
Non-parametric Models and Contextual
Policy Search for More Efficient Robot Skill

Generalization

Andras Gabor Kupcsik
Dipl.-Ing., TU Budapest

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHYLOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014



ii



“We have to continually be jumping off cliffs and developing our wings on the way

down."

Kurt Vonnegut



Acknowledgements

First and foremost, I thank my supervisors, Dr. Loh Ai Poh and Dr. Prahlad Vadakkepat

for their support and excellent guidance during my years at NUS. They taught me

how to do high quality research and to always strive for perfection in my work. They

have been invaluable both at an academic and a personal level, for which I am ex-

tremely grateful.

The research for this thesis would not have been possible without financial support

from the National University of Singapore (NUS) and the Singapore International

Graduate Award (SINGA). I’m greatly thankful for the generous and unique offer that

allowed me to study at this prestigious university.

A very special thanks goes to Dr. Jan Peters for offering me the opportunity to join his

lab at the TU Darmstadt, Germany for a semester. Besides Jan Peters, I had the oppor-

tunity to work with Marc Deisenroth and Gerhard Neumann, from whom I learned a

lot in doing high quality research in the fields of machine learning and robotics. I am

most thankful for their excellent scientific and career advices. Additionally, I thank

the whole IAS group for their kindness and hospitality during my stay in Germany.

I would like to express my sincere gratitude to my Diploma thesis advisor Dr. Balint

Kiss and my former supervisor Dr. Bela Lantos from the TU Budapest. They were

the two persons who motivated and encouraged me in the first place to pursue Ph.D.

studies, which eventually led to this thesis. I will be always grateful for their guidance

and immense help during my “early” days in research.

I owe my whole family a huge thanks for their support throughout my entire life and

for always supporting my choice, such as joining NUS as a Ph.D. student. While it

was sometimes difficult without them, I always felt their continuous support and

care, which gave me strength and helped me through the tough days. I cannot thank

enough my parents who helped me with their excellent suggestions and continuous

support throughout my studies. I thank my brother for his support and for being not

only a caring brother, but a great friend as well. I also owe a special thanks to my

grandparents, without whom my childhood would not have been as wonderful as

it was. A very special thanks goes to my godparents for their excellent motivational

talks. Last, but not least, I thank my lovely girlfriend for her understanding and love

during the past few years.

iv



Contents

Acknowledgements iv

Contents v

Abstract vii

List of Tables ix

List of Figures xi

Abbreviations xv

Symbols and Notations xvi

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries 17
2.1 Policy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Model-Free Policy Search . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Model-based Policy Search . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Contextual Policy Search . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Robot Skill Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Dynamic Movement Primitives . . . . . . . . . . . . . . . . . . . . 43

2.3 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Kernel Embedding of Conditional Distributions . . . . . . . . . . . . . . 51

3 Learning Generalized Robot Skills using Contextual REPS 57
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Contextual Episode-based REPS . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Sample-based Contextual REPS . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Ball Throwing Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Robot Hockey Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.3 Robot Table Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



Contents vi

4 Model-based Contextual Robot Skill Learning 81
4.1 Gaussian Process REPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Model Learning and Trajectory Prediction with GP Forward Models . . 87

4.2.1 Trajectory and Reward Prediction . . . . . . . . . . . . . . . . . . 90

4.2.2 Quantitative Comparison of Sampling and Moment Matching . 92

4.2.3 Comparison of Gaussian Process Models . . . . . . . . . . . . . . 94

4.2.4 Learning the Hyper-Parameters of GP Models . . . . . . . . . . . 98

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Robot Balancing Task . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Ball Throwing Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2.1 Influence of the Number of Artificial Samples . . . . . . 107

4.3.2.2 Learning with Stochastic Dynamics . . . . . . . . . . . . 108

4.3.3 Robot Hockey Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.4 Robot Table Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Kernel Embedding of Trajectory Distributions 119
5.1 Regression using Kernel Embedding of Conditional Distributions . . . 122

5.1.1 Connection to Gaussian Process Regression . . . . . . . . . . . . 125

5.2 Trajectory Prediction with Kernel Embedding . . . . . . . . . . . . . . . 125

5.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusion 143
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A Derivation of Contextual Episode-based REPS 149

B Probabilistic Model Learning for Trajectory Prediction 153
B.1 Gradients for Gaussian Process Models . . . . . . . . . . . . . . . . . . . 156

C Robot Learning Tasks 159
C.1 The Robot Throwing Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.2 The Robot Hockey Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.3 The Robot Table Tennis Task . . . . . . . . . . . . . . . . . . . . . . . . . 163

D Publication List 167

Bibliography 169



Abstract

Endowing robots with human-like skills has a significant impact in industrial appli-

cations, medicine, elderly care, handling emergency situations and in many appli-

cations for human-robot interaction. Designing robot skills is, however, inherently

difficult due to the high dimensional continuous state-action spaces of high degree

of freedom anthropomorphic robots. Most design approaches rely on accurate robot

modeling and model-based optimal control methods. However, good models are

often difficult to obtain due to unmodeled nonlinearities and stochasticity. Further-

more, adapting robot skills to unseen situations remains cumbersome. Thus, manu-

ally designing controllers that encode robot skills becomes a difficult, time consum-

ing task.

As opposed to optimal control algorithms, Reinforcement Learning (RL) offers a trial-

and-error approach to learn the required robot skill from experience. In recent years,

Policy Search (PS) algorithms, a subclass of RL methods, have become particularly

successful in learning complex skills for robot tasks. As opposed to standard RL al-

gorithms, PS methods scale well for robot learning tasks with high-dimensional con-

tinuous state-action spaces. Furthermore, expert demonstration can be exploited to

initialize the learning process. However, standard model-free PS algorithms are in-

herently data-inefficient. Even for simpler tasks, model-free approaches require an

overly large amount of interactions with the real robot to learn the task. Furthermore,

most algorithms are designed for learning a fixed task, without taking changing situ-

ations into consideration.

The main goal of this thesis is to propose new approaches and algorithms to bring

robot skill learning closer to real applications by improving the learning efficiency.

The thesis mainly focuses on learning generalized robot skills using contextual policy

search and learning nonlinear stochastic models of robot dynamics for application

in model-based RL.

We first present the contextual Relative Entropy Policy Search (REPS), a PS algorithm

based on information theoretic insights. The contextual extension of REPS constrains

the experience loss between policy updates, and thus, the algorithm provides smooth

learning and safe exploration, which is essential for real robot applications. We show

in several complex robot learning problems that the resulting policy search frame-

work is able to robustly learn the robot skill, while outperforming other approaches.



Contents viii

Despite the good learning performance of contextual REPS, the data inefficiency of

the algorithm prevents efficient application for real robot tasks. Thus, we propose

the Gaussian Process Relative Entropy Policy Search (GPREPS), a model-based ex-

tension of contextual REPS using Gaussian Process (GP) models. GP models use

non-parametric Bayesian regression to capture model nonlinearity and stochasticity.

The resulting extension not only improves data-efficiency, but integrates out model

uncertainty, resulting in higher quality learned skills. We show in simulations and

in a real robot experiment that GPREPS is able to improve data-efficiency in com-

plex learning tasks up to two orders of magnitude. Furthermore, we propose a novel

probabilistic model learning framework, which directly minimizes the divergence

between the observed and the predicted trajectory distributions. We discuss possible

application with Gaussian Process models.

Trajectory prediction with probabilistic models often becomes challenging for high

dimensional state-action spaces, due to assumptions on state transition models. We

propose a novel probabilistic non-parametric modeling method for learning the robot

dynamics and to perform trajectory predictions. We use kernel embedding of condi-

tional distributions to evaluate the prediction in feature spaces associated with ker-

nel functions. Manipulation of distributions in the feature space becomes linear al-

gebraic operations with Gram matrices. Thus, the resulting algorithm avoids model-

ing assumptions and computational approximations, making it simple and straight-

forward to implement. We show in simulated results that the proposed method pro-

vides better trajectory prediction accuracy and it is computationally more efficient,

compared to Gaussian Process models.



List of Tables

3.1 In each iteration of the contextual REPS algorithm, we collect a dataset
Dk = {s[i ],ω[i ],R [i ]

sω}i=1...N by performing rollouts on the real system.
For the REPS algorithm, we reuse the last L datasets in combine them
in the dataset D. Finally, we update the policy by optimizing the dual
function on dataset D, computing the sample weights and performing
a weighted maximum likelihood (ML) estimate to obtain a new para-
metric policy π(ω|s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 The GPREPS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Required experience to achieve reward limits for a 4-link balancing prob-
lem. Higher rewards require better policies. . . . . . . . . . . . . . . . . 104

5.1 The trajectory prediction procedure with kernel embedding using a fixed
control policy π(u|x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 The trajectory prediction procedure with arbitrary, time dependent con-
trol policy using the kernel embedding approach. . . . . . . . . . . . . . 130

ix





List of Figures

1.1 (a) The robot’s pink puck is placed before the hockey racket. The green
target puck is further away, such that the robot cannot reach it. (b) The
robot executes the hitting motion. (c) The moment when the two pucks
collide. (d) The final positions of the pucks and the robot after the ex-
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The reinforcement learning setup. The agent observes the state of the
environment and uses its policy to choose an action. Given the action,
the environment alters its state and provides a reward for the agent. . 4

1.3 (a) The robot has to learn a throwing skill, where the objective is to
land the ball in the basket located at a fixed position. (b) The robot has
to learn a generalized throwing skill, where the basket position might
change in a certain range between experiments. Here we show three
example basket positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The thesis structure. The solid lines express dependency between chap-
ters, while the dashed lines refer to related, but not directly dependent
chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 The learning loop of model-free policy search algorithms. . . . . . . . . 19

2.2 (a) The graphical model of the step-based exploration strategy. The
lower-level control policyπω(u|x t ) is stochastic. (b) The graphical model
of the episode-based exploration. The exploration happens in parame-
ter space, the lower-level policy is usually deterministic. . . . . . . . . 21

2.3 The learning loop of model-based policy search algorithms. . . . . . . . 29

2.4 The prediction procedure using stochastic trajectory evaluation. . . . 32

2.5 The prediction procedure using deterministic trajectory evaluation. . 33

2.6 Bottom left: the illustration of the Gaussian joint distribution over states
and controls. Top left: the dynamics model and the linearization at
the mean of the query distribution. Top right: in red the real succes-
sor state distribution, while in blue the Gaussian approximation of the
successor state distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Bottom left: the illustration of the Gaussian joint distribution over states
and controls. Top left: the dynamics model. Top right: in red the real
successor state distribution, while in blue the Gaussian approximation
of the successor state distribution. . . . . . . . . . . . . . . . . . . . . . . 35

xi



List of Figures xii

2.8 (a) Episode-based and context-free policy search. The environmental
setup, and thus the context s is fixed. (b) The contextual policy search
setup. The context changes in the beginning of each episode according
toµ(s). The upper-level policy conditions on the context to provide the
lower-level policy parametrizationω. . . . . . . . . . . . . . . . . . . . . 38

2.9 The demonstrated angular position q , velocity q̇ and acceleration q̈ for
a 1 DoF robot arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 (a) The trajectories generated by the DMP without the forcing function
(v = 0). (b) The DMP trajectories generated by the trained forcing func-
tion. The robot arm reaches the same angular position g , but the shape
of the trajectory is altered so that it matches the demonstration. . . . . 46

2.11 The demonstrated (dashed) and the DMP encoded trajectories (solid).
The DMP accurately captured the demonstration using only 10 param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.12 Prediction with Gaussian Process models for an increasing number of
samples (black dots). The shaded area represents the 95% prediction
confidence interval. The curves represent samples from p( f∗|x∗,D). . 49

3.1 The 4-DoF planar robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Throwing motion sequence. The robot releases the ball after the speci-
fied release time and hits different targets with high accuracy. . . . . . 70

3.3 Learning curves for the ball-throwing problem. The shaded regions
represent the standard deviation of the rewards over 20 independent
trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Robot hockey task. The robot shoots the control puck at the target puck
to make the target puck move for a specified distance. Both, the ini-
tial location of the target puck [bx ,by ]T and the desired distance d∗ to
move the puck were varied. The context was given by s = [bx ,by ,d∗].
The learnt skill for two different contexts s is shown, where the robot
learned to place the target puck at the desired distance. . . . . . . . . . 72

3.5 The learning curves for the robot hockey task with contextual REPS and
CrKR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 The table tennis learning setup. The incoming ball has a fix initial posi-
tion and a random initial velocity of v = [vx , vy , vz ]T . The velocity dis-
tribution is defined such that the incoming ball lands inside the Land-
ing zone. The goal of the robot is to hit the incoming ball back to the
return position b = [bx ,by ]T , which is distributed uniformly inside the
Return zone. The context variable contains the initial velocity of the ball
and the target return position s = [v T ,bT ]T . . . . . . . . . . . . . . . . . 74

3.7 The learning curves of the table tennis experiment. REPS is able to
learn a good policy after 4000 evaluations, but it sometimes learns a
sub-optimal policy that hits the ball in the net. . . . . . . . . . . . . . . 75

3.8 Animation of two shots to different targets and different serving posi-
tions of the ball learned with REPS. . . . . . . . . . . . . . . . . . . . . . 76

4.1 The reward prediction problem as a general function approximation task. 88



List of Figures xiii

4.2 The reward prediction for the ball throwing task using decomposed
models. First, we predict the robot trajectory τr using the DMP and
the robot model. Subsequently, we use the learned forward kinemat-
ics model to compute the angular position and velocity of the ball x0 at
the release time tr . Finally, we use the free dynamics model of the ball
flight to provide the ball trajectory τb to the reward function. . . . . . . 88

4.3 The sampling accuracy of sampling with an increasing number of sam-
ples. In most of our experiments (top 95%), the accuracy of moment
matching is met by sampling only 50 samples per prediction. However,
in most cases it was enough to sample 20 trajectories to reach the mo-
ment matching performance. . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Comparison of the computation speed of moment matching and sampling-
based long-term prediction. 50 sampled trajectories are needed to reach
the accuracy of moment matching. Over 7000 samples can be created
using a GPU implementation within the same computation time which
is needed for the moment matching approach. . . . . . . . . . . . . . . 94

4.5 Comparison of the standard and the sparse GP approach. . . . . . . . . 97

4.6 Learning curves for the ball throwing problem. . . . . . . . . . . . . . . 106

4.7 The learning curves of GPREPS with different amount of artificial sam-
ples used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 (left) Trajectory and reward samples of the single link pendulum. (right)
The trajectory reward r (τ, s) =∑

t r (xt , ẋt ) distribution and the expected
reward Rsω = E[r (τ, s)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.9 (a) The learning curves of REPS with the stochastic ball throwing task.
At the end of the learning, the policy optimized with the noisy envi-
ronment attains an expected reward of −1086, while the policy learned
with the deterministic dynamics has a final reward of −715. (b) The
learning curves of GPREPS with the stochastic ball throwing task. At
the end of the learning, the policy optimized with the noisy environ-
ment attains an expected reward of −68, while the policy learned with
the deterministic dynamics has a final reward of −64. . . . . . . . . . . 109

4.10 Learning curves on the robot hockey task. GPREPS was able to learn
the task within 120 interactions with the environment. . . . . . . . . . 111

4.11 The GPREPS learning curve on the real robot arm. The shaded area
represents the 95% confidence interval of the result after 5 independent
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.12 The learning curves of the table tennis experiment. GPREPS always
provided a consistent performance, and the final policy was able to re-
turn the ball within 30cm of the target position, while avoiding hitting
the ball into the net. This behavior could be learned within 150 evalua-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of Figures xiv

4.13 An example of prediction outcome with the table tennis experiment.
The first and second model predicts the initial position and velocity of
the incoming ball and its trajectory after bouncing back (black lines).
The third and fourth model predicts the position (blue lines) and the
orientation (not depicted here) of the racket. After detecting a contact,
we predict the returned position of the ball (red diamonds). When we
compare the predictions with the real experiment trajectories (red and
green lines), we can see the high accuracy of the predictions. The mod-
els are learned from 100 experiment rollouts, we sample 10 trajectories
to capture the stochasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 (a) The kernel embedding of the trajectory with a fixed control policy.
(b) The kernel embedding of the trajectory distribution will depend on
the control policy. In the Figure, withµπx we denote that the embedding
of the state will depend on the control policy π(u|x). . . . . . . . . . . . 128

5.2 The pendulum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 (a) Prediction error log10 eα with kernel embedding. (b) Prediction er-
ror log10 eα with GP regression. Note that the contour levels are the
same for both Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 (a) Prediction error log10 eα̇ with kernel embedding. (b) Prediction er-
ror log10 eα̇ with GP regression. Note that the contour levels are the
same for both figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 (a) Trajectory prediction error log10
∑20

t=1 ex t with kernel embedding.
(b) Trajectory prediction error log10

∑20
t=1 ex t with GP regression. Note

that the contour levels are the same for both figures. . . . . . . . . . . . 136

5.6 The expected trajectory reward prediction accuracy of the kernel em-
bedding and the GP approach. . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 The expected trajectory reward prediction accuracy of the kernel em-
bedding and the GP approach with an increasing amount of control
torque noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.1 The illustration of the ball throwing task. . . . . . . . . . . . . . . . . . . 159

C.2 The KUKA lightweight robot arm. . . . . . . . . . . . . . . . . . . . . . . 161

C.3 The illustration of the robot hockey task. . . . . . . . . . . . . . . . . . . 162

C.4 The BioRob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.5 The table tennis learning setup. . . . . . . . . . . . . . . . . . . . . . . . 164



Abbreviations

DMP Dynamic Movement Primitive

DoF Degree of Freedom

EM Expectation Maximization

GP Gaussian Process

KL Kullback–Leibler

MDP Markov Decison Process

PD Proportional Derivative

PG Policy Gradient

PS Policy Search

REPS Relative Entropy Policy Search

RL Reinforcement Learning

SVM Support Vector Machine

w.r.t. with respect to

i.i.d. independent and identically distributed

xv





Symbols and Notations

t time

x state

u control

s context

ω control policy parameter

τ trajectory

q , q̇ , q̈ angular position, velocity and acceleration of robot joints

θ hyper-parameters of a function

πω(u|x) control policy with parametersω

πθ(ω) upper-level policy with parameters θ

φ(x) feature function

k(x , x ′) kernel function

µx mean embedding of distribution p(x)

Cy |x conditional covariance operator

r (x ,u) immediate reward

R(τ) trajectory (episode) reward

Rω expected trajectory (episode) reward

J (θ) objective function with parameter θ

λ ridge factor

K L(p(x)||q(x)) KL-divergence

{x i }N
i=1 set of elements x1, . . . , x N

x = [x1, . . . , xN ]T vector

xvii



Symbols and Notations xviii

X = [x1, . . . , x N ] matrix

X −1 matrix inverse

X T matrix transpose

R real numbers

p(x) probability density of x

E[x] expectation of x

∇θ J (θ) derivative of J (θ) w.r.t. θ

∂J (θ)
∂θ partial derivative



I dedicate this thesis to my beloved family.

xix





Chapter 1

Introduction

It has been a long standing vision of robotics research to endow robots with dexter-

ous skills to solve complex tasks in human environments. Controllers that encode

such skills are predominantly set by experienced engineers. This approach usually

requires years of training and typically assumes perfect knowledge of the robot and

its environment. Hand-tuning robot skills becomes particularly challenging in the

face of uncertainties and with changing environmental conditions. For robot skill

programming tasks, one major challenge is to predict the influence of the control

actions over time (torques, desired accelerations) on the objective function we wish

to maximize. As we typically use a high level objective, which is difficult to capture

solely by the states and actions of the robot, we need to accurately predict the argu-

ments of the objective function. For example, in a ball throwing task we might define

the objective as the minimal distance of the ball to the target position. In general, the

prediction of such quantities requires the highly accurate modeling of the dynamics

1



Chapter 1. Introduction 2

involved in the task, which is difficult due to nonlinear effects and stochasticity. Ad-

ditionally, even with a very good prediction model, we still have solve a complex se-

quential decision making problem, which provides the optimal control actions over

several time steps. Building models and solving the emerging sequential decision

making problem are both highly challenging and time consuming for an expert en-

gineer, even for simpler tasks. Furthermore, to account for changing situations we

would have to re-program the robot, which is clearly impractical.

We illustrate these challenges on a real problem. Consider the robot hockey task

depicted in Figure 1.1. The goal is to acquire a hitting skill with a 6-DoF robot in a

hockey game such that the target puck (in green color) is moved to a certain distance

after a collision with the robot’s puck (in pink color, Fig. 1.1(a)). Thus, the robot

not only has to shoot in the right direction, but with the right force. The robot is

equipped with a hockey racket and the pink puck is placed just before the racket (Fig.

1.1(a)). The robot executes the hitting motion (Fig. 1.1(b)) and the two pucks collide

(Fig. 1.1(c)). After a blink of an eye the final position of the robot and the pucks are

reached (Fig. 1.1(d)).

In order to program this skill to the robot, that is, to generate the required torque

commands over time, we have to have a good understanding of the dynamics mod-

els involved in the experiment. However, building these models becomes particularly

challenging due to the high level of complexity in the dynamics. First, we need to be

able to predict how the hockey racket motion influences the puck’s trajectory while

pushing it. Second, we have to have an accurate model for the sliding motion of the

puck and the collision model. Moreover, the dynamics might change over time, or



Chapter 1. Introduction 3

(a) (b)

(c) (d)

FIGURE 1.1: (a) The robot’s pink puck is placed before the hockey racket. The green
target puck is further away, such that the robot cannot reach it. (b) The robot exe-
cutes the hitting motion. (c) The moment when the two pucks collide. (d) The final

positions of the pucks and the robot after the experiment.

might show stochastic behavior. Additionally, in many cases the task might vary be-

tween skill executions. For example, the position of the target puck might vary in a

certain range. Manually programing the skill for each possible position is clearly im-

practical. Thus, hand-tuning robot trajectories already for this simpler task becomes

highly challenging and time consuming even for experienced engineers.

In order for robots to adapt to new situations and improve upon their acquired skills

without profound knowledge of the environment, the machine learning community

has offered novel methods to allow robots to learn from experience. The key idea



Chapter 1. Introduction 4

FIGURE 1.2: The reinforcement learning setup. The agent observes the state of the
environment and uses its policy to choose an action. Given the action, the environ-

ment alters its state and provides a reward for the agent.

behind these approaches is to enable robots to learn the desired skill by interact-

ing with the environment and evaluating their success in the given task. The re-

sulting trial-and-error approach has yielded promising results with different robotic

systems, such as arms, bipeds and mobile robots. Despite the success with simpler

robotic tasks, it is currently difficult to achieve learning of complex and dexterous

robots skills, such as humanoid locomotion, grasping, or playing games, such as ta-

ble tennis and soccer.

One of the earliest class of algorithms that has proven to be successful in robot learn-

ing tasks is Reinforcement Learning (RL). In RL [80, 81], an agent interacts with the

environment by observing the state of the environment and choosing an appropriate

action using its control policy (Fig. 1.2). However, the agent does not know which is

the optimal action to choose, but receives a reward signal about how successful the

chosen action is. By repeatedly interacting with the environment, the agent builds

up a history of observed states, actions and rewards. Using the accumulated experi-

ence, the agent updates its control policy to improve the expected future reward. In

robot control tasks, the agent corresponds to a controller, which provides the con-

trol signal, such as desired acceleration or torque. The environment represents the



Chapter 1. Introduction 5

dynamics of the robot and its surroundings. The states are typically defined as joint

angles, angle velocities and accelerations and other task relevant information, such

as object position, etc. The reward signal is typically defined by the user and it en-

codes the desired goal for the learning task. Such objectives may include low energy

consumption, distance to goal states, or safety.

While the goal and methods of RL closely relates to that of optimal control [8], there

is a significant difference in the assumed prior knowledge. In optimal control, the ex-

act model of the controllable system, or at least the structure of the model is usually

assumed to be known. In most RL algorithms however, the agent solely learns from

its experience of observed states, rewards and actions, without any prior knowledge

about the model of the environment or the structure of the reward signal. The re-

sulting approach to solve sequential decision making problems makes RL applicable

in many other disciplines, such as finance, games, etc. On the other hand, due to

the generality of RL, the underlying problem often becomes difficult to solve. For ex-

ample, the agent repeatedly faces the problem of choosing an action using limited

information. On one hand the agent is interested in choosing a greedy action, which

maximizes the expected reward based on its accumulated experience. On the other

hand, the agent is motivated to try out novel actions that possibly lead to higher (or

lower) rewards. Choosing an action in the presence of the two contradictory objec-

tives is referred to as the exploration-exploitation dilemma.

While early reinforcement learning algorithms were successful in solving problems

with low-dimensional, discrete state-action spaces, direct application for more com-

plex robotic tasks becomes cumbersome. One of the most significant obstacle when



Chapter 1. Introduction 6

applying RL algorithms for robot learning tasks is the high dimensionality of the state

space1. Standard RL algorithms typically learn the value function of states, which

measures how beneficial it is to reach the given state for maximizing the expected re-

ward. However, the number of states grows exponentially with the state dimension-

ality, and thus, solving higher dimensional robot tasks becomes impractical. While

function approximation helps to mitigate the problem, standard RL algorithms are

not the preferred class of methods to solve complex robot skill learning tasks. Other

obstacles that prevent the straightforward application of RL in robot learning tasks

are the partial observability of the state space, noisy measurements and the difficulty

to define an appropriate reward function that reflects our expectations of the learn-

ing outcome.

Starting from the early 1990’s, with the pioneering work of Williams [88], Policy Search

(PS) algorithms became one of the most successful subclass of RL algorithms, pri-

marily due to their success in higher dimensional robot learning problems [16]. In

PS, the agent explicitly represents its control strategy as a parametrized policy, and

its goal is to find the optimal parameters of the policy that maximizes the expected

reward. By omitting the explicit use of value functions, PS algorithms scale well to

higher dimensional, continuous state-action spaces, which is typical for robot skill

learning tasks. Successful applications of PS algorithms enabled robots to play table

tennis, tether ball, to drum, throw darts, play hockey and many more [33].

Like standard RL algorithms, PS methods exhibit a high level of generality to solve

1For robot learning tasks, a state dimensionality of 10 - 30 is considered high. If we define the state
as the collection of angular positions and velocities at each joint, a 5 to 15 degree of freedom robot is
considered complex.



Chapter 1. Introduction 7

learning problems. For many learning problems however, we might sacrifice gen-

erality and introduce prior knowledge about the task to improve learning efficiency.

Such assumptions might manifest in the form of a structured reward function or the

model of the robot and its environment. However, learning algorithms notoriously

exploit imperfections of the prior knowledge, e.g., using a biased model could lead

to a poor performance in the real task. As learning a good model of the robot and its

environment is substantially more difficult than learning the policy itself, model-free

RL and PS algorithms are often preferred over model-based methods. While model-

free algorithms learn unbiased policies, they typically require thousands of robot ex-

periment evaluations to achieve the learning of a high quality skill. This becomes

a significant disadvantage when working with real robots, as experiments are typi-

cally costly, time consuming, require expert supervision and might lead to premature

robot wear and damage. Model-based RL and PS algorithms address the data ineffi-

ciency by learning a model of the robot and its environment and use it as a simulator

to replace the real robot experiments. Using models not only decreases the required

amount of interactions with the real robot, but also helps to generalize in unexplored

parts of the state-action space. Despite their favorable properties, model-based ap-

proaches are less frequently applied, as learning models of high dimensional nonlin-

ear robot dynamics is challenging, especially in the face of uncertainty. If unbiased

models of the robot dynamics are available, the optimized robot skill will perform

well in the real task.



Chapter 1. Introduction 8

To learn unbiased models of nonlinear robot dynamics, we have to take several re-

quirements into consideration. Firstly, we need probabilistic models, which can ac-

count for model uncertainty. Secondly, the model has to be able to capture the non-

linearity in the dynamics. Most modeling methods typically involve fixing the model

class and finding the optimal parameters of the model that best describes the ob-

served data. However, this approach may still be unsatisfactory if the model is not

perfect. In recent years, non-parametric models have proven to be highly efficient in

learning nonlinear robot dynamics. Non-parametric methods avoid specifying the

model class, instead, the model structure is implicitly captured in the observed train-

ing data and their features. Despite the good generalization property, the compu-

tational demand might be impractically large [62]. However, promising results have

been shown with Gaussian Process models for learning, e.g., the dynamics of a 7-DoF

tendon-driven robot arm [21].

While both model-free and model-based PS algorithms have been successfully ap-

plied for many robot skill learning tasks, most experiments consider only a fixed en-

vironmental setup. Generalizing robot skills for multiple task setups allows robots to

become more flexible and adaptable to changing situations. For example, consider

the learning task where the robot has to learn a throwing skill in order to land a ball

in a basket (Fig. 1.3(a)). While we can solve this task with standard policy search

methods, generalization of the task for changing basket positions (Fig. 1.3(b)) be-

comes a challenging problem. Re-learning the task for every possible position clearly

leads to an impractical learning approach. However, due to the structured nature of



Chapter 1. Introduction 9

(a) (b)

FIGURE 1.3: (a) The robot has to learn a throwing skill, where the objective is to
land the ball in the basket located at a fixed position. (b) The robot has to learn
a generalized throwing skill, where the basket position might change in a certain

range between experiments. Here we show three example basket positions.

motor skills, we can exploit the high similarity of optimal throwing strokes for differ-

ent basket positions, and learn a generalized skill, which provides accurate throwing

skills for a wide range of basked positions. Currently there are only a few algorithms

that exploit such a structure for robot skill generalization. Most of these methods are

model-free and require an overly large number of interactions with the robot to learn

the task.

In order to learn high quality robot skill for complex robots, such as humanoids, we

need new tools and learning methodologies that are able to scale to higher dimen-

sional tasks. This will require the exploitation of prior knowledge in the form of mod-

els and pre-structured policies, and efficient generalization by learning algorithms.



Chapter 1. Introduction 10

1.1 Contributions

Motivated by recent progress in model-free policy search [55] and promising results

of non-parametric model-based policy search [17], we propose novel techniques and

algorithms in this thesis for more efficient robot skill learning. We believe that the

proposed algorithms provide significant contributions for advancing robot skill learn-

ing and narrowing the gap between current applications and the vision of future

robots with super-human skills. The main contributions of the thesis are as follows.

• Generalized robot skill learning. Robot skill generalization and learning are

often treated as separate problems. One of the most common approach to gen-

eralize robot skills is to record tasks demonstrated by a human expert and in-

terpolating over these demonstrations to obtain the skill in a new, yet unseen

situation. This method typically achieves good performance in the demon-

strated region, but the generalization accuracy inherently depends on the qual-

ity and the quantity of demonstrated skills. To account for suboptimal demon-

strations, learning algorithms are often proposed as an extension. However,

the two problems are rarely addressed in a single framework, resulting in slow

learning and less effective generalization property. To address this problem, we

evaluate a novel contextual PS algorithm, the Contextual Relative Entropy Pol-

icy Search (REPS), which treats learning and generalization in a single frame-

work. The algorithm naturally incorporates skill initialization by demonstra-

tion and self improvement by learning. The method is tested in complex tasks,

such as simulated robot hockey, throwing and table tennis.



Chapter 1. Introduction 11

• Model-based framework for robot skill generalization. So far, data-efficiency

has not been addressed in the context of learning generalized robot skills. We

propose a novel, model-based contextual policy search framework that unifies

probabilistic, non-parametric modeling with information theoretic contextual

policy search. We will discuss how to use Gaussian Process dynamics mod-

els in this framework to account for the shortcomings of the model-free policy

search setup. We show in complex simulated and real robot experiments that

the proposed model-based contextual learning algorithm is able to reduce real

robot experiments up to two orders of magnitude compared to the model-free

variant, while learning higher quality policies.

• Probabilistic model learning for trajectory prediction. A key component of

many model-based robot learning algorithms is the probabilistic modeling of

the robot dynamics. Time independent dynamics models are typically used to

predict the expected experiment outcome. Such models are often trained to

maximize the likelihood of the observed state transitions, given the observed

data. While this leads to a tractable training approach, which is easy to im-

plement, it does not necessarily maximize the likelihood of the observed tra-

jectories. This might lead to the problem of inconsistent trajectory predic-

tion. To address this problem, we propose a general probabilistic model learn-

ing framework based on information theoretic insights. Our method directly

maximizes the likelihood over the trajectories while the computations remain

tractable. We will discuss possible applications for Gaussian Process models.

• Kernel embedding of trajectory distributions: Kernel methods have become



Chapter 1. Introduction 12

popular in the machine learning community in the last decade. Recently, works

on embedding conditional probability distributions into feature spaces has

opened the door for applications of probabilistic inference. As features might

be high, or even infinite dimensional, computations in the feature spaces be-

come involved and they are likely to be intractable. However, due to the virtue

of the “kernel-trick”, we do not have to work with features, but with their inner

product defined by a kernel function. When embedding distributions into fea-

ture spaces, the product rule, the sum rule and the Bayes’ rule become linear

algebraic operations with Gram matrices of the training data. Besides having

tractable computations, in feature spaces we do not restrict the predictive dis-

tribution to a parametric class. Instead, the distribution structure is implicitly

represented by the training data and the kernel function. As predicting trajec-

tories using probabilistic models is merely the repeated application of the sum

rule, obtaining the expected trajectory in feature space becomes surprisingly

simple as opposed to standard prediction techniques, where we often use as-

sumptions and approximations. We present a novel trajectory prediction algo-

rithm and discuss model training. We show that by using kernel embedding of

trajectory distributions, we obtain better generalization properties compared

to conventional prediction methods.

1.2 Thesis Outline

The thesis structure is shown in Fig. 1.4.



Chapter 1. Introduction 13

Chapter 1
Introduction

Chapter 2
Preliminaries

Chapter 3
Learning Generalized Robot 
Skills using Contextual REPS

Chapter 4
Model-based Contextual 

Robot Skill Learning

Chapter 5
Kernel Embedding of 

Trajectory Distributions

Chapter 6
Conclusion

FIGURE 1.4: The thesis structure. The solid lines express dependency between
chapters, while the dashed lines refer to related, but not directly dependent chap-

ters.

Chapter 2: Preliminaries. First, we explain how parametrized skills can be improved

by reinforcement learning. We will review the basics of model-free and model-based

policy search algorithms and we show successful examples of robot skill learning.

Subsequently, we will discuss robot skill representation techniques with a special fo-

cus on motor primitives. Finally, we will review the theoretical background of Gaus-

sian Process regression and kernel embedding of conditional distributions.



Chapter 1. Introduction 14

Chapter 3: Learning Generalized Robot Skills using Contextual REPS. In this chap-

ter we evaluate Contextual REPS, a contextual policy search algorithm for learning

and generalizing robot skills. We give an overview of related methods and point out

their shortcomings and advantages. We show in complex skill learning tasks that the

algorithm achieves superior performance over existing methods. The research lead

to these results were published in [41, 42, 48].

Chapter 4: Model-based Contextual Robot Skill Learning. We propose a model-

based learning architecture, which builds on the generalization algorithm discussed

in Chapter 3. We show how non-parametric models can be used in this learning

framework. We present a computationally efficient and easy to implement algorithm

to sample from trajectory distributions. We test the learning framework with the

model-free variant and show simulation and real-world experiment results. In this

chapter we will also discuss a general probabilistic model learning framework for ac-

curate trajectory prediction, which is essential for model-based RL algorithms. We

show that our approach provides tractable solutions and we discuss possible appli-

cations for Gaussian Process models. The research lead to these results were partly

published in [41, 42, 48].

Chapter 5: Kernel Embedding of Trajectory Distributions. In this chapter we show

how we can obtain the expected trajectory in the feature space and how we can train

the model that generates the embedding. We show in simulated results that the pro-

posed algorithm provides better generalization properties compared to, e.g., Gaus-

sian Process models, while the computations remain simple and tractable. The re-

search lead to these results will be submitted to a machine learning conference in the



Chapter 1. Introduction 15

close future.

Chapter 6: Conclusion. This chapter concludes the work, and discusses future work.





Chapter 2

Preliminaries

In this Chapter, we will review the essential theoretical background of the thesis.

First, we give a detailed overview of Policy Search methods. We begin with model-free

policy search for a fixed environmental setup and present successful applications for

robot skill learning. Subsequently, we review several contextual PS algorithms that

have been successfully applied for robot skill generalization. We then turn our atten-

tion to model-based policy search methods to discuss the applied techniques, results

and challenges. After reviewing the essentials of skill learning with PS algorithms,

we will discuss skill representation techniques, which can be improved by learning

algorithms. We will focus our overview on representational ability and adaptabil-

ity, followed by the theoretical backgrounds of non-parametric modeling techniques,

which will be essential for improving the efficiency of skill learning algorithms.

17



Chapter 2. Preliminaries 18

2.1 Policy Search

Policy Search algorithms are one of the most successful subclass of RL algorithms

for learning complex robot skills [16]. In the following, we use two different factor-

ization of PS algorithms. First, we distinguish between model-free and model-based

methods. While model model-free methods can be considered as general stochas-

tic optimization algorithms, model-based approaches exploit prior knowledge about

the task, and thus, they can only be applied for a limited class of problems. PS

algorithms may also be differentiated between context-free and context-based ap-

proaches. Context-free methods learn a policy for a fixed task, while context-based

policies condition on a task specific context variable, e.g., the basket position in the

ball throwing task (Fig. 1.3). We assume that the context variable is observable and

it cannot be influenced by the policy. Thus, context-based algorithms aim to learn a

generalized skill, that is able to provide good policy parametrization for a larger va-

riety of context variables. We first give an overview of model- and context-free PS

methods, which form the basis for context-based and model-based PS algorithms.

2.1.1 Model-Free Policy Search

The key concept behind model-free policy search algorithms is to update the policy

solely based on action-reward samples evaluated on the real system, without any as-

sumption, or knowledge about the system dynamics. The learning loop of model-free

PS methods can be divided into three distinct steps. First, we draw an explorative ac-

tion using the current policy in the hope of obtaining higher rewards. Subsequently,

the chosen action is evaluated on the real system to obtain the reward. Finally, the



Chapter 2. Preliminaries 19

Policy 
Evaluation

Policy 
Update

Exploration

FIGURE 2.1: The learning loop of model-free policy search algorithms.

policy parameters are updated according to the acquired knowledge. In Fig. 2.1 we

show the learning loop of model-free policy search.

For skill learning, we define the skill of the robot as the trajectory consisting of states

and actions τ = {x0,u0, . . . , xT ,uT },T <∞ with joint angles q and angular velocities

q̇ as states x = [q T , q̇ T ]T and desired motor torques or accelerations as controls u.

When learning the skill, we keep T fixed for each trajectory evaluation. In the follow-

ing, we refer to evaluating a trajectory τ of length T as an episode, while the transi-

tion from x t to x t+1 using control u t is one step. The control signal is generated us-

ing either a deterministic u = πω(x), or a stochastic control policy u ∼ πω(u|x) with

parametrization ω. The objective of standard PS algorithms is to obtain the optimal

policy parametrizationω∗ that yields the highest expected reward

J (ω) = Eτ[R(τ)] =
∫

p(τ;ω)R(τ)dτ, (2.1)

where R(τ) is the reward for executing trajectory τ and p(τ;ω) is the trajectory distri-

bution given parametrizationω. In order to find policy parameters that possibly lead



Chapter 2. Preliminaries 20

to higher rewards, we have to incorporate exploration into the PS learning frame-

work. In the earliest PS algorithms [7, 79, 88], and also in many recent approaches

[36, 57, 78], the exploration is introduced by a stochastic control policy. For each time

step t , the control signal u t is drawn from distribution πω(u|x t ) after observing state

x t . As this control strategy takes an explorative action at each time step, we refer to

this exploration technique as step-based. To evaluate the explorative controls, we use

an immediate reward function r (x t ,u t ) and approximate the trajectory reward as the

sum over the immediate rewards R(τ) =∑T
t=1 r (x t ,u t ).

While exploiting the model of the immediate rewards is beneficial to reduce the vari-

ance of policy parameter update, this approach is typically limited in the class of

control policies, i.e., most approaches require linear control policies [36, 58]. Fur-

thermore, when using step-based exploration techniques, we often face the credit

assignment problem: it is not clear what is the influence of control u t on future re-

wards r (x i ,ui ), i > t , as future states and rewards will depend on past controls as

well. Additionally, due to the low-pass filter nature of robot dynamics, the effect of

high frequency exploration might be suppressed. Finally, the reward for many stroke-

based tasks, such as throwing and hitting, cannot be expressed solely by immedi-

ate rewards, but as a function of the whole robot trajectory τ. For these problems,

episode-based PS algorithms [14, 30, 35, 37, 39, 47] have been proposed.

Instead of directly optimizing the control policy parameters ω, episode-based PS al-

gorithms learn the parameters θ of an upper-level policyω∼πθ(ω). The upper-level

policy provides the parametrization for the typically deterministic lower-level con-

trol policy u =πω(x). This controller is then used to obtain the trajectory distribution



Chapter 2. Preliminaries 21

p(τ;ω). The lower-level policy parameter is fixed at the beginning of the episode and

it is kept fixed throughout the episode. The learning objective for episode-based PS

algorithms is to maximize the expected reward over policy parameters

J (θ) =
∫
πθ(ω)

∫
p(τ;ω)R(τ)dτdθ

=
∫
πθ(ω)Rωdω, (2.2)

whereRω = ∫
p(τ;ω)R(τ)dτ is the expected reward for executing the lower-level pol-

icy with parameterization ω. By directly optimizing in parameter space, any pre-

structured lower-level control policy is applicable and more sophisticated exploration

strategies can be implemented. On the other hand, by assigning a single reward

value Rω for the whole episode, we fail to exploit the structure of possible imme-

diate rewards, and thus, we might end up with higher parameter update variance.

The upper-level policy is typically represented as a Gaussian πθ(ω) =N(ω|µω,Σω),

with parameters θ = {µω,Σω}. Following [16], in Fig. 2.2 we show the graphical mod-

ut xt
!

t = 1, . . . , T

⇡!(u|xt)

(a)

ut xt!

t = 1, . . . , T

⇡✓(!)

✓

⇡!(xt)

(b)

FIGURE 2.2: (a) The graphical model of the step-based exploration strategy. The
lower-level control policy πω(u|x t ) is stochastic. (b) The graphical model of the
episode-based exploration. The exploration happens in parameter space, the

lower-level policy is usually deterministic.

els of the two exploration strategies. While step-based exploration (Fig. 2.2(a)) uses



Chapter 2. Preliminaries 22

a stochastic lower-level control policy, algorithms with episode-based exploration

(Fig. 2.2(b)) avoid the credit assignment problem by exploring in parameter space,

using a deterministic control policy. Up to this point we compared the learning ob-

jectives, exploration and evaluation strategies of step-based and episode-based PS

algorithms. We now turn our attention to the policy update techniques of the two

approaches.

Gradient-based techniques. One of the earliest successful PS learning algorithms

were Policy Gradient (PG) techniques [7, 46, 57, 63, 79, 82, 88]. The basic idea behind

PG methods is to obtain the gradient of the objective function

∇ω J (ω) =
∫

∇ωp(τ;ω)R(τ)dτ (2.3)

using it to update the parameters

ωi+1 =ωi +α∇ω J (ω), (2.4)

whereα is a user specified learning rate. Assuming the robot model is Markovian, we

can factorize the trajectory distribution

p(τ;ω) = p(x0)
T−1∏
t=1

p(x t+1|x t ,u t )πω(u t |x t ). (2.5)



Chapter 2. Preliminaries 23

By using the identity ∇ωp(τ;ω) = p(τ;ω)∇ω log p(τ;ω), the policy gradient can be

computed without the knowledge of the transition dynamics p(x t+1|x t ,u t )

∇ω J (ω) = Eτ
[

T−1∑
t=1

∇ω logπω(u t |x t )R(τ)

]
(2.6)

An important extension to standard PG algorithms is the use of a baseline b ∈R

∇ω J (ω) = Eτ
[

T−1∑
t=1

∇ω logπω(u t |x t )(R(τ)−b)

]
. (2.7)

The baseline does not change the value of the expected gradient and it can be chosen

such that it minimizes the variance of the gradient [88]. Baxter et al. [7] and Sutton

et al. [79] showed that the gradient variance can further be reduced by exploiting the

immediate rewards and introducing a time dependent bias term. In the late 2000’s

Peters et al. [57, 58] suggested the use of the natural gradient to account for smooth

learning. By replacing the standard PG with natural gradients, the information loss

between subsequent policies can be upper bounded, resulting in safe exploration

and smoother learning performance. By Tang et al. in [82] it was shown that the pol-

icy gradient computation in (2.6) is a special case of an importance sampled gradient

computation approach, where we only use the current policy outcome to compute

the gradient. As it was shown in [82], building on the idea of importance sampling,

we can efficiently reuse previous policy evaluations to compute the current gradient.

Moreover, the formula for a generalized unbiased baseline is also given.

The policy gradient technique can straightforwardly be applied to episode-based PS

algorithms [64, 65, 71, 90]. For episode-based algorithms the policy gradient, similar



Chapter 2. Preliminaries 24

to Eq. (2.6), is computed as

∇θ J (θ) = Eω
[∇θ logπθ(ω)Rω

]
. (2.8)

While gradient variance reduction can be achieved using baselines [64, 90], the im-

mediate rewards cannot be used to improve the gradient. Nevertheless, promising

results have been shown using natural gradients [90]. However, one significant dis-

advantage of gradient-based techniques is the hand tuned learning rate, which is

often difficult to choose, but crucial for good learning performance. A good learn-

ing rate can often be found after repeated restarts of the learning process, which is

clearly impractical for real robot learning tasks.

Episode-based model-free policy search algorithms can often be considered as gen-

eral black-box optimization methods. Thus, for episode-based model-free robot skill

learning, we can use other black-box optimizers, such as evolutionary computation

techniques, e.g., the CMA-ES algorithm [29]. However, these techniques tend to ex-

plore aggressively, which we generally try to avoid with robot skill learning due to

safety reasons.

Expectation Maximization Based Algorithms. As it was shown in [36] and in [16],

we can write up the optimization problem using the EM approach as maximizing

the log-likelihood of the reward event p(R = 1), or simply p(R). We introduce the

variational trajectory distribution q(τ) to decompose the log-likelihood

log p(R;ω) =
∫

q(τ) log
p(τ,R;ω)

q(τ)
dτ+

∫
q(τ) log

q(τ)

p(τ|R;ω)
dτ. (2.9)



Chapter 2. Preliminaries 25

The first term represents a lower-bound for the likelihood function, as the second

term (the divergence K L(q(τ)||p(τ|R;ω))1) is non-negative. To compute the sec-

ond term, we use p(τ|R;ω) ∝ p(R|τ)p(τ;ω) and we typically assume that p(R|τ) ∝

exp(R(τ)/η), where η is a hand-tuned constant parameter. Thus, in the E-step of

the i th policy update we choose q(τ) = p(R|τ)p(τ;ωi ) to set the KL divergence to 0,

which will provide a tight lower bound for the log-likelihood.

In the M-step our goal is to maximize the expected complete data log-likelihood w.r.t.

the policy parametersωi+1, that is,

ωi+1 = argmax
ω

∫
q(τ) log

p(R|τ)p(τ;ω)

q(τ)
dτ+

∫
q(τ) log q(τ)dτ (2.10)

= −K L(p(R|τ)p(τ;ωi ))︸ ︷︷ ︸
q(τ)

||p(τ;ω))+
∫

q(τ) log p(R|τ)q(τ)dτ︸ ︷︷ ︸
const

. (2.11)

Thus, the optimalωi+1 minimizes K L(p(R|τ)p(τ;ωi ))||p(τ;ωi+1)).

For EM-based PS algorithms the resulting policy update algorithm will depend on

what kind of lower-level control policy is applied to obtain the trajectory distribution

p(τ;ωi ). For example, the Reward Weighted Regression algorithm [36, 56] uses a lin-

ear controller to learn, e.g., the inverse dynamics model of the robot [56]. Instead

of using step-based exploration, the PoWER algorithm [36] applies a state depen-

dent exploration technique, which often results in better policy updates. Promising

results have been shown in underactuated swing-up and in the ball in a cup game

[36]. The application of EM-based policy search method straightforwardly extends

to episode-based algorithms [87].

1The KL-divergence is a non-negative asymmetric distance measure between distributions, which is

defined as K L(p(x)||q(x)) = ∫
p(x) log

p(x)
q(x) d x.



Chapter 2. Preliminaries 26

For standard EM-based policy search methods, the new policy parameter is found by

Moment-projection of the reward weighted old policy to the new policy. In practice,

this results in performing a weighted maximum likelihood estimation of the new pol-

icy parameters, where the weights are typically defined as the exponentially weighted

rewards exp(βR(τ) with scalar β. Alternatively, we can perform the Information-

projection of the reward weighted old policy [47], where the optimal solution is found

by minimizing K L(p(τ;ωi+1)||p(τ;ωi )R(τ)). By doing so, we avoid the typical prob-

lem of standard EM algorithms, that is, averaging over multiple modes of the reward

weighted parameter distribution. However, when using Information-projection, the

new policy parameters cannot be computed in closed form for most policies [47].

A significant advantage of EM-based PS methods compared to PG algorithms is that

no user defined learning rate is required anymore and they can be applied to learn

contextual upper-level policies (see 2.1.3 for more details).

Information Theoretic Approaches. While EM-based PS algorithms provide a prin-

cipled approach to obtain the new policy parameters in closed form, due to pol-

icy update heuristics, the policy update might become overly aggressive or passive.

While passive updates only lead to slower convergence, aggressive updates could re-

sult in trajectories that significantly differ from previously explored motions, which

might cause premature convergence, unsafe situations and robot damage. To limit

the experience loss between policy updates, natural gradient approaches [57, 58] en-

force an upper bound of the KL-divergence between subsequent policies. However,

natural PG algorithms only use an approximate KL-divergence and require a user de-

fined learning rate for good performance.



Chapter 2. Preliminaries 27

To combine the smooth and safe learning properties when using natural gradients

and the closed form policy update of EM-based PS algorithms, the information the-

oretic Relative Entropy Policy Search (REPS) algorithm has been proposed by Peters

et al. [55]. The REPS algorithm limits the information loss between subsequent poli-

cies, while maximizing the expected reward, resulting in smooth convergence to the

optimal solution. The episode-based REPS is a constrained optimization problem in

the form of

max
π

∫
π(ω)Rωdω, (2.12)

s.t .
∫
π(ω) log

π(ω)

q(ω)
dω≤ ε, (2.13)∫

π(ω)dω= 1, (2.14)

where the first constraint represents the KL bound between the new π(ω), and the

previously used upper-level policy q(ω). The upper bound ε ∈ R+ is the only open

parameter of REPS, which is usually easy to choose for a given learning problem. The

second constraint ensures that the new policy π(ω) is a proper distribution.

The solution of the emerging constrained optimization problem exists in closed form

π(ω) ∝ q(ω)exp

(
Rω

η

)
, (2.15)

where η is a Lagrange multiplier, which is found by optimizing the resulting convex

dual function g (η) [16]. The temperature parameter η will scale the reward Rω, such

that after the policy update the KL bound is satisfied. The significant advantage of

REPS over other PS methods is that the temperature parameter is the result of the



Chapter 2. Preliminaries 28

constrained optimization problem and no extra heuristics is needed to compute it,

as opposed to other methods [47, 87]. For more details of the derivation, we refer to

[16].

2.1.2 Model-based Policy Search

After giving a compact overview of model-free PS methods, we turn our attention to

model-based algorithms. While model-free PS algorithms provide unbiased policy

updates by using the real robot for policy evaluation, the resulting approaches are in-

herently data inefficient. Even for simple learning tasks, model-free methods require

hundreds if not thousands of policy evaluations before converging to a high quality

solution. For many robot learning problems, such data inefficiency is impractical, as

executing real robot experiments is time consuming, requires expert supervision and

it result in robot wear, or even robot damage.

As opposed to model-free methods, model-based approaches exploit hand-tuned or

learned models of the robot and its environment to predict the experiment outcome

in computer simulation [3, 4, 6, 17, 18, 21, 32, 49, 68]. This approach can signifi-

cantly increase the data-efficiency of the learning method, however, the success of

the learning algorithm depends on the quality of the models. As hand-tuned mod-

els often fail to capture certain nonlinearities and stochasticity in the dynamics, data

driven model learning is typically used to augment, or even replace the hand-tuned

models. While rather good models can be learned in case of smooth dynamics, mod-

eling abrupt changes and discrete events (e.g., contacts) is generally harder and it



Chapter 2. Preliminaries 29

requires more prior knowledge. Even if a good model is obtained using the mea-

surement data, generalization for unseen situations remains a significant challenge.

Overly confident prediction in the absence of data might lead to a biased policy [6].

For these reasons, model-based methods are not as widely used for robot skill learn-

ing as model-free approaches.

Policy 
Evaluation

Policy 
Update

Model 
Learning

Robot 
Experiment

FIGURE 2.3: The learning loop of model-based policy search algorithms.

The general learning loop of model-based PS methods is shown in Fig. 2.3. The loop

is similar to that of model-free PS (Fig. 2.1), however, the learning process is now aug-

mented with model learning. To collect measurement data for learning a good model

of the robot and its environment, we evaluate the policy on the real robot. The role of

real robot experiment is solely to obtain new measurement data and to evaluate the

learning progress. Additionally, we can introduce prior knowledge about the robot

dynamics in the form of a mathematical model. In this case, learning should fo-

cus only on capturing the difference between our observations and the prior model

prediction. In the next step, we use the learned model to predict the experiment

outcome, without the use of the real hardware. Finally, we update the policy using



Chapter 2. Preliminaries 30

the simulated experiment outcome. In the following, we will give an overview of the

most important model-based policy search methods. We will focus our discussion

on modeling techniques, policy evaluation methods and policy updates.

Modeling techniques. While Abbeel et al. [3] suggested the use of a time dependent

forward model, we typically learn the forward dynamics of the real hardware [6, 18,

21, 32, 49, 68]. Time-dependent models fail to generalize for unseen situations, and

only provide accurate predictions along the observed trajectories [3]. However, they

might be able to predict the system dynamics more accurately, especially if the state

of the system includes unobserved variables.

For most model-based algorithms however, forward models are used to provide long

term trajectory prediction. The most common approach is to learn the discrete-time

stochastic state transition model x t+1 = f (x t ,u t )+ε using measurement data, where

ε∼N(0,Σ) is i.i.d. Gaussian noise.

To learn such general nonlinear probabilistic models of the system dynamics, we can

use the Locally Weighted Bayesian Regression (LWBR) algorithm [6, 49, 68]. LWBR

learns local linear models x t+1 = [1, xT
t ,uT

t ]Tβ+ε of the state transition, where the

parameter vector β is re-estimated locally for query point y∗ = [xT∗ ,uT∗ ]T using the

observed data. Given a Gaussian distribution over β, we can compute the successor

state mean and variance in closed form. LWBR has been applied to learn the forward

model of a helicopter [6, 49] as well as an inverted pendulum [68].



Chapter 2. Preliminaries 31

In recent years, non-parametric models have been proposed to learn the forward dy-

namics of robots [17, 18, 21, 32]. Instead of finding the optimal parameters of a para-

metric model given some observations, non-parametric models implicitly represent

the model structure using the measurement data. In case the parametric model can-

not capture the real dynamics perfectly, the model with the fitted parameters will be

a more or less biased approximation of the real dynamics, which could lead to biased

policies [6]. Non-parametric models circumvent this problem by avoiding the use of

a specific parametric model and compute the predictive distribution solely using the

observed data. Thus, prediction with non-parametric models becomes less biased.

One of the most successful non-parametric modeling technique for nonlinear stochas-

tic dynamics is Gaussian Process (GP) regression [62]. GP models have proven to be

efficient in learning the stochastic dynamics of a robot unicycle [17], a simple robot

manipulator [18], a blimp [32], and a tendon driven robot arm [21]. With GP models

[62], we can compute the predictive distribution of the successor state x t+1 in closed

form given the query input [xT
t ,uT

t ]T and the measurement data {x i+1, x i ,ui }K
i=1. As

the posterior distribution is modeled as a Gaussian, the variance will reflect the con-

fidence of the prediction. Consequently, we can avoid overly confident predictions

in the absence of data in unexplored parts of the state space.

While probabilistic model learning offers a principled way to address model nonlin-

earity and prediction uncertainty in unexplored parts of the state space, prior knowl-

edge of the dynamics in the form of a mathematical model can be exploited to im-

prove the generalization accuracy. Once a crude mathematical model of the dynam-

ics is available, probabilistic modeling can efficiently learn the difference between



Chapter 2. Preliminaries 32

the observations and the mathematical model prediction. This approach has proven

to be efficient to learn the dynamics of a blimp using GP regression [32].

Policy Evaluation. As a robot skill trajectory is represented as a set of states and

actions, for policy evaluation we need to execute long-term trajectory predictions

using the stochastic dynamics models. The resulting trajectory distribution can then

be used to compute the expected reward and the policy gradient along the trajectory.

Long-term trajectory prediction using probabilistic models is computed either using

the stochastic, or the deterministic approach [16].

When using the stochastic approach [6, 32, 49], we repeatedly sample the successor

state x t+1 ∼ p(x t+1|x t ,u t ) from the predictive distribution at each time step. The

implementation of stochastic trajectory prediction is straightforward and the com-

putations are simple for most modeling techniques. Furthermore, control and state

constraints are easy to incorporate into the prediction procedure, as the successor

state can be considered deterministic after sampling from the predictive distribution.

In Fig. 2.4 we show the prediction procedure for stochastic trajectory evaluation. For

Model{x
[i]
t , u

[i]
t }N

i=1 {x
[i]
t+1}N

i=1{x
[i]
t }N

i=1

Sampling

{p(x
[i]
t+1)}N

i=1

⇡!(u|x)

FIGURE 2.4: The prediction procedure using stochastic trajectory evaluation.

each trajectory sample, we first compute the control signal u t ∼ πω(u|x t ). Using

the probabilistic model, we compute the predictive distribution p(x t+1). Finally, we

draw a sample from this distribution to obtain the successor state x t+1. To improve



Chapter 2. Preliminaries 33

the accuracy of the prediction, we typically sample N trajectories for a single con-

troller parametrization ω. Using the stochastic evaluation technique, the trajectory

distribution will be unbiased in the limit.

When using the deterministic approach [17, 18, 60], we wish to compute the pre-

dictive distribution in closed form. For this purpose, we have to propagate the joint

distribution over states and controls p(x t ,u t ) through the model, as shown in Figure

2.5. In this case, we have to take several important challenges into consideration.

Modelp(xt) p(xt+1)p(xt, ut)

⇡!(u|x)

FIGURE 2.5: The prediction procedure using deterministic trajectory evaluation.

First, we need to obtain the joint distribution p(x t ,u t ) in closed form given the con-

trol policy πω(u|x) and p(x t ). This requirement limits the class of applicable control

policies, such that p(x ,u) belongs to a parametric distribution, e.g., Gaussian. Fur-

thermore, handling control constraints is not straightforward in this situation. The

second important challenge when using deterministic trajectory prediction is that we

need to propagate the joint distribution p(x t ,u t ) through the model. However, most

probabilistic modeling method can only provide the predictive distribution p(x t+1)

given a deterministic input [xT
t ,uT

t ]T . Although in special cases we can compute the

predictive distribution in closed form given p(x t ,u t ). For the general case however,

we have to rely on approximations techniques.



Chapter 2. Preliminaries 34

One solution to the problem is to use model linearization to obtain an approximation

of the predictive distribution, where we assume that both the input and output dis-

tributions are Gaussian. We visualize this approach in Fig. 2.6. While this method is

100 Model-based Policy Search

techniques. A convenient approximation of the unwieldy predictive dis-

tribution p(xt+1) is the Gaussian N
(
xt+1 |µx

t+1,Σ
x
t+1

)
. The mean µx

t+1

and covariance Σx
t+1 of this predictive distribution can be computed

in various ways. In the following, we outline three commonly used

approaches: linearization, the unscented transformation, and moment

matching.

Linearization. One way of computing µx
t+1 and Σx

t+1 is to lin-

earize the transition function f ≈ F locally around (µx
t ,µu

t ) and, sub-

sequently, estimate the predictive covariance by mapping the Gaussian

input distribution through the linearized system. With linearization, we

obtain the predictive mean and covariance given by µx
t+1 = f(µxu

t ) and

Σx
t+1 = FΣxu

t F T + Σw, respectively. Figure 3.4 illustrates the idea of

linearization.

Linearization is conceptually straightforward and computationally

efficient. Note that this approach leaves the Gaussian input distribu-

tion p(xt,ut) untouched but approximates the transition function f .

A potential disadvantage is that the transition function f needs to be

−1 −0.5 0 0.5 1
0

1

(x
t
,u

t
)

p(
x t,u

t)

−1 −0.5 0 0.5 1

x t+
1

0 1 2

x t+
1

p(x
t+1

)

Fig. 3.4 Computing an approximate predicted distribution using linearization. A Gaussian
distribution p(xt,ut) (lower-left panel) needs to be mapped through a nonlinear function
(black, upper-left panel). The true predictive distribution is represented by the shaded area
in the right panel. To obtain a Gaussian approximation of the unwieldy shaded distribution,
the nonlinear function is linearized (red line, upper-left panel) at the mean of the input
distribution. Subsequently, the Gaussian is mapped through this linear approximation and
yields the blue Gaussian approximate predictive distribution p(xt+1) shown in the right
panel.

With permission by 
Marc Deisenroth

FIGURE 2.6: Bottom left: the illustration of the Gaussian joint distribution over
states and controls. Top left: the dynamics model and the linearization at the mean
of the query distribution. Top right: in red the real successor state distribution,

while in blue the Gaussian approximation of the successor state distribution.

relatively easy to implement, the accuracy of the predictive distribution will depend

on the nonlinearity of the dynamics in the region of the query distribution. In our

example, the linearization gave a good approximation of the model only in a narrow

region, and thus, we could only obtain a poor approximation of the real successor

state distribution.

Another, more involved approximation technique is moment matching [17, 18, 60].

With moment matching, our aim is to obtain the first and second moment of the pre-

dictive distribution in closed form and approximate the distribution with a Gaussian.

We illustrate this prediction technique in Fig. 2.7. Although the moment matching

approach gives a more accurate prediction compared to linearization, computing the

first and second moment are computationally involved.



Chapter 2. Preliminaries 35

3.3 Policy Updates 103

−1 −0.5 0 0.5 1
0

1

(x
t
,u

t
)

p(
x t,u

t)

−1 −0.5 0 0.5 1

x t+
1

0 1 2

x t+
1

p(x
t+1

)

Fig. 3.6 Computing an approximate predicted distribution using moment matching.
A Gaussian distribution p(xt,ut) (lower-left panel) needs to be mapped through a nonlin-
ear function (black, upper-left panel). The true predictive distribution is represented by the
shaded area in the right panel. To obtain a Gaussian approximation of the unwieldy shaded
distribution, the mean and covariance of the shaded distribution are computed analytically.
These first- and second-order moments fully determine the blue Gaussian approximate pre-
dictive distribution p(xt+1) shown in the right panel. The contour lines in the upper-left
panel represent the joint distribution between inputs and prediction.

from high variances, a typical problem with sampling-based estimation.

Nevertheless, deterministic inference often requires more implementa-

tion effort than sampling approaches.

3.3 Policy Updates

Having introduced two major model classes and two general ways of

performing long-term predictions with these models, in the following,

we will discuss ways of updating the policy. We distinguish between

gradient-free and gradient-based policy updates.

3.3.1 Model-based Policy Updates without Gradient
Information

Gradient-free methods are probably the easiest way of updating the

policy since they do not require the computation or estimation of policy

gradients. By definition they also have no differentiability constraints

on the policy or the transition model. Standard gradient-free optimiza-

tion method are the Nelder–Mead method [48], a heuristic simplex

With permission by 
Marc Deisenroth

FIGURE 2.7: Bottom left: the illustration of the Gaussian joint distribution over
states and controls. Top left: the dynamics model. Top right: in red the real suc-
cessor state distribution, while in blue the Gaussian approximation of the successor

state distribution.

While both stochastic and deterministic approaches are applicable to obtain the episode

reward Rω and the policy gradient along the trajectory, it is worth discussing their

advantages and disadvantages when performing the predictions. When using the

stochastic trajectory prediction approach, we avoid any approximation of the suc-

cessor state distribution. Furthermore, the class of control policies is not restricted

and control constraints can be satisfied. On the other hand, to obtain unbiased pre-

dictions, we need a significant amount of samples, which is computationally de-

manding. When approximating the policy gradient using the stochastic prediction

approach, its variance might become overly large, resulting in inaccurate gradients.

However, this problem can be circumvented when using the deterministic predic-

tion method. Thus, in general, stochastic trajectory prediction is favorable for ap-

proximating the trajectory reward [6, 32, 49], while the deterministic prediction is

preferred for policy gradient approaches [17, 18].



Chapter 2. Preliminaries 36

Policy Updates. The earliest model-based algorithms were the combination of model-

free PS methods with learned forward models and stochastic policy evaluation. Promis-

ing results have been shown for learning autonomous helicopter flight [6, 49], flight

controller of a blimp [32], and cart-pole balancing task [68].

The state of the art model-based policy search algorithm for learning lower-level con-

trollers is the Probabilistic Inference for Learning Control (PILCO) algorithm [17],

which uses GP models. PILCO first learns a GP model of the dynamics of the robot.

Subsequently, it predicts the expected trajectory, its variance and the distribution of

immediate rewards following the current control policy. For policy update, PILCO

computes the policy gradient in closed form along the predicted trajectory using on

the moment matching approach. However, this requires that the immediate reward

is differentiable w.r.t. states and controls. The policy is updated using computer sim-

ulations until the optimal parametrization is found given the current model. The pol-

icy is then executed on the real robot to test the control performance and to collect

new measurement data. The learning loop repeats until convergence to the optimal

policy parameters is attained. However, as PILCO directly optimizes lower-level con-

troller parameters, it cannot be straightforwardly applied to learn upper-level poli-

cies. Moreover, the class of representable lower-level controllers is restricted to func-

tions through which a Gaussian distribution can be mapped in closed form. Never-

theless, PILCO has been successfully applied to learn the pendulum swing-up task

[17] and box stacking with a simple robot manipulator [18] with unprecedented data

efficiency.

With appropriate assumptions on the control policy and the reward function, policy



Chapter 2. Preliminaries 37

gradient model-based algorithms, such as PILCO, are able to learn controllers with

thousands of parameters by exploiting the gradient information. This is a significant

advantage over EM-based [35, 47] and information theoretic approaches [14, 55],

where a policy with only 50 parameters is difficult to learn.

2.1.3 Contextual Policy Search

Many robot tasks require the adaptation to a new environmental situation. For exam-

ple, the robot ball throwing task (Fig. 1.3) requires the throwing stroke to be adapted

to changing basket positions. Contextual policy search algorithms aim to learn an

upper-level policy, which is able to generalize the robot skill for multiple situations.

In the following, we denote task relevant context variables as s. For the ball throwing

task, the context might be defined as s = [px , py ], where px and py are the x and y

coordinates of the basket. We model the context as a random variable s ∼µ(s). Dur-

ing our experiments, we will assume that the context variable is observable, and that

it is constant for a given episode. The context distribution µ(s) is often known for a

given task, but it also can be approximated using observations.

In contextual policy search [36, 47], our goal is to generalize the lower-level control

policy, without having to learn an individual policy πs
θ

(ω) for each context, which

would be tedious and data inefficient. Instead, we follow a hierarchical approach,

where we learn an upper-level policy πθ(ω|s), which provides the lower-level con-

troller parametrizationω given the context s. For comparison, we show the graphical

model of context-free and contextual policy search in Fig. 2.8. In Fig. 2.8(a) we show



Chapter 2. Preliminaries 38

ut xt!

t = 1, . . . , T

⇡✓(!)

✓

⇡!(xt)

(a)

ut xt!

t = 1, . . . , T

✓ ⇡!(xt)

s

µ(s)

⇡✓(!|s)

(b)

FIGURE 2.8: (a) Episode-based and context-free policy search. The environmental
setup, and thus the context s is fixed. (b) The contextual policy search setup. The
context changes in the beginning of each episode according to µ(s). The upper-
level policy conditions on the context to provide the lower-level policy parametriza-

tionω.

the episode-based context-free policy search setup. The context is fixed in this situa-

tion. However, in contextual policy search (Fig. 2.8(b)), the context changes between

experiments according to distribution µ(s). Thus, we use a conditional upper-level

policy πθ(ω|s) to choose the parametrization for the lower-level control policy. We

can consider context-free policy search methods as a special case of contextual PS

algorithms, where the context is a fixed deterministic variable.

In contextual PS, our goal is to find the optimal policyπ(ω|s)∗, such that it maximizes

the expected reward

π(ω|s)∗ = argmax
π

∫
s
µ(s)

∫
ω
π(ω|s)Rsωdωd s, (2.16)

where the context distribution µ(s) is defined by the learning problem and Rsω de-

notes the expected reward when executing the lower-level policy with parameter ω

in context s. As the dynamics of the robot and the environment are stochastic, the



Chapter 2. Preliminaries 39

reward Rsω is given by the expected reward over all trajectories

Rsω = Eτ[R(τ, s)|s,ω] =
∫
τ

p(τ|s,ω)R(τ, s)dτ. (2.17)

The trajectory distribution in context s using the lower-level policy parameters ω is

denoted by p(τ|s,ω). The function R(τ, s) specifies the reward for executing trajec-

tory τ in context s. Typically, R(τ, s) is defined as the sum of immediate rewards,

but the above formulation also allows an arbitrary function of the trajectory and the

context. Thus, we can incorporate terms in the reward function that cannot be com-

puted using state-control pairs [xT
t ,uT

t ]T , but with the complete trajectory τ, e.g.,

minimum distances. In the following, we give an overview of the relatively few con-

textual policy search algorithms that solve the optimization problem in Eq. (2.16).

Reward Weighted Regression (RWR) approximates the upper-level policyπθ(ω|s) with

a Gaussian N(ω|Aφ(s),Σω) [56]. The mean of the Gaussian is linear in the con-

text feature φ(x), and the weight parameters are found by performing a weighed

least squares estimation. The weights are given as exponentially weighted rewards

w [i ] = exp(βRsω
[i ]), i = 1, . . . , N , where N is the number of sample evaluations and β

is a weighting parameter. The upper-level policy parameter A is then found by solv-

ing the weighted maximum likelihood problem maxA
∑N

i=1 w [i ] logπA(ω[i ]|s[i ]),

A = (Φ(s)T WΦ(s))−1Φ(s)T WΩ, (2.18)

where W = diag(w ), Φ(s) = [
φ(s[1]), . . . ,φ(s[N ])

]
is the feature matrix and the matrix

of policy parameters is Ω = [
ω[1], . . . ,ω[N ]

]
. The covariance matrix of the Gaussian



Chapter 2. Preliminaries 40

can easily be computed by weighted maximum likelihood estimation using the pol-

icy parameter A, the features Φ(s) and the lower-level policy parameters Ω [16, 56].

However, RWR suffers from the heuristics involved when choosing the weighting pa-

rameter β.

The Cost Regularized Kernel Regression (CrKR) algorithm [35] is the kernelized ver-

sion of RWR. CrKR is a non-parametric approach, where the policy parameters are

implicitly represented using the parameter-context-reward samples. The policy is

approximated with a Gaussian distribution N(ω|µ(s∗),diag(σ2(s∗))) for query con-

text s∗, where the mean and variance are given by

µ(s∗) = k(s∗)(K +λC )−1ΩT , (2.19)

σ2(s∗) = k(s∗, s∗)+λ−k(s∗)T (K +λC )−1k(s∗), (2.20)

with C = W −1 as the cost matrix. While we are still working with features, we do not

actually have to defineφ(s), but a kernel function k(s, s ′) =φ(s)Tφ(s ′). The resulting

kernel matrix is defined as K =Φ(s)TΦ(x) and k(s∗) =Φ(s)Tφ(s∗). The resulting re-

gression problem closely relates to Gaussian Processes [62]. The CrKR algorithm has

been successfully applied to learn robot table tennis and darts [35]. The disadvan-

tage of using CrKR for representing the policy is that the policy parameters become

uncorrelated with the diagonal covariance matrix.

Daniel et. al [14] proposed a hierarchical learning architecture to learn multiple skills

for a single problem. The algorithm first observers the context and uses a gating

policy π(o|s) to choose an option for executing the skill. Such an option might be a



Chapter 2. Preliminaries 41

back- or forehand stroke in the table tennis game. The gating policy activates one of

the upper-level policies π(ω|s,o), which provide the parametrization to the control

policy. Successful application for the robot tether ball game is presented in [14].

Lastly, the Variational Inference for Policy Search (VIP) algorithm is an EM-based

policy search method [47]. However, VIP uses the Information Projection of the re-

ward weighted policy and it can be extended by using contextual policies. Successful

application for a robot balancing task is discussed in [47].

2.2 Robot Skill Representations

When using policy search for robot skill learning, we benefit from the option of choos-

ing a task-appropriate representation of the skill in the form of a parametrized pol-

icy. Furthermore, we can exploit prior knowledge about the task to initialize the pol-

icy parameters using expert demonstration. Subsequently, the policy parameters are

optimized using PS methods to obtain high quality skills. By using a parametrized

policy, PS algorithms can be straightforwardly applied for robot learning tasks with

high dimensional continuous state-action spaces.

A lower-level policy can be represented as an open-loop controller that directly en-

codes controls over time, such as torque or joint acceleration. In this case, the policy

parameters encode the control for each joint at each time step. To reduce the num-

ber of parameters, we might store the data only at specific time points and use inter-

polation techniques to obtain the missing information. One of the most commonly

used time indexed via-point skill representation is cubic splines. Splines have been



Chapter 2. Preliminaries 42

applied to learn energy efficient and stable impact recovery policies for a wheeled

robot [40]. Despite the compact trajectory representation of cubic splines, the time

dependency limits the generalization efficiency of the skill and the open loop control

could lead to poor result in stochastic environments.

Alternatively, the skill can be represented as a state dependent policy, which directly

maps states to controls. As the mapping is a general regression problem, we can

apply many well understood techniques for model learning and prediction. For ex-

ample, neural networks has been applied for online learning of the walking gait for

biped locomotion [25]. We can alternatively learn local controllers and use radial ba-

sis functions for weighting the local controls to produce the desired torque or acceler-

ation. Such local policies were applied for learning the pendulum swing-up task [17]

and for learning block stacking with a simple robot manipulator [18]. While these

policies encode general, time independent skills, the amount of policy parameters

might become overly large, which could be difficult to learn with PS algorithms.

In recent years, movement primitives became one of the most successful class of

policies for skill learning [31, 34, 53, 67], due to their compact representation of high

dimensional robot movement skills. Movement primitives encode discrete, or peri-

odic movements, such as a throwing stroke or a walking gait. By combining primi-

tives sequentially or simultaneously, movement primitives can be regarded as build-

ing blocks for constructing more complex skills. Primitives typically encode the ref-

erence angular position and velocity for each joint of the robot, which is then tracked

using, e.g., by a feedback or an inverse dynamics controller. Dynamic Movement

Primitives (DMPs) generate the trajectory using a second order dynamical system,



Chapter 2. Preliminaries 43

where the trajectory shape can be modified using policy parameters [31, 34]. By

modifying the parameters of the dynamical system, the movement can be scaled

both spatially and temporarily. A probabilistic representation of movement primi-

tives allows for blending, simultaneously activating skills and computing the optimal

tracking controller parameters as well [53]. During our experiments we will often use

DMPs to represent the robot skill, and a detailed description of DMPs is given in the

following section.

2.2.1 Dynamic Movement Primitives

In the following, we will only consider learning stroke based skills. Thus our review

will only focus on representing discrete movements. For representing periodic skills,

we refer to [31] and [34]. A dynamic movement primitive [31] is defined as a second

order dynamical system that acts like a spring-damper system which is activated by

a non-linear forcing function f . The system is described by

ẍt = τ2αx (βx (g −xt )− ẋt )+τ2 f (zt ; v ), (2.21)

żt = −ταz zt . (2.22)

with constant parameters αx ,βx , αz and time scaling parameter τ. Typically, a sep-

arate DMP is used for each joint of the robot. The phase variable zt acts as internal

clock of the movement. It is shared between all joints to synchronize their move-

ment. It is simulated by a separate first order dynamical system and is initialized as



Chapter 2. Preliminaries 44

z0 = 1. It converges to 0 as t →∞ and it influences the shape of the trajectory by driv-

ing the non-linear forcing function f . The parameter g is the unique point attractor

of the system, which can be set by the user or initialized using demonstration. The

spring-damper system is modulated by the function f (zt ; v ) =φ(zt )T v , which is lin-

ear in its weights v , but non-linear in the phase zt . The weights v specify the shape

of the movement and can be initialized with expert demonstration as well. The basis

functions φi (zt ), i = 1, . . . ,K activate the weights as the trajectory evolves. The basis

functions are defined as

φi (zt ) = exp(−(zt − ci )2/(2σ2
i ))zt∑K

j=1 exp(−(zt − c j )2/(2σ2
j ))

,

where ci is the basis center and σi it the bandwidth parameter. The squared expo-

nential basis functions are multiplied by zt such that f vanishes for t →∞. Hence,

for t →∞, the DMP will behave as linear, stable system with point attractor g . The

speed of the trajectory execution can be regulated by the time scaling factor τ ∈ R+.

The weight parameters v of the DMP can be initialized from observed trajectories

{xobs , ẋobs , ẍobs} by solving

v = (ΦTΦ)−1ΦT Y , Y = 1

τ2 ẍobs −αx (βx (g −xobs)− ẋobs), (2.23)

whereΦt ,· =φT (zt ) is the matrix of basis vectors at time step t and g is the final ele-

ment of xobs . In a robot skill learning task, we can adapt the weight parameters v , the

goal attractor g and the time scaling factor τ to optimize the trajectory. Additionally,

we can also adapt the final desired velocity ġ of the movement with the extension



Chapter 2. Preliminaries 45

given in [34].

To reduce the dimensionality of the learning problem, we usually learn only a subset

of the DMP parameters. For example, when learning to return balls in table ten-

nis, we initialize and fix the weights v from expert demonstration. Subsequently, we

adapt the goal attractor g and the final velocity ġ of the DMPs to improve the hit-

ting stroke. After obtaining a desired trajectory encoded by the DMP, the trajectory

is followed by a feedback or an inverse dynamics controller. In the presented tasks,

the motor primitive is always executed for a predefined amount of time. For a more

detailed description of the DMP framework we refer to [34].

Example. We give an example of initializing the DMP parameters for a 1 DoF robot

arm from demonstration. Assume that we have observed a demonstration of the

required joint trajectories (Fig. 2.9). Subsequently, we train the weight parameters

0 0.5 1

−20

−10

0

10

time [sec]

 

 

q

q̇

q̈

FIGURE 2.9: The demonstrated angular position q , velocity q̇ and acceleration q̈
for a 1 DoF robot arm.

v using Eq. (2.23) for fixed basis function parameters {ci ,σi }10
i=1. In Fig. 2.10(a) we

show the DMP trajectories without the forcing function, that is v = 0. In Fig. 2.10(b)

we show the DMP generated trajectories using the trained weight parameters v . As

we can clearly see, the forcing function changes the shape of the trajectory, but the



Chapter 2. Preliminaries 46

final angular position g remains unaltered. From Fig. 2.11 we can see that the DMP

0 0.5 1
0

0.5

1

q

g

0 0.5 1
0

5

10

q̇

0 0.5 1
−200

−100

0

q̈

time [sec]
0 0.5 1

−1

0

1
f
(z
)

time [sec]

(a)

0 0.5 1
−2

0

2

q

g

0 0.5 1
−10

0

10

q̇

0 0.5 1
−50

0

50

q̈

time [sec]
0 0.5 1

−200

0

200

f
(z
)

time [sec]

(b)

FIGURE 2.10: (a) The trajectories generated by the DMP without the forcing func-
tion (v = 0). (b) The DMP trajectories generated by the trained forcing function.
The robot arm reaches the same angular position g , but the shape of the trajectory

is altered so that it matches the demonstration.

accurately captured the demonstrated trajectories using only 10 parameters.

0 0.5 1

−20

−10

0

10

time [sec]

 

 

q
r

q̇
r

q̈
r

FIGURE 2.11: The demonstrated (dashed) and the DMP encoded trajectories
(solid). The DMP accurately captured the demonstration using only 10 parame-

ters.



Chapter 2. Preliminaries 47

2.3 Gaussian Process Regression

Gaussian Processes are efficient non-parametric Bayesian regression tools [62] that

explicitly represent model uncertainties. GP models can be applied for general re-

gression problems, such as modeling the dynamics of a robot [17], time series anal-

ysis [62], or signal processing [15, 19]. GP models are non-parametric, the model

prediction is explicitly represented with the observed training data and a properly

chosen kernel function, without the need of specifying the model class. The predic-

tion is expressed in terms of a Gaussian distribution, and thus, GP models provide

a confidence measure of the prediction. However, the computational demand for

model training and prediction might be overly large. In the following, we give a brief

overview of Gaussian Process Regression. For further details we refer to [62].

For a general regression problem, given the training data D= {x i , yi }N
i=1, x ∈ Rd , y ∈

R, we wish to approximate the target values y as a function of the input x , y(x) =

f (x)+ ε, where ε ∼N(0,σ2
ε) is zero mean i.i.d. Gaussian noise. With GPR our goal is

to predict the distribution over y∗ for test input x∗ in a conditional Gaussian model

p(y∗|x∗,D). The joint prior over training and test targets can be expressed as

 y

y∗

∼N


 0

0

 ,

 K +σ2
ε I k

kT k(x∗, x∗)+σ2
ε


 , (2.24)

where I is the identity matrix, K is the N × N kernel matrix with elements K i j =

k(x i , x j ) and k denotes the kernel vector for the query input with k i = k(x i , x∗), i =



Chapter 2. Preliminaries 48

1, . . . , N . The covariance or kernel function k(·, ·) defines a similarity measure be-

tween the input data. A common choice for kernel function is the squared exponen-

tial

k(x , x ′) =σ2
f exp

(
− (x −x ′)T W −1(x −x ′)

2

)
, (2.25)

which expresses the closeness of x an x ′ according to the diagonal weighting matrix

W = diag(w 2). The parameter σ2
f represents the variance of the function. We refer

to parameters θ = {w ,σ f ,σε} as hyper-parameters of the GP model. For the prior in

Eq. (2.24), we used zero mean, but knowledge about the regression problem might

suggest more informative prior mean functions.

For a new test input x∗, the predictive distribution p(y∗|x∗,D) of the posterior Gaus-

sian process is a Gaussian N(y∗|µ∗,σ2∗) with mean and variance

µ∗ = kT (K +σ2
ε I )−1 y , (2.26)

σ2
∗ = σ2

ε +k(x∗, x∗)−kT (K +σ2
ε I )−1k . (2.27)

We show an illustration of GP regression in Fig. 2.12. For simplicity, we use one

dimensional inputs and targets. The shaded area represents the 95% confidence in-

terval of the prediction. In the figure, we also depict samples from the target function

p( f∗|x∗,D) against x∗. As we can see, without observing any samples (represented

with black dots), the prediction variance is high. However, after observing an in-

creasing amount of samples, the variance rapidly reduces and the sample functions

converge to the real underlying function.

Although GP models are non-parametric, we still have to solve the model selection



Chapter 2. Preliminaries 49

x

y

-2 0 2 4 6 8 10
-0.5

0

0.5

(a)

x

y

-2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

x

y

-2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

x

y

-2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d)

FIGURE 2.12: Prediction with Gaussian Process models for an increasing number
of samples (black dots). The shaded area represents the 95% prediction confidence

interval. The curves represent samples from p( f∗|x∗,D).

problem. This involves finding the kernel function and its hyper-parameters that

best describes the training data. While the regression problem usually gives a good

intuition for choosing the kernel function, finding the optimal hyper-parameters is

a more difficult problem. In order to find the optimal hyper-parameters, we often

maximize the marginal log-likelihood [62]

log p(y |X ,θ) =−1

2
y T (K +σ2

ε I )−1 y − 1

2
log |K +σ2

ε I |− n

2
log2π, (2.28)



Chapter 2. Preliminaries 50

whereθ represents the hyper-parameters. Other optimization methods, such as cross

validation is also applicable [62].

One important disadvantage of kernel-based methods is the high computational de-

mand. When executing a prediction using Eqs. (2.26-2.27), we first compute the

kernel vector k , then an inner product of two vectors for the predictive mean, which

has O(N ) computational complexity given (K +σεI )−1, where N is the number of ob-

served samples. For the predictive variance, the computational complexity is O(N 2).

However, during training the hyper-parameters, we repeatedly have to invert (K +

σ2
ε I ) with the latest hyper-parameters, which has O(N 3) computational complexity.

While we can use Cholesky decomposition to reduce the computation time of the

inverse [62, 70], training and prediction still remains expensive. This is a significant

problem when learning robot dynamics, as the speed of the control loop is typically

around 500−1000Hz, and thus, computations become impractically slow after only

a few seconds of recorded data. While undersampling could reduce the data size, the

resulting regression problem might be more difficult to solve.

An alternative way to reduce the computational complexity is the use of sparse Gaus-

sian Process models [11, 59, 72, 85]. Sparse GPs maintain only a low number M ¿ N

of highly representative samples. The resulting computational complexity for mean

prediction typically becomesO(M), for variance prediction it isO(M 2), and for model

training it is typically O(N M 2). However, sparse GP models tend to over- or underfit

the data compared to the standard GP approach, which could lead to an overly con-

fident or timid prediction. Recently, local GP models have been proposed [50, 51, 52]

to decompose the global regression problem into local ones. The local regression



Chapter 2. Preliminaries 51

models use only a low amount of samples, and thus, the prediction can be performed

relatively fast. Promising results have been shown for learning the inverse dynamics

model of the robot online [52].

2.4 Kernel Embedding of Conditional Distributions

In recent years, kernel methods became popular in the machine learning community

[69]. The key idea of kernel methods is to execute computations in possibly infinite

dimensional feature spaces where the underlying problem is easier to solve. How-

ever, due to the virtue of the “kernel-trick”, we can avoid the explicit definition of the

feature function. Instead, we only need to specify the inner product of features in

the form of a kernel function. Thus, computations become tractable and they are

typically easy to implement in a data-driven fashion. Successful applications are, for

example, Support Vector Machines [10] for classification, Gaussian Processes [62] for

both classification and regression and many more [69].

In recent years, there has been an increasing focus on applying kernel methods for

probabilistic inference applications [74] in graphical models [38]. The key idea is to

embed conditional distributions into feature spaces, where the manipulation of dis-

tributions can be performed by linear algebraic operations. The kernel embedding

approach has many advantages compared to direct manipulation of probability dis-

tributions. First, probabilistic operations, such as sum rule, chain rule and Bayes’

rule become simple linear algebraic operations in feature spaces for arbitrary distri-

butions [23]. Thus, we can avoid solving complex integrals and using approximations



Chapter 2. Preliminaries 52

for the predictive distribution. Second, as kernel embedding is a non-parametric

method, we can avoid specifying the class of a parametric distribution. Thus, we can

capture rich statistical features of the distribution using the observed data. Finally,

by avoiding the explicit use of parametric distributions, kernel embedding is suitable

for working with discrete variables, strings, etc., as long as a positive definite kernel is

defined [74]. Successful applications of the kernel embedding approach are, for ex-

ample, belief propagation [74, 75] and filtering with Hidden Markov Models [73, 76].

In the following, we give a brief overview on the kernel embedding of conditional

distributions. For more details we refer to the review paper of Song et al. [74].

We begin by defining the positive definite kernel function k : X×X → R such that

k(x , x ′) ≥ 0 for arbitrary points x , x ′ ∈ X. We define the Reproducing Kernel Hilbert

Space (RKHS) FX on X with kernel k(x , x ′) as a Hilbert space of functions f : X→ R

with inner product 〈·, ·〉. Each element k(x , ·) of F satisfies the reproducing property

f (x) =
〈∑

i
αi k(x i , ·),k(x , ·)

〉
(2.29)

= ∑
i
αi k(x i , x), (2.30)

where the function is f (·) =∑
i αi k(x i , ·) and the αi values are constants. Thus, eval-

uating function f (·) at point x can be represented as an inner product. The kernel

function is often referred to as a feature k(x , ·) =φ(x). However, for function evalu-

ation, we only have to compute k(x , x ′) = 〈φ(x),φ(x ′)〉 without the explicit represen-

tation of the possibly infinite dimensional feature φ(x). Typical kernel functions are

the squared exponential and the polynomial kernels.



Chapter 2. Preliminaries 53

The kernel embedding of a distribution is represented as the expected feature map,

which is a point in the RKHS

µx = Ex [φ(x)] =
∫
X

p(x)φ(x)d x . (2.31)

The embedding can be generalized for joint distributions over an arbitrary amount

of random variables. The joint distribution can be embedded to a tensor product fea-

ture space. For example, for joint distribution p(x , y), x ∈X, y ∈X the tensor product

feature space is F⊗F. Thus, the embedding of p(x , y) can be expressed as

Cx y = Ex y [φ(x)⊗φ(y)] =
Ï

X×X
p(x , y)φ(x)⊗φ(y)d xd y . (2.32)

For most practical examples, we only have access to samples from distribution p(x)

and p(y), {x i , y i }N
i=1. In this case we can use an empirical estimation for the mean

embedding and the covariance operator

µ̂x = 1

N

N∑
i=1
φ(x i ), (2.33)

Ĉx y = 1

N

N∑
i=1
φ(x i )⊗φ(y i ). (2.34)

We will see later that computation with the empirical estimates of the mean embed-

ding and covariance operator will lead to linear algebraic operations with Gram ma-

trices.

We now turn our attention to the manipulation of distributions in feature spaces.

First, we discuss the embedding of conditional distribution p(y |x∗), where x∗ is the



Chapter 2. Preliminaries 54

deterministic query point. The mean embedding of the conditional is defined as

µy |x∗ = Ey |x∗ [φ(y)] =
∫
X

p(y |x∗)φ(y)d y . (2.35)

The conditional embedding can also be defined using the conditional covariance op-

erator

µy |x∗ = Cy |xφ(x∗), (2.36)

= Cy xC
−1
x xφ(x∗), (2.37)

where we use the definition Cy |x = Cy xC
−1
x x [74]. The empirical estimation of the co-

variance operator Cy |x when observing N samples {x i , y i }N
i=1 is

Ĉy |x =Φy (K +λI )−1ΦT
x , (2.38)

where λ ∈ R+ is a small constant to avoid numerical problems during matrix inver-

sion, the feature matrices of observations {x i , y i }N
i=1 are Φx = [φ(x1), . . . ,φ(x N )] and

Φy = [φ(y 1), . . . ,φ(y N )], and the kernel matrix is K i j = 〈φ(x i ),φ(x j )〉 = k(x i , x j ). The

empirical estimation of the conditional mean embedding given Ĉy |x and query x∗ is

µ̂y |x∗ = Φy (K +λI )−1

k(x∗)︷ ︸︸ ︷
ΦT

x φ(x∗), (2.39)

= Φyβ, (2.40)

with β = (K +λI )−1k(x∗) and k i (x∗) = 〈φ(x i ),φ(x∗)〉 = k(x i , x∗). However, in many

cases the query might be represented as a distribution over x , e.g., q(x), instead of a



Chapter 2. Preliminaries 55

deterministic value x∗. In this case, we have to marginalize over x to obtain p(y) and

the embedding µq
y , where we emphasize that x comes from distribution q(x). Using

the covariance operator Cy |x we can write up the mean embedding µq
y as

µ
q
y = ExEy |x [φ(y)]

= Ex [Cy |xφ(x)]

= Cy |xE[φ(x)]

= Cy |xµ
q
x . (2.41)

In practice, we assume that the mean embedding of the prior is given by µq
x =Φx̃α

with samples {x̃ i }M
i=1, x̃ ∈X, and thus, the sample based approximation of the marginal

embedding is

µ̂
q
y = Φy (K +λI )−1K̃α, (2.42)

where K̃ =ΦT
xΦx̃ .

In some cases we wish to compute the expected value of a function f ∈FX given the

embedding of the prior distribution µq
x =Φxβ. Assume that the function is given by

f =Φxα. To compute the expected value, we use the reproducing property

f (x) = 〈 f ,µq
x 〉 =βT Kα. (2.43)



Chapter 2. Preliminaries 56

In other cases, we wish to decode the most likely value x∗ for embedding µx =Φxβ.

We can find this value by solving

x∗ = argmin
x

||φ(x)−Φxβ||2 (2.44)

= argmin
x

k(x , x)−2βT k(x)+const. (2.45)

This optimization problem is typically easy to solve. For example, for the squared

exponential kernel, the optimal x∗ can be found by fixed point iteration [23]. For

derivation of the kernel sum rule and the kernel Bayes’ rule, we refer to [74].

While kernel embedding offers an elegant solution for manipulating distributions,

model selection becomes a challenging problem. Model selection involves choos-

ing an appropriate kernel function and its hyper-parameters. As with Gaussian Pro-

cesses, prior knowledge about task often gives a good intuition about the kernel func-

tion. However, the hyper-parameters have to be optimized for good performance.

When using Gaussian Processes, we typically maximize the log-likelihood of the pre-

dictions. However, when using kernel embedding, we do not have access to a para-

metric likelihood function and we cannot directly maximize the log-likelihood. On

the other hand, other approaches, such as cross validation are applicable for tuning

the hyper-parameters.



Chapter 3

Learning Generalized Robot Skills

using Contextual REPS

In order to let robots operate outside laboratory environments, we need novel learn-

ing algorithms that allow robots to adapt their skills to new situations based on their

perception. We showed such a problem in Fig. 1.3. The robot has to learn a throwing

stroke, but the target position to throw to, which is defined by the context variable s,

changes between task executions. One way to solve the problem is to demonstrate

the throwing stroke for a wide variety of target positions, and interpolate between

the demonstrations for a new, yet unseen context. While this approach offers good

performance for the observed contexts, the generalization efficiency of the skill will

inherently depend on the demonstrations, which are often suboptimal in terms of

consumed energy and accuracy. Furthermore, interpolation between demonstrated

57



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 58

skills is not straightforward. As the lower-level policy usually encodes joint trajecto-

ries over time, averaging over these trajectories might lead to an infeasible solution.

To account for suboptimal demonstrations and adaptation to new situations, the

generalization is often augmented with learning. Typically, the two problems are

solved separately, that is, first improve upon the acquired skills, then use a gener-

alization approach to provide the skill for a new context. However, by decomposing

the objectives to two distinct goals, the problem might be more difficult to solve.

Thus, to efficiently solve the generalization and learning problem, we need an algo-

rithm that treats the two problem in a single framework. In recent years, contextual

policy search algorithms have been proposed to tackle this problem [14, 35, 47]. Con-

textual PS algorithms (Sec. 2.1.3) learn an upper-level policy π(ω|s), which provides

the lower-level policy parameters ω by conditioning on the observed context s. As

the objective of contextual PS algorithms is to maximize the expected reward over

the context and lower-level policy parameter distribution p(s,ω), generalization and

learning are directly addressed.

When learning robot skills, the upper-level policy provides explorative skill parame-

ters to search for better solutions of the learning task. However, explorative actions

might lead to infeasible, or even dangerous skills, which might cause damage to the

robot and the environment. To account for smooth learning and avoiding aggres-

sive exploration, the Relative Entropy Policy Search [55] algorithm offers an elegant

solution to upper bound the experience loss between policy updates. The updated

policy will provide robot trajectories, which are close to the already observed and safe

trajectory distribution. For more details on REPS, we refer to Sec. 2.1.1.



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 59

In the following, we describe the contextual extension to episode-based REPS for

learning generalized robot skills. Contextual REPS uses the upper bound over the

joint context-policy parameter space, and thus, it aims to provide a high quality pol-

icy over all possible tasks. Choosing a good upper bound parameter is less problem

dependent and it is typically easy to choose for a learning problem. Other contextual

policy search methods do not use the information loss bound and require heuris-

tics to set the temperature parameter [35, 47], which will ultimately influence the

greediness of policy updates. The temperature parameter is typically more difficult

to choose for good learning performance than the upper-bound on information loss.

In the following, we give an overview on related work in robot skill generalization and

learning. Then, we formulate the contextual skill learning framework based on the

ideas of episode-based context-free REPS. We show that the solution to the problem

exists in closed form, and we provide a sample-based version of the algorithm, which

is useful for robot skill learning problems. Subsequently, we show simulation results

on complex robot learning tasks, such as robot throwing, robot hockey and robot

table tennis.

Contextual REPS has first appeared in [13], but thorough evaluation with complex

robot learning tasks has also been published by Kupcsik et al. [41, 42] and by Neu-

mann et al. [48].



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 60

3.1 Related Work

Robot skill generalization has been investigated by many researchers in recent years.

In [24, 86], robot skills are represented by Dynamic Movement Primitives [31]. The

DMPs are generalized using demonstrated trajectories. First, the DMP parameters

ω are extracted from a human expert’s demonstration in a specific context s. Using

multiple demonstrations, a library of context-parameter pairs {s,ω}N
i=1 is built up.

Subsequently, the DMP parametersω∗ for a query context s∗ is chosen using regres-

sion techniques. While generalization has proven to be accurate in humanoid reach-

ing, grasping and drumming, the parameters are not improved by reinforcement

learning. Thus, the quality of the reproduced skill inherently depends on the quality

and quantity of the expert demonstration [44]. In [22], Gaussian Process regression

has been applied to generalize demonstrated skills to new situations. The proposed

method can also be applied in an online fashion, where the context changes over

time. Promising results have been shown for robot grasping task, where the target

object was in motion, while the robot was executing the reaching skill. Stulp et al.

[77] proposes a context-based regression technique to generalize over DMP parame-

ters from demonstrations. Promising results have been shown for object transporta-

tion, where the context was represented by the height of an obstacle between start

and goal positions.

To account for skill improvement, policy search methods have been applied [35, 47].

Kober et al. [35] proposed the Cost-regularized Kernel Regression algorithm (see Sec.

2.1.3) to learn DMP parameters for throwing a dart at different targets and for robot



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 61

table tennis. However, CrKR cannot scale well to higher dimensional learning prob-

lems due to its uncorrelated exploration strategy. Another PS algorithm is proposed

in [47] by Neumann for robot skill generalization. The algorithm uses a probabilistic

approach based on variational inference to solve the underlying RL problem. The

proposed method was able to generalize a lower-level controller that balances a 4

DoF planar robot around the upright position after a random initial push. However,

the solution for the proposed PS algorithm cannot be computed in closed form for

most upper-level policies and it is computationally very costly to obtain. Recently,

the Mixture of Movement Primitives (MoMP) algorithm has been introduced [45] for

robot table tennis. The MoMP approach first initializes a library of movement primi-

tives and contexts using human demonstrations. Then, given a query context, a gat-

ing network is used to combine the demonstrated DMPs into a single one, which is

then executed on the robot. The gating network parameters can be adapted based

on how successful the movement primitives are in the given context. Promising re-

sults in real robot table tennis have been presented [45]. However, the formulation

of the learning problem required a lot of prior knowledge and it is unclear how the

algorithm scales to domains where this prior knowledge is not applicable. In [14], a

hierarchical version of REPS is applied to learn multiple options to execute a given

task. Daniel et. al [13] proposed a time indexed version of REPS to combine skills se-

quentially in a robot hockey game. The algorithm learns an upper-level policy with

the aim of achieving good long-term performance, instead of independently maxi-

mizing the reward for each stage of the task. Finally, a general robot skill learning

framework has been proposed by daSilva et al. [12]. The approach separates general-

ization and policy learning to a classification and a regression problem. The resulting



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 62

policy is a mixture of finite amount of local policies. However, choosing the amount

of local policies is not straightforward and separating the generalization and policy

improvement step into two distinct algorithms seem data inefficient and counter in-

tuitive.

3.2 Contextual Episode-based REPS

After reviewing relevant works in the literature, we turn our attention to the contex-

tual extension for the Relative Entropy Policy Search algorithm. The intuition of REPS

[55] is to maximize the expected reward, while staying close to the observed data to

balance out exploration and experience loss. REPS uses an information theoretic ap-

proach, where the relative entropy between consecutive trajectory distributions is

bounded. By upper bounding the experience loss, we can avoid wild exploration,

which could lead to robot damage. The relative entropy bound results in smooth

learning, which avoids greedy updates and prevents premature convergence [14, 42].

In the episodic learning setting, the context s and the parameter ω uniquely deter-

mine the trajectory distribution [14]. For this reason, the trajectory distribution can

be abstracted as the joint distribution over the parameter vectorω and the context s,

i.e., p(s,ω) = µ(s)π(ω|s). To bound the relative entropy between consecutive trajec-

tory distributions, contextual episode-based REPS uses the constraint

∫
s,ω

p(s,ω) log
p(s,ω)

q(s,ω)
d sdω≤ ε, (3.1)



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 63

where p(s,ω) represent the updated and q(s,ω) is the previously used context-parameter

distribution. The parameter ε ∈ R+ is the upper bound of the relative entropy. A

smaller value of ε results in more conservative policy updates, while a higher ε leads

to faster converging policies.

As the context distribution µ(s) is defined by the learning problem and cannot be

chosen by the learning algorithm, the constraints
∫
ω p(s,ω) = µ(s), ∀s must also

be satisfied. However, in the case of continuous context variables, we would have

infinite number of instances of this constraint. To keep the optimization problem

tractable, we require only to match feature averages instead of single probability val-

ues, i.e.,

∫
s

p(s)φ(s)d s = φ̂, (3.2)

where p(s) = ∫
ω p(s,ω)dω. The feature vector is denoted asφ(s), while φ̂ denotes the

observed average feature vector. For example, if the feature vector contains all linear

and quadratic terms of the context, the above constraint translates to matching the

mean and the variance of the distributions p(s) and µ(s). The contextual episode-

based REPS learning problem is now given by

max
p

Ï
s,ω

p(s,ω)Rsωd sdω, (3.3)

s.t.:
Ï

s,ω
p(s,ω) log

p(s,ω)

q(s,ω)
d sdω≤ ε, (3.4)Ï

s,ω
p(s,ω)φ(s)d sdω= φ̂, (3.5)Ï

s,ω
p(s,ω)d sdω= 1. (3.6)



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 64

The optimization objective is to maximize the expected reward Rsω over contexts s

and lower-level policy parameters ω using the joint distribution p(s,ω) (Eq. (3.3)).

For the sake of clarity, we restate the definition of the expected reward

Rsω =
∫

p(τ; s,ω)R(τ, s)dτ,

where R(τ, s) is the reward for executing trajectory τ in context s and p(τ; s,ω) is the

corresponding trajectory distribution. The constraint in Eq. (3.4) guarantees that the

non-negative KL-divergence between consecutive policies is upper bounded. The

constraint in Eq. (3.5) ensures that the expected and the observed feature average

match each other, while with the constraint in Eq. (3.6) we enforce that the updated

policy is a proper distribution.

The emerging constrained optimization problem can be solved by the Lagrange mul-

tiplier method. The closed form solution for the new distribution is given by

p(s,ω) ∝ q(s,ω)exp

(
Rsω−V (s)

η

)
. (3.7)

Here, V (s) = γTφ(s) is a context dependent baseline, while η and γ are Lagrangian

parameters. Subtracting the baseline from the reward turns the term Rsω−V (s) into

an advantage function in context s. The temperature parameter η scales the advan-

tage term such that the relative entropy bound is met after the policy update. The

Lagrangian parameters are found by optimizing the dual function

g (η,γ) = η log

(Ï
s,ω

q(s,ω)exp

(
Rsω−V (s)

η

)
d sdω

)
+ηε+γT φ̂. (3.8)



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 65

The dual function is convex in γ and η, and the corresponding gradients can be ob-

tained in closed form. In contrast to recent EM-based policy search methods [36, 47],

the exponential weighting emerges from the relative entropy bound and does not re-

quire additional assumptions. For details of the derivation, we refer to Appendix A.

3.3 Sample-based Contextual REPS

As the relationship between the context-policy parameter pair {s,ω} and the corre-

sponding expected reward Rsω is not known, sample evaluations are used to approx-

imate the integral given in the dual function [14, 42]. We denote these evaluations

as rollouts. To execute the i th rollout, we first observe the context s[i ] ∼ µ(s). Subse-

quently, we sample the lower-level controller parameter using the upper-level policy

ω[i ] ∼π(ω|s[i ]). Finally, we execute the lower-level policy with parametrizationω[i ] in

context s[i ] to obtain R[i ]
sω. This process is repeated for N rollouts D= {s[i ],ω[i ],R[i ]

sω},

i = 1, . . . , N , such that we can accurately approximate the integral given in the dual

function with samples. The sample-based approximation of the dual function is

given by

g (η,γ;D) = η log

(
1

N

N∑
i=1

exp

(
R[i ]

sω−γTφ(s[i ])

η

))
+ηε+γT φ̂, (3.9)

where we replaced the integral with a sum. For more details of the derivation, see

Appendix A.



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 66

Contextual REPS Algorithm
Input: relative entropy bound ε, initial policy π(ω|s), number of policy up-
dates K , number of old datasets for reusing data L.
for k = 1, . . . ,K

for i = 1, . . . , N
Observe context s[i ] ∼µ(s), i = 1, . . . , N
Execute policy with ω[i ] ∼π(ω|s[i ]), observe trajectory τ[i ]

Compute rewards R[i ]
sω = R(τ[i ], s[i ])

New dataset: Dk = {s[i ],ω[i ],R [i ]
sω}i=1...N

Reuse old datasets: D= {Dl }l=max(1,k−L)...k

Update policy:
Optimize dual function using D, Eq. (3.9)

[η,γ] = argminη′,γ′g (η′,γ′;D)
with gradients in Eqs. (A.11) and (A.12)
Compute sample weighting:

p [i ] ∝ exp
(
R[i ]

sω−γTφ(s[i ])
η

)
, for each sample i in D

Update policy π(ω|s) with weighted ML
using D and p [i ], Eqs. (3.11-3.12)

end
Output: policy π(ω|s)

TABLE 3.1: In each iteration of the contextual REPS algorithm, we collect a dataset

Dk = {s[i ],ω[i ],R [i ]
sω}i=1...N by performing rollouts on the real system. For the REPS

algorithm, we reuse the last L datasets in combine them in the dataset D. Finally,
we update the policy by optimizing the dual function on dataset D, computing the
sample weights and performing a weighted maximum likelihood (ML) estimate to

obtain a new parametric policy π(ω|s).

Using the optimized Lagrangian parameters γ and η, we can compute the probabili-

ties of the updated context-parameter distribution for our finite set of samples using

p [i ] ∝ exp

(
R[i ]

sω−V (s[i ])

η

)
. (3.10)

However, in order to generate new samples, we need a parametric model to estimate

π(ω|s). Hence, we estimate the parameters of this model given the samples and using

p [i ] as weight for these samples. For example, for a linear Gaussian model π(ω|s) =



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 67

N(ω|a + As,Σ), we can compute the parameters θ = {a, A,Σ} with a weighted maxi-

mum likelihood estimation

 aT

AT

 = (ST P S)−1ST P B , (3.11)

Σ =
∑N

i=1 p [i ](ω[i ] −µ[i ])(ω[i ] −µ[i ])T∑N
i=1 p [i ]

, (3.12)

µ[i ] = a + As[i ], (3.13)

where S = [ŝ[1], . . . , ŝ[N ]]T is the context matrix with ŝ[i ] = [1, s[i ]T
]T , B = [ω[1], . . . ,ω[N ]]T

is the parameter matrix and P i i = p [i ] is the diagonal weighting matrix. When updat-

ing the policy parameters, we are not solely restricted to use the last N samples. To

improve the accuracy of policy updates, we can define q(s,ω) to be a mixture of the

last L policies, and hence reuse old samples without the need of importance weight-

ing [28]. The model-free contextual REPS algorithm is summarized in Table 3.1.

3.4 Results

In this section we will present results for learning contextual skills for complex robot

tasks. We will evaluate contextual REPS on three challenging problems. First, we be-

gin with a ball throwing task for a 4-DoF planar robot. The goal of the robot is to

throw a ball at a target position, which is changing between experiments. In the sec-

ond task we learn hockey skills for a 7-DoF lightweight robot arm. The robot has to

shoot at a target puck whose position is changing between task executions. Finally,

we test contextual REPS in a challenging robot table tennis task using a 8-DoF tendon



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 68

driven robotic system. The robot not only has to hit incoming balls with the provided

racket, but has to return at specified target positions on the opponent’s side of the ta-

ble. All the results presented in this section are evaluated in simulations using the SL

software package [66]. For each learning task we use Dynamic Movement Primitives

as the lower-level policy.

Exploiting Reward Models as Prior Knowledge. Throughout the experiments, we

will evaluate another version of contextual REPS with improved data efficiency as

well. We will use the known reward model R(τ, s) to evaluate a single trajectory out-

come τ in multiple contexts s[i ], i = 1, . . . , N . As a result we will obtain multiple re-

wards Rsω
[i ], i = 1, . . . , N for a single trajectory in different contexts. Such strategy is

possible if the evaluated trajectories τ do not depend on the context variables s. For

example, if the context specifies a desired target for throwing a ball, we can use the

ball trajectory to evaluate the reward for multiple target positions s[i ], i = 1, . . . , N .

3.4.1 Ball Throwing Task

In the ball throwing task we use a 4-DoF planar robot to throw a ball at a target po-

sition. However, the target position is changing between task executions. The target

coordinates [x, y] are distributed uniformly in intervals x ∈ [5,15]m and y ∈ [1,3]m

from the robot’s base. The robot is roughly modeled as a human with ankle, knee hip

and shoulder joints (see Fig. 3.1 for more details).

The reward function of the task is defined as the sum of three terms. The first term

penalizes the minimum squared distance of the target position to the ball trajectory.



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 69

To make the problem more challenging, the second term of the reward function pe-

nalizes joint angles, which would be unrealistic for a human executing the task. Such

penalties are, for example, bending the knee backwards. Finally, the third term of the

reward penalizes high energy consumption. For a complete description of the task

we refer to Appendix C.1.

q1

q2

q3

q4Shoulder

Knee
Ankle

Hip
Ball

FIGURE 3.1: The 4-DoF planar

robot.

As lower-level control policy, we used

DMPs with 10 basis functions per joint.

We learned the shape parameters, but

fixed the final position and velocity of

the DMP to be the upright position q =

[0,0,0,π], and zero velocity. In addition,

the lower-level policy also contained the

release time tr of the ball as a free pa-

rameter, resulting in a 41-dimensional

parameter vector ω. After generating the reference trajectory with the DMPs, we use

a PD trajectory tracker controller to generate the control inputs u.

The policy π(ω|s) was initialized such that the robot is expected to throw the ball ap-

proximately 5m away from the robot’s base without maintaining balance, which led

to high penalties. We found this policy by applying the context-free REPS up to a few

policy updates. The contextual REPS algorithm has learned to accurately hit the tar-

get distributed according to µ(s). Fig. 3.2 shows the learnt motion sequence for two

different targets. The absolute displacement error for targets further away from the



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 70

robot’s base (with context s ≤ [13,3]T m) could raise up to 0.5m, otherwise the maxi-

mal error was smaller than 10cm. The policy chose different DMP parametrizations

and release times for different target positions. To illustrate this effect, we show two

target positions s1 = [6,1]m, s2 = [12,1]m in Fig. 3.2. For the target farther away the

robot showed a more distinctive throwing movement and released the ball slightly

later.

FIGURE 3.2: Throwing motion sequence. The robot releases the ball after the spec-
ified release time and hits different targets with high accuracy.

evaluations

r
e

w
a

r
d

10

1

10

2

10

3

-8000

-6000

-4000

-2000

0

GPREPS

REPS (GP direct)

REPS

REPS (extra context)

FIGURE 3.3: Learning curves for the ball-throwing problem. The shaded regions
represent the standard deviation of the rewards over 20 independent trials.

The learning curves of contextual REPS are shown in Fig. 3.3. In addition, we evalu-

ated REPS using the known reward model R(τ, s) to generate additional samples with

randomly sampled contexts {s[i ]}20
i=1. We denote these experiments as extra context.



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 71

Fig. 3.3 shows that REPS converged to a good solution after 5000 skill evaluations in

most cases. In a few instances, however, we observed premature convergence re-

sulting is suboptimal performance. The performance of REPS could be improved by

using extra samples generated with the known reward model (extra context). In this

case, REPS always converged to good solutions.

Throughout the experiments, we evaluated 25 rollouts between each policy update.

However, we reused the last 200 samples to improve data-efficiency and avoid pre-

mature convergence. We set the upper bound on experience loss ε to 0.6, which

provided relatively fast convergence, without compromising the smoothness of the

learning curves. However, we were not able to decrease the amount of required roll-

outs anymore without risking premature convergence.

3.4.2 Robot Hockey Task

In the robot hockey task we use a 7-DoF lightweight robot arm to shoot a puck at a

target puck. The task involves two goals: shooting the provided puck in the direc-

tion of the target puck and shoot it with the right force, such that the target puck’s

displacement meets a specified value. The position of the target puck [bx ,by ] and its

required displacement d∗ are changing between task executions (Fig. 3.4). Thus, the

context variable is defined as s = [bx ,by ,d∗]. The reward for the task penalizes miss-

ing the target puck and inaccurate displacement of the target puck. For a complete

description of the task we refer to Appendix C.2.

We encoded the hitting motion into a DMP. The weight parameters were set by imita-

tion learning. We learn only the final position g , final velocity ġ and the time scaling



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 72

parameter τ of the DMP. As the robot has seven degrees of freedom, we get a 15-

dimensional parameter vectorω of the lower-level policy. For trajectory tracking, we

used an inverse dynamics controller.

[bx,by]

d*

FIGURE 3.4: Robot hockey task. The robot shoots the control puck at the target
puck to make the target puck move for a specified distance. Both, the initial loca-
tion of the target puck [bx ,by ]T and the desired distance d∗ to move the puck were
varied. The context was given by s = [bx ,by ,d∗]. The learnt skill for two different
contexts s is shown, where the robot learned to place the target puck at the desired

distance.

We compared contextual REPS to CrKR [35], a state-of-the-art model-free contextual

policy search method. The resulting learning curves are shown in Fig. 3.4. CrKR uses

a kernel-based representation of the policy. For a fair comparison, we used a lin-

ear kernel for CrKR. The results show that CrKR could not compete with model-free

contextual REPS. We believe the reason for the worse performance of CrKR lies in

its uncorrelated exploration strategy. The resulting policy of CrKR is a Gaussian with

a diagonal covariance matrix, while REPS estimates a full covariance matrix. More-

over, CrKR does not use an information-theoretic bound to determine the weightings

of the samples. The learnt movement is shown in Fig. 3.4 for two different contexts.



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 73

evaluations

r
e
w

a
r
d

10

2

10

3

10

4

-0.6

-0.4

-0.2

0

REPS

CRKR

FIGURE 3.5: The learning curves for the robot hockey task with contextual REPS
and CrKR.

By the end of the learning process, contextual REPS always provided policies, which

were able to hit the target puck for 95% of the experiments and the displacement er-

ror remained below 20cm. However, CrKR provided policies that could hit the target

puck only with a lower probability and displacement errors are considerably higher

compared to REPS. Based on our observations, CrKR could not improve the policy

after 5000 rollouts. However, with ε = 0.5, contextual REPS could gradually improve

the expected reward up to 8000 evaluations.

3.4.3 Robot Table Tennis

In this task, the goal is to learn hitting strokes for the table tennis game with a tendon

driven Biorob robot arm. The robot is attached to a moving platform, which can

move in the horizontal plane. The resulting robotic system has 8 degrees of freedom.

The goal of the robot is to return incoming balls to specified target locations on the

opponent’s side of the table. However, the incoming ball has varying initial velocities

[vx , vy , vz ], which results in varying landing position on the robot’s side of the table.



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 74

Thus, the robot has to generalize the hitting skill, such that it successfully returns

the ball for a wide variety of incoming ball directions and velocities, as in a real table

tennis game. See Figure 3.6 for an illustration.

FIGURE 3.6: The table tennis learning setup. The incoming ball has a fix initial

position and a random initial velocity of v = [vx , vy , vz ]T . The velocity distribution
is defined such that the incoming ball lands inside the Landing zone. The goal of
the robot is to hit the incoming ball back to the return position b = [bx ,by ]T , which
is distributed uniformly inside the Return zone. The context variable contains the

initial velocity of the ball and the target return position s = [v T ,bT ]T .

However, the goal of the task is not only to hit the incoming ball, but to return it to

a specific target location [bx ,by ] on the opponent side of the table. Thus, the upper-

level policy will choose a parametrization based on context s = [vx , vy , vz ,bx ,by ]. The

reward function for the task consists of two terms

R(τ, s) =−c1 min ||τb −τr ||2 − c2||b −p||2.

The first term penalizes the minimal distance of the racket trajectoryτr to the incom-

ing ball trajectory τb . The second term penalizes the displacement of the returned

ball landing coordinate p to the desired landing position b. We use equal weight-

ing for the two terms c1 = c2. For a more detailed description of the task, we refer to



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 75

Appendix C.3.

For this task we represent the skill with a DMP. We set the values of the shape param-

eters of the DMP by kinesthetic teach-in, and learn only the final positions, velocities

and the time scaling parameter of the DMP, altogether 17 parameters. We set the

upper bound parameter of the contextual REPS algorithm to ε = 0.6, which usually

provided smooth learning without the danger of getting stuck in local optima. The

learning curves of contextual REPS is shown in Figure 3.7. A reward level of −0.1 rep-

evaluations

re
w

ar
d

Robot Table Tennis

102 103 104-0.4

-0.3

-0.2

-0.1

0

REPS

FIGURE 3.7: The learning curves of the table tennis experiment. REPS is able to
learn a good policy after 4000 evaluations, but it sometimes learns a sub-optimal

policy that hits the ball in the net.

resents a policy, which provides a skill that is able to hit the incoming ball, but it fails

to return the ball to the opponent’s side of the table. While contextual REPS consis-

tently provided good learning performance, we sometimes observed policies, which

produced hitting skills that landed the ball in the net. This is a suboptimal solution

with a reward in interval [−0.05,−0.02]. However, for most of the evaluations high

quality policies were found after observing 4000 rollouts, which landed the ball in

20−30cm radius of the target location with a reward above −0.02. We illustrate the



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 76

experiment for two different contexts in Figure 3.8. After a fast and accurate forehand

stroke, the robot returns the ball near the desired target position.

FIGURE 3.8: Animation of two shots to different targets and different serving posi-
tions of the ball learned with REPS.

3.5 Discussion

A seemingly simpler approach to optimize the upper-level policy would be to solve

the optimization problem

max
π

∫
s
µ(s)

∫
ω
π(ω|s)Rsωdωd s (3.14)

s.t.:
∫

s
µ(s)

∫
ω
π(ω|s) log

π(ω|s)

q(ω|s)
dωd s ≤ ε, (3.15)∫

ω
π(ω|s)dω= 1,∀s. (3.16)

However, for this optimization problem, the sample-based dual function to optimize

takes the form

g (η,λ) = η
M∑

j=1
µ(s j ) log

1

N

N∑
i=1

exp

(
Rsω

[i , j ]

η

)
+ηε. (3.17)



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 77

As we can see, in this case we need multiple samples of ω1:N for a single context

s j to evaluate the dual function, which would significantly slow down the learning

progress. In the contextual REPS formulation used in Eqs. (3.3) - (3.6), we circumvent

this problem by directly optimizing over the joint space p(s,ω), with an additional

constraint to match feature averages in order to be consistent with the real context

distribution µ(s).

In our experiments, contextual REPS has proven to be highly efficient in learning

upper-level policies π(ω|s), which condition on the observed context s to choose

parametrization ω. The only parameter that needs to be chosen is the upper bound

on experience loss ε. This parameter is less dependent on the learning problem as

opposed to a learning rate for PG algorithms, and it is easy to choose for most learn-

ing problems. As we could see from the experiments, a range of ε ∈ [0.5,1] can pro-

vide relatively fast and smooth learning performances. However, the amount of sam-

ple evaluations required by contextual REPS tends to be high, even by reusing pre-

vious sample evaluations for policy update. Thus, the resulting learning algorithm

works well in simulations, but solving real robot tasks remains challenging. This is

one of the major disadvantage of contextual REPS and almost all other model-free

PS method. Although using the reward function to evaluate the reward for a single

parametrizationω and multiple artificial contexts {s[i ]}N
i=1 improves the quality of the

final policy, it fails to considerably improve data-efficiency.

When using the sample-based implementation of contextual REPS, we need to fit the

parameters of the upper-level policy at each policy update step. For a linear Gaus-

sian representation π(ω|s) =N(ω|a + As,Σ), we have to find the optimal parameters



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 78

{a, A,Σ}. For an N -dimensional parameter vectorω, a and A are N -dimensional, but

to find Σ, we need to set N 2 parameters, which leads to a less accurate approxima-

tion of the true policy π(ω|s) for N > 50. Thus, contextual REPS does not scale well to

learning problems above 50 parameters. More sophisticated models forπ(ω|s) might

overfit and endanger the generalization property of the upper-level policy.

To ensure safety and efficiency during the learning process, we have to properly ini-

tialize the upper level policy parameters. In our experiments we used a linear Gaus-

sian model for representing of the upper level policy π(ω|s) =N(ω|a + As,Σ), with

parameters {a, A,Σ}. Initially, we set the linear model A = 0 and obtain the offset

parameter a by imitation learning. We set the initial exploration covariance Σ as di-

agonal matrix such that we get enough initial exploration of the parameter space, but

exploration still remains safe for the robot. Contextual REPS typically decreases the

exploration variance at each policy update step until Σ collapses and the policy pa-

rameters converge to the final solution. Thus, the initialΣ has to be chosen carefully,

such that the optimal solution is within the range of the initial exploration range.

With contextual REPS, and with many other model-free PS approaches, we usually

evaluate only one trajectory to approximate the expected reward for a given con-

troller parametrization, that is, Rω ' R(τ). However, for stochastic lower-level poli-

cies, or in the presence of stochastic robot dynamics, the resulting inaccurate approx-

imation might introduce bias in the policy update. To obtain a more accurate approx-

imation of the real expected reward, we can evaluate the given controller parametriza-

tion multiple times. While this approach provides an unbiased Rω in the limit, the



Chapter 3. Learning Generalized Robot Skills using Contextual REPS 79

already high amount of required policy evaluations grows even further, resulting in

an increased data-inefficiency.





Chapter 4

Model-based Contextual Robot Skill

Learning

In general, model-based PS algorithms (Sec. 2.1.2) use a model of the robot and its

environment for learning the required control policy without extensive use of the

real hardware. The resulting algorithms are more data-efficient compared to model-

free approaches, but the final learned policy inherently depends on the quality of

the learned or hand-tuned model. When working with an inaccurate model, the op-

timized policy might become biased, and thus, it could perform poorly on the real

hardware [6]. While we can exploit prior knowledge about the dynamics to obtain

a more or less accurate mathematical model, learning is often used to directly op-

timize the model from measurement data [32, 54]. Data driven learning is able to

account for unmodeled nonlinearities and stochasticity in the dynamics, and thus,

81



Chapter 4. Model-based Contextual Robot Skill Learning 82

the acquired model is often less biased. However, generalization remains a signifi-

cant challenge for the learning approach.

Previously, we briefly discussed two approaches for learning robot dynamics: Lo-

cally Weighted Bayesian Regression (LWBR) and Gaussian Process (GP) regression.

Both methods learn a probabilistic, time-independent model of the robot dynam-

ics, which can be applied to evaluate the robot experiment in computer simulations.

However, one significant difference between the LWBR and GP regression is that the

former uses a parametric representation of the model, while the latter represents the

dynamics in a non-parametric way. Non-parametric approaches produce less biased

models of the dynamics, but the computational demand for training and prediction

might be impractically large. Nevertheless, due to the promise of high quality learned

policies with the use of unbiased models, it is often beneficial to rely on computa-

tionally more involved, but less biased policy updates by the use of non-parametric

models. The state-of-the-art model-based policy search algorithm, PILCO [17], also

proposes the use of GP models. PILCO is able to learn lower-level controllers, e.g., for

simple robot manipulators with unprecedented data-efficiency[18]. Although the re-

quired interaction time with the real hardware is typically below a few minutes, com-

putation of the optimal policy with main-stream desktop PCs can raise up to a couple

of hours.

Despite their data-efficiency, model-based policy search algorithms have only been

applied to learn lower-level controllers [3, 6, 17, 18, 32, 49, 68]. Extension of these

algorithms to learn contextual upper-level policies is not straightforward, due to as-

sumptions on the lower-level control policy class and the reward function. In order



Chapter 4. Model-based Contextual Robot Skill Learning 83

to learn contextual robot skills efficiently, we need novel algorithms that combine

the generality of model-free policy search methods and the data-efficiency of model-

based algorithms. To the best of our knowledge, model-based algorithms have not

yet been proposed to learn upper-level, or even contextual policies for robot skill op-

timization.

In Chapter 3 we have evaluated the efficiency of contextual REPS to learn complex

robot skills. While the final learnt policy provided high quality generalized skills,

due to the data inefficiency, contextual REPS required thousands of skill evaluations

to achieve convergence. This inefficiency poses a significant challenge for learning

complex robot skills for real-world tasks with model-free PS algorithms. Moreover,

model-free REPS produces biased policy updates as the expected reward Rsω is typ-

ically evaluated using a single rollout Rsω ≈ R(τ, s). This bias comes from the expo-

nential sample weighting of REPS in Eq. (3.10). For example, if we only have two

actions ω1 and ω2, and the expected reward of ω1 is lower than the expected reward

of ω2 but the variance of the reward for ω1 is higher (such that there will be samples

from ω1 with higher reward than all samples from ω2), REPS will prefer ω1. Hence,

the resulting policy is risk-seeking, a behavior that we want in general to avoid. The

same bias is inherent in all other PS methods that are based on weighting samples

with an exponential function, for example PoWER [36], CrKR [35] and PI2 [84].

To account for data-inefficiency and biased policy updates, we propose a model-

based version of the contextual REPS algorithm, the Gaussian Process Relative En-

tropy Policy Search (GPREPS). GPREPS [42, 48] uses Gaussian Process models to learn

the dynamics model of the robot and its environment. These models are then used to



Chapter 4. Model-based Contextual Robot Skill Learning 84

evaluate experiments using computer simulations. By using a probabilistic model-

based approach, we avoid the above mentioned two disadvantages of model-free

REPS, the data-inefficiency and the biased policy updates. Since we are applying GP

models, we can integrate out the model uncertainty, and thus, we obtain less biased

prediction of the experiment outcome and the expected reward Rsω. To the best of

our knowledge, GPREPS is the first algorithm that uses the combination of model-

based PS and contextual model-free PS. Thus, GPREPS is more generally applicable

than the state of the art model-based PS, such as PILCO [17], and it is more data effi-

cient compared to model-free REPS and other model-free contextual PS algorithms

[14, 35, 47]. We will evaluate GPREPS on the same learning tasks as with the contex-

tual REPS. Additionally, we will present real robot results.

In the following, we present the GPREPS algorithm. Then, we discuss how to learn

and use GP models to obtain an accurate evaluation of Rsω. We will compare sev-

eral GP modeling techniques based on their prediction efficiency and computation

times. Subsequently, we discuss a probabilistic model training algorithm for more

accurate trajectory prediction. Finally, we present the robot results.

4.1 Gaussian Process REPS

Our main motivation to use models with contextual policy search is two-fold. First,

we want to improve the data-efficiency of the model-free REPS using artificial roll-

outs generated by computer simulation. Second, we want to obtain the accurate ex-

pected reward Rsω for a given context-policy parameter pair to avoid the bias in the



Chapter 4. Model-based Contextual Robot Skill Learning 85

sample-based REPS formulation. The expected reward Rsω = Eτ[R(τ, s)|s,ω] can be

estimated by multiple samples from the trajectory distribution p(τ|s,ω), that is,

Rsω = 1

L

L∑
l=1

R(τ[l ], s), (4.1)

where the trajectories are now generated using the learned forward models in com-

puter simulation and we will assume that the trajectory-dependent reward function

R(τ, s) is known. We use GP models to learn the forward models of the robot and

its environment. Therefore, our method is called Gaussian Process Relative Entropy

Policy Search (GPREPS).

In each iteration, first we collect measurement data from the robot and its environ-

ment. For data collection, we observe the context s[i ] and sample the parameters

ω[i ] using the upper-level policy π(ω|s[i ]). Subsequently, we use the lower-level de-

terministic control policy πω[i ] (x) to obtain the trajectory sample τ[i ]. It is important

to evaluate sufficiently many samples to obtain enough measurement data, such that

the GP models produce accurate predictions over the task relevant part of the state

space. Therefore, we repeat the data collection step N times. To favor data-efficiency,

we wish to keep N as low as possible, while learning high quality models. In exper-

iments, we usually choose a higher N in the first iteration, e.g. N = 20, to obtain an

accurate initial GP model. After the first policy update, we decrease N to significantly

lower value, e.g., N = 1. This way, we keep updating the GP models with relevant

measurement data without compromising the data-efficiency. After each data col-

lection step, we update the GP model hyper-parameters. The GPREPS algorithm is

summarized in Table 4.1.



Chapter 4. Model-based Contextual Robot Skill Learning 86

GPREPS Algorithm
Input: relative entropy bound ε, initial policy π(ω|s), number of policy up-
dates K .
for k = 1, . . . ,K

Collect Data:
for i = 1, . . . , N
Observe context s[i ] ∼µ(s), i = 1, . . . , N
Execute policy with ω[i ] ∼π(ω|s[i ])
end

Train forward models with all data, estimate µ̂(s)
for j = 1, . . . , M

Predict Rewards:
Draw context s[ j ] ∼ µ̂(s)
Draw lower-level parameters ω[ j ] ∼π(ω|s[ j ])

Predict L trajectories τ[l ]
j |s[ j ],ω[ j ]

Compute R[ j ]
sω =∑

l R(τ[l ]
j , s[ j ])/L

Construct artificial dataset: D̃= {s[ j ],ω[ j ],R [ j ]
sω} j=1...M

Update Policy:
Optimize dual function using D̃, Eq. (3.9):

[η,γ] = argminη′,γ′g (η′,γ′;D̃)
with gradients in Eqs. (A.11) and (A.12)
Compute sample weighting:

p [ j ] ∝ exp

(
R

[ j ]
sω−γTφ(s[ j ])

η

)
, j = 1, . . . , M

Update policy π(ω|s) with weighted ML
using D̃ and p [ j ], Eqs. (3.11-3.12)

end
Output: policy π(ω|s)

TABLE 4.1: The GPREPS algorithm.

In the prediction step, we predict the rewards for M randomly sampled context-

policy parameter pairs. We refer to these samples as artificial samples. To generate

artificial samples, we need to obtain an estimate of the context distribution µ̂(s) using

the observed data. Depending on the learning problem, we typically approximate the

context distribution with a Gaussian or a uniform distribution, but prior knowledge

about the task can also be exploited to approximate µ̂(s). After updating the esti-

mated context distribution µ̂(s), we draw a context parameter s[ j ] ∼ µ̂(s) for each ar-

tificial sample. Subsequently, we sample from the upper-level policy ω[ j ] ∼ π(ω|s[ j ])



Chapter 4. Model-based Contextual Robot Skill Learning 87

and produce L sample trajectories τ[ j ,l ], l = 1, . . . ,L and the corresponding rewards

R(τ[ j ,l ], s[ j ]) for this given context-parameter pair. To update the policy, we first min-

imize the dual function g (η,γ) in Eq. (3.9) using the artificially generated samples

and compute the new weight p [ j ] (Eq. 3.10) for each artificial sample. Note, that we

use solely the artificial context-parameter samples {s[ j ],ω[ j ]}M
j=1 to update the policy.

By doing so, we can avoid biased policy updates due to possibly noisy rollouts. Con-

sequently, if the models produce unbiased rewards Rsω, the final policy will also be

unbiased. Finally, we update the policy by the weighted maximum likelihood esti-

mate using Eqs. (3.11-3.12). In the following, we will explain in more detail how to

sample the trajectories and how to learn the models for accurate trajectory predic-

tion.

4.2 Model Learning and Trajectory Prediction with GP For-

ward Models

In the previous section we presented GPREPS, a contextual and model-based policy

search framework. We discussed how to generate artificial samples, how we can use

the model prediction result R(τ, s) to obtain the expected reward Rsω and how to

update the policy using the artificial samples {s[ j ],ω[ j ],R[ j ]
sω}M

j=1. In the following, we

focus our attention on how GP models are learned and how we can use these models

to obtain the reward R(τ, s).

We begin by considering the reward prediction problem as a function approximation

task, where we wish to map ω and s to the corresponding reward R(τ, s) (Fig. 4.1).



Chapter 4. Model-based Contextual Robot Skill Learning 88

Reward 
model

{s,!} R(⌧ , s)

FIGURE 4.1: The reward prediction problem as a general function approximation
task.

In this case, our goal is to find the function h(·), such that R(τ, s) = h(s,ω)+ε, where

ε∼N(0,σ2
R ) is Gaussian noise. However, even for simple skill learning problems, h(·)

is an unknown nonlinear function, without any knowledge about its structure and

smoothness. While learning h(·) and evaluating predictions using the model can be

executed relatively fast, due to the difficulty of the regression problem, the resulting

predictions, and thus, the optimized policy might be biased.

Robot 
ModelDMP! Release

Model
tr

Ball 
Flight

s

R(⌧b, s)
⌧b⌧r x0

FIGURE 4.2: The reward prediction for the ball throwing task using decomposed
models. First, we predict the robot trajectory τr using the DMP and the robot
model. Subsequently, we use the learned forward kinematics model to compute
the angular position and velocity of the ball x0 at the release time tr . Finally, we
use the free dynamics model of the ball flight to provide the ball trajectory τb to the

reward function.

Instead, with GPREPS we use a computationally more involved, but intuitive ap-

proach. We exploit prior knowledge about the experiment and decompose h(·) into

simpler models and their relationships. For example, in the ball throwing task, we

know that the ball flight trajectory will depend on the robot joint trajectories, the

forward kinematics and the release time of the ball. Furthermore, we know that the

final reward will depend solely on the basket position and the ball trajectory (Fig.

4.2). Thus, we not only exploit the relationship between models, but the structure



Chapter 4. Model-based Contextual Robot Skill Learning 89

of the known reward function as well. While learning dynamic models is relatively

easy due to smoothness, models for discrete events, such as for contacts are typically

more difficult to learn and requires more prior knowledge. Although the model de-

composition approach requires the learning of multiple models, the learned models

are typically more accurate and better at generalization compared to h(·). On the

other hand, the prediction process is computationally more demanding and model

learning might be corrupted due to missing measurement data, measurement error

and noise.

Learning models for discrete events, such as the release model for the throwing task,

is a one-step regression problem and predictions can be evaluated straightforwardly.

However, performing long-term trajectory predictions, such as predicting the robot

trajectory, is a more challenging task. Thus, in the following we will only focus on

learning forward GP dynamic models and performing long-term predictions.

The Model. We use forward models to obtain the trajectory distribution p(τ|ω, s)

given the context s and the lower-level policy parameters ω. We learn a forward

model that is given by y t+1 = f (y t ,u t )+ε, where y = [xT ,bT ]T is composed of the

state of the robot and the state of the environment b, for instance the position of a

ball. The vector ε denotes zero-mean Gaussian noise. In order to simplify the learn-

ing task, we decompose the forward model f into simpler models, which are easier

to learn. To do so, we exploit prior structural knowledge of how the robot interacts

with the environment.



Chapter 4. Model-based Contextual Robot Skill Learning 90

4.2.1 Trajectory and Reward Prediction

Using the learned GP forward model, we need to predict the expected reward

Rsω =
∫
τ

p(τ|ω, s)R(τ, s)dτ (4.2)

for a given parameter vector ω evaluated in context s. The expectation over the tra-

jectories is now estimated using the learned forward models. For this purpose, we

factorize the trajectory distribution as

p(τ|ω, s) = p(x0; s)
T−1∏
t=0

p(x t+1|x t ,u t )πω(u t |x t ), (4.3)

where for some tasks s might influence the initial state distribution p(x0; s).

To obtain the state distribution at each time step, we have to compute the GP predic-

tive distribution

p(x t+1) =
Ï

x t ,u t

p(x t+1|x t ,u t )p(x t ,u t )d x t du t , (4.4)

with p(x t ,u t ) = p(x t )πω(u t |x t ). However, in case the current state x t is Gaussian

N([xT
t ,uT

t ]T |µxu ,Σxu) and the model f (·) is nonlinear, the predictive distribution

over the next state p(x t+1) becomes non-Gaussian. Thus, in general, we cannot

obtain an analytic solution for p(x t+1). In Sec. 2.1.2 we discussed lower-level pol-

icy evaluation techniques to obtain the successor state distribution. In particular,

we discussed deterministic evaluations, such as linearization and moment match-

ing, and stochastic evaluation by sampling. We concluded that the deterministic



Chapter 4. Model-based Contextual Robot Skill Learning 91

approach is beneficial for policy gradient algorithms, but for reward prediction we

prefer the sampling approach.

As GPREPS uses information theoretic policy updates, we do not require the com-

putation of policy gradients. Furthermore, we wish to avoid possibly biased trajec-

tory and reward distributions when using approximations with, e.g., moment match-

ing. Thus, we will rely on the stochastic evaluation of the integral in Equation (4.4),

which provides unbiased estimates in the limit. When sampling trajectories, we first

compute the control u t = πω(x t ) given x t , and subsequently, sample the next state

from the predictive distribution p(x t+1|x t ,u t ). We repeat this procedure until we

obtain the complete trajectory (Sec. 2.1.2). When using sampling, the lower-level

policy class is not restricted and torque limits can be applied with ease. On the other

hand, to accurately approximate the trajectory and reward distribution, the number

of sample trajectories L must be relatively high and typically needs to increase with

the dimensionality of the system. Note, that sampling multiple trajectories at the

same time only consists of simple computations with large matrices, and thus, the

computations can be executed in parallel. Hence, we can speed up computations

significantly using high through-put processors, such as GPUs. This is particularly

effective when evaluating multiple artificial samples with GPREPS. Such paralleliza-

tion is not straightforward with the moment matching approach.

In the following, we evaluate the sampling approach for trajectory prediction and we

compare it to the moment matching algorithm in terms of accuracy and computation

time.



Chapter 4. Model-based Contextual Robot Skill Learning 92

4.2.2 Quantitative Comparison of Sampling and Moment Matching

To compare moment matching and sampling, we evaluated both approaches on pre-

dicting trajectories with the 4-DoF planar robot in Fig. 3.1. The lower-level policy was

given by a linear trajectory tracking PD controller. We used 12000 data points and 700

pseudo-inputs to train the sparse GP models [72]. The prediction horizon was set to

300 time steps.

We sampled 1000 trajectories and estimated a Gaussian state distribution p(x t ) for

each time step from these samples. These distributions are used as ground truth.

Subsequently, we compute the Kullback-Leibler divergence KL
(
p(x t )||p̃(x t )

)
of the

approximations p̃(x t ) obtained by either using less samples or moment matching.

This procedure was done for an increasing number of samples for the sampling ap-

proach. To improve the accuracy of the comparison, we evaluated the prediction for

100 independently chosen starting state with varying initial variance. To facilitate

the comparison of the two prediction methods, we normalized the KL divergence

values, such that the moment matching prediction accuracy remains constant, i.e.,

∑100
t=1 KL

(
p(x t )||pM M (x t )

) = 100, where pM M (x t ) is the state distribution predicted

by moment matching. The result is shown in Fig. 4.3. As the figure shows, the best

95% of the experiments required approximately 50 sample trajectories to reach the

accuracy of the moment matching approach. However, in most cases (top 75%), it

was enough to sample not more than 20 trajectories to reach the moment matching

performance. The inaccuracies of the moment matching approach results from out-

liers and non-Gaussian state distributions which violate the Gaussian approximation

assumption of moment matching.



Chapter 4. Model-based Contextual Robot Skill Learning 93

0 200 400 600 800 1000
0

50

100

150

200

250

300

Number of sample trajectories

K
L 

di
ve

rg
en

ce
Sampling median
Sampling (75%)
Sampling (95%)
Moment matching

FIGURE 4.3: The sampling accuracy of sampling with an increasing number of sam-
ples. In most of our experiments (top 95%), the accuracy of moment matching is
met by sampling only 50 samples per prediction. However, in most cases it was

enough to sample 20 trajectories to reach the moment matching performance.

We also evaluated the computation time of both approaches. For the sampling ap-

proach, we evaluated the computation time for different types of hardwares and par-

allelization techniques. For CPU we chose Intel i5-3570k @3.4Ghz with both single

and multi core setup. For GPUs we used Nvidia GTX 660Ti and Nvidia GTX Titan.

As shown in Figure 4.4, already the single CPU core implementation outperforms

moment matching and can produce approximately 1000 samples in the same com-

putation time. This number can be increased to 7000 samples when using a high-end

workstation graphics card.

We showed that only a few sample trajectories are needed to meet the accuracy of the

moment matching approach while we are able to generate thousands of trajectories

in the same computation time. Hence, using sampled trajectories results in a mod-

erate speed-up for main-stream computers and can further be improved when using

a GPU implementation. In addition to the improved computation speed, sampling



Chapter 4. Model-based Contextual Robot Skill Learning 94

10
2

10
3

10
0

10
1

10
2

10
3

Number of sample trajectories

C
om

pu
ta

tio
n 

tim
e 

[s
ec

]

Equal accuracy

Sampling (i5 single core)
Sampling (i5 quad core)
Nvidia GTX 660Ti
Nvidia GTX Titan
Moment Matching (i5 CPU)

FIGURE 4.4: Comparison of the computation speed of moment matching and
sampling-based long-term prediction. 50 sampled trajectories are needed to reach
the accuracy of moment matching. Over 7000 samples can be created using a GPU
implementation within the same computation time which is needed for the mo-

ment matching approach.

avoids the approximations involved in the moment matching approach, for example,

using trigonometric functions to approximate torque limits [17]. Sampling produces

unbiased estimates of the expected reward, and thus, we can improve the accuracy

of the prediction by increasing the number of samples.

4.2.3 Comparison of Gaussian Process Models

When using GP models for trajectory prediction, we have to take the computation

times into consideration. As discussed earlier, the training time of the hyper-parameters

in the standard GP approach scales cubically with the number of training samples.

The prediction time of the posterior mean scales linearly, while the computation

of the posterior variance scales quadratically with the number of training samples.

When learning dynamic models with high sampling rate, the number of training



Chapter 4. Model-based Contextual Robot Skill Learning 95

samples can quickly increase to thousands, and thus, the computation time might

become impractically large. To mitigate the computational demand while learning

accurate models, sparse Gaussian process methods were proposed, e.g., by Snelson

et al. [72] and by Titsias [85].

When learning GP forward models, numerical problems may emerge. In order to

learn accurate models, we often need thousands of training samples. When using

many training samples, the matrix (K +σ2
ε I ) used in the GP prediction and model

training might have an overly high condition number. Thus, computing the inverse

of this matrix might be inaccurate, which can easily lead to a biased trajectory predic-

tion. To avoid this problem, a common strategy is to add noise to the training target

data wi = wi + εadd , i = 1, . . . , N , where εadd is i.i.d. Gaussian noise. This will natu-

rally increase the value of σε, and thus, decrease the condition number of (K +σ2
ε I ).

In our experiments, we added i.i.d. Gaussian noise εadd ∼N(0,σ2
add ) to the training

data with standard deviation σadd = 10−2std(y), where std(y) is the standard devia-

tion of the target values. The amount of additive noise has proven to be efficient in

balancing out the prediction accuracy and numerical instability.

In the following, we compare the accuracy of reward prediction of a control task when

using the sparse GP method with pseudo inputs [72] and the standard GP approach

[62]. We also tested the sparse method presented in [85], but ran into numerical

problems with this method, which prevented a fair comparison with the other ap-

proaches. The control problem is to balance the planar 4-DoF robot to the upright

position. The lower-level control policy is set such that the pendulum is robustly bal-

anced to the optimal upright position from a random set of initial positions around



Chapter 4. Model-based Contextual Robot Skill Learning 96

the upright position. We collect measurement data by executing a certain amount

of experiment rollouts. Then, we train both GP models, the standard and the sparse

model with the same measurement data. Subsequently, we use the GP models to pre-

dict the reward of 50 context-parameter pairs with trajectories of 20 time steps long.

We use 20 trajectories per context-parameter pair. The reward of a single trajectory

was given by R(τ̂) =−∑T
t=1(x t−xr )T (x t−xr ), where xr is the upright position. Finally,

we measure the accuracy of the GP models, by computing the average quadratic er-

ror of the mean reward prediction Es,ω[e2] = Es,ω[(R̂(s,ω)−R(s,ω))2], where R̂(s,ω)

denotes the mean predicted reward and R(s,ω) the real reward for that context pa-

rameter pair. We compare the models by changing several parameters of the training

process. First, we investigate the influence of the amount of additive noise on the

prediction performance. We set the additive noise toσadd =α10−2std(w ), whereα is

a scalar. Second, we investigate the amount of hyper-parameter optimization steps

required to learn accurate models. In the third experiment, we evaluate how well the

models can capture the stochasticity in the dynamics by adding noise to the control

input. Finally, we investigate how well the models can generalize with only a limited

amount of training data. For the first three experiments we use 50 sample trajectories

to learn the model while we varied the number of sample trajectories in the fourth

experiment.

In each experiment we only vary one parameter and keep the remaining parameters

at their optimal value. We set the optimal values such that that the GP models provide

the best prediction performance. In particular, we have chosen the standard devia-

tion of the additive noise value as σadd = 10−2std(w ), that is, α = 1. We optimized



Chapter 4. Model-based Contextual Robot Skill Learning 97

the hyper-parameters of the models for 150 optimization steps and we assumed 0.5

Nm standard deviation for additive torque noise. We used 50 observed trajectories

for training, that is, a total of 1000 training data points. For the sparse method, we

used 25% of the observed data points as pseudo inputs, that is, M = N /4.

0.5 1 1.5 2

10
−1

Additive Noise Scaler

E
[e

2
]

 

 

40 60 80 100 120 140

10
−1

10
0

Optimization Steps

E
[e

2
]

 

 

0.5 1 1.5 2

10
0

Torque Noise Std

E
[e

2
]

 

 

10 20 30 40 50

10
−1

10
0

Sample Trajectories

E
[e

2
]

 

 

Sparse

Standard

Sparse

Standard

Sparse

Standard

Sparse

Standard

FIGURE 4.5: Comparison of the standard and the sparse GP approach.

The results of the model comparison tasks are shown in Fig. 4.5. With increasing

additive noise factor we gain more numerical stability, but the accuracy of reward

prediction decreases slightly. However, we observed that the sparse method often

overfits the data, which results in the worse performance with higher additive noise

factor. When comparing the amount of hyper-parameter optimization steps, we can

conclude that after only 50 optimization steps we can already obtain accurate mod-

els. However, we also see a small overfitting effect for the sparse models as we con-

tinue the optimization. When we add additional control input noise to the system,

the standard GP approach could capture the uncertainty well. However, just as with



Chapter 4. Model-based Contextual Robot Skill Learning 98

the additive noise experiment, the sparse method tends to overfit the data and pro-

duces inaccurate predictions. Finally, an increasing number of sample trajectories

clearly has a positive effect on the prediction accuracy. However, the training time

steeply increases with a higher amount of training data.

4.2.4 Learning the Hyper-Parameters of GP Models

In Section 2.3 we discussed the basics of Gaussian Process regression and model se-

lection, which includes choosing a kernel function and optimizing its hyper parame-

ters based on the observed data. The typical approach is to set the hyper-parameters

of the kernel is by maximizing the likelihood of training targets (Eq. (2.28)). For

learning the forward dynamics of the robot, we use the GP model to map states and

controls [xT ,uT ]T to subsequent states x ′. Thus, maximizing the likelihood of train-

ing targets will translate to maximizing the likelihood of observed state transitions.

However, we wish to use the GP forward models to obtain the distribution over tra-

jectories, that is, performing multi-step predictions. Thus, when we use the standard

training technique to set the kernel hyper-parameters, we maximize the likelihood of

state transitions, but we might fail to maximize the likelihood of observed trajecto-

ries, and thus, trajectory predictions can be biased.

Abbeel et al. [1] proposed an algorithm for learning the linear forward dynamics

of vehicular systems, such as autonomous helicopters, to minimize the long term

trajectory prediction error. The proposed algorithm directly minimizes the squared

error between the model predicted and observed trajectories. While evaluating the

prediction for deterministic models is straightforward, for probabilistic models we



Chapter 4. Model-based Contextual Robot Skill Learning 99

often have to use approximations and assumptions to evaluate the prediction (see

Sec. 2.1.2 for more details). Similar ideas were exploited in [2] to learn first order

Markov models for more accurate transition probability approximation in an MDP

framework.

In the following, we propose a novel model training algorithm for setting the param-

eters of probabilistic forward models to directly maximize the likelihood of observed

trajectories. The proposed method is more general compared to previous work ?? as

it is directly applicable to probabilistic models and it is applicable to continuous state

spaces as opposed to [2]. Instead of evaluating rollouts with the GP model and min-

imizing the divergence to the observed trajectories, we will treat the marginal state

distributions as parameters of the learning problem, and we introduce constraints

that connects the time steps. While we introduce additional Lagrangian parameters

into the learning problem, the resulting optimization problem becomes convex in

these parameters. The benefit we gain from solving the dual problem instead of the

primal is that we avoid long term predictions with probabilistic models.

We use probabilistic forward models to predict the trajectory distribution of the robot

p(τ). The robot transits to state x ′ given the current state x and the control u accord-

ing to p(x ′|x ,u). The control signal u is computed according to the parametrized de-

terministic u = π(x), or stochastic control policy π(u|x), where we omit highlighting

the control policy parametrizationω. Using the Markovian assumption, we factorize

the trajectory distribution as

p(τ) = p1(x)
T∏

t=2
pt (x ′|x ,u)π(u|x).



Chapter 4. Model-based Contextual Robot Skill Learning 100

Our goal is to find the model p(x ′|x ,u;θ) with hyper-parameters θ, that minimizes

the KL-divergence K L(p(τ;θ)||q(τ)) between the observed q(τ) and the predicted

p(τ;θ) trajectory distributions. Using the factorized model of the trajectory distri-

bution, we can reformulate our objectives as minimizing the sum of KL divergences

between the marginals

K L(p(τ;θ)||q(τ)) =
T∑

t=1
K L(pt (x ;θ)||qt (x)). (4.5)

Thus, the optimization problem can be written as

min
pt ,θ

T∑
t=1

K L(pt (x ;θ)||qt (x)). (4.6)

However, as we are optimizing over pt (x) as well, we have to ensure that the distri-

bution is consistent with the system dynamics, that is, we have to add the constraint

∀t , pt (x) =
Ï

xu
pt−1(x)π(u|x)p(x ′|x ,u)d xdu. (4.7)

On the other hand, in case of continuous state-control variables we have infinite con-

straints to satisfy. To keep the problem tractable, we require only to match feature

averages instead of single probability values

∀t ,
∫

x
pt (x)φ(x)d x =

Ï
xu

pt−1(x)π(u|x)
∫

x ′
p(x ′|x ,u)φ(x ′)d x ′d xdu, (4.8)



Chapter 4. Model-based Contextual Robot Skill Learning 101

where φ(x) is the feature vector of the state x . Furthermore, we require the initial

expected state feature to match the observed initial average feature

∫
x

p1(x)φ(x)d x = φ̂(x). (4.9)

The optimization problem is now

min
pt ,θ

T∑
t=1

∫
x

pt (x) log
pt (x)

qt (x)
d x , (4.10)

s.t . :
∫

x
p1(x)φ(x)d x = φ̂(x), (4.11)∫

x
pt (x)φ(x)d x =

∫
x

pt−1(x)
∫

u
π(u|x)E[φ(x ′);θ]dud x , ∀t > 1, (4.12)∫

x
pt (x)d x = 1, ∀t . (4.13)

The constrained optimization problem can be solved with the Lagrange multiplier

method. As the result of the optimization we obtain the state distribution at each

time step in the form of

pt (x) ∝ qt (x)exp
(
γT

t φ(x)−γT
t+1E[φ(x ′);θ]

)
, (4.14)

whereγt are Lagrange multipliers and E[φ(x ′);θ] is the expected feature of the subse-

quent state with model p(x ′|x ,u;θ) and parametrizationθ. Note that the exponential

term will depend both on the current γt and the subsequent Lagrangian parameters

γt+1. Thus, the resulting algorithm will provide model parametrization that aims to

reduce the long-term prediction error instead of greedily maximizing the likelihood

of individual state transitions. To obtain the Lagrangian and the model parameters,



Chapter 4. Model-based Contextual Robot Skill Learning 102

we need to minimize the dual function

g (γ1:T ,θ) =−
T∑

t=1
log

∫
x

qt (x)exp
(
γT

t φ(x)−γT
t+1E[φ(x ′);θ]

)
d x +γT

1 φ̂(x). (4.15)

When working with samples, the dual function can be approximated as

g (γ1:T ,θ) =−
T∑

t=1
log

1

M

M∑
i=1

exp
(
γT

t φ(x i )−γT
t+1E[φ(x ′

i );θ]
)+γT

1 φ̂(x), (4.16)

where M is the number of observed trajectories. The lengthy derivation of the gradi-

ents is presented is Appendix B.

The above parameter learning algorithm is applicable for a wide range of probabilis-

tic models. One of the most important advantage of our approach is that we avoid

long-term trajectory predictions, which might be inaccurate and time consuming.

Instead, we treat the marginal distributions pt (x) as parameters of the learning prob-

lem and we connect the subsequent time steps by enforcing feature matching con-

straints. Thus, we maximize the likelihood of observed trajectories instead of state

transitions. One major disadvantage of this approach however, is that the feature

matching constraints must be satisfied for each time step, which might be infeasi-

ble for some modeling techniques. For example, for GP models these constraints are

often difficult to satisfy due to the fixed set of training data and the kernel function.

Due to these challenges, in our experiments we failed to apply the above training ap-

proach with success for GP models. However, we believe that the proposed method

opens the door to novel GP methods, such as sparse GP models where the training



Chapter 4. Model-based Contextual Robot Skill Learning 103

data could also be represented as model parameters. Future research will also in-

vestigate applying the learning algorithm presented in [1] with sample trajectories

obtained using the GP model.

4.3 Results

In this section, we present the results of applying GPREPS for robot learning tasks.

First, we compare GPREPS to PILCO in a context-free learning task. We show that

while PILCO achieves better data-efficiency in learning the task, GPREPS provides

almost equally good performance. Subsequently, we evaluate the same contextual

robot learning tasks as with contextual model-free REPS. Additionally, we will present

real robot results.

4.3.1 Robot Balancing Task

In this task, the goal is to find a PD controller that balances the 4-DoF planar robot

(Fig. 3.1) around the upright position. The robot has a total length of 2m and a to-

tal mass of 70kg. For more details about the robot we refer to Appendix C.1. The

reward for a sample trajectory is the sum of quadratic rewards along the trajectory

R(τ, s) = −∑T
t x̃T

t Qx̃ t , where x̃ t is the deviation from the upright position at time t .

We chose the initial state distribution around the upright position to be Gaussian.

As PILCO cannot learn contextual policies, we learn context-free upper-level policies

with REPS and GPREPS to have a fair comparison. Hence, the upper-level policy is

given by a Gaussian, π(ω) =N(ω|µ,Σ). The lower-level controller is represented as a



Chapter 4. Model-based Contextual Robot Skill Learning 104

PD controller u t =G[x̃T
t , ˙̃xT

t ]T . The gain matrix G4×8 is obtained by reshaping the pa-

rameter vector ω32×1. We initialize the models of the model-based approaches with

6 seconds of real experience, which was collected by a random policy. We use sparse

GP models [72] for PILCO and GPREPS.

Required Experience
Reward limit PILCO GPREPS REPS

-100 10.18s 10.68s 1425s
-10 11.46s 20.52s 2300s
-1.5 12.18s 38.50s 4075s

TABLE 4.2: Required experience to achieve reward limits for a 4-link balancing
problem. Higher rewards require better policies.

In Tab. 4.2 we show the required amount of real experience to reach certain reward

limits. As shown in the table, GPREPS requires two orders of magnitude fewer trials

than REPS to converge to the optimal solution. PILCO achieved faster convergence

as the gradient-based optimizer computes greedy updates while GPREPS continued

to explore. The difference to PILCO might be decreased by updating the policy more

than once between the data collections. However, the difference is negligible com-

pared to the difference to the model-free method. Despite the fact that PILCO was

the most data-efficient learning algorithm, it required at least twice as much com-

putation time to achieve the same reward levels as GPREPS, which was highly paral-

lelized. The data efficiency of GP model-based policy search algorithms comes with

significantly higher computational demands compared to model-free approaches.

The computation time is dominated by the GP model training and the trajectory pre-

diction.



Chapter 4. Model-based Contextual Robot Skill Learning 105

4.3.2 Ball Throwing Task

In the ball throwing task we use a 4-DoF freedom planar robot to throw a ball at a

target, whose position is defined by the context variable (Appendix C.1). In Sec. 3.4.1

we evaluated the contextual model-free REPS on this task. The resulting final policy

provides skills that throws the ball in the close vicinity of the target position for a wide

range of contexts. However, due to data-inefficiency, model-free REPS requires up to

5000 evaluations to converge to a high quality solution.

With GPREPS our goal is to evaluate artificial policy parameter samples using the

learned models to obtain the reward. To produce trajectory rollouts with the model-

based GPREPS, we learn three distinct models of the task (Fig. 4.2). The first model

represents the dynamics of the robot. We use the observed state transitions as train-

ing samples for this model. To reduce the computational demand, we use a sparse

GP model based on pseudo inputs [72]. The second model is used to predict the ini-

tial position and velocity of the ball at the release time tr . Although we could use

the forward kinematic equations to approximate the initial state of the ball, in a real

learning scenario this could lead to biased predictions. Instead, we use a standard GP

model to predict the initial state of the ball based on our observations. The third GP

model represents the free dynamics of the ball while in flight. It is used to predict the

trajectory of the ball using its initial state predicted by the second GP model. While

we could also use a mathematical model to predict the ball trajectory, to account for

stochasticity and nonlinearities, such as drag, we use sparse GP models.

The learning curves of the ball throwing task are presented in Figure 4.6. For GPREPS



Chapter 4. Model-based Contextual Robot Skill Learning 106

evaluations

re
w

ar
d

101 102 103

-8000

-6000

-4000

-2000

0

GPREPS
REPS (GP direct)
REPS
REPS (extra context)

FIGURE 4.6: Learning curves for the ball throwing problem.

we initially evaluate 10 experiments to collect measurement data for the GP models.

Subsequently, after each policy update we execute only one experiment to collect

data using the new policy. For each policy update, we use 500 artificial sample evalu-

ations and for each sample we evaluate 25 trajectories. As we optimize the dual func-

tion with significantly more samples, we obtain a better estimate of the Lagrangian

parameters η and θ. Thus, we can update the policy more confidently using ε = 1.

However, a higher ε can also be harmful if the predicted rewards, and thus, the pa-

rameters η and θ are biased. Based on our observations, our modeling technique

provided reward predictions with absolute error below 10%.

We also evaluated a model-based version of contextual REPS, where GP models were

used to map artificial contexts and policy parameters to expected rewards (denoted

by GP direct in the figure). While we observed relatively good learning performance,

the final result is of lower quality and has higher variance compared to REPS and

GPREPS. On the other hand, GPREPS required only 30−40 evaluations to converge

to the highest quality solution. Furthermore, the variance of the final policy is negli-

gible. Thus, this experiment confirms that incorporating prior knowledge about the



Chapter 4. Model-based Contextual Robot Skill Learning 107

task and decomposing the reward model to multiple modules consistently provides

higher quality final policies. GPREPS not only provides higher quality solutions com-

pared to model-free REPS, but also requires two orders of magnitude less interactions

with the robot.

4.3.2.1 Influence of the Number of Artificial Samples

In the following, we investigate the influence of the number of artificial samples on

the learning performance. To obtain an accurate estimate of the sample-based dual

function (Eq. (3.9)), we are interested in evaluating a high number of artificial sam-

ples. However, the computation time between policy updates linearly increases with

the number of artificial samples generated by the GP models. While a long policy up-

date interval does not influence the data efficiency of GPREPS, from a practical point

of view we prefer to keep the number of artificial samples as low as possible, without

affecting the learning performance.

evaluations

re
w

ar
d

10 20 30 40 50
-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Aritifical Samples = 50
Aritifical Samples = 100
Aritifical Samples = 500
Aritifical Samples = 1000

FIGURE 4.7: The learning curves of GPREPS with different amount of artificial sam-
ples used.



Chapter 4. Model-based Contextual Robot Skill Learning 108

In Fig. 4.7 we show the learning curves with GPREPS when using different amount

of artificial samples. As the figure shows, increasing the amount of artificial samples

always has a positive influence on the learning performance. However, we do not see

much difference above using 500 samples. Using a lower number of artificial samples

resulted in lower quality final policies with highly varying performance. Based on

our experience with the learning problems, the number of artificial samples should

scale proportionally with the dimensions of the lower-level policy parameter for good

performance.

4.3.2.2 Learning with Stochastic Dynamics

For learning problems where the dynamics of the robot and its environment is stochas-

tic, the variance of the resulting trajectory τ and hence the reward R(τ, s) might be

considerably large. We show such an example in Fig. 4.8 with a single link pendulum.

As already mentioned, the model-free REPS algorithm only evaluates a single rollout

R(τ, s) for a given context-parameter pair to obtain an estimate of the expected re-

ward Rsω. Thus, the dual function in Eq. (3.9) and the optimized parameters η and

θ might be biased. This could lead to premature convergence and biased final poli-

cies. GPREPS avoids this problem by averaging over multiple samples for the same

context-parameter pair, as in Eq. (4.1).

To test the GP models, we implement the stochasticity by adding Gaussian noise to

the initial state of the ball at the release time. The standard deviation of the initial

positions is 7.5cm, while for the initial velocities it is 30cm/s. With the added noise,



Chapter 4. Model-based Contextual Robot Skill Learning 109

the standard deviation of the reward R(τ, s) will be roughly 10% of the absolute ex-

pected reward, that is Var[R(τ, s)] ≈ Rsω/10. Thus, in the beginning of the learning

the standard deviation is around 1000, while for the optimal policy it is below 10.

In Figs. 4.9(a) and 4.9(b), we can see the learning curves of REPS and GPREPS with

0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

time [sec]

1D pendulum

 

x
ẋ
r(x,ẋ)

−30 −28 −26 −24 −22
0

5

10

15

20

25
Histogramof r(τ,s)

Rsω

FIGURE 4.8: (left) Trajectory and reward samples of the single link pendulum.
(right) The trajectory reward r (τ, s) =∑

t r (xt , ẋt ) distribution and the expected re-
ward Rsω = E[r (τ, s)].

evaluations

re
w

ar
d

102 103 3.6*103-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

REPS
REPS noisy

(a)

evaluations

re
w

ar
d

30 40 50 60 70 80
-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

GPREPS
GPREPS noisy

(b)

FIGURE 4.9: (a) The learning curves of REPS with the stochastic ball throwing task.
At the end of the learning, the policy optimized with the noisy environment attains
an expected reward of −1086, while the policy learned with the deterministic dy-
namics has a final reward of −715. (b) The learning curves of GPREPS with the
stochastic ball throwing task. At the end of the learning, the policy optimized with
the noisy environment attains an expected reward of −68, while the policy learned

with the deterministic dynamics has a final reward of −64.



Chapter 4. Model-based Contextual Robot Skill Learning 110

stochastic dynamics (denoted by noisy in the Figures). As a reference, we also dis-

played the learning curves with the deterministic dynamics. We can see that learn-

ing with stochastic dynamics resulted in a slower learning pace for both algorithms.

However, we can see significant differences in the performance of the final policy.

While GPREPS is able to learn a policy of similar quality with stochastic dynamics as

with deterministic, the bias in model-free REPS prevents the algorithm from finding

the final policy of similar quality. The performance of REPS could have been im-

proved when using multiple rollouts for a given context-parameter pair. However,

such strategy decreases the sampling efficiency significantly. This experiment con-

firms that by using the expected reward instead of a single noisy reward sample, we

can learn high quality policies, even in the presence of stochasticity.

4.3.3 Robot Hockey Task

In the robot hockey task our goal is to shoot a target puck at a specified distance,

which can be achieved by executing a hitting stroke with a 7-DoF robot arm (Ap-

pendix C.2). The learning problem becomes non-trivial, as the position and the re-

quired displacement of the target puck changes between task executions.

We have already evaluated the model-free contextual REPS and the CrKR algorithm

on this learning problem in Sec. 3.4.2. While the final learned policy was of high

quality, the amount of required task executions was in the thousands. To account for

the data-inefficiency, we propose the use of GPREPS.

Using prior knowledge, we decompose the experiment into distinct models. Model-

ing the contact of the racket and the control puck is challenging due to the curved



Chapter 4. Model-based Contextual Robot Skill Learning 111

shape of the hockey racket. When shooting the puck, the racket might push, or hit

the puck multiple times. To avoid extensive modeling of these contacts, we use a GP

model to directly predict the state of the puck at a constant distance of 0.2m in the

x direction from the robot’s base, where contact between the racket and the puck is

no longer possible. We use solely the DMP parameters ω as the input to this model.

We learn another model for the free dynamics of the sliding pucks, which are used

for predicting the puck trajectories. For predicting the contact of the control and tar-

get pucks, we assume that we know the radius of the pucks, and thus, we can always

detect contacts. For modeling the effect of the contact, we also learn a separate GP

model that predicts the state of the pucks after a contact.

evaluations

re
w

ar
d

101 102 103 104

-0.6

-0.4

-0.2

0

GPREPS
REPS
REPS (GP direct)
CRKR

FIGURE 4.10: Learning curves on the robot hockey task. GPREPS was able to learn
the task within 120 interactions with the environment.

The learning performance of GPREPS is shown in Figure 4.10. GPREPS learned the

task already after 120 interactions with the environment, while the model-free ver-

sion of REPS needed approximately 10,000 interactions. Moreover, the policies learnt

by model-free REPS were of lower quality. After 100 evaluations, GPREPS placed the

target puck accurately at the desired distance with a displacement error less than

5cm.



Chapter 4. Model-based Contextual Robot Skill Learning 112

evaluations

re
w

a
rd

50 55 60 65 70 75 80

-0.15

-0.1

-0.05

GPREPS

FIGURE 4.11: The GPREPS learning curve on the real robot arm. The shaded area
represents the 95% confidence interval of the result after 5 independent evalua-

tions.

We also evaluated the performance of GPREPS on the hockey task using a real KUKA

lightweight arm. Due to environmental constraints, we use a slightly different test

setup compared to the original task used for the model-free REPS. Details of the new

problem setup is discussed in Appendix C.2. Due to the relatively low sampling fre-

quency of the Kinect sensor, the contact between pucks might not be captured ac-

curately. To avoid the errors coming from a crude model, we exchange the contact

model by a model that directly predicts the displacement of the second puck using

the incoming puck’s relative position and velocity.

The resulting learning curve of GPREPS is shown in Fig. 4.11. As we can see, the

robot adapts the lower-level policy parameters towards the optimum within a low

number of interactions with the real environment. The final reward is slightly differ-

ent compared to the simulated environment due to the altered context ranges and

slightly distorted measurement data of the Kinect sensor. Despite these effects, the

GP models could average over the uncertainty and produce accurate predictions of

the expected rewards.



Chapter 4. Model-based Contextual Robot Skill Learning 113

4.3.4 Robot Table Tennis

For the robot table tennis task (see Appendix C.3), we decompose the whole experi-

ment into five distinct models. With the first model, we predict the landing position,

landing velocity and the landing time of the incoming ball using the observed initial

velocities v of the ball. This modeling approach is sufficient for our objectives, as

we only want to learn returning incoming balls that land exactly once on the table.

The second model predicts the trajectory of the ball given its position and velocity

predicted by the first model. The third and fourth model predict the trajectory and

orientation of the racket mounted at the endeffector. To avoid the complex modeling

of the 8-DOF robot dynamics, we use time dependent GP models to directly predict

the position and orientation (in the quaternion representation) from policy param-

eters. To create time dependent models, we fit a linear basis function model with

40 local basis functions φ(t ) per dimension to the trajectory of the racket, where the

basis functions only depend on the execution time of the trajectory. We use the GP

model to predict the weights of the basis functions given the policy parameters ω.

The training input for each model is the lower-level policy parameter ω, the training

target is the local model weight ν. Finally, the fifth model predicts the landing posi-

tion of the returned ball in case of a contact, which is detected by a Support Vector

Machine (SVM) classifier with a linear kernel. The input to the classifier is the rela-

tive velocity of the ball and the racket, the position and orientation of the racket at

the time when the absolute distance between the racket and the ball is minimal. For

the contact model, we use the same training input data as for the classifier and the

observed landing position p = [px , py ] as the training target.



Chapter 4. Model-based Contextual Robot Skill Learning 114

As learning a good contact model between the racket and the ball requires many sam-

ples, in the first few iterations we only have to focus on learning to hit the incoming

ball. As soon as we learned a good hitting stroke and we have enough contact sam-

ples, we can use the learned contact model to provide confident predictions. Thus,

we change the weighting parameters c = [c1,c2]T in the reward function

R(τ, s) =−c1 min ||τb −τr ||2 − c2||b −p||2 (4.17)

such that at the beginning of the learning c2 is negligible compared to c1, but we add

an extra constant penalty term. The size of the penalty term is the maximum possible

penalty max ||b − p||2. Using this choice for the weight parameters, the algorithm

focuses only on learning to hit the ball. After collecting enough samples to learn a

good contact model, we set c1 = c2 and disable the constant penalty term. Now, the

algorithm focuses both on hitting the ball and returning it close to the target position

b. Note, that we always use c1 = c2 for the model-free algorithms.

evaluations

re
w

ar
d

Robot Table Tennis

102 103 104-0.4

-0.3

-0.2

-0.1

0

GPREPS

REPS

REPS (GP direct)

FIGURE 4.12: The learning curves of the table tennis experiment. GPREPS always
provided a consistent performance, and the final policy was able to return the ball
within 30cm of the target position, while avoiding hitting the ball into the net. This

behavior could be learned within 150 evaluations.

We compared GPREPS with the model-free REPS and a model-based REPS, where we



Chapter 4. Model-based Contextual Robot Skill Learning 115

directly predict the reward from context-policy parameter pairs. The learning curves

are depicted in Fig. 4.12. We can clearly see that GPREPS outperforms the other

two algorithms. GPREPS consistently provides high quality policies after only 150

evaluations. The final policy avoids hitting the ball into the net and the displacement

from the desired target position remains below 30cm. In Figure 4.13 we show an

experiment evaluation using the GP models.

−0.5
0

0.5

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
0

−1
−0.8

y [m]
x [m]

z
[m

]

FIGURE 4.13: An example of prediction outcome with the table tennis experiment.
The first and second model predicts the initial position and velocity of the incom-
ing ball and its trajectory after bouncing back (black lines). The third and fourth
model predicts the position (blue lines) and the orientation (not depicted here) of
the racket. After detecting a contact, we predict the returned position of the ball
(red diamonds). When we compare the predictions with the real experiment tra-
jectories (red and green lines), we can see the high accuracy of the predictions. The
models are learned from 100 experiment rollouts, we sample 10 trajectories to cap-

ture the stochasticity.

When using the GP direct approach that does not use the prior knowledge of the

structure of the experiment, we obtain policies that often get stuck in a local optima.

Typically we observe policies that hit the ball to the net, or even miss the ball. The

model-free REPS approach results in a good performance in general, but with the



Chapter 4. Model-based Contextual Robot Skill Learning 116

disadvantage of being data-inefficient. Model-free REPS requires at least 4000 evalu-

ations on average to learn a policy that consistently returns the ball, with only a few

instances of hitting the ball into the net.

This experiment concludes that GPREPS is applicable to learn complex robotic tasks,

even in the presence of contact models that are, in general, more difficult to learn. In

future work, we will investigate how we can use a GP model-based version HiREPS

[14], to learn not only forehand, but backhand hitting motion as well. Furthermore,

in order to learn to play a general table tennis game, we will extend the context with

varying initial positions and we will evaluate GPREPS on the real robot platform.

4.4 Discussion

We have presented in four simulations and in one real robot experiment that GPREPS

not only improves the data-efficiency, but the quality of the final policy. Due to

the probabilistic modeling approach, GPREPS is able to learn high quality policies

even in the presence of uncertainty. While GPREPS reduces the required amount

of skill evaluations up to two orders of magnitude, the policy update times signifi-

cantly increase due to computational demand for training and predicting with non-

parametric GP models. While sparse GP models help to mitigate the problem, the

expected time between policy updates can take up to half an hour. However, with

clever implementation, e.g., sampling trajectories on GPUs, the policy update times

can be reduced below a minute using main-stream PCs.



Chapter 4. Model-based Contextual Robot Skill Learning 117

In order to make GPREPS work well on the real task, we have to introduce a sub-

stantial amount of prior knowledge about the experiment. It is often not clear which

models we can learn accurately with GP regression. For example, in the table tennis

task, instead of learning the robot dynamics and its forward kinematics to predict

the trajectory of the endeffector, we used locally weighted GP regression to directly

predict the position and orientation over time from DMP parameters. While the for-

mer approach is more intuitive, the models become high dimensional and prediction

errors can be high. In the latter case, although the choice of model is not intuitive,

predictions become highly accurate using GP models. Thus, finding the proper way

of task decomposition might require longer experimentation times.

GP models are typically good in capturing the nonlinearity and the stochasticity in

the dynamics at the cost of a relatively high computational demand. While rather

good models can be learned in case of smooth dynamics, modeling abrupt changes

and discrete events (e.g., contacts) is generally harder and it requires more prior

knowledge.

Despite the above mentioned implementation issues, GPREPS offers a general con-

textual policy search framework for robot learning tasks with unprecedented data-

efficiency. Furthermore, GPREPS can be considered as an example of a more gen-

eral model-based contextual learning framework, where we used GP modeling and

contextual REPS learning. As the purpose of modeling is solely to obtain unbiased

rewards, the GP model can be exchanged to other models, such as LWBR. Similarly,

other learning algorithms can also be augmented with GP modeling to obtain less

biased reward prediction and better data efficiency. We believe that the ideas behind



Chapter 4. Model-based Contextual Robot Skill Learning 118

GPREPS will open the door for novel algorithms for data-efficient robot skill general-

ization.



Chapter 5

Kernel Embedding of Trajectory

Distributions

Model-based reinforcement learning of robot skills inherently depends on the hand-

tuned or learned model of the robot dynamics. One of the most successful class of

models for learning the complex dynamics of higher DoF robots is Gaussian Pro-

cesses. The state of the art model-based controller learning algorithm PILCO [17], as

well as the GPREPS algorithm [42, 48] uses GP models to learn the forward dynam-

ics of the controllable system. While GP regression provides less biased models, as

discussed in Sections 2.3 and 4, evaluating long-term predictions requires approxi-

mations and assumptions. When predicting trajectories, at each time step we wish to

obtain the subsequent state distribution pt+1(x) given the current state distribution

pt (x) and some control policy π(u|x). To obtain the new state distribution, we have

119



Chapter 5. Kernel Embedding of Trajectory Distributions 120

to solve the integral

pt+1(x) =
Ï

xu
p(x ′|x ,u)π(u|x)pt (x)d xdu. (5.1)

To obtain pt+1(x) in closed form while keeping computations tractable, we typically

make the assumption that pt+1(x) and the joint distribution pt (x ,u) = π(u|x)pt (x)

are Gaussian. Furthermore, to solve the integral, we have to rely on the moment

matching or the linearization approach (Sec. 2.3), as for nonlinear models the pre-

dictive distribution is not Gaussian. Alternatively, we can sample from distribution

pt (x ,u) and obtain a stochastic approximation of the posterior distribution, which is

unbiased in the limit. On the other hand, this approach is computationally demand-

ing.

For most model-based reinforcement learning algorithms, we use the predicted tra-

jectory distribution to obtain the expected reward R(τ) = ∫
p(τ)R(τ)dτ. For many

robot learning tasks, the trajectory reward can be defined as the sum of immediate

rewards R(τ) = ∑T
t=1 r (x t ,u t ). In this case, we can write up the expected trajectory

reward R(τ) = ∑T
t=1E[r (x t ,u t )], where we take the expectation w.r.t. the distribu-

tion pt (x ,u) at each time step. However, to obtain the expected immediate reward

in closed form given a Gaussian state-action distribution, the reward function has to

come from a specific class for which we can compute the expectation in closed form.

Such functions are, for example, quadratic, exponential, trigonometric, etc. On the

other hand, for many other nonlinear functions and for non-Gaussian pt (x ,u), we

cannot obtain E[r (x t ,u t )] in closed form.



Chapter 5. Kernel Embedding of Trajectory Distributions 121

In the following, we will present a novel trajectory and reward prediction algorithm

for model-based reinforcement learning using kernel embedding of trajectory distri-

butions. The key idea of our approach is to represent state-action distributions with

mean embeddings in feature space, where manipulation of the embeddings become

linear algebraic operations with Gram matrices. The first advantage of our approach

compared to using GP models is that we avoid the parametric representation of the

predictive distribution, and thus, we can capture rich statistical features of the state

distribution. Second, we avoid approximations when computing the embedding of

the successor state distribution while computations become substantially simpler

compared to solving the integrals in Eq. (5.1). Finally, with kernel embedding, the

computation of the expected reward E[r (x t ,u t )] becomes straightforward without

any computational approximation or limitation on the class of the reward function.

The kernel embedding approach has recently been applied to probabilistic infer-

ence problems, such as belief propagation [75] and filtering [23]. In reinforcement

learning, kernel-based techniques are often used for value function approximation

[5, 89]. Taylor et al. [83] give a unifying view of kernelized RL approaches and com-

pare them to GP-based techniques, such as GPRL [61] and GP Temporal Difference

[20]. Grünewälder et al. [26] use kernel embedding of the state transition dynam-

ics to approximate the expected value of the successor state distribution in Markov

Decision Processes (MDPs). To the best of our knowledge, the kernel embedding ap-

proach still has not been explored in the context of model-based policy search and

learning dynamics models for long-term trajectory prediction.



Chapter 5. Kernel Embedding of Trajectory Distributions 122

Learning time-independent stochastic dynamics can also be represented as a regres-

sion problem, where we wish to map the state-action pair [xT ,uT ]T to the successor

state x ′. Thus, in the following, we present important tools and methodologies for

general regression problems, which will form the basis for long-term trajectory and

reward prediction.

5.1 Regression using Kernel Embedding of Conditional Dis-

tributions

Assume the following problem: we wish to find the conditional model p(y |x), such

that ∫
y
φ(y)p(y)d y =

∫
y
φ(y)

∫
x

p(y |x)q(x)d xd y ,

for some feature φ(y), input q(x) and target distribution p(y). However, we do not

know p(x) and q(x) exactly, but we have access to a finite amount of samples from

the distributions {x i , y i }N
i=1. We solve the regression problem with kernel embedding

of the conditional distribution p(y |x). Using the results presented in Section 2.4, we

represent the mean embedding of the input and target distributions as

µx =
∫

x
q(x)φ(x)d x , µy =

∫
y

p(y)φ(y)d y .



Chapter 5. Kernel Embedding of Trajectory Distributions 123

However, as we do not know the distributions q(x) and p(y) in closed form, we use

sample averages to obtain the approximate embeddings

µ̂x = 1

N

N∑
i=1
φ(x i ), µ̂y = 1

N

N∑
i=1
φ(y i ).

Note that in the general case x ∈X and y ∈Y, and thus, the featuresφ(x) = k(x , ·) and

φ(y) = g (y , ·) are associated with RKHS FX and FY respectively. To obtain the mean

embedding µq
y with samples {x i , y i }N

i=1, we use the conditional covariance operator

Cy |x

µ
q
y = Cy |x µ̂x (5.2)

= Φy (K +λI )−1ΦT
x µ̂x , (5.3)

where K i j = k(x i , x j ),Φy = [φ(y 1), . . . ,φ(y N )],Φx = [φ(x1), . . . ,φ(x N )] and λ ∈R+ is a

small number that helps to avoid numerical problems during matrix inversion. With

notation µq
y we highlight that x is distributed according to q(x). In order to be able

to execute computations with the covariance operator, we need to express the mean

embedding of q(x) as a function of features µ̂x =Φx̃α, whereΦx̃ = [φ(x̃1), . . . ,φ(x̃ M )].

Although the values of {x̃ i }M
i=1 might be arbitrary, computations become simpler in

case Φx̃ = Φx . Thus, in the following, we will assume that x̃ i = x i , ∀i , and thus,

M = N . For a givenα, we can write up the mean embedding

µ
q
y =Φy (K +λI )−1

K︷ ︸︸ ︷
ΦT

xΦx α, (5.4)



Chapter 5. Kernel Embedding of Trajectory Distributions 124

which gives µq
y =Φyα for sufficiently small λ. The question arises, how do we com-

pute α for q(x) represented by samples {x∗
l }L

l=1 from the distribution? One solution

to the problem is to minimize the distance between φ(x∗
l ), ∀l and the embedding

Φxα. The optimal weightα in this case can be found by solving

α∗ = argmin
α

L∑
l=1

||φ(x∗
l )−Φxα||2. (5.5)

By taking the gradient of the objective function w.r.t. α and setting it to 0, we obtain

the optimalα∗ in closed form

α∗ = (K +λI )−1〈k(x∗
l )〉l=1:L , (5.6)

where k(x∗
l ) j = k(x j , x∗

l ) and 〈·〉 represents the average over the arguments. At this

point, we are able to compute the mean embedding of the marginal distribution µq
y

given observed training samples {x i , y i }N
i=1 and query samples {x∗

l }L
l=1 representing

an arbitrary distribution q(x),

µ
q
y = Φy (K +λI )−1〈k(x∗

l )〉l=1:L (5.7)

= Φyβ. (5.8)

After obtaining the mean embedding µq
y , we might want to compute the most likely

value y∗ whose feature is the closest to the embedding. The corresponding optimiza-

tion problem (Sec. 2.4, Eq. (2.45)) is easy to solve for, e.g., polinomial and squared

exponential features [23].



Chapter 5. Kernel Embedding of Trajectory Distributions 125

5.1.1 Connection to Gaussian Process Regression

At this point, it is worth investigating the similarities and differences between Gaus-

sian Process regression and the kernel embedding approach. One of the first impor-

tant difference is that while GP provides a parametric predictive distribution with

mean and variance information, with kernel embedding we obtain only the mean

embedding without any information about the prediction variance. However, we

find high similarity between the predictive mean of GPs (Eq. (2.26)) and the mean

embedding in Eq. (5.7). In fact, with linear target feature φ(y) = y , and if q(x) has

density only around x , that is, 〈k(x∗
l )〉l=1:L u k(x), then the two predictive means are

roughly the same. However, the kernel embedding approach is more general, as it

allows for arbitrary target features φ(y). On the other hand, as the sample weights

β might have negative elements as well, it is not straightforward how to obtain in-

formation about the prediction variance with kernel embedding. Nevertheless, with

mean embedding we can compute the predictive kernel embedding for arbitrary in-

put distributions q(x) without approximations or assumptions.

5.2 Trajectory Prediction with Kernel Embedding

For predicting multiple time steps ahead, we need to repeatedly compute the embed-

ding of the successor state µx t+1
given the covariance operator Cx ′|x and the embed-

ding of the current state µx t
. Assume that we are given the initial state distribution

p1(x) represented by samples {x1
l }L

l=1. In the first step, we wish to compute the cor-

responding embeddingµx1
=Φxβ1, where we use the features of the observed states



Chapter 5. Kernel Embedding of Trajectory Distributions 126

{x i }N
i=1 to compute the embedding, that is, Φx = [φ(x1), . . . ,φ(x N )]. To obtain the

successor state embedding µx2
, we apply the covariance operator Cx ′|x

µx2
= Φx ′(K +λI )−1Kβ1, (5.9)

= Φx ′β2, (5.10)

whereβ2 =β1 for sufficiently small λ. As the successor state embedding will be given

with the successor state features µx2
=Φx ′β2, the embedding µx3

will be computed

as

µx3
= Φx ′(K +λI )−1K̃β2, (5.11)

= Φx ′β3, (5.12)

where K̃ i j = k(x i , x ′
j ) is the transition kernel matrix. Here we make the assump-

tion that x ∈ X and x ′ ∈ X , and thus, we can compute the inner product k(x , x ′) =

〈φ(x),φ(x ′)〉. Furthermore, we assume that the control policy π(u|x) is kept fixed

throughout the experiments, which will always provide the same trajectory distribu-

tion starting from an initial state distribution p1(x). We summarize the trajectory

prediction procedure in Table 5.1.

At each time step, we have to compute the weight parameter βt+1 of the successor

state embedding. This operation is a matrix-vector multiplication between matrix

C = (K +λI )−1K̃ representing the dynamics model and the current state embed-

ding weights βt . Subsequently, we have the option to either decode the most likely



Chapter 5. Kernel Embedding of Trajectory Distributions 127

Kernel Trajectory Prediction
Input: observed measurement data {x i , x ′

i }N
i=1, initial state distribution

{x l }L
l=1, kernel hyper-parameters θ

Compute C = (K +λI )−1K̃
Compute initial embedding µx1

=Φx ′β1 using Eq. (5.6)
for t = 1, . . . ,T

βt+1 =Cβt
Successor state embedding: µx t+1

=Φx ′βt+1
Options:

Compute the most likely x̂ t+1 by solving (2.45)
Evaluate function f =Φx ′δ using Eq. (2.43)
Compute embedding µy t+1

=Cy |xµx t+1
for arbitrary y

Output: Trajectory embedding {µx t
}T

t=1

TABLE 5.1: The trajectory prediction procedure with kernel embedding using a
fixed control policy π(u|x).

value given the new embedding, evaluate an arbitrary function using the reproduc-

ing property, or compute the embedding of another, state dependent distribution,

e.g., immediate reward.

Note that when using kernel embedding for trajectory prediction, we compute the

embedding of the full state vector. With GP regression, we typically learn a distinct

GP model for each output dimension. Thus, kernel embedding not only offers a sim-

ple solution to compute the successor state embedding, but requires significantly

less hyper-parameters to tune. While the above algorithm serves well to compute

the trajectory embedding when using a fixed control policy, in many cases we wish

to use a different, possibly time dependent control policy. In this case, the trajec-

tory embedding will not only depend on the initial state distribution, but the control

policy as well.

In Figure 5.1 we show the difference of the two prediction procedure. In Fig. 5.1(a)

the trajectory embedding will always be the same for a given initial state distribution

with a fixed control policy. However, when the control policy π(u|x) changes due to



Chapter 5. Kernel Embedding of Trajectory Distributions 128

 

µx1

µx2

µxT

. . .

(a)

 . . .

µx1

. . .

µ
º1
x2

µ
º1
xT

µ
º2
xT

µ
º2
x2

(b)

FIGURE 5.1: (a) The kernel embedding of the trajectory with a fixed control policy.
(b) The kernel embedding of the trajectory distribution will depend on the control
policy. In the Figure, withµπx we denote that the embedding of the state will depend

on the control policy π(u|x).

different parametrization, or altered reference trajectory, we obtain different trajec-

tory embeddings due to the different controls associated with the new policy (Fig.

5.1(b)). In this case, we have to ensure that we have the correct embedding of the

control distribution given the state. As the control signal only depends on the state

variable and the reference trajectory in our formulation, we can write up the embed-

ding of the joint distribution pt (x ,u) given pt (x). For this purpose, we introduce the

state-action variable z t = [xT
t ,uT

t ]T . The prediction now can be written as

µx t+1
=Cx ′|zCzπt |x tµx t

, (5.13)

where we highlight that zπt is the embedding of pt (x ,u) = pt (x)π(u|x t , t ). Note that



Chapter 5. Kernel Embedding of Trajectory Distributions 129

the model Cx ′|z only depends on the observed state transitions and it is indepen-

dent of the control policy π(u|x , t ) used for evaluating the prediction. To obtain the

embedding of p(zπt ), we have to compute the controls ui ,t ∼ π(u|x i , t ) for each ob-

served state x i , i = 1, . . . , N with the new control policy. Assume that the embedding

of state pt (x) is given, µx t
=Φxβt . In this case the embedding of zπt simply becomes

µzπt
=Φzπt βt . Thus, the embedding of the successor state distribution is

µx t+1
=Φx ′(G +λI )−1

Gπ
t︷ ︸︸ ︷

ΦT
z Φzπt βt , (5.14)

where G = ΦT
z Φz is the kernel matrix based on the observed samples {z i }N

i=1 and

G̃
π
t = ΦT

z Φzπt is the policy dependent kernel matrix. When predicting for multiple

time steps ahead, we will obtain the embedding µx t
=Φx ′βt with the observed suc-

cessor state features Φx ′ . Thus, when computing the successor state embedding,

instead of Gπ
t =ΦT

z Φzπt , we will use G̃
π
t =ΦT

z Φz ′π
t

, which is the control policy depen-

dent transition kernel matrix. Note, that in case we use the same time independent

control policy for prediction and data collection, then G̃
π
t = G̃

π
,∀t and G̃

π = G̃ , and

thus, we arrive to the prediction procedure presented in Table 5.1.

The prediction procedure for the general, time dependent case, is summarized in Ta-

ble 5.2. In the first step, we compute z ′π
i ,t for each observed state and time step, which

we then use to compute the initial embedding µzπ1
= Φz ′π

1
β1 and the policy depen-

dent transition matrix Cπ
t = (G +λI )−1G̃

π
t ,∀t . Subsequently, for each time step we

can obtain the embedding of the new state vector by a matrix-vector multiplication.

Additionally, we can compute the most likely value for the current state embedding



Chapter 5. Kernel Embedding of Trajectory Distributions 130

Kernel Trajectory Prediction with Arbitrary Control Policy
Input: observed measurement data {x i , x ′

i }N
i=1, control policy π(u|x , t ), ini-

tial state distribution {x l }L
l=1, kernel hyper-parameters θ

Compute z ′π
i ,t = [x ′T

i ,u′T
i ,t ]T , i = 1, . . . , N , t = 1, . . . ,T

Compute Cπ
t = (G +λI )−1G̃

π
t , t = 1, . . . ,T

Compute initial embedding µzπ1
=Φz ′π

1
β1 using Eq. (5.6)

for t = 1, . . . ,T
βt+1 =Cπ

t βt
Successor state embedding: µxπt+1

=Φx ′βt+1

Options:
Compute the most likely x̂ t+1 by solving (2.45)
Evaluate function f =Φx ′δ using Eq. (2.43)
Compute embedding µy t+1

=Cy |xµxπt+1
for arbitrary y

Output: Trajectory embedding {µxπt
}T

t=1

TABLE 5.2: The trajectory prediction procedure with arbitrary, time dependent
control policy using the kernel embedding approach.

with Eq. (2.45), compute another state dependent embedding µy t+1
, or we might

wish to evaluate a function with the reproducing property (Eq. (2.43)).

5.3 Model Selection

Although the kernel embedding approach is non-parametric, as with GP regression,

we still have to solve the model selection problem, that is, choosing a kernel func-

tion and finding its optimal hyper-parameters. While the regression problem usually

gives a good intuition for choosing the kernel function, finding the optimal hyper-

parameters is a more challenging problem. For finding the hyper-parameters with

GP regression, we typically maximize the likelihood of the predictive distribution,

which offers a good solution in most cases. However, when using the kernel embed-

ding approach, we do not have a parametric form of the predictive distribution, and

thus, we do not have a likelihood function to optimize. Using cross-validation with



Chapter 5. Kernel Embedding of Trajectory Distributions 131

approximation of the likelihood function is not straightforward as we do not have

any information about the prediction variance. An alternative approach for hyper-

parameter optimization is to minimize the squared distance of the predictive mean

embedding and the observed feature vector [27], that is,

θ∗ = argmin
θ

N∑
i=1

||φ(z ′
i )−µz ′

i
||2 (5.15)

= argmin
θ

N∑
i=1

g (z ′
i , z ′

i )−2g ′(z ′
i )βi +βT

i G ′βi , (5.16)

where βi = (G +λI )−1g (z i ), the j th element of g ′(z ′
i ) is g (z ′

i , z ′
j ), G ′

i j = g (z ′
i , z ′

j ) and

φ(z ′
i ) is the observed successor state-action feature. Here, θ refers to the hyper-

parameters of the kernel function k. The above optimization problem can be effi-

ciently solved using cross-validation.

Note that for model-based RL tasks, instead of the state embedding error criterion in

Eq. (5.15), we can directly minimize the reward prediction error by solving

θ∗ = argmin
θ

N∑
i=1

||φ(r ′
i )−µr ′

i
||2, (5.17)

where r ′
i = r (x ′

i ,u′
i ) is the observed immediate reward function of successor state-

action pairs andµr ′
i

is the model prediction. In case of linear reward kernel function,

the optimization algorithm becomes

θ∗ = argmin
θ

J (θ) (5.18)

= argmin
θ

N∑
i=1

(r ′
i − r ′Tβi )2, (5.19)



Chapter 5. Kernel Embedding of Trajectory Distributions 132

where r ′ represents the vector of observed successor rewards andβi = (G+λI )−1g (z i ).

The optimization problem can be solved by, e.g., the conjugate gradient algorithm,

where the gradients are

∂J (θ)

∂θ
= −2

N∑
i=1

(r ′
i − r ′Tβi )r ′T ∂βi

∂θ
, (5.20)

∂βi

∂θ
= (G +λI )−1

(
∂g (z i )

∂θ
− ∂G

∂θ
(G +λI )−1g (z i )

)
. (5.21)

As it is discussed in [1], finding the parameters of dynamics models by minimizing

the state prediction error independently for each time step might result in poor tra-

jectory prediction performance. The prediction error is propagated forward in time,

and thus, small errors in the first few prediction steps could lead to more biased tra-

jectory predictions. Although [1] suggests an algorithm to learn linear models for ac-

curate long-term trajectory prediction, direct application for parametric probabilis-

tic models might lead to biased learned models, due to the approximations involved

in the prediction process. In section 4.2.4 we proposed a novel probabilistic model

learning framework, that does not require the solution of the integrals, but rather

works with feature averages. On the other hand the algorithm requires the model

to match these feature constraints, which is typically difficult for any probabilistic

model. However, with the kernel embedding approach we do not require solving in-

tegrals or satisfying feature constraints, and thus, the optimization problem becomes

simple while avoiding approximations. Given the observed trajectories {τi }M
i=1, our



Chapter 5. Kernel Embedding of Trajectory Distributions 133

aim is to solve

θ∗ = argmin
θ

J (θ) (5.22)

= argmin
θ

M∑
i=1

T∑
t=1

||φ(r i
t )−Φr ′βi

t ||2, (5.23)

where the model predicted reward embedding is µr i
t
=Φr ′βi

t , with the weights βi
t =

(G+λI )−1G̃
πi
t−1β

i
t−1 andβi

1 = (G+λI )−1g̃πi
1 (z i

1). Note that the kernel function g (z , z ′)

is parametrized by θ. We will use the squared exponential kernel for state-action val-

ues and linear features for rewards. To avoid overfiting, we will use cross-validation.

To solve the above optimization problem with gradient techniques, we need to com-

pute the following gradients

∂J (θ)

∂θ
= −2

M∑
i=1

T∑
t=1

(r i
t − r ′Tβi

t )r ′T ∂β
i
t

∂θ
, (5.24)

∂βi
t

∂θ
= (G +λI )−1G̃

πi
t−1

∂βi
t−1

∂θ
, (5.25)

∂βi
1

∂θ
= (G +λI )−1

(
∂g̃πi

1 (z i
1)

∂θ
− ∂G

∂θ
βi

1

)
. (5.26)



Chapter 5. Kernel Embedding of Trajectory Distributions 134

5.4 Results

Æ

FIGURE 5.2: The pendulum.

After presenting the algorithms for obtain-

ing the kernel embedding of trajectory dis-

tributions, we turn our attention to simula-

tions. In our first experiment, we will com-

pare GP modeling and the kernel embed-

ding approach in a simple trajectory predic-

tion problem. We wish to predict the trajec-

tory of a single link pendulum, whose dynamics is described by

α̈=−9.81sin(α)+u,

where α is the vertical angle displacement (Fig. 5.2). We chose this simple sys-

tem, such that we can easily visualize the results of trajectory prediction and gen-

eralization. We use a stochastic state feedback controller to control α to 0, u ∼

N(u|K T x ,0.052), where K = [−3,−1]T and x = [α, α̇]T . Furthermore, we apply con-

trol constraints |u| ≤ 3. Thus, the dynamics of the system is close to linear around

α = 0, but gets nonlinear as the absolute value of the angle and the angular veloc-

ity increases. To learn the models, first we collect measurement data from randomly

initialized states. We evaluate 15 trajectories for 20 time steps, where the sampling

time is∆t = 0.1 sec. To train the hyper-parameters of the GP model, we maximize the

marginal log-likelihood in Eq. (2.28). For the kernel embedding approach, we mini-

mize the squared distance between the prediction and the observed successor state



Chapter 5. Kernel Embedding of Trajectory Distributions 135

embedding for each sample, that is, we solve the optimization problem in Eq. (5.16)

with 10-fold cross-validation.

We first compare the two models in a single step prediction problem. For each query

state x∗ = [α∗, α̇∗]T , we compute the predictive means E[x ′∗] and measure the predic-

tion accuracy by the squared error measures eα = (α̂′∗−E[α′])2 and eα̇ = ( ˆ̇α′∗−E[α̇′])2,

ex = (x̂ ′∗−E[x ′])T (x̂ ′∗−E[x ′]), where x̂ ′∗ = E[x ′∗] is the real expected successor state.

α∗

α̇
∗

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−10

−9

−8

−7

−6

−5

−4

−3

−2

(a)

α∗

α̇
∗

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−10

−9

−8

−7

−6

−5

−4

−3

−2

(b)

FIGURE 5.3: (a) Prediction error log10 eα with kernel embedding. (b) Prediction
error log10 eα with GP regression. Note that the contour levels are the same for both

Figures.

In Figures 5.3 and 5.4, we show the single step prediction errors with the kernel em-

bedding and the GP modeling approach with the colored contours. The kernel em-

bedding approach consistently provides more accurate predictions and it generalizes

better in less explored parts of the state space. In the figures, we highlighted the ob-

served trajectories with black curves. The models typically provide better predictions

in the vicinity of the observed trajectories. In the trajectory prediction experiment,

the kernel embedding approach significantly outperforms GP modeling (Fig. 5.5).

Moreover, computations times are substantially lower compared to the GP approach,



Chapter 5. Kernel Embedding of Trajectory Distributions 136

α∗

α̇
∗

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−10

−9

−8

−7

−6

−5

−4

−3

(a)

α∗

α̇
∗

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−10

−9

−8

−7

−6

−5

−4

−3

(b)

FIGURE 5.4: (a) Prediction error log10 eα̇ with kernel embedding. (b) Prediction
error log10 eα̇ with GP regression. Note that the contour levels are the same for both

figures.

α∗

α̇
∗

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

α∗

α̇
∗

 

 

−2 −1 0 1 2

−2

−1

0

1

2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

FIGURE 5.5: (a) Trajectory prediction error log10
∑20

t=1 ex t with kernel embedding.
(b) Trajectory prediction error log10

∑20
t=1 ex t with GP regression. Note that the con-

tour levels are the same for both figures.

where we used sampling to obtain an accurate approximation of the trajectory dis-

tribution.

In the next experiment, we compare the reward prediction accuracy when using ker-

nel embedding and GP modeling. We solve the reward prediction problem of the

balancing task presented in Sec. 4.3.1. We use a PD controller to balance the robot to



Chapter 5. Kernel Embedding of Trajectory Distributions 137

the upright position q 0 = [0,0,0,π]T from a random starting state around the upright

position. The uncorrelated random initial states are coming from a Gaussian distri-

bution with state means q 0, velocity means q̇ = 0 and with standard deviation 0.3 in

each dimension. Furthermore, we add i.i.d. Gaussian control torque noise with stan-

dard deviation 4 in each dimension, such that the dynamics becomes stochastic, but

the controller is still able to robustly control the system. We define the immediate

reward function to be quadratic r (q , q̇ ,u) = −10q̃ T q̃ − 10−1q̇ T q̇ − 10−5uT u, where

q̃ = q −q 0 is the deviation from the upright position. The reward for the whole tra-

jectory is the sum of immediate rewards R(τ) =∑T
t=1 r (q t , q̇ t ,u t ) with T = 40. When

using GP models, we use the sampling approach to average over sample trajectory

rewards to obtain the expected trajectory reward R(τ) =∑M
i=1 R(τi )/M with M = 100.

For the kernel embedding approach, we compute the embedding of immediate re-

wards µrt
= Φr ′βt with the embedding µz t

= Φz ′βt , where r ′
i is the reward for ob-

served samples z ′
i = [q ′T

i , q̇ ′T
i ,u′T

i ]T , i = 1, . . . , N . We use linear kernel for the reward,

and thus, we get the expected immediate reward E[rt ] = r ′Tβt . Finally, we compute

the expected trajectory reward as R(τ) =∑T
t=1E[rt ].

For GP modeling we optimize the hyper-parameters by maximizing the log-marginal

likelihood in Eq. (2.28) for each state dimension separately. For the kernel embed-

ding approach, we will consider two training methods presented in 5.3. First, we will

train the hyper-parameters by minimizing the single step reward prediction error in

feature space (Eq. (5.17)). We also evaluate the hyper-parameter training for accurate

long-term prediction (Eq. (5.23)). To avoid overfiting, we use 10-fold cross-validation

for both approaches.



Chapter 5. Kernel Embedding of Trajectory Distributions 138

10 20 30 40 50 60 70

10
3

10
4

Observed Trajectories

e
r

 

 

Kernel Embedding (step−based)

Kernel Embedding (trajectory−based)

Gaussian Process

FIGURE 5.6: The expected trajectory reward prediction accuracy of the kernel em-
bedding and the GP approach.

In Figure 5.6 we show the results of the expected trajectory reward prediction task

for an increasing amount of observed trajectories. We define the reward error er =
∑L

i=1(R(τi )− R̂(τi ))2/L, where L = 200 and R̂(τi ) is the real expected trajectory re-

ward for i th experiment, which we evaluated by sampling 100 trajectories using the

real dynamics. As the figure shows, the kernel embedding approach provides an or-

der of magnitude lower reward prediction error compared to the GP approach. For a

lower amount of observed trajectories, the GP model provides less confident predic-

tions, which leads to higher prediction variance, and thus, larger reward prediction

error. The kernel embedding approach consistently provides accurate reward pre-

dictions, even for a lower amount of observed trajectories. The figure shows that di-

rectly maximizing the long term prediction error in Eq. (5.23) (denoted by trajectory-

based) clearly has a positive effect on the predictive performance compared to the

step-based approach (Eq. (5.17)). Such a training approach is not straightforward for

GP and other probabilistic modeling methods, where computing the exact trajectory



Chapter 5. Kernel Embedding of Trajectory Distributions 139

distribution is difficult.

We also evaluated the reward prediction accuracy with an increasing amount of con-

trol torque noise on the system. We show the results in Figure 5.7. As we can see, the

GP modeling tends to provide higher prediction error due to the less confident pre-

dictions. However, with the kernel embedding approach we barely see any difference

in the prediction performance.

1 2 3 4 5 6 7 8 9
10

2

10
3

10
4

Torque Noise (std)

e
r

 

 

Kernel Embedding (step−based)

Kernel Embedding (trajectory−based)

Gaussian Process

FIGURE 5.7: The expected trajectory reward prediction accuracy of the kernel em-
bedding and the GP approach with an increasing amount of control torque noise.

This experiment concludes that the kernel embedding approach provides better gen-

eralization and prediction results, even with more complex dynamics, compared to

GP models.



Chapter 5. Kernel Embedding of Trajectory Distributions 140

5.5 Discussion

Kernel embedding provides a principled approach for non-parametric probabilistic

inference in a data driven fashion. The most important advantages compared to us-

ing GP regression are the superior generalization property, less hyper-parameters to

tune, fast computations and the lack of assumptions and approximations.

However, a significant disadvantage of the kernel embedding approach is that we

cannot obtain any information about the prediction confidence. This prevents the

definition of a likelihood function, which might be useful for tuning the kernel func-

tion hyper-parameters. Additionally, evaluating functions f (y), such as an immedi-

ate reward function, using the reproducing property is less intuitive than computing

the expected function value in the target space Y, y ∈Y. Furthermore, approximating

the function f =Φyδ using the observed data is challenging and it is prone to inaccu-

racies. Alternatively, we can use samples from the function evaluated at the training

points to compute the embedding of the expected function value. For example, when

computing the expected reward in the balancing task, we use the real reward func-

tion to compute the immediate reward only in the observed states and provide the

predictive reward as the weighted sum of observed reward samples. While this ap-

proach provides a more or less accurate evaluation of the function, it is essential to

extract prediction confidence with the kernel embedding approach for more princi-

pled function evaluation. Additionally, based on our observations, scaling to higher

dimensional dynamics is challenging in the current setup. We typically require more

samples compared to GP regression to achieve a better prediction performance.



Chapter 5. Kernel Embedding of Trajectory Distributions 141

As the kernel embedding approach is inherently sample based, we have to collect

enough samples to be able to provide an accurate prediction. However, we can only

guarantee good prediction performance for query inputs inside the convex hull of

the observed input space. Outside the convex hull the prediction is less reliable and

it is mostly dependent on the kernel function associated with the RKHS. Thus, in

order to provide a good prediction performance we need a relatively high number

of samples. However, with increasing input dimensionality we need exponentially

more samples to cover a unit region of the space. Thus, scaling the model learning

algorithm to higher degree of freedom robots becomes increasingly more difficult.

Nevertheless, for most prediction tasks used for robot skill learning we are typically

interested in only a smaller subspace of the full state-action space. Thus, obtaining

only a few samples from the trajectory distribution might already provide a sufficient

number of samples.

Furthermore, based on our observations, the hyper-parameter training method based

on minimizing the squared distance between the observed and predicted features

(Eq. (5.16)) often overfits the data. This could lead to overly confident predictions in

unexplored parts of the state space. However, when modeling robot dynamics, we

can exploit the ideas of training probabilistic models for accurate long-term trajec-

tory prediction (Sec. 4.2.4). Using this approach, we can train the hyper-parameters

to minimize the state-action feature difference between the observed and the pre-

dicted samples at each time step. By solving the primal problem, we do not re-

quire the model to satisfy the feature matching constraint at each time step. Thus,



Chapter 5. Kernel Embedding of Trajectory Distributions 142

the resulting algorithm will be straightforwardly applicable with any kernel func-

tion. We showed an example for this training approach for accurate long-term re-

ward prediction with linear features (Eq. (5.23)). Altogether, we believe that the pro-

posed kernel-based trajectory prediction algorithm already improves significantly

the performance of existing model-based RL algorithms, such as GPREPS. Future

work will investigate the application of the proposed method to higher dimensional

state-action spaces.



Chapter 6

Conclusion

In this thesis, we presented novel algorithms for more efficient generalization of robot

skills. The contributions focused on two major topics: model-based robot skill gen-

eralization and probabilistic robot dynamics learning with a special focus on non-

parametric methods. We showed in simulations and in a real experiment that the

novel tools provide unprecedented data-efficiency for learning, and superior trajec-

tory and reward prediction accuracy compared to existing methods.

6.1 Summary of Contributions

Evaluation of Contextual REPS. First, we gave an overview of contextual REPS and

we presented the derivation of the policy update equation and proposed a sample-

based implementation of the algorithm. We showed in complex robot simulations,

such as robot table tennis, hockey and ball throwing, that with contextual REPS we

143



Chapter 6. Conclusion 144

are able to consistently learn high quality contextual upper-level policies, while pro-

moting safe exploration. The only open parameter of the algorithm is the relative en-

tropy bound, which is typically easy to choose for a given learning problem. Further-

more, the contextual REPS can be extended to learn hierarchical policies for choosing

multiple options for performing the task [14].

Gaussian Process REPS. We presented GPREPS, a novel model-based contextual pol-

icy search algorithm based on GP models and on the contextual REPS algorithm. We

learn an upper-level policy that efficiently generalizes the lower-level policy param-

eters over multiple contexts. GPREPS exploits learned probabilistic forward models

of the robot and its environment to predict expected rewards of artificially generated

data points. For evaluating the expected reward, GPREPS samples trajectories using

the learned models. Unlike deterministic inference methods used in state-of-the art

approaches for policy evaluation, trajectory sampling is easy to implement, easy to

parallelize and does not limit the policy class or the used reward model.

With simulated and real robot experiments, we demonstrated that GPREPS signifi-

cantly reduces the required amount of measurement data to learn high quality poli-

cies compared to state-of-the-art model-free contextual policy search approaches.

Moreover, the GP models are able to account for model uncertainty and produce

accurate trajectory distributions. Thus, with GPREPS we avoid the risk of learning

from noisy reward samples that results in a bias in the model-free REPS formulation.

The increased data efficiency makes GPREPS applicable to learning contextual poli-

cies in real-robot tasks. Since existing model-based policy search methods cannot be



Chapter 6. Conclusion 145

applied to the contextual setup, GPREPS allows for many new applications of model-

based policy search.

Probabilistic model learning. We presented a novel probabilistic model learning

framework for accurate long-term trajectory prediction. Instead of solving the primal

problem, which would require the computation of the whole trajectory distribution,

we optimize the dual objective, which connects the time steps via the Lagrangian

multipliers. While the Lagrangian parameters are convex in the dual function, we

still have to compute the gradient w.r.t. the hyper-parameters of the probabilistic

model, which is in general non-convex. Although the state transition constraints are

difficult to satisfy for some models, we believe that the proposed algorithm will pro-

vide accurate long-term predictions for an appropriate class of models.

Kernel embedding of trajectory distributions. Using recent results in kernel em-

bedding of conditional distributions, we proposed a novel trajectory prediction al-

gorithm. The kernel-based algorithm avoids approximations and assumptions when

computing the successor state distribution with probabilistic models. Furthermore,

computations become substantially faster with linear algebraic operations with Gram

matrices compared to solving integrals with, e.g., the moment matching approach.

We showed simulation results for both trajectory and reward prediction accuracy,

and concluded that the kernel embedding approach has better generalization and

prediction accuracy compared to the GP modeling approach. Thus, we believe that

the kernel embedding approach will be an important tool for future model-based RL

algorithms.



Chapter 6. Conclusion 146

6.2 Future Work

Active learning of dynamics models. A significant shortcoming of the GPREPS al-

gorithm and other, GP model-based learning algorithms, such as PILCO, is the com-

putational demand of model training and prediction. While sparse GP methods can

mitigate the problem, for robot dynamics learning tasks, the amount of training sam-

ples might quickly become overly large, which could lead to impractically slow per-

formance, even with sparse methods. In GPREPS, after each policy update, we col-

lect new measurement data following the controller πω(u|x) with parametrization

ω ∼ πθ(ω). However, the upper-level policy is set, such that it provides high reward

rollouts in a given context, without any guarantees for collecting informative data

points for model learning. This might result in an overly large number of total, but a

surprisingly low number of informative training samples for model learning. Borrow-

ing the ideas of dual control, future research will focus on learning control policies,

which not only provide high reward rollouts, but highly informative training samples

for model learning. While the two objectives might be contradictory around the opti-

mal solution, the early stages of the learning greatly benefit from informative models.

In later stages of the learning procedure, when the upper-level policy narrows down

the region of possible optimal solutions, we can switch to model-free learning for a

less biased final controller parametrization.

Learning with partially observable context. Contextual policy search algorithms,

such as REPS and GPREPS, have proven to be highly efficient in robot skill general-

ization. In the experiments presented in this thesis, we assumed that the context is



Chapter 6. Conclusion 147

a deterministic and observable variable. However, in many situations, such as lift-

ing an unknown mass, the context might be a stochastic random variable. While we

can maintain a belief over the context distribution, it is not straightforward how to

generalize robot skills in this situation. Thus, future research will focus on robot skill

generalization with stochastic and partially observable contexts. This will allow a

more general learning setting.

Contextual dynamics models. In our experiments we assumed that the context vari-

able does not influence the dynamics of the robot. However, in an object lifting task

the mass of the object and thus, the dynamics of the robot might change between task

executions. As the mass will influence the dynamics of the robot, the trajectory dis-

tribution will not only depend on the lower-level policy parametrization, but on the

context variable as well. Thus, when using model-based techniques, such as PILCO

and GPREPS, we have to condition on the context variable when predicting the suc-

cessor state distribution. For GP models with deterministic and observable context

variables, we can straightforwardly exploit the context information for model train-

ing and trajectory prediction. However, when we only have access to a distribution

over the context variable, we have to marginalize over the context as well to obtain

the successor state distribution. This would further complicate the already involved

prediction procedure in the parametric case. However, the kernel embedding ap-

proach offers a principled solution to the problem. When computing the embedding

of the successor state distribution, we can simply include the embedding of the con-

text distribution in the prediction equation. Further evaluation of this approach will

be the topic of future research.



Chapter 6. Conclusion 148

Real-time model learning. The kernel embedding approach offers a novel solution

for online learning the robot inverse dynamics model, similar to real-time local GPs

[52]. Having an accurate inverse dynamics model allows for compliant robot control,

which is important for robots working in human environments. While real-time lo-

cal GPs learn the robot dynamics efficiently, adaptation to changing dynamics due

to, e.g., grasping heavy objects, requires the forgetting of previous measurements.

However, with the kernel embedding approach, we can exploit the kernel Bayes’ rule

to condition on the history of measurements to obtain the embedding of the forward

torque. Thus, we can quickly adapt to new situations with altered dynamics without

having to forget previous data. Thorough investigation of a local kernel embedding

approach will be the topic of future research.

Prediction variance with kernel embedding. A major shortcoming of the kernel em-

bedding approach is the lack of prediction variance information, which prevents ac-

curate function evaluation and hyper-parameter training. Thus, future research will

focus on how the conditional covariance operator can be represented in a probabilis-

tic way, such that it provides prediction variance for the target mean embedding.



Appendix A

Derivation of Contextual

Episode-based REPS

The constrained optimization problem of episode-based REPS for contextual policy

search is given by

max
p

Î
s,ω p(s,ω)Rsωd sdω, (A.1)

s.t.:
Î

s,ω p(s,ω) log p(s,ω)
q(s,ω) d sdω≤ ε, (A.2)

Î
s,ω p(s,ω)φ(s)d sdω= φ̂, (A.3)

Î
s,ω p(s,ω)d sdω= 1. (A.4)

149



Appendix A. Derivation of Contextual Episode-based REPS 150

We can write up the Lagrangian of the corresponding constrained optimization prob-

lem in the form

L(p,η,γ) =
Ï

s,ω
p(s,ω)Rsωd sdω+η

(
ε−

Ï
s,ω

p(s,ω) log
p(s,ω)

q(s,ω)
d sdω

)

+γT
(
φ̂−

Ï
s,ω

p(s,ω)φ(s)d sdω

)
+λ

(
1−

Ï
s,ω

p(s,ω)d sdω

)
. (A.5)

By setting the gradient of L(p,η,γ) w.r.t. p(s,ω) to zero we obtain the solution

p(s,ω) = q(s,ω)exp

(
Rsω−γTφ(s)

η

)
exp

(
−η+λ

η

)
, (A.6)

with the base line V (s) = γTφ(s). Due to the constraint
Î

s,ω p(s,ω)d sdω = 1, we

also have that

exp

(
−η+λ

η

)
=

[Ï
s,ω

q(s,ω)exp

(
Rsω−γTφ(s)

η

)
d sdω

]−1

. (A.7)

The dual function is obtained by setting the solution for p(s,ω) back into the La-

grangian. After rearranging terms, we obtain

g (η,γ,λ) = η+λ+ηε+γT φ̂= η logexp

(
η+λ
η

)
+ηε+γT φ̂ (A.8)

Setting Equation (A.7) into the dual we can eliminate the λ parameter and obtain the

dual function

g (η,γ) = η log

(Ï
s,ω

q(s,ω)exp

(
Rsω−γTφ(s)

η

)
d sdω

)
+ηε+γT φ̂. (A.9)



Appendix A. Derivation of Contextual Episode-based REPS 151

Using a dataset D = {s[i ],ω[i ],R[i ]
sω}i=1...N where the context parameter pairs have

been sampled from q(s,ω), the integral in the dual function can be approximated

as

g (η,γ;D) = η log

(
1

N

N∑
i=1

exp

(
R[i ]

sω−γTφ(s[i ])

η

))
+ηε+γT φ̂. (A.10)

The dual function is convex in η and γ [55]. To solve the original optimization prob-

lem, we need to minimize g (η,γ;D) such that η > 0 [9], hence, we have to solve an-

other constrained optimization problem, which is, however, much easier to solve.

We can use any solver for such problems, e.g., the interior point algorithm. For an

efficient optimization of the dual, also the corresponding gradients of the dual are

required. They are given by

∂g (η,γ)

∂η
= ε+ log

1

N

N∑
i=1

Z (s[i ],ω[i ])

−
∑N

i=1 Z (s[i ],ω[i ])(R[i ]
sω−γTφ(s[i ]))

η
∑N

i=1 Z (s[i ],ω[i ])
, (A.11)

∂g (η,γ)

∂γ
= φ̂−

∑N
i=1 Z (s[i ],ω[i ])φ(s[i ])∑N

i=1 Z (s[i ],ω[i ])
, (A.12)

Z (s[i ],ω[i ]) = exp

(
R[i ]

sω−γTφ(s[i ])

η

)
.





Appendix B

Probabilistic Model Learning for

Trajectory Prediction

The model learning problem can be formulated as

min
pt ,θ

T∑
t=1

∫
x

pt (x) log
pt (x)

qt (x)
d x ,

s.t . :
∫

x
p1(x)φ(x)d x = φ̂(x),∫

x
pt (x)φ(x)d x =

∫
x

pt−1(x)
∫

u
π(u|x)E[φ(x ′);θ]dud x , ∀t > 1,∫

x
pt (x)d x = 1, ∀t ,

153



Appendix B Probabilistic Model Learning for Trajectory Prediction 154

where θ is the model parameter we wish to optimize, E[φ(x ′);θ] is the expected fea-

ture of the next state with model p(x ′|x ,u;θ) and qt (x) is the observed state distribu-

tion at time step t . We write up the Lagrangian

L(p1:T ,λ1:T ,γ1:T ,θ) =
T∑

t=1

∫
x

pt (x) log
pt (x)

qt (x)
d x +γT

1

(
φ̂(x)−

∫
x

p1(x)φ(x)d x
)

+
T∑

t=2
γT

t

(∫
x

pt−1(x)E[φ(x ′);θ]d x −
∫

x
pt (x)φ(x)d x

)

+
T∑

t=1
λt

(∫
x

pt (x)d x −1

)
.

We simplify and obtain

L(p1:T ,λ1:T ,γ1:T ,θ) =
T∑

t=1

∫
x

pt (x)

(
log

pt (x)

qt (x)
+λt

+γT
t+1E[φ(x ′);θ]−γT

t φ(x)
)
d x −λt

+γT
1 φ̂(x)−γT

T+1

∫
x

pT (x)E[φ(x ′);θ]d x .

We derive the gradients of the Lagrangian w.r.t. the distributions pt (x), ∀t and set

them to zero. This results in the following distributions

pt (x) = qt (x)exp(γT
t φ(x)−γT

t+1E[φ(x ′);θ])exp(−1−λt ), t < T,

pT (x) = qT (x)exp(γT
Tφ(x))exp(−1−λT ).

Note that the terms exp(−1−λt ) can be obtained easily from the equation
∫

x pt (x)d x =

1, that is,

exp(−1−λt ) =
[∫

x
qt (x)exp(γT

t φ(x)−γT
t+1E[φ(x ′);θ])d x

]−1

, t < T.



Appendix B Probabilistic Model Learning for Trajectory Prediction 155

Similarly we can compute exp(−1−λT ) as well. The dual function is now given by

g (λ1:T ,γ1:T ,θ) =
T∑

t=1

∫
x Zt (x)(−1)d x∫

x Zt (x)d x
−λt +γT

1 φ̂(x),

Zt (x) = qt (x)exp(γT
t φ(x)−γT

t+1E[φ(x ′);θ]), t < T, (B.1)

ZT (x) = qT (x)exp(γT
Tφ(x)). (B.2)

After simplifying the equation, we obtain the solution

g (λ1:T ,γ1:T ,θ) =
T∑

t=1
−1−λt +γT

1 φ̂(x)

=
T∑

t=1
− log

[
exp(−1−λt )

]−1 +γT
1 φ̂(x).

We now expand the dual function and we finally obtain

g (γ1:T ,θ) = −
T∑

t=1
log

∫
x

Zt (x)d x +γT
1 φ̂(x). (B.3)

We compute the gradients of the dual function w.r.t. its parameters

∂g (γ1:T ,θ)

∂γ1
= φ̂(x)−

∫
x Z1(x)φ(x)d x∫

x Z1(x)d x
, (B.4)

∂g (γ1:T ,θ)

∂γt
=

∫
x Zt−1(x)E[φ(x ′);θ]d x∫

x Zt−1(x)d x
−

∫
x Zt (x)φ(x)d x∫

x Zt (x)d x
, t > 1, (B.5)

∂g (γ1:T ,θ)

∂θ
=

T∑
t=2

∫
x Zt−1(x)γT

t
∂E[φ(x ′);θ]

∂θ d x∫
x Zt−1(x)d x

, (B.6)

In general, the model predicted feature gradient can be obtained by

∂E[φ(x ′);θ]

∂θ
=

Ï
x ′u

∂p(x ′|x ,u;θ)

∂θ
π(u|x)φ(x ′)dud x ′. (B.7)



Appendix B Probabilistic Model Learning for Trajectory Prediction 156

In case the model predictive distribution is Gaussian, that is,

p(x ′|x ,u;θ) =N(x ′|µ(x ,u;θ),Σ(x ,u;θ)),

and if the feature vector contains linear and quadratic terms of the state, we can com-

pute the gradients in closed form. The computation of the linear gradient terms is

straightforward. For the quadratic terms we use the fact that E[X 2] = E[X ]2 +Var[X ],

where X is a random variable. Therefore the gradient of the i th quadratic term is

given by

∂E[x ′2
i ]

∂θ
= ∂µi (θ)2

∂θ
+ ∂Σi i (θ)

∂θ

= 2µi (θ)
∂µi (θ)

∂θ
+ ∂Σi i (θ)

∂θ
.

However, for more complex features, the gradient in Eq. (B.7) might be difficult to

obtain in closed form. To apply the above parameter learning algorithm for a spe-

cific model, we have to compute the gradients of the predictive mean ∂µ(θ)/∂θ and

variance ∂σ2(θ)/∂θ w.r.t. the model parameters θ.

B.1 Gradients for Gaussian Process Models

In the following, we consider the Gaussian process model with the squared expo-

nential kernel function Eq. (2.25). The predictive distribution for each output di-

mension can be obtained independently in closed form given the model parameters

θ = {w ,σ f ,σε} and the observed training data D = {z i , x ′
i }N

i=1, z i = [xT
i ,uT

i ]T . For



Appendix B Probabilistic Model Learning for Trajectory Prediction 157

more details we refer to Section 2.3. The gradients of the predictive mean and vari-

ance for query z∗ are given by

∂µ∗
∂θ

= ∂k(z , z∗)T

∂θ
(K +σ2

ε I )−1x ′
d

−k(z , z∗)T (K +σ2
ε I )−1 ∂(K +σ2

ε I )

∂θ
(K +σ2

ε I )−1x ′
d , (B.8)

∂σ2∗
θ

= ∂k(z∗, z∗)

∂θ
− ∂k(z , z∗)T

∂θ
(K +σ2

ε I )−1k(z , z∗)

+k(z , z∗)T (K +σ2
ε I )−1 ∂(K +σ2

ε I )

θ
(K +σ2

ε I )−1k(z , z∗)

−k(z , z∗)T (K +σ2
ε I )−1 ∂k(z , z∗)

∂θ
+ ∂σ2

ε

∂θ
. (B.9)

The gradients of the individual terms w.r.t. the hyper-parameters are given as

∂k(z , z∗)

∂σε
= 0,

∂(K +σ2
ε I )

∂σε
= 2σεI

∂k(z , z∗)

∂σ f
= 2

σ f
k(z , z∗),

∂(K +σ2
ε I )

∂σ f
= 2

σ f
K ,

∂k(z [i ], z∗)

∂w d
= k(z [i ], z∗)(z [i ]

d − z∗,d )2w−3
d ,

∂(K +σ2
ε I )[i , j ]

∂w d
= K [i , j ](z [i ]

d − z [ j ]
d )2w−3

d .

In practice, we often optimize the log-hyper-parameters logθ instead of the hyper-

parameters θ to avoid negative variances. The above computation still apply, but the



Appendix B Probabilistic Model Learning for Trajectory Prediction 158

final gradients are computed now as

∂µ(θ)

∂ logθ
= ∂µ(θ)

∂θ

∂θ

∂ logθ
= ∂µ(θ)

∂θ
diag(θ),

∂σ2(θ)

∂ logθ
= ∂σ2(θ)

∂θ
diag(θ).



Appendix C

Robot Learning Tasks

C.1 The Robot Throwing Task

In this task, a 4-DoF robot has to learn to throw a ball at a target position, see Fig.

C.1. The links of the planar 4-DoF robot have weights m = [17.5,17.5,26.5,8.5]kg and

lengths l = [0.5,0.5,1.0,1.0]m respectively. Each joint of the robot is actuated. The

goal of the robot is to throw a ball at a target position, which is defined by the context

Target region

3m

10m

[bx, by]

q1

q2

q3

q4

FIGURE C.1: The illustration of the ball throwing task.

159



Appendix C. Robot Learning Tasks 160

s = [x, y]. However, between each experiment the target position in varied uniformly

in the 10×3m target region, x ∈ [5,15]m and y ∈ [0,3]m.

The reward function for the task is defined as

R(τ, s)=−c1 min
t

||bt−s||2−c2
∑

t fc (x t )−c3
∑

t uT
t u t .

The first term punishes minimum distance of the ball trajectory b = [bx ,by ]T to the

target position s. We make the learning problem more challenging by penalizing joint

angles that would be unrealistic for a human-like throwing motion. Thus, the second

term describes a punishment term to force the robot to stay in given joint limits such

that a human-like throwing motion is learned. The joint angle and angular velocity

limits are defined as

q l = [−0.8,−2.5,−0.1,0]T rad, q̇ l = [−50,−50,−50,−50]T rad/s,

q u = [0.8,0.05,2,1.5π]T rad, q̇ u = [50,50,50,50]T rad/s,

where with the lower indices l and u, we refer to “lower” and “upper”. We define the

lower and upper state limit as x l = [q T
l , q̇ T

l ]T and xu = [q T
u , q̇ T

u ]T . The penalty term

can now be defined as

fc (x t ) = (x l −x t )T Il (x l −x t )+ (xu −x t )T Iu(xu −x t ),

where Il and Iu are the diagonal weighting matrices, where the diagonal elements

take the value 0 if the joint limit constraints are not violated and 1 if the joint limits



Appendix C. Robot Learning Tasks 161

are violated

Ili ,i =


0, if x t ,i > x l ,i ,

1, if x t ,i ≤ x l ,i ,

Iui ,i =


0, if x t ,i < xu,i ,

1, if x t ,i ≥ xu,i .

The last term of the reward function penalizes high energy solutions. In our experi-

ment we set the reward weighting factors to c1 = 102, c2 = 103 and c3 = 10−8.

This task was invented to test episode-based contextual policy search algorithms. As

we are not able to define an immediate reward function due to the first term, the

problem cannot be solved with step-based PS methods.

C.2 The Robot Hockey Task

FIGURE C.2: The KUKA lightweight

robot arm.

In this task we learn a robot hockey

game using the KUKA lightweight robot

arm in Fig. C.2. The goal of the robot

is to shoot a hockey puck using the at-

tached hockey racket to move a target

puck, which is located at a certain dis-

tance. The robot can only move the tar-

get puck by hitting it with another puck,

which we denote as control puck. The initial position of the control puck is fixed,

but the position of the target puck [bx ,by ]T is varied in both dimensions between

experiments. As an additional goal, we require the displacement of the target puck



Appendix C. Robot Learning Tasks 162

dt to be as close as possible to the desired distance d∗. We also vary the distance d∗

between experiments. Thus, the robot not only has to learn to shoot the target puck

in the direction of the target puck, but also with the appropriate force. The simulated

hockey task is depicted in Fig. 3.4. The context variable is defined as s = [bx ,by ,d∗]T .

[bx, by]

d⇤

FIGURE C.3: The illustration of the robot hockey task.

We chose the initial position of the target puck to be uniformly distributed from the

robot’s base with displacements bx ∈ [1.5,2.5]m and by ∈ [0.5,1]m. The desired dis-

placement context parameter d∗ is also uniformly distributed d∗ ∈ [0,1]m. The re-

ward function is defined as

R(τ, s) =−min
t

||x t −b||2 −||dT −d∗||2,

which consist of two terms with equal weighting. The first term penalizes missing

the target puck located at position b = [bx ,by ]T , where the control puck trajectory is

x1:T . The second term penalizes the error in the desired displacement of the target

puck, where dT is the resulting displacement of the target puck after the shot.



Appendix C. Robot Learning Tasks 163

We also evaluated the performance of learning algorithms on the hockey task us-

ing a real KUKA lightweight arm, see Fig. C.2. A Kinect sensor was used to track

the position of the two pucks at a frame rate of 30Hz. We smoothed the trajecto-

ries in a pre-processing step with a Butterworth filter. We slightly changed the con-

text variable ranges to meet the physical constraints of the test environment. We

decreased the range of the position variables in both dimensions to bx ∈ [1.5,2]m

and to by ∈ [0.4,0.8]m from the robot’s base. Furthermore, we decreased the desired

distance range to d∗ ∈ [0,0.6]m. We kept the reward function unaltered.

The robot hockey task is designed to test contextual episode-based policy search al-

gorithms. As the reward function requires the complete puck trajectories, we cannot

define an immediate reward signal. Thus, step-based policy search algorithms can-

not be applied for this task.

C.3 The Robot Table Tennis Task

FIGURE C.4: The BioRob.

In this task, we learn hitting strokes in a table

tennis game with a simulated Biorob [43] arm

(Fig. C.4). The robot is mounted on two lin-

ear axis for moving in the horizontal plane. The

robot itself has rotational joints, resulting in 8 ac-

tuated joints. A racket is mounted at the endef-

fector of the robot.



Appendix C. Robot Learning Tasks 164

FIGURE C.5: The table tennis learning setup.

The Biorob is a lightweight tendon-driven robot arm that. Due to its small weight, it

can perform highly dynamic movements. The simulated robot can be seen in Figure

C.5. The construction of the real robot platform is ongoing work. In simulation, we

modeled the ball with a standard ballistic flight model and air drag, but neglected

simulating the spin or measurement noise. The goal of the robot is to return the in-

coming ball at a target position on the opponent’s side of the table. However, the

incoming ball has a changing initial velocity v and the return target position b is

also varied uniformly on the opponent’s side of the table. For an illustration of the

task see Fig. C.5. We chose the range of the initial velocities such that the incom-

ing ball bounces only once inside the Landing zone. We needed this simplification

as the robot has a limited movement range in the y direction (Fig. C.5). The goal

of the robot is to hit the incoming ball back to the return position b = [bx ,by ]T ,

which is distributed uniformly inside the Return zone. The context is defined as

s = [vx , vy , vz ,bx ,by ]T .



Appendix C. Robot Learning Tasks 165

The reward function is defined by the sum of penalties for missing the ball and miss-

ing the target return position

R(τ, s) =−c1 min ||τb −τr ||2 − c2||b −p||2 (C.1)

where c = [c1,c2]T are weighting parameters, τb and τr is the incoming ball and the

racket trajectories, while b is the target and p is the returned ball landing position.

The weighting parameters c1 and c2 are learning algorithm specific. We discuss their

setting in the experimental sections.

This task is designed to test contextual episode-based PS algorithms. Due to the

structure of the reward function, we require the whole experiment to be finished be-

fore we can evaluate it. We cannot define an immediate reward function that accu-

rately captures our objectives for the learning task. Thus, step-based RL algorithms

are not applicable for this task.





Appendix D

Publication List

[1] A. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-Efficient Contex-

tual Policy Search for Robot Movement Skills,” in Proceedings of the National Confer-

ence on Artificial Intelligence (AAAI), 2013.

[2] G. Neumann, A. Kupcsik, M. Deisenroth, and J. Peters, “Information-theoretic

motor skill learning,” in Proceedings of the AAAI 2013 Workshop on Intelligent Robotic

Systems, 2013.

[3] A.G. Kupcsik, M.P. Deisenroth, J. Peters, L. Ai Poh, P. Vadakkepat, G. Neumann,

(conditionally accepted). Model-based Contextual Policy Search for Data-Efficient

Generalization of Robot Skills, Artificial Intelligence

[4] A. Kupcsik, L. Ai Poh, P. Vadakkepat, J. Peters, G. Neumann (submitted). Kernel

Embedding of Trajectory Distributions for Model-based Policy Search

167





Bibliography

[1] ABBEEL, P., GANAPATHI, V., AND NG, A. Y. Learning vehicular dynamics, with

application to modeling helicopters. In Advances in Neural Information Pro-

cessing Systems (NIPS) (2005).

[2] ABBEEL, P., AND NG, A. Y. Learning first-order markov models for control. In

Advances in Neural Information Processing Systems (NIPS) (2004).

[3] ABBEEL, P., QUIGLEY, M., AND NG, A. Y. Using Inaccurate Models in Rein-

forcement Learning. In Proceedings of the International Conference on Machine

Learning (ICML) (2006).

[4] ATKESON, C. G., AND SANTAMARÍA, J. C. A Comparison of Direct and Model-

Based Reinforcement Learning. In Proceedings of the International Conference

on Robotics and Automation (ICRA) (1997).

[5] BAGNELL, A. D., AND SCHNEIDER, J. Policy search in reproducing kernel hilbert

space. Tech. rep., Robotics Institute, Pittsburgh, PA, 2003.

[6] BAGNELL, J. A., AND SCHNEIDER, J. G. Autonomous Helicopter Control using

Reinforcement Learning Policy Search Methods. In Proceedings of the Interna-

tional Conference on Robotics and Automation (ICRA) (2001).

169



Bibliography 170

[7] BAXTER, J., AND BARTLETT, P. Reinforcement Learning in POMDP’s via Direct

Gradient Ascent. In Proceedings of the 17th Intl. Conference on Machine Learn-

ing (ICML) (2000), pp. 41–48.

[8] BERTSEKAS, D. P. Dynamic Programming and Optimal Control, 2nd ed. Athena

Scientific, 2000.

[9] BOYD, S., AND VANDENBERGHE, L. Convex Optimization. Cambridge University

Press, 2004.

[10] CORTES, C., AND VAPNIK, V. Support-vector networks. Machine Learning 20, 3

(1995), 273–297.

[11] CSATÓ, L., AND OPPER, M. Sparse online gaussian processes. Neural Computa-

tion 14 (2002), 641–668.

[12] DA SILVA, B., KONIDARIS, G., AND BARTO, A. Learning Parameterized Skills. In

Proceedings of the International Conference on Machine Learning (ICML) (June

2012).

[13] DANIEL, C., NEUMANN, G., KROEMER, O., AND PETERS, J. Learning sequential

motor tasks. In Proceedings of 2013 IEEE International Conference on Robotics

andAutomation (ICRA) (2013).

[14] DANIEL, C., NEUMANN, G., AND PETERS, J. Hierarchical Relative Entropy Pol-

icy Search. In International Conference on Artificial Intelligence and Statistics

(AISTATS) (2012).



Bibliography 171

[15] DEISENROTH, M. P., HUBER, M. F., AND HANEBECK, U. D. Analytic Moment-

Based Gaussian Process Filtering. In Proceedings of the International Conference

on Machine Learning (ICML) (2009).

[16] DEISENROTH, M. P., NEUMANN, G., AND PETERS, J. A survey on policy search

for robotics. Foundations and Trends in Robotics 2, 1-2 (2013), 1–142.

[17] DEISENROTH, M. P., AND RASMUSSEN, C. E. PILCO: A Model-Based and Data-

Efficient Approach to Policy Search. In Proceedings of the International Confer-

ence on Machine Learning (ICML) (2011).

[18] DEISENROTH, M. P., RASMUSSEN, C. E., AND FOX, D. Learning to Control a Low-

Cost Manipulator using Data-Efficient Reinforcement Learning. In Robotics:

Science & Systems (RSS) (2011).

[19] DEISENROTH, M. P., TURNER, R., HUBER, M., HANEBECK, U. D., AND RAS-

MUSSEN, C. E. Robust Filtering and Smoothing with Gaussian Processes. IEEE

Transactions on Automatic Control 57, 7 (2012), 1865–1871.

[20] ENGEL, Y., MANNOR, S., AND MEIR, R. Reinforcement learning with gaus-

sian processes. In Proceedings of the 22nd International Conference on Machine

Learning (ICML) (2005).

[21] ENGLERT, P., PARASCHOS, A., PETERS, J., AND DEISENROTH, M. P. Model-based

Imitation Learning by Probabilistic Trajectory Matching. In Proceedings of 2013

IEEE International Conference on Robotics and Automation (ICRA) (2013).



Bibliography 172

[22] FORTE, D., GAMS, A., MORIMOTO, J., AND UDE, A. On-line motion synthesis

and adaptation using a trajectorydatabase. Robotics and Autonomous Systems

60, 10 (2012), 1327–1339.

[23] FUKUMIZU, K., SONG, L., AND GRETTON, A. Kernel bayes’ rule. In Advances in

Neural Information Processing Systems (NIPS) (2011), pp. 1737–1745.

[24] GAMS, A., AND UDE, A. Generalization of Example Movements with Dynamic

Systems. In International Conference on Humanoid Robots (Humanoids) (2009),

IEEE, pp. 28–33.

[25] GENG, T., PORR, B., AND WÖRGÖTTER, F. Fast biped walking with a reflexive

controller and real-time policy searching. In Advances in Neural Information

Processing Systems (NIPS) (2005).

[26] GRÜNEWÄLDER, S., LEVER, G., BALDASSARRE, L., PONTIL, M., AND GRETTON, A.

Modelling transition dynamics in mdps with rkhsembeddings. In Proceedings of

the International Conference on Machine Learning (ICML) (2012).

[27] GRÜNEWÄLDER, S., LEVER, G., GRETTON, A., BALDASSARRE, L., PATTERSON, S.,

AND PONTIL, M. Conditional mean embeddings as regressors. In Proceedings of

the International Conference on Machine Learning (ICML) (2012).

[28] HACHIYA, H., PETERS, J., AND SUGIYAMA, M. Reward-weighted regression with

sample reuse for direct policy search in reinforcement learning. Neural Compu-

tation 23, 11 (2011), 2798–2832.



Bibliography 173

[29] HANSEN, N., MÜLLER, S. D., AND KOUMOUTSAKOS, P. Reducing the time com-

plexity of the derandomized evolution strategy with covariance matrix adapta-

tion (cma-es). Evol. Comput. 11, 1 (Mar. 2003), 1–18.

[30] HEIDRICH-MEISNER, V., AND IGEL, C. Neuroevolution Strategies for Episodic

Reinforcement Learning. Journal of Algorithms 64, 4 (oct 2009), 152–168.

[31] IJSPEERT, A. J., AND SCHAAL, S. Learning Attractor Landscapes for Learning

Motor Primitives. In Advances in Neural Information Processing Systems (NIPS).

2003.

[32] KO, J., AND KLEIN, D. Gaussian processes and Reinforcement Learning for Iden-

tification and Control of an Autonomous Blimp. In Proceedings of the Interna-

tional Conference on Robotics and Automation (ICRA) (2007).

[33] KOBER, J., BAGNELL, D., AND PETERS, J. Reinforcement learning in robotics: A

survey. International Journal of Robotics Research (2013).

[34] KOBER, J., MÜLLING, K., KROEMER, O., LAMPERT, C. H., SCHÖLKOPF, B., AND

PETERS, J. Movement Templates for Learning of Hitting and Batting. In Proceed-

ings of the International Conference on Robotics and Automation (ICRA) (2010).

[35] KOBER, J., OZTOP, E., AND PETERS, J. Reinforcement Learning to adjust Robot

Movements to New Situations. In Robotics: Science & Systems (RSS) (2010).

[36] KOBER, J., AND PETERS, J. Policy Search for Motor Primitives in Robotics. Ma-

chine Learning (2010), 1–33.



Bibliography 174

[37] KOHL, N., AND STONE, P. Policy Gradient Reinforcement Learning for Fast

Quadrupedal Locomotion. In Proceedings of the International Conference on

Robotics and Automation (ICRA) (2003).

[38] KOLLER, D., AND FRIEDMAN, N. Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

[39] KORMUSHEV, P., CALINON, S., AND CALDWELL, D. G. Robot Motor Skill Coordi-

nation with EM-based Reinforcement Learning. In Proceedings of the Interna-

tional Conference on Intelligent Robots and Systems (IROS) (2010).

[40] KUINDERSMA, S., GRUPEN, R., AND BARTO, A. Learning dynamic arm motions

for postural recovery. In Proceedings of the 11th IEEE-RAS International Confer-

ence on Humanoid Robots (Bled, Slovenia, October 2011), pp. 7–12.

[41] KUPCSIK, A., DEISENROTH, M., PETERS, J., AI POH, L., VADAKKEPAT, V., AND

NEUMANN, G. Model-based contextual policy search for data-efficient general-

ization of robot skills. Artificial Intelligence (conditionally accepted).

[42] KUPCSIK, A., DEISENROTH, M. P., PETERS, J., AND NEUMANN, G. Data-Efficient

Contextual Policy Search for Robot Movement Skills. In Proceedings of the Na-

tional Conference on Artificial Intelligence (AAAI) (2013).

[43] LENS, T. Physical Human-Robot Interaction with a Lightweight, Elastic Tendon

Driven Robotic Arm: Modeling, Control, and Safety Analysis. PhD thesis, TU

Darmstadt, Department of Computer Science, July 4 2012.

[44] MATSUBARA, T., HYON, S.-H., AND MORIMOTO, J. Learning parametric dy-

namic movement primitives from multiple demonstrations. In Proceedings of



Bibliography 175

the 17th International Conference on Neural Information Processing: Theory

and Algorithms - Volume Part I (Berlin, Heidelberg, 2010), ICONIP’10, Springer-

Verlag, pp. 347–354.

[45] MUELLING, K., KOBER, J., KROEMER, O., AND PETERS, J. Learning to select and

generalize striking movements in robot table tennis. International Journal of

Robotics Research (IJRR), 3 (2013), 263–279.

[46] MUNOS, R., AND LITTMAN, M. Policy gradient in continuous time. Journal of

Machine Learning Research 7 (2006), 771–791.

[47] NEUMANN, G. Variational Inference for Policy Search in Changing Situations. In

Proceedings of the International Conference on Machine Learning (ICML) (2011).

[48] NEUMANN, G., KUPCSIK, A., DEISENROTH, M., AND PETERS, J. Information-

theoretic motor skill learning. In Proceedings of the AAAI 2013 Workshop on In-

telligent Robotic Systems (2013).

[49] NG, A. Y., KIM, H. J., JORDAN, M. I., AND SASTRY, S. Inverted Autonomous

Helicopter Flight via Reinforcement Learning. In In International Symposium

on Experimental Robotics (2004), MIT Press.

[50] NGUYEN-TUONG, D., AND PETERS, J. Incremental online sparsification for

model learning in real-time robot control. Neurocomputing 74, 11 (2011), 1859–

1867.

[51] NGUYEN-TUONG, D., AND PETERS, J. Model learning in robotics: a survey. Cog-

nitive Processing, 4 (2011).



Bibliography 176

[52] NGUYEN-TUONG, D., SEEGER, M. W., AND PETERS, J. Real-time local gp model

learning. In From Motor Learning to Interaction Learning in Robots. 2010,

pp. 193–207.

[53] PARASCHOS, A., DANIEL, C., PETERS, J., AND NEUMANN, G. Probabilistic move-

ment primitives. In Advances in Neural Information Processing Systems (NIPS),

Cambridge, MA: MIT Press. (2013).

[54] PETELIN, D., AND KOCIJAN, J. Control systems with evolving gaussian process

models. In IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)

(2011), pp. 178 – 184.

[55] PETERS, J., MÜLLING, K., AND ALTUN, Y. Relative Entropy Policy Search. In

Proceedings of the National Conference on Artificial Intelligence (AAAI) (2010).

[56] PETERS, J., AND SCHAAL, S. Reinforcement learning by reward-weighted re-

gression for operational space control. In Proceedings of the 24th International

Conference on Machine Learning (ICML) (2007).

[57] PETERS, J., AND SCHAAL, S. Natural actor-critic. Neurocomputing 71, 7-9 (2008),

1180–1190.

[58] PETERS, J., AND SCHAAL, S. Reinforcement Learning of Motor Skills with Policy

Gradients. Neural Networks, 4 (2008), 682–97.

[59] QUIÑONERO CANDELA, J., AND RASMUSSEN, C. E. A unifying view of sparse

approximate gaussian process regression. J. Mach. Learn. Res. 6 (Dec. 2005),

1939–1959.



Bibliography 177

[60] QUIÑONERO-CANDELA, J., GIRARD, A., LARSEN, J., AND RASMUSSEN, C. E.

Propagation of uncertainty in bayesian kernel models - application to multiple-

step ahead forecasting. In International Conference on Acoustics, Speech and

Signal Processing (2003), vol. 2, pp. 701–704.

[61] RASMUSSEN, C. E., AND KUSS, M. Gaussian processes in reinforcement learn-

ing. In Advances in Neural Information Processing Systems (NIPS) (2004).

[62] RASMUSSEN, C. E., AND WILLIAMS, C. K. I. Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[63] RIEDMILLER, M., PETERS, J., AND SCHAAL, S. Evaluation of policy gradient

methods and variants on the cart-pole benchmark.

[64] RÜCKSTIESS, T., FELDER, M., AND SCHMIDHUBER, J. State-Dependent Explo-

ration for policy gradient methods. In European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in Databases 2008, Part

II, LNAI 5212 (2008), pp. 234–249.

[65] RÜCKSTIESS, T., SEHNKE, F., T., S., WIERSTRA, D., YI, S., AND J., S. Exploring

Parameter Space in Reinforcement Learning. PALADYN Journal of Behavioral

Robotics 1, 1 (2010), 14 – 24.

[66] SCHAAL, S. The sl simulation and real-time control software package. Tech. rep.,

University of Southern California, 2009.

[67] SCHAAL, S., PETERS, J., NAKANISHI, J., AND IJSPEERT, A. J. Learning Movement

Primitives. In International Symposium on Robotics Research (ISRR) (2003).



Bibliography 178

[68] SCHNEIDER, J. G. Exploiting Model Uncertainty Estimates for Safe Dynamic

Control Learning. In Advances in Neural Information Processing Systems (NIPS).

1997.

[69] SCHÖLKOPF, B., AND SMOLA, A. J. Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,

USA, 2001.

[70] SEEGER, M. Low Rank Updates for the Cholesky Decomposition. Tech. rep.,

2007.

[71] SEHNKE, F., OSENDORFER, C., RÜCKSTIESS, T., GRAVES, A., PETERS, J., AND

SCHMIEDHUBER, J. Parameter-Exploring Policy Gradients. Neural Networks 23

(2010), 551–559.

[72] SNELSON, E., AND GHAHRAMANI, Z. Sparse Gaussian Processes using Pseudo-

Inputs. In Advances in Neural Information Processing Systems (NIPS) (2006).

[73] SONG, L., BOOTS, B., SIDDIQI, S. M., GORDON, G. J., AND SMOLA, A. J. Hilbert

space embeddings of hidden markov models. In Proceedings of the International

Conference on Machine Learning (ICML) (2010), pp. 991–998.

[74] SONG, L., FUKUMIZU, K., AND GRETTON, A. Kernel embeddings of condi-

tional distributions: A unified kernel framework for nonparametric inference

in graphical models. IEEE Signal Process. Mag. 30, 4 (2013), 98–111.

[75] SONG, L., GRETTON, A., BICKSON, D., LOW, Y., AND GUESTRIN, C. Kernel belief

propagation. In In Artificial Intelligence and Statistics (AISTATS) (2011).



Bibliography 179

[76] SONG, L., HUANG, J., SMOLA, A. J., AND FUKUMIZU, K. Hilbert space embed-

dings of conditional distributionswith applications to dynamical systems. In

Proceedings of the International Conference on Machine Learning (ICML) (2009),

vol. 382 of ACM International Conference Proceeding Series, ACM, p. 121.

[77] STULP, F., RAIOLA, G., HOARAU, A., IVALDI, S., AND SIGAUD, O. Learning com-

pact parameterized skills with a single regression. In accepted for IEEE-RAS In-

ternational Conference on Humanoid Robots (2013).

[78] STULP, F., AND SIGAUD, O. Path integral policy improvement with covariance

matrix adaptation. In Proceedings of the International Conference on Machine

Learning (ICML) (2012).

[79] SUTTON, R., MCALLESTER, D., SINGH, S., AND MANSOUR, Y. Policy gradient

methods for reinforcement learning with function approximation. Advances in

Neural Information Processing Systems (NIPS) 12 (2000), 1057–1063.

[80] SUTTON, R. S., AND BARTO, A. G. Reinforcement Learning: An Introduction

(Adaptive Computation and Machine Learning). A Bradford Book, Mar. 1998.

[81] SZEPESVÁRI, C. Algorithms for Reinforcement Learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,

2010.

[82] TANG, J., AND ABBEEL, P. On a connection between importance sampling and

the likelihood ratio policy gradient. In Advances in Neural Information Process-

ing Systems (NIPS) (2010), pp. 1000–1008.



Bibliography 180

[83] TAYLOR, G., AND PARR, R. Kernelized Value Function Approximation for Re-

inforcement Learning. In Proceedings of the 26th International Conference on

Machine Learning (ICML) (2009), pp. 1017–1024.

[84] THEODOROU, E., BUCHLI, J., AND SCHAAL, S. Reinforcement Learning of Mo-

tor Skills in High Dimensions: a Path Integral Approach. In Proceedings of the

International Conference on Robotics and Automation (ICRA) (2010).

[85] TITSIAS, M. Variational learning of inducing variables in sparse gaussian pro-

cesses. Journal of Machine Learning Research - Proceedings Track 5 (2009), 567–

574.

[86] UDE, A., GAMS, A., ASFOUR, T., AND MORIMOTO, J. Task-specific generalization

of discrete and periodic dynamic movement primitives. IEEE Transaction on

Robotics 26, 5 (2010), 800–815.

[87] WIERSTRA, D., SCHAUL, T., PETERS, J., AND SCHMIDHUBER, J. Fitness Expecta-

tion Maximization. In Lectue Notes in Computer Science, Parallel Problem Solv-

ing from Nature, PPSN X (2008), Springer-Verlag, pp. 337–346.

[88] WILLIAMS, R. J. Simple Statistical Gradient-Following Algorithms for Connec-

tionist Reinforcement Learning. Machine Learning 8 (1992), 229–256.

[89] XU, X., XIE, T., HU, D., AND LU, X. Kernel least-squares temporal difference

learning. Intenational Journal of Information Technology (2005).

[90] YI, S., WIERSTRA, D., SCHAUL, T., AND SCHMIDHUBER, J. Stochastic Search

using the Natural Gradient. In Proceedings of the 26th International Conference

On Machine Learning (ICML) (2009), pp. 1161 – 1168.


	Acknowledgements
	Contents
	Abstract
	List of Tables
	List of Figures
	Abbreviations
	Symbols and Notations
	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Preliminaries
	2.1 Policy Search
	2.1.1 Model-Free Policy Search
	2.1.2 Model-based Policy Search
	2.1.3 Contextual Policy Search

	2.2 Robot Skill Representations
	2.2.1 Dynamic Movement Primitives

	2.3 Gaussian Process Regression
	2.4 Kernel Embedding of Conditional Distributions

	3 Learning Generalized Robot Skills using Contextual REPS
	3.1 Related Work
	3.2 Contextual Episode-based REPS
	3.3 Sample-based Contextual REPS
	3.4 Results
	3.4.1 Ball Throwing Task
	3.4.2 Robot Hockey Task
	3.4.3 Robot Table Tennis

	3.5 Discussion

	4 Model-based Contextual Robot Skill Learning
	4.1 Gaussian Process REPS
	4.2 Model Learning and Trajectory Prediction with GP Forward Models
	4.2.1 Trajectory and Reward Prediction
	4.2.2 Quantitative Comparison of Sampling and Moment Matching
	4.2.3 Comparison of Gaussian Process Models
	4.2.4 Learning the Hyper-Parameters of GP Models

	4.3 Results
	4.3.1 Robot Balancing Task
	4.3.2 Ball Throwing Task
	4.3.2.1 Influence of the Number of Artificial Samples
	4.3.2.2 Learning with Stochastic Dynamics

	4.3.3 Robot Hockey Task
	4.3.4 Robot Table Tennis

	4.4 Discussion

	5 Kernel Embedding of Trajectory Distributions
	5.1 Regression using Kernel Embedding of Conditional Distributions
	5.1.1 Connection to Gaussian Process Regression

	5.2 Trajectory Prediction with Kernel Embedding
	5.3 Model Selection
	5.4 Results
	5.5 Discussion

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Future Work

	A Derivation of Contextual Episode-based REPS
	B Probabilistic Model Learning for Trajectory Prediction
	B.1 Gradients for Gaussian Process Models

	C Robot Learning Tasks
	C.1 The Robot Throwing Task
	C.2 The Robot Hockey Task
	C.3 The Robot Table Tennis Task

	D Publication List
	Bibliography

