 
4-2 2'F >30 4-11 4'CF3 9.3 ± 1.0 
4-3 3'F 13.3 ± 2.3 4-12 3'4'F 15.3 ± 0.2 
4-4 4'F 13.2 ± 0.4 4-13 3'OCF3 5.2 ± 0.6 
4-5 2'Me >30 4-14 3'SO2Me 5.2 ± 0.6 
4-6 3'Me 20.8 ± 0.4 4-15 3'CN 7.4 ± 1.1 
4-7 4'Me 16.4 ± 4.2 4-16 3'SO2NHMe 1.2 ± 0.0 
4-8 3'OMe 11.7 ± 1.1 4-17 3'SO2NHPr 1.43 ± 0.27 
4-9 2'CF3 >30 4-18 3'NHSO2Me 18.6 ± 1.8 

a No activity at the highest soluble test concentration 

Series 2, 3 and 4 explored the replacement of 6-Cl in Series 1 with 6-F (Series 3) and  moving 

the halogens (Cl, F) from position 6 to position 5 (Series 2,4). IC50 values are given in Table 

3-3 and for ease of comparison, IC50 values of substituents common to the Series are collated 

in Table 3-4. 

Table 3-4: IC50 values of ring B 3’-substituents (R1) in Series 1-4 

R1 
IC50 on HUH7 cells (µM) 

Series 1 
(6-Cl) 

Series 2 
(5-Cl) 

Series 3 
(6-F) 

Series 4 
(5-F) 

H 17.5 21.3 NAa 21.4 
3’-F 10.0 15.1 NAa 13.3 

3’-CF3 0.46 0.81 1.4 4.1 
3’-OCF3 5.1 3.8 7.5 5.2 

3’-SO2Me 10.8 6.5 12.7 5.2 
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3’-SO2NH2 3.1 9.7 Not doneb Not doneb 

3’-SO2NHMe 0.97 3.1 0.48 1.2 
3’-SO2NHPr 0.28 7.4 0.093 1.43 

a  No activity at the highest soluble test concentration. 
b Not done because compound was not synthesized. 
 
As seen from Table 3-4, changes in activity brought about by these modifications were 

largely dependent on the nature of the 3’ substituent. Nonetheless, some SAR trends could be 

gathered. First, with the exception of trifluoromethoxy (3’-OCF3) and methylsulfonyl (3’-

SO2Me), substitution at position 6 on ring A (6-Cl, 6-F) was preferred to position 5 (5-Cl, 5-F) 

for the same ring B substitution. Second, the 6-F analog was superior to its 6-Cl counterpart 

in compounds that had the N-substituted aminosulfonyl group on ring B, namely 3-10 

(SO2NHMe) and 3-12 (SO2NHPr), but not in compounds that had CF3, OCF3 or SO2Me. Thus, 

6-F on ring A and an N substituted aminosulfonyl group on ring B was associated with good 

activity. In contrast, 6-Cl on ring A may be combined with either 3’CF3 or 3’ N-substituted 

aminosulfonyl with retention of good activity.    

Next, the results were analyzed to determine if the SAR trends observed in Series 1 also 

prevailed in Series 2-4. First, based on the few relevant comparisons available (F, CF3, Me), 

no consistent preference for the 3’ regioisomer was noted. Intriguingly, it was only observed 

for CF3 but not F or methyl in Series 2-4.  Second, the activity advantage associated with the 

N-methyl to N-propyl converstion was only evident in Series 3, but not in Series 2 and 4. 

Interestingly, the indolinone rings in Series 2 and 4 were 5-substituted, whereas those in 

Series 1 and 3 were 6-substituted. Thus, there was limited cross over in SAR established in 

Series 1 to Series 2-4 in spite of their structural similarity.   

3.3.1.2. Growth inhibitory activities of Series 6 and 7 compounds 

 As discussed in Section 2.4, Series 6 compounds were assigned as predominant Z isomers 

(except 6-5, 6-9) whereas Series 7 compounds were assigned as predominant E isomers. 

However, racemization during biological testing would result in E/Z mixtures of Series 6 and 

7 compounds. Based on the time dependent course of racemization of 6-6 (Section 2.4), it is 

assumed that Series 6 compounds would have a greater proportion of Z isomers whereas 
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Series 7 would have near equal proportions of E and Z forms. IC50 of Series 6 and 7 

compounds are given in Table 3-5. 

Table 3-5: IC50 of Series 6 and 7 compounds on HuH7 cells. Mean ± SD for n= 3 determinations.  
Series 6 

N
O

H

R1

A

B

F
F

 

No R1 IC 50 (µM)  No R1 IC 50 (µM)  
6-1 H >30 6-7 4'CF3 >30 
6-2 2'F 16.9 ± 1.7 6-8 3'OCF3 2.9 ± 0.3 
6-3 3'F 15.9 ± 1.1 6-9 3'SO2Me >30 
6-4 4'F 14.0 ± 0.7 6-10 3'SO2NHMe 16 ± 3 
6-5 2'CF3 >30 6-11 3'SO2NHPr 13.4 ± 2.2 
6-6 3'CF3 0.54 ± 0.07 6-12 3'NHSO2Me 2.4 ± 0.4 

 

 

Series 7 

N
O

H

R1

A

B

F

F
 

No R1 IC 50 (µM)  No R1 IC 50 (µM)  
7-1 H >30 7-7 4'CF3 10.6 ± 0.7 
7-2 2'F >30 7-8 3'OCF3 5.6 ± 0.3 
7-3 3'F 19 ± 3 7-9 3'SO2Me 13.9 ± 2.0 
7-4 4'F N.A. a 7-10 3'SO2NHMe 2.8 ± 0.2 
7-5 2'CF3 >30 7-11 3'SO2NHPr 3.6 ± 0.9 
7-6 3'CF3 0.84 ± 0.17 7-12 3'NHSO2Me 15 ± 2 

a  No activity at the highest soluble test concentration. 
 

It can be seen from Table 3-5 that there was no consistent regioisomeric preference for the 3’ 

position. Only two ring B substituents (CF3, F) were available for comparison and the results 

showed that 3’CF3 but not 3’F was preferred in both Series. Series 6 and 7 were also 

examined to determine if the N-methyl to N-propyl extension in the substituted aminosulfonyl 

side chain resulted in improved activity. This was not observed in either series.  
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Table 3-6 compares the IC50 values of 3’-substituted Series 6 and 7 compounds with that of 

their mono-F analogs in Series 3 and 4.  The activity advantage of difluoro substitution was 

observed only for 3’CF3 and not for the other groups on ring B.  3’ CF3 was in fact the 

preferred ring B substituent in the di-fluorinated Series 6 and 7, whereas the 3’ N-substituted 

aminosulfonyl side chains were preferred in the mono-fluorinated Series 3 and 4.  

Table 3-6: IC50 values of ring B 3’-substituents (R1) in Series 1-4 

R1 
IC50 on HUH7 cells (µM) 

Series 6 (4,5-F) Series 7(5,6-F) Series 3(6-F) Series 4 (5-F) 
H >30 >30 NAa 21 

3’-F 16 19 NAa 13 
3’-CF3 0.54 0.84 1.4 4.1 

3’-OCF3 2.9 5.6 7.5 5.2 
3’-SO2Me >30 14 13 5.2 

3’-SO2NHMe 16 2.8 0.48 1.2 
3’-SO2NHPr 13.4 3.6 0.093 1.4 

 

3.3.1.3. Growth inhibitory activities of Series 5 compounds 

The Series 5 compounds which were substituted with 6-MeO on ring A had exceptionally 

potent activity. Of the 10 compounds in this series, half of them had submicromolar IC50 on 

HuH7. The most potent compound was the N-methylaminosulfonyl analog 5-9 (IC50 34 nM). 

The regiosomeric preference for position 3’ over position 4’ was observed for CF3 and F, and 

the improvement in activity on going from N-methyl to N-propyl was also apparent.  

Table 3-7: IC50 values of Series 5 compounds. Mean ± SD for n= 3 determinations.  

N
O

H

R1

A

B

MeO
 

No R1 IC 50 (µM)  No R1 IC 50 (µM)  
5-1 H 0.77 ± 0.07  5-6 3'CF3 1.2 ± 0.1  
5-2 2'F 0.49 ± 0.05  5-7 4'CF3 >30  
5-3 3'F 0.71 ± 0.07  5-8 3'SO2NHMe 0.17 ± 0.02  
5-4 4'F 5.4 ± 0.1  5-9 3'SO2NHPr 0.034 ± 0.008 
5-5 2'CF3 7.0 ± 0.8  5-10 3'NHSO2Me 2.4 ± 0.4 
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A characteristic feature of the growth inhibitory activity the Series 5 compounds was the 

failure of high concentrations of test compound to completely abolish cell viability. Thus the 

dose response curve had a characteristic “hanging’ appearance.  It would seem that a 

subpopulation of “susceptible” cells were readily killed by the test compound, leaving behind 

a core of “resistant” cells that remained viable even at relatively high concentrations of test 

compound.  

Practically, the “hanging” dose response curve raised concerns over the determination of IC50. 

The approach adopted here was to take the concentration corresponding to the mid-point of 

the higher and lower “flat” portions of the curve. To confirm if this was a viable approach, the 

GI50 values of several series 5 compounds were also determined. 

Briefly, GI50 is a parameter used by the National Cancer Institute (NCI) to quantify the 

growth inhibitory activity of a test compound. 175 Unlike IC50, GI50 takes into consideration 

the cell count at time zero. Thus GI50 is the concentration of test compound at which 100 × 

(T-T0) / (C-T0) = 50, where T = absorbance of the test well which contains test compound and 

cells after 72 h incubation, C = absorbance of control well which contains only cells after 72 h 

of incubation and T0 = absorbance of control well which contains cells at time 0 (at the point 

of compound addition to other wells). T, C and T0 were also corrected for absorbance due to 

the vehicle used in the assay.  

The NCI protocol proposed that if after 72 hours, some concentrations of test compound had 

absorbances lower than T0, it would signal that the test compound was cytotoxic. Cytotoxicity 

was quantified in terms of LC50 (lethal concentration 50), which is the concentration at which 

T = ½ T0 [or 100 × (T –T0)) / (C- T0)) = -50].  If LC50 could not be determined, then the 

compound was deemed to be antiproliferative (cytostatic) and the test concentration at which 

T = T0 was designated “TGI”, which is the highest concentration at which the test compound 

arrested cell growth.  

Figure 3-1 shows the curve for determination of GI50 of a representative Series 5 compound. 

The GI50 (29 nM) compared favorably with IC50 (34 nM). In general, GI50 values were lower 
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than IC50 values.  The dose response curve of 5-9 showed that from 0.1 to 10 μM, cell 

viability remained relatively constant, before declining at extremely high concentrations 

(Figure 3-2A). If the latter concentrations were ignored, 5-9 would be deemed to have a 

cytostatic component in its growth inhibitory profile. The curve for determination of GI50 is 

given in Figure 3-2B. Similar observations applied to several other Series 5 compounds 

whose GI50 values were also determined. However, IC50 values were reported in Table 3-7 to 

keep in step with the other Series. 
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Figure 3-1: Dose response curves of determination of (A) IC50 and (B) GI50 of 5-9 on HuH7 cells, 72 h 

incubation.   

When 3-12 was tested for its GI50 value, it was apparent that it was predominantly cytotoxic 

(Figure 3-3). GI50 of 3-12 was 60 nM as compared to IC50 of 94 nM.  

  

Figure 3-2: Dose response curves of determination of (A) IC50 and (B) GI50 of 3-12 on HuH7 cells, 72 
hr incubation.  

3.3.1.4. Growth inhibitory activities of Series 8 compounds 

Table 3-8: IC50 of Series 8 compounds on HuH7 cells. Mean ± SD for n= 3 determinations. 
Series 8 
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N
O

X

CF3

R3

R2 A

B

 
No R2 R3 X IC 50 (µM)  
8-1 H H CH 5.6 ±  0.1 
8-2 H H N >30 
8-3 H CH3 CH 6.7 ± 1.2 
8-4 5Cl H N 20 ± 4 
8-5 5F H N 23 ± 5 
8-6 6Cl H N 20 ± 2 
8-7 6Cl CH3 CH 1.1 ± 0.2 
8-8 6Cl Et CH 2.5 ± 0.3 
8-9 6Cl Bn CH 0.93 ± 0.12 

a IC50  could not be determined due to poor solubility of test compound 

Series 8 was designed to report on the SAR of the exocyclic methine (=CH-) bond and 

substitution on the indolinone nitrogen.  Replacing the exocyclic methine (=CH-) for 

azomethine (=N-) resulted in a significant drop in activity and this was consistently observed   

in Series 1 (6-Cl), Series 2 (5-Cl) and Series 4 (5-F). (Figure 3-4). 

N
H

O

X

CF3

8-1: X = CH  IC50: 5.6 μM
8-2: X= N      IC50: > 30 μM

N
H

O

X

CF3

47: X = CH  IC50: 0.46 μM
8-6: X= N      IC50: 20 μM

Cl N
H

O

X

CF3

2-7: X = CH  IC50: 0.81 μM
8-4: X= N      IC50: 20 μM

Cl
N
H

O

X

CF3

4-10: X = CH  IC50: 4.0 μM
8-5: X= N      IC50: 23 μM

F

 

Figure 3-3: Comparison of IC50 values of benzylidene indolinones and phenyliminoindolinones.  

Substitution on the lactam N showed that N-substitution did not improve activity.  No specific 

trend was apparent when the potencies of the N-methyl, N-ethyl and N-benzyl analogs were 

compared. (Figure 3-5). 
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Figure 3-4: IC50 values of 47 and its N-substituted analogs 

3.3.2. Growth inhibitory properties of selected compounds on Hep3B and 

HepG2  

In the next stage of the investigation, selected compounds were investigated on two other 

liver cancer cell lines, HepG2 and Hep3B. Most of the selected compounds had IC50 values of 

approximately 1 µM or lower on HuH7 cells. The rest were less potent but had ring B 

substituents (CF3, SO2NHMe, SO2NHPr) that were associated with potent activity. Hence 

they were included for establishing SAR.  

Mention should be made of the differences between the liver cell lines HuH7, HepB2 and 

HepG2. Unlike Hep3B and HuH7, HepG2 is a hepatoblastoma cell line.176  Whereas HCC is 

associated with known environmental risk factors, inherited factors contribute more to the 

pathogenesis of hepatoblastoma.177 The p53 gene which is the most frequently mutated gene 

in HCC 178-181  is wild-type in HepG2 but has altered structure and function in HuH7 and 

Hep3B.179 Levels of p53 were exceptionally high in HuH7 presumably due to the 

complexation of the mutant p53 with heat shock proteins. 179 A major portion of the p53 gene 

was deleted in Hep3B and this deletion was accompanied by the absence of p53 transcripts 

and p53 protein in this cell line.179 Hep3B cells were also unusual in that their genome 

contained hepatitis B virus (HBV) DNA.182 Thus, Hep3B cells expressed HBx, a protein 

encoded by HBV that is critically involved in HBV-induced HCC.183 

As seen from the results in Table 3.9, except for the N-benzyl analog 8-9, the test compounds 

were consistently less potent on HepG2 cells. Growth inhibitory  activities on HuH7 and 
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Hep3B were broadly comparable, with a few exceptions (3-12, 5-1, 5-6, 5-8, 5-9, 8-8) where 

IC50 values differed by 2-fold or greater. Sorafenib was equipotent on all 3 cell lines. The 

diminished activity on HepG2 compared to HuH7/Hep3B may imply that cells with mutated 

p53 were more susceptible to the test compounds.  
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Table 3-9: IC50 of selected compounds on HepG2 and Hep3B cells. IC50 on HuH7 cells were included 
for comparison.  IC50 values are mean ± SD for n=3. 

N
O

R2

A

B

R1

R3

 

Code R1 R2 R3 
IC50 (µM)  

HuH7 Hep3B HepG2 
47 (1-10) 6Cl H 3'CF3 0.46±0.06 0.96±0.22 0.94±0.18 

1-17 6Cl H 3'SO2NH2 3.1 ± 0.2 7.6±0.2 9.8 ± 1.7 
1-18 6Cl H 3'SO2NHMe 1.0 ± 0.1 1.0±0.1 3.6±0.3 
1-20 6Cl H 3'SO2NMe2 4.9 ± 0.4 5.3±0.5 7.9 ± 0.6 
1-22 6Cl H 3'SO2NHEt 0.7±0.03 1.4±0.2 4.0±0.6 
1-23 6Cl H 3'SO2NHPr 0.28±0.09 0.32±0.08 1.5±0.1 
1-24 6Cl H 3'SO2NHiPr 1.9±0.3 1.6±0.2 5.5±1.0 
2-7 5Cl H 3'CF3 0.8±0.1 0.8±0.1 1.5±0.06 

2-14 5Cl H 3'SO2NHMe 3.1 ± 0.07 5.40±0.3 10 ± 0.2 
2-15 5Cl H 3'SO2NHPr 7.4 ± 0.3 5.7 ± 0.3 10 ± 1. 
3-10 6F H 3'SO2NHMe 0.48 ± 0.01 1.1±0.2 2.8 ± 0.6 
3-11 6F H 3'SO2NHEt 0.39±0.07 0.51±0.06 1.6±0.2 
3-12 6F H 3'SO2NHPr 0.093±0.029 0.36 ± 0.13 0.80±0.14 
3-13 6F H 3'SO2NHiPr 2.3±0.06 1.7 ± 0.3 4.2±0.5 
4-16 5F H 3'SO2NHMe 1.2± 0.02 2.4 ± 0.4 9.1 ± 0.3 
4-17 5F H 3'SO2NHPr 1.4 ± 0.3 0.77 ± 0.13 5.2± 0.5 
5-1  6OMe H H 0.77±0.07 3.2±0.7 1.5 ± 0.1 
5-2  6OMe H 2'F 0.49±0.05 0.91±0.09 1.84 ± 0.18 
5-3  6OMe H 3'F 0.71±0.07 1.2±0.3 1.3± 0.2 
5-6 6OMe H 3'CF3 1.2±0.05 4.1±0.1 1.1 ± 0.2 
5-8  6OMe H 3'SO2NHMe 0.17 ± 0.02 0.31 ± 0.06 0.22 ± 0.01 
5-9 6OMe H 3'SO2NHPr 0.034 ± 0.008 0.56 ± 0.11 0.19 ± 0.074 
6-6 4,5F H 3'CF3 0.54±0.07 0.43±0.09 0.96±0.11 

6-11 4,5F H 3'SO2NHPr 13.4 ± 2.2 13.6 ± 0.7 17.6 ± 1.2 
7-6 5,6F H 3'CF3 0.84±0.17 0.45±0.07 0.69 ± 0.02 

7-10 5,6F H 3'SO2NHMe 2.8±0.2 2.8±0.2 5.5±0.4 
7-11 5,6F H 3'SO2NHPr 3.6 ± 0.9 2.7 ± 0.5 8.8 ± 1.0 
8-7 6Cl Me 3'CF3 1.1±0.2 0.9±0.1 1.7 ± 0.06 
8-8 6Cl Et 3'CF3 2.5±0.3 0.58 ± 0.021 2.12 ± 0.35 
8-9 6Cl Bn 3'CF3 0.93±0.12 0.78 ± 0.16 0.71 ± 0.06 

    IC50 (µM)  
HuH7 Hep3B HepG2 

Sorafenib 5.4 ± 0.5  5.8 ± 0.5 5.6 ± 0.2 
 

As seen from Table 3-9, the potent compounds against HuH7 (IC50 ≤  1 µM) were 47(0.46 

µM), 1-18 (1.0 µM), 1-22 (0.7 µM), 1-23 (0.28µM), 2-7 (0.81 µM),  3-10 (0.48 µM), 3-11 

(0.39 µM), 3-12 (0.09 µM), 5-1 (0.77 µM),   5-2 (0.49 µM),  5-3 (0.71 µM), 5-8 (0.17 µM), 

5-9 (34 nM), 6-6(0.70 µM), 7-6 (0.84 µM) and 8-9 (0.93 µM).   

Fourteen compounds were found to have IC50 ≤ 1 uM on Hep3B: 47( 0.96 µM), 1-18 (1.0 

µM), 1-23 (0.32 µM), 2-7 (0.77 µM), 3-11 (0.51 µM), 3-12 (0.36 µM)  4-17 (0.77 µM), 5-2 
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(0.91 µM), 5-8 (0.31 µM), 5-9 (0.56 µM), 6-6(0.43 µM), 7-6 (0.45 µM), 8-7 (0.91µM), 8-8 

(0.58 µM) and 8-9 (0.78 µM).  There was considerable overlap between the two lists, with 47, 

1-18,  2-7, 3-11, 3-12, 5-2, 5-8, 5-9, 6-6, 7-6 and 8-9 common to both.  

Analysis of the 3’ substituents in potent HuH7 compounds revealed that there were more 

compounds with 3’N-substituted aminosulfonyl side chains than 3’CF3 (8 versus 5). In 

contrast, among the potent Hep3B compounds, Hep3B compounds revealed that there were 

equal compounds with 3’CF3 on ring B to those with 3’ N-substituted aminosulfonyl (7 versus 

7).  

Table 3-10: 3’Substituents in potent HuH7 and Hep3B compounds (IC50 ≤ 1 µM) 
Potent compounds against HuH7 Potent compounds against Hep3B 

3’CF3 3’ SO2NHR Others 3’CF3 3’ SO2NHR Others 
47 1-18 5-1 47 1-18 5-2 
2-7 
6-6 
7-6 
8-9 

1-22 5-2 
5-3 

2-7 1-23 
3-12 
3-12 
4-17 
5-8 

 
1-23 6-6 
3-10 7-6 
3-11 8-7 
3-12 8-8 

 5-8  8-9 5-9  
 5-9     

 

3.3.3. Growth inhibitory properties and selectivity ratios of selected 

compounds on IMR 90 cell  

In order to assess the selective growth inhibitory activity of the test compounds, the 

compounds were evaluated on non-malignant diploid primary human fibroblast cells (IMR90). 

Ideally, screening for selective activity should be carried out on primary human hepatocytes 

184  or non-malignant liver cell lines such as THLE-2 or THLE-3, for a more accurate 

comparison with malignant liver cells.  Unfortunately, hepatocytes are not readily replicable 

and normal liver cells are difficult to culture. IMR90 cells are commonly employed for 

investigating the selective activity of anti-cancer drugs. 185  Hence they were used here as a 

representative non-malignant cell line.  IC50 IMR90  values and selectivity ratios calculated from 

IC50 IMR90/ IC50 HCC for each HCC cell line are listed in Table 3-11.  
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Table 3-11: IC50 of selected compounds on non-malignant human fibroblast cells IMR90 (mean ± SD 
for n=3 determinations). Selectivity ratios (IC50 IMR90 / IC50 HCC) were calculated for each compound 
from IC50 values in Table 3-9. 

N
O

R2

A

B

R1

R3

 

Code R1 R2 R3 
IMR90 

IC50 (µM)   
Selectivity Ratiosa 

HuH7 Hep3B HepG2  
1-10 6Cl H 3'CF3 9.2 ± 0.9 20 9.6 9.8 
1-17 6Cl H 3'SO2NH2 9.2 ± 0.6 3.0 1.2 0.9 
1-18 6Cl H 3'SO2NHMe 2.1± 0.4 3.9 2.0 0.59 
1-20 6Cl H 3'SO2NMe2 6.0 ± 0.2 1.2 1.2 0.76 
1-22 6Cl H 3'SO2NHEt 3.5±0.8 5.0 2.6 0.88 
1-23 6Cl H 3'SO2NHPr 0.6±0.09 2.1 1.8 0.38 
1-24 6Cl H 3'SO2NHiPr 1.8±0.2 0.9 1.1 0.3 
2-7 5Cl H 3'CF3 9.1±1.1 11 12 3.6 

2-14 5Cl H 3'SO2NHMe 6.6±0.3 2.1 1.2 0.6 
3-10 6F H 3'SO2NHMe 10.4 ± 0.2 21 9.6 3.8 
3-11 6F H 3'SO2NHEt 0.99±0.14 2.5 1.9 0.61 
3-12 6F H 3'SO2NHPr 0.83±0.06 8.9 2.3 1.1 
3-13 6F H 3'SO2NHiPr 3.1±0.4 1.4 1.9 0.73 
4-16 5F H 3'SO2NHMe 9.9 ± 0.6 8.4 4.2 1.1 
5-1  6OMe  H H 2.1 ±0.3 2.7 0.94 1.4 
5-2  6OMe H 2'F 0.56 ±0.05 1.1 0.62 0.30 
5-3 6OMe H 3'F 1.2 ± 0.07 1.7 0.99 0.93 
5-6  6OMe H 3'CF3 1.8± 0.1 1.5 0.44 1.6 
5-8  6OMe H 3'SO2NHMe 0.13 ± 0.02 0.8 0.42 0.59 
6-6 4,5F H 3'CF3 8.1 ±0.7 15 19 8.4 
7-6 5,6F H 3'CF3 8.5 ± 0.6 10 19 12 

7-10 5,6F H 3'SO2NHMe 7.7±0.2 2.8 2.8 1.4 
8-7 6Cl Me 3'CF3 11 ± 0.5 9.5 12 6.3 
8-8 6Cl Et 3'CF3 15.2 b 6.1 26 7.2 
8-9 6Cl Bn 3'CF3 9.76 b 10.5 12 14 

Sorafenib 11 ± 2 2.1 1.9 1.9 
a Selectivity ratio is calculated from  IC50 IMR 90/ IC50 HCC cell line. b IC50 value based on two replicates. 

Compounds that selectively curtailed the viability of HCC cell lines have ratios > 1.0.  As 

seen from Table 3-11, most compounds were selectively more potent against HuH7 and 

Hep3B than HepG2. 

 Earlier, potent compounds against HuH7 and Hep3B were identified based on their IC50 

values (≤  1 µM) (Table 3-10). The selectivity ratios of these compounds are collated in Table 

3-12. It was gratifying to note most of the compounds had ratios ≥ 2. Interestingly, 
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compounds with 3’CF3 on ring B (47, 2-7, 6-6, 7-6, 8-7, 8-8, 8-9) had larger ratios than 

compounds with N-substituted aminosulfonyl side chains (1-18, 1-23, 3-11, 5-8).  

Table 3-12: Selectivity ratios (SR) of potent compounds (IC50 values ≤  1 µM) against HuH7 and 
Hep3B. 

Potent compounds against HuH7 Potent compounds against Hep3B 
Cpd SRa Cpd SRa Cpd SRb Cpd SRb

47 20 5-2 1.1 47 9.6 5-9c - 
1-18 1.6 5-3 1.7 1-18 2.0 6-6 18.8 
1-22 5.0 5-8 0.8 1-23 1.8 7-6 19.0 
1-23 1.6 5-9c - 2-7 11.9 8-7 11.9 
2-7 11.3 6-6 15 3-11 1.9 8-8 26.4 

3-10 21.7 7-6 10 3-12 2.3 8-9 12.5 
3-11 2.5 8-9 10.5 4-17c -   
3-12 6.9   5-2 0.62   
5-1 2.7   5-8 0.4   

a  Selectivitity ratio = IC50 IMR90 / IC50 HuH7                 
b  Selectivitity ratio = IC50 IMR90 / IC50 Hep3B 

c Not determined 

3.3.4. Investigations into the induction of apoptotic cell death of HuH7 

cells by selected test compounds 

Having identified compounds with potent effects on the viability of HuH7, it was of interest 

to determine if apoptosis was involved in the cell death phenomenon. Compounds 47, 1-23, 2-

7, 3-12, 5-1, 6-6, 7-6 and 8-7 were selected for investigation (Figure 3-6). Of these, only the 

IC50 of 8-7 (1.1 µM) exceeded 1 µM. 

The induction of apoptotic cell death was investigated by flow cytometry using the Annexin 

V-FITC Apoptosis Detection Kit which contains propidium iodide (PI) and Annexin V tagged 

to fluorescein isothiocyanate (FITC). Briefly, the kit is designed to detect the translocation of 

phosphatidylserine residues from the inner to outer surface of the cell membrane during 

apoptosis. When attached to the outer surface of the membrane, the phosphatidylserine 

molecules bind to Annexin V and are detected by the fluorescence imparted by FITC.  PI is a 

DNA intercalator but cannot permeate the intact membranes of live cells to intercalate with 

nuclear DNA. Thus only dead cells or those in late apoptosis are stained by PI. HuH7 cells 

were treated with test compound for 48 h, at a concentration close to or corresponding to its 

IC50. Compounds 47, 3-12, 5-1 and 8-7 were tested over a range of concentrations. The cells 

were then harvested and stained with Annexin V / PI. Depending on the staining 
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characteristics, cells were distinguished as normal (not stained by Annexin –V or PI), in early 

apoptosis (stained by Annexin V but not PI) and in late apoptosis or necrosis (stained by both 

Annexin V and PI) (Table 3-13).    

Table 3-13:  Distribution of HuH7 into normal, apoptotic and necrotic categories on compound 
treatment, as assessed by FACS analysis. Mean ± SD for n =3 determinations. a 

Name Concentratio
n 
(µM) 

Population (%)  
Normalb Apoptoticb Necroticb

Controla  95.1 ± 0.6 1.4 ± 0.5 1.4 ± 0.6 
47 0.25 84.3  ± 1.5 11.0  ± 0.4 3.1  ± 0.7 

0.5c 82.8 ± 3.6 13.6 ±4.2 2.2 ± 0.7 
1 74.1  ± 3.3 19.9  ± 3.4 4.6  ± 0.7 

1-23 0.25 c 88.9 ± 1.2 7.9 ± 0.4 1.9 ± 0.1 
2-7 1.0 c 83.4 ±1.8 11.7 ± 2.7 2.6 ± 0.3 
3-12 0.05 88.9 ± 1.2 7.9 ± 0.4 1.9 ± 0.1 

0.12 c 87.3 ± 1.3 9.1 ± 0.3 2.2 ± 0.3 
0.25 84.2 ± 4.0 12.1 ± 2.4 2.6 ± 0.9 

6-6 0.5 82.7 ±2.5 13.0 ±1.9 2.6 ± 0.1 
7-6 0.5 85.1 ± 0.7 11.4 ± 0.4 2.3 ± 0.4 

Controla - 85.3 ± 5.1 2.1 ± 2.0 4.4 ± 3.9 
5-1 0.5 77.2 ± 1.5 9.6 ± 4.2 9.9 ± 4.3 

1 c 66.8 ± 10.9 19.7 ± 8.6 10.6 ± 1.7 
2.5 56.1 ± 20.1 29.6 ± 15.5 10.7 ± 6.6 
5 52.6 ± 14.0 35.9 ± 16.1 9.2 ± 3.0 

8-7 1 c 78.0 ± 0.7 10.6 ± 2.3 7.5 ± 2.6 
2.5 73.8 ± 7.2 12.1 ± 4.7 11.2 ± 3.6 
5 52.1 ± 14.9 24.9 ± 7.1 20.2 ± 10.2 

10 47.2 ± 11.9 28.7 ± 10.6 21.2 ± 3.8 
a Control cells were treated with media containing 0.5% v/v DMSO for 48 hr.  b Proportion of normal, 
apoptotic and necrotic cells were deduced from cell populations in the lower left, lower right and upper 
right quadrants of the FACS diagram respectively.c Concentration corresponding to IC50. 

 

Figure 3-5: Representative figures showing FACS analysis of HuH7 cells treated with 47, 3-12 and 5-1.  
(A) Vehicle control for 47; (B –D) : 47 at 0.25, 0.5, and 1.0 µM respectively . (E) Vehicle control for 
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Based on dual staining of cells with Annexin V/PI and monitoring of apoptotic marker 

proteins, it was concluded that 3-12, 5-1 and 8-7 induced apoptotic cell death in HuH7 cells.  

3.4. Discussion 

The structural alterations undertaken in this chapter were aimed at optimizing the HCC 

growth inhibitory activity of benzylideneindolinone scaffold, specifically that of the lead 

compound 47 whose structure-activity relationships (SAR) were largely unexplored. The 

desired outcomes of these modifications were to identify compounds with enhanced potency 

and selectivity for HCC, while retaining drug-like  solubility and permeability profiles. 

 The structure activity relationships established in this chapter were essentially derived from 

HuH7 cells. It was revealing that most of the compounds tested on the panel of liver cancer 

cells (HuH7, Hep3B, HepG2) were more potent on HuH7 and  Hep3B which were mutated 

p53 cell lines, than on HepG2 in which p53 was wild type. p53 is the most frequently mutated 

gene in HCC and the greater susceptibilities of cells bearing mutated p53 may suggest that 

signaling pathways associated with the loss of function or gain of a new function due to p53 

mutations were targeted by  these compounds. Several potent HuH7 compounds (47, 1-23, 2-

7, 3-12, 5-1, 6-6, 7-6, 8-7) induced apoptotic cell death, further underscoring the potential of 

these compounds for HCC.  
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Figure 3-7: Graphical summary of the effect of substituents on growth inhibitory potency of 

benzylidene indolinones on HuH7 cells. The vertical axis depicts substituents on ring A of the scaffold. 

The horizontal axis depicts substituents on ring B of the scaffold. The range of IC50 values are color 

coded (most potent in red and least potent in black). N.A. = No activity at the highest soluble test 

concentration 

 

The potency of compounds in Series 1-7 was dependent on the ring substituents. Figure 3-7 

provides a graphical summary of substituent effects on potency. The most potent compounds 

were shown in red and least potent compound in black. 

Several useful SAR insights were gleaned from the present investigations.  First, the 

exocyclic methine (=C-) linking indolinone to phenyl ring B should be maintained as such. 

Replacing it with azomethine (=N-) was not tolerated as seen from the diminished activities 

of the Series 8 3-phenylimino indolin-2-ones. Second, N-substitution of the lactam in 47 was 

not helpful although the N-benzyl analog 8-9 maintained submicromolar IC50 on HuH7, 

HepG2 and Hep3B. Compound 8-9 was in fact unique among the test compounds in having 

comparable activities on both HepG2 and Hep3B. Third, substitution on the phenyl ring B 

had a pronounced effect on growth inhibitory activity.  The substantial variation (≥ 80 fold) in 

potency brought about by varying the ring B substituents in Series 1 clearly showed the 

immense influence of this single structural modification. Both the position and type of 
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substitution on ring B affected activity. There was a clear preference for substitution at 3’ 

position on ring B in Series 1 but not in the other series (2-7) where regioisomeric preference 

depended more on the type of ring B substituent. Notwithstanding, 3’CF3 isomer was 

consistently preferred in all Series (1-7). There was no apparent correlation between the 

electron withdrawing nature of the ring B substitution and growth inhibitory activity. Groups 

with greater electron withdrawing effects than CF3 were not found to have greater activity. 

Possibly, an electron withdrawing group on ring B is an essential but not sufficient 

requirement for activity.  

An important finding of this study related to the good growth inhibitory activity of 

compounds bearing N-substituted aminosulfonyl side chain on ring B. The most potent 

compounds on HuH7 (3-12, 5-9) were substituted on ring B with N-n-propylaminosulfonyl 

groups. A robust SAR was observed for the N-substituted aminosulfonyl side chain, namely a 

distinct preference for mono N-substitution, an increase in growth inhibitory activity on 

homologation (H > N-methyl > N-ethyl > N-n-propyl), and the negative impact on potency 

imparted by branching (propyl  isopropyl) and reversal of the aminosulfonyl side chain 

(MeNHSO2-  MeSO2NH-).  

Fewer modifications were made on the indolinone ring A, with substitutions limited to 

halogens (largely influenced by 47) and methoxy. 6-Cl on ring A may be replaced by 6-F 

(Series 3) but switching from position 6 to position 5 (6Cl, 6F  5Cl, 5F) was generally not 

recommended. Interestingly, the most active compounds in the mono-fluorinated series 3 (6-F) 

and 4 (5F) had N-methyl (3-10, 4-16) or N-propylaminosulfonyl (3-12, 4-17) on ring B. The 

same was true for Series 5 (6OMe on ring A).  

Difluoro substitution of ring A was explored to provide insight on the contribution of E/Z 

isomerism to growth inhibitory activities. Series 6 (4,5-diF) was reasoned to be 

predominantly Z, while Series 7 (5,6-diF ) was deemed to exist in equivalent proportions of E 

and Z. However, the apparent configurational preference in Series 6 did not appear to affect 

potencies.  The most potent compounds in Series 6 and 7 (6-6, 7-6) had comparable IC50 

values. Both were 3’CF3 substituted on ring B.     
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The Series 5 compounds which were substituted with 6-MeO on ring A were unusual in 

having characteristic “hanging” dose response curves that were typical of cytostatic 

compounds. Nonetheless, one member (5-1) induced apoptosis in HuH7 cells, suggesting that 

the cell population may not exhibit homogenous responses to the Series 5 compounds and that 

only a subpopulation of the cells succumbed to apoptosis.  

One of the aims in this investigation was to identify a suitable replacement for 3’CF3 on ring 

B. The ideal group should impart potency and selectivity to the growth inhibitory profile, 

address the physicochemical deficits associated with 3’CF3 and permit functionalization for 

expansion of the series. The 3’N-substituted aminosulfonyl side chains have several of these 

desirable attributes. This side chain was encountered as frequently as 3’CF3 in potent HuH7 

and Hep3B compounds. A preference for the aminosulfonyl side chain was evident among the 

potent compounds in Series 3, 4 and 5.  Compounds with 3’ N substituted aminosulfonyl 

groups were anticipated to have greater solubilities and lower lipophilicity based on estimated 

values (Tables 2-1 to 2-3), thus providing the physicochemical advantage not found in 3’CF3 

compounds. Furthermore, the side chain may be modified by further homologation (presently 

not explored beyond propyl), cyclization or replacement by isosteric groups (ureido, amido).    

The predominance of only 2 side chains CF3 and N-propylaminosulfonyl – among the potent 

analogs identified in this chapter raised the question as to whether these groups could be 

remotely bioisosteric. A consideration of the binding interactions of CF3 and the N-substituted 

aminosulfonyl side chain suggested that they share more similarities than differences. The N-

substituted aminosulfonyl group is a H bond donor (NH) and H bond acceptor (-SO2-). H 

bonding is desirable because it introduces substantial specificity to molecular interactions.  In 

spite of its ability to function as a H bond acceptor, only 30% of sulfones and sulfonamides 

were found to act in this capacity. 186  Examination of sulfonyl containing ligands in the 

Protein Database (PDB) revealed that when situated in a hydrophobic environment, 36% were 

found to interact as H bond acceptors while 79% of the H bonded sulfonyl groups interacted 

simultaneously with a hydrophobic group. 186 These findings clearly pointed to a dual 

character for the weakly polar sulfonyl group, namely as a H bond acceptor and a 
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hydrophobic group.  The CF3 group also participates in a wide range of bonding interactions.  

The electron rich F atoms in CF3 are electronegative and have low polarizabilities. Although 

not recognized as a classical H bond acceptor, interactions between CF and polar H atoms 

(OH, NH) are frequently encountered in the PDB and Cambridge Structural Database (CSD). 

187 Thus C-F forms weak H bonds, with distances exceeding 3Å. C-F also participates in 

orthogonal multipolar interactions. 186  This interaction motif is characterized by a close 

orthogonal contact between two dipolar functionalities.188 Thus C-F establishes dipolar 

interactions with C-H, C=O and positively charged guanidinium groups. 186  In addition, CF3 

is a lipophilic appendage (π 0.88) that readily fills hydrophobic cavities. 

3.5. Summary 

In summary, SAR for the growth inhibitory activities of benzyldene indolinones on HuH7 

cells were established. Key findings are summarized in Figure 3-7. 

N
H

O

CH

A

B

                             Ring B
Preference for 3' substitution
Optimal substituents on ring B are EW 
(CF3, N substituted aminosulfonyl).
Potency not correlated to EW effects

Replacement of CH with N reduced potency.
No activity advantage associated with  E or Z isomers

Ring A
6-Cl, 6-F are preferred to 5-Cl, 5-F.
No activity advantage on di-F subsitution (4,5-F, 5,6 -F)
6-MeO may be an outlying series (hanging DRC, poor selectivity ratios)
Optimal ring B substituent for 6-F, 5-F, 6-MeO : 3' N substituted aminosulfonyl.
Optimal ring B substituent for 5-Cl, 4,5-F, 5,6-F: 3'CF3.
Optimal ring B substituent for 6-Cl: 3'CF3 and 3' N substituted aminosulfonyl.

6

5

3'

 

Figure 3-8: Summary of major SAR findings for the growth inhibitory activity of benzylidene indulines 
on HuH7 cells. EW: Electron withdrawing. 
 
The 3’N substituted aminosulfonyl side chain was identified as a promising replacement for 

the 3’CF3 group. It provides a rich source of molecular interactions (H bonding, hydrophobic), 

its polarity may translate to improved solubility and permeability, and it is amendable to 

structural variations.  
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Nearly ½ of the potent HuH7 analogs (IC50 < 1 µM) were substituted on ring B with the 3’N-

methyl or N-propylaminosulfonyl side chains. The more promising analogs like 3-10, 3-12 

selectively targeted HuH7 cells and were reasonably potent on Hep3B cells. Compound 3-12 

induced apoptotic cell death in HuH7 cells.  
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Chapter 4 : Investigations into the sirtuin inhibitory activities of selected 
compounds from Series 1-8.  

4.1. Introduction 

This chapter describes the screening of selected compounds from Series 1-8 for sirtuin 1 

(SIRT1) and sirtuin 2 (SIRT2) inhibitory activities. These investigations were motivated by 

two factors, namely evidence that the benzylideneindolinone scaffold is associated with 

sirtuin2 inhibitory activity (Section 1.6) 117,118  and growing support for the notion that 

dysregulation of sirtuins is involved in the growth and progression of HCC (Section 1.5.3). 110, 

131-133, 135, 140 Having identified several benzylidene indolinones that potently diminish viability 

of the HCC cell lines HuH7 and Hep3B (Chapter 3), it was of interest to determine if these 

compounds were sirtuin inhibitors and if sirtuin inhibition contributed in any way to the loss 

in cell viability. To this end, selected potent members were screened for SIRT1 and SIRT2 

inhibitory activity on an in vitro luminescence assay using human recombinant enzymes.  The 

functional relevance of sirtuin inhibition was validated by monitoring levels of acetylated 

sirtuin substrates (p53, α-tubulin) and downstream apoptotic proteins in treated HuH7 cells. 

Molecular docking was carried out to probe the ligand-target interactions involved in the 

inhibitory process.  

4.2. Materials and Methods 

4.2.1. Reagents  

AGK2 (2-Cyano-3-[5-(2,5-dichlorophenyl)-2-furanyl]-N-5-quinolinyl-2-propenamide) was 

from Torcris (Bristol, UK). Ex-527 (6-chloro-2,3,4,9-tetrahydro-1H carbazole-1-carboxamide) 

was from Sigma-Aldrich Inc (Singapore). Cell culture reagents (penicillin G, streptomycin, 

fetal bovine serum (FBS), culture media) were obtained from sources listed in Section 3.2.1.  

Stock solutions of test compounds were prepared as described in Section 3.2.1. Rabbit 

monoclonal antibodies to acetylated p53 (K382) and Bcl-2 were purchased from Cell 

Signaling Technology Inc (MA, USA). Mouse monoclonal antibodies to acetylated α-tubulin 

and α-tubulin were from Sigma-Aldrich Inc (Singapore). Mouse monoclonal antibodies to 
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p53, Bcl-xl, Bax,  goat anti-rabbit-horse radish peroxidase (HRP) conjugate and goat anti-

mouse HRP were from Santa Cruz Inc (CA, USA). Mouse monoclonal antibodies to β-actin 

were from Invitrogen Life Technologies (CA, USA).  

4.2.2. Principle of sirtuin enzyme assay 

sirtuin inhibitory activity was determined using the SIRT-Glo™ Assay Kit (G6450) from 

Promega (Singapore). Briefly, the assay is based on monitoring the rate at which the enzyme 

catalyzes the removal of the acetyl group from a luminogenic peptide substrate Z-

QPK(Me2)K(acetyl)-aminoluciferin. 189 The deacetylated substrate reacts with a protease in 

the Developer Reagent which removes aminoluciferin. In the presence of firefly luciferase, 

ATP and magnesium, aminoluciferin is oxidized to oxyluciferin with concurrent emission of 

light.   In the presence of a sirtuin inhibitor, deacetylation of the substrate is prevented and 

this causes a corresponding loss in luminescence. Figure 4-1 summarizes the reaction steps 

involved in the assay procedure.   
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Scheme 4-1 Reaction involved in the sirtuin in vitro enzyme assay. 
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4.2.3. Measurement of sirtuin activity 

SIRT 1 and SIRT2 activities were determined using the SIRT-Glo™ Assay Kit (G6450, 

Promega) following manufacturer’s instructions. Assays were carried out on a 384-well with 

human recombinant SIRT 1 (Se239) and SIRT 2 (Se251) enzymes from Biomol International 

/ Enzo Life Sciences (NY, USA). The amount of enzyme to be used in the assay was 

determined by measuring the signal-to-noise ratio of serially diluted enzyme in SIRT-GLO™ 

Buffer solution. The concentration of enzyme corresponding to a mid-range linear portion of 

the signal to noise ratio vs concentration plot was selected. A representative plot is given in 

Figure 4-1 (A).  In this way, enzyme concentration was fixed at 0.1 unit SIRT1 per well and 

0.2 unit SIRT2 per well.  Serially diluted inhibitor solutions (10 µL in SIRT-GLO™ Buffer 

solution, with 1 µL of DMSO) were added to each well in a white-wall 384 well plate 

followed by the sirtuin enzyme (10 µL in SIRT-GLO™ Buffer solution). The plate was 

agitated using the shaking function of the Tecan plate reader (Infinite 200) at 400 rpm for 30 

min at room temperature (25 oC) after which 20 µL of SIRT-GLO™ Reagent solution was 

added per well and the contents mixed by shaking (400 rpm) for another 30 min, 25oC. 

Luminescence was read on a Tecan plate reader.  Enzyme activity (%) was measured by the 

following expression: 

Enzyme activity (%)  = 
]_[]_[

]_[]_[
blanklumvehiclelum

blanklumcompoundlum
−
−

×100% 

where lum_compound = luminescence of wells containing enzyme and test compound, 

lum_vehicle  = luminescence of wells containing enzyme only and lum_blank = luminescence 

of wells containing vehicle (SIRT Glo™ Buffer/Reagent).  
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Figure 4-1 (A) Activity versus concentration of SIRT2 at different incubation times (15 min, 30 min, 

45 min) (B) Representative dose response curve of 5-1 on SIRT1 activity  

For the determination of IC50 (concentration required to inhibit 50% of enzyme activity), test 

compound was evaluated over a 300-fold concentration range, with at least 6 different 

concentrations tested. IC50 was determined from the sigmoidal curve obtained by plotting % 

enzyme activity versus logarithmic concentration of test compound on GraphPad Prism 5 

(San Diego, USA). IC50 values were reported as mean ± SD from n=3 separate determinations. 

A representation dose response curve for the determination of IC50 of 5-1 is given in Figure 4-

1 (B). 

(A)

0.001 0.01 0.1 1 10
1

10

100

1000

10000
15 min
30 min
45 min

Sirt 2 recombinant enzyme (unit)

Si
gn

al
 to

 b
ac

kg
ro

un
d 

ra
ti

o

(B)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

50

100

150

Log concentration (μM)

E
nz

ym
e 

ac
ti

vi
ty

 (%
)



 

97 
 

4.2.4. Preparation of HuH7 or Hep G2 cell lysates 

For detection of acetylated proteins, HuH7 or Hep G2 were incubated with test compounds 

for 12 h, 37oC, 5% CO2.  For detection of intrinsic apoptosis marker, HuH7 cells were 

incubated with test compounds for 48 h, 37oC, 5% CO2. After this time, the adherent cells 

were processed using the method described in the Section 3.2.5. 

4.2.5. Protein quantification 

After obtaining the cell lysate, the protein quantification was conducted using the method 

described in the Section 3.2.6. 

4.2.6. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-

PAGE) 

After protein quantification, cell lysates were separated on the SDS-PAGE Bio-Rad Mini-

Protean II system (Bio-Rad Laboratories Inc, CA, USA). Each sample with the same protein 

amount were loaded on to separate lanes and were separate using the same method described 

in the Section 3.2.7. After electrophoresis, the gels were subjected to Western blotting 

(Section 4.2.7). 

4.2.7. Western blotting 

After electrophoresis, the gels were processed using the same method described in the Section 

3.2.8. 

4.2.8. Molecular Docking 

The human SIRT2 enzyme was retrieved from the RCSB protein data bank (PDB ID: 

3ZGV).190 Water molecules were removed and the monomeric enzyme was processed for 

docking using LigX in the software Molecular Operating Environment (MOE, version 2011, 

Chemical Computing Group, Montreal, Canada). The E and Z structures of the test 

compounds were separately prepared for docking on MOE. Docking was carried out on 

GOLD v 5.2 (Cambridge Crystallographic Data Centre Software Ltd, Cambridge, UK) with 
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default GA settings. The binding pocket was defined by the atoms within 8 Å radius of co-

crystalized ligand in 3ZGV (ADP-ribose). Docking was carried out without the reference 

ligand (ADP ribose). GOLD uses a genetic algorithm (GA) for docking flexible ligands into 

the binding pocket to explore the full range of ligand conformational flexibility. 191 The 

GOLD Score was used as the fitness function for selection of the best docked conformations 

of test compounds in the binding pocket. For each molecule, the top 3 docked conformations 

were retained and analyzed graphically within MOE.  

The human SIRT1 enzyme was retrieved from the RCSB protein data bank (PDB 4I5I). 192 

The protein was co-crystalized with NAD+ and an indole analog (R-2-chloro-5,6,7,8,9,10-

hexahydrocyclohepta[b]indole-6-carboxamide).  Both ligands were removed and the binding 

cavity was defined by the atoms within 8 Å radius of NAD+ . The docking protocol described 

for SIRT2 was followed. 191 

4.3. Results 

4.3.1. Inhibition of sirtuin activities by selected test compounds  

In Chapter 3, compounds with IC50 < 1 µM against HuH7 cells were identified (Table 3-10). 

These compounds were screened for SIRT2 inhibitory activity at 10 µM and those with < 50% 

activity at that concentration were investigated for their IC50 concentrations. The results are 

given in Table 4-1. Based on the results, additional compounds were screened to provide a 

better understanding of the structural features affecting inhibitory activity.   

The known SIRT2 inhibitor AGK2 was used as a positive control. Its IC50 was found to be 8.1 

µM, which was higher than the reported value of 3.5 µM. 193 The difference may be attributed 

to the assay kits employed. The reported method used a kit that was based on fluorescence 

detection unlike the present method which used a luminescence-based kit.  
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Table 4-1: Inhibition of SIRT2 and SIRT1 activities by potent HuH7 compounds (IC50�～1 µM) 

N
OR2

R3

B

A

R1

 

Compound 
No R1 R2 R3 

SIRT2 
IC50 (µM) 

 

SIRT1 
IC50 (µM)  Or 
Activity at 10 
µM (shown as 

X% ± S.D.) 
47 3’ CF3 6-Cl H 10.9±0.7 >50 µM 

1-18 3'SO2NHMe 6-Cl H 24.7±2.4 91.1 %±7.6 
1-22 3'SO2NHEt 6-Cl H 12.9±1.9 88.9 % ±2.6 
1-23 3'SO2NHPr 6-Cl H 12.0±1.5 90.0 % ±7.2 
1-24 3'SO2NHPri 6-Cl H 9.7±1.0 NDa 

2-7 CF3 5-Cl H 16.8±4.5 80.3% ±2.9 
3-10 3'SO2NHMe 6-F H 46.0±8.2 82.7 % ±7.9 
3-11 3'SO2NHEt 6-F H 12.2±3.2 88.1 % ±4.4 
3-12 3'SO2NHPr 6-F H 12.6±2.1 78.4 % ±7.0 
3-13 3'SO2NHPri 6-F H 9.2±1.9 NDa 

5-1 H 6-MeO H 1.5±0.4 1.3±0.1 
5-2 2’F 6-MeO H 3.0±0.4 4.1±0.68 
5-3 3’F 6-MeO H 1.8±0.2 4.1±0.7 
5-4 4’F 6-MeO H 1.3±0.1 1.0±0.1 
5-5 2’CF3 6-MeO H 3.4±0.1 5.7±0.7 
5-6 3’CF3 6-MeO H 2.9±0.1 >50µM 
5-7 4’CF3 6-MeO H 1.1±0.1 9.6±2.0 
5-8 3’SO2NHPr 6-MeO H 9.9 ± 0.1 99% 
6-6 3’CF3 4,5-F H 24.5±6.7 99.8 % ±5.8 
7-6 3’CF3 5,6-F H 13.0±1.3 91.1% ±9.4 
8-7 3’CF3 6-Cl Me 3.4±0.1 >50 µM. 
8-8 3’CF3 6-Cl Et 3.1±0.2 >50 µM 
8-9 3’CF3 6-Cl Benzyl 0.97±0.10 >50 µM 

AGK2b 8.1±1.2  
EX-527b  0.19±0.01 

a  ND = Not determined b AGK2 and EX 527 are known SIRT 2 and SIRT1 inhibitors. IC50 values were 
reported to be 3.5 µM193 and 0.098 µM 194respectively. 

As seen from Table 4-1, most of the compounds were more potent than AGK2 or had 

comparable inhibitory activity. A notable few were less potent. Most of these compounds 

were those with N-methylaminosulfonyl (1-18, 3-10) although extending the N-alkyl side 

chain in a homologous manner, from N-methyl to N-ethyl, N-propyl and N-isopropyl, resulted 

in a modest 2 to 4 fold improvement in inhibitory activity.  Another compound with poor 

activity was the 4,5-difluoro substituted compound 6-6 (IC50 24.5 µM). Compound 6-6 was 

the least potent of the several 3’CF3 analogs (47, 2-7, 7-6, 5-6) listed in Table 4-1.   
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Potent inhibitors of SIRT2 (IC50 < 5 µM) were found in Series 5 and Series 8. One striking 

observation among the potent Series 5 compounds (5-1 to 5-7) was the narrow variation in 

IC50 values (1.1 µM to 3.4 µM).  The 6-methoxyindolinone scaffold may conceivably have 

features that promote  interaction with the sirtuin active site.  Notwithstanding, a role for the 

benzylidene ring B should not be entirely discounted. Notably, the N-propylaminosulfonyl 

analog 5-8 (IC50 9.9 µM) was comparatively less potent. 

Strong inhibitory activities were also observed in the N-substituted analogs of 47 (8-7, 8-8 

and 8-9). Compared to 47 which had an unsubstituted lactam NH, substitution with methyl, 

ethyl and benzyl improved inhibitory activities by 3 to 10-fold. The N-methyl and N-ethyl 

analogs were equipotent (IC50 ∼ 3 µM) but the N-benzyl analog 8-9 was significantly more 

potent (IC50 0.9 µM). 

The compounds were also evaluated for sirtuin 1 inhibitory activity. EX-527, a known SIRT 1 

selective inhibitor, served as a positive control. Its IC50 was found to be 0.19 µM, as 

compared to the reported value of 0.1 µM. 194  The test compounds were found to have 

negligible sirtuin 1 inhibitory activity, with the notable exception of the  Series 5 compounds 

(5-1 to 5-5) which maintained sirtuin 1 inhibitory activities that were broadly comparable to 

sirtuin 2. They were however significantly weaker inhibitors than EX527.  

4.3.2. Validation of sirtuin inhibition by compounds 5-1 and 8-7 using 

Western blot analysis 

The functional relevance of sirtuin inhibition was explored by investigating the effects of 5-1 

and 8-7 on the deacetylation of physiological substrates of SIRT1/2. Briefly, the test 

compound was incubated with HepG2 or HuH7 cells for 12 h, following which levels of 

acetylated p53 and α-tubulin were probed by Western blotting. p53 is a substrate of both 

SIRT172 and SIRT274 while α-tubulin is a SIRT2 substrate.144 Inhibition of sirtuin activity 

would result in higher levels of the acetylated substrate. The compounds were investigated at 

2.5, 5, 10 and 25 µM. These concentrations were higher than their reported IC50 values (Table 



 

3-9)

high

Figu
12 h
obta
obta
of th
and e
comp
prote
obta
prote

Figu
12 h
obta
 
Com

both

) but since s

her concentra

ure 4-2: 5-1 in
h incubation. T
ined in the fo
ined from unt

he blot for the
expressed as x
pared to total 
ein for cells tr
ined for othe
ein. Loading c

ure 4-3: 8-7 in
hr treatment. T
ined as descri

mpounds 5-1

h HuH7 and

shorter treatm

ations may b

nduces hyper-a
The ratios of 

ollowing way.
treated (contro
e acetylated p
x. Similarly, th
protein from 

reated at a giv
r concentratio
controls were 

nduces hyper-a
The ratios of 
ibed in Figure

1 and 8-7 inc

d HepG2 cel

ment times 

e required to

acetylation of 
acetylated (A
 The intensiti
ol) cells were 
protein was co
he intensity o
untreated cel

ven concentrat
ons. Increasin
p53 and α-tub

acetylation of 
acetylated (A
 4-2. Loading

creased the 

lls. Represen

101 

were emplo

o demonstrat

f p53 and α-tub
Ac) p53/p53 a
ies of the blot
set at 1.  At a

ompared to th
f the blot for t
lls and expres
tion of test co

ng values wer
bulin. 

f p53 and α-tu
Ac) p53/p53 a
g controls were

levels of ac

ntative blots 

yed for prob

e an effect. 

bulin in (A) H
and acetylated
ts were quant
a given compo
hat of acetylat
the same prote
ssed as y. The
ompound was 
re indicative o

ubulin in (A) H
and acetylated
e p53 and α-tu

etylated p53

are shown 

bing the ace

HepG2 and (B
d (Ac) α-tubul
ified by densi

ound concentr
ted protein fr
ein (total) from

e ratio of acety
given by x/ y
of elevated le

HepG2 and (B
d (Ac) α-tubul
ubulin.  

3 and acetyla

in Figures 4

etylated prot

) HuH 7 cells
lin /α-tubulin 
itometry and 
ration, the inte
om untreated 
m treated cell
ylated protein

y.   x/y values 
evels of acety

B) HuH7 cells
lin /α-tubulin 

ated α-tubul

4-2 and 4-3

 

teins, 

 

s after 
were 
those 

ensity 
cells 

s was 
n/total 

were 
ylated 

 

 after 
were 

in in 

.  In 



 

102 
 

general, basal levels of acetylated p53 were lower than that of acetylated α-tubulin in 

untreated HuH7/HepG2 cells. This was due to the fact that only levels of p53 acetylated at 

Lys 382 were probed. Since Lys 382 constituted a small proportion of total acetylated p53, it 

was easier to demonstrate increases in acetylated p53 (K382) in treated cells. In contrast, 

basal levels of acetylated α-tubulin in control cells were high to start with and hence, dose 

dependent increases were more difficult to demonstrate (Figure 4-1A, Figure 4-2B). 

Table 4-2 lists the maximum ratios of acetylated to total proteins obtained from compound-

treated cells and the concentrations at which these peak ratios were obtained. The results 

showed that peak ratios of acetylated p53/total p53 were generally obtained at 10 µM 5-1 and 

8-7 (except for 8-7 on HuH7 cells). In contrast, concentrations at which peak ratios of 

acetylated α tubulin /total α tubulin were induced were less consistent (10 µM, 25 µM). It 

should be noted that increases in the acetylated protein were often evident at lower 

concentrations than those associated with the peak ratios. For example, 5-1 caused a two-fold 

increase in acetylated p53 at 2.5 µM on both cell lines (Figure 4-2 A, B) although peak ratios 

were observed at 5 µM.  

Table 4-2: Peak ratios of acetylated protein/total protein induced by test compound (5-1, 8-7) in HepG2 
and HuH7 cells. The concentration at which these ratios were obtained are indicated in brackets.  
  Compound HepG2 HuH7 

Acetylated p53 a
Total p53 

5-1 1.7 
2.6 

(10 µM) 
(10 µM) 

3.1 
1.8 

(10 µM) 
(10 µM) 

8-7 1.3 
1.9 

(10 µM) 
(10 µM) 

2.6 
1.5 

(5 µM) 
(25 µM) 

Acetylated α tubulin a 

Total α-tubulin 
5-1 1.5 

1.1 
(10 µM) 
(25 µM) 

2.1 
1.8 

(25 µM) 
(5 µM) 

8-7 1.8 
1.7 

(10 µM) 
(25 µM) 

1.1 
1.3 

(10 µM) 
(10 µM) 

a Ratios were obtained from two independent Western blots. The results of one attempt are given in 
Figure 4-1 and 4-2. The results of the 2nd attempt are given in the Appendix IV. The ratios were 
calculated as described in Figure 4-1.  

sirtuins bind to and deacetylates activated p53. Inhibition of sirtuins would retain p53 in its 

transcriptionally active (acetylated) state, which is capable of triggering signaling pathways 

involved in apoptotic cell death.  Both 5-1 and 8-7 have been shown to induce apoptosis in 

HuH7 cells (Section 3.3.4). They increased levels of cleaved caspase 3 and cleaved PARP as 

well as the proportion of cells in the apoptotic phase when investigated by double staining 

with Annexin V and PI. In order to obtain further evidence of compound–induced apoptosis, 
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human SIRT2 (PDB 3ZGV) co-crystalized with ADP ribose 190 and human SIRT1 (PDB 4I5I) 

co-crystalized with NAD+ and an indole analog (R-2-chloro-5,6,7,8,9,10-

hexahydrocyclohepta[b]indole-6-carboxamide) which is structurally related to the SIRT1  

specific inhibitor EX527.192  

Sirtuins are known to share a highly conserved catalytic core domain but to differ in the 

length and sequences of the N and C-terminal segments.195  The catalytic domain comprises a 

large Rossman fold and a small domain that contains a zinc-binding ribbon module and a 

helical module that includes a flexible loop. The two modules are attached to the Rossman 

fold through 4 linking loops, two for each module. These loops form a cleft between the small 

and large domains, within which are found the binding pockets for the co-factor NAD+ and 

the acetylated substrate. These two entities insert from opposite sides into a hydrophobic 

tunnel within the cleft where catalysis occurs. The NAD+ binding pocket is divided into 3 

regions: Site A for the binding of the adenine moiety of NAD+, Site B for the ribose moiety 

connected to nicotinamide and Site C for the nicotinamide ring (Figure 4-5).      

  



 

105 
 

 

 

 

Figure 4-5: (A) Cofactor NAD+ in SIRT2 pocket (PDB 3ZGV). NAD+ was docked into the pocket as 
described in Section 4.2.5.  Sites A (adenine binding pocket) and C (nicotinamide binding pocket) are 
indicated. (B) Site B (nicotinamide ribose binding pocket) is highlighted. Residues in the vicinity of 
Site B include Tyr 104, Arg 97, Phe 96, Asn 168. (C) Close up of Site C. Residues in the vicinity of 
Site C include Phe 119, Phe 123, Phe 131, Ile 232, Ile 169. (D) Close up of Substrate Channel which is 
on opposite side of Site B. Residues in the vicinity are His 187, Leu 239, Val 233, Phe 235. Color code 
of pocket: Green = Hydrophobic; Magenta = Polar; Red = Exposed. 
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4.3.3.1. Docking analysis of Z isomers of test compounds on SIRT2 

Molecular docking showed that the Z isomers of the investigated compounds straddled the 

nicotinamide Site C, the substrate channel and ribose site B in such a way that that the 

indolinone ring was positioned at sites B/C whereas the benzylidene ring B projected into the 

substrate channel/Site B. The exact locations were difficult to establish as the co-

crystallization of the co-factor NAD+ with SIRT2 has not been achieved and there is some 

overlap between the residues lining Sites B and C, and Site C/substrate channel.  Huber et 

al143 reported that their benzylidene indolinones occupied Site C/substrate channel but they 

used a different SIRT2 crystal structure (PDB 1J8F). 196 Examination of the docking poses of 

the Z isomers (except those of 8-7, 8-8, 8-9) revealed three characteristic interactions:  

(i) H bonding interactions involving the lactam NH and carbonyl O of the indolinone ring. 

The lactam NH was H bonded to the phenolic OH of Tyr104 (N- - O), while the carbonyl O 

was H bonded to the guanidine side chain of Arg 97 (O- - N). The NH to Tyr 104 H bond was 

generally longer by ∼ 0.6 Å than the carbonyl O to guanidine N of Arg 97. The length of H 

bonds varied among the compounds. For instance, in the ring B CF3 analogs (47, 2-7, 6-6, 7-

6), the length of the N- -O bond ranged from 3.16 to 3.47 Å (Figure 4-6 A). The same bond 

was longer in 3-12 (N- -O 4.42 Å) (Fig 4-6 B) and shorter in the 6-methoxy analogs 5-1, 5-6 

(N- -O 2.97, 3.03 Å) (Fig 4-6 C).  Compound III reported by Huber et al 16 also displayed a 

long N- -O bond (4.42 Å) (Fig 4-6 D). The length of the NH to Tyr104 H bond changed in 

tandem with that of the carbonyl O to Arg 95 H bond.  Thus they were shorter in the Series 5 

compounds (O- -  N 2.27 to 2.38 Å) and longer in III and 3-12 (O- - N 3.13 to3.74 Å).    
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Figure 4-6: Bond lengths between lactam moiety (NHCO) of indolinone ring and residues Tyr 104 and 
Arg 97: (A) Compound 47; (B) Compound 3-12; (C) Compound 5-1; (D) Compound III. Compounds 
were examined in their Z configuration. Distances were measured between heavy atoms. H bonds are 
generally < 3.5 Å 
 
(ii) π π interactions between the indolinone ring and the phenyl ring of Phe 96. (Figure 4-7).  

H bonds and π π stacking interactions were involved in positioning the indolinone ring of the 

Z isomer at Site C.  
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Figure 4-7 The indolinone ring is stacked against the phenyl ring of Phe 96 and well positioned for ππ 
interactions. Illustrated with compound 2-7 
 
(iii) Cationic π interactions between the benzylidene ring B and the positively charged 

guanidinium side chain of Arg 97. The benzylidene ring B was directed deeper into Site B, 

and in some test compounds (3-12, 5-1 and other Series 5 compounds) was well placed for 

cationic π interactions with Arg 97 (Fig 4-8). The strength of this interaction would depend on 

the electron density of the benzylidene ring and would be weaker in CF3 substituted ring B 

analogs since the electron withdrawing CF3 would arguably diminish the π electron density of 

ring B.   

 

Figure 4-8: Cation- π interactions between benzylidene ring B and guanidinium side chain of Arg 97 as 
shown in (A) Compound  3-12 and  (B) Compound 5-6.  
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Notwithstanding its potential to weaken cation π interactions, the CF3 group was a source of 

multipolar interactions with the binding pocket. As seen in Figure 4-9, one of the F atoms in 3’ 

CF3 of 47 was oriented almost orthogonally to the guanidinium side chain of Arg 97 while 

another F may form a similar interaction with the carbonyl C of Ser 263 (Figure 4-9).  

 

Figure 4-9: Orthogonal multipolar interactions are formed between C-F bonds in 47 and guandinium 
side chain of Arg 97 and carbonyl O of Ser 263.   

Mention was made of the variation in H bond lengths between the indolinone lactam moiety 

and Tyr104/Arg95.  These variations could potentially account for differences in inhibitory 

potencies and thus were examined in greater detail. Compounds 3-12 and III were 

characterized by exceptionally long and weak H bonds. The docking pose of 3-12 suggested 

that this was largely due to the positioning of the N-propylaminosulfonyl side chain towards 

Site B of the NAD+ binding pocket. In this orientation, the sulfonyl O atoms of this side chain 

was H bonded to Arg 97 (side chain guanidine), Ser 263 (OH) and Phe 96 (NH) (Figure 4-10 

A), thus causing the molecule to be “pulled down” towards site B.  Consequently, the usual H 

bond interactions of the indolinone ring A were weakened. When the docking pose of 3-12 

was viewed concurrently with that of the co-crystalized ligand ADP ribose, a good overlap 

was observed between  the sulfonyl moiety of 3-12 and the  phosphoryl group (P=O) of ADP 

ribose (Figure 4-10 C), with both moieties involved in H bonding as H bond acceptors. The 

N-propyl side chain of 3-12 projected into a large cavity that could conceivably accommodate 

larger and bulkier N-substituents.  Like 3-12, III has a H bonding nitro group on its 

benzylidene ring. The docking pose of III revealed H bonding between the nitro group and 



 

110 
 

NH of Ser 263 (Figure 4-10 B). Consequently, the molecule was pulled down towards Site B, 

hence weakening the H bonding interactions of the indolinone ring.  

 

 

Figure 4-10: H bonding between (A) sulfonyl O atoms of 3-12 and Arg 97, Ser 263. Phe 96; (B) Nitro 
O atoms of III and Ser 263. (C) Overlap of 3-12 and ADP ribose in sirtuin 2 binding pocket (PDB 
3ZGV). The residues in the pocket were removed to reveal overlap (bracketed) between SO2 and PO2 
moieties in 3-12 and ADP ribose respectively.  

In contrast to 3-12 and III, the Series 5 compounds were characterized by short H bonds. To 

analyze how the shortened H bonds could have affected the interactions of this class of 

compounds, the orientation of the 6-methoxy group was examined as this was the only moiety 

common to the potent Series 5 analogs. Except for 5-7, the top ranked poses of the potent 

Series 5 compounds (5-1 to 5-6) showed that the 6-methoxy group was flanked by non-polar 
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residues Phe 119 and Ile 232 lining the substrate channel (Figure 4-11 A). Other ring A 

substituents (6-Cl, 5-Cl, 6-F) were also positioned in the substrate channel, but none 

approached the proximity observed with the methoxy group.  It is tempting to propose that 

just as H bonding groups on ring B (3-12, III) pulled the molecule towards site B and 

disrupted the H bonding interactions of the indolinone ring, strong hydrophobic interactions 

by the methoxy group pulled the molecule towards the substrate channel and strengthened H 

bonding interactions of the indolinone ring. Curiously, 5-7 had a strikingly different 

orientation in the binding pocket (Figure 4-11 B) even though its SIRT2 IC50 (1.1 µM) was 

not significantly different from the other Series 5 compounds. (Figure 4-11 B). 

 

Figure 4-11: (A) Overlap of top poses of representative Series 5 compounds (shown in different colors) 
in SIRT2 pocket. The methoxy group is not involved in H bonding but the methyl is orientated towards 
the non-polar residues Phe 119, Ile 232,Val 233. (B) Pose of Compound 5-7 (in yellow) shows H 
bonding of the lactam NH to amide carbonyl of Gln 167 and lactam CO to NH of imidazole in His 187. 
The contrasting pose of 5-1 is shown in green.  

Good SIRT2 inhibitory activity was also evident among the Series 8 compounds 8-7, 8-8 and 

8-9. Substitution of the lactam N abolished the characteristic H bonding between NH and Tyr 

104, but the H bond between the carbonyl O and Arg 95 remained intact.  The loss in H 

bonding may have been compensated by the increase in hydrophobic interactions as the N 
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substituent was extended from methyl to ethyl and benzyl. Notably, the N-benzyl side chain 

of 8-9 was well positioned for ππ interactions with the phenyl ring of Phe 235 (Figure 4-12).  

 

Figure 4-12 Overlap of best poses of compound 47 (green), 8-7 (yellow), 8-8 (orange) and 8-9 (pink). 
H bonding between lactam C=O and Arg 97 is maintained in Series 8 compounds. The benzyl ring of 
8-9 stacks onto the phenyl ring of Phe 235. 
 
The Series 8 compounds were substituted on the indolinone ring with 6-Cl and the 

benzylidene ring with 3’CF3.  Of these two features, the 6-Cl was likely to smaller contribute 

less to binding affinity. Like 6-methoxy, the chlorine atom was directed towards the substrate 

channel but the docking poses of the Series 8 and other 6-Cl compounds (Series 1) did not 

reveal any outstanding attractive or repulsive interactions involving the Cl group. Notably, 

there was no evidence of halogen bonding, which was in fact observed for the 7-Cl of III 

(Figure 4-13 A). Halogen bonding is a non-covalent interaction caused by the anisotropic 

charge distribution of halogens (except F) attached to electron withdrawing groups.197-199  This 

creates a positively charged region on the hind side of the halogen (σ hole) which attracts 

nucleophilic groups. The requirements for halogen bonding are bond lengths that are shorter 

than the sum of the van der Waal radii of the atoms involved and a C--X -- Y angle exceeding 

120o (where X = halogen, Y = nucleophile). In III, 7-Cl formed a halogen bond with the 

carbonyl O of Phe 119, with a bond length of 3.5 Å (exceeding 3.27 Å which is the sum of 

van der waals radii of O and Cl) but a favorable angle subtended at Cl of 166o. (Figure 4-13 A) 
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In contrast, the contribution of the CF3 substituted benzylidene ring to binding affinity in the 

Series 8 compounds was likely to exceed that of the 6-Cl on ring A.  Depending on the 

orientation of the ring, interactions may involve CF3 (orthogonal multipolar interactions), 

benzylidene ring (cation-π interactions) or both.  In the case of 6-6 Z however, the 4,5-

difluoro substitution on ring A may have played some role in its poor SIRT2 inhibitory 

activity (IC50 24.9 µM). The docking pose of 6-6 showed that 4-F was within 2.39 Å of the 

carbonyl O of Asn 168. (Figure 4-13 B). The electrostatic repulsion associated with the head-

on F to O interaction could conceivably reduce the feasibility of this binding interaction 

which was particularly critical for 6-6 in view of its strong Z preference as discussed in 

Section 2.4. 

 

Figure 4-13: (A) 7-Cl of indolinone ring of Compound III is involved in halogen bond formation with 
carbonyl O of Phe 119. (B) 4-F of Compound 6-6 is oriented towards carbonyl O of Asn 168 (F- - -O 
2.39 Å) and head on orientation is likely to be destabilizing. 

4.3.3.2.  Docking analysis of E isomers of test compounds on SIRT2 

Analyses of the docking poses of the E isomers of the benzylidene indolinones revealed that 

these isomers docked in Site B and the substrate channel but with significantly fewer 

interactions than their Z counterparts. Thus it was reasonable to conclude that the preferred 

configuration for docking was the Z isomer. Huber et al 143 reached a similar conclusion when 

they noted that their E isomers failed to display energetically favoring binding modes. Here 

we found comparable Gold Scores for both E and Z isomers but strikingly different docking 
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poses for the two isomers. This is illustrated in Figure 4-14 which compares the docking 

poses of 47E and 47Z in the SIRT2 binding pocket. The indolinone ring in the E isomer had 

made a complete “turn” such that the indolinone NH was H bonded to the amide C=O of Asn 

168 located in Site B. An H bond between the indolinone C=O and CH of Asn 168 was 

flagged out by MOE but was discounted as this bond was likely to be weak.  

 

Figure 4-14: (A) Docking poses of 47Z (yellow) and 47E (green) in SIRT2 binding pocket. The lactam 
NH of 47E establishes a H bond with carbonyl O of Asn 168 (NH - - O=C). The lactam carbonyl O of 
47E is recognized by MOE to form a H bond to CH of Asn 168. (B) Orientations of 47Z (yellow) and 
47E (green) in SIRT2.  Pocket residues have been removed.   

The core interactions of the E benzylidene indolinones were (i) H bonding of the indolinone 

lactam NH and Asn 168. As a consequence of this orientation, the indolinone ring A was 

directed towards site B (Figure 4-15 A).  No outstanding attractive or repulsive interactions 

involving the ring A substituent were noted, with the notable exception of the 6-methoxy of 

Series 5.  H bonding was evident between the 6-methoxy oxygen and NH of Gly 84 (3.28 to 

3.70 Å) (Figure 4-15 B). Additional interactions between the methoxy methyl and the side 

chain of Val 266, Pro 268 may serve to further strengthen interactions at this site (Figure 4-15 

B). 
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Figure 4-15:  Docking poses of (A) Compound 47E in  SIRT2 binding pocket. Lactam NH is involved 
in H bonding (Asn 168). Indolinone ring A is directed towards Site B. (B) Compound 5-1E in SIRT2 
binding pocket. Methoxy O is involved in H bonding to amide side chain of Gln 167. Methyl group is 
oriented towards non polar residues Pro 268, Val 266.   
 
(ii) Hydrophobic and van der waals interactions between the substituted benzylidene ring B 

and the non polar residues lining the substrate channel (Phe 119, Phe 235, Ile 232, Ile 169).  

An edge to side ππ interaction may also be possible in those compounds (47E) where Ring B 

was aligned almost orthogonally to Phe 235 (Figure 4-16).  

 

Figure 4-16: Edge to face ππ interactions(bracketed) between Ring B of 47E and phenyl ring of Phe 
235 
 
While most of the E isomers maintained these core interactions, some exceptions were noted. 

These were compounds that had H bonding substituents on ring B, namely 3-12 and III. The 

highest ranked docking poses showed that the H bonding sidechains were directed towards 

site B. In 3-12, the N-propylaminosulfonyl side chain was H bonded (via the sulfonyl O) to 

Ser 263 (NH) and Ala 85. In III, the 4-nitro moiety was H bonded to Ser 263 (NH) and 

Gln265. Consequently, the indolinone rings of 3-12 and III were not involved in H bonding 

interactions (Figure 4-17).  
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Figure 4-17:  Docking poses of (A) Compound 3-12 and (B) Compound III in SIRT2 pocket. Both 
compounds have H bonding side chains on Ring B and their poses differ from that of compounds 
without this feature. The lactam in the indolinone ring A is not involved in H bonding.  

The Series 8 compounds which were substituted on the lactam NH were another exception.  

The highest ranked poses of 8-7, 8-8 and 8-9 showed that the indolinone ring was oriented 

towards the substrate channel, as observed in 3-12 and III. (Figure 4-18) The realignment 

may be explained by the loss of H bonding on N-substitution which was further compounded 

by the increasing bulk at the lactam N.  In the realigned pose, the N-substituent was directed 

towards the more spacious lipophilic channel in the substrate binding site. Notably, N-benzyl 

of 8-9 was flanked by non-polar residues Ile 169 and Phe 233 (Figure 4-18)  

 
Figure 4-18 Overlap of best poses of compound 8-7 (yellow), 8-8 (orange) and 8-9 (pink) in SIRT 2 
pocket. The N-substituent projects into the substrate channel which is lined by Phe232, Ile 119, among 
other residues. 
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4.3.4. Docking analysis of Z isomers and E isomers of test compounds on 

SIRT1 

The docking of the Z isomers on SIRT1 yielded inconclusive results. Based on the in vitro 

inhibitory activities, only selected Series 5 compounds demonstrated significant inhibition. 

However this could not be rationalized from their docking poses on the crystal structure, 

which were essentially similar to that observed for the other compounds. A possible reason 

may be that the SIRT1 crystal structure that was used for docking was co-crystalized with the 

co-factor NAD+ and an inhibitor (a 7-membered ring analog of EX527). The inhibitor was 

bound deep in the catalytic site, and consequently displaced the nicotinamide moiety of 

NAD+ from Site C, and forced NAD+ to assume an extended conformation. Therefore the 

binding cavity would be larger and could be less discriminating. If so, this could explain why 

the more potent Series 5 analogs had very similar docking poses as the less potent inhibitors 

like 47, Series 3 and 8 compounds.  

4.4. Discussion 

The present investigations were undertaken to explore the sirtuin inhibitory potential of the 

benzylideneindolinone scaffold and to assess its contribution to cell growth inhibition.  SIRT2 

inhibition by several functionalized benzylidene indolineones had been reported earlier 143 and 

thus the main issue at hand was whether the structural modifications reported in this chapter 

had improved inhibitory potency. Unfortunately, the sirtuin inhibitory activities of the 

previously reported benzylidene indolinones (Figure 1-9) were not determined and thus the 

question as to whether they were more or less potent than the compounds tested here could 

not be completely addressed. Nonetheless, the sirtuin inhibitory potential of the 

benzylideneindolinone scaffold was clearly evident from the present findings.  First, several 

compounds in Series 5 and 8 demonstrated potent SIRT2 inhibitory activities, exceeding that 

of the specific SIRT2 inhibitor AGK2.  Second, the 40-fold variation in SIRT2 IC50 values 

pointed to specific structural requirements for inhibition that could be further exploited to 
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improve inhibitory potency. Third, the 6-methoxy substituted benzylideneindolinones were 

unique in demonstrating equipotent inhibitory potencies on both SIRT1 and SIRT2, a 

property not found for other benzylidene indolinones, including those reported by Huber et al. 

143  

Analysis of the SIRT2 inhibitory activities of the test compounds revealed several interesting 

structure activity relationships. First, with regard to the Series 5 compounds, the observation 

that 7 of the 8 members had  minimal variations in their IC50 values (1.1 -3.4 uM) in spite of 

having different ring B substituents (H, F, CF3) implied that the Ring A methoxy had an over-

riding influence on activity. Support for this notion was provided by the docking poses of the 

Z isomers of these compounds. As described earlier, the methoxy group was favorably placed 

for hydrophobic and van der waals interactions in the substrate channel, which presumably 

led to tighter and stronger interactions between the rest of the molecule and the binding 

pocket. However 5-8 (N-propylaminosulfonyl on ring B) of Series 5 had weaker SIRT2 

inhibitory activity. This side chain had been explored in compounds with different ring A 

substituents and the inhibitory activities of 5-8 fell within the same range of these other 

compounds. Notably, the SIRT2 inhibitory activity of 5-8 (9.9 µM) was close to that of 1-23 

(12.0 µM) and 3-12 (12.6 µM). A reasonable deduction was that these sulfonyl bearing ring B 

substituents had annulled the activity advantage associated with 6-methoxy group.  

The second SAR observation pertained to compounds with 3’CF3 substituted benzylidene 

rings B. These included 47, 2-7, 6-6, 7-6 and the potent Series 8 compounds (8-7, 8-8, 8-9). 

Compound 47, from which these compounds were derived, was comparable to AGK2 in 

terms of sirt2 inhibitory activity.  Replacing the 6-Cl of 47 with 5-Cl (2-7), 4,5-F (6-6) and 

5,6-F (7-6) had limited impact on inhibitory activity, suggesting that the interactions of the 

CF3 substituted benzylidene ring B were more important than those of the indolinone ring.  

Examination of the docked poses of these compounds showed that the CF3 substituted 

benzylidene ring B, unlike the Cl and F groups on ring A, was a rich source of multipolar and 

cation π interactions.  These interactions together with the hydrophobic / ππ stacking 
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interactions associated with the N-substituted lactam moiety could have accounted for the 

potent SIRT2 inhibitory activities of the Series 8 compounds.  

Third, the preference for the Z configuration of benzylideneindolines for binding to the SIRT2 

binding pocket was evident from the present results. A similar conclusion was reached by 

Huber et al.16 The E isomers established few productive interactions with the binding pocket. 

In contrast, the docking poses of the Z isomers were characterized by a host of binding 

modalities including H bonding,  ππ, cation π, non-polar and multipolar interactions.  

The docking pose of III reported by Huber et al. 143 could not be reproduced in the present 

investigation. This was likely due to the different SIRT 2 crystal structures used for docking. 

Huber et al 143 docked their compounds on to the apoenzyme of SIRT2 (PDB 1JKF) whereas 

docking was carried out here on a SIRT2 structure that was co-crystalized with a ligand ADP-

Ribose (PDB 3ZGV). The presence of the ligand would affect the size and shape of the 

binding cavity, and very likely the poses of docked structures.   

Although molecular docking had provided valuable insight into the structure activity trends 

associated with SIRT2 inhibition of the test compounds, the empirical nature of the approach 

should not be overlooked. The inhibitory activities of some compounds could not be readily 

explained by their docking poses. These were the homologs of N-alkylaminosulfonyl side 

chains (3-11, 3-13) whose inhibitory activities improved with extension of the N-alkyl side 

chain. These trends could not be rationalized from their docking poses. Similarly, docking on 

SIRT1 proved to be disappointing. These caveats reflect the pitfalls associated with molecular 

docking and highlight the need for further verification by additional investigations like site 

selective mutation of key residues proposed to be involved in the interactions and deriving co-

crystalized complexes of the enzyme with one of the test compounds.  The limitations of the 

static docking techniques employed in the software should not be overlooked either. 

Investigators have proposed that the conformational freedom of the flexible loop region in 

Site C of the co-factor binding pocket of SIRT2 may play a critical role in substrate 
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binding,200 but the contribution of this feature could not be assessed by the current docking 

approach.  

The functional relevance of the in vitro sirtuin inhibitory activities of 5-1 and 8-7 were 

confirmed by monitoring their effects on two physiological substrates of sirtuins, p53 and α-

tubulin.  Western blot analysis showed that both compounds efficiently induced the 

acetylation of p53 and α tubulin in HepG2 and HuH7 cell lysates. These increases were 

observed at 2.5 -10 µM (acetylated p53) and 5-25 µM (acetylated α-tubulin) for both 

compounds on HepG2 and HuH7. Although these concentrations were higher than the growth 

inhibitory IC50 of 5-1 and 8-7, they may be justified by the different time points employed in 

these experiments (12 h in Western blot versus 72 h in cell viability assays).  

Hyperacetylation of p53 at Lys 382 has been reported to enhance p53 stability by inhibiting 

its ubiquitination by Mdm2.201 It also led to the activation of the cell cycle regulator p21202 

and pro-apoptotic mediators BAX203 and PUMA.204 Hence, a consequence of the acetylation 

of p53 would be the induction of apoptotic cell death and this was indeed found to be true for 

5-1 and 8-7. Both compounds increased the proportion of HuH7 cells in the apoptotic phase 

when probed by Annexin V staining. They also increased the expression of apoptotic marker 

proteins (cleaved caspase 3, cleaved PARP). Compound 5-1 also induced changes in the 

levels of Bcl2, Bcl-xl and BAX that were congruent with the induction of apoptosis. However, 

the question as to whether sirtuin inhibition was a major factor contributing to apoptotic cell 

death could not be addressed by these preliminary experiments. While the sequence of events 

(hyperacetylation of p53  activation of p53  induction of apoptosis) may provide support 

for this notion, the likelihood of 5-1 or 8-7 acting on other oncogenic targets should not be 

discounted.  

In an earlier study, Peck et al. 141 proposed that sirtuin inhibitors sirtinol and salermide  

induced apoptosis only in cell lines that had functional p53. If this was the case, differential 

effects should be observed in HuH7 (mutated p53) and HepG2 (WT p53). However, the 

present results showed that 5-1 and 8-7 promoted acetylation of p53 and α-tubulin on both 
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cell lines at comparable concentrations. Other investigators have maintained that there was no 

correlation between p53 status and sirtuin expression. 134  Clearly, this is an unresolved issue 

that warrants further investigation.  

4.5. Summary 

Taken together, potent SIRT2 inhibitors have been identified from a focused library of 

functionalized benzylidene indolinones. The most potent inhibitors were the 

benzylideneindolinones substituted at position 6 with methoxy (Series 5) and N-substituted 

analogs of 47 (Series 8). Several members in Series 5 were also found to be moderately active 

SIRT1 inhibitors. Inhibition by representative members (5-1, 8-7) promoted the 

hyperacetylation of physiological sirtuin substrates (p53 and α-tubulin) and induced the 

apoptotic cascade in HuH7 cells. SAR for SIRT2 inhibition is summarized in Figure 4-18.  

Support for the differences in inhibitory activity was derived from molecular docking.  

 

 

Figure 4-19: Summary of SAR for SIRT2 inhibitory activity. 
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Chapter 5:  Investigations into the receptor tyrosine kinase (RTK) 
inhibitory activity of Compound 3-12.  

5.1. Introduction 

In this chapter, compound 3-12 was investigated for its ability to inhibit the phosphorylation 

of RTKs in HuH7 lysates. Inhibition of the identified RTKs were confirmed by demonstrating 

reductions in the protein levels of the affected RTKs by Western blotting or 

immunoprecipitation. The docking of 3-12 on a homology model of human FGFR4 was 

carried out to provide some insight into the interactions of 3-12 in the binding pocket of 

FGFR4 that could explain its inhibitory activity. 

5.2. Experimental methods 

5.2.1. Chemicals and Materials 

Penicillin G and streptomycin were from Sigma-Aldrich Co (Singapore). Fetal bovine serum 

(FBS) was from Invitrogen Life Technologies (CA, USA). Cell culture media were from 

Sigma-Aldrich Co (Singapore). Stock solutions of 47 and 3-12 (10 mM) were prepared in 

DMSO (ACS grade, NUS Lab Supply) and stored at 25oC.  Rabbit monoclonal antibodies to 

phosphorylated HER-3 (Tyr 1289), HER-3, FGFR 4, phosphorylated Akt (Ser 732), Akt and 

mouse monoclonal antibodies to phosphorylated tyrosine were purchased from Cell Signaling 

Technology, Inc. (MA, USA). Goat anti-rabbit-horse radish peroxidase (HRP) conjugate and 

goat anti-mouse HRP were purchased from Santa Cruz (CA, USA). Human phospho-receptor 

tyrosine kinase (RTK) array kit (Catalog No ARY001B) was purchased from RnD Systems 

Inc.( MN, USA). Blocking buffer for the immunoblot assay (Blocking One) was obtained 

from Nacalai Tesque Inc (Kyoto, Japan).  Pierce Stripping Buffer was purchased from 

Thermo Scientific (MA, USA). Chemiluminescence reagent (ECL) used in the immunoblot 

assay was from GE Healthcare (Buckinghamshire, UK).  

5.2.2. Preparation of HuH7 cell lysates 

HuH7 cell lysates were prepared as described in Section 3.2.5.  
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5.2.3. Protein quantification 

Protein quantification was carried out using the Bradford Protein Assay Kit (Bio-Rad 

Laboratories Inc, CA, USA) as described in Section 3.2.6.  

5.2.4. Immunoprecipitation 

Cell lysates were obtained as described in Section 5.2.2 and protein content was determined 

as described in Section 5.2.3. Pierce Protein A/G Plus Agarose beads were washed three times 

with immunoprecipitation (IP) buffer (25mM Tris-base, 150mM NaCl; pH 7.2). Cell lysates 

containing 1000 μg protein were gently agitated with FGFR4 total antibody (2 μL) overnight 

at 4 oC and then with pre-washed Pierce Protein A/G Plus Agarose beads for 3 hr at 25 oC. 

After this time, the suspension was centrifuged at 13,000 g for 5 min.  The supernatant was 

discarded and the beads washed with IP buffer thrice after which they were deactivated with 

50 μL 1×SDS at 99 oC for 5 min.  The mixture was quickly centrifuged to give the 

supernatant which was separated on SDS PAGE as described in Section 5.2.5.  

5.2.5. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-

PAGE)  

Cell lysates were separated as descrived in section 3.2.7. cell lysates were separated on the 

SDS-PAGE Bio-Rad Mini-Protean II system (Bio-Rad Laboratories Inc, CA, USA). Each 

sample with the same protein amount were loaded on to separate lanes and were separate 

using the same method described in the Section 3.2.7. After electrophoresis, the gels were 

subjected to Western blotting (Section 5.2.6). 

5.2.6. Western blotting 

Western blotting was carried out as described in Section 3.2.8.  
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5.2.7. Human receptor tyrosine kinase profiling 

5.2.7.1. Principle of human phospho-receptor tyrosine kinase array 

The array is an enzyme-linked immunosorbent assay carried out on nitrocellulose membranes 

instead of wells in a plate (Figure 5-1). Each nitrocellulose membrane was pre-spotted with a 

mixture containing antibodies (“capture antibodies”) to 49 different human RTK proteins. 

The nitrocellulose membranes were then incubated overnight with the drug-treated or control 

(untreated) HuH7 cell lysates.  RTKs (phosphorylated and non-phosphorylated) in the cell 

lysates would bind to their cognate antibodies on the membrane but only the phosphorylated 

RTKs would be detected by chemiluminescence when the membranes were subsequently 

washed (to remove unbound material) and treated with a pan anti-phospho-tyrosine antibody 

conjugated to HRP.  

 

Figure 5-1 Cartoon depicting the principle underlying the detection of phosphorylated RTKs in the 
Phospho-RTK Array Kit (RTK : Receptor Tyrosine Kinases; AB = antibodies; P = phosphorylated) 

5.2.7.2. Procedure 

Simultaneous determination of multiple RTK phosphorylation was achieved with Human 

Phospho-RTK array. HuH7 cells were subjected to vehicle control, 47 (10 μM) or 3-12 (0.5 

μM and 2 μM) for 24 hr.  Cells harvesting, hybridization with RTK array and incubation with 

anti-phosphotyrosine were performed according to manufacturer’s instruction.  
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Briefly, the HuH7 cells were treated with the vehicle control or compounds for 24 hr, after 

which cells were collected, washed with 1× PBS twice, dissolved in Lysis Buffer 17 to give a 

final concentration of 107 cells/mL. Protein content was determined as described in Section 

5.2.3. Solutions containing cell lysates (800 μg protein) were prepared in 1.5 mL Array Buffer 

1. The nitrocellulose membranes were blocked with Array Buffer 1 for 1 hr at 25oC and then 

incubated with the protein solution prepared from the cell lysates overnight at 4℃. The 

membranes were washed in Array Buffer 2 (thrice, 10 min per wash) and incubated with anti-

phospho-tyrosine-HRP detection antibodies for 2hr at 25 oC. The membranes were then 

washed thrice (10 min per wash) with Array Buffer 2 and incubated with pro-

chemiluminescence reagent for 5-10 minutes. The chemiluminescence signals were captured 

on Gel Doc and quantified by Image J (Version 1.47, NIH, Bethesda, Maryland)  Signals 

from duplicate spots for each RTK were averaged and reported. 

The alignment of the different antibodies on the array is given in Figure 5-2 and the RTKs 

detected by these antibodies are shown in Table 5-1.  

Figure 5-2: Coordinates of the antibody array 
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Table 5-1: RTKs corresponding to the coordinates in the antibody array 

Coordinates Receptor 
Family RTK/control Coordinates Receptor 

Family RTK/control

A1, A2 Reference 
Spots ___ D1, D2 Tie Tie-2 

A23, A24 Reference 
Spots ___ D3, D4 NGF R TrkA 

B1, B2 EGF R EGF R D5, D6 NGF R TrkB 
B3, B4 EGF R HER 2 D7, D8 NGF R TrkC 
B5, B6 EGF R HER 3 D9, D10 VEGF R VEGF R1 
B7, B8 EGF R HER 4 D11, D12 VEGF R VEGF R2 

B9, B10 FGF R FGF R1 D13, D14 VEGF R VEGF R3 
B11, B12 FGF R FGF R2α D15, D16 MuSK MuSK 
B13, B14 FGF R FGF R3 D17, D18 Eph R EphA1 
B15, B16 FGF R FGF R4 D19, D20 Eph R EphA2 
B17, B18 Insulin R Insulin R D21, D22 Eph R EphA3 
B19, B20 Insulin R IGF-I R D23, D24 Eph R EphA4 
B21, B22 Axl Axl E1, E2 Eph R EphA6 
B23, B24 Axl Dtk E3, E4 Eph R EphA7 
C1, C2 Axl Mer E5, E6 Eph R EphB1 
C3, C4 HGF R HGF R E7, E8 Eph R EphB2 
C5, C6 HGF R MSP R E9, E10 Eph R EphB4 
C7, C8 PDGF R PDGF Rα E11, E12 Eph R EphB6 

C9, C10 PDGF R PDGF Rβ E13, E14 Insulin R ALK 
C11, C12 PDGF R SCF R E15, E16 ___ DDR1 
C13, C14 PDGF R Flt-3 E17, E18 ___ DDR2 
C15, C16 PDGF R M-CSF R E19, E20 Eph R EphA5 
C17, C18 RET c-Ret E21, E22 Eph R EphA10 

C19, C20 ROR ROR1 F1, F2 Reference 
Spots   

C21, C22 ROR ROR2 F5, F6 Eph R EphB3 
C23, C24 Tie Tie-1 F7, F8 ___ RYK 

   F23, F24 Control (-) PBS 
 

5.2.8. FGFR4 homology model and molecular docking  

The FGFR4 homology model was built by Dr Jin Haixiao from Ningbo University, PRC. The  

homology model was based on the X-ray structure of the tyrosine kinase domain of human 

FGFR1 co-crystalized with an inhibitor SU 4984 146 (retrieved from RCSB Protein Data Bank; 

PDB code 1AGW, 2.40 Å resolution) and the primary sequence of FGFR4 205(retrieved from 

Universal Protein Resource, entry code AEO19721.1). The sequence of human FGFR4 and 

crystal structure of FGFR1 were aligned using the Align application in Molecular Operating 

Environment (MOE, version 2011, Chemical Computing Group, Montreal, Canada). 

The E and Z structures of the 3-12 and 47 were separately prepared for docking on MOE. 

Docking was carried out on GOLD v 5.2 (Cambridge Crystallographic Data Centre Software 

Ltd, Cambridge, UK) with default GA settings. The binding pocket was defined by the atoms 
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within 6 Å radius of the co-crystalized ligand SU 4984 in 1AGW. Docking was carried out 

without the reference ligand (SU 4984). GOLD uses a genetic algorithm (GA) for docking 

flexible ligands into the binding pocket to explore the full range of ligand conformational 

flexibility. 191 The GOLD Score was used as the fitness function for selection of the best 

docked conformations of test compounds in the binding pocket. For each molecule, the top 10 

docked conformations were retained and analyzed graphically with MOE. 

5.3. Results 

5.3.1. Effects of 47 and 3-12 on the phosphorylated states of RTKs in 

HuH7 cells 

Although the original intent was to screen a larger number of compounds from Series 1-8 for 

inhibition of RTKs, this could not be realized because of the high cost of screening on the 

Human phospho-RTK antibody array. Consequently, it was decided that only 2 compounds 

could be screened. 3-12 was selected for its promising activity and drug like character 

(Chapter 6) and 47 was tested because it was the lead compound and was found to inhibit 

FGFR4 (among other RTKs) in HuH7 cells (unpublished results). Thus 47 served as a 

positive control.  

Figure 5-3A shows the results from membranes exposed to lysates from untreated HuH7 cells.  

The levels of seven phosphorylated RTKs were elevated in untreated HuH7 cells. They were 

EGFR, ErbB2 (Her2), ErbB3 (Her 3), FGFR4, insulin receptor, Mer and RYK (receptor 

tyrosine kinase).  When the cells were treated with 47 or 3-12, phosphorylation either 

remained unchanged (reflected by no change in signal intensity) or was reduced (reduction in 

signal intensity) (Figure 5-3 B-D).  
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Figure 5-3: Intensity of blots obtained from (A) untreated HuH7 cells and HuH7 cells treated with (B) 
47 at 10 µM, (C) 3-12 at 0.5 µM and (D) 3-12 at 2 µM. Intense reference spots at the extreme left and 
right upper corners and extreme left lower corners of each blot indicated that the protocol was carried 
out correctly. Red brackets in (A) correspond to RTKs that were upregulated in untreated HuH7 cells. 
If test compound had no effect on the RTK, the intensities of the spots corresponding to the RTK in (A) 
would be unchanged in the treated membranes. If the test compound reduced the expression or 
inhibited the phosphorylation of the RTK, the intensity in the treated membranes would be lower than 
that observed in (A).  
 
Table 5-2 summarizes the effects of 47 and 3-12 on the phosphorylated RTKs that were 

upregulated in HuH7 cells.  Both compounds had a marked effect on the phosphorylation of 

HER3 and FGFR4 as seen from the greatly diminished signal intensities. Dose dependent 

reduction in signal intensity was however not evident. Notably, 3-12 was investigated at two 

concentrations (0.5 µM, 2 µM) but paradoxically, gave a stronger HER3 signal (34%) at the 

higher concentration (2 µM).  The signal intensities from the FGFR4 blots could not be 

distinguished in spite of the 4-fold difference in concentration of 3-12. Both compounds 

reduced the signal intensities of blots corresponding to HER-2, Insulin Receptor and Mer but 

the reductions were less pronounced than that of FGFR4 and HER3. Neither 47 nor 3-12 

affected the phosphorylation of EGFR significantly.  
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Table 5-2: Effects of 47 and 3-12 on the intensities of blots (determined by densitometry) 
corresponding to phosphorylated RTKs that were upregulated in untreated HuH7 cells. 

Kinase 
family 

Receptor 
Tyrosine 

kinase 

Coordinates 
on 

microarray a 

Vehicle 
control b

Intensity of blot normalized against 
corresponding blot in control 

membranec  

47 
(10 μM) 

3-12 
(0.5 μM) 

3-12 
(2 μM) 

EGF R EGFR B1,B2 100.00% 118 % 
(123%, 
113%) 

77% 
(81%, 74%) 

90 % 
(90%, 89%)

EGF R ErbB2(HER2) B3,B4 100.00% 34 % 
(49%, 
19%) 

38% 
(41%, 35%) 

42% 
(48%, 36%)

EGF R ErbB3(HER3) B5,B6 100.00% 4% 
(3.9%, 
3.6%) 

3% 
(3.1%, 
2.4%) 

34% 
(31%, 38%)

FGFR FGFR4 B15, B16 100.00% 5% 
(5.5%, 
3.9%) 

7% 
(11%, 
2.9%) 

7% 
(11%, 3%)

Insulin R Insulin R B17,B18 100.00% 23% 
(23%, 
23%) 

62% 
(71%, 53%) 

72% 
(70%, 75%)

AXl Mer C1,C2 100.00% 52% 
(56%, 
48%) 

52% 
(56%, 48%) 

43% 
(43%, 43%)

- RYK F7,F8 100.00% 95% 
(104%, 
85%) 

93% 
(111%, 
76%) 

68% 
(48%, 87%)

a  Coordinates indicated location of the RTK antibody in the microarray membrane as shown in Figure 
5-2. b  These phosphorylated RTKs were identified in the membrane exposed to untreated HuH7 cells 
(Figure 5-3A). The intensities of the blots were assigned 100%. c The intensity of the corresponding 
blots in the treated membranes were normalized against the control blots and expressed as a %.   
Average of two readings.  

 

To confirm that 3-12 reduced the phosphorylation of HER3 and FGFR4, the protein levels of 

HER3 and FGFR4 were monitored in HuH7 cells treated with a range of concentrations of 3-

12 for the same time period. Both phosphorylated and total Her3 levels were monitored by 

Western blot whereas phosphorylated and total FGFR4 levels were probed by 

immunoprecipitation. 3-12 reduced levels of both phosphorylated Her3 and phosphorylated 

FGFR4. Reductions were observed at the lowest concentration (0.2 µM) for phospho-HER3 

and at a higher concentration (1 µM) for phospho-FGFR4.  
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Figure 5-7: Docking pose of SU 4984 in the FGFR4 binding pocket. (A) SU 4984 occupies the hinge 
region of the ATP binding pocket. (B) The piperazinyl side chain of SU4984 projects out of the pocket 
towards the solvent. The binding pocket is color coded as follows: Green = hydrophobic; Magenta = 
polar, Red = exposed. (C) Close up of SU 4984 at the hinge region, shows interactions with Ala 561, 
Glu 563 and Leu 473. (D) Ligand interaction map of SU4984 from MOE 2011.    
 

The orientation of 3-12Z in the binding pocket differed from that of SU 4984. Although the 

lactam moiety (NHCO) of 3-12 was also H bonded to Ala 563 (C=O of lactam to NH of Ala 

563; NH of lactam to C=O of Ala 563), the benzylidene ring B was directed towards the 

receptor pocket and not the solvent phase (Figure 5-8A). The N-propylaminosulfonyl side 

chain on the benzylidene ring was H bonded to Lys 503 (side chain to sulfonyl O) and Asp 

630 (backbone NH to sulfonyl N) (Figure 5-8 B,C).   
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Figure 5-8: Docking pose of 3-12Z in the FGFR4 binding pocket. (A) The indolinone ring of 3-12Z is 
directed towards the solvent pocket. The binding pocket is color coded as follows: Green = 
hydrophobic; Magenta = polar, Red = exposed. (B)  Ligand interaction map of 3-12Z (MOE2011). (C) 
Close up of 3-12Z at the hinge region, showing interactions with Ala 563 and Leu 473 (CH-π 
interactions). The aminosulfonyl side chain was H bonded to Lys 503 and Asp 630.  
 
Compound 3-12E (Figure 5-9) assumed a similar orientation to 3-12Z. The sulfonylamino 

side chain on the benzylidene ring was H bonded to Asp639 and Lys 503 (through the 

sulfonyl O) and the lactam on the indolinone ring was H bonded to Ala 563. The indolinone 

ring in the E isomer was almost orthogonal to the same ring in 3-12Z.    
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Figure 5-9: Docking pose of 3-12E in the FGFR4 binding pocket. (A) The indolinone ring of 3-12E is 
directed towards the solvent pocket. The binding pocket is color coded as follows: Green = 
hydrophobic; Magenta = polar, Red = exposed. (B)  Ligand interaction map of 3-12E (MOE 2011). (C) 
Close up of 3-12E at the hinge region, showing interactions with Ala 563, Lys 503, Asp 630. The NH 
of the sulfonylamino side chain is not involved in H bonding.  
 
The orientation of 47Z and 47E were also examined in the FGFR4 binding pocket. The 

binding pose of 47E closely resembled that of SU 4984. The lactam moiety in 47E was H 

bonded to Ala 563 and Glu 561, and a CH-π interaction between the indolinone ring and 

Val481 was evident (Figure 5-10). The benzylidene ring was oriented towards the solvent 

phase.  



 

135 
 

 

 

Figure 5-10: Docking pose of 47Z in the FGFR4 binding pocket. (A) The benzylidene ring of 47Z is 
directed towards the solvent phase. The binding pocket is color coded as follows: Green = hydrophobic; 
Magenta = polar, Red = exposed. (B)  Ligand interaction map of 47Z (MOE 2011). (C) Close up of 
47Z at the hinge region, showing interactions with Ala 563, Glu561, Val 481. 
 
Compound 47E had a similar orientation (Figure 5-11) except that the benzylidene ring was 

not extended along the length of the binding pocket but projected “out” of the pocket as 

depicted in Figure 5-11C. 
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Figure 5-11: Docking pose of 47E in the FGFR4 binding pocket. (A) The benzylidene ring of 47E is 
directed towards the solvent phase. The binding pocket is color coded as follows: Green = hydrophobic; 
Magenta = polar, Red = exposed. (B)  Ligand interaction map of 47E (MOE 2011). (C) Close up of 
47E at the hinge region, showing interactions with Ala 563, Glu561.  

5.4. Discussion 

Compound 3-12 was identified in Chapter 3 as one of the more potent and selective 

compounds affecting the viability of HuH7 cells.  Although not the “best” compound, 3-12 

had some advantageous features such as better solubility and permeability than the lead 
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compound 47 (described in Chapter 6). The presence of the N-propylaminosulfonyl side chain 

was another positive feature as the latter would offer opportunities for structural modification, 

thus addressing a key concern of 47 which was its under-functionalized state. 

Evaluation of 47 and 3-12 on the human phospho-RTK array identified two RTKs (HER3 and 

FGFR4) in HuH7 cells whose phosphorylations were significantly reduced by both 

compounds. 47 was previously investigated for inhibition of RTKs using a similar platform. 

In that study, HER3 and FGFR4 were among the RTKs (insulin receptor, IGF-1R, Tyro3, 

EphA2, Met, RON) inhibited by 47.  The present study confirmed that 47 inhibited the 

phosphorylation of HER3 and FGFR4 in HuH7 cells.  It also identified other RTKs (HER2, 

insulin receptor, Mer) that were inhibited by 47, of which only insulin receptor was flagged 

out in the earlier study by Ho et al. (unpublished data). A possible reason may be the different 

experimental conditions employed in that study. For example, Ho et al. used serum starved 

HuH7 cells which were not used here.  

The inhibition of HER3 and FGFR4 by 3-12 were detected at lower concentrations (0.5 µM, 2 

µM) than 47 but this need not imply that 3-12 was more potent than 47 as this platform was 

more useful as a qualitative (and not quantitative) indicator of inhibition. Moreover 47 was 

investigated at only 1 concentration and its effects were not investigated at lower 

concentrations. However, it was encouraging to note that 3-12 reduced phosphorylation of 

HER3 and FGFR4 at low to sub-micromolar concentrations (0.5 µM, 2 µM).  

HER3 is a member of the EGFR family and higher levels of HER3 have been found in HCC 

tissue samples (84% ) compared to non-malignant tissue (38%).209 HER3 signaling is unique 

in that HER3 lacks intrinsic tyrosine kinase activity and can only trigger downstream 

signaling pathways when it forms a dimer with the HER2 isoform.210 Heterodimerization and 

transphosphorylation activates HER3, promotes its binding to PI3K and signaling along the 

PI3K/Akt/mTOR pathway.206 Tyrosine kinase inhibitors (TKIs) directed towards HER2 were 

found to be ineffective against HER2 driven tumors because of a compensatory shift in HER3 

phosphorylation-dephosphorylation equilibrium (promoting phosphorylation at the expense of 

dephosphorylation) that is driven by Akt mediated negative feedback signaling.211 The present 
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finding that 3-12 reduced the phosphorylation of both HER2 and HER3 is therefore 

interesting. It may be that 3-12 is able to inhibit HER2-HER3 heterodimer formation or the 

transphosphorylation of these kinases.  

FGFR4 is the only isoform of FGFR expressed at high levels in hepatocytes 212 and the liver 

has the highest transcript expression of FGFR 4 compared to other major organs.213 Ho et al. 

214 reported that inhibition of FGFR4 activity in HuH7 cells with PD173074 (a low 

micromolar non-selective inhibitor of FGFR) blocked proliferation to a greater extent than 

other HCC cells that have lower levels of FGFR4. FGFR4 was found to modulate α-

fetoprotein (AFP) secretion in HCC cell lines, with AFP levels declining on FGFR4 silencing 

and increasing when HepG2 cells (a HCC cell line with low basal levels of AFP) were 

stimulated with FGF19 (a ligand of FGFR4). The authors concluded that FGFR4 contributed 

significantly to HCC progression by modulating AFP secretion, proliferation and anti-

apoptosis.214 The present findings have identified 47 and 3-12 as inhibitors of FGFR4. Both 

compounds inhibited the viability of HuH7 cells (high FGFR4 levels) to a greater degree than 

HepG2 cells (low FGFR4 levels). 3-12 induced apoptosis and reduced FGFR4 protein levels 

in HuH7 cells at comparable (0.5 µM-2 µM). Investigations should be directed to 

interrogating the specificity (FGFR4 versus other isoforms) and mechanistic aspects of the 

inhibition. 

Molecular docking provided some support for the notion that 3-12 interacted with the binding 

pocket of FGFR4. Based on a homology model of FGFR4, both E and Z isomers of 3-12 

adopted poses in the hinge region of FGFR4 which were reinforced by H bonding between 

the indolinone lactam NHCO and Ala 561. The presence of the N-propylaminosulfonyl side 

chain on the benzylidene ring of 3-12 had a significant influence on the docking poses as its 

ability to form H bonds directed the side chain away from the solvent exposed regions of the 

binding pocket. This was in contrast to the benzylideneindolinone SU 4984, the co-crystalized 

ligand of the FGFR1 X-ray structure (PDB 1AGW) that was used to build the homology 

model in this chapter. The pose of SU4984 in homology model showed striking similarities to 

its pose in the FGFR1 pocket (Figure 5-12). The lactam moiety of SU 4984 was H bonded to 
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Ala and Gly residues in the hinge region, and the polar piperazinyl side chain was directed 

towards the exposed solvent phase.  @@@@@@@@@@@@@@@@@@@@@@@@@

 

Figure 5-12: Orientation of SU 4984 in (A) FGFR1 (PDB 1AGW) and (B) FGFR4 homology model. 
The blue coloration depict parts of the molecule that are solvent exposed.  

The N-propylaminosulfonyl side chain of 3-12 may be less polar in spite of its H bonding 

potential and this could have directed it away from solvent exposed regions of the binding 

pocket. Interestingly, both 3-12Z and 3-12E assumed very similar orientations at the hinge 

region. H bonding to the hinge region occurred via Ala 561, and the N-propylsulfonylamino 

side chain in both isomers were H bonded to the same residues (Lys 503, Asp 630). There 

was however an additional CH π interaction between the indolinone ring of 3-12 Z and Leu 

473 that was not observed in 3-12E. 

The docking poses of 47E and 47Z were strikingly similar to that of SU 4984 in that the 

lactam moiety was involved in H bonding at the hinge region (Ala 561, Glu 563) the 

benzylidene ring was directed towards the exposed solvent. In this regard, the lipophilic CF3 

substituted benzylidene ring may not be well placed for interaction with solvent. Potential 

multipolar interactions between the C-F bonds and residues flanking CF3 were not obvious 

from the top ranked poses of 47Z and 47E. Based on an analysis of interactions in the docked 

poses, 3-12 was deemed a stronger inhibitor of FGFR4 than 47. In vitro IC50 determinations 

on FGFR4 would be required to determine if 3-12 is truly more potent than 47 on FGFR4. 
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5.5. Summary 

Compound 3-12 was found to inhibit the phosphorylation of several RTKs (EGFR, HER2, 

HER3, FGFR4, insulin receptor, Mer and RYK) in HuH7 cells. The investigations which 

were carried out on a Human Phospho-RTK antibody array kit at 0.5 and 2 µM 3-12, 

identified HER3 and FGFR4 to be inhibited to a greater extent than the other RTKs. The 

functional relevance of the inhibition was further confirmed by 

immunoblotting/immunoprecipitation which showed that 3-12 reduced phospho-FGFR4 and 

phospho-HER3 protein levels in HuH7 cell lysates at comparable concentrations. Molecular 

docking on a homology model of FGFR4 showed that 3-12 adopted favorable poses at the 

hinge region of FGFR4. Both the indolinone ring and the N-propylaminosulfonyl side chains 

were involved in productive binding interactions, in contrast to 47 where only the indolinone 

ring was involved in H bonding to the FGFR4 binding pocket. 
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Chapter 6: Investigation of the drug-like properties of selected benzylidene 
indolinones 

6.1. Introduction 

This chapter describes the investigation of drug-like properties of selected benzylidene 

indolinones. The objective was to provide a comparison of these properties in the newly 

identified benzylidene indolinones with potent growth inhibitory properties vis-à-vis the lead 

compound 47.  The properties investigated were aqueous solubility at pH 7.4, permeability 

assessed by the parallel artificial membrane permeability assay (PAMPA), in vitro 

microsomal stability, light scattering properties, in vivo maximum tolerated dose in mice, 

cytotoxicities and genotoxicity potential on cell based assays. Of these properties, the 

PAMPA permeability, cytotoxicity and genotoxicity assays were carried out by the Drug 

Development Unit of the National University of Singapore. In vivo evaluation in mice was 

carried out by a collaborator at the National Cancer Centre, Singapore. The other properties 

were determined by the candidate 

6.2.   Materials and Methods 

6.2.1. Determination of aqueous solublility 

Determination of aqueous solubility was carried out on Multiscreen® Solubility filter plates 

(Millipore-MSSLBPC10) following the manufacturer’s protocol (PC2445EN00, Millipore 

Corporation). Briefly, various concentrations of the test compound were prepared in 

Universal buffer (pH 7.4)/acetonitrile/DMSO. The UV absorbance of these solutions were 

obtained at a pre-determined wavelength and used to construct a calibration curve for the test 

compound. Next, a stock solution of the test compound in DMSO was prepared at a 

concentration that was estimated to exceed the solubility of the compound (that is, the 

saturating concentration).  If the concentration was incorrectly estimated, the experimental 
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solubilities after 3 h or 24 h agitation would be close to that concentration but if it was correct, 

the experimentally determined solubilities would be lower. If the estimation was incorrect, a 

higher starting concentration would then be prepared. The stock solution was diluted with 

Universal buffer (pH 7.4), dispensed into wells in the filter plate, and agitated for 3 hr and 

24 hr at room temperature (25 °C). Final concentration of DMSO per well was kept at 1% v/v. 

At the end of this time, the suspension was filtered on a manifold, the filtrate diluted with 

acetonitrile to give the same solvent composition used to prepare the calibration solutions. 

The absorbance of the diluted filtrate was read on a microplate reader (Tecan Infinite™ M200) 

at the predetermined wavelength (λmax of 262 nm for 1-18 and λmax of 322 nm for 3-10) and 

the concentration of the filtrate (equivalent to the solubility of the test compound) was 

determined from the calibration curve. The concentrations of 47, 1-23, 3-12 and 7-6 were 

determined by LC–MS because of their low solubilities. LCMS determinations were made on 

an Agilent 1200 Series HPLC linked to a AB Sciex Instruments 3200 Q TRAP LC/MS/MS. 

Separations were carried out on a Phenomenex Luna column [3u, C18(2), 100 A, 5 × 4.6 mm] 

with p-(dipropylsulfamoyl)benzoic acid (Sigma Aldrich, Singapore) as internal standard. 

Quantification was based on the ratio of the peak area of daughter-mother ion peak of sample 

over daughter-mother ion peak of the internal standard, normalized against the same ratio 

obtained from the calibration curve. The solubility determinations were carried out in 

triplicates using two different stock solutions 
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6.2.2. Determination of in vitro stability of compound 47, 1-23, 3-12, and 7-

6 in the presence of rat male liver microsomes 

The test compound was incubated with pooled male rat liver microsomes (BD Gentest 

Corporation, MA, USA).in a mixture (total volume 500 μL) comprising rat liver microsomes 

(0.3 mg microsome protein/mL), test compound (3 μM) and phosphate buffer (0.1 M, pH 7.4, 

containing 1 mM EDTA). The mixture was pre-incubated for 5 min, 37 °C in a shaking water 

bath, after which the reaction was started by adding 50 μL of 10 mM NADPH (freshly 

prepared in phosphate buffer) to give a final concentration of 1 mM NADPH in the mixture. 

Aliquots of 50 μL were withdrawn immediately on addition of NADPH (time 0) and then at 5, 

15, 30 and 45 min. On removal of the sample, the reaction was quenched by addition of 

chilled acetonitrile (100 μL) which also contained the internal standard (3-12 was internal 

standard for compound 47 and 7-6; 7-6 was the internal standard for 1-23 and 3-12) at 0.4 μM. 

The mixture was then centrifuged at 10,000 g to remove protein and the content of the test 

compound in the supernatant was measured by LCMS. 

For each test compound, the metabolic stability of a positive control, midazolam (Yichang 

Humanwell Pharmaceutical Co. Ltd, Hubei, PRC), a known cytochrome P450 substrate, was 

concurrently determined to evaluate the adequacy of the experimental conditions. The internal 

standard used for the LCMS quantification of midazolam was N-ethyl-N-[5-(4-

methylsulfonylphenyl)-1-octyl-1H-indol-3-yl]methyl ethanamine at 2 μM. The stability of the 

test compound to microsomal degradation in the absence of NADPH was also monitored. 

Analysis was carried out by LC–MS–MS on a 1200 HPLC instrument (Agilent Technologies, 

Palo Alto, CA, USA) coupled to a Q TrapTM 3200 hybrid triple quadrupole linear ion trap 

mass spectrometer (Applied Biosystems/MDS Sciex, Concord, Ontario, Canada) or a 

Shimadzu UFLC system (Shimadzu Scientific Instruments, Columbia, MD) coupled to a Q 

TrapTM 3200 hybrid triple quadrupole linear ion trap mass spectrometer (Applied 

Biosystems/MDS Sciex, Concord, Ontario, Canada) for the other compounds. Separations 

were made on a Phenomenex Luna column [3u, C18(2), 100 A, 5 × 4.6 mm] or Poroshell 120 
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EC-C18 column (3 X 75 mm, i.d., 2.7 µM, Agilent Technologies, Palo Alto, CA, USA) with 

a Security Guard Cartridge (3.0 X 4 mm, Agilent Technologies, Palo Alto, CA, USA). Mobile 

phase was 0.1% formic acid in acetonitrile – water as mobile phase. Flow rate was set at 0.2 

or 0.6 mL/min and the column temperature was 30° or 40 °C. 2 or 5 μL full loop sample 

injection was used. 

Data processing was performed on the AnalystTM 1.4.2 software package (Applied 

Biosystems, MA, USA). The corresponding multiple reaction monitoring (MRM) transition 

of the test compound was selected and used for peak configuration in Analyst 1.4.2 for semi-

quantification. The peak areas of test compound at different time points were expressed as a % 

of the peak area of test compound at time 0 min (=100%). The resulting % test compound 

(average of 3 measurements with SD) was plotted against incubation time drug. In vitro half 

life (T1/2 min) was calculated from Equation (1) where elimination constant k is the slope of 

the line obtained from a plot of loge (% Test compound) versus time.  

Equation (1):  T1/2=0.693/-k where k is the slope of the plot. 

Estimated in vitro clearance was determined from Equation (2): 

Equation (2): CL int, in vitro = V×0.693/T1/2, where V (μL/mg) = volume of incubation 

mixture/amount of microsomal protein in the incubation mixture. 

6.2.3. Assessment of aggregation tendency by dynamic light scattering 

(DLS) 

Stock solutions (10 mM) of test compounds were prepared in DMSO, diluted to 1 mM with 

DMSO and then serially diluted with potassium phosphate buffer (5mM, pH 7.4, pre-filtered 

before use) to give final concentrations of 1 µM and 10 µM. The final concentration of 

DMSO was maintained at 1% v/v. Measurements were carried out on the Malvern Instrument 

Zetasizer Nano ZS system equipped with a 4mW He-Ne laser at 633nm and detector angle of 

90o. Three or more determinations of derived count rates (kilocounts per second, kcps) were 

obtained for each concentration of test compound from two separately prepared stock 
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solutions. Data collection was carried out using the software supplied with the instrument. 

Results were represented as mean ± standard deviation. The positive control was benzyl 

benzoate (250 µM) which gave a count rate of 1568 kcps (±133). The vehicle (phosphate 

buffer, 1% DMSO) gave a reading of 16.3 ± 0.1.  

6.2.4. Determination of PAMPA permeability 

The determinations of PAMPA permeability were done by Ms Yap Siew Qi from Drug 

Development Unit, NUS with the method described in Appendix V. 

6.2.5. Determination of cytotoxicities of test compounds  

The determinations of cytotoxicities of test compounds were done by Ms Ho Jia Pei from 

Drug Development Unit, NUS with the method described in Appendix V. 

6.2.6. Determination of genotoxicities of test compounds 

The determinations of genotoxicities of test compounds were done by Ms Ho Jia Pei from 

Drug Development Unit, NUS with the method described in Appendix V. 

6.3. Results 

6.3.1. Aqueous solubilities of compounds 47, 1-18, 1-23, 3-10, 3-12 and 7-6. 

The aqueous solubilities of 47, 1-18, 1-23, 3-10, 3-12 and 7-6 were determined after 3 h and 

24 h of agitation at 25 o C, pH7.4 (Table 6-1). Lower solubilities were recorded after 24 h 

possibly due to the longer agitation time which permitted equilibration to take place. The 

ranking of compounds based on their solubilities was of the order  3-10 (most soluble) > 1-18 > 

3-12 > 1-23 > 7-6, 47 (least soluble) at both time points. Estimated solubilities showed a 

similar rank order as experimental solubilities.  

Structurally, the most soluble compounds were those with the N-methylaminosulfonyl side 

chains on the benzylidene ring B (1-18, 3-10). The N-propyl homologs (1-23, 3-12) were less 

soluble. The least soluble compounds were those substituted with 3’CF3 on ring B. The better 

solubilities of compounds with N-alkylaminosulfonyl side chains were likely due to the H 
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bonding capability of the side chain. The N-alkyl substituent was also important. Thus, 1-18 

and 3-10 which had shorter N-methyl side chains were more soluble than 3-12 and  which had 

the longer propyl side chain. For the same side chain on ring B, better solubility was recorded 

for the 6-F analog compared to the 6Cl analog, likely due to the presence of the smaller and 

less lipophilic F. Thus, 3-10 and 3-12 were more soluble than 1-18 and 1-23 respectively. The 

poor solubilities of 47 and 7-6 were attributed to the absence of polar functionalities in their 

structures.  

6.3.2. PAMPA permeabilities of compounds 47, 1-18, 1-23, 3-10, 3-12 and 

7-6. 

The in vitro permeabilities of compounds were determined on the parallel artificial membrane 

permeation assay (PAMPA) with 1% lecithin in dodecane as the simulated membrane barrier. 

The permeabilities were expressed in terms of Pe (effective permeability) and compared 

against control compounds (warfarin, caffeine, quinidien, carbamazepine, propanolol, 

verapamil) which have a range of PAMPA permeabilities ranging from poor (low Pe) to very 

good (high Pe). The Pe values of the test compounds are given in Table 6-1.  As in the case of 

solubilities, there was a time dependent decline in Pe values for most compounds but the 

ranking of Pe values was largely the same at both time points.  The Pe of 4-7 and 1-23 could 

not be determined at either time point (6h, 16 h) because of their poor solubilities. At the 6 h 

time point, 1-18 had the best permeability, followed by 3-10, 3-12 and then 7-6. When 

determined at the longer time point (16h), 1-18 and 7-6 were found to be the most permeable 

with Pe values falling between that of quinidine and carbamazepine, which had “average” 

permeabilities.  Compounds 3-10 and 3-12 were next with Pe values comparable to that of 

quinidine. The paradoxical increase in the permeability of 7-6 with time came about because 

the Pe of 7-6 did not change significantly with time, unlike the other compounds whose Pe 

values were almost halved when agitation time was extended.   

The permeation of substances across a lipid barrier is most commonly a passive diffusion 

process that occurs without the expenditure of energy and is largely driven by the presence of 
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a concentration or electrochemical gradient. The net diffusion of a solute down a 

concentration gradient is described by Fick’s Law 215 and given by the expression (3) 

ܬ ൌ
D · PሺC୭୳୲ െ C୧୬ሻ

ܪ
 

where J = net flux (or net rate of diffusion); D= diffusion coefficient of solute in the 

membrane; A = Surface area; H = thickness of membrane; P = partition coefficient of solute 

and Cout –Cin = concentration gradient across the membrane.  

Assuming that thickness H and surface area A are constant values, the rate of diffusion 

(permeability) is essentially determined by lipophilicity and aqueous solubility of the solute. 

Lipophilicity determines the partition coefficient P and diffusion coefficient D. It is directly 

correlated to P but inversely correlated to D. Permeability is also dependent on solubility of 

the compound which determines the concentration gradient that is the driving force of 

diffusion across the membrane.  Therefore, for good permeability, compounds must be 

sufficiently soluble in order to establish a large concentration gradient as well as adequately 

lipophilic to drive diffusion across the membrane. Very lipophilic compounds would be 

hampered by poor solubility and a small diffusion coefficient D.  

With this background, the permeabilities of some test compounds may be rationalized as 

follows:  The poor permeabilities of 47 and 7-6 were primarily due to their poor solubilities.  

In contrast, 1-18 owed its good permeability to its “optimal” balance of solubility and 

lipophilicity. Changing N-methyl of 1-18 to N-propyl (1-23) increased lipophilicity and 

diminished solubility, hence resulting in a non-determinable Pe. On the hand, replacing 6-Cl 

in 1-18 with the smaller fluorine atom (3-10) reduced lipophilicity and increased solubility, 

causing its Pe to diminish.  There is no good explanation for the unexpected improvement in 

the permeability of 7-6 with longer agitation time. It was unusual given that 7-6 was no more 

soluble than the poorly permeable 47 and probably less lipophilic (based on clogP values) 

than 47.  
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Table 6-1: Aqueous solubilities and effective permeabilities (Pe)  of selected benzylidene indolinones  

N
H

OR1

R2

 

Cpd 
No. R1 R2 

Solubility pH7.4, 25oC 
(μM)a  

Estimated 
solubility 
(μM)b 

PAMPA Pe (×10−6 cm/s)a 

6 h 24 h 6 hc 16 hd 

47 6Cl CF3 0.12± 0.00 0.09 ± 0.00 3.4 N.A. N.A. 
1-18 6Cl SO2NHMe 25.4 ± 0.03 6.6± 0.6 13.6 11.91± 0.59 6.65±0.34 
1-23 6Cl SO2NHPr 0.54 ± 0.10 0.20± 0.04 7.9 N.A. N.A. 
3-10 6F SO2NHMe 113± 23 19.0  ± 1.2 76.0 6.11± 0.21 3.34± 0.28 
3-12 6F SO2NHPr 1.59± 0.24 1.27 ± 0.25 15 6.25± 1.21 2.40± 0.30 
7-6 5,6F CF3 0.09± 0.02 0.13 ± 0.03 2.7 5.38± 0.66 6.11± 0.98 
a  Mean ± SD of at least n=3 determinations 
b Estimated solubilities (pH 7.4)  were determined on ACDLabs, Solubility DB, Version 6.00 
c Pe (×10−6 cm/s) of positive controls, 6 hr: warfarin (1.92 ± 0.09), caffeine (1.71 ± 0.16), quinidine 
(2.88 ± 0.37), carbamazepine (9.07 ± 0.96), propranolol (13.09 ± 0.10), verapamil (22.61 ± 0.35) 
d Pe (×10−6 cm/s) of positive controls,16 hr: warfarin (1.89 ± 0.09), caffeine (1.76 ± 0.08),quinidine 
(3.32 ± 0.15), carbamazepine (8.99 ± 0.27), propranolol (9.47 ± 0.22), verapamil (12.19 ± 0.13) 

6.3.3. In vitro metabolic stability of 47, 1-23, 3-12 and 7-6. 

The vitro metabolic stabilities of the compounds were investigated by monitoring the time 

dependent loss of the parent compound when incubated with rat (male) liver microsomes 

( Table 6-2 and Figure 6-1). Compounds 1-23 and 3-12 were cleared as rapidly as the positive 

control midazolam while 47 and 7-6 were more stable to microsomal metabolism.  The 

deduced half-lives were of the order 7-6 (35 min) > 47 (29 min) > midazolam (8.1 min) > 1-

23 (6.6 min) > 3-12 (5.8 min).  The shorter the half-life, the more rapid the clearance and 

accordingly, 1-23 and 3-12 were predicted to be cleared more rapidly than 7-7 and 47. The 

metabolic susceptibilities of 1-23 and 3-12 were likely due to the N-propylaminosulfonyl side 

chain that was common to both compounds. N-Dealkylation of the side chain, a Phase 1 

metabolic reaction, would result in the loss of the parent compound. In contrast, the CF3 
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group in 47 and 7-6 was generally resistant to Phase I metabolism and could have contributed 

to the stability to microsomal oxidation reactions.  

 
Figure 6-1 Percentages of test compounds and positive control midazolam  relative to initial amounts (t 

= 0) in rat liver microsomes on incubation at 37 °C for 5, 15, 30 and 45 min. The percentages of 

remaining compound are expressed as the mean ± SD (n = 3).  

 
Table 6-2: Estimated half-lives (T1/2) and clearance values of test compounds deduced from a plot of 
loge (% compound) versus time.  

Compound T1/2 (min) CLint, in vitro (uL/min/mg) 

47 28.6±2.6 81.1±7.7 
1-23 6.6±0.4 350±24 
3-12 5.8±0.03 396±2 
7-6 35.1±3.0 66.0±5.0 

Midazolam 8.1±1.1 290±38 

6.3.4. In vitro cytotoxicities and genotoxicities of 47, 1-23, 3-12 and 7-6. 

The cytotoxicities of the compounds were investigated by the 24 hr viability assay on two 

non-malignant murine cell lines TAMH and HL-1 (Table 6-3). Compound 47 had the highest 

IC50 values on both TAMH and HL-1 cells whereas the other compounds had IC50 values that 

exceeded 5μM. Compared to IC50 values obtained on non-malignant human fibroblast cells 

IMR90 (Section 3.3.3), the values obtained on the murine cells were higher, except for 7-6 on 
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TAMH cells. Two reasons could have accounted for the observed differences, namely specie 

variations (murine versus human) and the time of incubation (24 h versus 72 h). It may be that 

the cytotoxicities of the test compounds are observed after a longer incubation period.  

Table 6-3 IC50 values of test compounds on mouse hepatocyte (TAMH) and mouse cardiomyocyte 

(HL-1) cells after 24 h incubation. Values obtained on human fibroblast IMR90 (72 h incubation) are 

also listed.  

Compound Growth Inhibitory IC50 (μM) 
TAMH (24h) HL-1(24h) IMR90 (72 h) 

47 68.0a 45.4a 9.2 ± 0.9 
1-23 8.2 ± 0.9 10.8 ± 1.0 0.58±0.09 
3-12 11.0 ± 0.9 17.6 ± 0.8 0.83±0.06 
7-6 5.1 ± 0.4 15.6 ± 0.8 8.5 ± 0.6 

a Based on average of  two determinations. The other readings were mean ± SD (n = 3). 

The genotoxicities of 1-23, 3-12 and 7-6 were investigated in the Ames Test using two 

mutated strains (TA98 and TA100) of Salmonella typhimurium. Both strains had point 

mutations such that the presence of histidine in the growth media was required for their 

proliferation.  When exposed to a mutagen, the strains underwent mutations that permitted 

growth in a histidine-deficient media.216, 217 As shown in Table 6-4, the test compounds at two 

concentrations (1 mM and 10 µM) did not promote the growth of TA98 and TA100. In 

contrast, proliferation of TA98 and TA100 were strongly induced in the presence of the 

known mutagen 2-aminoanthracene.  
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Table 6-4:  Number of TA98 and TA 100 colonies observed in the presence of test compounds (1 mM, 

10 µM) after 48 h of incubation. The numbers of colonies were based on the average of the counts of 

the colonies from two replicates.  

Compound 
Number of colonies 

TA98 TA100 
DMSO 39.5 9.5 

2-aminoanthracene (19 µM) 936.5 568.5 
1-23 (1 mM) 9 19 
1-23 (10 µM) 4 7 
3-12 (1 mM) 3 16 
3-12 (10 µM) 28 15.5 
7-6 (1 mM) 16 10.5 
7-6 (10 µM) 51 12.5 

 

6.4. Aggregate formation by test compounds 

Several compounds are known to form aggregates in aqueous media which led to their ability 

to inhibit a wide variety of enzymes218, 219. The non-specific inhibition was attributed to the 

association of the enzyme onto the surfaces of the aggregates, leading to a reduction in 

available enzyme and misinterpretation of the data as being due to specific enzyme inhibition. 

218 Aggregators are commonly characterized by low solubility, high lipophilicity and extended 

conjugation in their structures. 219 As some of these properties are characteristic of the present 

series of compounds, there was concern that aggregate formation could have contributed to 

the sirtuin and kinase inhibitory properties of the compounds.  

Various experimental approaches have been used to identify compounds that form aggregates. 

Here, the formation of aggregates was monitored by light scattering. Compounds that form 

soluble or colloidal aggregates normally exist as particles of 30-1000 nm diameter that can be 

detected by light scattering. 220 Briefly, the method involves measuring the light scattering 

capacity of a known concentration of test compound in aqueous 5 mM phosphate buffer with 

ion strength at 30 mM (containing 1% v/v DMSO). In the presence of aggregates, the 

solutions would give a high count rate (measured in kilocounts per sec, kcps).  Count rate of 

10 µM or 1 µM of the compound solution were recorded. Benzyl benzoate (at 250 µM), a 

known aggregator was used as a positive control. 221, 222 The light scattering measurements of 

the test compounds are given in Table 6-5. 
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Table 6-5: Dynamic light scattering (DLS) count rates of test compounds in phosphate buffer (pH 7.4) 
containing 1% DMSO. Results are given as mean ± SD of n=3 determinations.  

Compound DLS count rate (kcps) Estimated 
solubility (µM)aDLS count rate 

at 10 μM 
DLS count rate 

 at 1 μM 
47 94.8±18.1 

16.0±0.2 
17.6±0.8 3.4 

3-12 15.8±0.0 15 
5-1 16.1±0.2 16.1±0.3 81 
5-6 119.3±16.8 

 323 ± 68 
16.1±0.6 10 

8-8 19.1±1.0 2.1 
8-9 426 ±104 20.3±2.3 0.08 

Phosphate buffer 
(pH7.4) containing 1% 

DMSO 

 
16.3±0.1 

 

- 

Benzyl benzoate (250 
μM) 

1568 ±133 - 

a Estimated solubilities at pH 7.4 were determined with ACD Labs Version 12.00, Toronto, Canada. 

The results showed that test compounds at 1 µM had negligible light scattering effects, with  

DLS count rates that were no different from that of the buffer/DMSO media used to dissolve 

the compounds. An increase in concentration of 3-12 and 5-1 to 10 µM did not increase count 

rates but increases were observed for 47, 5-6, 8-8 and 8-9 at 10 µM.  However these rates 

were low compared to the positive control benzyl benzoate (<1000) and more importantly, 

were not pharmacologically relevant for compounds like 5-6, 8-8 and 8-9 which had SIRT2 

IC50 values of ∼ 1-3 µM.  When the estimated solubilities of the compounds in Table 6-5 were 

compared with their light scattering properties, it was observed that higher scattering values 

were associated with less soluble compounds. Although estimated solubilities were used here, 

the correlation may be valid as estimated and experimental solubility rankings were fairly 

well correlated as shown in Section 6.3.1.  

6.4.1. Maximum tolerated dose of 3-12 in mice  

The maximum tolerated dose of 3-12 was determined in Balb/c nude mice (female). The 

protocol involved administering 3-12 at doses 30, 50, and 60 mg/kg twice a week for 15 days. 

The compound was administered in DMSO by intraperitoneal (IP) injection. Control mice 

were similarly treated with DMSO. Body weight, food and water consumption of the animals 

were monitored daily throughout the period of dosing (15 days). As seen from Figure 6-2, 3-

12 was well tolerated at 30 mg/kg with regard to body weight, food and water consumption 



 

153 
 

(no significant difference from control, 1-way ANOVA with Dunnett’s post hoc). At a higher 

dose of 50 mg/kg, 3-12 did not induce changes in food and water consumption but caused  a 

significant loss in weight in treated animals (p < 0.01). When administered at the highest dose 

of 60 mg/kg, 3-12 caused significant reduction in weight and food consumption. 

Reductions in body weight and food/water consumption are important parameters for 

determining the maximum tolerated dose in mice. According to guidelines on drug treatment 

in mice, 223   a reduction in weight (20% weight lost)  and  drop in water/feed consumption by 

25% to 40% within 72 hours were deemed as “mild” effects induced by the compound. The 

response classified as moderate if the test compound caused 20% - 25 % weight loss and less 

than 60% reduction in food/water consumption within 72 hours. By this criteria, 3-12 was 

categorized as having only mild effects on the treated animals, since it did not reduce 

food/water consumption by more than 40% at the end of the treatment period, at all 3 doses. 

After 15 days, weight loss was also not more than 10% at all 3 doses of 3-12.    

 

Figure 6-2: Changes in (A) body weight, (C) % feed consumption and (C) % water consumption of 
Balb-c mice treated with 3-12 at 60 mg/kg (red square / pink triangle), 50 mg/kg (green inverted 
triangle) and 30 mg /kg (blue triangle). Untreated animals (n=3) are indicated by black circles. Three 
mice were treated at each dose. Arrow indicates administration of 3-12, IP in DMSO solution. Mean 
and SD of n=3 animals.  

6.5. Discussion 

The objective of this chapter was to compare the “drug-like” properties of selected 

benzylidene indolinones with potent growth inhibitory properties on HCC with that of the 

lead compound 47.   A simple definition  of “druglike” in the context that it is normally used 

would be  “orally available and relatively nontoxic in humans”.224  Oral bioavailability is 
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determined by the fraction of administered drug that reaches the systemic circulation as intact 

(unchanged) drug. It is a function of the fraction of dose that is absorbed after oral 

administration and escapes intestinal/hepatic metabolism.225  Hence, solubility, permeability 

and susceptibility to microsomal metabolism would be useful indicators of oral bioavailability. 

To this end, the aqueous solubilities and PAMPA permeabilities of 47, 1-18, 1-23, 3-10, 3-12 

and 7-6 were monitored.  These compounds were found to have submicromolar IC50 values 

on HuH7, with 1-23 and 3-12 more potent than 47.  Thus, there was considerable interest in 

the druglike properties of 1-23 and 3-12.  

In terms of solubility, both 1-23 and 3-12 were more soluble than 47 but 3-12 was more 

soluble than 1-23. Both compounds were substituted on ring B with the H bonding N-

propylaminosulfonyl side chain but 3-12 was fluorinated (6-F on ring A), unlike 1-23 which 

had the more lipophilic chloro substituted ring A. The poor solubility of 1-23 was likely due 

to its chlorinated ring A.  Reducing N-propyl to N-methyl greatly improved aqueous 

solubilities as seen in 1-18 and 3-10. These compounds should be considered as viable 

alternatives to 1-23 and 3-12. This notion was further reinforced by their PAMPA 

permeabilities.  Compounds 1-18, 3-10 and 3-12 had significantly higher permeabilites than 

47. Disappointingly, the permeability of 1-23 was indeterminable due to its poor solubility.   

Notwithstanding its good solubilities and permeabilities, 3-12 was found to be highly 

susceptible to microsomal metabolism. This was attributed to the N-dealkylation of the N-

propylaminosulfonyl side chain in 3-12. Compound 1-23 which had the same N-

propylaminosulfonyl side chain as 3-12 was also metabolically unstable while 47 and 7-6 

which lacked metabolic hotspots in their structures were stable in the presence of liver 

microsomes. Further investigations should be directed towards identifying the metabolites of 

3-12 and 1-23 and to determine if they retain growth inhibitory activities.    

Another requirement of a druglike compound is that it should be relatively nontoxic in 

humans. Only clinical data could provide the required evidence but for preliminary 

assessements, cell based and animal data are commonly used. Hence, 3-12 was examined for 

cytotoxicity and genotoxicity on cell based assays and its acute toxicity was assessed in mice. 
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These investigations support the view that 3-12 had minimal toxicity. It was not cytotoxic or 

mutagenic and was well tolerated in mice at doses up to 60 mg/kg. No fatalities were 

observed during acute dosing in mice.  Compounds 47, 1-23 and 7-6 were also found to lack 

cytotoxicities on the murine cell lines. Neither were they mutagenic on the Ames Test (47 

was not tested).  

An assessement of aggregation formation among selected compounds (47, 5-1, 3-12, 8-8, 8-9, 

5-6) showed that this tendency was negligible at 1 µM. However light scattering was more 

pronounced for some compounds (8-8, 8-9, 5-6) at 10 µM, notably those with poorer 

(estimated) solubilities. Even then the levels of light scattering were low at the higher 

concentration. For compounds like 3-12, 5-1, 8-9 which demonstrated FGFR4 /SIRT2 

inhibitory activities at concentrations < 3 uM, it was reasonable to conclude that the observed 

inhibitions were specific and not induced by aggregate formation.  

6.6. Summary 

Taken together, benzylideneindolinones that were more druglike than the lead compound 47, 

based on some but not all criteria, had been identified. These were compounds with the N-

alkylaminosulfonyl side chains on ring B, notably 1-18, 3-10 and 3-12. They had better 

solubilities and PAMPA permeabilities than 47 due to the presence of the H bonding N-

alkylaminosulfonyl side chain but as shown for 3-12, were more susceptible to microsomal 

metabolism.  3-12 and other benzylidene indolinones were found to lack acute toxicity on 

murine liver and heart cells, and were not mutagenic. The propensity to form aggregates was 

not pronounced for 3-12, 5-1 and 8-7 which had potent enzyme (SIRT2/FGF4) inhibitory 

activities. Compound 3-12 was well tolerated in mice possibly up to a dose of 60 mg/kg (IP, 

twice weekly for 2 weeks). Thus 3-12 constitute a good starting point for future structural 

elaboration.   
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Chapter 7: Conclusions 

In this thesis, the candidate tested the hypothesis that structural elaboration of compound 47 

would provide a means of uncovering drug-like compounds with greater potency and 

selectivity on hepatocellular carcinoma (HCC), and that the enhanced potency would involve 

kinase or sirtuin inhibition, or possibly, inhibition of both targets. To this end, 115 

compounds across 8 series of functionalized benzylideneindolinones were designed, 

synthesized and evaluated for their effects on the viability of liver cancer cell lines (HuH7, 

Hep3B, HepG2). The focus of the design strategy was to enhance the drug-like character of 

the lead compound 47, notably its poor solubility and excessive lipophilicity.  The approach 

was to vary substitution at two sites of the scaffold, namely the indolinone ring A and the 

benzylidene ring B. The core lactam moiety in the indolinone ring was retained in view of its 

acknowledged role in kinase inhibition, and possibly sirtuin inhibition.   

The structural modifications reported in this investigation, while admittedly limited in scope 

and range, allowed a comprehensive structure activity relationship to be deduced. Figure 7-1 

summarizes the key SAR insights with respect to HuH7 cells which were investigated more 

extensively than the other hepatoma cells.  
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Figure 7-1: Summary of major SAR findings for the growth inhibitory activity of benzylidene 

indolinones on HuH7 cells. EW : Electron Withdrawing. 

Among the modifications made to address the solubility-lipophilicity balance,  replacing 6-Cl 

on ring A of 47 with fluoro (Series 3) or methoxy (Series 5) and substituting 3’CF3 on ring B 

of 47 with the N-substitutedaminosulfonyl side chain were prescient because the more potent 

compounds identified in this thesis were those with N-propylaminosulfonyl side chains in 

Series 3 (3-11, 3-12) or Series 5 (5-8, 5-9). Some compounds with CF3 on ring B did not fare 

badly either, notably 6-6, 7-6 and 8-9. In view of their association with good potency, it was 

tempting to propose a bioisoteric relationship between the N-substituted aminosulfonyl side 

chain and the CF3 moiety.  There were however some differences between them. Compounds 

with CF3 groups were well represented among the potent (IC50 < 1 µM) analogs against 

Hep3B cells and were selectively more potent against hepatoma cells (HuH7, Hep3B) than 

the non-malignant IMR90 cells. In contrast, compounds with N-alkylaminosulfonyl side 

chains were generally more potent on HuH7 cells and were less selective on hepatoma cells 

compared to non-malignant IMR90 cells.  As to whether compounds with greater growth 

inhibitory potencies than 47 were also endowed with better drug like properties, this was 

found to be true for compounds with N-substituted aminosulfonyl side chains. They were 
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more soluble and had better PAMPA permeabilities than the CF3 containing compounds. 

Preliminary assessment of the in vivo toxicity of 3-12 in mice showed that it was well 

tolerated up to 50 mg/kg (twice weekly for 2 weeks, IP).  Unfortunately 3-12 was found to be 

readily metabolized by human microsomes in vitro, with predicted half life and clearance that 

were significantly shorter than those estimated for the CF3 substituted compounds 47 and 7-6.  

However, genotoxic potential, cytotoxicity and aggregate formation were negligible for the 

investigated compounds regardless of their ring B substitution.   

Taken together, the investigations reported in this thesis reinforced the notion that it was 

possible to improve on the growth inhibitory potencies and drug-like properties of 47 by 

structural modification. Replacing CF3 of 47 with an N-substituted aminosulfonyl side chain 

was found to be particularly promising in terms of enhancing growth inhibitory potencies on 

hepatoma cells (Hep3B, HuH7), improving solubility and PAMPA permeability. It has 

limited aggregation potential and was not associated with genotoxic or cytotoxic activities. 

The side chain was however hampered by its metabolic susceptibility and modest selectivity 

when compared against non-malignant cell lines.  

The other hypothesis tested in this thesis was related to the possible mode of action of these 

newly identified potent analogs on hepatoma cells.  The growth inhibitory effects of 

representative potent analogs (47, 1-23, 2-7, 3-12, 5-1, 6-6, 7-6, 8-5) induced apoptosis in 

HuH7 cells. Apoptosis was observed in compound-treated cells investigated by Annexin V-PI 

FACS analysis and in immunoblotting experiments that monitored changes in apoptotic 

marker proteins (caspase3, PARP).  In view of the historical association of benzylidene 

indolinones with kinase inhibition, a representative N-substituted aminosulfonyl analog 3-12 

was screened for inhibition of RTKs in HuH7 cells and was indeed found to significantly 

inhibit two RTKs (HER3, FGFR4). The functional significance of the inhibition was 

confirmed in experiments that showed decreases in phospho-protein levels in 3-12 treated 

HuH7 cells.  Molecular docking on a FGFR4 homology model provided insight on the 

interactions of 3-12 and in particular its aminosulfonyl side chain, in the ATP binding pocket. 
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Compound 47 was also found to inhibit HER3 and FGFR4 but may be less potent than 3-12 

in this regard. The binding pose of 47 in the FGFR4 pocket showed fewer productive 

interactions at the ATP binding site due to its under-functionalized state.  

Benzylideneindolinones have been reported to be inhibitors of SIRT2 and this led to the 

hypothesis that the sirtuin inhibition may be involved in the growth inhibitory activities of the 

investigated compounds. The results showed that 3-12 and other analogs with N-substituted 

aminosulfonyl side chains inhibited SIRT2 at IC50 concentrations that were comparable to that 

of AGK2, a known SIRT2 inhibitor. However more potent inhibition was associated with the 

Series 5 compounds (6-methoxy on ring A, H/F/CF3 on ring B) and Series 8 compounds that 

were N-alkyl/arylalkyl analogs of 47. Only the Series 5 compounds demonstrated in vitro 

SIRT1 inhibitory activities, but were less potent than the established SIRT1 inhibitor EX527. 

The functional relevance of sirtuin inhibition was validated in experiments that showed that 5-

1 and 8-7 inhibited the deacetylation of nonhistone sirtuin substrates p53 and α-tubulin in 

HuH7 and HepG2 cells. A consequence of inhibiting p53 deacetylation was apoptosis and this 

was found to be true for 5-1 and 8-7. Both compounds increased the proportion of HuH7 cells 

in the apoptotic phase when probed by Annexin V staining, increased the expression of 

apoptotic marker proteins (cleaved caspase 3, cleaved PARP) and in the case of 5-1, induced 

changes in levels of Bcl2, Bcl-xl and BAX that were congruent with the induction of 

apoptosis. Molecular docking of the test compounds on the SIRT2 binding pocket provided 

support for the notion that (i) Z isomers were more potent inhibitors than E isomers and (ii) 

the benzylidene indolinone scaffold straddled across Sites B,C and the substrate channel. 

Notwithstanding the useful insight provided by the docking analysis, the empirical and 

qualitative nature of the exercise should not be overlooked. Thus molecular docking could not 

rationalize the SIRT1 inhibitory activities of the Series 5 compounds and in the case of some 

SIRT2 inhibitors, docking poses could not be reconciled with the levels of inhibition observed. 

That the benzylidene indolinone binds to more than one site of the sirtuin might explain the 

conflict between the molecular docking and empirical SAR. A kinetic study could be 
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undertaken to determine the type inhibition (competitive or non competitive) associated with 

the benzylidene indolinones with respect to the acetylated substrate and cosubstrate NAD+.  

This would provide greater insight into the binding mode of benzylididne indolinones. 

The question as to whether kinase inhibition or sirtuin inhibition contributed to the potent 

growth inhibitory activities of benzylidene indolinones could not be conclusively addressed in 

this report. Certainly, the ability of 3-12 to inhibit FGFR4 and HER3 in HuH7 cells at 

concentrations (0.2-1 µM) that were broadly comparable to its growth inhibitory 

concentrations was encouraging. However, including more compounds with varying 

potencies (and not just 3-12 and 47) would have provided a better idea of the FGFR4 

inhibitory potential of the benzylideneindolinone scaffold. Determining the in vitro IC50 or for 

FGFR4 inhibition would be a useful means of quantifying the levels of inhibition. The kinetic 

study of benzylidene indolinone to FGFR4 would validate the molecular docking. With 

regard to sirtuin inhibition, it would help if selected compounds were tested on stably 

transfected HuH7 or other HCC cell lines in which SIRT1 or SIRT2 have been silenced. If 5-

1, 8-7 or other potent SIRT2 inhibitors failed to curtail proliferation of these modified cell 

lines, it would provide proof of concept that sirtuins are critical targets of these compounds. 

In conclusion, the thesis has shown that structural elaboration of compound 47 was a viable 

means of identifying drug-like compounds with potent growth inhibitory activities on HCC.  

Two oncogenic proteins (FGFR4, SIRT2) were identified as plausible targets of this scaffold 

in HCC.  These findings provide a useful platform for future investigations which should 

focus on (i) establishing in vivo efficacies of promising compounds in xenograft models, (ii) a 

better understanding of the metabolic susceptibility of compounds with the promising N-

substituted aminosulfonyl side chain, (iii) in depth mode of action studies to validate the roles 

of FGFR4 and SIRT2 as target proteins of benzylidene indolinones and (iv) more extensive 

structural elaboration of the scaffold to enhance potency and drug-like profiles. 
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Appendix I: Characterization of synthesized analogues 

 (E)-3-Benzylidene-6-chloro-1,3-dihydro-indol-2-one (1-1): 

N
H

O
Cl  

Yellow solid, yield: 11.8%; melting point: 197.0oC; 1H NMR  (300 MHz, in DMSO-d6): δ 

10.8 (br s, 1H), 7.68- 7.75 (m,  3H), 7.47- 7.55 (m, 4H), 6.84-6.92 (m, 2H); 13C NMR (75 

MHz, in DMSO-d6): δ 168.5, 144.2, 136.7, 134.1, 131.9, 129.9, 129.3, 128.8, 126.5, 123.5, 

120.9, 119.7, 110.1; MS (APCI): m/z 256.0, 258.0 [M+H]+. 

(E)-6-Chloro-3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one, (1-2): 

N
H

O
Cl

F

 

Yellow solid, yield: 50.2%; melting point: 239.6oC; 1H NMR   (300 MHz, in DMSO-d6): δ 

10.8 (br s, 1H, NH), 7.74 (t, J = 8 Hz, 1H),  7.52- 7.58 (m, 2H), 7.32- 7.41 (m, 2H), 7.22 (d, J 

= 7.80 Hz, 1H),  6.89-6.91 (m, 2H); 13C NMR (75 MHz, in DMSO-d6): δ168.0, 159.6, 144.4, 

134.5, 132.1, 130.4, 128.6, 128.2, 124.7, 123.9, 122, 121, 119.5, 116, 110.1; MS (APCI): m/z 

274.2, 276.2 [M+H]+. 

(E)-6-Chloro-3-(3-fluoro-benzylidene)-1,3-dihydro-indol-2-one (1-3): 

N
H

O
Cl

F

 

Yellow solid, yield: 36.6%; melting point: 224.3oC; 1H NMR    (300 MHz, in DMSO-d6): δ 

10.8 (br s, 1H), 7.63 (s, 1H,), 7.47- 7.58 (m, 3H), 7.42 (d, J = 8.7 Hz, 1H),  7.29- 7.34 (m, 1H),  
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6.90- 6.92 (m, 2H); 13C NMR (75 MHz, in DMSO-d6): δ 168.3, 163.7, 160.4, 144.4, 136.5, 

134.9, 134.4, 130.8, 127.5, 125.2, 123.6, 120.9, 119.4, 116.5, 115.9, 110.1; MS (APCI): m/z 

274.2,276.2 [M+H]+. 

(E)-6-Chloro-3-(4-fluoro-benzylidene)-1,3-dihydro-indol-2-one (1-4): 

N
H

O
Cl

F

 

Yellow solid, yield: 42.86%; melting point: 224.4oC;1H NMR    (300  MHz, in DMSO-d6): δ 

10.8 (br s, 1H), 7.72-7.78 (m, 2H), 7.64 (s, 1H,), 7.47 (d, 2H),  7.23 (d, J = 8.1 Hz, 1H,), 7.31-

7.38 (m, 2H,),  6.84- 6.92 (m, 2H,);  13C NMR (75 MHz, in DMSO-d6): δ169.6, 145.3, 136.7, 

135.2, 133, 132.8, 131.7, 131.6, 127.6, 124.6, 122, 120.7, 117.2, 116.9, 111.2; MS (APCI): 

m/z 274.2, 276.2 [M+H]+. 

 (E)-6-Chloro-3-(3-methyl-benzylidene)-1,3-dihydro-indol-2-one (1-5): 

N
H

O
Cl

Me

 

Yellow solid, yield: 3.70%; melting point: 197.3 oC; 1H NMR  (300  MHz, in DMSO-d6): δ 

10.8 (br s, 1H), 7.63 (s, 1H), 7.48-7.51 (m, 3H), 7.41 (t, J = 8.1 Hz, 1H), 7.29-7.33 (m, 1H), 

6.89-6.91 (m, 2H),  2.36 (s, 3H);  13C NMR (75 MHz, in DMSO-d6): δ 169.6, 145.3, 142.9, 

139.2, 137.9, 135.1, 131.7, 130.9, 129.8, 127.4, 124.6, 122, 120.9, 111.1, 21.9; MS (APCI): 

m/z 270.0, 272.0 [M+H]+ 
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(E)-6-Chloro-3-(2-methoxy-benzylidene)-1,3-dihydro-indol-2-one (1-6): 

N
H

O
Cl

OMe

 

Yellow solid, yield: 61.40 %, melting point: 241.1 oC; 1H NMR    (300  MHz, in DMSO-d6): δ 

10.7 (br s, 1H), 7.68 (s, 1H,), 7.65 (d, J = 7.5Hz, 1H), 7.50 (t, J =7.5 Hz, 1H), 7.37 (d, J= 8.1 

Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H, H-4), 7.08 (t, J = 7.2 Hz, 1H), 6.88-6.91 (m, 2H), 3.85 (s, 

3H); 13C NMR (75 MHz, in DMSO-d6): δ169.6, 158.7, 145.1, 134.9, 133.6, 133.1, 130.6, 

127.3, 124.6, 123.6, 121.9, 121.4, 121.1, 112.7, 111.0, 56.7 ; MS (APCI): m/z 286.0, 288.0 

[M+H]+. 

 

 (E)-6-Chloro-3-(3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (1-7): 

N
H

O
Cl

OMe

 

Yellow solid, yield 29.8%; melting point: 199.6 oC; 1H NMR    (300  MHz, in DMSO-d6): 

δ10.8 (br s, 1H), 7.65 (s, 1H), 7.53 (d, J = 8.4, 1H), 7.47 (d, J =8.1 Hz, 1H), 7.24-7.28 (m, 2H), 

7.06 (d, J =8.4 Hz, 1H), 6.85-6.95 9m,), 3.80 (s, 3H); 13C NMR (75 MHz, in DMSO-d6): δ 

169.6, 160.4, 145.4, 137.6, 136.5, 135.2, 131.1, 127.7, 124.8, 122.6, 122, 120.8, 117, 115.3, 

111.2, 56.3; MS (APCI): m/z 286.0, 288.0 [M+H]+. 
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 (E)-6-Chloro-3-(4-methoxy-benzylidene)-1,3-dihydro-indol-2-one (1-8): 

N
H

O
Cl

MeO

 

Yellow solid, yield 40.4%; melting point: 225.5 oC; 1H NMR    (300  MHz, in DMSO-d6): 

δ10.8 (br s, 1H), 7.62-7.72 (m, 4H), 7.09 (d, J =8.7 Hz, 2H), 6.89-6.95 (m, 2H), 3.85 (s, 3H); 

13C NMR (75 MHz, in DMSO-d6): δ168.8, 160.7, 143.9, 136.9, 133.5, 126.3, 124.3, 123.2, 

120.1, 120, 114.3, 109.9, 55.3; MS (APCI): m/z 286.2, 288.2 [M+H]+. 

 (E)-6-Chloro-3-(2-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (1-9): 

N
H

O
Cl

CF3

 

Yellow solid, yield: 40.3%; melting point: 209.4 oC;1H NMR  (300 MHz, in DMSO-d6): δ10.9 

(br s, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.68-7.81 (m, 4H), 6.88 (s, 1H), 6.75- 6.84 (m, 2H); 13C 

NMR (75 MHz, in DMSO-d6): δ 167.7, 144.5, 134.7, 132.9, 132.8, 131.6, 130.1, 129.8, 129.3, 

127.1, 126.7, 126.43, 126.36, 123.8, 121.1, 119.2, 110.3; MS (APCI): m/z 323.9, 325.9 

[M+H]+. 

(E) 6-Chloro-1-methyl-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (1-10):  

N
Me

O

CF3

Cl  

Yellow solid, yield 16.6%; melting point: 209.7 oC; 1HNMR (300 MHz DMSO-d6), δ 7.98 (d, 

J=7.8 Hz, 2H), 7.85-7.72 (m, 3H), 7.29 (d, J=8.1 Hz, 1H), 7.17 (s, 1H), 6.91 (d, J=8.1 Hz, 1H), 
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3.19 (s, 3H); 13CNMR (75 MHz, DMSO-d6)*, δ 167.0, 145.7, 143.4, 135.2, 135.1, 134.9, 

134.4, 133.9, 132.9, 130.0, 129.3, 127.1, 126.3, 125.9, 125.9, 123.0, 122.3, 121.5, 121.4, 

121.2, 118.6, 109.5, 26.2, 26.0. MS (APCI): m/z 338.4, 340.4 [M+1]+.  

  

 (E)-6-Chloro-3-(4-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (1-11): 

N
H

O
Cl

F3C

 

Yellow solid, yield: 29.2%; melting point: 217.1 oC;1H NMR  (300 MHz, in DMSO-d6): δ 

10.8 (br s, 1H), 7.86-7.92 (m, 4H), 7.70 (s, 1H,),  7.40 (d, J = 8.7 Hz, 1H),  6.88-6.90 (m, 2H); 

13C NMR (75 MHz, in DMSO-d6): δ169.3, 145.7, 139.5, 135.7, 133.1, 131, 129.3, 126.8, 

124.9, 124.3, 122.1, 120.4, 111.3; MS (APCI): m/z 324.0, 326.0[M+H]+. 

 (E)-6-Chloro-3-(3,4-difluoro-benzylidene) 1,3-dihydro-indolin-2-one (1-12): 

N
H

O

F

F

Cl  

Yellow solid ,yield: 41%; melting point: 226.2 oC; 1H NMR  (300 MHz, in DMSO-d6): δ 

10.78 (s, 1H), 7.76 (t, J=8.7 Hz, 1H), 7.58 (s, 3H), 7.41 (d, J=8.1 Hz, 1H), 6.89 (d, J=8.4 Hz, 

2H); 13C NMR (75 MHz, in DMSO-d6): δ 168.2, 144.4, 134.4, 134.1, 131.7, 127.4, 126.5, 

126.5, 126.4, 123.7, 121.0, 119.3, 118.6, 118.3, 118.2, 117.9, 110.1; MS (APCI): m/z 292.2, 

294.2 [M+H]+. 
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 (E)-6-Chloro-3-(2-trifluoromethoxyl-benzylidene)-1,3-dihydro-indolin-2-one (1-13): 

N
H

O
Cl

OCF3

 

Yellow solid, yield 73.6%; melting point: 207.7 oC; 1H NMR  (300 MHz DMSO-d6) δ 10.86 

(s, 1H), 7.81 (d, J = 7.0 Hz, 1H), 7.69-7.48 (m, 4H), 7.12 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 7.9 

Hz, 2H); 13NMR (75 MHz, DMSO-d6)*, δ 167.8, 166.3, 146.4, 146.1, 144.5, 142.6, 134.7, 

134.0, 132.2, 131.8, 131.5, 130.5, 129.1, 129.0, 128.2, 127.9, 127.7, 126.8, 126.6, 125.1, 

123.7, 122.5, 121.9, 121.7, 121.2, 121.1, 120.6, 119.3, 118.3, 114.8, 110.2, 109.5; MS (APCI): 

m/z 340.4, 342.2 [M+H]+  

(E)-6-Chloro-3-(3-trifluoromethoxyl-benzylidene)-1,3-dihydro-indol-2-one (1-14): 

N
H

O

OCF3

Cl  

Yellow solid, yield 57.1%; melting point: 194.0 oC;1HNMR (300 MHz, DMSO-d6), δ 10.8(s, 

1H), 7.72-7.62 (m, 4H), 7.48 (d,=7.8Hz, 1H), 7.33 (d, J=8.1 Hz, 1H), 6.89 (d, J=7.8 Hz,2H); 

13CNMR (75 MHz, DMSO-d6)*, δ 168.2, 166.9, 148.5, 148.1, 144.5, 142.2, 136.5, 135.8, 

135.6, 134.6, 134.5, 133.6, 131.2, 130.9, 130.1, 128.2, 127.9, 127.2, 123.5, 123.4, 123.3, 

122.7, 122.1, 121.8, 121.7, 121.5, 121.0, 120.9, 119.4, 118.4, 118.3, 110.2, 109.5; MS (APCI): 

m/z 340.5, 342.5 [M+1]+.  
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 (E)-6-Chloro-3-(4-trifluoromethoxyl-benzylidene)-1,3-dihydro-indol-20-one (1-15): 

N
H

O
Cl

F3CO

 

Yellow solid, yield 83.0%; melting point: 194.0 oC; 1H NMR  (300 MHz DMSO-d6), δ 10.80 

(s, 1H), 7.80 (t,J=9.0 Hz, 2H), 7.65 (s, 1H), 7.50 (q, J=16.5 Hz, 3H), 6.90 (d, J = 7.1 Hz, 2H); 

13NMR (75 MHz, DMSO-d6)*, δ 168.4, 166.9, 149.3, 148.9, 144.4, 142.0, 135.8, 134.8, 

134.4, 133.9, 133.3, 132.8, 131.4, 127.2, 126.4, 123.6, 123.5, 121.7, 121.4, 121.1, 121.0, 

120.9, 120.3, 119.4, 118.3, 110.2, 109.4; MS (APCI): m/z 340.4, 342.5 [M+H]+.  

 

(E)-6-Chloro-3-(3-methanesulfonyl-benzylidene)-1,3-dihydro-indol-2-one (1-16): 

N
H

O

SO2Me

Cl  

Yellow solid, yield 45.5%; melting point: 218.1 oC 1HNMR  (300 MHz DMSO-d6), δ 10.83 (s, 

1H), 8.22 (s, 1H), 8.02 (d, J = 7.6 Hz, 2H), 7.80 (t, J = 7.8 Hz, 1H), 7.72 (s, 1H), 7.35 (d, J = 

8.7 Hz, 1H), 6.89 (d, J = 6.2 Hz, 2H), 3.29 (s, 1H); 13NMR (75 MHz, DMSO-d6), δ 168.2, 

144.6, 141.3 , 135.4, 134.6, 134.3, 134.0, 130.1, 128.1, 127.7, 127.4, 123.6, 121.0, 119.3, 

110.2, 43.3; MS (APCI): m/z  334.3, 336.3 [M+H]+. 

(E) 3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzene-sulfonamide (1-17): 
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N
H

O

SO2NH2

Cl  

Yellow solid, yield 47.8%; melting point: 271.4oC; 1HNMR (300 MHz DMSO-d6), δ 10.8 (s, 

1H), 8.13 (s, 1H), 7.90 (t, J=7.8 Hz, J=6.6Hz, 2H), 7.49 (s, 2H), 7.28 (d, J=8.1 Hz, 1H), 6.91 

(d, J=8.1 Hz, 1H);  

13CNMR (75 MHz, DMSO-d6), δ 168.2, 144.5, 144.5, 134.9, 134.7, 134.6, 132.5, 129.7, 

127.8, 126.5, 125.8, 123.6, 121.0, 119.3, 110.2.MS (APCI): m/z 335.3, 337.3 [M+1]+. 

 

 (E)3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl 

benzenesulfonamide (1-18): 

N
H

O

SO2NHMe

Cl  

Yellow solid, yield 22.9%; melting point: 183.4oC; 1HNMR (400 MHz DMSO-d6, δ 10.84 (s, 

1H), 8.04 (s, 1H), 7.92(d, J=7.6 Hz, 1H), 7.85 (d, J=7.6 Hz, 1H), 7.75 (t, J=7.6 Hz, 1H), 7.71 

(d, 1H), 7.58 (s, 1H), 7.32(d, J=8 Hz, 1H), 6.92 (d,J=1.6 Hz, 1H), 6.90 (dd, J=8.4 Hz, 1 

H),2.46 (s, 3H);  

13CNMR (100MHz, DMSO-d6), δ 168.3, 144.6, 140.0, 135.3, 134.8, 134.7, 133.1, 130.1, 

128.0, 127.7, 126.9, 123.6, 121.1, 119.4, 110.4, 28.7;  

MS (APCI): m/z 350.1, 352.1 [M+1]+. 
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 (E) 3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzonitrile (1-19): 

N
H

O

CN

Cl  

Yellow solid, yield 57.0%; melting point: 221.5oC; 1HNMR (300 MHz DMSO-d6), δ 10.8 (s, 

1H), 8.10 (s, 1H), 7.99 (d, J=7.8 Hz,1H), 7.91 (d, J=7.8 Hz, 1H), 7.71 (t, J=7.8 Hz, 1H), 7.63 

(s, 1H), 7.28 (d, J=8.7 Hz, 1H), 6.88 (d, J=7.2 Hz, 2H);  

13CNMR (75 MHz, DMSO-d6), δ 168.3, 144.6, 135.6, 134.8, 134.1, 133.6, 133.1, 132.7, 

130.1, 128.3, 123.8, 121.2, 119.4, 118.4, 112.1, 110.4; MS (APCI): m/z 281.5, 283.5 [M+1]+. 

  

 (E)-3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N,N-dimethyl-

benzenesulfonamide(1-20): 

N
H

O
Cl

SO2N(CH3)2

 

Yellow solid, yield 22.9%; melting point: 222.0 oC; 1H NMR (400 MHz, DMSO-d6)  10.79 (s, 

1H), 8.78 (s, 1H), 8.50 (d, J = 7.7 Hz, 1H), 7.98 (s, 1H), 7.89-7.65 (m, 3H), 7.06 (d, J = 8.1 

Hz, 1H), 6.88 (d, J = 16.9 Hz, 1H), 2.67 (s, 6H); 13C NMR (101 MHz, DMSO-d6), δ 166.8, 

142.2, 135.6, 135.5, 134.9, 134.6, 133.6, 130.1, 129.2, 128.7, 127.4, 123.3, 121.7, 121.0, 

109.5, 40.1, 38.8; MS (ACPI): m/z 361.5, 363.5 [M-H]-. 
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(E)-4-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl-

benzenesulfonamide (1-21):  

N
H

O
Cl

H3CHNO2S

 

Yellow solid, yield 40.7%; melting point: 235.7 oC;1H NMR (400 MHz, DMSO-d6) δ 11.10-

10.52 (br, 1H), 7.88 (s, 4H), 7.68 (s, 1H), 7.44-7.38 (m, 1H), 6.91 (dd, J = 6.9, 2.0 Hz, 2H), 

2.46 (d, J = 8.9 Hz, 3H) 

13C NMR (100 MHz, DMSO-d6), δ 168.4, 144.6, 140.0, 138.2, 134.8, 134.7, 132.1, 130.1, 

128.3, 127.2, 126.4, 124.0, 121.3, 119.4, 110.4, 28.8; MS (ESI): m/z 347.1, 349.1 [M-H]-. 

 

(E)-3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-ethyl-benzenesulfonamide 

(1-22) : 

N
H

O

SO2NHEt

Cl  

Orange red solid, yield 3.59% (after 3 steps) ; melting point: 194.8 oC; 1H NMR (400 MHz, 

DMSO-d6),δ 10.84 (s, 1H), 8.05 (s, 1H), 7.90 (dd, J = 18.7, 7.8 Hz, 2H), 7.77-7.62 (m, 3H), 

7.33 (d, J = 8.2 Hz, 1H), 6.99-6.80 (m, 2H), 2.83 (dd, J = 6.7, 3.9 Hz, 2H), 0.98 (t, J = 7.2 Hz, 

3H); 13C NMR (100 MHz, DMSO-d6), δ 168.2, 144.6, 141.2, 135.2, 134.8, 134.7, 132.9, 

130.0, 128.0, 127.4, 126.7, 123.5, 121.0, 119.4, 110.3, 37.6, 14.8. MS (ESI): m/z 361.2, 363.2 

[M-H]-. 
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(E)-3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propyl-

benzenesulfonamide (1-23)  

N
H

O

SO2NH

Cl  

Orange solid, Yield 20.9% (after 3 steps); melting point: 197.5 oC;1H NMR (400 MHz, 

DMSO-d6), δ10.84 (s, 1H), 8.05 (s, 1H), 7.95-7.80 (m, 2H), 7.81-7.62 (m, 3H), 7.33 (d, J = 

8.2 Hz, 1H), 6.96-6.80 (m, 2H), 2.75 (t, J = 7.1 Hz, 2H), 1.47-1.28 (m, 2H), 0.79 (t, J = 7.4 Hz, 

3H); 13C NMR (100 MHz, DMSO-d6), δ 168.2, 144.5, 141.3, 135.2, 134.7, 134.6, 132.9, 

129.9, 127.9 127.3, 126.6, 123.5, 120.9, 119.3, 110.2, 44.3, 22.4, 11.0. MS (ESI): m/z 375.3, 

377.3 [M-H]-. 

 

(E/Z) 3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-isopropyl 

benzenesulfonamide (1-24) : 

N
H

O

SO2NH

Cl  

Yellow solid; yield 5.72 (after 3 steps), melting point: 178.5 oC; 1H NMR (400 MHz, DMSO-

d6), δ 10.81 (s, 1H), 8.02 (s, 1H), 7.88-7.82 (m, 2H), 7.74-7.63 (m, 3H), 7.28 (d, J = 8.27 Hz, 

1H), 6.90 (d, J = 1.93 Hz, 1H), 6.86-6.80 (m, 1H), 3.29-3.22 (m, 1H), 0.92 (d, J = 6.54 Hz, 

6H); 13C NMR (100 MHz, DMSO-d6)#, δ 172.2, 168.4, 144.6, 142.5, 136.0, 135.2, 134.9, 

134.8, 132.9, 130.1, 129.4, 129.2, 128.0, 127.4, 126.6, 123.6, 121.1, 119.5, 110.5, 45.5, 42.2, 
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23.3, 21.1. MS (ESI): m/z 375.3, 377.3 [M-H]-. 

(E)-3-Benzylidene-5-chloro-1,3-dihydro-indol-2-one (2-1):  

N
H

O
Cl

 

Orange solid, yield: 62.8%; melting point: 208.0oC;1H NMR  (300 MHz, in DMSO-d6): δ10.8 

(br s, 1H), 7.73 (s, 1H, H), 7.70 (d, J = 7 Hz, 2H), 7.54-7.59 (m, 3H), 7.51 (d, J = 2.1 Hz, 1H, 

H-4), 7.29 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H); 13C NMR, (75 MHz, in DMSO-d6): δ 

168.3, 141.7, 137.7, 134, 130.1, 129.6, 129.2, 128.9, 126.9, 124.9, 122.5, 121.7, 111.5; MS 

(APCI): m/z 256.1, 258.1 [M+H]+. 

 

 (E)-5-Chloro-3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one (2-2): 

N
H

O
Cl

F

 

Orange solid, yield 89.4%; melting point: 237.4oC; 1H NMR  (300 MHZ DMSO-d6) δ10.8 (br 

s, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.62 (s, 1H), 7.51-7.60 (m, 1H), 7.35-7.43 (m, 2H), 7.28 (d, J 

=8.1 Hz, 1H), 7.13 (d, J = 2.1 Hz, 1H), 6.89 (d, J= 8.4 Hz, 1H); 13C NMR, (75 MHz, in 

DMSO-d6): δ168.8, 162.3, 159.0, 143.0, 141.0, 133.5, 133.4, 131.6, 131.1, 130, 126.2, 125.8, 

123.3, 123.2, 123, 122.8, 117.4, 117.1, 112.6; MS (APCI): m/z 273.9, 275.9 [M+H]+. 

(E)-5-Chloro-3-(3-fluoro-benzylidene)-1,3-dihydro-indol-2-one (2-3) 

N
H

O
Cl

F
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Orange solid, yield 37.0%; melting point: 209.5oC; 1H NMR  (300 MHZ, DMSO-d6) δ 10.8 

(br s, 1H), 7.69 (s, 1H), 7.53-7.60 (m, 3H), 7.37 (d, J = 9 Hz, 1H), 7.33 (s, 1H), 7.30 (d, J = 

1.8 Hz), 6.90 (d, J = 8.4 Hz, 1H); 13C NMR, (75 MHz, in DMSO-d6): δ 168.0 , 162.1 , 141.8 , 

136.4 , 135.9 , 130.9 , 129.9 , 127.8 , 125.1 , 124.9 , 122.1 , 121.9 , 116.7 , 115.8 , 111.5; MS 

(APCI): m/z 273.9, 275.9 [M+H]+. 
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(E)-5-Chloro-3-(4-fluoro-benzylidene)-1,3-dihydro-indol-2-one (2-4):  

N
H

O
Cl

F

 

Orange solid, yield 63.0%; melting point: 215.6oC;1H NMR  (300 MHZ, DMSO-d6) δ10.8 (br 

s, 1H), 7.74-7.79 (m, 2H), 7.69 (s, 1H), 7.36-7.42 (m, 2H), 7.26-7.32 (m, 2H), 6.88 (d, J =8.4 

Hz, 1H); 13C NMR, (75 MHz, in DMSO-d6): δ167.9 , 142.0 , 139.9 , 138.5 , 138.3 , 135.5 , 

132.1 , 130.1 , 129.8 , 128.4 , 125.7 , 125.0 , 122.0 , 111.6; MS (APCI): m/z 273.9, 275.9 

[M+H]+. 

 (E)-5-Chloro-3-(3-methoxybenzylidene)-dihydro-indol-2-one (2-5): 

N
H

O
Cl

OMe

 

Orange solid, yield 79.0%; melting point: 211.6oC;1H NMR  (300 MHZ, DMSO-d6) δ 10.8 (br 

s, 1H), 7.69 (s, 1H), 7.44-7.50 (m, 2H), 7.25-7.30 (m, 3H), 7.08 (d, J = 8.4 Hz, 1H), 6.89 (d, 

J= 8.4 Hz, 1H), 3.81 (s, 3H), 13C NMR, (75 MHz, in DMSO-d6): δ 169.3 , 160.4 , 142.8 , 

138.6 , 136.4 , 131.1 , 130.1 , 128.1 , 125.9 , 123.5 , 123.1 , 122.5 , 117.2 , 115.2 , 112.6 , 56.3.  

MS (APCI): m/z 285.9, 287.9 [M+H]+. 

(E)-5-Chloro-3-(2-trifluoromethylbenzylidene)-1,3-dihydro-indol-2-one (2-6): 

N
H

O
Cl

CF3

 

Orange solid,yield 50.8%; melting point: 209.4oC; 1H NMR  (300 MHZ DMSO-d6) δ10.9 (br 
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s, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.74-7.84 (m, 4H), 7.28 (dd, J = 10 Hz, J= 1.8 Hz, 1H), 6.89 

(d, J=8.1 Hz, 1H), 6.64 (d, J = 2.1 Hz, 1H); 13C NMR, (75 MHz, in DMSO-d6): δ 167.5 , 

142.0 , 133.0 , 132.8 , 132.7 , 130.2 , 130.1 , 129.6 , 127.1 , 126.7 , 126.6 , 126.5 , 125.7 , 

125.1 , 122.1 , 122.0 , 111.8; MS (APCI): m/z 323.8, 325.8 [M+H]+. 

 (E)-5-Chloro-3-(3-(trifluoromethyl)benzylidene)-1,3-dihydro-indol-2-one (2-7): 

N
H

O
Cl

CF3

 

Orange solid, yield 38.5%; melting point: 192.4oC; 1HNMR (300 MHZ, DMSO-d6) δ 10.8 (s, 

1H,), 7.99-8.06 (m, 2H), 7.70-7.88 (m, 3 H), 7.26-7.32 (m, 2H,), 6.90 (d, J =8.4 Hz, 1H). 

13CNMR (75 MHz, DMSO-d6)*, δ 167.9, 166.7, 141.9, 139.7, 135.6, 135.5, 135.1, 133.0, 

130.0, 129.3, 128.3, 126.3, 125.7, 125.6, 124.9, 122.0,111.6. MS (APCI): m/z 323.9, 325.9 

[M+1]+. 

(E)-5-Chloro-3-(4-trifluoromethylbenzylidene)-1,3-dihydro-indol-2-one (2-8): 

N
H

O
Cl

F3C

 

Orange solid, yield 38.5%; melting point: 212.4oC; 1H NMR  (300 MHZ, DMSO-d6) δ 10.8 

(br s, 1H), 7.91 (t, J = 9 Hz, 4H), 7.75 (s, 1H), 7.28-7.33 (m, 2H), 6.91 (d, J = 8.4 Hz, 1H); 

13C NMR, (75 MHz, in DMSO-d6): δ167.7 , 142.0 , 139.9 , 138.3 , 135.3 , 132.1 , 130.1 , 

129.8 , 129.4 , 128.4 , 125.7 , 125.0 , 122.1 , 121.9 , 111.6; MS (APCI): m/z 323.9, 325.9 

[M+H]+. 

  



 

189 
 

(E)-5-Chloro-3-(3,4-difluoro-benzylidene)-1,3-dihydro-indol-2-one (2-9): 

N
H

O
Cl

F

F

 

Orange solid, yield: 51%; melting point: 189.0oC; 1H NMR  (300 MHz, DMSO-d6): δ 10.82 (s, 

1H), 8.86 (m, 1H), 8.01 (br, 1H), 7.89 (d, J=1.8 Hz, 1H), 7.55 (q, J=8.7 Hz, 1H), 7.23 (dd, 

J=1.8 Hz, 1H), 6.32 (d, J=8.4 Hz, 1H); 13C NMR, (75 MHz, in DMSO-d6)*: δ 166.8, 152.3, 

152.1, 148.9, 147.1, 147.0, 139.5, 136.2, 131.4, 131.3, 131.3, 131.3, 130.3, 128.6, 126.4, 

126.3, 125.5, 120.2, 120.0, 119.9, 117.5, 117.2, 110.8; MS (APCI): m/z 292.2, 294.2 [M+H]+. 

 (E)-5-Chloro-3-(3-trifluoromethoxyl-benzylidene)-1,3-dihydro-indol-2-one (2-10): 

N
H

O
Cl

F3CO

 

Orange solid, yield 13.5%; melting point: 175.7 oC; 1H NMR (300 MHz DMSO-d6) δ 10.79 (s, 

1H), 7.70 (s, 4H), 7.50 (s, 1H), 7.29 (d, J = 7.2 Hz, 2H), 6.89 (d, J = 8.4 Hz, 1H); 13C NMR 

(75 MHz, DMSO-d6)* δ 167.9, 166.7, 148.4, 148.1, 141.9, 139.7, 136.3, 135.7, 135.5, 131.3, 

131.0, 130.1, 130.0, 128.9, 128.4, 128.2, 127.3, 126.3, 125.5, 125.0, 123.3, 122.9, 122.4, 

122.1, 121.8, 121.3, 120.2, 118.3, 111.6, 110.9; MS (APCI): m/z 340.5, 342.5 [M+H]+. 
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 (E)-5-Chloro-3-(3-methanesulfonyl-benzylidene)-1,3-dihydro-indol-2-one (2-11) : 

N
H

O

SO2Me

Cl

 

Orange solid, yield 49.1%; melting point: 238.4 oC;1HNMR (300 MHz DMSO-d6) δ 10.8 (s, 

1H), 8.25 (s, 1H), 8.02 (d, J=6.9 Hz, 2H), 7.77-7.85 (m, 2H), 7.31 (s, 2H), 6.91 (d, J=7.8 Hz, 

1H), 3.29 (s, 3H); 13CNMR (75 MHz, DMSO-d6) δ 167.9, 142.0, 141.3, 135.4, 135.2, 134.2, 

130.1, 128.4, 127.9, 127.3, 125.1, 122.0, 121.9, 111.7, 43.3;  MS (APCI): m/z 334.4, 336.4 

[M+1]+. 

E/Z 3-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzenesulfonamide (2-12): 

N
H

O

SO2NH2

Cl

 

Orange solid, yield 17.9%; melting point: 235.1 oC; 1HNMR (300 MHz DMSO-d6) δ 10.8 (s, 

1H), 8.12 (s, 1H), 7.84 (t, J=9.0 Hz, J=9.6 Hz, 2H), 7.75 (t, J=7.5 Hz, J=7.8 Hz, 2H), 7.47 (br, 

1H), 7.32-7.29 (m, 2H), 6.92 (d, J=8.1 Hz, 1H); 13CNMR (75 MHz, DMSO-d6), δ 168.0, 

166.7, 144.7, 144.2, 141.9, 139.8, 136.9, 135.8, 134.8, 134.2, 132.5, 130.2, 129.7, 129.0, 

128.8, 128.2, 127.5, 127.3, 126.7, 126.4, 125.9, 125.6, 125.3, 122.0, 120.4, 111.7. 

 MS (ESI): m/z 335.1, 337.1[M+1]+. 
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 (E) 3-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzonitrile (2-13): 

N
H

O

CN

Cl

 

Orange solid, yield, 67.7%; melting point: 265.3 oC; 1HNMR  (300 MHz DMSO-d6), δ 10.84 

(s, 1H), 8.87 (s, 1H), 8.45 (d, J=7.8 Hz,1 H), 7.95-7.89 (m,2H), 7.82 (s, 1H), 7.29 (d, J=8.1 

Hz, 1H), 6.85 (d, J=8.1 Hz, 1H); 13NMR (75 MHz, DMSO-d6)#, δ 166.6, 139.8, 136.2, 135.4, 

134.7, 134.6, 133.4, 129.5, 129.1, 128.5, 127.8, 126.1, 125.6, 122.0, 120.3, 118.5, 112.0, 

111.3, 111.0; MS (APCI): m/z 281.5, 283.5 [M+H]+. 

(E)-3-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl-

benzenesulphonamide (2-14): 

N
H

O
Cl

SO2NHMe

 

Orange solid, yield 29.3%; melting point: 215.0 oC; 1H NMR (400 MHz, DMSO-d6) 10.81 (s, 

1H), 8.07 (s, 1H), 7.91 (dd, J = 17.4 Hz, 2H), 7.84-7.74 (m, 2H), 7.61 (q, J = 4.5 Hz, 1H), 

7.37-7.20 (m, 2H), 6.91 (d, J = 8.3 Hz, 1H), 2.48 (d, J = 4.8 Hz, 3H); 13C NMR (100 MHz, 

DMSO-d6), δ 166.6, 139.7, 139.5, 136.6, 135.1, 134.4, 129.8, 129.2, 128.9, 128.0, 127.4, 

126.3, 125.5, 120.3, 110.9, 28.6; MS (ACPI): m/z 347.5, 349.5 [M-H]-; 
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 (E)-3-Benzylidene-6-fluoro-1,3-dihydro-indol-2-one (3-1): 

N
H

O
F  

 Pale yellow solid, yield: 14.6%; melting point: 186.1 oC; 1HNMR  (300 MHz, in DMSO-d6): 

δ 10.7 (br s, 1H), 7.61 (d, J = 6.9 Hz, 1H), 7.57 (s, 1H), 7.41-7.50 (m, 4H), 6.58-6.73 (m, 2H); 

13NMR (75 MHz, DMSO-d6), δ 169.9 , 144.9 , 136.4 , 134.5 , 132.2 , 130.5 , 129.6 , 128.8 , 

126.9 , 124.5 , 117.8 , 108.3 , 98.9. MS (APCI): m/z 240.2 [M+H]+. 

 (E)-6-Fluoro-3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one (3-2): 

N
H

O
F

F

 

Pale yellow solid, yield: 54.7%; melting point: 237.1 oC; 1HNMR   (300 MHz, in DMSO-d6), 

δ 10.8 (br s, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.54-7.57 (m, 1H), 7.52 (s, 1H), 7.33-7.41 (m, 2H), 

7.24 (d, J = 6.3 Hz, 1H), 6.65-6.72 (m, 2H); 13NMR (75 MHz, DMSO-d6), δ 168.5, 165.0, 

161.5, 157.9, 145.0, 132.0, 130.4, 128.7, 127.1, 124.8, 122.1, 117.1, 116.1, 107.8, 98.3; MS 

(APCI): m/z 258.3 [M+H]+. 

(E)-6-Fluoro-3-(3-fluoro-benzylidene)-1,3-dihydro-indol-2-one (3-3): 

N
H

O

F

F  

Pale yellow solid, yield 23.6%; melting point: 196.7 oC; 1HNMR (300 MHZ DMSO-d6) δ10.8 

(br s, 1H, NH), 7.55 (s, 1H), 7.41-7.53 (m, 4H), 7.23-7.29 (m, 1H), 6.65-6.70 (m, 1H), 6.59-

6.62 (m, 1H); 13CNMR (75 MHz, DMSO-d6), δ 168.6, 167.2, 163.7, 145, 144.9, 142.3, 136.6, 
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133.7, 130.8, 127.5, 125.1, 117.0, 115.9, 115.6, 107.8, 107.5, 98.4, 89.0; MS (APCI): m/z, 

258.2 [M+H]+. 

 (E)-6-Fluoro-3-(4-fluoro-benzylidene)-1,3-dihydro-indol-2-one (3-4): 

N
H

O
F

F

 

Pale yellow solid, Yield: 27.5%; melting point: 221.2 oC; 1HNMR    (300  MHz, in DMSO-d6), 

δ10.8 (br s, 1H), 7.76 (dd, J1 = 14 Hz, J2 = 6 Hz),  7.59 (s, 1H), 7.50 (t, J = 6.3 Hz, 1H), 7.36 

(t, J = 8.7 Hz), 6.65-6.71 (m, 2H); 13NMR (75 MHz, DMSO-d6), δ 168.8, 164.4, 161.1, 144.8, 

134.3, 131.6, 130.6, 126.5, 123.8, 117.1, 115.8, 107.4, 98.1; MS (APCI): m/z 258.2 [M+H]+. 

(E)-6-Fluoro-3-(2-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (3-5): 

N
H

O
F

CF3

 

Pale yellow solid, yield 45.8%; melting point: 192.8 oC; 1H NMR  (300 MHZ DMSO-d6) δ 

10.6 (br s, 1H), 7.91 (d, J = 7.5 Hz), 7.76-7.84 (m, 2H), 7.66- 7.73 (m, 2H), 6.78 (dd, J = 14 

Hz, J = 5.7 Hz, 1H), 6.70 (dd, J = 12 Hz, J = 2.1 Hz, 1H), 6.56-6.63 (m, 1H); 13NMR (75 

MHz, DMSO-d6) δ 168.1, 163.4, 145.0, 133.0, 130.2, 129.8, 126.8, 126.5, 126.4, 125.7, 

124.3, 116.8, 107.8, 98.4; MS (APCI): m/z 308.0 [M+H]+ . 
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(E)-6-Fluoro-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (3-6): 

N
H

O

CF3

F  

Pale yellow solid, yield 24.0 %; melting point: 163.4 oC; 1HNMR (300 MHZ DMSO-d6) 

δ10.8 (s, 1H), 7.98 (d, J =6.9 Hz, 2H), 7.82 (d, J = 7.5 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.66 

(s, 1H), 7.33 (dd, J = 14 Hz, J = 5.4 Hz, 1H), 6.66-6.71 (m, 2H); 13CNMR (75 MHz, DMSO-

d6)*, δ 168.5 , 164.9, 161.7, 145.2, 145.0, 135.4, 133.35, 133.31, 132.8, 129.9, 129.3, 128, 

125.9, 125.7, 123.9, 123.7, 122.1, 116.9, 116.9, 107.7, 107.4, 98.5, 98.1; (APCI): m/z, 307.9 

[M+H]+. 

 (E)-6-Fluoro-3-(4-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (3-7): 

N
H

O
F

F3C

 

Pale yellow solid, yield 51.3%; melting point: 196.5 oC; 1H NMR  (300 MHZ DMSO-d6) 

δ10.8 (br s, 1H), 7.87 (t, J = 9 Hz, 4H), 7.63 (s, 1H), 7.41 (t, J = 6.9 Hz, 1H), 6.63-6.70 (m, 

2H); 13NMR (75 MHz, DMSO-d6)* δ 168.5, 165.0, 161.7, 145.2, 145.1, 138.5, 133.2, 129.8, 

128.2, 125.6, 125.6, 124.3, 124.2, 116.8, 107.8, 107.5, 98.4, 98.1; MS (APCI): m/z 308.0 

[M+H]+. 
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 (E)-6-Fluoro-3-(3-trifluoromethoxyl-benzylidene)-1,3-dihydro-indol-2-one (3-8): 

N
H

O

OCF3

F  

Pale yellow solid, yield 27.2%; melting point: 177.7 oC; 1HNMR (300 MHz DMSO-d6) δ 10.8 

(s, 1H), 7.74-7.64 (m, 3H), 7.61 (s, 1H), 7.50 (d, J=8.4 Hz, 1H), 7.39 (q, J=8.4 Hz, 1H), 6.73-

6.64 (m, 2H); 13CNMR (75 MHz, DMSO-d6)* δ 168.6, 165.0, 161.7, 148.5, 145.2, 145.0, 

136.6, 133.2, 130.9, 128.0, 127.9, 124.0, 123.9, 121.9, 121.7, 121.4, 116.9, 107.7, 107.4, 98.5, 

98.1; MS (APCI): 324.5 m/z [M+H]+.  

(E)-6-Fluoro-3-(3-methanesulfonyl-benzylidene)-1,3-dihydro-indol-2-one (3-9): 

N
H

O

SO2Me

F  

Pale yellow solid, yield 44.1%; melting point: 233.9 oC; 1H NMR  (300 MHz DMSO-d6) δ 

10.85 (s, 1H), 8.22 (s, 1H), 8.02 (t, J=6.3 Hz, 2H), 7.80 (t, J=7.8 Hz, 1H), 7.67 (s, 1H), 7.29 (t, 

J=8.4 Hz, 1H), 6.73-6.64 (m, 2H), 3.29 (s, 3H); 13NMR (75 MHz, DMSO-d6)* 168.5, 145.2, 

145.1, 141.3, 135.5, 133.9, 133.1, 130.0, 128.1, 127.5, 127.3, 124.1, 123.9, 116.9, 116.8, 

107.8, 98.5, 98.1, 43.3; MS (APCI): m/z 318.4 [M+H]+. 
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(E)-3-(6-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl-

benzenesulphonamide (3-10): 

N
H

O

SO2NHMe

F  

Yellow solid, Yield 22.3%; melting point: 201.4 oC; 1H NMR (400 MHz, DMSO-d6) δ 11.59 

(s, 1H), 8.04-7.70 (m, 2H), 7.20-6.85 (m, 2H), 6.40 (d, J = 74.8 Hz, 1H), 4.24 (s, 2H), 4.06 (q, 

J = 7.0 Hz, 2H), 1.33 (dt, J = 7.0 Hz, 3H); 13C NMR (101 MHz, DMSO-d6)* δ 168.5, 164.6, 

162.1, 145.2, 145.0, 139.9, 135.3, 134.8, 133.4, 133.4, 132.9, 129.9, 129.0, 127.9, 127.4, 

126.7, 124.0, 123.9, 116.9, 107.8, 107.7, 107.5, 107.5, 98.4, 98.2, 28.6; MS (ACPI): m/z 

331.3 [M-H]- 

(E)-3-(6-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-ethyl-benzenesulfonamide 

(3-11): 

 

Yellow solid, yield 2.90% (after 3 steps); melting point: 149.2 oC; 1H NMR (400 MHz, 

DMSO-d6),δ 10.85 (s, 1H), 8.04 (s, 1H), 7.88 (dd, J = 17.31, 7.80 Hz, 2H), 7.74 (t, J = 7.76 

Hz, 1H), 7.70-7.66 (m, 1H), 7.64 (s, 1H), 7.35 (dd, J = 8.53, 5.55 Hz, 1H), 6.73 (dd, J = 9.12, 

2.44 Hz, 1H), 6.65 (ddd, J = 9.71, 8.64, 2.48 Hz, 1H), 2.82 (dd, J = 6.62, 2.55 Hz, 2H), 0.98 

(t, J = 7.22 Hz, 3H);  13C NMR (100 MHz, DMSO-d6)*, δ 168.7, 164.7, 162.3, 145.2, 145.1, 

141.2, 135.4, 133.6, 133.6, 133.0, 130.1, 128.1, 127.3, 126.6, 124.1, 124.0, 117.0, 117.0, 

107.9, 107.6, 98.6, 98.4, 37.6, 14.8. MS (ESI): m/z 345.3 [M-H]-. 
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(E)-3-(6-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propyl-benzenesulfonamide 

(3-12): 

N
H

O

SO2NH

F  
Yellow solid, yield 6.27% (after 3 steps), melting point: 183.7 oC; 1H NMR (400 MHz, 

DMSO-d6), 10.84 (s, 1H), 8.05 (s, 1H), 7.89 (dd, J = 18.45, 7.79 Hz, 2H), 7.77-7.63 (m, 3H),  

7.35 (dd, J = 8.53, 5.55 Hz, 1H),  6.74-6.70 (m, 1H), 2.75 (dd, J = 12.99, 6.90 Hz, 2H), 1.43-

1.33 (m, 2H), 0.79 (t, J = 7.39 Hz, 3H); 13C NMR (100 MHz, DMSO-d6)*, δ 168.5, 145.2, 

145.1, 141.2, 135.3, 133.5, 132.8, 129.9, 127.9, 127.2, 126.5, 124.0, 123.9, 116.9, 107.7, 

107.4, 44.3, 22.4, 11.0; MS (ESI): m/z 359.3 [M-H]-; HRMS (ESI+) calcd C18H18FN2O3S,  

 (M+) 361.1020, found 361.101.. 

(E)-3-(6-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-isopropyl-

benzenesulfonamide (3-13): 

N
H

O

SO2NH

F  

Yellow solid, yield 3.60% (after 3 steps), melting point: 156.1 oC; 1H NMR (400 MHz, 

DMSO-d6), δ 10.85 (s, 1H), 8.06 (s, 1H), 7.88 (dd, J = 6.1, 1.6 Hz, 2H), 7.72 (dd, J = 15.0, 

7.3 Hz, 2H), 7.64 (s, 1H), 7.34 (dd, J = 8.5, 5.6 Hz, 1H), 6.73 (dd, J = 9.1, 2.3 Hz, 1H), 6.68-

6.56 (m, 1H), 3.29 (dt, J = 12.9, 6.3 Hz, 1H), 0.95 (d, J = 6.5 Hz, 6H); 13C NMR (100 MHz, 

DMSO-d6)*, δ168.7, 164.696, 162.2, 145.2, 145.1, 142.5, 135.3, 133.7, 132.8, 130.0, 128.0, 

127.2, 126.4, 124.0, 123.9, 117.0, 117.0, 107.8, 107.6, 98.6, 98.4, 45.4, 23.2. MS (ESI): m/z 

359.3 [M-H]-. 
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(E)- 3-Benzylidene-5-fluoro-1,3-dihydro-indol-2-one (4-1): 

N
H

O
F

 

Orange solid, yield 87.4%, melting point: 199.5 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.64 

(s, 1H), 7.79-7.61 (m, 3H), 7.52 (td, J = 8.2, 4.7 Hz, 3H), 7.18 (dd, J = 9.3, 2.1 Hz, 1H), 7.14-

6.98 (m, 1H), 6.94-6.73 (m, 1H); 13C NMR (75 mHz, DMSO-d6)* δ 168.9, 167.4, 159.0, 

155.9, 139.6, 138.8, 137.9, 137.3, 134.3, 134.0, 132.4, 131.1, 130.4, 129.5, 129.2, 128.6, 

127.8, 126.8, 122.2, 122.1, 116.9, 116.6, 111.3, 111.2, 109.8, 109.4; MS (APCI) m/z [M+H]+ 

240.3. 

(E)-5-Fluoro-3-(2-fluoro-benzylidene) -1,3-dihydro-indol-2-one (4-2): 

N
H

O
F

F

 

Orange solid, yield 85.5%; melting point: 247.8 oC; 1H NMR  (300 MHZ DMSO-d6) δ 9.82 (s, 

1H), 6.87 (t, J = 7.5 Hz, 1H), 6.80-6.66 (m, 2H), 6.51 (dd, J = 16.0, 8.3 Hz, 2H), 6.22 (dt, J = 

9.2, 2.4 Hz, 1H), 6.13-5.90 (m, 2H); 13C NMR (75 mHz, DMSO-d6)* δ 167.7, 160.9, 158.5, 

157.6, 155.3, 139.1, 132.1, 132.0, 130.1, 129.2, 128.8, 124.5, 121.6, 121.4, 121.3, 121.2, 

116.7, 116.4, 116.0, 115.7, 110.7, 110.6, 109.5, 109.2; MS (APCI) m/z [M+H]+ 258.3. 

 (E)-5-Fluoro-3-(3-fluoro-benzylidene) -1,3-dihydro-indol-2-one (4-3): 

N
H

O
F

F

 

Orange solid, yield 33.4%; melting point: 196.9 oC; 1H NMR  (300 MHZ, DMSO-d6) δ10.66 
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(s, 1H), 7.66 (s, 1H), 7.62-7.46 (m, 3H), 7.32 (s, 1H), 7.11 (d, J = 8.3 Hz, 2H), 6.86 (s, 1H); 

13C NMR (75 mHz, DMSO-d6)* δ 168.9, 164.3, 161.1, 159.2, 156.1, 140.0, 137.0, 136.9, 

136.3, 131.5, 131.4, 128.9, 125.6, 122.1, 122.0, 117.4, 117.3, 117.1, 117.1, 116.6, 116.3, 

111.5, 111.4, 110.2, 109.8; MS (APCI) m/z [M+H]+ 258.2. 

(E)-5-Fluoro-3-(4-fluoro-benzylidene) -1,3-dihydro-indol-2-one (4-4): 

N
H

O
F

F

 

Orange solid, yield 53.6%, melting point: 226.6 oC; 1H NMR  (300 MHZ DMSO-d6), δ10.64 

(s, 1H), 7.76 (dd, J = 8.1, 5.8 Hz, 2H), 7.67 (s, 1H), 7.37 (t, J = 8.7 Hz, 2H), 7.18 (dd, J = 9.2, 

2.0 Hz, 1H), 7.13-7.03 (m, 1H), 6.86 (dd, J = 8.5, 4.6 Hz, 1H); 13C NMR (75 mHz, DMSO-

d6)* δ 168.5 , 164.3, 161.0, 158.6, 155.5, 139.2, 136.3, 131.8, 131.7, 130.4, 130.4, 127.3, 

121.7, 121.6, 116.6, 116.3, 116.1, 115.8, 110.9, 110.8, 109.4, 109.1; MS (APCI) m/z [M+H]+ 

258.3. 

 (E)- 5-Fluoro-3-(2-methyl-benzylidene)-1,3-dihydro-indol-2-one (4-5): 

N
H

O
F

Me

 

Orange solid, yield 50.5%; melting point: 201.3 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.65 

(s, 1H), 7.76 (s, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.46-7.25 (m, 3H), 7.06 (dt, J = 9.2, 2.3 Hz, 

1H), 6.85 (dd, J = 8.5, 4.6 Hz, 1H), 6.78-6.67 (m, 1H), 2.40-2.16 (m, 3H); 13C NMR (75 mHz, 

DMSO-d6) δ 168.3, 158.7, 155.6, 139.1, 136.9, 136.5, 133.4, 130.5, 129.8, 128.2, 128.1, 

126.0, 122.1, 122.0, 116.5, 116.2, 110.9, 110.8, 109.4, 109.0, 19.4; MS (APCI) m/z [M+H]+ 

254.2. 
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 (E)- 5-Fluoro-3-(3-methyl-benzylidene)-1,3-dihydro-indol-2-one (4-6),   

N
H

O
F

Me

 

Orange solid, yield 38.7%, melting point: 229.0 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.63 

(s, 1H), 7.67 (s, 1H), 7.54-7.39 (m, 3H), 7.32 (d, J = 7.3 Hz, 1H), 7.19 (dd, J = 9.4, 2.3 Hz, 

1H), 7.09 (dt, J = 9.2, 2.4 Hz, 1H), 6.86 (dd, J = 8.5, 4.7 Hz, 1H), 2.37 (s, 3H); 13C NMR (75 

mHz, DMSO-d6)* δ 168.8, 158.9, 155.8, 139.5, 138.4, 137.8, 134.2, 130.9, 129.9, 129.0, 

127.6, 126.4, 122.2, 122.1, 116.7, 116.4, 111.1, 111.0, 109.7, 109.3, 21.1; MS (APCI) m/z 

[M+H]+ 254.1. 

(E)- 5-Fluoro-3-(4-methyl-benzylidene)-1,3-dihydro-indol-2-one (4-7): 

N
H

O
F

Me

 

Orange solid, yield 63.2%, melting point: 232.2 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.62 

(s, 1H), 7.66 (s, 1H), 7.58 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.25 (dd, J = 9.3, 2.0 

Hz, 1H), 7.06 (dt, J = 9.2, 2.3 Hz, 1H), 6.85 (dd, J = 8.5, 4.7 Hz, 1H), 2.37 (s, 3H); 13C NMR 

(75 mHz, DMSO-d6)* δ 168.7, 158.7, 155.6, 140.2, 139.1, 137.7, 131.1, 129.5, 129.4, 126.7, 

122.0, 121.9, 116.4, 116.1, 110.8, 110.7, 109.4, 109.0, 21.1; MS (APCI) m/z [M+H]+ 254.2. 
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 (E)- 5-Fluoro-3-(3-methoxy-benzylidene)-1,3-dihydro-indol-2-one (4-8): 

N
H

O
F

OMe

 

Orange solid, yield 61.7%; melting point: 177.4 oC; 1H NMR  (300 MHz DMSO-d6), δ10.64 

(s, 1H), 7.68 (s, 1H),  7.47 (t, J = 7.85 Hz, 1H), 7.33-7.15 (m, 3H), 7.15-7.00 (m, 2H), 6.87 

(dd, J = 8.4, 4.6 Hz, 1H), 3.80 (s, 3H); 13C NMR (75 mHz, DMSO-d6)* δ168.5, 159.4, 158.6, 

155.5, 139.3, 137.3, 135.3, 130.0, 127.5, 121.3, 116.6, 116.3, 115.8, 114.3, 109.3, 55.2;MS 

(APCI) m/z [M+H]+ 270.1. 

 (E)- 5-Fluoro-3-(2-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (4-9): 

N
H

O
F

CF3

 

Orange solid, yield 42.6%; melting point: 184.1 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.74 

(s, 1H), 7.92 (d, J = 7.3 Hz, 1H), 7.87-7.63 (m, 4H), 7.07 (t, J = 8.1 Hz, 1H), 6.94-6.75 (m, 

1H), 6.43 (d, J = 7.9 Hz, 1H); 13C NMR (75 mHz, DMSO-d6)* δ 167.7, 158.6, 155.5, 139.5, 

133.0, 132.6, 130.1, 130.0, 127.2, 126.5, 126.5, 122.0, 121.4, 121.3, 117.2, 116.8, 111.2, 

111.1, 109.7, 109.3 ; MS (APCI) m/z [M+H]+ 308.2. 
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 (E)- 5-Fluoro-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (4-10): 

N
H

O

CF3

F

 

Orange solid, yield 7.1%, melting point: 234.2 oC; 1HNMR (300 MHZ DMSO-d6) δ 10.7 (s, 

1H), 8.00 (d, J=9.6Hz, 1H), 7.84-7.73 (m, 2H), 7.11-6.99 (m, 2H), 6.87 (q, J=4.5Hz, 1H); 

13CNMR (75 mHz, DMSO-d6)* δ 168.3, 158.7, 155.5, 139.6, 135.4, 135.2, 132.9, 130.0, 

129.8, 129.4, 128.9, 126.2, 125.8, 125.7, 122.1, 121.4, 121.3, 117.1, 116.8, 111.1, 111.0, 

109.4, 109.1;MS (APCI) m/z [m+1]+ 308.1. 

(E)- 5-Fluoro-3-(2-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (4-11): 

N
H

O
F

F3C

 

Orange solid, yield 3.3%, melting point: 203.4 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.70 (s, 

1H), 7.88 (s, 4H), 7.72 (s, 1H), 7.09 (t, J = 9.0 Hz, 2H), 6.87 (dd, J = 8.0, 4.6 Hz, 1H); 13C 

NMR (75 mHz, DMSO-d6)*: δ 168.2, 158.7, 155.6, 139.6, 138.3, 135.3, 129.9, 129.4, 129.0, 

125.7, 125.7, 121.4, 121.2, 117.2, 116.9, 111.1, 111.0, 109.8, 109.5; MS (APCI) m/z [M+H]+ 

308.1.  

 (E)- 3-(3,4-Difluoro-benzylidene)-5-fluoro-1,3-dihydro-indol-2-one (4-12): 

N
H

O
F

F

F

 

Orange solid, yield: 36%; melting point: 190.2 oC; 1H NMR  (300 MHz, in DMSO-d6): δ 
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10.72 (s, 1H), 8.83 (q, J=8.7 Hz, 1H), 8.00 (s, 1H), 7.84 (s, 1H), 7.61-7.49 (m, 2H), 7.05 (td, 

J=9.0 Hz, 1H); 13C NMR (75 MHz, in DMSO-d6)* δ 167.0, 159.4, 156.3, 137.1, 135.9, 131.4, 

131.3, 131.3, 130.4, 127.1, 126.0, 125.9, 120.2, 119.9, 117.4, 117.2, 115.6, 115.3, 110.3, 

110.2, 107.5, 107.2; MS (APCI): m/z 276.2 [M+H]+. 

 (E)-5-Fluoro-3-(3-trifluoromethoxy-benzylidene)-1,3-dihydro-indol-2-one (4-13): 

N
H

O

OCF3

F

 

 Orange solid, yield 68.7%; melting point: 191.0 oC; 1HNMR (300 MHz DMSO-d6) δ 10.7 (s, 

1H), 7.75-7.66 (m, 4H), 7.52 (d, J=7.8 Hz, 1H), 7.15-7.07 (m, 2H), 6.88 (t, J=8.4, 1H); 

13CNMR (75 MHz, DMSO-d6)* δ 168.2, 167.0, 158.6, 155.5, 148.4, 148.1, 139.5, 137.3, 

136.3, 136.3, 135.7, 135.3, 131.2, 131.0, 130.1, 128.7, 128.2, 128.0, 126.0, 125.9, 123.3, 

122.8, 122.3, 121.7, 121.4, 121.3, 117.0, 116.7, 115.8, 115.5, 111.0, 110.9, 110.3, 110.2, 

109.5, 109.2, 107.7; MS (APCI): m/z 324.3 [M+H]+.. 

(E)-5-Fluoro-3-(3-methanesulfonyl-benzylidene)-1,3-dihydro-indol-2-one (4-14): 

N
H

O

SO2Me

F

 

Orange solid, yield 30.0 %, melting point: 247.8 oC; 1H NMR  (300 MHz DMSO-d6) δ 10.71 

(s, 1H), 8.25 (s, 1H), 8.08-8.00 (m, 1H), 7.83 (t, J = 7.8 Hz, 1H), 7.76 (s, 1H), 7.13 (t, J = 8.7 

Hz, 2H), 6.93-6.84 (m, 1H), 3.29 (s, 3H); 13NMR (75 MHz, DMSO-d6)* δ 168.2, 158.7, 155.6, 

141.4, 139.6, 135.2, 134.1, 130.1, 129.0, 127.8, 127.4, 121.3, 121.2, 117.2, 116.9, 111.1, 

111.0, 109.7, 109.3, 43.2; MS (APCI): m/z 318.2 [M+H]+.  
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(E) 3-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-benzonitrile (4-15):  

N
H

O

CN

F

 

Orange solid, yield 56.8%, melting point: 190.5 oC; 1HNMR (300 MHz DMSO-d6) δ 10.7 (s, 

1H), 8.85 (d, 1H), 8.43 (d, J=8.1 Hz, 1H), 7.87 (d, J=7.2 Hz, 2H), 7.69-7.58 (m, 2H), 7.07 (td, 

J=9.3 Hz, 1H), 6.81 (q, J=4.5 Hz,1H);13CNMR (75 MHz, DMSO-d6)# δ 168.2, 166.9, 159.5, 

156.4, 139.5, 137.4, 136.2, 135.5, 135.4, 134.8, 134.7, 134.6, 133.4, 133.2, 132.7, 130.1, 

129.5, 129.1, 129.0, 128.5, 125.8, 125.6, 121.3, 121.2, 118.6, 118.3, 117.2, 116.8, 116.1, 

115.8, 112.1, 111.3, 111.1, 111.0, 110.5, 110.4, 109.7, 109.3, 107.8, 107.5; MS (APCI): m/z 

265.3 [M+1]+. 

 (E)-3-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl-

benzenesulphonamide (4-16): 

N
H

O

SO2NHMe

F

 

Orange solid, yield 15.6%; melting point: 224.7 oC; 1H NMR (400 MHz, DMSO-d6) δ 10.70 

(s, 1H), 8.07 (s, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.88 (dd, J = 6.7 Hz, 1H), 7.79 (d, J = 7.7 Hz, 

1H), 7.76 (d, J = 2.1 Hz, 1H), 7.61 (s, 1H), 7.16-7.03 (m, 2H), 6.88 (dd, J = 8.5 Hz, 1H), 2.48 

(d, J = 9.5 Hz, 3H); 13C NMR (101 MHz, DMSO-d6)# δ 168.2, 166.9, 158.3, 155.9, 139.9, 

139.5, 139.5, 137.3, 136.4, 135.5, 135.0, 134.3, 133.1, 130.0, 129.7, 129.2, 128.8, 128.8, 

128.1, 128.1, 127.9, 127.6, 126.7, 121.3, 121.3, 117.0, 116.8, 115.8, 115.6, 111.0, 111.0, 

110.3, 110.2, 109.6, 109.3, 107.8, 107.6, 30.6, 28.6, 28.5; MS (ACPI): m/z 333.3 [M+H]+; 
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(E)-3-Benzylidene-6-methoxy-1,3-dihydro-indol-2-one (5-1): 

N
H

O
MeO  

Bright yellow solid, yield 9.1%, melting point: 174.3 oC; 1HNMR (300 MHZ DMSO-d6) 

δ10.6 (br s, 1H), 7.67 (d, J=7.2 Hz, 2H), 7.52 (d, J= 6.9 Hz, 2H), 7.46-7.48 (m, 2H), 7.45 (s, 

1H), 6.42 (d, J =6 Hz, 2H), 3.75 (s, 3H); 13CNMR (75 MHz, DMSO-d6) δ 169.2, 161.1, 144.6, 

134.7, 132.4, 129.2, 129.1, 128.6, 127.2, 123.5, 113.6, 106.5, 96.4, 55.2; MS (APCI): m/z, 

270.0 [M+1]+. HRMS (APCI+) calcd C16 H 14 NO 2,  (M+) 252.1029, found 252.1019. 

(E)- 3-(2-Fluoro-benzylidene)-6-methoxy-1,3-dihydro-indol-2-one (5-2): 

N
H

O
MeO

F

 

 Bright yellow solid, yield 27.8%, melting point: 192.5 oC; 1HNMR (300 MHZ DMSO-d6) δ 

10.6 (s, 1H), 7.74 (t, J=7.5 Hz, 1H), 7.47-7.54 (m, 1H), 7.32-7.36 (m, 2H), 7.34 (s, 1H), 7.19 

(d, J = 9 Hz, 1H), 6.42 (m, 2H,), 3.76 (s, 3H); 13CNMR (75 MHz, DMSO-d6) δ 168.7, 161.4, 

161.2, 144.8, 131.5, 130.3, 129.3, 124.6, 123.9, 122.5, 115.9, 113.4, 106.7, 96.4, 55.3; MS 

(APCI): m/z, 270.0 [M+1]+. 

(E)- 3-(3-Fluoro-benzylidene)-6-methoxy-1,3-dihydro-indol-2-one (5-3): 

N
H

O

F

MeO  

 Bright yellow solid, yield 25.2%, melting point: 181.6 oC;  1HNMR (300 MHZ DMSO-d6) 

δ10.6 (s, 1H, NH), 7.46-7.56 (m, 3H), 7.41 (s, 1H), 7.40 (d, J = 6Hz, 1H), 7.26-7.28 (m, 1H), 

6.44(m, 2H), 3.76 (s, 3H); 13CNMR (75 MHz, DMSO-d6) δ 137.2, 137.1, 130.7, 130.7, 128.1, 
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125.1, 123.7, 116.1, 115.8, 115.5, 113.3, 106.6, 96.5, 55.3; MS (APCI): m/z, 270.0 [M+1]+. 

(E)- 3-(4-Fluorobenzylidene)-6-methoxy-1,3-dihydro-indol-2-one (5-4): 

N
H

O
MeO

F

 

Bright yellow solid, yield: 19.26%, melting point: 204.1 oC; 1H NMR    (300  MHz, in 

DMSO-d6) δ 10.6 (br s, 1H), 7.73 (dd, J=14 Hz, J= 5.7 Hz, 2H), 7.43 (d, J=8.7 Hz, 1H), 7.42 

(s, 1H), 7.33 (t, J = 8.7 Hz, 2H),  6.41-6.44 (m, 2H), 3.75 (s, 3H); 13NMR (75 MHz, DMSO-

d6) δ 169.2, 161.1, 144.7, 131.5, 131.4, 131.3, 131.1, 127.1, 123.5, 115.7, 113.5, 106.5, 96.4, 

55.2; MS (APCI): m/z 270.0 [M+H]+. 

 (E) 6-Methoxy-3-(2-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (5-5): 

N
H

O
MeO

CF3

 

Bright yellow solid, yield 20.6%, melting point: 191.2 oC; 1HNMR  (300 MHZ DMSO-d6), δ 

10.6 (br s, 1H), 7.85 (d, J =7.8 Hz, 1H), 7.70-7.75 (m, 2H), 7.64 (t, J = 7.2 Hz, 1H), 7.48 (s, 

1H), 6.73 (d, J = 8.7, 1H), 6.45 (s, 1H), 6.30 (dd, J = 8.4 Hz, J = 1.5 Hz, 1H), 3.69 (s, 3H); 

13NMR (75 MHz, DMSO-d6), δ 169.2, 161.9, 145.1, 133.7, 133.2, 130.6, 130.2, 129.9, 128.1, 

127.6, 127.2, 126.7, 124.2, 122.5, 113.5, 107.2, 97.2, 55.7; MS (APCI): m/z 320.0 [M+H]+ . 

  



 

207 
 

(E)-6-Methoxy-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (5-6): 

N
H

O

CF3

MeO  

Bright yellow solid, yield 20.3%, melting point: 156.8 oC; 1H NMR (300 MHZ DMSO-d6) δ 

10.6 (br s, 1H), 7.97 (d, J = 7.2 Hz, 2H), 7.71-7.81 (m, 2H), 7.49 (s, 1H,), 7.29 (d, J = 8.1 Hz), 

6.39- 6.43 (m, 2H), 3.75 (s, 3H); 13C NMR (75 MHz, DMSO-d6), δ 168.9, 161.4, 145, 135.9, 

132.8, 130.3, 129.8, 129.6, 129.2, 128.6, 125.7, 125.6, 123.4, 113.2, 106.5, 96.6, 55.3; MS 

(APCI): m/z, 320.0 [M+H]+. 

 (E)-6-Methoxy-3-(4-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (5-7): 

N
H

O
MeO

F3C

 

Bright yellow solid, yield 18.1%, melting point: 206.7 oC; 1H NMR  (300 MHZ DMSO-d6) δ 

10.6 (br s, 1H), 7.86 (t, J = 9 Hz, 4H), 7.46 (s, 1H), 7.37 (d, J = 9 Hz, 1H), 6.41-6.44 (m, 2H), 

3.75 (s, 3H); 13NMR (75 MHz, DMSO-d6) δ168.5, 165.0, 161.7, 145.2, 145.1, 138.5, 133.2, 

129.8, 128.2, 125.6, 125.6, 124.3, 124.2, 116.8, 107.8, 107.5, 98.4, 98.1, 55.5; MS (APCI): 

m/z 320.0 [M+H]+. 
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(E)-3-(6-Methoxy-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl-

benzenesulphonamide (5-8): 

N
H

O
MeO

SO2NHMe

 

Bright yellow solid, yield 55.2%; melting point: 181.5 oC; 1H NMR (400 MHz, DMSO-d6) δ 

10.62 (s, J = 9.8 Hz, 1H), 8.05 (s, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.83 (dd, J = 6.7 Hz, 1H), 

7.73 (m, J = 9.8 Hz, 1H), 7.56 (d, J = 4.7 Hz, 1H), 7.48 (s, J = 11.6 Hz, 1H), 7.34 (t, J = 6.6 

Hz, 1H), 6.46-6.38 (m, 2H), 3.78 (s, 3H), 2.46 (d, J = 4.4 Hz, 1H); 13C NMR (101 MHz, 

DMSO-d6) , δ 168.9, 161.5, 145.0, 139.8, 135.8, 132.9, 130.3, 129.8, 128.6, 127.0, 126.6, 

123.6, 113.2, 106.5, 96.7, 55.3, 28.6; MS (ACPI): m/z 343.3 [M-H]- 

 (Z)- 3-Benzylidene-4,5-difluoro-1,3-dihydro-indol-2-one (6-1): 

N
H

O

F
F

 

Bright yellow solid, yield 74.6%; melting point: 194.6 oC; 1H NMR  (300 MHZ DMSO-d6) δ 

10.84 (s, 1H), 8.41-8.10 (m, 2H), 7.80 (s, 1H), 7.46 (d, J = 4.2 Hz, 3H), 7.25 (dd, J = 19.4, 

8.5 Hz, 1H), 6.62 (dd, J = 8.1, 2.5 Hz, 1H); 13NMR (75 MHz, DMSO-d6)* δ 168.4, 166.2, 

147.4, 147.2, 147.0, 146.8, 144.1, 143.8, 143.7, 142.4, 142.2, 140.2, 140.1, 138.9, 137.9, 

137.9, 134.9, 133.5, 132.1, 131.1, 130.1, 130.0, 129.8, 128.2, 127.9, 125.0, 124.3, 118.2, 

117.9, 117.2, 117.0, 113.0, 112.8, 110.1, 109.9, 105.6, 105.2. MS (APCI): m/z 258.2 [M+H]+. 
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(Z)- 4,5-Difluoro-3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one (6-2): 

N
H

O

F
F

F

 

Yellow crystalline solid, yield 36.3%; melting point: 194.4 oC; 1H NMR  (300 MHZ DMSO-

d6) δ 10.85 (s, 1H), 8.46 (t, J = 7.8 Hz, 1H), 7.91-7.74 (m, 1H), 7.51 (dd, J = 13.4, 6.3 Hz, 1H), 

7.40-7.12 (m, 3H), 6.61 (dd, J = 8.4, 3.2 Hz, 1H); 13NMR (75 MHz, DMSO-d6)* δ165.7, 

162.0, 158.7, 147.2, 146.8, 144.1, 143.9, 143.6, 143.5, 138.2, 132.9, 132.7, 132.0, 126.7, 

123.8, 123.8, 121.3, 121.1, 117.8, 117.5, 115.3, 115.0, 112.1, 105.3. MS (APCI): m/z 276.0 

[M+H]+. 

 (Z)-4,5-Difluoro-3-(3-fluoro-benzylidene)-1,3-dihydro-indol-2-one (6-3): 

N
H

O

F
F

F

 

Yellow crystalline solid, yield 52.3%; melting point: 214.2 oC; 1H NMR  (300 MHZ DMSO-

d6) δ 10.90 (s, 1H), 8.38 (d, J = 11.13 Hz, 1H), 7.99-7.68 (m, 2H), 7.49 (dd, J = 14.60, 8.07 

Hz, 1H), 7.39-7.19 (m, 2H), 6.79-6.48 (m, 1H); 13NMR (75 MHz, DMSO-d6)* δ 168.0, 166.0, 

163.1, 159.9, 147.2, 143.8, 140.4, 138.1, 137.2, 135.5, 129.9, 129.7, 128.7, 126.1, 125.4, 

118.5, 118.2, 117.9, 117.5, 117.3, 116.5, 116.1, 112.6, 109.7, 109.5, 105.6, 105.2; MS (APCI): 

m/z 276.0 [M+H]+. 

(Z)-4,5-Difluoro-3-(4-fluoro-benzylidene) -1,3-dihydro-indol-2-one (6-4): 

N
H

O

F
F

F

 

Yellow crystalline solid, yield 88.6%; melting point: 235.6 oC; 1H NMR  (300 MHZ DMSO-
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d6) δ 10.84 (s, 1H), 8.44-8.26 (m, 2H), 7.75 (s, 1H), 7.33-7.13 (m, 3H), 6.59 (d, J = 6.08 Hz, 

1H); 13NMR (75 MHz, DMSO-d6)* δ 168.231, 166.211, 165.036, 161.710, 146.905, 143.762, 

140.955, 140.806, 137.816, 137.732, 134.922, 134.806, 132.577, 132.510, 132.466, 132.400, 

131.351, 130.129, 130.092, 124.583, 117.077, 116.821, 115.322, 115.035, 114.746, 112.902, 

112.748, 105.144;  MS (APCI): m/z 276.0 [M+H]+. 

(E/Z)-4,5-Difluoro-3-(2-trifluoromethyl-benzylidene) -1,3-dihydro-indol-2-one (6-5): 

N
H

O

F
F

CF3

 

Yellow crystalline solid, yield 54.1%; melting point: 235.8 oC; 1H NMR  (300 MHZ DMSO-

d6) δ 10.90 (d, J = 53.9 Hz, 1H), 8.00-7.46 (m, 5H), 7.40-7.22 (m, 1H), 6.76-6.58 (m, 1H); 

13NMR (75 MHz, DMSO-d6)* δ167.4, 165.5, 147.1, 144.1, 140.3, 140.2, 138.7, 138.6, 136.0, 

135.9, 134.0, 133.9, 132.0, 131.9, 131.8, 130.9, 130.8, 129.6, 129.4, 127.9, 127.3, 127.1, 

126.8, 126.7, 126.4, 126.0, 125.9, 125.6, 125.5, 125.4, 125.4, 122.3, 119.1, 118.8, 118.4, 

118.2, 111.6, 111.4, 109.2, 109.0, 106.0, 105.9, 105.7. MS (APCI): m/z 326.1 [M+H]+. 

 (Z)-4,5-Difluoro-3-(3-trifluoromethyl-benzylidene) -1,3-dihydro-indol-2-one (6-6): 

N
H

O
F

CF3

F

 

Yellow crystalline solid, yield 51.7%; melting point: 215.5 oC; 1HNMR (300 MHZ DMSO-

d6), δ 10.9 (s,1H), 8.75 (s, 1H), 8.32 (d, J=7.2Hz, 1H), 7.83 (s, 1H), 7.76 (d, J=7.2 Hz, 1H), 

7.65 (s, J=7.2 Hz, 1H), 7.28 (q, J=8.4 Hz, 1H), 6.63 (d, J= 6.3 Hz, 1H); 13CNMR (75 MHz, 

DMSO-d6)* δ 168.0, 166.1, 147.6, 147.4, 147.3, 147.0, 146.9, 144.2, 144.0, 143.9, 143.7, 

140.5, 140.4, 140.1, 139.9, 138.3, 138.2, 136.7, 136.1, 135.8, 134.2, 133.8, 129.6, 129.2, 
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129.0, 128.9, 128.8, 128.5, 128.3, 128.0, 128.0, 127.0, 126.9, 126.6, 126.3, 126.1, 126.0, 

122.4, 118.8, 118.5, 117.8, 117.6, 112.6, 112.4, 109.7, 109.5, 105.9, 105.9, 105.8, 105.4; MS 

(APCI): m/z 326.0 [M+1]+ 

 (Z)-4,5-Difluoro-3-(4-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (6-7): 

N
H

O

F
F

CF3

 

Yellow crystalline solid, yield 49.2%; melting point: 204.0 oC; 1H NMR  (300 MHZ DMSO-

d6) δ 10.90 (s, 1H), 8.32 (d, J = 7.93 Hz, 2H), 7.92-7.73 (m, 3H), 6.78-6.52 (m, 1H), 7.38-

7.23 (m, 1H); 13NMR (75 MHz, DMSO-d6)* δ 168.0, 166.0, 147.4, 147.0, 146.8, 144.3, 143.8, 

143.7, 140.4, 140.4, 139.9, 139.7, 139.3, 138.4, 138.3, 137.2, 136.7, 132.1, 130.5, 130.4, 

130.1, 129.7, 129.5, 129.1, 127.1, 126.4, 126.0, 125.9, 124.8, 124.8, 124.6, 124.6, 122.3, 

118.8, 118.6, 118.0, 117.8, 112.5, 112.3, 109.7, 109.5, 105.8, 105.5, 105.5; MS (APCI): m/z 

326.1 [M+H]+. 

 (Z)-4,5-Difluoro-3-(3-trifluoromethoxyl-benzylidene)-1,3-dihydro-indol-2-one (6-8): 

N
H

O
F

F

OCF3

 

Yellow crystalline solid, yield 46.9%; melting point: 208.7 oC;  1HNMR (300 MHz DMSO-d6) 

δ 10.9 (s, 1H), 8.57 (s, 1H), 8.55 (d, J=7.5 Hz, 1H), 8.06 (d, J=7.5 Hz, 1H), 7.57 (t, J=7.8 Hz, 

J=8.1 Hz, 1H), 7.46 (d, J=7.8 Hz, 1H), 7.29-7.22 (m, 1H), 6.63-6.60 (m, 1H); 13CNMR (75 

MHz, DMSO-d6)* δ 167.8, 166.0, 147.9, 147.7, 147.4, 146.8, 144.1, 143.8, 143.7, 143.5, 

140.3, 140.2, 139.9, 139.7, 138.1, 138.0, 137.2, 136.4, 135.3, 131.2, 129.9, 129.7, 128.8, 

128.8, 126.4, 125.8, 123.4, 122.9, 122.0, 122.0, 121.8, 118.5, 118.3, 118.3, 117.6, 117.4, 

112.5, 112.3, 109.4, 105.6, 105.2; MS (APCI): m/z 342.5 [M+1]+.  
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 (E/Z)-4,5-Difluoro-3-(3-methanesulfonylbenzylidene)-1,3-dihydro-indol-2-one (6-9): 

N
H

O

F
F SO2Me

 

Yellow crystalline solid, yield 63.2%; melting point: 224.1 oC;  1H NMR  (300 MHz DMSO-

d6) δ 10.92 (d, J = 14.6 Hz, 1H), 8.78 (s, 1H), 8.47 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 

1H), 7.93-7.80 (m, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.42-7.22 (m, 1H), 6.76-6.56 (m, 1H), 3.25 

(d, J = 3.7 Hz, 3H); 13NMR (75 MHz, DMSO-d6)* δ 167.8, 165.9, 147.2, 146.8, 146.7, 144.1, 

143.7, 143.5, 140.6, 140.3, 139.6, 139.5, 138.2, 138.2, 136.3, 136.2, 134.6, 134.6, 134.2, 

129.8, 129.1, 128.9, 128.3, 127.5, 126.6, 117.8, 117.6, 112.4, 112.2, 109.6, 109.4, 105.3, 43.4, 

43.3; MS (APCI): m/z  336.4 [M+H]+; Anal. Cal.cd for C16H11F2NO3S: C, 57.31; H 3.31; 

Found C, 57.32; H, 3.37.  

 (Z)-3-(4,5-Difluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-methyl-

benzenesulphonamide (6-10): 

N
H

O

F
F

SO2NHMe

 

 Yellow crystalline solid, yield 44.7%; melting point: 244.5 oC; 1H NMR (400 MHz, DMSO-

d6) δ 10.89 (s, 1H), 8.62 (s, 1H), 8.35 (d, J = 7.7 Hz, 1H), 7.86 (dd, J = 22.8 Hz, 2H), 7.68 (t, 

J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.38-7.18 (m, 1H), 6.64 (dd, J = 8.5 Hz, 1H), 2.45 (d, J = 20.7 

Hz, 3H); 13C NMR (101 MHz, DMSO-d6)* δ 168.0, 166.0, 147.1, 146.9, 146.5, 146.4, 144.6, 

144.4, 144.2, 144.1, 140.4, 140.3, 140.1, 140.0, 139.3, 139.0, 138.3, 138.2, 136.8, 136.1, 

135.3, 134.1, 133.5, 133.5, 129.5, 129.1, 128.9, 128.2, 127.5, 127.5, 127.4, 126.5, 126.1, 

118.7, 118.5, 117.8, 117.6, 112.5, 112.4, 109.6, 109.5, 105.8, 105.7, 105.5, 105.4, 28.7, 28.5; 

MS (ACPI): m/z 351.2 [M+H]+; 
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(E)- 3-Benzylidene-5,6-difluoro-1,3-dihydro-indol-2-one (7-1); 

N
H

O
F

F  

Chartreuse solid, yield 52.9%; melting point: 198.4 oC;1H NMR  (300 MHZ DMSO-d6) δ 

10.75 (s, 1H), 7.66 (d, J = 4.42 Hz, 3H), 7.60-7.41 (m, 3H), 7.37-7.28 (m, 1H), 6.94-6.83 (m, 

1H); 13NMR (75 MHz, DMSO-d6)* δ 168.6 , 167.0, 152.1, 151.9, 148.8, 148.6, 146.1, 145.9, 

142.9, 142.7, 140.0, 139.9, 138.4, 137.3, 137.0, 133.8, 133.6, 132.0, 130.7, 130.1, 129.2, 

128.9, 128.2, 126.4, 125.4, 121.2, 121.1, 121.1, 116.8, 116.7, 116.7, 111.4, 111.1, 109.5, 

109.2, 99.9, 99.6, 99.2, 98.9; MS (APCI): m/z 258.2 [M+H]+. 

 (E)- 5,6-Difluoro-3-(2-fluoro-benzylidene)-1,3-dihydro-indol-2-one (7-2): 

N
H

O
F

F

F

 

Chartreuse solid, Yield 50.2%, melting point: 230.2 oC; 1H NMR  (300 MHZ DMSO-d6) 

10.90 (br, 1H), 7.75 (t, J=6.9 Hz, 1H), 7.59 (s, 2H), 7.43-7.38 (m, 2H), 7.10 (t, J=8.7 Hz, 1H), 

6.92 (t, J=6.9 Hz, 1H); 13NMR (75 MHz, DMSO-d6)* δ 168.1, 166.5, 161.2, 157.9, 152.4, 

152.2, 149.1, 148.9, 146.3, 146.1, 143.1, 142.9, 140.2, 140.1, 137.9, 137.8, 132.4, 132.3, 

132.0, 130.4, 128.6, 128.4, 127.6, 124.9, 124.9, 123.7, 123.7, 121.7, 121.5, 121.4, 121.2, 

116.5, 116.5, 116.4, 116.4, 116.3, 116.0, 115.3, 115.0, 111.7, 111.5, 110.2, 109.9, 100.0, 99.7, 

99.3, 99.0; MS (APCI): m/z 276.0 [M+H]+. 
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(E)-5,6-Difluoro-3-(3-fluorobenzylidene)-1,3-dihydro-indol-2-one (7-3): 

N
H

O
F

F

F

 

Chartreuse solid, Yield 21.8%; melting point: 189.4 oC; 1H NMR  (300 MHZ DMSO-d6) δ 

10.78 (s, 1H), 7.77-7.41 (m, 4H), 7.42-7.16 (m, 1H), 7.07-6.72 (m, 1H); 13NMR (75 MHz, 

DMSO-d6)* δ 168.4, 166.9, 163.8, 163.3, 160.6, 160.1, 152.3, 152.1, 149.0, 145.9, 143.0, 

142.8, 140.3, 140.1, 137.5, 137.4, 136.6, 136.3, 136.2, 135.8, 135.7, 135.3, 131.1, 131.0, 

130.2, 130.1, 128.7, 127.3, 126.6, 125.1, 120.8, 120.8, 120.7, 117.7, 117.6, 117.4, 116.9, 

116.6, 116.5, 116.4, 116.4, 116.3, 116.1, 115.8, 111.6, 111.3, 109.7, 109.4, 100.0, 99.7, 99.3, 

99.0; MS (APCI): m/z 276.0 [M+H]+. 

 

 (E)-5,6-Difluoro-3-(4-fluoro-benzylidene)-1,3-dihydro-indol-2-one (7-4): 

N
H

O
F

F

F

 

Chartreuse solid, yield 23.3%; melting point: 251.8 oC; 1H NMR  (300 MHZ DMSO-d6) δ 

10.76 (s, 1H), 7.80-7.69 (m, 2H), 7.64 (s, 1H), 7.38 (d, J = 6.8 Hz, 3H), 6.99-6.78 (m, 1H); 

13NMR (75 MHz, DMSO-d6)* δ 144.0, 142.7, 140.6, 137.9, 130.6, 130.5, 128.0, 127.8, 125.8, 

125.6, 123.2, 123.1, 120.9, 120.7, 118.4, 117.6, 116.6, 116.5, 114.2, 114.1, 113.0, 113.0, 

112.9, 109.7, 102.0, 101.9, 101.9, 101.8, 101.6, 101.3, 101.0, 100.7, 97.7, 97.5, 88.4, 88.2 ; 

MS (APCI): m/z 276.0 [M+H]+. 
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(E)-5,6-Difluoro-3-(2-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (7-5) 

N
H

O
F

F

CF3

 

Yellow solid, Yield 55.4%; melting point: 176.5 oC; 1H NMR  (300 MHZ DMSO-d6) δ 10.87 

(d, J = 1.0 Hz, 1H), 7.92 (d, J = 7.1 Hz, 1H), 7.86-7.59 (m, 4H), 7.07-6.76 (m, 1H), 6.62 (t, J 

= 8.9 Hz, 1H); 13NMR (75 MHz, DMSO-d6)* 167.8, 152.5, 152.3, 149.2, 149.0, 146.2, 143.0, 

142.9, 140.4, 140.2, 133.1, 132.4, 132.1, 130.1, 130.0, 129.1, 127.2, 126.8, 126.6, 126.6, 

126.5, 125.7, 122.0, 116.3, 116.2, 116.2, 116.1, 111.6, 111.3, 100.3, 100.0 ; MS (APCI): m/z 

326.0 [M+H]+. 

 

 (E)- 5,6-Difluoro-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (7-6): 

N
H

O
F

CF3

F  

Chartreuse solid, yield 54.1%, melting point: 164.7 oC; 1HNMR (300 MHZ DMSO-d6) δ 

10.8(s, 1H); 8.02 (d, J=9.3 Hz, 2H), 7.80(d, J=7.2 Hz), 7.78 (d, J=7.2 Hz, 1H), 7.73 (s, 1H), 

7.22 (t, J=9.0 Hz, 1H), 6.93 (q, J=7.2 Hz,1H); 13CNMR (75 MHz, DMSO-d6)* δ168.2, 140.4, 

140.2, 134.9, 132.8, 130.1, 129.8, 129.4, 127.7, 126.3, 126.2, 125.9, 125.7, 116.4, 116.3, 

116.3, 111.4, 111.1, 100.1, 99.8; MS (APCI): m/z, 326.1 [M+1]+. 
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 (E)-5,6-Difluoro-3-(4-(trifluoromethyl)benzylidene)-1,3-dihydro-indol-2-one (7-7): 

N
H

O
F

F

F3C

 

Chartreuse solid, yield 66.4%, melting point: 190.1 oC; 1H NMR  (300 MHZ DMSO-d6), δ 

10.81 (s, 1H), 7.85 (s, 4H), 7.66 (s, 1H), 7.39-7.14 (m, 1H), 7.02-6.73 (m, 1H); 13NMR (75 

MHz, DMSO-d6)* δ ,  168.3, 166.7, 152.5, 152.3, 149.2, 149.0, 146.2, 146.0, 143.0, 142.8, 

140.4, 140.3, 138.0, 137.9, 137.7, 137.3, 135.9, 134.8, 132.1, 129.9, 129.5, 129.5, 128.0, 

127.7, 125.8, 125.8, 124.9, 124.9, 122.2, 122.2, 120.6, 120.5, 120.5, 116.3, 116.2, 116.2, 

111.8, 111.5, 110.0, 109.7, 100.1, 99.8, 99.4, 99.105; MS (APCI): m/z 326.0 [M+H]+. 

 (E)-5,6-Difluoro-3-(3-trifluoromethoxyl-benzylidene)-1,3-dihydro-indol-2-one (7-8)  

N
H

O

OCF3

F

F

 

Chartreuse solid, yield 11.7%; melting point: 157.4 oC;  1HNMR (300 MHz DMSO-d6) δ 

10.8 (s, 1H), 7.71-7.66 (m, 4H), 7.50 (d, J=7.5 Hz, 1H), 7.22 (q, J=11.4 Hz, J=10.5 Hz, 1H), 

6.90 (q, J=10.5 Hz, 1H); 13CNMR (75 MHz, DMSO-d6)* δ 168.2, 152.3, 152.1, 149.0, 148.8, 

148.5, 146.0, 145.9, 142.9, 142.7, 140.3, 140.2, 136.1, 134.8, 131.1, 128.2, 127.7, 122.3, 

121.7, 121.4, 118.3, 116.4, 116.3, 116.3, 116.2, 111.5, 111.2, 100.0, 99.7; MS (APCI): m/z 

342.2 [M+1]+. 
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 (E)-5,6-Difluoro-3-(3-methanesulfonylbenzylidene)-1,3-dihydro-indol-2-one (7-9):  

N
H

O

SO2Me

F

F

 

Chartreuse solid, yield 21.5%; melting point: 197.2 oC; 1H NMR  (300 MHz DMSO-d6) δ 

ppm, δ 10.83 (s, 1H), 8.24 (s, 1H), 7.90-7.77 (m, 1H), 7.73 (s, 1H), 7.34-7.25 (m, 1H), 6.93(q, 

J=7.5 Hz, 1H), 3.29 (s, 3H) 13NMR (75 MHz, DMSO-d6)* δ 168.2, 166.8, 152.4, 152.2, 149.1, 

148.9, 146.1, 145.9, 143.9, 142.9, 142.8, 141.4, 140.8, 140.4, 140.3, 137.8, 137.6, 136.0, 

135.8, 135.1, 135.0, 134.7, 134.5, 134.0, 130.1, 129.8, 129.3, 128.3, 127.9, 127.8, 127.3, 

120.5, 120.5, 116.3, 116.2, 116.2, 116.1, 111.7, 111.4, 109.9, 109.6, 100.1, 99.8, 99.4, 99.1, 

43.5, 43.2; MS (APCI): m/z 336.5 [M+H]+.  

 (E)-3-(5,6-DiFluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-ethyl-

benzenesulfonamide (7-10): 

 

Chartreuse solid; yield 18.2%; melting point: 238.2oC; 1H NMR (400 MHz, DMSO-d6), δ 

8.06 (s, 1H), 10.84 (s, 1H), 7.98-7.86 (m, 3H), 7.85-7.67 (m, 2H), 7.26 (dd, J = 10.82, 8.03 

Hz, 1H), 6.93 (dd, J = 10.47, 6.93 Hz, 1H), 2.47 (d, J = 5.56 Hz, 2H); 13C NMR (100 MHz, 

DMSO-d6)*, δ 168.2, 166.8, 139.9, 139.5, 136.2, 135.0, 135.0, 135.0, 134.8, 134.3, 133.1, 

130.1, 129.7, 129.2, 128.0, 127.7, 127.7, 127.1, 126.7, 109.9, 100.1, 99.8, 99.3, 99.1, 28.5. 

MS (ESI): m/z 349.3 [M-H]-. 
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 (E) 3-(3-Trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (8-1): 

N
H

O

CF3

 

Yellow solid, yield 45.5%; melting point: 238.2oC; 169.21HNMR (300 MHz DMSO-d6) δ 

10.67 (s,1H), 8.02 (d, J=8.4 Hz, 2H), 7.83 (d, J=7.8 Hz, 1H), 7.76 (t, J=7.5 Hz, 1H), 7.68 (s, 

1H), 7.33 (d, J=7.5 Hz, 1H), 7.25 (t, J=7.2 Hz, J=7.8Hz, 1H), 6.90-6.81 (m, 1H);  13CNMR 

(75 MHz, DMSO-d6) δ 168.2, 143.2, 135.6, 133.7, 132.9, 130.6, 129.9, 129.7, 129.3, 129.1, 

125.8, 125.7, 122.1, 121.1, 120.4, 110.3;  MS (APCI): m/z 290.4 [M+1]+. 

 (E/Z) 3-(3-Trifluoromethyl-phenylimino)-1,3-dihydro-indol-2-one (8-2): 

N
H

O

N

CF3

 

Orange solid, yield 82.3%; melting point: 144.4oC; 1H NMR  (300 MHz DMSO-d6) δ 11.02 

(d, J=39.0Hz, 2H), 7.34-7.70 (m, 10H), 6.90 (t, J=8.4, 2H), 6.74 (t, J=7.8, 2H), 6.26 (d, J=7.8, 

2H); 13NMR (75 MHz, DMSO-d6)* δ 163.2, 158.5, 155.9, 154.1, 151.1, 149.9, 147.2, 146.1, 

134.8, 134.6, 130.9, 130.6, 130.1, 129.4, 129.4, 125.7, 125.1, 123.1, 122.9, 122.3, 122.1, 

121.8, 121.6, 121.3, 121.3, 121.0, 115.5, 115.5, 114.2, 114.2, 111.7, 110.9; MS (APCI): m/z 

291.3 [M+H]+. 
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(E)- 1-Methyl-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (8-3): 

N
Me

O

CF3

 

Yellow solid, yield 25.1%; melting point: 230.1oC; 1HNMR (300 MHz DMSO-d6) δ 8.01 (d, 

J=8.1 Hz, 2H), 7.85-7.76 (m, 3H), 7.34 (t, J=7.5 Hz, J=8.1 Hz, 2H), 7.07 (d, J=7.8 Hz, 1H), 

6.90 (t, J=7.8 Hz, 1H), 3.21 (s, 3H); 13CNMR (75 MHz, DMSO-d6)* δ 166.9, 144.3, 135.5, 

134.3, 133.0, 130.6, 129.9, 129.7, 129.3, 128.1, 126.0, 126.0, 125.8, 125.8, 121.8, 121.7, 

119.8, 109.1, 26.0; MS (APCI): m/z 304.2 [M+1]+.  

(E/Z) 5-Chloro-3-(3-trifluoromethyl-phenylimino)-1,3-dihydro-indol-2-one (8-4): 

N
H

O

N

CF3

Cl

 

Orange solid, yield 84.8%; melting point: 181.5oC; 1H NMR  (300 MHz DMSO-d6) δ11.09 (d, 

J= 43.1Hz, 2H), 7.81-7.19 (m, 9H), 7.10-6.78 (m, 2H), 6.13 (d, J=2.0 Hz, 1H); 13NMR (75 

MHz, DMSO-d6)* δ 162.9, 158.3, 155.1, 153.4, 150.6, 149.4, 146.0, 144.7, 134.0, 133.9, 

131.0, 130.6, 130.2, 129.5, 129.3, 128.9, 126.4, 125.6, 125.3, 124.5, 123.0, 122.6, 122.6, 

122.0, 121.7, 120.9, 120.9, 116.7, 115.6, 115.5, 114.3, 114.2, 113.3, 112.5; MS (APCI): m/z 

325.3,327.3 [M+H]+. 
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(E/Z)- 5-Fluoro-3-(3-trifluoromethyl-phenylimino)-1,3-dihydro-indol-2-one (8-5): 

N
H

O

N

CF3

F

 

Orange solid , yield 52.5%; melting point: 157.3oC; 1H NMR  (300 MHz DMSO-d6) δ10.98 

(d, J = 38.2 Hz, 2H), 7.73 (t, J=7.8 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 

7.47-7.24 (m, 8H), 6.95-6.90 (m, 2H), 5.89 (dd, J = 8.3, 2.2 Hz, 1H); 13NMR (75 MHz, 

DMSO-d6)* δ 163.2, 159.7, 159.4, 158.6, 158.3, 156.5, 155.5, 155.1, 153.9, 150.5, 149.4, 

146.9, 143.6, 142.3, 131.1, 131.0, 130.6, 130.2, 129.8, 129.5, 129.4, 129.0, 125.9, 125.6, 

124.6, 124.3, 122.9, 122.3, 122.2, 122.1, 121.6, 121.4, 121.1, 121.0, 120.9, 120.8, 120.7, 

118.5, 118.4, 118.4, 115.9, 115.8, 115.5, 115.5, 114.3, 114.2, 113.5, 113.4, 112.9, 112.8, 

112.1, 112.0, 111.8, 111.5, 111.1, 110.1, 109.8; MS (ESI): m/z 308.9 [M+H]+. 

 

(E/Z) 6-Chloro-3-(3-trifluoromethyl-phenylimino)-1,3-dihydro-indol-2-one (8-6): 

N
H

O

N

Cl

CF3

 

Orange solid, yield 34.2%; melting point: 192.4oC; 1H NMR  (300 MHz DMSO-d6) δ 11.16 

(br, 2H), 7.78-7.24 (m, 9H), 7.17-7.04 (m, 1H), 6.92 (dd, J = 6.9, 1.4 Hz, 2H), 6.83 (dd, J = 

8.2, 1.6 Hz, 1H), 6.25 (d, J = 8.3 Hz, 1H) ; 13NMR (75 MHz, DMSO-d6)* δ 182.9, 163.2, 

159.3, 158.4, 154.8, 153.1, 151.7, 150.7, 149.6, 148.6, 147.2, 142.2, 138.8, 138.7, 131.0, 

130.9, 130.6, 130.2, 129.8, 129.4, 129.4, 128.9, 126.4, 126.1, 125.7, 124.5, 123.0, 122.6, 

122.3, 122.2, 122.1, 121.7, 121.6, 120.8, 120.7, 119.9, 118.4, 116.7, 115.6, 115.5, 114.4, 

114.3, 114.2, 112.1, 111.6, 110.9; MS (APCI): m/z 325.2, 327.2 [M+H]+.  
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 (E)-6-Chloro-1-methyl-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (8-7): 

N
Me

O

CF3

Cl  

Orange solid, yield 16.6%; melting point: 120.8oC; 1HNMR (300 MHz DMSO-d6), δ7.97 (d, 

J = 7.6 Hz, 2H), 7.88-7.68 (m, 3H), 7.30 (d, J = 8.2 Hz, 1H), 7.17 (s, 1H), 6.93 (d, J = 8.1 Hz, 

1H), 3.19 (s, 3H); 13CNMR (75 MHz, DMSO-d6)*, δ 167.0, 145.7, 143.4, 135.2, 135.1, 134.9, 

134.4, 133.9, 132.9, 130.0, 129.3, 127.1, 126.3, 125.9, 125.9, 123.0, 122.3, 121.5, 121.4, 

121.2, 118.6, 109.5, 26.2, 26.0. MS (APCI): m/z 338.4, 340.4 [M+1]+. 

* More C atoms were detected in the 13C NMR data than the expected number. It is proposed 

that this may be due to isomerization during the scanning process which took place overnight, 

resulting in a mixture of isomers. The isomerization could be identified by comparing the 

proton spectrum which is done before carbon spectrum and the one which is done after the 

carbon spectrum. The presence of F atoms in the compound may have caused splitting of the 

peaks and contributed to the additional number of peaks in the spectrum.   

# More C atoms were detected in the 13C NMR data than the expected number. It is proposed 

that this may be due to isomerization during the scanning process which took place overnight, 

resulting in a mixture of isomers. The isomerization could be identified by comparing the 

proton spectrum which is done before carbon spectrum and the one which is done after the 

carbon spectrum.  
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Appendix II Compounds that were not done by the candidate: Method and 
Charaterization 

Syntheses of 8-8 and compound 8-9 

The mixture of 1-10 (0.7 mmol) and K2CO3 (1.4 mmol, 2eq)  in 6 ml of acetonitrile was 

stirred at 80 oC for about 30 min, then to the reaction mixture was added bromoethane (1.4 

mmol, 2eq) or benzyl bromide (1.4 mmol, 2eq) at rt. Then the mixture was stirred at 80 oC 

overnight before filtered to remove K2CO3. The filtrate was concentrated under the reduce 

pressure and then purified by column chromatography with hexane-ethyl acetate (3:1) as 

eluting solvent to give the desired compounds. 

(E)6-Chloro-1-ethyl-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one, (8-8):  

N
Et

O

CF3

Cl  

Yellow solid , yield: 35.0% , melting point: 121.3oC; 1HNMR  (400 MHz DMSO-d6) δ ppm δ 

7.86 (s, 1H), 7.81 (s, 1H), 7.77 (d, J=7.6Hz, 1H), 7.69 (d, J=8 Hz, 1H), 7.60 (t, J=8 Hz, J=7.6 

Hz, 1H), 7.36 (d, J=8.8 Hz, 1H), 6.85-6,83 (m, 2H), 3.81 (q, 2H), 1.30 (t, J=7.2 Hz 3H); 

13NMR (100 MHz, DMSO-d6) δ ppm, δ 167.6, 144.8, 136.1, 135.6, 135.0, 132.3, 129.4, 127.9, 

126.1, 126.1, 126.1, 126.0, 125.9, 125.9, 125.8, 125.8, 123.5, 121.6, 119.2, 109.1, 77.3, 77.0, 

76.7, 34.9, 12.7;yield: 43.0%. MS (APCI): m/z 352.2, 354.2 [M+H]+ 

(E/Z) 1-Benzyl-6-chloro-3-(3-trifluoromethyl-benzylidene)-1,3-dihydro-indol-2-one (8-9):  

N
O

CF3

Cl
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Yellow solid, yield: 43.0%, melting point: 109.4oC; 1HNMR  (400 MHz DMSO-d6) δ ppm δ 

8.55-8.50 (m, 2H), 7.89 (s, 1H), 7.79 (d, J=6.8, 2H), 7.69 (t, J=8 Hz, J=9.2 Hz, 1H), 7.63-7.45 

(m, 3H), 7.38 (d, J=8 Hz, 1H), 7.36-7.29 (m, 11H), 7.02(dd, J=8.4 Hz, J=2.0Hz, 1H), 6.83 (dd, 

J=2Hz, J=8 Hz, 1H), 6.74-6.73 (m, 2H), 4.96 (s, 2H).; 13NMR (100 MHz, DMSO-d6) δ ppm, δ 

168.1, 165.8, 144.8, 142.8, 136.1, 135.7, 135.5, 135.4, 135.3, 135.2, 134.8, 134.1, 132.3, 

131.5, 131.2, 130.6, 129.4, 128.9, 128.9, 128.8, 128.6, 128.6, 127.9, 127.8, 127.6, 127.2, 

127.0 ,126.9, 126.6, 126.2. 126.2, 125.9, 125.9, 125.3, 125.1, 123.4, 122.4, 122.1, 122.0, 

120.2, 119.2, 109.6, 43.9, 43.7; yield: 43.0%.MS (APCI): m/z 416.3, 414.3 [M+H]+ 

Syntheses of 1-25, 2-15, 2-16, 3-14, 4-17, 4-18, 5-9, 5-10, 6-11, 6-12, 7-11 and 7-12 

The method of synthesizing following compound has been described in the section 2.5.3 

using oxindoles and benzaldehydes. The method used in synthesizing 5,6 difluoro-oxindole 

has  been described in section 2.5.6. The method used in synthesizing 3-Formyl-N-propyl-

benzenesulfonamide or N-(3-Formyl-phenyl)-methanesulfonamide are described in section II-

iv. 

(E)-3N-[3-(6-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-

phenyl]methanesulfonamide (1-25): 

N
H

O

NH

Cl

O2
S

 

 Yellow solid, 26%,  melting point 237.9 oC; 1H NMR (400 MHz, DMSO-d6) δ ppm 3.06 (s, 

3H), 6.93-6.89 (m, 2H), 7.30 (d, J = 8.00 Hz, 1H), 7.40 (d, J = 7.66 Hz, 1H), 7.57-7.47 (m, 

3H), 7.62 (s, 1H), 9.97 (s, 1H), 10.78 (s, 1H); 13C NMR (101 MHz, DMSO-d6)* δ ppm 

168.581, 144.326, 138.783, 136.083, 135.221, 134.332, 130.045, 126.880, 125.094, 124.174, 

121.146, 120.997, 119.716, 119.576, 110.139; MS (ESI) m/z = 371.2 (M+Na)+ , 347.1 (M-H)- 
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E/Z 3-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propylbenzenesulfonamide 

(2-15): 

N
H

O

SO2NH

Cl

 

Orange crystalline solid, yield 20%, melting point 169.1 oC, 1H NMR (400 MHz, DMSO-d6 δ 

ppm) 0.79 (dt, J = 7.41, 4.29 Hz, 3H), 1.39 (d sext., J = 7.34, 2.92 Hz, 2H), 2.77 (q, J = 6.76 

Hz, 2H), 6.88 (dd, J = 25.46, 8.30 Hz, 1H), 7.33-7.24 (m, 1H), 7.69 (t, J = 7.82 Hz, 1H), 

7.80-7.75 (m, 1H), 7.84 (d, J = 8.19 Hz, 1H), 7.92-7.88 (m, 1H), 8.06 (d, J = 5.10 Hz, 1H), 

8.73 (s, 1H), 10.78 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ ppm)167.911, 141.954, 

141.262, 140.828, 139.745, 136.716, 135.791, 135.040, 134.975, 134.321, 132.981, 130.113, 

130.042, 129.594, 129.162, 128.231, 127.464, 127.364, 126.364, 126.300, 125.526, 125.095, 

122.048, 121.878, 120.327, 111.679, 44.331, 44.301, 39.430, 22.419, 22.384, 11.060, 11.025; 

MS (ESI) m/z = 399.3 (M+Na)+ , 375 (M-H)- 

(E)-3N-[3-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-

phenyl]methanesulfonamide (2-16):  

N
H

O

NH

O2
S

Cl

 

Yellow solid, yield 26%, melting point 242.3 oC, 1H NMR (400 MHz, DMSO-d6 δ ppm 3.06 

(s, 3H), 6.86 (dd, J = 23.73, 8.31 Hz, 1H), 7.34-7.22 (m, 1H), 7.46-7.38 (m, 2H), 7.52 (dd, J 

= 10.38, 5.01 Hz, 1H),* 7.67 (s, 1H), 10.00 (s, 1H), 10.77 (s, 1H); 13C NMR (101 MHz, 
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DMSO-d6) δ ppm 168.228, 141.721, 138.843, 137.078, 135.094, 130.057, 129.844, 127.184, 

125.118, 124.886, 122.259, 122.224, 121.079, 119.340, 111.504; MS (ESI) m/z = 371.2 

(M+Na)+ , 347.2 (M-H)- 

(E)-3N-[3-(6-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-

methanesulfonamide (3-14): 

N
H

O

NH

F

O2
S

 

Pale green solid, yield 38%, melting point 231.3 oC, 1H NMR (400 MHz, DMSO-d6 δ ppm 

3.05 (s, 3H), 6.72-6.64 (m, 2H), 7.49 (dd, J = 13.81, 5.92 Hz, 2H), 7.57 (dd, J = 7.29, 4.40 

Hz, 2H), 9.97 (s, 1H), 10.79 (s, 1H); 13C NMR (101 MHz, DMSO-d6) * δ ppm 168.847, 

164.425, 161.978, 144.898, 144.775, 138.758, 135.279, 129.929, 126.886, 124.877, 120.872, 

119.586, 117.095, 117.067, 107.633, 107.410, 98.262, 97.992. MS (ESI) m/z = 355.2 

(M+23)+ , 331.1 (M-1)- 

E/Z-3-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propyl-

benzenesulfonamide (4-17)  

N
H

O

SO2NH

F

 

Yellow crystalline solid, yield 24%, melting point 163.4oC, 1H NMR (400 MHz, DMSO-d6, δ 

ppm) 0.79 (dt, J = 7.41, 4.29 Hz, 3H), 1.39 (d sext., J = 7.34, 2.92 Hz, 2H), 2.77 (q, J = 6.76 
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Hz, 2H), 6.88 (dd, J = 25.46, 8.30 Hz, 1H), 7.69 (t, J = 7.82 Hz, 1H), 7.77 (dd, J = 9.59, 5.90 

Hz, 1H), 7.84 (d, J = 8.19 Hz, 1H), 7.92-7.88 (m, 2H), 8.06 (dd, J = 5.10 Hz, 1H), 8.58 (d, J 

= 7.87 Hz, 1H), 8.73 (s, 1H), 10.79 (s, 1H), 7.33-7.24 (m, 1H); 13C NMR (101 MHz, DMSO-

d6) δ ppm) 167.911, 141.954, 141.262, 140.828, 139.745, 136.716, 135.791, 135.040, 134.975, 

134.321, 132.981, 130.113, 130.042, 129.594, 129.162, 128.231, 127.464, 127.364, 126.364, 

126.300, 125.526, 125.095, 122.048, 121.878, 120.327, 111.679, 44.331, 44.301, 39.430, 

22.419, 22.384, 11.060, 11.025; MS (ESI) m/z = 383 (M+Na)+ , 358.9 (M-H)-.  

(E)-3N-[3-(5-Fluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-

methanesulfonamide (4-18): 

N
H

O

NH

O2
S

F

 

Dark yellow solid, yield 27%, melting point 231.3oC, 1H NMR (400 MHz, DMSO-d6, δ  ppm)  

3.06 (s, 1H), 6.87 (dd, J = 8.55, 4.62 Hz, 1H), 7.10 (dt, J = 9.14, 2.58 Hz, 1H), 7.33-7.26 (m, 

2H), 7.54-7.49 (m, 2H), 7.65 (s, 1H), 10.00 (s, 1H), 10.65 (s, 1H); 13C NMR (101 MHz, 

DMSO-d6)* δ ppm 168.452, 138.750, 136.743, 135.002, 129.980, 127.661, 127.632, 124.942, 

121.464, 121.041, 119.394, 116.657, 116.423, 110.766, 110.046, 109.791*; MS (ESI) m/z = 

355.1 (M+23)+ , 331.0 (M-1)- 

(E)-3-(6-Methoxy-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propyl-

benzenesulfonamide (5-9): 



 

227 
 

N
H

O

SO2NH

MeO  

Yellow solid, yield 22%, melting point 191.5 oC, 1H NMR (400 MHz, DMSO-d6 δppm 0.79 (t, 

J = 7.39 Hz, 3H), 1.43-1.33 (m, 2H), 2.75 (dd, J = 12.37, 6.78 Hz, 2H), 3.76 (s, 3H), 6.39 (dd, 

J = 8.57, 2.41 Hz, 1H), 6.45 (d, J = 2.35 Hz, 1H), 7.32 (d, J = 8.56 Hz, 1H), 7.72 (t, J = 7.79 

Hz, 2H), 7.86 (dd, J = 21.13, 7.78 Hz, 2H), 8.05 (s, 1H), 10.63 (s, 1H); 13C NMR (101 MHz, 

DMSO-d6) δ ppm 168.963, 161.491, 145.056, 141.138, 135.752, 132.837, 130.469, 129.824, 

128.571, 126.814, 126.426, 123.627, 113.207, 106.528, 96.687, 55.354, 44.338, 39.430, 

22.406, 11.056;  MS (ESI) m/z = 395.1 (M+Na)+ , 371.4 (M-H)- 

(E)3N-[3-(6-Methoxy-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-

methanesulfonamide (5-10): 

N
H

O

NH

MeO

O2
S

 

Dark yellow solid, yield 21%, melting point 206.4 oC, 1H NMR (400 MHz, DMSO-d6 δ ppm) 

3.05 (s, 3H), 3.76 (s, 3H), 6.42 (dd, J = 6.94, 2.27 Hz, 2H), 7.27 (d, J = 8.02 Hz, 1H), 7.38 (d, 

J = 7.22 Hz, 2H), 7.54-7.42 (m, 3H), 9.94 (s, 1H), 10.57 (s, 1H) 13C NMR (101 MHz, 

DMSO-d6) * δ ppm 169.199, 161.187, 144.729, 138.642, 135.743, 131.722, 129.747, 

127.476, 124.834, 124.149, 120.452, 119.584, 113.405, 106.453, 96.437, 55.278 *;  

(Z)-3-(4,5-Difluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propyl-

benzenesulfonamide (6-11): 
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S

N
H

O

O
O

NH

F
F

 

Orange crystalline solid, yield 32.3%, melting point 221.8 oC; 1H NMR (400 MHz, DMSO-d6 

δ ppm 0.79 (dt, J = 7.41, 4.29 Hz, 3H), 1.39 (d sext., J = 7.34, 2.92 Hz, 2H), 2.77 (q, J = 6.76 

Hz, 2H), 6.88 (dd, J = 25.46, 8.30 Hz, 1H), 7.69 (t, J = 7.82 Hz, 1H), 7.77 (dd, J = 9.59, 5.90 

Hz, 1H), 7.84 (d, J = 8.19 Hz, 1H), 7.92-7.88 (m, 2H), 8.06 (d, J = 5.10 Hz, 1H), 8.58 (d, J = 

7.87 Hz, 1H), 8.73 (s, 1H), 10.79 (s, 1H), 7.33-7.24 (m, 1H), 13C NMR (101 MHz, DMSO-d6) 

δ ppm 167.836, 165.920, 140.597, 140.251, 140.075, 139.968, 135.043, 134.000, 133.274, 

129.226, 128.961, 128.751, 127.986, 127.240, 127.126, 44.287, 44.174, 22.408, 22.346, 

11.054, 10.990; MS (ESI) m/z = 401.1 (M+Na)+ , 377.0 (M-H)- 

 

(Z)-3N-[3-(4,5-Difluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-

methanesulfonamide (6-12): 

NH

N
H

O
F

F

SO2

 

Dark yellow solid, yield 57%, melting point 250.4 oC; 1H NMR (400 MHz, DMSO-d6) δ ppm 

3.09 (s, 3H), 6.64 (dd, J = 8.49, 3.25 Hz, 1H), 7.32-7.23 (m, 2H), 7.42 (t, J = 7.92 Hz, 1H), 

7.79 (d, J = 2.57 Hz, 1H), 7.88 (d, J = 7.87 Hz, 1H), 8.05 (s, 1H), 9.87 (s, 1H), 10.85 (s, 

1H),13C NMR (101 MHz, DMSO-d6) * δ ppm 168.060, 165.920, 141.599, 141.490, 138.056, 

137.872, 134.164, 128.959, 127.185, 125.456, 125.375, 122.184, 120.673, 117.293, 117.103, 

112.653, 112.535, 105.223, 105.192, 105.159; MS (ESI) m/z = 401.1 (M+Na)+ , 377.0 (M-H)- 
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(E/Z)-3-(5,6-Difluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-N-propyl-

benzenesulfonamide (7-11) : 

N
H

O

SO2NH

F

F

 

Orange crystalline solid, yield 18.5%, melting point 192.6 oC; 1H NMR (400 MHz, DMSO-d6 

δ ppm) δ0.79 (dt, J = 7.40, 2.93 Hz, 1H), 1.39 (d sext., J = 7.28, 1.63 Hz, 2H), 2.76 (q, J = 

7.46, 7.19 Hz, 1H), 6.90 (ddd, J = 27.38, 10.48, 6.84 Hz, 1H), 7.23 (dd, J = 10.80, 8.03 Hz, 

1H), 7.73 (ddd, J = 23.51, 15.62, 7.81 Hz, 2H), 7.97-7.80 (m, 2H), 8.06 (s, 1H), 10.81 (s, 1H), 

8.69-8.50 (m, 1H); 13C NMR (101 MHz, DMSO-d6)  δ ppm, δ 168.224, 166.811, 141.282, 

140.821, 134.836, 134.232, 132.932, 130.106, 129.461, 129.179, 127.851, 127.482, 126.423, 

111.511, 111.301, 109.903, 109.695, 100.091, 99.869, 99.349, 99.122, 44.299, 22.391, 11.058, 

10.988. MS (ESI) m/z = 401.1 (M+Na)+ , 377.0 (M-H)- 

(E)-3N-[3-(5,6-Difluoro-2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-phenyl]-

methanesulfonamide (7-12): 

N
H

O

NH

F

O2
S

F

 

Dark yellow solid, yield 21%, melting point 232.1oC; 1H NMR (400 MHz, DMSO-d6) δ ppm 

3.07 (s, 3H), 6.91 (dd, J = 10.50, 6.93 Hz, 1H), 7.31 (d, J = 9.21 Hz, 1H), 7.40 (d, J = 7.68 

Hz, 1H), 7.54-7.46 (m, 3H), 7.63 (s, 1H), 10.01 (s, 1H), 10.78 (s, 1H); 13C NMR (101 MHz, 

DMSO-d6) * δ ppm 168.500, 140.042, 139.938, 138.754, 136.301, 136.273, 134.800, 130.056, 



 

230 
 

126.575, 125.095, 121.195, 119.371, 112.094, 111.885, 99.770, 99.546. MS (ESI) m/z = 

401.1 (M+Na)+ , 377.1 (M-H)- 

 

Syntheses of 3-propylsulfamoyl-benzoic acid methyl ester and 3-methanesulfonylamino-

benzoic acid methyl ester 

 

The titled compounds serve as the starting material to synthesize 3-Formyl-N-propyl-

benzenesulfonamide or N-(3-Formyl-phenyl)-methanesulfonamide which are described in 

section II.iv. The method of Wang et. al 226 was followed with slight modifications. 0.5 g (2 

mmol,) of 3 Chlorosulfonyl-benzoic acid methyl ester was dissolved in anhydrous 

dichloromethane (DCM, 30 mL) followed by addition of pyridine (0.344mL) and 

propanesulfonyl chloride (0.338 mL, mmol) in an ice bath. The reaction was left to stir for 17 

hrs. Water (20 mL) and DCM (20 mL) were added to the reaction mixture and the layers 

separated. The aqueous layer was extracted with DCM (2×30 mL). The organic layer was 

then extracted with 1M HCL with (2 × 25 mL) to thoroughly remove excess pyridine. 

Subsequently, the organic layer was concentrated under vacuum to give the title compounds. 

3-Propylsulfamoyl-benzoic acid methyl ester: 

Brown solide, yield 95%,  1H NMR (400 MHz, ACN-d3) δ ppm 0.82 (t, J = 7.40 Hz, 3H), 

1.47-1.37 (m, 2H), 2.81 (dd, J = 13.28, 6.96 Hz, 2H), 3.92 (s, 3H), 5.68 (s, 1H), 7.69 (t, J = 

7.83 Hz, 1H), 8.05-8.02 (m, 1H), 8.23-8.19 (m, 1H), 8.38 (t, J = 1.67 Hz, 1H) 

Similaly, 3-Amino-benzoic acid methyl ester (0.5g) was dissolved in anhydrous 

dichloromethane (30 mL) followed by addition of pyridine (0.532mL) and methanesulfonyl 

chloride (0.509 mL,  mmol) in an ice bath. The reaction was left to stir for 17 h. Water (20 

mL) and DCM (20 mL) were added to the reaction mixture and the layers separated. The 

aqueous layer was extracted with DCM (2x30 mL). The organic layer was then extracted with 

1N HCl (2 X 25mL) to thoroughly remove excess pyridine. Subsequently, the organic layer 

was concentrated under vacuum to obtain titled compound. 

3-Methanesulfonylamino-benzoic acid methyl ester: 
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White solid, yield 85%,  1H NMR (400 MHz, CDCl3 ) ppm 3.04 (s, 3H), 3.94 (s, 3H), 6.95 (s, 

1H), 7.45 (t, J = 8.13 Hz, 1H), 7.54-7.50 (m, 1H), 7.88-7.85 (m, 1H) 

 

Syntheses of 3-formyl-N-propyl-benzenesulfonamide and N-(3-formyl-phenyl)-

methanesulfonamide  

 

The method of Billen et al227 was followed. 3-Propylsulfamoyl-benzoic acid methyl ester or 

3-Methanesulfonylamino-benzoic acid methyl ester (2 mmol) was dissolved in 20mL of 

anhydrous THF to which Lithium aluminum hydride, LAH (1M in THF, 9 ml, 9 mmol) was 

added dropwise under nitrogen environment. The mixture was left to stir for 24h. The 

reaction mixture was then quenched with water (10mL) and EA (20mL). Few drops of 2M 

HCl were also added to remove traces of LAH and the mixture was then extracted 3 times 

with 20mL of EA. The organic phase was dried with anhydrous Na2SO4 and solvent was 

removed in vacuo. The resultant oil was reacted in the next step without further purification. 

The synthesized 3-hydroxymethyl-N-propyl-benzenesulfonamide or N-(3-Hydroxymethyl-

phenyl)-methanesulfonamide (1.08 mmol) was dissolved in dichloromethane (20 mL) 

followed by addition of pyridinium dichromate (3.5 eqv, 3.6 mmol). The reaction was stirred 

at room temperature for 18h under nitrogen environment. The brown crude mixture was then 

subjected to filtration through a plug of silica gel and subsequently washed with EA (250 mL). 

Solvent was removed under reduced pressure to give clear oil. Column chromatography using 

EA/Hex (2:3) was performed to further purify the product.   

3-Formyl-N-propyl-benzenesulfonamide: 

White crystalline solid. 78% yield,1H NMR (400 MHz, MeOH-d4), δppm, δ0.86 (dt, J = 7.41, 

1.86 Hz, 3H), 1.52-1.40 (m, 2H), 2.82 (td, J = 17.36, 7.05 Hz, 2H), 7.55 (t, J = 7.76 Hz, 1H), 

7.81-7.69 (m, 1H), 7.98 (s, 1H), 8.13 (ddd, J = 7.86, 2.20, 1.19 Hz, 1H), 8.35 (t, J = 1.51 Hz, 

1H), 10.07 (s, 1H) 

 N-(3-Formyl-phenyl)-methanesulfonamided: 
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White crystalline solid, yield 86%, 1H NMR (400 MHz, DMSO-d6) ppm 7.51 (ddd, J = 8.00, 

2.21, 1.22 Hz, 1H), 7.58 (t, J = 7.72 Hz, 1H), 7.66 (td, J = 7.47, 1.27 Hz, 1H), 7.72-7.70 (m, 

1H), 10.09 (s, 1H), 9.98 (s, 1H), 3.05 (s, 3H). 

* There is a hidden peak within the DMSO peak at 39.5ppm 

  



 

233 
 

Appendix III:Crystal data and structure refinement for 6-6 

Empirical formula  C16 H8 F5 N O  
Formula weight  325.23  

Temperature  100(2) K  
Wavelength  0.71073 Å  

Crystal system  Triclinic  
Space group  P-1  

Unit cell dimensions a = 6.908(5) Å a= 82.396(15)°. 
 b = 7.018(5) Å b= 82.445(15)°. 
 c = 13.699(10) Å g = 84.923(15)°. 

Volume 650.9(8) Å3  
Z 2  

Density (calculated) 1.659 Mg/m3  
Absorption coefficient 0.153 mm-1  

F(000) 328  
Crystal size 0.50 x 0.14 x 0.04 mm3  

Theta range for data collection 2.94 to 27.49°.  
Index ranges -8<=h<=8, -9<=k<=9, -

17<=l<=17 
 

Reflections collected 8393  
Independent reflections 2975 [R(int) = 0.0577]  

Completeness to theta = 27.49° 99.8 %   
Absorption correction Semi-empirical from 

equivalents 
 

Max. and min. transmission 0.9939 and 0.9273  
Refinement method Full-matrix least-squares on F2  

Data / restraints / parameters 2975 / 0 / 212  
Goodness-of-fit1 on F2 1.060  

Final R indices [I>2sigma(I)] R12 = 0.0628, wR23 = 0.1373 
 

 

R indices (all data) R1 = 0.0879, wR2 = 0.1475  
Largest diff. peak and hole 0.357 and -0.485 e.Å-3  

1Goodness of fit ൌ ට∑ൣ୵ሺFO
మ ିFౙ

మሻమ൧
୬ି୮

,  

2R1 ൌ ∑ห|FO|ି|Fౙ|ห
∑|Fబ| ,  

3wR2 ൌ ට∑ൣ୵ሺFO
మ ିFౙ

మሻమ൧
∑ൣ୵ሺFO

మ ሻమ൧
, 

where FO is observed electron densities , FC is calculated electron densities,  n is the number 
of data and p is the number of parameters refined.  
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Appendix IV : The second attempt of Western blot analysis of sirtuin 
inhibition by compounds 5-1 and 8-7 

 

Figure IV-1 5-1 induces hyper-acetylation of p53 and α-tubulin in (A) HepG2 and (B) HuH 7 cells 
after 12 h incubation. The ratios of acetylated p53/p53 and acetylated α-tubulin /α-tubulin were 
obtained as described in Figure 4-2. Loading controls were p53 and α-tubulin.  

 

Figure IV-2 8-7 induces hyper-acetylation of p53 and α-tubulin in (A) HepG2 and (B) HuH 7 cells 
after 12 h incubation. The ratios of acetylated p53/p53 and acetylated α-tubulin /α-tubulin were 
obtained as described in Figure 4-2. Loading controls were p53 and α-tubulin.  
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Appendix V: Determinations of drug likeness properties of the test 
compounds that are done by Drug Development Unit of NUS. 

Determination of PAMPA permeability 

The Parallel Artificial Membrane Permeability Assay (PAMPA) was used to determine The 
effective permeabilities (Pe) of 3-10, 3-12, and 7-6 were determined by PAMPA. Compound 
47 and 1-23 was not determined due to the poor solubility.  
Determinations were carried out on MultiScreen-IP PAMPA assay (donor) plates 
(MAIPNTR10) and MultiScreen Receiver Plates (MATRNPS50) from Millipore Corporation 
(USA) with 1% lecithin in dodecane (Sigma Aldrich, Singapore) as lipid barrier. 5 μL of 1% 
lecithin in dodecane was dispensed into the wells of the donor plates. Aliquots (300 μL) of 
test compound (5 μM 1-18, 1.5μM 1-23, 10 μM 3-10, 0.75μM 3-12 and 0.1 μM 7-6 prepared 
in 0.1× PBS with 1% DMSO) were dispensed into the donor wells and equal volumes of the 
buffer solution (0.1× PBS with 1% DMSO) were added to the corresponding acceptor wells. 
The donor and acceptor plates were assembled and the unit was gently agitated on a mini 
shaker at room temperature (25 °C) for 6 hr or 16  hr. After this time, aliquots (250 μL/well) 
from the donor and acceptor plates were transferred to separate glass inserts in HPLC vials. 
35 μL of the internal standard p-(dipropylsulfamoyl)benzoic (Sigma Aldrich, Singapore) 
(6.25 µM in acetonitrile) was added to the sample which was then measured by LCMS 
(Shimadzu LC 20 series HPLC and AB Sciex Instruments 3200 Q TRAP LC/MS/MS). 
Measurements were based on the ratio of peak areas of the daughter ion and mother ion (M-
H), normalized against the same ratio obtained for the internal standard. The mobile phase 
was Milli-Q water (0.1% formic acid) and acetonitrile (0.1% formic acid), run on gradient 
mode. The column was Phenomenex Luna column [3u, C18(2), 100 A, 5 × 4.6 mm] and 
injections were made at a volume of 2 μL with flow rate of 0.6 mL/min. Calibration plots of 
test compounds were obtained under similar analytical conditions. 
Pe of five standard compounds (warfarin, caffeine, quinidine, propranolol, verapamil, Sigma 
Aldrich Singapore) were determined under similar conditions. 500 μM stock solutions were 
prepared and dispensed to the donor wells as described earlier. Quantification was by UV 
at λmax of 280 nm (verapamil, carbamazepine, warfarin, caffeine), 290 nm (propranolol) and 
320 nm (quinidine). Calibration plots of reference compounds were determined under similar 
analytical conditions. Permeability of these standard compounds were reported to vary in the 
sequence verapamil (most permeable) > propranolol > carbamazepine > quinidine > caffeine > 
warfarin (least permeable).228,229  
Pe  was obtained from Equation (1): 
Equation(1): 

pୣ ൌ െ2.303 ൈ
VAVD

ሺVA ൅ VDሻ ൈ A ൈ t
ൈ logሺ1 െ

VA ൅ VD

VD ൈ S ൈ CAሺtሻ
CDሺ0ሻ

ሻ
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where VA and VD = volumes of acceptor (cm3) and donor (cm3) wells respectively, A = area of 
the surface area of the membrane (0.24 cm2), t = permeation time (s); S = fraction of sample 
remaining in the donor and acceptor wells after permeation time as determined from 
Equation (2). CA and CD in Equation (2) refer to the concentrations (μM) of compound in 
acceptor and donor wells respectively. 
Equation(2): 

S ൌ
Vୟ

VD
ൈ

CAሺtሻ
CDሺ0ሻ

൅
CDሺtሻ
Aሺ0ሻ  

 
The Pe of each compound was obtained from at least 3 separate experiments using 2 different 
stock solutions. For each independent determination, triplicates (3 wells) were run for each 
compound. 
 

Determination of cytotoxicities of test compounds  

The cytotoxicities were determined on transforming growth factor-alpha mouse 
hepatocyte (TAMH) and mouse cardiomyocytes derived from AT-1 mouse atrial 
cardiomyocyte tumor cells (HL-1). TAMH (a gift from Prof Nelson Fausto, 
Department of Pathology, University of Washington) were cultured in DMEM-F12 
(Dulbecco's Modified Eagle's Medium/ Nutrient Mixture F12) with ITS premix (5 mg 
insulin, 5 mg human transferrin, and 5 mg selenous acid), 100 nM dexamethasone, 10 
mM nicotiamide, and 10 mg/L gentamicin. HL-1 (American Type Culture Collection, 
VA, USA) were cultured in Clay Comb Medium with 0.1 mM Norpinephrine, 2 mM 
L- Glutamine, 100 U/ml penicillin, 100 μg/ml Streptomycin, and 10% v/v Fetal 
bovine serum. 
  
Cytotoxicities of the compounds were determined by the CellTiter-Glo® Cell Viability Assay 

(Promega Corporation, Wisconsin, USA). An aliquot (200 μL, 6 ×104 cells/mL of TAMH, 7.5 

×104 cells/mL of HL-1) of medium was added to each well of a 96 well microtitre plate. After 

incubation for 24 h at 37 deg C, 5% CO2,  media was removed from the well and replaced 

with fresh media (200 μL) containing a known concentration of test compound. The final 

concentration of DMSO in each well was maintained at 0.5 v/v. Incubation was continued for 

another 24 h at 37o C, 5% CO2, after which cell viability was determined with the Cell Titer-

Glo® Cell Viability Assay Kit (Promega, Singapore) following manufacturer’s instructions.  

The cell-reagent mixture was then transferred to a solid white flat-bottom 96-well plate 

(Greiner, Wemmel, Belgium) for the measurement of luminescence on a microplate reader 

(Tecan, Infinite 200). The viability of cells at a given concentration of test compound was 

determined from the equation (3): 
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Percentage Cell Viability = 
><−><
><−><

blanklumvehcontrollum
blanklumcompoundlum

__
__

×100% 

where lum_compound = luminescence of wells containing cells and test compound in media, 

lum_vehicle = luminescence of wells containing cells in media only and lum_blank = 

luminescence of wells containing media only.  

Each concentration of test compound was evaluated at least 3 times on separate occasions, 

and two different stock solutions were used. The highest concentration of test compound used 

in the assay was 100 μM. The IC50 value (concentration that inhibited 50% of cell growth) 

was determined from the sigmoidal curve obtained by plotting percentage viability versus 

logarithmic concentration of test compound using GraphPad Prism 5 (San Diego, USA).  

Determination of genotoxicities of test compounds  

The Ames test kit as well as two strain of Salmonella typhimurium (TA98 and TA 100) were 

obtained from Molecular toxicology Inc. (Boone, North Carolina, USA) The S. typhimurium 

strains were grown from bacterial discs in nutrient broth at 37°C in a shaking incubator (~150 

rpm) for about 10 hours. The absorbance of the cultures were measured at a wavelength of 

660 nm on a UV spectrophotometer and those with absorbance values of 1.0- to 1.2 were 

deemed suitable for experiments.  Histidine/biotin supplemented top agar was melted and 

aliquots of 2 mL were dispensed into culture tubes and kept at 45oC, 30-45 min. DMSO (100 

µL) or 2-aminoanthracene (19 µM) was added to control culture tubes. Test compound (100 

µL in DMSO) was added to test control tubes to give final concentrations of 1 mM or 10 µM.  

S9 mix (500µL, which comprise rat liver microsomes, phosphate-buffered solution, glucose-

6-phosphate and NADP (Molecular Toxicology Inc, Boone, NC) was added to each tube, 

followed by 100 µL of S. typhimurium strain (TA98 or TA100, Molecular Toxicology Inc, 

Boone, NC). The contents of each tube were quickly mixed, poured into a plate containing 

minimal glucose agar and swirled for even distribution. When the agar had hardened, the 

plates were incubated at 37 oC, 48h. The bacterial colonies were then counted. The absence of 

colonies would indicate the absence of mutagenicity.  The experiments were done in 

duplicates.  
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Appendix VI: Purity data of the synthesized compounds 

Compound 
Number 

Mobile Phase A Mobile Phase B 

Compositiona RT 
(min)c 

Area 
(%)d Compositionb RT (min)c Area 

(%)d 
1-1 A1 5.5 98.9 B1 5.0 99.1 
1-2 A1 6.8 99.1 B1 3.1 97.9 
1-3 A1 8.0 99.9 B1 3.2 97.0 
1-4 A1 7.5 97.1 B1 3.2 96.3 
1-5 A1 12.5 99.9 B1 4.0 100.0 
1-6 A1 8.0 96.0 B1 3.2 98.2 
1-7 A1 3.2 95.7 B1 3.2 95.2 
1-8 A1 4.1 100.0 B1 3.0 95.7 
1-9 A1 7.2 96.3 B1 3.4 96.0 

1-10 A2 6.9 100.0 B2 5.2 100.0 
1-11 A1 11.2 100.0 B1 3.9 96.0 
1-12 A2 5.5 98.1 B2 4.4 98.4 
1-13 A2 6.2 98.4 B2 4.8 97.8 
1-14 A2 7.7 100.0 B2 5.6 99.6 
1-15 A2 7.7 100.0 B2 5.6 99.2 
1-16 A2 3.3 100.0 B2 2.8 99.3 
1-17 A2 2.8 99.4 B2 2.6 99.9 
1-18 A3 3.2 97.5 B3 2.8 97.1 
1-19 A3 4.0 98.2 B3 3.5 97.2 
1-20 A3 18.3 98.3 B3 9.5 98.2 
1-21 A3 4.4 97.8 B3 3.7 97.6 
1-22 A3 5.3 96.7 B3 4.3 96.5 
1-23 A3 6.5 98.5 B3 5.0 98.3 
1-24 A3 6.2 87.1 B3 6.1 87.1 
1-25 A3 4.6 96.7 B3 3.8 96.4 
2-1 A1 7.1 96.3 B1 3.8 95.5 
2-2 A1 6.9 95.1 B1 3.6 96.3 
2-3 A1 7.3 94.8 B1 3.7 95.8 
2-4 A1 7.7 98.4 B1 3.8 96.7 
2-5 A1 6.3 95.1 B1 4.0 95.5 
2-6 A1 9.5 95.1 B1 4.6 95.7 
2-7 A1 7.1 96.3 B1 3.8 94.5 
2-8 A1 7.6 95.4 B1 4.6 96.0 
2-9 A2 6.1 100.0 B2 4.6 96.9 

2-10 A2 5.3 98.3 B2 5.3 97.8 
2-11 A2 3.6 97.8 B2 2.8 95.4 
2-12 A2 2.8 81.7 B2 2.6 80.4 

  3 .09 18.3  2.7 17.1 
2-13 A2 4.8 100.0 B2 4.0 97.7 
2-14 A3 5.0 95.7 B3 3.5 95.6 
2-15 A3 6.1 100.0 B3 4.8 98.9 
2-16 A3 4.4 98.6 B3 4.3 98.6 
3-1 A1 4.7 99.5 B1 2.8 100.0 
3-2 A1 4.7 97.9 B1 2.7 100.0 
3-3 A1 5.2 99.3 B1 2.8 100.0 
3-4 A1 5.0 97.2 B1 2.8 94.8 
3-5 A1 4.8 96.5 B1 2.9 94.3 
3-6 A2 5.2 98.5 B2 4.2 96.0 
3-7 A1 6.8 99.5 B1 3.3 100.0 
3-8 A2 5.7 100.0 B2 4.5 99.4 
3-9 A2 2.9 98.3 B2 2.7 97.0 

3-10 A3 3.2 98.8 B3 2.8 97.6 
3-11 A3 4.3 95.3 B3 3.7 96.2 
3-12 A3 5.2 98.5 B3 4.2 98.3 
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Compound 
Number 

Mobile Phase A Mobile Phase B 

Compositiona RT 
(min)c 

Area 
(%)d Compositionb RT (min)c Area 

(%)d 
3-13 A3 5.0 95.7 B3 4.1 95.3 
3-14 A3 3.9 96.9 B3 3.3 96.4 
4-1 A2 4.3 100.0 B2 3.7 100.0 
4-2 A2 4.0 98.0 B2 3.5 98.3 
4-3 A2 4.2 99.8 B2 3.6 99.8 
4-4 A2 5.8 99.4 B2 3.6 99.8 
4-5 A2 4.8 96.9 B2 4.1 96.8 
4-6 A2 5.2 100.0 B2 4.3 98.6 
4-7 A2 5.4 100.0 B2 4.5 98.3 
4-8 A2 4.3 100.0 B2 3.7 100.0 
4-9 A2 5.3 98.9 B2 3.6 99.5 

4-10 A2 5.0 99.5 B2 4.1 100.0 
4-11 A2 5.2 100.0 B2 4.2 100.0 
4-12 A2 4.4 100.0 B2 3.7 98.2 
4-13 A2 5.4 100.0 B2 4.3 99.4 
4-14 A2 2.9 97.5 B2 2.7 96.2 
4-15 A2 3.8 98.6 B2 3.4 98.5 
4-16 A3 3.2 100.0 B3 2.7 100.0 
4-17 A3 4.9 100.0 B3 4.1 99.5 
4-18 A3 3.7 98.5 B3 3.2 98.2 
5-1 A1 5.5 97.6 B1 2.7 100.0 
5-2 A1 3.1 96.1 B1 2.6 95.2 
5-3 A1 4.3 97.6 B1 2.7 100.0 
5-4 A1 5.3 95.0 B1 2.7 100.0 
5-5 A1 5.0 97.0 B1 2.6 100.0 
5-6 A1 3.9 100.0 B1 3.0 100.0 
5-7 A1 7.7 99.0 B1 3.0 100.0 
5-8 A3 3.2 98.8 B3 2.7 98.5 
5-9 A3 7.7 99.3 B3 5.5 99.1 

5-10 A3 5.4 97.2 B3 4.1 97.2 
6-1 A2 5.5 98.1 B2 4.4 98.0 
6-2 A2 5.6 99.3 B2 4.4 99.6 
6-3 A2 4.7 99.6 B2 4.5 99.6 
6-4 A2 5.6 97.2 B2 4.5 96.8 
6-5 A2 4.2 49.1 B2 3.6 49.0 

  5.6 50.9  4.4 51.0 
6-6 A2 6.7 99.2 B2 5.0 100.0 
6-7 A2 6.1 100.0 B2 5.1 100.0 
6-8 A2 7.5 100.0 B2 5.5 99.5 
6-9  N.A.   N.A. N.A. 

6-10 A3 4.2 100.0 B3 3.2 99.4 
6-11 A3 5.6 100.0 B3 4.5 100.0 
6-12 A3 4.1 100.0 B3 3.5 100.0 
7-1 A2 4.6 97.8 B2 2.9 97.1 
7-2 A2 4.4 96.0 B2 3.7 95.4 
7-3 A2 4.6 97.2 B2 3.7 97.0 
7-4 A2 4.6 97.3 B2 3.8 97.7 
7-5 A2 4.6 98.9 B2 3.9 99.1 
7-6 A2 5.6 96.4 B2 4.4 96.0 
7-7 A2 5.6 96.4 B2 4.4 96.0 
7-8 A2 6.6 100.0 B2 5.4 97.5 
7-9 A2 3.0 95.7 B2 2.7 95.9 

7-10 A3 4.0 96.2 B3 3.5 96.5 
7-11 A3 4.9 95.1 B3 4.1 95.0 
7-12 A3 3.6 96.0 B3 3.2 95.9 
8-1 A2 4.9 100.0 B2 4.1 99.1 
8-2 A2 3.7 96.4 B2 3.2 97.9 
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Compound 
Number 

Mobile Phase A Mobile Phase B 

Compositiona RT 
(min)c 

Area 
(%)d Compositionb RT (min)c Area 

(%)d 
8-3 A2 6.6 100.0 B2 5.4 99.7 
8-4 A2 2.6 98.0 B2 2.6 100.0 
8-5 A2 3.8 95.8 B2 3.3 97.3 
8-6 A2 4.5 99.3 B2 3.7 98.0 
8-7 A2 9.3 100.0 B2 7.1 97.1 
8-8 A2 11.3 97.6 B2 8.2 95.2 
8-9 A2 14.2 65.2 B2 9.9 65.3 

  16.3 33.6  11.3 33.7 
 
a Composition of Mobile phase A: Methanol and Water 

A1: 80% Methanol 

A2: 25% Methanol + 50% acetonitrile 

A3: 45% Acetonitrile+ 15% Methanol,  

b Composition of Mobile phase b: Acetonitrile and Water 

B1: 80% Acetonitrile 

B2: 75% Acetonitrile 

B3: 60% Acetonitrile 

c Retention time of major peak in chromatogram. Chromatogram was run for at least 20 min 

for the detection of the major peak. Measurements were made at wavelength of 254 nm. 

 

 

 


