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Summary

Multi-party communication complexity involves distributed computation of a func-
tion over inputs held by multiple distributed players. A key focus of distributed
computing research, since the very beginning, has been to tolerate failures. It is thus
natural to ask “If we want to compute a certain function while tolerating a certain

number of failures, what will the communication complexity be?”

This thesis centers on the above question. Specifically, we consider a system of N

nodes which are connected by edges and then form some topology. Each node holds
an input and the goal is for a special root node to learn some certain function over
all inputs. All nodes in the system except the root node may experience crash fail-
ures, with the total number of edges incidental to failed nodes being upper bounded
by f . This thesis makes the following contributions: 1) We prove that there exists
an exponential gap between the non-fault-tolerant and fault-tolerant communication
complexity of Sum; 2) We prove near-optimal lower and upper bounds on the fault-
tolerant communication complexity of general commutative and associative aggre-

gates (such as Sum); 3) We introduce a new two-party problem UnionSizeCP which
comes with a novel cycle promise. Such a problem is the key enabler of our lower
bounds on the fault-tolerant communication complexity of Sum. We further prove
that this cycle promise and UnionSizeCP likely play a fundamental role in reasoning
about fault-tolerant communication complexity of many functions beyond Sum.
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Chapter 1

Introduction

This thesis considers a system consists of nodes which are connected by edges and
then form some topology. Each node holds an input and the goal is for a special
root node to learn some certain function over all inputs. All nodes in the system ex-
cept the root node may experience crash failures. The fault-tolerant communication
complexity of a function is defined as the least amount of communication required to
compute the function, while tolerating failures. In comparison, the non-fault-tolerant
communication complexity corresponds to the traditional setting where nodes are as-
sumed to be failure-free. In this context, we have proved near-optimal lower and up-
per bounds on the fault-tolerant communication complexity of general commutative

and associative aggregates (such as Sum). Coupled with some simple results, we
actually have proved an exponential gap between the non-fault-tolerant and fault-
tolerant communication complexity of Sum. Our results attests that fault-tolerant
communication complexity needs to be studied separately from the simpler tradi-
tional non-fault-tolerant communication complexity, instead of being considered as
an ”amended” version of non-fault-tolerant communication complexity. We’ve also
introduced a new two-party problem UnionSizeCP and further proved that the prob-
lem likely plays a fundamental role in reasoning about fault-tolerant communication
complexity of many functions beyond Sum.
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

This thesis studies communication complexity of fault-tolerant distributed compu-
tation of aggregate functions. In the following sections, we will briefly review the
concepts of communication complexity in Section 1.1.1, fault-tolerant distributed
computation in Section 1.1.2, and aggregate functions in Section 1.1.3.

1.1.1 Communication Complexity

The notion of communication complexity was introduced by Yao [62] in 1979, and
has been extensively studied after that. The original motivation arises from tasks in
systems with multiple components: Any given single component in a system cannot
locally perform a certain task if the task relies on data which are stored in other
components. Determining the (least) amount of communication needed for various
tasks is the central question of communication complexity theory. Communication
complexity is related to many other areas such as VLSI circuits, data structures,
streaming algorithms, and decision tree complexity. A comprehensive discussion
of the techniques and applications of communication complexity can be found in
Kushilevitz and Nisan’s book [50].

Many models of communication complexity have been proposed. In following para-
graphs, we will discuss models related to our work, from simplest ones to more
complicated ones.

Two-party communication. Yao’s two-party communication model is the first and
simplest model in communication complexity. In this model, there are two parties
named Alice and Bob. Each party holds an input string of n bits. The goal is to com-
pute a certain function over their input strings. To achieve this, Alice and Bob have
to communicate with each other. Among all the resources consumed in the process,
communication complexity theory only focuses on the amount of communication
between Alice and Bob — other factors such as the amount of local computation
and the amount of memory required are ignored. This not only allows us to focus on
the communication issue of the computation but also maps to applications properly
— for example, in wireless sensor network, communication usually consumes far
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CHAPTER 1. INTRODUCTION

more energy than local computation, and needs to be minimized for nodes operating
on battery power [20].

Multi-party (blackboard) communication. The above two-party communication
model has been naturally generalized to a model with more than two parties [17]. In
the generalized model, multiple parties aim to compute a certain function over their
inputs. Parties communicate by sending messages and each message is received by
all parties. This communication model is equivalent to the case where all messages
are written on a shared blackboard. For this reason, it is known as the blackboard

model.

Multi-party (general topology) communication. The above blackboard model is
not the only one for multi-party communication. In the general topology model, par-
ties form some topology and may locally broadcast messages. Unlike in the black-
board model, here each message will only be received by the neighbors of the sender.
This model can be viewed as an extension of above blackboard model — namely,
the blackboard model is the special case where the topology is a clique.

We focus on the above general topology model instead of the blackboard model
for reasons below. This thesis is motivated by distributed computation in large-
scale wireless sensor networks and ad hoc networks. These networks consist of
many low-cost nodes (sensors or wireless routers) distributed over a large physical
area. Due to the limited wireless transmission range of these nodes, only nearby
nodes can directly communicate with each other. This results in a multi-hop network
topology that is often beyond the control of the protocol designer. For example,
wireless sensor networks may be deployed simply by airplanes dropping sensors
onto a target region [52], or deployed according to the specific physical environment
that they monitor. The physical nature of these networks thus naturally requires one
to consider general topologies.

1.1.2 Fault-Tolerant Distributed Computation

In many real distributed systems, components such as sensors may experience fail-
ures due to various reasons:

3



CHAPTER 1. INTRODUCTION

• Components may crash due to software issues such as application/OS/device
driver crashes, deadlocks, and livelocks;

• Components may be compromised by malicious parties;

• Components may experience hardware failures;

• Communication links among components may fail permanently or temporarily
due to various reasons such as being blocked by external objects.

In order to perform a given task in such a distributed system, a practical protocol
should be robust to failures. Various failure models have been proposed for various
distributed systems. We do not discuss them here since this thesis only focuses on
crash failures. That means, we only consider the case where links are always reliable
and components may crash. A component always exactly executes the given protocol
until the protocol terminates or the component crashes. After that, it never executes
any further operations. The notion of “failure” in this thesis, by default, refers to as
crash failure.

1.1.3 Aggregate Functions

Formally, an aggregate function is a mapping from a set of values to a single value.
Common aggregate functions include Sum (the sum of all inputs), Avg (the average
value), Max (the largest value), Min (the smallest value), Count (the number of in-
puts), and etc. General commutative and associative aggregate functions (or CAAFs
in short — see definition in Chapter 2) is a subset of aggregate functions including
all above mentioned aggregate functions except Avg.

Distributed computation of aggregate functions is of fundamental importance in
wireless sensor networks and wireless ad hoc networks. For example, consider a
sensor network for temperature monitoring in a forest. In such a setting, the tem-
perature reading of a single sensor often bears limited importance. Instead, we often
need aggregate information such as the average temperature in a certain region [51].
This then corresponds to the computation of certain aggregate functions [35, 51] over
the sensor readings.

4



CHAPTER 1. INTRODUCTION

1.2 Our Goal

Given a task of computing a certain aggregate function in a distributed system where
components may fail, it is natural to ask how complicated the task is. In the con-
text of communication complexity, it is asking “If we want to compute a certain

aggregate function in a fault-tolerant way, what will the communication complex-

ity be?”. Such communication complexity of fault-tolerant distributed computing
is referred to as fault-tolerant (FT) communication complexity in this thesis, while
classical communication complexity which has been extensively studied is referred
to as “non-fault-tolerant” (NFT) communication complexity. Taking account of fail-
ures leads to interesting questions:

• How big a difference can failures make in communication complexity?

• How does the number of failures affect communication complexity?

This thesis centers on the above questions.

1.3 Related Work

Sum is a key aggregate function in this thesis. Existing results on Sum will be pro-
vided in Section 1.3.1. As motivated in Section 1.1.1 and 1.1.2, this thesis focuses
on tolerating crash failures in general topologies. Related to our focus, there have
been prior works which focus on separate challenges such as privacy requirement
and byzantine failures. These efforts are related to our work in the broader sense and
will be discussed in Section 1.3.2.

1.3.1 Sum

The Sum function. Consider a synchronous network with N nodes and some undi-
rected topology. Each node holds a binary value and the goal is for a special root

5



CHAPTER 1. INTRODUCTION

node to learn the sum of all inputs. (See Chapter 2 for a more formal description of
the problem.)

Existing results on Sum. In failure-free settings, by leveraging in-network process-
ing, a trivial tree-aggregation protocol can compute Sumwith zero-error while requir-
ing each node to send O(log N) bits. Since we consider general network topologies,
we will naturally define communication complexity of a protocol as the number of
bits sent by the bottleneck node instead of by all nodes combined (see Chapter 2 for
formal discussion). Hence for zero-error results, the NFT communication complexi-
ty of Sum is upper bounded by O(log N). For (ε, δ)-approximate results, it is possible
to further reduce to O(log 1

ε
+ log log N) bits per node for constant δ. In comparison,

to tolerate arbitrary failures, there is a zero-error protocol for computing Sum which
trivially having every node flood its id together with its value and thus requiring each
node to send O(N log N) bits. To tolerate f edge failures (see Chapter 2 for formal
definition), there is also a folklore Sum protocol that tolerates failures by repeatedly
invoking the naive tree-aggregation protocol until it experiences a failure-free run.
This protocol requires each node to send O( f log N) bits. For (ε, δ)-approximate re-
sults, researchers have proposed some protocols [5, 24, 53, 54, 65] where each node
needs to send roughly O( 1

ε2 ) bits for constant δ (after omitting logarithmic terms of
1
ε

and N). All these protocols conceptually map the value of each node to exponen-
tially weighted positions in some bit vectors, and then estimate the sum from the
bit vectors. Same as in one-pass distinct element counting algorithms in streaming
databases [1, 28], doing so makes the whole process duplicate-insensitive. In turn,
this allows each node to push its value along multiple directions to guard against
failures. Note however, that duplicate-insensitive techniques do not need to be one-
pass, and furthermore tolerating failures does not have to use duplicate-insensitive
techniques. For example, one could repeatedly invoke the tree-aggregation pro-
tocol until one happens to have a failure-free run. There is also a large body of
work [3, 12, 22, 21, 39, 42, 43] on computing Sum via gossip-based averaging (also
called average consensus protocols). They all rely on the mass conservation prop-
erty [43], and thus are vulnerable to node failures. There have been a few effort-
s [27, 40] on making these protocols fault-tolerant. However, they largely focus on
correctness, without formal results on the protocol’s communication complexity in
the presence of failures. Despite all these efforts, no lower bounds on the FT commu-
nication complexity of Sum have ever been obtained, and thus it has been unknown
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CHAPTER 1. INTRODUCTION

whether the existing protocols can be improved.

1.3.2 Other Focuses in Fault-Tolerant Communication Complex-
ity

Secure multi-party computation. Our fault-tolerant communication complexity
is related to the topic of secure multi-party computation [6, 7, 8, 10, 9, 18, 19, 29,
30, 34, 36, 37, 57, 63, 64]. Secure multi-party computation also aims to compute a
function whose inputs are held by multiple distributed players. Different from our
work, secure multi-party computation mainly focuses on the privacy requirement.
Namely, when computing the function, a player should not learn any information
about the inputs held by other players, except what can already be inferred from the
output of the function. Research on secure multi-party computation usually investi-
gates whether it is possible to compute a certain class of functions, and if yes, what
is the communication complexity. The failure model considered by secure multi-
party computation, given the security nature of the subject, is more diverse than our
simple crash failure model. For example, researchers have considered players that i)
are curious but follow the protocol [10, 29, 30, 34, 63, 64], ii) may crash [9, 29], or
iii) may experience byzantine failures [6, 7, 8, 9, 10, 18, 19, 29, 30, 34, 36, 37, 57].
In terms of the topology among the players, to the best of our knowledge, research
on secure multi-party computation almost always assumes that the players are fully
connected and form a clique.

The central difference between our focus and secure multi-party computation is that
the latter’s key challenge is to preserve privacy. If privacy is not a concern, se-
cure multi-party computation problems usually become trivial (i.e., with trivial and
matching upper/lower bounds). In comparison, our focus does not concerned with
privacy — the key challenge instead is to compute aggregate functions over general
topologies (rather than just cliques). If we only consider cliques, most aggregate
functions (such as Sum) becomes trivial (i.e., with trivial and matching upper/lower
bounds).

Such a central difference between the two problems implies that they are incompa-
rable — neither of them is easier than the other. Furthermore, upper bounds, lower

7



CHAPTER 1. INTRODUCTION

bounds, and proof techniques for one problem usually cannot carry over to the other.
For example, the lower bounds in secure multi-party computation are usually derived
from the privacy requirement, while we prove lower bounds on Sum by constructing
proper lower bound topologies (i.e., worst-case topologies).

Communication complexity under unreliable channels. Other than in the topic
of secure multi-party computation, tolerating node failures has not been considered
in various developments on different models for communication complexity (e.g.,
[13, 17, 38, 58, 60]). Among these developments, the closest setting to tolerat-
ing node failures is perhaps unreliable channels [13, 31, 58, 60]. For example, the
channels may flip the bits adversarially, flip each bit iid, or drop a certain number
of messages. Under the iid unreliable channel model, there have also been some
information-theoretic lower bounds on the rates of distributed computations [2, 33].
The specific techniques and insights for unreliable channels have limited applicabil-
ity to tolerating node failures.

Bit complexity of other distributed computing tasks in failure-prone settings.
Related to the computation of functions, distributed computing researchers have also
studied the communication complexity (usually called bit complexity here) of other
distributed computing tasks in failure-prone settings. For example, there has been a
large body of work [23, 32, 45, 47, 44, 46, 56] on the bit complexity of distributed
consensus and leader election. Compared to our work, all these efforts assume that
the players are fully connected and form a clique. As explained earlier, for our focus,
the key challenge is exactly to do the computation over general topologies instead
of just cliques. On the other hand, these problems have their own unique challenges
such as tolerating byzantine failures (instead of just tolerating crash failures as in our
focus). Because of this, again, distributed consensus/leader election and our focus
are incomparable — neither of them is easier than the other.

Some researchers feel that cliques may not be “realistic” topologies in some cas-
es. Hence they explicitly construct low-degree network topologies, and then pro-
pose novel distributed consensus and leader election protocols specifically for those
topologies [11, 48]. In some sense, the performance of these protocols are defined
over the best-case topology that is low-degree. This corresponds to a setting where
the topology is within the control of the protocol designer, and then a protocol is de-
signed specifically for that topology. In comparison, as motivated in Section 1.1.1,

8



CHAPTER 1. INTRODUCTION

our focus considers general topologies where the performance (i.e., time complexity
and communication complexity) of any given protocol is defined over the worst-case

topology.

1.3.3 Two-Party Communication Complexity

Some of our results rely on the communication complexity of a novel two party prob-
lem UnionSizeCP introduced by us. Although UnionSizeCP has not been studied, it
is related to some existing two-party problems.

The set disjointness problem. Disjointness is one of the most studied problems
in two-party communication complexity. It is a binary function defined on two sets
to test whether the two sets are disjoint. The function outputs 1 if and only if the
two sets are disjoint. Otherwise, it outputs 0. Let n be the size of the universe
where the two sets are generated. There is a trivial protocol where Bob sends all
its input to Alice which enables Alice to determine the Disjointness function. This
protocol leads to a trivial upper bound of O(n). For deterministic protocols, there
is a tight lower bound of Ω(n) [41]. The lower bound is proved by consider the
rank of the communication matrix of the function. Each row of the communication
matrix corresponds to a possible input of Alice’s, and each column corresponds to
a possible input of Bob’s. An entry of the matrix is the Disjointness function over
the corresponding input pair. For randomized protocols which can give the correct
answer with a probability 2/3 on every input, there is a tight lower bound of Ω(n)
as well. A simple proof based on information theoretical approach appears in [4].
This approach is useful not only for Disjointness but also for our problems. See
Section 5.3.2 for more details.

The gap Hamming distance problem. In this problem, Alice has a string from
{0, 1}n and so does Bob. Their goal is to determine whether the Hamming distance
of the two strings is less than n/2−

√
n or greater than n/2+

√
n. There is a trivial up-

per bound of O(n). For deterministic protocols, by showing that the communication
matrix does not contain a large monochromatic rectangles (defined in Section 5.2.2),
a tight lower bound of Ω(n) can be proved. For randomized protocol which can give
the correct answer with a probability 2/3 on every input, researchers first consider

9



CHAPTER 1. INTRODUCTION

one-way protocols where only a single message is allowed. For these protocols, a
linear lower bound on one-way communication complexity is proved in [61]. [14]
further extends this lower bound to constant-round protocols. Finally, a tight low-
er bound of Ω(n) on the communication complexity of general protocols is proved
in [16].

1.4 Our Contributions

This thesis centers on questions raised in Section 1.2. We have made following
contributions: i) We have proved that there exists an exponential gap between the
NFT and FT communication complexity of Sum, which will be discussed in Sec-
tion 1.4.1; ii) We have proved near-optimal lower and upper bounds on the FT
communication complexity of general CAAFs (defined in Chapter 2). Section 1.4.2
provides more detailed results; iii) We have introduced a new two-party problem
UnionSizeCP which comes with a novel cycle promise. Such a problem is the key
enabler of many results in this thesis. We have further proved that this cycle promise
and UnionSizeCP likely play a fundamental role in reasoning about fault-tolerant
communication complexity. Section 1.4.3 provides more discussions.

1.4.1 The Exponential Gap Between the NFT and FT Communi-
cation Complexity of Sum

As our first main contribution, we have proved an exponential gap between low-
er bounds on the FT communication complexity (or FT lower bounds in short)
and upper bounds on the NFT communication complexity (or NFT upper bounds

in short) of Sum. Our NFT upper bounds on Sum are obtained from well-known
tree-aggregation protocol coupled with some standard tricks, which is not our main
contribution. On the other hand, we have proved the first FT lower bounds on Sum
for public-coin randomized protocols with zero-error and with (ε, δ)-error. Private-
coin protocols and deterministic protocols are also fully but implicitly covered, and
our exponential gap still applies. Our FT lower bounds are obtained for general f

where f is an upper bound on the total number of edges incidental to failed nodes.

10
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b : time complexity of the protocol, in terms 

     of the number of flooding rounds

c : any positive constant below 0.25

N: number of nodes in the network
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Figure 1.1: The exponential gap between NFT and FT communication complexity of Sum.
All NFT upper bounds are obtained in Chapter 3. FT lower bounds (with f = Ω(N)) are
obtained in Chapter 4 (for b ≤ N1−c or 1

ε0.5−c ), and Chapter 7 (for b > N1−c or 1
ε0.5−c ).

Nevertheless, in the following paragraph, we will only present our FT lower bounds
in the case where f = Ω(N) since they are enough to show an exponential gap.

Since there is a tradeoff between communication complexity and time complexity,
we always consider Sum protocols which can terminate within b flooding rounds

(defined in Chapter 2), for b from 1 to ∞. Following theorem summarize our NFT
upper bounds and will be proved in Chapter 3.

Theorem 1.4.1. For any b ≥ 1, we have:

R
syn
0 (SumN , b) = O

(
a/ log

(
b
a

+ 2
))

, where a = log N

R
syn
ε, 1

3
(SumN , b) = O

(
a/ log

(
b
a

+ 2
))

, where a = log
1
ε

+ log log N

For fault-tolerant protocols, we have following Corollary 1.4.1 (proved in Chapter 4)
and Theorem 1.4.2 (proved in Chapter 7).
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Corollary 1.4.1. For any b ≥ 1, we have:

R
syn,ft
0 (SumN ,N, b) = Ω

(
N

b log N

)
R

syn,ft
ε, 1

5
(SumN ,N, b) = Ω

(
1

εb2 log N

)
, for ε = Ω

(
1
√

N

)
Theorem 1.4.2. For any b ≥ 1, we have:

R
syn,ft
0 (SumN , 2N, b) = Ω(log N)

R
syn,ft
ε, 1

3
(SumN , 2N, b) = Ω

(
log

1
ε

)
, for ε = Ω

(
1
N

)

Figure 1.1 summarizes the exponential gap between the FT lower bounds and NFT
upper bounds of Sum, which is established by the above 3 theorems. For b ≤ N1−c or

1
ε0.5−c where c is any positive constant below 0.25, the NFT upper bounds are always
at most logarithmic with respect to N or 1

ε
, while the FT lower bounds are always

polynomial.1 For b > N1−c or 1
ε0.5−c , the NFT upper bounds drop to O(1), while the FT

lower bounds are still at least logarithmic. Our results also imply that under small
b values, the existing fault-tolerant Sum protocols (incurring O(N log N) or O( 1

ε2 )
bits [5, 24, 53, 54, 65] per node) are actually optimal within polylog factors.

1.4.2 Near-Optimal Bounds on the zero-error FT Communica-
tion Complexity of General CAAFs

As our second main contribution, we have proved a novel upper bound of O(( f
b + 1) ·

min( f log N, log2 N)) (Corollary 1.4.2, proved in Chapter 8) as well as a novel lower
bound of Ω( f

b log b +
log N
log b ) (Corollary 1.4.3, proved in Chapter 4), for the zero-error

FT communication complexity of general CAAF (such as Sum) protocols whose time
complexity is within b flooding rounds (Figure 1.2). Note that our upper bound is no
more than O( f

b log2 N + log2 N), and hence is at most log2 N log b factor away from
our lower bound.

1Here for (ε, δ)-approximate results, we only considered terms containing ε. Even if we take the
extra terms with N into account, our exponential gaps continue to exist as long as 1

εc = Ω(log N).
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O(N logN)
O(f logN)

O(( f
b
+ 1) ·min(f logN, log2 N))

our upper bound

Ω( f
b log b

+ logN
log b

) our lower bound

Communication

Complexity

Time Complexity (b)

previous upper bound

Θ(f)Θ(1)

Figure 1.2: Summary of bounds on FT communication complexity of general CAAFs.
Here b is the time complexity, and f is an upper bound on the total number of edges incident
to failed nodes. Since the communication complexity depends on b, f , and N, the two-
dimensional curves here are for illustration purposes only.

Corollary 1.4.2. For any b ≥ 21c and 1 ≤ f ≤ N,

R
syn,ft
0 (CAAFN , f , b) = O

((
f
b

+ 1
)
·min

(
f log N, log2 N

))
Corollary 1.4.3. For any b ≥ 1 and 1 ≤ f ≤ N, we have:

R
syn,ft
0 (CAAFN , f , b) = Ω

(
f

b log b
+

log N
log b

)

Our upper bound protocol also, for the first time, allows a tunable tradeoff between
communication and time complexity where the communication complexity can de-
crease polynomially with the time complexity. The protocol can also be easily ex-
tended (in Section 8.5) to settings with unknown f . Doing so will achieve a property
similar to early termination — namely, the overhead of the protocol will automati-
cally vary depending on the actual number of failures occurred during its execution.

1.4.3 UnionSizeCP and the Cycle Promise

Most of our FT lower bounds are obtained via an interesting reduction from a two-
party communication complexity problem UnionSizeCP, where Alice and Bob in-
tend to determine the size of the union of two sets, while the two sets satisfies a
novel cycle promise. We further have found that UnionSizeCP and the cycle promise
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likely play a fundamental role in reasoning about the FT communication complex-
ity. Identifying this UnionSizeCP problem and the cycle promise is our third main
contribution.

Specifically, we have proved a strong completeness result showing that UnionSizeCP
is complete among the set of all two-party problems that can be reduced to Sum in
the FT setting via oblivious reductions (defined in Chapter 6). Namely, we have
proved that every problem in that set can be reduced to UnionSizeCP. Our proof also
implicitly derives the cycle promise, thus showing that it likely plays a fundamental
role in reasoning about the FT communication complexity.

1.5 Organisation of the Thesis

In the next, Chapter 2 describes our models and formal definitions. Chapter 3
presents the upper bounds on the NFT communication complexity of Sum. Chap-
ter 4 proves the lower bounds on the FT communication complexity of Sum for b ≤

N1−c and 1
ε0.5−c . Proofs in Chapter 4 rely on our novel results on the communication

complexity of UnionSizeCP which are proved in Chapter 5. Next Chapter 6 proves
the completeness result for UnionSizeCP, showing that the polynomial dependency
on b in Chapter 4’s lower bounds might be inherent in Chapter 4’s overall approach.
Chapter 7 then uses a different approach to prove the lower bounds on the FT com-
munication complexity of Sum for all b. Chapter 8 proves the upper bound on the FT
communication complexity of Sum and general CAAFs. Finally, Chapter 9 draws
the conclusions and proposes future work.
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Chapter 2

Model and Definitions

This chapter describes the system model and formal definitions used throughout this
thesis. We first introduce our system model in Section 2.1. Commutative and asso-

ciative aggregate functions is a subset of aggregate function which includes all func-
tion studied in this thesis. Its formal definition appears in Section 2.2. Section 2.3
introduces the definition of time complexity, which will be used in defining NFT and

FT communication complexity in Section 2.4. Finally, some results in classical two-
party communication complexity are related to our study, which are described with
related definitions in Section 2.5.

2.1 System Model

Network model. We consider a system consists of N nodes which are connected
by some undirected network topology G. Each node has a unique id of log N bits
(log in this thesis is always base 2). A node knows neither G nor its neighbors
in G 1. Node i has an integer input oi, whose domain size is polynomial of N.
The goal is for a special root node (whose id is known by all nodes) to learn a
certain aggregate function over all these inputs. We consider a synchronous timing
model where protocols proceed in rounds. Similar to the model in [49], here in

1Actually, our lower bounds hold even if the topology G (including the ids of the N nodes) is
known to all nodes.
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CHAPTER 2. MODEL AND DEFINITIONS

each round, each node first receives all the messages sent by its neighbors in the
previous round. Next it does some local computation and then may choose to send
(i.e., locally broadcast) a single message, which will be received by all its neighbors
in the next round.

Failure model. All nodes in the system, except the root, may experience crash
failures. A node that is disconnected from the root (i.e., has no path to the root) due
to the failures of other nodes is also considered as failed. We consider only oblivious
failure adversaries that adversarially decide beforehand (i.e., before the protocol flips
any coins) which nodes fail at what time. For convenience and similar to [26], we
also talk about edge failures — we say that an edge fails, iff at least one of its end
points experiences a crash failure. We use f to denote an upper bound on the total
number of edge failures, ranging from 1 to Θ(N).2 Except in Section 8.5, we assume
that f is known to the protocol.

2.2 Commutative and Associative Aggregate Function

A binary operator � is commutative and associative if for all operands o1, o2, and o3,
we have o1 � o2 = o2 � o1 and (o1 � o2) � o3 = o1 � (o2 � o3). A function F is called a
commutative and associative aggregate function, or CAAF in short, if i) there exists
a commutative and associative binary operator � such that F (o1, o2, ..., oN) = o1�o2�

...� oN , and ii) the domain size of oi1 � oi2 � ...� oik is at most polynomial with respect
to N, for all 1 ≤ k ≤ N where i1 through ik are arbitrary distinct indices. The second
requirement stems from the “aggregate” nature of the function – “aggregating” oi1

through oik should generate an output whose size is not too large. CAAF covers a
wide range of common aggregate functions such as Sum and Count. Many other
aggregate functions such as Average, Median, and Percentile can be reduced to
CAAF. In particular, Median and Percentile can be solved by doing a binary search
over the output domain, while invoking logarithmic number of Count’s.

Zero-error and (ε, δ)-approximate results. In failure-free settings, both zero-error
and (ε, δ)-approximate results are well-defined: Given a function and all inputs of

2Certain graphs may have more than Θ(N) edges. Our upper bound protocol also holds in these
graphs. But we focus on f between 1 and Θ(N) which applies to all graphs.
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parties, the function value over all inputs, denoted by s, is the zero-error result and
any (random variable) ŝ such that Pr[|ŝ − s| ≥ εs] ≤ δ is a (ε, δ)-approximate result.
In failure-prone settings, failures may cause some input values unavailable for all
protocols. For example, if a party fails before the time of sending its first messages,
its input value can never affect the result of any given protocol. To make our study
meaningful, we allow the computation to ignore/omit the inputs held by those players
that have failed (i.e., crashed) or been disconnected. For any given CAAF F (defined
from any binary operator �), following the same definitions from [5], a zero-error

result of F is any result equals �o∈S o for some S where S 1 ⊆ S ⊆ S 2 where S 1 is the
set of inputs of nodes which have not failed or been disconnected from the root due to
other nodes’ failures, and S 2 is the set of inputs of all nodes. An (ε, δ)-approximate

result of F is any ŝ such that for some zero-error result s, Pr[|ŝ − s| ≥ εs] ≤ δ.

2.3 Time Complexity

With respect to a topology G, the time complexity of a (randomized) protocol de-
scribes the number of rounds needed for it to terminate, under the worst-case inputs
of nodes in G, the worst-case failure adversary, and the worst-case coin flips. The
shape of G has a large impact on time complexity. Hence we will always describe
time complexity in terms of flooding rounds. Here each flooding round consists of d

rounds, where d is G’s diameter and is assumed to be known to the protocol. We use
b to denote the time complexity in terms of flooding rounds (i.e., the total number of
rounds would be bd).

At any given point of time between round 1 and round bd, let H be the same as G

except that all the failed nodes and their incidental edges have been deleted. H’s
diameter may be larger or smaller than G. For a flooding round to remain meaning-
ful in such a context, we assume that the failures do not substantially increase the
network’s diameter. Specifically, we assume that the diameter of H is no larger than
c · d, where c is some constant known to the protocol. 3

3Our upper bound protocol critically relies on this assumption. As part of our future work, we are
currently working on a new lower bound proof that aims to show the necessity of this requirement.
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2.4 NFT and FT Communication Complexity

Communication complexity of a protocol. Classic multi-party communication
complexity problems [50] usually consider the total number of bits sent by all play-
ers, since they usually use the blackboard model where the blackboard is the bottle-
neck. In our distributed computing setting with a topology G, as in other problems in
such a setting, it is more natural to consider the number of bits sent by the bottleneck
player — the energies of sensors are usually provided by batteries. The capacity of
batteries relies on the bottleneck player. Given a randomized protocol, a topology G,
a value assignment to the nodes in G, and a failure adversary (if failures are consid-
ered), define ai to be the expected (with the expectation taken over coin flips in the
protocol) number of bits that node i sends. The protocol’s average-case communi-

cation complexity under G is defined as the largest ai, across all value assignments
of the nodes in G, all failure adversaries (if failures are considered), and all i’s (1 ≤
i ≤ N). The protocol’s worst-case communication complexity under G is similarly
defined by considering worst-case coin flips instead of taking the expectation over
the coin flips.

Public coins versus private coins. In a randomized protocol, players can ”toss
coins”. Formally, there are some strings which are randomly generated and players
can access these strings in the following way. If public coins are allowed, there is
only one string and all nodes have access to the string. Otherwise, players can only
use private coins which means each player has a string and can only access its own
one. In this thesis, we allow public coins. By default, the notion of “coins” in this
thesis refers to public coins. 4

Communication complexity of Sum (zero-error case). We define Rsyn
0 (Sum,G, b)

to be the smallest average-case communication complexity under G across all ran-
domized Sum protocols that can generate, in a failure-free setting, a zero-error result
on G within a time complexity of at most b flooding rounds. We similarly define
R

syn,ft
0 (Sum,G, f , b) across all Sum protocols which can additionally tolerate up to

f edge failures, if these failures do not substantially increase the network’s diame-
ter (See section 2.3). Here note that length of a flooding round depends on G. For

4In fact, all results in this thesis hold if only private coins are allowed. The lower bounds trivially
hold. For the upper bound, although our protocol uses public coins, it can be avoided as we shown
in [66].
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any given integer N, we define Rsyn
0 (SumN , b) to be the maximum Rsyn

0 (Sum,G, b)
across all topology G’s where G is connected and has exactly N nodes. Similarly we
define Rsyn,ft

0 (SumN , f , b).

Communication complexity of Sum ((ε, δ)-approximate case). For (ε, δ)-
approximate case, we use the worst-case communication complexity for defin-
ing, which is standard practice [4, 50]. We define Rsyn

ε,δ (Sum,G, b), to be the s-
mallest worst-case communication complexity under G across all randomized Sum
protocols that can generate, in a failure-free setting, (ε, δ)-approximate result on
G within a time complexity of at most b flooding rounds. We similarly define
R

syn,ft
ε,δ (Sum,G, f , b) across all randomized Sum protocols which can additionally

tolerate up to f edge failures, if these failures do not substantially increase the net-
work’s diameter (See section 2.3). For any given integer N, we define Rsyn

ε,δ (SumN , b)
to be the maximum Rsyn

ε,δ (Sum,G, b) across all topology G’s where G is connected

and has exactly N nodes. Similarly define Rsyn,ft
ε,δ (SumN , f , b).

2.5 Two-Party Communication Complexity

Some proofs in this thesis will also need to reason about the NFT communication
complexity of some two-party problems. In such a problem Π, Alice and Bob each
have an input X and Y respectively, and the goal is to compute the function Π(X,Y).
For all two-party problems in this thesis, we only require Alice to learn the final
result. We will often use n to denote the size of Π, as compared to N which de-
scribes the number of nodes in G. The communication complexity of a randomized
protocol for computing Π is defined to be either the average-case or worst-case (over
random coin flips) number of bits sent by Alice and Bob combined. In the classic
setting without synchronous rounds [50], similar as earlier, we defineR0(Π) (Rε,δ(Π),
respectively) to be the smallest average-case (worst-case, respectively) communica-
tion complexity across all randomized protocols that can generate a zero-error result
((ε, δ)-approximate result, respectively) for Π.

We will also need to consider a second setting with synchronous rounds, adapted
from [38]. Here Alice and Bob proceed in synchronous rounds, where in each round
Alice and Bob may simultaneously send a message to the other party. Alice, or Bob,
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or both may also choose not to send a message in a round. The time complexity of
a randomized protocol for computing Π is defined to be the number of rounds need-
ed for the protocol to terminate, over the worst-case input and the worst-case coin
flips. We define Rsyn

0 (Π, t) (Rsyn
ε,δ (Π, t), respectively) to be the smallest average-case

(worst-case, respectively) communication complexity across all randomized proto-
cols for Π that can generate a zero-error result ((ε, δ)-approximate result, respective-
ly) within a time complexity of at most t rounds.

2.6 Some Useful Known Results

This section describes some known results that this thesis uses. These results and
their proofs are not our contribution. We include the details and sometime the proofs
here only for completeness, because some of them were folklore results, or were
not formally stated, or were not stated to cover FT communication complexity, or
were proved under slightly different models in a restricted form. In the next, the
notations R0,δ, R

syn
0,δ , and Rsyn,ft

0,δ simply mean Rε,δ, R
syn
ε,δ , and Rsyn,ft

ε,δ with ε = 0,
respectively.

Known relation between R0, Rsyn,ft
0 and R0,δ, R

syn,ft
0,δ . Note that we do not nec-

essarily have R0 ≥ R0,δ, since R0 is the average-case (over random coin flips in
the protocol) communication complexity, while R0,δ is the worst-case (over random-
coin flips in the protocol) communication complexity. Nevertheless, the following
relation in Lemma 2.6.1 is well-known [50]. This relation trivially applies to fault-
tolerant communication complexity as well.

Lemma 2.6.1. (Adapted from [50].) For any communication complexity problem

Π and δ > 0, R0(Π) ≥ δR0,δ(Π). Similarly for any f ≥ 1, b ≥ 1 and δ > 0,

R
syn,ft
0 (SumN , f , b) ≥ δRsyn,ft

0,δ (SumN , f , b).

Proof. Consider the optimal zero-error randomized protocol for Π, which generates
a zero-error result while incurring an expected (over the random coin flips in the
protocol) communication complexity of R0(Π) bits. By Markov’s inequality, the
protocol’s communication complexity exceeds R0(Π)/δ bits with probability at most
δ. We can thus construct a new protocol which behaves the same as the original
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one except that a node stops once it has sent R0(Π)/δ bits. Obviously, this proto-
col outputs correct results with probability at least 1 − δ, and incurs a worst-case

communication complexity of R0(Π)/δ bits, implying R0,δ(Π) ≤ R0(Π)/δ. A similar
proof can show Rsyn,ft

0,δ (SumN , f , b) ≤ Rsyn,ft
0 (SumN , f , b)/δ. �

Known relation betweenR0, Rε,δ andRsyn
0 , Rsyn

ε,δ . The following lemma is a slight-
ly extended version of the corresponding theorem from [38], which draws a connec-
tion between NFT communication complexity with synchronized rounds and NFT
communication complexity without synchronized rounds. Since our synchronous
round model is slightly different from [38], we provide a proof sketch below for the
sake of completeness. This proof is not our contribution.

Lemma 2.6.2. (Adapted from [38].) For any two-party communication complexity

problem Π and any t ≥ 2, we have R0(Π) = R
syn
0 (Π, t) · O(log t) and Rε,δ(Π) =

R
syn
ε,δ (Π, t) · O(log t).

Proof. Consider any given protocol P (with PA being Alice’s part of the protocol
and PB being Bob’s part), that can solve Π under the synchronous round setting with
a bits (either on expectation or worst-case) of communication, while always termi-
nating within t synchronous rounds. We construct a protocol Q (with QA and QB

similarly defined) that can solve the problem with O(a log t) bits (either on expecta-
tion or worst-case, respectively) of communication complexity in the classic setting
without synchronous rounds.

In Q, Alice and Bob each maintains a local counter initialized to 1. These two
counters correspond to the round number needed by P. Let the current counter value
on Alice be rA. In QA, Alice first tries executing PA for rounds rA, rA + 1, rA + 2,
..., while assuming that PB does not send any message in any of those rounds. Alice
then determines r′A (r′A ≥ rA), the first round during which PA sends a message in
this trial execution. Similarly Bob determines r′B. Alice and Bob then exchange r′A
and r′B, taking 2 log t bits. Let r′ = min(r′A, r

′
B). Alice next executes PA (for real) for

rounds rA, rA + 1, ..., r′, and then sends a message to Bob if r′A = r′. Similarly in QB,
Bob executes PB for rounds rB, rB + 1, ..., r′, and then sends a message to Alice if
r′B = r′. Note that for round r′, Pmust incur at least one bit of communication. Thus
for each bit P incurs, Q incurs at most 2 log t + 1 = O(log t) bits. After the message
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exchange for round r′, Alice and Bob set rA = r′ + 1 and rB = r′ + 1, and repeat the
above process until P terminates. �
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Chapter 3

Upper Bounds on NFT
Communication Complexity of Sum

This chapter proves the following theorem, which describes the NFT upper bounds
on Sum:

Theorem 1.4.1 (Restated). For any b ≥ 1, we have:

R
syn
0 (SumN , b) = O

(
a/ log

(
b
a

+ 2
))

, where a = log N

R
syn
ε, 1

3
(SumN , b) = O

(
a/ log

(
b
a

+ 2
))

, where a = log
1
ε

+ log log N

The above theorem is from well-known tree-aggregation protocols coupled with
some standard tricks. These are not our main contribution — instead, they serve
to show the exponential gap from our FT lower bounds. Its proof is obtained by
combining following two sections.

3.1 The Zero-Error Protocol

In the protocol, nodes first construct a spanning tree and then aggregates all values
from leaf nodes to the root. The spanning tree is simply constructed as follow:
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OF Sum

Initially, the root broadcasts a special token. When a node A receives the token for
the first time, A sets the sender B as its parent and informs B that A should be one of
B’s children. (If A has multiple candidate parents, to make everything deterministic,
the candidate with the smallest id is chosen as A’s parent.) In the next round, A

broadcasts the token. Obviously, one round later A knows all its children. With
this tree in place, a node becomes ready when it receives one aggregation message

from each of its children. Each aggregation message encodes the partial sum of
all the values in the corresponding subtree. Leaf nodes are ready when they knows
they have no children. A ready node will combine all these aggregation messages,
together with its own value, and then send a single aggregation message to its parent.
Since each aggregation message uses O(log N) bits to encode the exact partial sum,
the above protocol is a deterministic protocol for Sum with O(log N) communication
complexity and Θ(1) flooding round time complexity.

One can further reduce the communication complexity if the time complexity is b

flooding rounds with b > 1, since we can now spend b rounds in sending all the
bits previously sent in one round. It is known [38] that an a-bit message sent in one
round can be encoded using a/ log b

a bits sent over b rounds, for b ≥ 2a. To do so,
one bit is sent every b

a · log b
a rounds. Leveraging the round number during which

the bit is sent, each such bit can encode log(b
a · log b

a ) ≥ log b
a bits of information.

Therefore we have Rsyn
0 (SumN , b) = O(a/ log(b

a + 2)), where a = log N.

3.2 The (ε, δ)-Approximate Protocol

The tree-aggregation protocol described in section 3.1 is already an (ε, δ)-
approximate protocol. In the protocol, each node sends one aggregation message
which uses O(log N) bits to encode the exact partial sum. It is possible to reduce the
size of the aggregation message to O(log 1

ε
+ log log N) bits, using a simple private-

coin protocol with similar tricks as in AMS synopsis [1].

Protocol intuition. First, we should note that directly encoding each partial sum
with O(log 1

ε
+ log log N) bits using a floating-point-style representation will not ac-

tually work, due to underflow issues when sequentially adding many small numbers
to a large number. Thus instead, we will apply a similar trick as AMS synopsis [1].
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Intuitively in this protocol, each “1” value in the system is flagged with a certain
probability. The system then uses the simple tree-aggregation protocol from Sec-
tion 3 to determine the exact total number (sum) of such flagged “1” values. By
properly adjusting the flagging probability, we can always ensure that this sum is no
larger than 120/ε2, and thus the size of the aggregation message will be no larger
than log(120/ε2). Furthermore, it is possible to dynamically adjust such flagging
probability in one pass of the aggregation protocol, without any global coordination.
Finally, the root estimates the final result for Sum based on the sum of flagged “1”
values and the associated flagging probability.

Algorithm 1 promote(msg)
1: msg.level + +;
2: Initialize tmp to 0;
3: for j = 1 to msg.sum do
4: Increase tmp by 1 with probability 1/2;
5: end for
6: msg.sum = tmp;

Algorithm 2 merge(msg1, msg2) // assuming msg1.level ≤ msg2.level
1: while msg1.level < msg2.level do
2: promote(msg1);
3: end while
4: msg3.level = msg2.level;
5: msg3.sum = msg1.sum + msg2.sum;
6: while msg3.sum > 120/ε2 do
7: promote(msg3);
8: end while
9: return msg3;

Protocol description and pseudo-code. Specifically in this protocol, each aggrega-
tion message contains an integer sum ∈ [0, 120/ε2] and an integer level ∈ [0, log N].
Intuitively, these two integers mean that if each “1” value in the subtree is flagged
with probability 2−level, then the partial sum of the flagged values is sum. A node with
a value of 1 generates an aggregation message with sum = 1 and level = 0, for its
own value. Intermediate tree nodes will need to combine multiple aggregation mes-
sages into one. Without loss of generality, we only need to explain how to combine
two aggregation messages msg1 and msg2 into one, where msg1.level ≤ msg2.level.
We promote (Algorithm 1) an aggregation message msg1, by i) increasing msg1.level

by one, and ii) tossing msg1.sum fair coins and then updating msg1.sum to be the
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total number of heads we observe. To merge msg1 and msg2 into msg3 (Algorith-
m 2), we first repeatedly promote msg1, until msg1.level = msg2.level. We then set
msg3.level = msg2.level, and msg3.sum = msg1.sum + msg2.sum. If msg3.sum >

120/ε2, we will again repeatedly promote msg3 until the first time that msg3.sum ≤

120/ε2. Finally, imagine that the root has a virtual parent and let msg be the aggre-
gation message sent by the root to its virtual parent. The root will estimate the final
sum to be msg.sum × 2msg.level.

Formal properties. It is obvious that the number of bits sent by each node in this
protocol is O(log 1

ε
+ log log N). We next prove that the protocol does give us an

(ε, 1/3)-approximate result:

Theorem 3.2.1. Consider any graph G with N nodes and any constant ε ∈ (0, 1]. Let

s denote the exact sum of the values of all the N nodes and ŝ denote output of the

above protocol. We have:

Pr[(1 − ε)s ≤ ŝ ≤ (1 + ε)s] ≥
2
3

Proof. Consider the sequence of random variables S 0, S 1, . . . , where S 0 = s and
S i+1 (for i ≥ 0) is the number of heads observed when flipping a fair coin exactly
S i times. Furthermore, for generating S i+1, the random process uses the same coin
flip results as the protocol uses in promoting all messages with level = i (i.e., at Line
4 of Algorithm 1). Let random variable L be the smallest integer such that S L ≤ z

where z = 120
ε2 . Let msg be the aggregation message sent by the root to its virtual

parent. We claim that msg.level = L and msg.sum = S L. First, it is impossible for
msg.level < L, since otherwise msg.sum will be above z and thus the msg will be
promoted by the root. Next if msg.level > L, it means that some node must have
observed a message msg′ whose level is L, and has further promoted msg′. But this
is impossible since if msg′.level = L, then msg′.sum ≤ S L ≤ z by our definition of
L. Now given that msg.level = L, we have msg.sum = S L.

Let l = blog2
3s
4z c, and we have 2l ∈ [ 3s

8z ,
3s
4z ] and 2l+2 ∈ [3s

2z ,
3s
z ]. Since for all i ≥ 0, S i

is a binomial random variable with parameter (s, 2−i), we have

E[S l] = 2−ls ≥
4
3

z and VAR[S l] ≤
8
3

z

E[S l+2] = 2−l−2s ≤
2
3

z and VAR[S l+2] ≤
2
3

z
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We claim that with probability at most 1
4 , L < [l + 1, l + 2], since by Chebyshev’s

inequality:

Pr[L ≤ l] = Pr[S l ≤ z] ≤
24
z
≤

1
5

Pr[L > l + 2] = Pr[S l+2 > z] ≤
6
z
≤

1
20

Denote Ei as the event 2iS i < [(1 − ε)s, (1 + ε)s], and we claim that for any i ≤ l + 2,
Pr[Ei] ≤ 1

40 . Since S i is a binomial random variable with parameter (s, 2−i), We have
E[2iS i] = s and VAR[2iS i] ≤ 22i2−is = 2is. By Chebyshev’s inequality, we have
Pr[Ei] = 1 − Pr[2iS i ∈ [(1 − ε)s, (1 + ε)s]] ≤ 2i

ε2 s ≤
3

zε2 = 1
40 . Next, denote E as the

event that ŝ < [(1− ε)s, (1+ ε)s], or equivalently 2LS L < [(1− ε)s, (1+ ε)s]. We have:

Pr[E] =
∑

i

Pr[L = i] Pr[E|L = i]

=
∑

i∈[l+1,l+2]

Pr[L = i] Pr[E|L = i] +
∑

i<[l+1,l+2]

Pr[L = i] Pr[E|L = i]

≤ Pr[L = l + 1] Pr[El+1|L = l + 1] + Pr[L = l + 2] Pr[El+2|L = l + 2]

+
∑

i<[l+1,l+2]

Pr[L = i]

≤ Pr[El+1 and L = l + 1] + Pr[El+2 and L = l + 2] +
1
4

≤ Pr[El+1] + Pr[El+2] +
1
4
≤

1
20

+
1
4
<

1
3

�

Apply the same trick as described at the end of section 3.1, we haveRsyn
ε, 1

3
(SumN , b) =

O(a/ log(b
a + 2)) where a = log 1

ε
+ log log N.
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Chapter 4

Lower Bounds on FT Communication
Complexity of Sum for b ≤ N1−c or
1/ε0.5−c

By a reduction from a novel two party communication problem UnionSizeCP, this
chapter proves following lower bounds on the fault-tolerant communication com-
plexity of Sum:

Theorem 4.0.2. For any b ≥ 1 and 1 ≤ f ≤ N, we have:

R
syn,ft
0 (SumN , f , b) = Ω

(
f

b log b
+

log N
log b

)
R

syn,ft
ε, 1

5
(SumN , f , b) = Ω

 1
εb2 log N

+
log 1

ε

log b

 , for ε = Ω

 1√
f


It should be noted that i) The above theorem becomes trivial for b ≥ N and b ≥

1/ε0.5. For this reason, we will only use these lower bounds when b ≤ N1−c or
b ≤ 1/ε0.5−c for some constant c. For larger bs, we will use other techniques to
obtain non-trivial lower bounds. These techniques and related results will later be
discussed in Chapter 7; ii) The constant 1/5 and the requirement of ε = Ω

(
1/

√
f
)

comes from our results on UnionSizeCP. We can actually prove the theorem for
any positive constant less than 1/4. However, we cannot relax the requirement of
ε = Ω(1/

√
f ). More details will be discussed in Chapter 5.
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The above theorem becomes the following corollary for f = N:

Corollary 1.4.1 (Restated). For any b ≥ 1, we have:

R
syn,ft
0 (SumN ,N, b) = Ω

(
N

b log N

)
R

syn,ft
ε, 1

5
(SumN ,N, b) = Ω

(
1

εb2 log N

)
, for ε = Ω

(
1
√

N

)

As lower bounds on Sum, Theorem 4.0.2 trivially applies to general CAAFs:

Corollary 1.4.3 (Restated). For any b ≥ 1 and 1 ≤ f ≤ N, we have:

R
syn,ft
0 (CAAFN , f , b) = Ω

(
f

b log b
+

log N
log b

)

In the following, Section 4.1 first gives an overview of our proof for this theorem,
which is based on a reduction from UnionSizeCP to Sum. In other words, given
any oracle protocol for solving Sum, we will construct a protocol for solving Union-
SizeCP. Section 4.2 elaborates the concrete intuitions behind our reduction. The
formal reasoning and proofs then follow: Section 4.3 develops a formal framework
for our reasoning and and Section 4.4 proves Theorem 4.0.2 using the framework
and our lower bounds on the communication complexity of UnionSizeCP, which are
proved in Chapter 5.

4.1 Overview of Our Proof

4.1.1 UnionSize and UnionSizeCP

One possible approach to achieve fault tolerance when computing Sum is for the n-
odes to simultaneously propagate their values along multiple directions. But doing
so will lead to duplicates which must be addressed. Thus it is natural to consider a
potential reduction from the two-party communication complexity problem Union-
Size, which was used for obtaining the optimal Ω( 1

ε2 ) lower bound on the space
complexity of one-pass distinct element counting [61].
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N number of nodes in the topology G
d diameter of the topology G
c diameter of the topology never exceeds cd due to failures
f upper bound on the number of edge failures
b Sum protocol’s time complexity, in terms of flooding rounds
n size of UnionSizeCP problem
q parameter in the cycle promise of UnionSizeCP
X Alice’s input in UnionSizeCP
Y Bob’s input in UnionSizeCP
α a node in the topology G which can be simulated by Alice
β a node in the topology G which can be simulated by Bob

S A,X(r) the set of all spoiled nodes at round r with respect to Alice’s input X
S B,Y (r) the set of all spoiled nodes at round r with respect to Bob’s input Y

Table 4.1: Key notations in Chapter 4.

Definition 4.1.1 (UnionSize). In UnionSizen, Alice and Bob respectively have length-

n binary strings X and Y. Let Xi and Yi denote the ith bit of X and Y, respectively.

Alice aims to determine |{i | Xi , 0 or Yi , 0}|.

For reasons which will be clear later, we do not reduce from UnionSize. Instead, we
will introduce and reduce from a new two-party communication complexity problem
called UnionSizeCP. UnionSizeCP is intuitively UnionSize extended with a novel
promise which we call the cycle promise. This promise is not constructed ad hoc —
rather, we will later (in Chapter 6) see that it can be derived.

Definition 4.1.2 (UnionSizeCP). In UnionSizeCPn,q where q ≥ 2, Alice and Bob

respectively have length-n strings X and Y. The characters in the strings are integers

in [0, q− 1]. Let Xi and Yi denote the ith character of X and Y, respectively. X and Y

satisfy the following cycle promise where for all i: If Xi = 0, then Yi must be 0 or 1;

if Xi = q − 1, then Yi must be q − 2 or q − 1; if 0 < Xi < q − 1, then Yi must be Xi − 1
or Xi + 1. Alice aims to determine |{i | Xi , 0 or Yi , 0}|.

This promise is illustrated in Figure 4.1 as a bipartite promise graph, where values
for Xi and Yi are vertices and two values are connected by an edge if they satisfy
the promise. Note that this promise graph is actually a cycle and symmetric for X

and Y , which makes our later arguments easier. Same as in UnionSize, the goal
in UnionSizeCP is for Alice to determine |{i | Xi , 0 or Yi , 0}|. When q = 2,
UnionSizeCP degrades to UnionSize.
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Figure 4.1: The cycle promise for q = 4.

4.1.2 Overview of Our Reduction

While the well-known reduction [61] from UnionSize to the (centralized) one-pass
distinct element counting problem is almost trivial, we seek a reduction from Union-
SizeCP to Sum. In particular, it is not immediately clear what a role failures can play.
Our interesting reduction here will answer this question. Our reduction is based on
a certain topology G. Given inputs X and Y to UnionSizeCP, each node in G has
some value so that their sum is exactly UnionSizeCP(X,Y). The values of some of
the nodes are uniquely determined by X, and thus are known by Alice from her local
knowledge of X. If the value of a node τ cannot be uniquely determined by X, then τ
is spoiled (rigorously defined in Section 4.3) for Alice, in the sense that Alice cannot
simulate τ. As the simulation proceeds, a spoiled node τ may causally affect its
neighbor node τ′, rendering Alice unable to simulate τ′ and thus making τ′ spoiled
as well. Since the Sum protocol may have internal state, if Alice cannot simulate a
node for some round, then Alice cannot simulate the node for later rounds either. In
this sense, a spoiled node can never get “unspoiled” later. For each round, Alice will
simply simulate the (shrinking) group of all those nodes that have not been spoiled
for Alice. Bob similarly simulates all unspoiled nodes for Bob. Alice’s group and
Bob’s may intersect.

We want the root of G to remain unspoiled for Alice when the Sum protocol ends, so
that it provides the Sum result to Alice for her to determine UnionSizeCP(X,Y). To
achieve this, in the reduction, Alice and Bob will need to strategically simulate the
failures of certain nodes, to block the spreading of spoiled nodes. This showcases
the fundamental role of failures in our reduction. At the same time, we need to
avoid failing/disconnecting nodes with a value of 1 — failing/disconnecting them
would enable the Sum protocol to ignore their values and potentially return a result
that cannot be used to determine UnionSizeCP(X,Y). (See correctness definition in
Section 2.2.) In fact, if we were not concerned with this, then simply failing all nodes
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except the root would keep the root unspoiled forever. Finally, it is also necessary
to enlist help from Bob, who can simulate certain nodes that are spoiled for Alice.
By forwarding to Alice messages sent by those nodes, Bob can further hinder the
shrinking of Alice’s group. The communication (between Alice and Bob) spent in
doing so will be the communication complexity incurred for solving UnionSizeCP.
Simulating a shrinking group of nodes and properly using failures to hinder such
shrinking is the main novelty in our reduction.

4.2 Intuitions for Our Reduction from UnionSizeCP to
Sum

This section intends to develop some concrete intuitions for our reduction from U-
nionSizeCP to Sum. Given any Sum instance with parameter b ≥ 1, N ≥ 14, and
f ∈ [8,N], we map UnionSizeCPn,q where n = b

f−2
6 c and q = 5b to the Sum problem

on the topology in Figure 4.2. The topology has n parallel chains of nodes with 5
nodes on each chain. We connect one end of each chain to a node α, and the other
end of each chain to a node β. We also connect α and β using an edge. We let α be
the root of the topology. Finally, we connect N − 5n − 4 dummy nodes directly to β
so that the total number of nodes (including the 2 dummy nodes described next) is
exactly N. We further attach a chain of 2 dummy nodes to α so that the diameter of
the initial topology is 5. Together with our design of the failure adversary later, these
2 dummy nodes will ensure that the diameter of the topology is always 5 in all round-
s, meaning that the failures will not affect the diameter. This will make our lower
bound construction as general as possible — more specifically, the construction will
hold for all possible c (c ≥ 1) values.

For all 1 ≤ i ≤ n, consider the ith chain in the topology, and let the 5 nodes on the
chain be v1 through v5, in order of increasing distance from α. The inputs X and Y to
UnionSizeCP will determine the values of v3s. Specifically, the input to the middle
node v3 is 0 if Xi = 0 and Yi = 0, otherwise the input to v3 is 1. The inputs to all
other nodes in the topology are always zero. X and Y also determine the failure time
of other nodes. The node v1 fails at the beginning of round (Xi + 3) iff Xi is even, and
v4 fails at the beginning of round (Xi + 3) iff Xi is odd. Similarly, the node v5 fails at
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α β

2 dummy

nodes

v1 v2 v3 v4 v5

} }n chains
N − 5n− 4

dummy nodes

Figure 4.2: Lower bound topology for Sum. Since the topology can be viewed as a “dis-
tributed input” to the Sum problem, such a lower bound topology is analogous to a worst-case
input commonly used for proving lower bounds.

the beginning of round (Yi + 3) iff Yi is even, and v2 fails at the beginning of round
(Yi + 3) iff Yi is odd. Finally, the 2 dummy nodes attached to α fail at the beginning
of round 1. There are no other failures in the system. One can easily verify that the
total number of edge failures (including edges incidental to disconnected nodes) is
at most 6n + 2 ≤ f .

As a key property in the above construction, a v3 whose value is 1 is never discon-
nected from the root. This is because if v3’s value is 1, then it must be unspoiled (by
our construction) for either Alice or Bob, and thus can remain connected to α or β
(and thus to the root). This in turn ensures that a zero-error result of Sum is always
exactly UnionSizeCP(X,Y).

In each round, Alice simulates the group of all the unspoiled nodes for Alice, includ-
ing node α. Bob similarly simulates the unspoiled nodes for Bob, including node
β. These two groups are made precise later in Section 4.4. Whenever α in the Sum
protocol sends a message Alice always forwards that message to Bob. Bob does the
same whenever β sends a message. Alice and Bob do not exchange any additional
messages. Thus the number of bits sent by Alice and Bob for solving UnionSizeCP
is exactly the same as the number of the bits sent by α and β in the Sum protocol.

To see intuitively why this reduction works, consider Alice with input Xi = 0. Since
Alice cannot determine v3’s value based on Xi, v3 is spoiled for Alice. To prevent
v3 from causally affecting α and thus spoiling α, Alice simulates the failure of v1

at (the beginning of) round 3 to block the influence of such v3. Interestingly, Next
since the failure of v1 depends on Xi and is not uniquely determined by Y , the node
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v1 itself now becomes spoiled for Bob. With the cycle promise and since Xi = 0,
Yi must be 0 or 1. If Yi = 0, then Bob does not need to be concerned, since Bob
has already simulated the failure of v5 at round 3 and thus blocked the potential
influence of v1.If Yi = 1 however, Bob needs to simulate the failure of v2 at round
4 to block the influence of v1. Now v2 again, becomes spoiled for Alice.Given the
cycle promise and since Yi = 1, we must have Xi = 0 or Xi = 2. If Xi = 0, then
Alice has already simulated the failure of v1 at round 3 and has already blocked the
potential influence of v2.If Xi = 2 however, Alice needs to simulate a new failure of
v1 at round 5.Extending such reasoning can show that by continuously injecting new
failures, we can always manage to block the spreading of spoiled nodes.

Finally, note that the simulation still cannot continue forever. Under the cycle
promise, it is possible for Xi = Yi = q − 1. Thus we need the Sum protocol to
stop by round q + 1, since otherwise at the beginning of round q + 2, Alice and Bob
would simulate failures such that v3 (with a value of 1) would be disconnected. This
means that q needs to be chosen based on the Sum protocol’s time complexity b: A
larger q is needed when b is larger. Since the communication complexity of Union-
SizeCP depends on q (as shown later), as expected, our lower bounds here will be a
function of b.

4.3 A Formal Framework for Reasoning about Re-
ductions to Sum

Having provided the overview and intuitions, we are now ready for the formal rea-
soning. To facilitate our proof in Section 4.4 in the next, we develop a formal frame-
work in this section.

Because FT communication complexity has not been formally studied before, many
of the concepts in this framework need to be defined from scratch. A significantly
simplified version of our framework, which does not involve failures, is implicitly
used by Sarma et al. [59] for a reduction from the Disjointness two-party problem to
distributed spanning tree verification. Applying the simplified version of our frame-
work to their context would also streamline their proof.
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Rounds and failures. The execution of the Sum oracle protocol starts at round 1.
We sometimes for convenience also discuss round 0, during which the Sum protocol
does nothing. Note that one can assume, without loss of generality, that all failures
happen at the beginning of various rounds: If a node v fails sometime within round
r, since v can (locally) broadcast at most one message in a round, the failure can be
viewed as happening at the beginning of round r+1 if the failure occurs after v sends
the message. Otherwise the failure can be viewed as happening at the beginning of
round r. Thus from now on, we will assume that all failures happen at the beginning
of various rounds. If a node fails at the beginning of round r, we say that the failure

time of that node is round r.

Simulating a node. To properly simulate a node (i.e., simulate the execution of the
Sum oracle protocol on that node) in a certain round, Alice (Bob) needs to feed all
necessary parameters to the oracle protocol running on that node. The execution of a
randomized oracle protocol on a node in a given round is uniquely determined by the
(public) coin flips, the topology (since the topology is known), the id of the node, the
(initial) value of the node, the failure time of the node (i.e., a failed node should not
send out messages and the oracle protocol should not be invoked on such a node),
and all the incoming messages to this node since round 1. Alice can easily generate
the coin flips, and she already knows the topology and node id. For some nodes,
Alice can uniquely determine their values and failure time based on Alice’s input
X. Finally, the incoming messages to a node v will have to be obtained via Alice’s
simulation of v’s neighbors or directly from Bob if β is the sender of that message.
Recall that in a round, a node first performs some local computation, and then does
either a send or a receive. In particular, the potential message received by a node
can only affect its behavior starting from the next round, since the node does not do
any further local computation in the current round after the receive operation. Thus
regardless of whether v does a send or receive in round r, to simulate v in round r, we
(only) need all the incoming messages to v from round 1 to round r − 1 (inclusive).

Epicenters and their occurrence time. The following concepts are always defined
with respect to a given input X of Alice’s. A node v in the topology G is a value

epicenter if v’s value is not uniquely determined by X. Namely given X, there exists
Bob’s inputs Y and Y ′ such that v’s value is different under the simulated execution
of the Sum oracle protocol (used in the reduction) for (X,Y) and (X,Y ′). A node v
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is a failure epicenter if v is not already a value epicenter and if v’s failure time is
not uniquely determined by X. Value epicenters and failure epicenter are all called
epicenters.

The occurrence time of a value epicenter v is defined to be round 1. The occurrence

time of a failure epicenter v is defined to be v’s earliest failure time, across all valid
Y’s given the current X. To get some intuition behind the occurrence time, consider
a failure epicenter v. Suppose that given X, the only possible inputs to Bob are Y and
Y ′. Imagine that v fails at the beginning of round 3 if Bob’s input is Y , and fails at the
beginning of round 8 if Bob’s input is Y ′. Since Alice does not know Bob’s input,
starting from round 3, Alice no longer knows whether v is still alive and thus can no
longer simulate v. This also explains why a value epicenter v has an occurrence time
of round 1 — Alice cannot simulate v even for round 1.

Spoil paths and spoiled nodes. All the following concepts are still with respect to a
given input X of Alice’s. If a node’s failure time r is uniquely determined by X, we
say that the node fails stably at the beginning of round r. We also call such a failure
a stable failure. A spoil path from an epicenter u0 (occurring at round r0) to a node
v is a sequence of nodes u0, u1, u2, ..., uk, v where

• for 0 ≤ i ≤ k, ui , α and ui , β,

• v is uk’s neighbor and ui is ui−1’s neighbor for 1 ≤ i ≤ k,

• v has not failed stably before the beginning of round r0 + k + 2, and ui has not
failed stably before the beginning of round r0 + i + 1 for 0 ≤ i ≤ k. Intuitively,
this enables ui to potentially send a message to ui+1 (and also ui+1 to receive
this message) in round r0 + i + 1. In turn, starting from round r0 + i + 2, ui+1’s
behavior may potentially be affected by this message.

We define the length of a spoil path u0, u1, u2, ..., uk, v to be k + 1. Intuitively, a
spoil path is a potential path for u0 to causally affect v, without going through α or
β. Since Alice (Bob) will send to the other party all messages sent by α (β), paths
going through α (β) are already taken care of. We intentionally define spoil paths
in such a way that they can only be “blocked” by stable failures. This makes this
definition consistent with the following intuition: If a node on a spoil path fails and
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if that failure is not a stable failure, then that node must be an epicenter itself and
will already cause the spreading of spoiled nodes. Thus intuitively, such a non-stable
failure can never block the spreading of spoiled nodes. The spoil distance of a node
v from an epicenter u0 occurring at round r0 is simply the length of the shortest spoil
path from u0 to v, or infinite if there is no such spoil path. For any epicenter u0, we
also define the spoil distance of u0 from itself to be 0. For any given round r, a node
v is spoiled in round r with respect to Alice’s input X if v is within spoil distance
of r − r0 hops from some epicenter occurring at round r0 where r0 ≤ r. By such
definition, an epicenter with occurrence time of r becomes first spoiled in round r,
which is consistent with the intuition. We use S A,X(r) to denote the set of all spoiled
nodes at round r with respect to Alice’s input X. We will prove in the next section
that in each round r, Alice with input X can simulate all unspoiled nodes (i.e., all
nodes in S A,X(r)).

We similarly define the notion of epicenters, spoil paths, spoiled nodes, and S B,Y(r)
for Bob.

The simulatability lemma. Given the above formal framework, we can now prove
the following simple but useful lemma which we will repeatedly invoke later.

Lemma 4.3.1. Let X be Alice’s input and Y be Bob’s. Let R be any positive integer

where α ∈ S A,X(R) and β ∈ S B,Y(R). Assume that Alice (Bob) always forwards to

the other party the message sent by α (β) in a round whenever Alice (Bob) is able to

simulate the execution of the Sum oracle protocol on α (β) for that round. Then for

all 0 ≤ r ≤ R, Alice can properly simulate the execution of the Sum oracle protocol

on all nodes in S A,X(r) for round r and Bob can properly simulate all nodes in S B,Y(r)
for round r.

Proof. We do an induction on r. First, α ∈ S A,X(R) and β ∈ S B,Y(R) imply α ∈ S A,X(r)
and β ∈ S B,Y(r) for all 0 ≤ r ≤ R. S A,X(0) simply contains all nodes, since there are
no epicenters occurring in round 0. Clearly, Alice can simulate all nodes for round
0 since the Sum protocol does nothing in round 0 and no failures happen in round 0.
Similarly, for round 0 Bob can simulate all nodes in S B,Y(0).

Assume that the claim holds for round r, and consider any node v ∈ S A,X(r + 1). We
distinguish two cases:
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• v is not an epicenter for Alice’s input X. Then Alice can uniquely determine
both the (initial) value and the failure time of v. If the failure time is round
r + 1 or earlier, then Alice trivially simulates v in round r + 1 by doing nothing
and we are done. Otherwise Alice knows that v is alive in round r + 1.

• v is an epicenter for Alice’s input X. We claim that it is impossible for the
occurrence time of this epicenter to be round r + 1 or earlier, since otherwise
v would have been spoiled in round r + 1 and thus would not be in S A,X(r +

1). Given that the occurrence time is round r + 2 or later, it means that the
occurrence time is not round 1. Thus v is not a value epicenter and Alice must
know v’s initial value. Furthermore, while Alice cannot determine v’s exact
failure time, Alice knows for sure that the failure time of v is round r + 2 or
later, and that v is alive in round r + 1.

Now we only need to prove that Alice can simulate v in round r + 1, given that Alice
knows v’s initial value and that v is alive in round r + 1.

We trivially have v ∈ S A,X(r) and by inductive hypothesis, Alice can simulate v from
round 1 to r (inclusive). It thus suffices to prove that Alice can generate the potential
message that v receives in round r from some neighbor u, so that Alice can simulate
v in round r + 1. We distinguish three cases for u. If u is β and since β ∈ S B,Y(r),
by inductive hypothesis, Bob can properly simulate β for round r. By condition of
the lemma, Bob must have forwarded the message from β to Alice. Similarly if u is
α and since α ∈ S A,X(r), Alice can properly simulate α for round r and generate the
message herself. Finally, if u , α and u , β, we first show that u must be in S A,X(r),
via a contradiction. Since u sends a message in round r, u must have not failed in
round r or earlier. In turn, u must have not failed stably in round r or earlier. Thus if
u < S A,X(r) (i.e., u is spoiled in round r), then v must be spoiled in round r +1, which
contradicts with v ∈ S A,X(r + 1). Now given that u ∈ S A,X(r), by inductive hypothesis
Alice can simulate u for round r and generate u’s message locally. Thus Alice has
all the information needed to simulate v for round r + 1.

Similar arguments apply to Bob. �
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4.4 Proof for Theorem 4.0.2

We now move on to prove Theorem 4.0.2 using the framework established in Sec-
tion 4.3 and a lower bound on UnionSizeCP’s communication complexity which will
be proved in Chapter 5:

Theorem 4.4.1. For any t ≥ 2,

R
syn
0 (UnionSizeCPn,q, t) = Ω

(
n

q log t

)
− O

(
log n
log t

)
R

syn
ε, 1

5
(UnionSizeCPn,q, t) = Ω

(
1

εq2 log t

)
− O

 log 1
ε

log t

 , for ε = Ω

(
1
√

n

)

Having Theorem 4.4.1, the proof of Theorem 4.0.2 is obtained by a series of lemmas.
Lemma 4.4.1 below first proves that in the construction in Section 4.2, α (β) will
always remain unspoiled for Alice (Bob) in round R, where R is large enough for
the Sum oracle protocol to have terminated. Lemma 4.4.2 then proves the reduction
from UnionSizeCP to Sum. Combining this lemma with the earlier lower bound on
UnionSizeCP directly gives us Theorem 4.0.2.

Lemma 4.4.1. Consider the topology and nodes (with their values and failure times)

as constructed in Section 4.2. Under this construction and under R = q + 1, for all

possible input X of Alice’s, we have α ∈ S A,X(R). Similarly, for all possible input Y

of Bob’s, we have β ∈ S B,Y(R).

Proof. Without loss of generality, we prove α ∈ S A,X(R). We exhaustively consider
all the epicenters with respect to Alice’s input X. First, if Xi = 0 (implying Yi must be
0 or 1), then v3, v2, and v5 are the only epicenters on the ith chain. The spoil distance
from all these epicenters to α is infinite, since v1 fails stably at the beginning of round
3 and thus blocks the only possible spoil path.

Next if Xi = q− 1, then Yi must be q− 1 or q− 2. If q− 1 is even, then v2 (potentially
occurring at round q + 1) and v5 (potentially occurring at round q + 2) are the only
epicenters on the ith chain. Again, v1 fails stably at the beginning of round q + 2
and thus blocks the only possible spoil path from those two epicenters to α. If q − 1
is odd, then v2 (potentially occurring at round q + 2) and v5 (potentially occurring
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at round q + 1) are the only epicenters on the ith chain. Since v1 fails stably at the
beginning of round q + 2, the only possible spoil path from v5 to α is blocked. The
epicenter of v2 has an occurrence time of q + 2 > R. Thus it can never cause α to be
spoiled in round R.

Finally if Xi is even and 0 < Xi < q − 1, then Yi must be odd and thus v1 is the only
epicenter on the ith chain, with an occurrence time of round Xi + 2. (Recall that the
occurrence time is the earliest possible failure time.) But since Xi is even, v1 fails
stably at the beginning of round Xi + 3. This failure blocks the only possible spoil
path from v2 to α. The case where Xi is odd and 0 < Xi < q − 1 is similar. �

Lemma 4.4.2. Consider any b ≥ 1, N ≥ 14, and 8 ≤ f ≤ N. Let n = b
f−2
6 c and

q = 5b. We have

R
syn,ft
0 (SumN , f , b) ≥

1
2
R

syn
0 (UnionSizeCPn,q, 5b)

R
syn,ft
ε, 1

5
(SumN , f , b) ≥

1
2
R

syn
ε, 1

5
(UnionSizeCPn,q, 5b)

Proof. We construct G as in Section 4.2. It is easy to verify that in our construction,
the failure adversary has introduced at most 6n + 2 ≤ f edge failures. And it is also
easy to see the diameter of the topology is always 5 in all rounds.

Next we reduce the UnionSizeCPn,q problem (in the synchronous rounds setting) to
Sum. Consider any (black-box) oracle protocol for Sum. Given input X to Alice
in UnionSizeCPn, Alice will simulate the execution of the oracle protocol on all
nodes in S A,X(r) at round r for 0 ≤ r ≤ R. Similarly, given input Y to Bob, Bob
simulates all nodes in S B,Y(r). Furthermore, whenever α sends a message, Alice
will forward that message to Bob. The same applies to Bob and β. Note that it
is possible for Alice and Bob to send each other a message simultaneously in one
round. By Lemma 4.3.1 and Lemma 4.4.1, such simulation is possible. When the
oracle protocol terminates, which must be no later than round 5b ≤ R since the time
complexity of the oracle protocol is no larger than b flooding rounds, α and thus
Alice will know the final result of the sum. By our construction, the zero-error result
of the sum on G exactly equals UnionSizeCP(X,Y), and thus any (ε, δ)-approximate
result of the sum is also an (ε, δ)-approximate result of UnionSizeCP(X,Y). The total
amount of communication between Alice and Bob is exactly the total number of bits
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sent by α and β combined in the above simulation. Thus either α or β must have sent
at least half of the total number of bits sent by Alice and Bob. Thus we have:

R
syn,ft
0 (SumN , f , b) ≥ Rsyn,ft

0 (Sum,G, f , b) ≥
1
2
R

syn
0 (UnionSizeCPn,q, 5b)

R
syn,ft
ε, 1

3
(SumN , f , b) ≥ Rsyn,ft

ε, 1
3

(Sum,G, f , b) ≥
1
2
R

syn
ε, 1

3
(UnionSizeCPn,q, 5b)

�

The following proof for Theorem 4.0.2 follows naturally from the Lemma 4.4.2:

Theorem 4.0.2 (Restated). For any b ≥ 1 and 1 ≤ f ≤ N, we have:

R
syn,ft
0 (SumN , f , b) = Ω

(
f

b log b
+

log N
log b

)
R

syn,ft
ε, 1

5
(SumN , f , b) = Ω

 1
εb2 log N

+
log 1

ε

log b

 , for ε = Ω

 1√
f


Proof. First, consider a trivial topology where the root has only a single neighbor A

and all other nodes directly connect to A. Note that the domain size of Sum’s output
is Θ(N). In this topology, even if A already knows the Sum result, sending this result
to the root within b flooding rounds still requires Ω( log N

log b ) bits (by Lemma 2.6.2).
Similarly, if the root requires an (ε, 1

5 )-approximate result within b flooding rounds,

node A has to send Ω( log 1
ε

log b ) bits. Hence there exists c1 > 0 and c4 > 0, such that

R
syn,ft
0 (SumN , f , b) ≥

c1 log N
log(5b)

R
syn,ft
ε, 1

5
(SumN , f , b) ≥

c4 log 1
ε

log(5b)

For f ∈ [1, 7] which implies ε = Ω(1), we trivially have:

R
syn,ft
0 (SumN , f , b) = Ω

(
log N
log b

)
= Ω

(
f

b log b
+

log N
log b

)
R

syn,ft
ε, 1

5
(SumN , f , b) = Ω

 log 1
ε

log b

 = Ω

 1
εb2 log N

+
log 1

ε

log b


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Next we only need to consider f ∈ [8,N]. For sufficient large N, invoke Lemma 4.4.2
and Theorem 4.4.1 we have there exists positive constant c2, c3, c5 and c6 such that

R
syn,ft
0 (SumN , f , b) ≥
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syn
0 (UnionSizeCP
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Combining with our earlier lower bound of c1 log N

log(5b) , we have
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Similarly, we have
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�
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Chapter 5

Communication Complexity of
UnionSizeCP

This chapter proves following Theorem 4.4.1, lower bounds on the communication
complexity of UnionSizeCP:

Theorem 4.4.1 (Restated). For any t ≥ 2,

R
syn
0 (UnionSizeCPn,q, t) = Ω

(
n

q log t

)
− O

(
log n
log t

)
R

syn
ε, 1

5
(UnionSizeCPn,q, t) = Ω

(
1

εq2 log t

)
− O

 log 1
ε

log t

 , for ε = Ω

(
1
√

n

)

It should be noted that for the (ε, δ)-approximate case, i) the above theorem consid-
ers a constant δ of 1/5. Techniques in this chapter can actually prove the same lower
bound for any constant δ ∈ (0, 1/4). We cannot have larger constant since the above
lower bound relies on Lemma 5.3.4 which is proved in [4]; ii) the requirement of
ε = Ω(1/

√
n) comes from Theorem 5.3.2, which is obtained by a reduction from

DisjointnessCP to UnionSizeCP. Unfortunately, DisjointnessCP is a binary function
and we only have (0, δ)-approximate results on its communication complexity. To
draw a connection between (0, δ)-approximate and (ε, δ)-approximate communica-
tion complexity, we have the above requirement on ε. We are not aware of any better
techniques. It should be noted that since the range of UnionSizeCP is integer be-
tween 0 and n, we only need to consider ε ≥ 1/n. With this observation, we can
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trivially have a slightly weaker lower bound for ε ∈ [1/n, 1/
√

n] as following

R
syn
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(UnionSizeCPn,q, t) ≥ R

syn
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n
, 1

5
(UnionSizeCPn,q, t)

= Ω
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εq2 log t

)
− O

 log 1
ε

log t



Since UnionSizeCP has never been studied, there are no existing results on its com-
munication complexity. Proving these results is thus also a contribution of our work,
which may be of independent interest. This lower bound, has been used in the proof
for Theorem 4.0.2 in Chapter 4. We prove it by directly combining Theorem 5.2.1
in Section 5.2, Theorem 5.3.1 in Section 5.3, and Lemma 2.6.2.

5.1 Alternative Form of the Cycle Promise

For the sake of convenience, we define the following alternative form of the cycle
promise. As can be shown later, UnionSizeCP under two forms of the cycle promise
are equivalent. In all other parts of this chapter (Section 5.2 and 5.3), we always
consider problems under this alternative form of the cycle promise.

Definition 5.1.1 (Alternative Form of the Cycle Promise). Consider any two length-n

strings X and Y where the characters in the strings are integers in [0, q−1]. X and Y

satisfy the alternative form of the cycle promise iff for all i’s where 1 ≤ i ≤ n, either

Yi = Xi or Yi = (Xi + 1) mod q.

Given X′ and Y ′ satisfying the original cycle promise, Alice and Bob can always
locally generate X and Y , such that X and Y satisfy the alternative form of the cycle
promise and UnionSizeCP(X,Y) = UnionSizeCP(X′,Y ′). Specially to do so, Alice
sets Xi = X′i/2 for even X′i and Xi = q − (X′i + 1)/2 for odd X′i . Bob sets Yi =

(q − Y ′i /2) mod q for even Y ′i and Yi = (Y ′i + 1)/2 for odd Y ′i . Clearly, we have
Xi = 0 iff X′i = 0, and Yi = 0 iff Y ′i = 0, which implies that UnionSizeCP(X,Y) =
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Figure 5.1: The alternative form of the cycle promise for q = 4, used only in
Chapter 5 .

UnionSizeCP(X′,Y ′). It is easy to verify that X and Y satisfy the alternative form
of the cycle promise. Finally, since the above mapping from X′ (Y ′) to X (Y) is a
bijection, one can also construct a reverse mapping from X (Y) to X′ (Y ′). Given
such mappings in both directions, we trivially know that the communication com-
plexity of UnionSizeCP with the original cycle promise is exactly the same as the
communication complexity of UnionSizeCP with the alternative form of the cycle
promise.

5.2 Zero Error Randomized Communication Com-
plexity

This section will prove the following lower bound on the zero-error randomized
communication complexity of UnionSizeCP:

Theorem 5.2.1. R0(UnionSizeCPn,q) = Ω(n
q ) − O(log n).

This lower bound on UnionSizeCP is almost tight, given our upper bound O(n
q log n+

log q) upper bound later in Section 5.2.3. To obtain this lower bound, we introduce a
new two-party problem called EqualityCPn,q, which is the same as UnionSizeCPn,q

except that in EqualityCPn,q, Alice and Bob aim to determine whether X equals
Y . We are interested in EqualityCPn,q because its rectangular properties are eas-
ier to study. Following Section 5.2.1 constructs a reduction from EqualityCP to
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UnionSizeCP. After that, Section 5.2.2 obtains a lower bound on the communica-
tion complexity of EqualityCP. Combining results in these two sections leads to the
proof.

Proof (for Theorem 5.2.1). The theorem trivially holds for n ≤ q. For n > q, com-
bining Theorem 5.2.2 and 5.2.5 in following Section 5.2.1 and 5.2.2 directly yields
the result. �

5.2.1 Reduction from EqualityCP

The following theorem establishes a reduction from EqualityCP to UnionSizeCP,
based on the following observation: Knowing the result of UnionSizeCP, Alice and
Bob can infer whether there exists j such that X j = q − 1 and Y j = 0. If there exists
such j, then X , Y and we are done. Otherwise for 1 ≤ i ≤ n, we must have Yi = Xi

or Yi = Xi + 1 (note that there is no longer “mod q”). This implies that X = Y iff∑n
i=1 Xi =

∑n
i=1 Yi, making it easy to determine whether X equals Y .

Theorem 5.2.2. R0(EqualityCPn,q) ≤ R0(UnionSizeCPn,q) + O(log q) + O(log n).

Proof. We construct a reduction from EqualityCP to UnionSizeCP. To solve Equal-
ityCP, Alice and Bob first invoke the oracle UnionSizeCP protocol on their inputs
X and Y . Bob next sends Alice

∑n
i=1 Yi, using log n + log q bits, and the occurrence

count (denoted as z) of the character 0 in Y , using log n bits. Alice finally outputs
that X equals Y iff

∑n
i=1 Xi =

∑n
i=1 Yi and UnionSizeCP(X,Y) equals n − z.

To show the correctness of the above protocol, note that if X = Y , then the two condi-
tions trivially hold. We next prove the reverse direction. Since UnionSizeCP(X,Y) =

n − z, for all i where Yi = 0, we have Xi = 0. In turn, there does not exist i such that
Xi = q−1 and Yi = 0. With this additional property, together with the cycle promise,
we know that for 1 ≤ i ≤ n, either Yi = Xi or Yi = Xi + 1 (note that there is no longer
“mod q”). Hence X must equal to Y since otherwise

∑n
i=1 Yi would be larger than∑n

i=1 Xi. �
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5.2.2 Communication Complexity of EqualityCP

This section proves Theorem 5.2.5, a lower bound on the communication complexity
of EqualityCP. We first review some related concepts and results in communication
complexity [50].

Definition 5.2.1 (Rectangle). A combinatorial rectangle (in short, a rectangle) in

X × Y is a subset R ⊂ X × Y such that R = A × B for some A ⊂ X and B ⊂ Y.

Definition 5.2.2 (Monochromatic). With respect to a (partial) function f which is

defined on a domain D, a rectangle R is monochromatic if f is fixed on R
⋂

D.

Definition 5.2.3 (Cover number). For any (partial) function f , C1( f ) is defined as the

number of monochromatic rectangles needed to cover (possibly with intersections)

the 1-inputs of f .

Definition 5.2.4 (Nondeterministic communication complexity). For any (partial)

function f , its nondeterministic communication complexity N1( f ) is the size of the

smallest string that can be used to convince both Alice and Bob that f (x, y) = 1.

Formally N1( f ) is the smallest integer k such that there exists function A and B, for

all (x, y) in the domain of f ,

f (x, y) = 1⇒ ∃z ∈ {0, 1}k : A(x, z) = 1 ∧ B(y, z) = 1

f (x, y) = 0⇒ ∀z ∈ {0, 1}k : A(x, z) = 0 ∨ B(y, z) = 0

For any partial function, its cover number is related to the communication complex-
ity, as stated in following theorem.

Theorem 5.2.3. (Adapted from [50].) For any (partial) function f , Rpri
0 ( f ) ≥

log C1( f ).

Proof sketch. Rpri
0 ( f ) ≥ N1( f ) holds since a nondeterministic protocol can ”guess”

random choices for which the computation ends within at most the average cost.
N1( f ) ≥ log C1( f ) holds since we can divide all (x, y) pairs where f (x, y) = 1 into
groups based on their corresponding z. Each group is covered by a monochromatic
rectangle and the number of groups is bounded by 2N1( f ). Hence we have 2N1( f ) ≥

C1( f ). 1 �

1In fact, a stronger result that 2N1( f ) = C1( f ) can be proved.
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Next we apply an existing strong result on the Sperner capacity of directed graph-
s [15] to obtain a lower bound on the communication complexity of EqualityCP.
That result was originally stated in the context of a directed coding graph, and the
following instantiates it in our specific context:

Theorem 5.2.4. (Adapted from Theorem 3.2 in [15].) Let S be a subset of

{0, 1, 2, ..., q − 1}n with the following property: For all V,W ∈ S where V , W,

there i) exists i such that Vi , Wi and Vi , (Wi + 1) mod q, and ii) exists j such that

W j , V j and W j , (V j + 1) mod q. Then |S | ≤ (rank(M))n for any q × q matrix M,

whereMi,i = 1 for all i,Mi, j = 0 for all ( j − i) mod q ∈ {2, 3, ..., q − 1}, and all other

entries inM (i.e.,M1,2,M2,3, ...,Mq−1,q, andMq,1) can be arbitrary real numbers.

Theorem 5.2.5. R0(EqualityCPn,q) = Ω( n
q − log n − log log q).

Proof. Our definition of R0 allows public coins and only requires Alice to know
the result. We define Rpri

0 to be the same as R0 except that only private coins are
allowed and both Alice and Bob are required to know the result. Using arguments
based on rectangles [50], Lemma 5.2.1 next proves that Rpri

0 (EqualityCPn,q) ≥ n
q−1 .

The theorem follows since i) only one bit is needed for Alice to inform Bob the
result, and ii) a public coin protocol using k bits here can always be simulated via
private coins while using O(k+log log(qn ·qn)) = O(k+log n+log log q) bits [55]. �

Lemma 5.2.1. Rpri
0 (EqualityCPn,q) ≥ n

q−1 .

Proof. According to Theorem 5.2.3, we only need to reason about the smallest num-
ber of monochromatic rectangles needed to cover all the 1-entries in the matrix cor-
responding to EqualityCP. The matrix Z corresponding to EqualityCPn,q is a qn×qn

matrix. All 1-entries in Z are on the main diagonal. The remainder of Z consists of
0-entries and undefined entries that correspond to input pairs not satisfying the cycle
promise. In any given covering of all the 1-entries using monochromatic rectangles,
consider any two 1-entries ZV,V (i.e., the entry for X = V and Y = V) and ZW,W in
any rectangle used in the covering. For the rectangle to be monochromatic, ZW,V and
ZV,W must not be 0-entries and hence must be undefined entries. This means that
there i) exists i such that Vi , Wi and Vi , (Wi + 1) mod q, and ii) exists j such that
W j , V j and W j , (V j + 1) mod q.
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Applying Theorem 5.2.4 tells us that the number of 1-entries in such a monochro-
matic rectangle is upper bounded by (rank(M))n for any q × q matrix M satisfying
the properties specified in Theorem 5.2.4. We want to find such an M with a s-
mall rank, by properly choosing the values of M1,2, M2,3, ..., Mq−1,q, and Mq,1. We
set all of them to be −1. We claim that the rank of such an M is exactly q − 1.
To see why, note that adding up all the q rows gives us an all-zero row, and hence
rank(M) ≤ q − 1. On the other hand, the first q − 1 rows are linearly independent
since M1,q = M2,q = ... = Mq−2,q = 0 while Mq−1,q , 0. Hence rank(M) = q − 1,
implying that the number of 1-entries in a monochromatic rectangle of Z is upper
bounded by (q − 1)n. Finally, because the total number of 1-entries in Z is qn, we
have Rpri

0 (EqualityCPn,q) ≥ log(qn/(q − 1)n) = n log(1 + 1
q−1 ) ≥ n

q−1 . �

5.2.3 O(n
q log n + log q) Upper Bound Protocol for UnionSizeCP

In this (deterministic) protocol, given input X to Alice, let j (0 ≤ j ≤ q−1) be the in-
teger with the smallest occurrence count in X. (If there are multiple such j’s, simply
pick an arbitrary one.) Alice first sends Bob the value of j and the set Z = {i | Xi = j}.
This takes at most O(log q + n

q log n) bits. Now we only need to worry about indices
not in the set. For those indices, the promise graph (Figure 5.1) degrades to a chain,
since two edges are removed from the cycle. The problem becomes easy to solve
under the degraded chain promise.

Specifically, Bob will now know both Xi and Yi for all i ∈ Z. If j = 0 or j = q − 1,
then Bob can already determine {i | Xi = Yi = 0}, and can locally compute the final
result. If j , 0 and j , q−1, then for any index i′ < Z, Bob knows that Xi′ , j. Thus
if Yi′ = j + 1, then Xi′ must be j + 1 as well. This observation enables the following
trick. Alice locally calculates hA = |{i′ | i′ < Z and j+1 ≤ Xi′ ≤ q−1}| and sends hA to
Bob, using log n bits. Bob calculates hB = |{i′ | i′ < Z and ( j + 1 ≤ Yi′ ≤ q− 1 or Yi′ =

0)}|. Given that Xi′ , j for i′ < Z, one can easily verify from the cycle promise that
hB − hA is exactly the total number of indices i where Xi = Yi = 0. The result for
UnionSizeCP(X,Y) is thus n − (hB − hA). The amount of communication incurred in
the above protocol is at most O( n

q log n + log q + log n) = O( n
q log n + log q) bits.
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5.3 (ε, δ)-Approximate Communication Complexity

This section will prove following lower bound on the (ε, δ)-approximate communi-
cation complexity of UnionSizeCP:

Theorem 5.3.1. Rε, 1
5
(UnionSizeCPn,q) = Ω( 1

εq2 ) − O(log 1
ε
) for ε = Ω( 1

√
n ).

To obtain this lower bound, we will reduce from a new DisjointnessCPn,q prob-
lem, which is the natural extension of the standard Disjointness problem in binary
strings [50]. We are interested in DisjointnessCP since its lower bound can be ob-
tained via information cost arguments [4]. For discussion in this section, it will be
convenient to consider an alternative form of the cycle promise (Figure 5.1). We will
describe this promise and show that it is equivalent to the original one in Section 5.1.
The reduction from Disjointness to UnionSizeCP are constructed in Section 5.3.1.
Section 5.3.2 will lower bound Disjointness’s communication complexity. Finally,
we prove Theorem 5.3.1 in Section 5.3.3.

5.3.1 Reduction from DisjointnessCP

We define DisjointnessCP more formally as following:

Definition 5.3.1 (DisjointnessCP). In the DisjointnessCPn,q problem, Alice and Bob

respectively hold X and Y, which are two strings of length n satisfying (X,Y) ∈ Ln
q

where

Ln
q = {(X,Y) | X ∈ Zn

q and Y ∈ Zn
q and (Y − X) ∈ {0, 1}n}.

The goal is to compute the function DisjointnessCPn,q : Ln
q → {0, 1} defined as

DisjointnessCPn,q(X,Y) =

0 ∃i ∈ {1, 2, ..., n} such that Xi = Yi = 0

1 otherwise

This section proves following theorem via a reduction from DisjointnessCP to U-
nionSizeCP:

Theorem 5.3.2. Rε, 1
5
(UnionSizeCPn,q) ≥ R0, 1

5
(DisjointnessCP 1

2ε ,q
) − 1 for ε ≥ 1

√
2n

.
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Proof. Consider any given protocol for UnionSizeCPn,q. Given a length- 1
2ε input X

for DisjointnessCP 1
2ε ,q

, Alice locally generates a length-n input X′ by first replicating
each character in X for 1

ε
times, and then appending 0 until the length of X′ reaches

n. This is always possible since 1
2ε2 ≤ n. Bob generates Y ′ in a similar way. We now

have:

• If DisjointnessCP 1
2ε ,q

(X,Y) = 1, then UnionSizeCPn,q(X′,Y ′) = 1
2ε2 .

• If DisjointnessCP 1
2ε ,q

(X,Y) = 0, then UnionSizeCPn,q(X′,Y ′) ≤ 1
2ε2 −

1
ε
.

One can easily verify that for all ε > 0, we have (1+ε)( 1
2ε2 −

1
ε
) < (1−ε) 1

2ε2 . Alice can
now pick any value between (1+ε)( 1

2ε2 −
1
ε
) and (1−ε) 1

2ε2 as the threshold. Alice out-
puts 1 for DisjointnessCP 1

2ε ,q
(X,Y) iff UnionSizeCPn,q(X′,Y ′) returns a value above

that threshold. Finally, Alice sends Bob a single bit to inform Bob of the result. We
thus have:

Rε, 1
5
(UnionSizeCPn,q) ≥ R0, 1

5
(DisjointnessCP 1

2ε ,q
) − 1

�

5.3.2 Communication Complexity of DisjointnessCP

This subsection lower bounds the communication complexity of DisjointnessCP as
following theorem:

Theorem 5.3.3.

R0(DisjointnessCPn,q) = Ω(
n
q2 ) − O(log n)

R0, 1
5
(DisjointnessCPn,q) = Ω(

n
q2 ) − O(log n)

Our proof for Theorem 5.3.3 will be almost entirely based on the information theo-
retic approach from [4]. In this approach, the information complexity of a function
is used to lower bound the communication complexity of that function. Under cer-
tain conditions, it is further shown that the conditional information complexity of a
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function is a lower bound on the function’s information complexity. Next, under cer-
tain conditions, the approach establishes a direct-sum result between the conditional
information complexity of a function (e.g., DisjointnessCPn,q) and the conditional in-
formation complexity of its constituent primitive function (e.g., DisjointnessCP1,q).
Finally, the approach also provides some tools for reasoning about the conditional in-
formation complexity of such constituent primitive functions. The final lower bound
on communication complexity obtained via this approach is for private-coin random-
ized protocols only. Since we will need a lower bound for public-coin protocols, at
the end of this section, we will apply the well-known result from Newman [55] to
convert this lower bound to a public-coin setting. Recall from Chapter 2 that the
notation R0,δ simply means Rε,δ with ε = 0. We define Rpri

0,δ (DisjointnessCPn,q) to be

the same as R0,δ(DisjointnessCPn,q), except that Rpri
0,δ is for private-coin protocols.

In the next, we first summarize the definitions and lemmas that we will use in this
information theoretic approach. All these definitions (Definition 5.3.2 to 5.3.6) and
lemmas (Lemma 5.3.1 to 5.3.4) are directly adapted from [4], and are not our con-
tribution. See [4] for a more detailed discussion.

Definition 5.3.2 (Decomposable functions). (Adapted from [4]) If there are func-

tions h : L1
q → {0, 1} and g : {0, 1}n → {0, 1} such that DisjointnessCPn,q(X,Y) =

g(h(X1,Y1), h(X2,Y2), ..., h(Xn,Yn)), then we say that DisjointnessCPn,q is g-
decomposable with primitive h. When the context is clear, we simply say that

DisjointnessCPn,q is decomposable with primitive h.

We construct g as g(x1, x2, ..., xn) = Πn
i=1xi. Then according to above definition,

DisjointnessCPn,q is a decomposable function with primitive h = DisjointnessCP1,q.
For convenience, from now on in this section, h stands for the function
DisjointnessCP1,q. Namely h(x, y) = 0 if x = y = 0, otherwise h(x, y) = 1.

Definition 5.3.3 (Mixture of product distributions). (Adapted from [4]) For random

variables Xi, Yi, and Ti (1 ≤ i ≤ n), their joint distribution (Xi,Yi,Ti) is called a

mixture of product distribution if conditioned on Ti, Xi and Yi are independent.

Let T = {0, 1} × {1, 2, .., q − 1}, and let Ti (1 ≤ i ≤ n) be a random variable drawn
uniformly randomly from T . Let Xi and Yi (1 ≤ i ≤ n) be two random variables
depending on Ti where:
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• If Ti = (0, j), then Xi = j and Yi is drawn uniformly randomly from { j, j + 1}.

• If Ti = (1, j), then Yi = j and Xi is drawn uniformly randomly from { j, j − 1}.

All additions and subtractions in the above are on Zq. Note that under this con-
struction, it is impossible for Xi = Yi = 0, which is intentional. Define ζ as the
joint distribution of the above (Xi,Yi,Ti). Clearly, conditioned on Ti, Xi and Yi are
independent. Hence ζ is a mixture of product distribution for all i’s (1 ≤ i ≤ n).

Definition 5.3.4 (Collapsing distribution). (Adapted from [4]) A distribution on

Ln
q is called a collapsing distribution for DisjointnessCPn,q with respect to h, if

DisjointnessCPn,q is g-decomposable with primitive h, and if for all (X,Y)’s in the

support of that distribution, all j’s where 1 ≤ j ≤ n, and all (x, y) ∈ L1
q, the following

holds:

g(h(X1,Y1), ..., h(X j−1,Y j−1), h(x, y), h(X j+1,Y j+1), ..., h(Xn,Yn)) = h(x, y)

Define η = ζn, and let (X,Y,T ) ∼ η. Consider the marginal distribution ηXY of (X,Y)
in η. Since (Xi,Yi,Ti) ∼ ζ, Xi and Yi cannot simultaneously be 0, which means
h(Xi,Yi) = 1. Hence for all (X,Y)’s in the support of ηXY , we have h(Xi,Yi) = 1
for all i’s. This implies that g(..., h(x, y), ...) = h(x, y), and thus ηXY is a collapsing
distribution for DisjointnessCPn,q.

Definition 5.3.5 (Conditional information cost). (Adapted from [4]) Let P be any

two-party private-coin randomized protocol for DisjointnessCP1,q. Let (Xi,Yi,Ti) ∼
ζ, which is a mixture of product distributions onL1

q×T . Given Xi and Yi as the input

to P, the transmitted messages in P can be viewed as a random variable P(Xi,Yi).
The conditional information cost of P with respect to ζ (denoted as CICζ(P)) is the

mutual information between (Xi,Yi) and P(Xi,Yi) conditioned on Ti. Or formally:

CICζ(P) =
∑
t∈T

I({(Xi,Yi);P(Xi,Yi)}|Ti = t) Pr[Ti = t].

Here I stands for the standard notion of conditional mutual information [4].

Definition 5.3.6 (Conditional information complexity). (Adapted from [4]) Let P be

any two-party private-coin randomized protocol for DisjointnessCP1,q, such that for
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any input (x, y), P can generate the correct result with probability at least 1 − δ.
The δ-error conditional information complexity of DisjointnessCP1,q with respect
to ζ, denoted as CICζ,δ(DisjointnessCP1,q), is defined as the minimum conditional

information cost across all possible P’s satisfying the earlier property.

Lemma 5.3.1. (Adapted from [4]) Consider DisjointnessCPn,q, and the distribution

ζ, η, and ηXY as defined earlier. We already know DisjointnessCPn,q is a decompos-

able function with primitive DisjointnessCP1,q, ζ is a mixture of product distribution

on L1
q ×T , and ηXY is a collapsing distribution for DisjointnessCPn,q with respect to

DisjointnessCP1,q. We must have:

R
pri
0,δ (DisjointnessCPn,q) ≥ n × CICζ,δ(DisjointnessCP1,q).

Lemma 5.3.2. (Adapted from [4]) Let Z be a random variable uniformly randomly

distributed on {z1, z2}, and let Φ(z1) and Φ(z2) be two additional random variables.

If Φ(z1) and Φ(z2) are both independent of Z, then we have:

I(Z; Φ(Z)) ≥ H2(Φz1 ,Φz2).

Here Φzi is the distribution of Φ(zi), and H is the Hellinger distance [4] between two

distributions.

Lemma 5.3.3. (Adapted from [4]) For any two-party private-coin randomized proto-

col P, let random variable P(x, y) denote the transmitted message in P under input

x and y. Let Px,y denote the distribution of P(x, y). For all x, x′, y, and y′, we have:

2H2(Px,y,Px′,y′) ≥ H2(Px,y,Px′,y) + H2(Px,y′ ,Px′,y′).

Lemma 5.3.4. (Adapted from [4]) Let P be any private-coin randomized protocol

for DisjointnessCP1,q, such that for any input (x, y), P can generate the correct result

with probability at least 1 − δ. For any two input pairs (x, y) ∈ L1
q and (x′, y′) ∈ L1

q

where DisjointnessCP1,q(x, y) , DisjointnessCP1,q(x′, y′), we have:

H2(Px,y,Px′,y′) ≥ 1 − 2
√
δ.

Having introduced the definitions and lemmas needed for the information theoretic
arguments, we are now ready to prove Theorem 5.3.3.
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Theorem 5.3.4. Rpri
0,δ (DisjointnessCPn,q) = Ω( n

q2 ) for any positive constant δ ≤ 0.22.

Proof. Let P denote the optimal protocol with the minimum conditional infor-
mation cost, across all possible two-party private-coin randomized protocols for
DisjointnessCP1,q where for any input (x, y), the protocol can always generate the
correct result with probability at least 1 − δ.

By Lemma 5.3.1 and Definition 5.3.5 and 5.3.6, we have:

R
pri
0,δ (DisjointnessCPn,q)

≥ n × CICζ,δ(DisjointnessCP1,q)

= n × CICζ(P)

=
n

2(q − 1)

∑
t∈T

I({X1,Y1;P(X1,Y1)} | T1 = t)

=
n

2(q − 1)

q−1∑
j=1

(I({X1,Y1;P(X1,Y1)} | T1 = (0, j)) + I({X1,Y1;P(X1,Y1)} | T1 = (1, j)))

Conditioned on T1 = (0, j), (X1,Y1) is uniformly distributed on {( j, j), ( j, j + 1)}. Let
z1 = ( j, j), z2 = ( j, j + 1), and Z = (X1,Y1). Lemma 5.3.2 tells us:

I({X1,Y1;P(X1,Y1)} | T1 = (0, j)) ≥ H2(P j, j,P j, j+1)

Similarly, we have:

I({X1,Y1;P(X1,Y1)} | T1 = (1, j)) ≥ H2(P j, j,P j−1, j)
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Apply Cauchy inequality and triangle inequality, and we have:

R
pri
0,δ (DisjointnessCPn,q)

≥
n

2(q − 1)

q−1∑
j=1

(H2(P j, j,P j, j+1) + H2(P j, j,P j−1, j))

≥
n

4(q − 1)2

 q−1∑
j=1

(H(P j, j,P j, j+1) + H(P j, j,P j−1, j))


2

≥
n

4(q − 1)2

 q−1∑
j=1

H(P j, j+1,P j−1, j)


2

=
n

4(q − 1)2 (H(P1,2,P0,1) + H(P2,3,P1,2) + ... + H(Pq−1,0,Pq−2,q−1))2

≥
n

4(q − 1)2 H2(Pq−1,0,P0,1)

Next apply Lemma 5.3.3, and we have:

R
pri
0,δ (DisjointnessCPn,q) ≥

n
8(q − 1)2 H2(Pq−1,0,P0,0) +

n
8(q − 1)2 H2(Pq−1,1,P0,1)

≥
n

8(q − 1)2 H2(Pq−1,0,P0,0)

Finally, apply Lemma 5.3.4, and we have:

R
pri
0,δ (DisjointnessCPn,q) ≥

n
8(q − 1)2 (1 − 2

√
δ) = Ω

(
n
q2

)
�

We can now prove Theorem 5.3.3:

Theorem 5.3.3 (Restated).

R0(DisjointnessCPn,q) = Ω(
n
q2 ) − O(log n)

R0, 1
5
(DisjointnessCPn,q) = Ω(

n
q2 ) − O(log n)

56



CHAPTER 5. COMMUNICATION COMPLEXITY OF UNIONSIZECP

Proof. According to Newman [55],2 we have:

R
pri
0,0.22(DisjointnessCPn,q) ≤ R0,0.2(DisjointnessCPn,q) + O(log n + log log q)

Apply Theorem 5.3.4 and we have:

R0,0.2(DisjointnessCPn,q) = Ω

(
n
q2

)
− O

(
log n + log log q

)
This lower bound is only non-trivial when q <

√
n

log n . Thus we can discard the
log log q term for clarity:

R0,0.2(DisjointnessCPn,q) = Ω

(
n
q2

)
− O

(
log n

)
Finally, apply Lemma 2.6.1 and we have R0(DisjointnessCPn,q) = Ω

(
n
q2

)
−O

(
log n

)
as well. �

5.3.3 Proof for Theorem 5.3.1

Theorem 5.3.1 (Restated). Rε, 1
5
(UnionSizeCPn,q) = Ω( 1

εq2 )−O(log 1
ε
) for ε = Ω( 1

√
n ).

Proof. For ε ≥ 1
√

2n
, directly combining Theorem 5.3.2 and Theorem 5.3.3 yields the

proof. We still need to cover the case for ε = Ω( 1
√

n ) but ε < 1
√

2n
. For such ε (which

is necessarily Θ( 1
√

n )), we have:

Rε, 1
5
(UnionSizeCPn,q) ≥ R 1√

2n
, 1

5
(UnionSizeCPn,q)

= Ω(
√

n
q2 ) − O(log n)

= Ω(
1
εq2 ) − O(log

1
ε

)

�

2Newman’s original result was only stated for functions, while here we are dealing with the partial
functions of DisjointnessCP. Nevertheless, Newman’s original proof actually holds without modifi-
cation to partial functions.
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Chapter 6

The Fundamental Roles of Cycle
Promise and UnionSizeCP

Our reduction from UnionSizeCP so far has led to the exponential gap result for
Sum, when b ≤ N1−c or 1

ε0.5−c for any positive constant c < 0.25. This restriction
on b comes from the 1

q2 term in the lower bound of the communication complexity
of UnionSizeCP. Our upper bound on UnionSizeCP indicates that such a polynomi-
al dependency on 1

q is unavoidable because of the cycle promise. It is thus natural
to ask: Can we reduce from problems without promises? Or can we reduce from
problems with a different promise, to weaken the polynomial dependency on 1

q to
log 1

q? For any possible oblivious reduction (defined next) from any two-party com-
munication complexity problem Π to Sum, this section answers these questions in
the negative. Specifically, we will prove the completeness of UnionSizeCP in the
sense that such a Π can always be reduced to UnionSizeCP and must have a commu-
nication complexity no larger than that of UnionSizeCPN,b

√
b/3c. Thus any FT lower

bound on Sum, obtained in such a way via Π, must contain some polynomial term of
1
b . Overcoming this polynomial term in the lower bound might still be possible, but
one would have to resort to methods other than oblivious reductions from two-party
problems. Our proof also (implicitly) shows that the cycle promise can be derived
and that the promise likely plays a fundamental role in reasoning about many func-
tions beyond Sum.

In the following, Section 6.1 defines the notion of oblivious reductions. Section 6.2

58



CHAPTER 6. THE FUNDAMENTAL ROLES OF CYCLE PROMISE AND
UnionSizeCP

presents the completeness theorem and its proof overview. Finally, Section 6.3
proves the theorem.

6.1 Oblivious Reductions

Consider any two-party communication complexity problem Π, where (only) Alice
aims to learn Π(X,Y). In a (general) reduction from Π to Sum, Alice and Bob are
given some black-box oracle fault-tolerant protocol for Sum, and they are supposed
to use this oracle to solve Π with any given input pair (X,Y). Since the (global)
oracle protocol is distributed, it will be convenient to imagine that each node in the
topology has its own oracle protocol, and invoking these protocols in a “consistent”
fashion will enable the root to produce a meaningful result.

In an oblivious reduction to Sum, there is some fixed topology G and for each (X,Y)
pair, there exists some reference setting specifying the value and failure time of
each node in G. The reference settings are oblivious to the oracle. As explained
in Chapter 4, a reference setting here should not fail or disconnect nodes with a
value of 1. The zero-error Sum result in the reference setting should be the same as
Π(X,Y), so we can directly use it for solving Π. The reduction protocol is required to
be oblivious as well. Specifically, Alice and Bob first pick a (public) random string.
Next before invoking the oracle and purely based on X (Y), Alice (Bob) decides for
each node in G, exactly up to which round she (he) will invoke the oracle. Note that
to invoke the oracle for a certain round, Alice/Bob needs to invoke the oracle for all
previous rounds as well. Alice (Bob) also decides the (initial) value of each node
for which she (he) will invoke the oracle for at least one round. Requiring Alice and
Bob to make these decisions beforehand is the most important aspect of oblivious
reductions. We define the reference execution for (X,Y) to be the (global) oracle’s
execution under the reference setting for (X,Y) and under the chosen random string.
To enable the root to generate a meaningful result, we require that the initial value,
incoming messages, and coin flips fed by Alice/Bob into the oracle protocol on a
node be the same as those fed into that node’s oracle in the reference execution for
(X,Y). Furthermore, after a node has failed in the reference execution, Alice/Bob
must not invoke that node’s oracle any more (since that node can no longer help
out). Finally, there are two special nodes α and β in G, such that Alice and Bob will
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always invoke the oracle on α and β (respectively) until the root generates a result.
Here α must be the root of G,1 while β can be any other node. During the reduction,
Alice (Bob) may only send to the other party all those outgoing messages generated
by the oracle invocation on node α (β). This allows the establishment of a simple
factor-2 relation between the communication complexity of Π and Sum.

Our previous reduction from UnionSizeCP to Sum are oblivious reductions. Besides
those two specific instances, the broad class of oblivious reductions further captures
reductions from any two-party problem Π with any promise, using any topology G

with any proper reference settings.

6.2 The Completeness of UnionSizeCP

We now present a strong result on the completeness of UnionSizeCP, in oblivious
reductions:

Theorem 6.2.1. Consider any two-party communication complexity problem Π that

can be obliviously reduced to Sum for some topology G with N nodes, with the Sum
oracle protocol having a time complexity of up to b flooding rounds where b ≥ 12.

For all t ≥ 1, we have:

R
syn
0 (Π, t) ≤ R

syn
0 (UnionSizeCPN,b

√
b/3c, t)

R
syn
ε,δ (Π, t) ≤ R

syn
ε,δ (UnionSizeCPN,b

√
b/3c, t)

The following gives an overview of the proof of this theorem, and also defines some
useful concepts. Let X be Alice’s input domain in Π, and Y be Bob’s. Let L ⊆ X ×
Y be the set of all valid input pairs, given the promise in Π. If Π has no promise,
then L = X × Y. Given (X,Y) ∈ L, an oblivious reduction has a reference setting
specifying the value of each node in G. For any node τ where τ , α and τ , β,
we define τ’s (value) assignment graph to be the bipartite graph where X ∪ Y are
vertices and an edge (X,Y) exists iff (X,Y) ∈ L. In addition, each edge (X,Y) has a
binary label which is the value of τ in the reference setting for (X,Y).

1This is largely for clarity, and can be relaxed if desired.
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Figure 6.1: Example assignment graph for a given node τ and for b′ = 4. X(0),
Y(0), . . . , X(3), and Y(3) are the 8 subsets, which may have different sizes and
different numbers of incidental edges. All edges without labels indicated have a
label of 1.

We will prove that it is always possible to partition the vertices in τ’s assignment
graph into 2b′ (where b′ = b

√
b/3c ≥ 2) disjoint subsets with strong properties as

illustrated in Figure 6.1. Intuitively, this is because otherwise the reference setting
for some input pair would need to have so many failures in G such that τ (with a
value of 1) would be disconnected from the root. Those failures are needed to ensure
that Alice (Bob) can invoke the oracle on α (β) throughout the execution.

At this point, we already have something close to the cycle promise — if we view
each subset as a super vertex, then all the 2b′ super vertices form a subgraph of a
length-2b′ cycle. It is now possible to reduce Π to UnionSizeCPN,b′ , by mapping an
input X for Π to an input X′ for UnionSizeCP as following: Each τ in G corresponds
to a unique i (1 ≤ i ≤ N − 2), and X′i is set to be the index of the subset in τ’s
assignment graph to which X belongs. Finally, X′N−1 is set to be the (initial) value of
α in the given oblivious reduction, which can be obtained purely based on X. X′N is
set to be 0. The conversion from Y to Y ′ is similar, with Y ′N−1 = 0 and Y ′N being the
value of β.

6.3 Proof for Theorem 6.2.1

We first formalize the notion of a node τ being disconnected from the root in a
simulation. Consider any input pair (X,Y) ∈ L and the corresponding reference
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setting in the oblivious reduction from Π to Sum. Define Φ(X,Y) to be the execution
of the Sum oracle protocol under that reference setting and under the (public) random
string chosen by Alice and Bob in the oblivious reduction. For a given node τ in G

where τ , α and τ , β, we say that τ is disconnected form the root in an execution
Φ(X,Y), if either τ fails during Φ(X,Y), or the root and τ are no longer in the same
connected component at the end of Φ(X,Y). We have the following trivial lemma:

Lemma 6.3.1. For any (X,Y) ∈ L, if τ has a value of 1 under the reference setting

for (X,Y), then in Φ(X,Y), τ is never disconnected from the root.

Proof. Trivially follows from the requirement on the reference settings in oblivious
reductions. �

Next consider the assignment graph of any node τ where τ , α and τ , β. Let
b′ = b

√
b/3c, which implies b′ ≥ 2 since b ≥ 12. We partition the vertices of τ’s

assignment graph into 2b′ disjoint subsets ofX(0),Y(0), . . . , X(b′−1), andY(b′−1)
in the following way. For all integer i ∈ [0, b′ − 3], we recursively define:

X(0) = {X | τ(X,Y) = 0 for some (X,Y) ∈ L}

Y(0) = {Y | τ(X,Y) = 0 for some (X,Y) ∈ L}

X(i + 1) = (X \ ∪i
j=0X( j)) ∩ {X | τ(X,Y) = 1 for some (X,Y) ∈ L where Y ∈ Y(i)}

Y(i + 1) = (Y \ ∪i
j=0Y( j)) ∩ {Y | τ(X,Y) = 1 for some (X,Y) ∈ L where X ∈ X(i)}

X(b′ − 1) = X \ ∪b′−2
j=0 X( j)

Y(b′ − 1) = Y \ ∪b′−2
j=0 Y( j)

Figure 6.1 illustrated these sets for a given τ for b′ = 4. Intuitively, any vertex with
some 0-labeled incidental edge belongs to X(0) orY(0). Thus an edge (X,Y) always
has a label of 1 if X < X(0) or Y < Y(0). We say that there are edges between two
sets X(i) andY( j) iff there exists some edge (X,Y) in the assignment graph for some
X ∈ X(i) and some Y ∈ Y( j).

Section 6.4 will prove the following key lemma regarding τ’s assignment graph. The
proof uses only elementary techniques but is still rather involved, due to the need to
capture all possible topologies. Hence we leave the proof to a seperate section.
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Lemma 6.3.2. In any oblivious reduction from Π to Sum, consider any node τ in G

where τ , α and τ , β. In τ’s assignment graph, there must be no edges labeled 1

between X(0) and Y(0), and no edges between X(i) and Y(i) for all 1 ≤ i ≤ b′ − 2.

Note that it is still possible for edges to exist between X(b′ − 1) and Y(b′ − 1).
Intuitively, this lemma holds because if there existed an edge (X,Y) satisfying the
property described in the lemma, then the reference setting for (X,Y) would need
to have so many failures in G such that τ would be disconnected from the root.
Those failures are needed to ensure that Alice (Bob) can invoke the oracle on α (β)
throughout the execution (i.e., to ensure that α and β remain unspoiled). On the
other hand, τ must have a value of 1 in the reference setting for such (X,Y). This
contradicts with Lemma 6.3.1.

Next we can use Lemma 6.3.2 to prove Theorem 6.2.1:

for Theorem 6.2.1. By the condition in the theorem, there exists some oblivious
reduction P from Π to Sum for some topology G. Let the N − 2 nodes other than
α and β in G be τ1, τ2, . . . , τN−2. Consider any input pair (X,Y) ∈ L. Let τi(X,Y),
α(X,Y), and β(X,Y) be the values of τi, α, and β in P’s reference setting for (X,Y),
respectively. Since the zero-error Sum result under the reference setting must be the
same as Π(X,Y) and since the reference setting never fails or disconnects nodes with
a value of 1, we have:

Π(X,Y) = α(X,Y) + β(X,Y) +

N−2∑
i=1

τi(X,Y)

We intend to reduce Π to UnionSizeCPN,b′ . To do so, Alice converts her input X for
Π to a corresponding input X′ of length N for UnionSizeCP in the following way,
using only local knowledge. Let X′i be the ith character in the string X′. Alice sets
the last character X′N to be 0. Alice next leverages P to obtain the value of α(X,Y),
without communicating with Bob. To do so, Alice invokes P using X and then stops
once P needs to invoke the Sum oracle protocol (which Alice does not have). Doing
so clearly does not incur any communication. By definition of oblivious reductions,
P at this point must have decided, based on X, the (initial) value of node α. Further-
more, this value must be the same as α(X,Y). Alice now obtains α(X,Y) purely based
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on local knowledge. Alice sets X′N−1 to this value. Next Alice needs to determine
X′i for 1 ≤ i ≤ N − 2. By definition of oblivious reductions, P needs to specify the
reference setting corresponding to each input pair (X,Y) ∈ L. Using such informa-
tion in P, Alice can determine the assignment graph of τi for 1 ≤ i ≤ N − 2. In τi’s
assignment graph, Alice’s current input X must belong to exactly one of the subsets
of vertices. Let X( j) be the subset to which X belongs. Alice then sets X′i = j.

Bob constructs input Y ′ of length N for UnionSizeCP similarly, using only his local
knowledge of Y . Specifically, Bob sets Y ′N−1 = 0 and Y ′N = β(X,Y). Same as earlier,
Bob can obtain β(X,Y) via P, without communicating with Alice. Next for each i

where 1 ≤ i ≤ N−2, Bob sets Y ′i to be j whereY( j) is the subset to which Y belongs
to, in τi’s assignment graph.

We next show that X′ and Y ′ are strings satisfying the cycle promise with q = b′.
First, for i = N−1 or N, obviously X′i and Y ′i satisfy the cycle promise. Next consider
any i ∈ [1,N−2] and τi’s assignment graph. Clearly X′i and Y ′i are integer in [0, b′−1]
for all such i. By construction of the assignment graph, we know that there are

• no edges between X(0) and Y( j) for all j ≥ 2,

• no edges between X(b′ − 1) and Y( j) for all j ≤ b′ − 3, and

• no edges between X( j1) and Y( j2) for all 1 ≤ j1 ≤ b′ − 2 and | j1 − j2| ≥ 2.

Furthermore, Lemma 6.3.2 shows that there are no edges between X( j) andY( j) for
all 1 ≤ j ≤ b′ − 2. Since (X,Y) ∈ L, there must exist an edge between X and Y in
τi’s assignment graph. Thus X′i and Y ′i must satisfy the cycle promise.

Finally, consider any given protocol for UnionSizeCPN,b′ . Alice and Bob invoke that
protocol using X′ and Y ′ as inputs, respectively. We claim that UnionSizeCP(X′,Y ′)
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can be used directly as the result of Π(X,Y), since:

UnionSizeCP(X′,Y ′)

= |{i | (1 ≤ i ≤ N) and (X′i , 0 or Y ′i , 0})|

= α(X,Y) + β(X,Y) + |{i | (1 ≤ i ≤ N − 2) and (X < X(0) for τi or Y < Y(0) for τi)}|

= α(X,Y) + β(X,Y) + |{i | 1 ≤ i ≤ N − 2 and τi(X,Y) = 1}|

(by construction of the assignment graph and Lemma 6.3.2)

= α(X,Y) + β(X,Y) +

N−2∑
i=1

τi(X,Y) = Π(X,Y)

In the above derivation, we have leveraged Lemma 6.3.2 which shows that there are
no edges labeled 1 between X(0) and Y(0). Together with the construction of the
assignment graph, this means that τi(X,Y) = 1 if and only if in τi’s assignment graph,
X < X(0) or Y < Y(0). �

6.4 Proof for Lemma 6.3.2

Recall the various concepts defined in Sections 6.2 and 6.3.

Proof for Lemma 6.3.2. The lemma trivially holds for b′ = 2, and thus we only need
to consider b′ ≥ 3 (or equivalently b ≥ 27). We prove this lemma via a contradiction
and assume that the lemma does not hold. Intuitively, we will construct a path in τ’s
assignment graph (not a path in G) where vertices on the path are individual inputs.
Since it is a path in the assignment graph, by the definition of τ’s assignment graph,
any two adjacent inputs on that path must form a valid input pair in L. The path will
start from some vertex in X(0) and end with some vertex in Y(0). Furthermore, all
edges on the path have a label of 1, and the path has no more than 2(b′ − 1)− 1 hops.
These properties can be later used to find a contradiction.

We now present the formal proof. If the lemma does not hold, then in the assignment
graph of τ, either there is an edge labeled 1 between X(0) and Y(0), or there is an
edge (which must have a label of 1) between X( j) and Y( j) for some j ∈ [1, b′ − 2].
We claim that in either case, we can find in the assignment graph a path X(0), Y (1),
X(1), Y (2), ..., X(k), Y (k+1) for some k ∈ [0, b′ − 2], such that:
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• X(i) ∈ X for 0 ≤ i ≤ k, and Y (i) ∈ Y for 1 ≤ i ≤ k + 1,

• X(0) ∈ X(0) and Y (k+1) ∈ Y(0), and

• all edges in the path have a label of 1.

If there is an edge labeled 1 between X(0) and Y(0), we simply set k = 0 and let
X(0) and Y (1) be the two endpoints of that edge, respectively. Our claim then trivially
holds. If there is an edge (X,Y) where X ∈ X( j) and Y ∈ Y( j) for some j ∈ [1, b′−2],
then we set k = j. First consider the case where k is even. By the construction of
the assignment graph, X must be connected with some vertex in Y( j − 1), and that
vertex must be connected to some vertex in X( j − 2), and so on. Since k is even,
there must be some path (with exactly k hops) in the assignment graph from X to
some X(0) ∈ X(0). Similarly, there must be some path (with exactly k hops) in the
assignment graph from Y to some Y (k+1) ∈ Y(0). These two paths, together with the
edge between X and Y , exactly form the path needed by our claim. The case for odd
k is similar.

Given the above path X(0), Y (1), X(1), Y (2), ..., X(k), Y (k+1) (satisfying all the above
properties), we define I (where I ⊆ L) to be the set of input pairs (X,Y) such
that (X,Y) is an edge in that path. We also call I as the problematic input set. By
construction of I, we know that τ has a value of 1 in the reference setting for any
(X,Y) ∈ I. Lemma 6.4.1 next proves that for all (X,Y) ∈ I, τ is disconnected from
the root by the end of the execution of Φ(X,Y). This leads to a contradiction with
Lemma 6.3.1. �

Lemma 6.4.1. Suppose b ≥ 27. Consider the problematic input set I as constructed

in the proof of Lemma 6.3.2. For all (X,Y) ∈ I, τ is disconnected from the root by

the end of the execution of Φ(X,Y).

The rest of this section will prove Lemma 6.4.1. This lemma is challenging to prove,
and we need much preparation work in Sections 6.4.1 and 6.4.2 before actually prov-
ing it in Section 6.4.3.
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6.4.1 Node α and β Must Remain Unspoiled

We start by proving that node α (β) must remain unspoiled for Alice (Bob) in an
oblivious reduction. To do so, we inherit the formal framework developed in Sec-
tion 4.3. Since for each input pair (X,Y) ∈ L, there is a corresponding reference
setting in the oblivious reduction, the notions of values and failure time of nodes in
Section 4.3 are still well-defined here. Namely, all we need to do is to replace the
notion of “simulated execution under (X,Y)” in Section 4.3 by the notion of “refer-
ence setting for (X,Y)”.2 All concepts defined in Section 4.3 now carry over directly
without modification. For example, a node v is a value epicenter for Alice’s input X

if its value in the reference setting is not uniquely determined by X.

Lemma 4.3.1 in Section 4.3 proved that Alice can simulate all unspoiled nodes. In
this section, we intend to prove the reverse for oblivious reductions — if a node is
spoiled for Alice in a round r, then in an oblivious reduction, Alice can never invoke
the oracle protocol on that node for round r. Since in an oblivious reduction Alice
(Bob) is required to invoke the oracle on node α (β) throughout the execution, this in
turn implies that α (β) must remain unspoiled for Alice (Bob). Our proof will hinge
upon the property of oblivious reductions, which requires Alice (Bob) to decide,
beforehand, exactly up to which rounds she (he) will invoke the oracle on each node.

Lemma 6.4.2. Consider any oblivious reduction from Π to Sum. If a node v in G is

spoiled for Alice’s input X (Bob’s input Y) in round r′ ≥ 0, then when Alice (Bob)

has the input X (Y), Alice (Bob) will not invoke the oracle on v for round r′.

Proof. We only need to prove the part for Alice. Let r ∈ [1, r′] be the very first round
during which v is spoiled. It suffices to prove that Alice will not invoke the oracle on
v for round r — since the oracle protocol carries internal state from round to round,
Alice can never invoke the oracle for round r′ without invoking the oracle for earlier
rounds.

If round r is the first round during which v is spoiled, there must exist some epicenter
u0 with an occurrence time of r0 (r0 ≤ r) such that there exists a spoil path from u0

2These two notions are actually exactly the same. In Section 4.3 there was no need to introduce
the more formal notion of reference settings, so there we used the notion of simulated execution.
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to v with exactly l = r − r0 hops. To show that Alice will not invoke the oracle on v

for round r, we use an induction on l.

If l = 0, v itself must be an epicenter occurring at round r. We consider two cases. If
v is a value epicenter, then the occurrence time is round 1 and r = 1. In an oblivious
reduction, Alice needs to decide purely based on X, the input value of each node for
which she will invoke the oracle for at least one round. This means that Alice must
never invoke the oracle on v — otherwise she risks deviating from the corresponding
execution under the reference setting. Next if v is a failure epicenter, then round
r (i.e., the occurrence time of the epicenter) must be the earliest possible failure
time. This means that there exists Bob’s inputs Y and Y ′, such that v’s failure time is
exactly round r in the reference setting for (X,Y) and is after round r in the reference
setting for (X,Y ′). If Alice decides that she will invoke the oracle on v for round r,
then again she risks deviating from the execution under the reference setting since
the reference setting could be (X,Y).

For the inductive step, assume that the lemma holds for all values up to l and we
consider l + 1. Again, there exists some epicenter u0 with an occurrence time of
r0 (r0 ≤ r) such that there exists a spoil path from u0 to v with exactly l + 1 hops.
Consider the node u immediately before v in this spoil path. Then the length of the
spoil path from u0 to u is exactly l hops, and u is spoiled in round r − 1, where
r − 1 ≥ 1. By the inductive hypothesis, Alice (with an input X) does not invoke the
oracle on u for round r − 1. Next we prove via a contradiction and assume that Alice
still invokes the oracle on v for round r. Note that in an oblivious reduction, the
only way for Alice to obtain the potential message sent in round r − 1 by the oracle
protocol on u (u , β) is for Alice to invoke the oracle on u for round r − 1 herself.
Thus for Alice to still invoke the oracle on v for round r, u must have failed in round
r − 1 or earlier in all the reference settings for all possible input pairs (X,Y) given
the current X. We claim that it is impossible for u to fail exactly in round r − 1 in
all these reference settings, since otherwise this failure is a stable failure for X, and
there would be no spoil path from u0 to v via u. Thus there must exist some Y such
that u fails before round r − 1. This in turn, means that the occurrence time of the
epicenter u is round r − 2 or earlier. Thus v is spoiled by u in round r − 1 or earlier,
which contradicts with the fact that r is the first round that v becomes spoiled. �

Corollary 6.4.1. Consider any oblivious reduction from Π to Sum. For any input
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pair (X,Y) ∈ L, α (β) must remain unspoiled for Alice’s input X (Bob’s input Y)

throughout the execution of Φ(X,Y).

Proof. Trivially follows from Lemma 6.4.2 and the fact that in an oblivious reduc-
tion, Alice (Bob) is required to invoke the oracle on α (β) throughout the entire
execution. �

The above corollary is all we need for the proofs next — we no longer need Lem-
ma 6.4.2.

6.4.2 Reasoning about Paths – Some Technical Lemmas

This section proves a series of technical lemmas, which we will later use to prove
Lemma 6.4.1. We start with some useful concepts and definitions, as summarized in
Table 6.1.

Some useful concepts and definitions. Throughout this section, we use I to denote
the problematic input set as constructed in the proof of Lemma 6.3.2.

A path p in the topology G is a sequence of nodes (v1, v2, ..., vk) such that k ≥ 2 and
for all i ∈ [1, k− 1], vi+1 is a neighbor of vi in G. For any node v, v ∈ p simply means
that v appears in p. A path p is a simple path if no node appears more than once in
the path. All paths we discuss will be simple paths. The length of a path p, denoted
as |p|, is defined as the number of nodes in p minus 1. Consider any node τ in G,
where τ , α and τ , β. With respect to τ, an α-path is a path from τ to α without
passing β. Formally, it is a path (v1, v2, ..., vk) satisfying v1 = τ, vk = α, and vi , β

for all i ∈ [2, k − 1]. We similarly define β-paths with respect to τ, as paths from τ to
β without passing α. We will only discuss α-paths and β-paths with respect to τ, and
thus we will drop the phrase “with respect to τ”. As we will easily prove later, since
α is itself the root, any path p from τ to the root must contain an α-path or a β-path
as a part.

For any α-path or β-path p, we say that p is cut in a certain round if some node
(potentially τ) in p fails in or before that round. Given the problematic input set I,
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I the problematic input set as constructed in the proof of Lemma 6.3.2.
Φ(X,Y) the execution of the Sum oracle protocol under the reference setting

for (X,Y) and under the given public coin outcomes chosen by Alice
and Bob

λ(X,Y) number of rounds in each flooding round in the execution Φ(X,Y)
FA(X, v) v’s failure time in the simulation, if v has a stable failure with respect

to Alice’s input X
FB(Y, v) v’s failure time in the simulation, if v has a stable failure with respect

to Bob’s input Y
p a simple path in the topology G
|p| length of the path p

α-path path from τ to α without passing β
β-path path from τ to β without passing α

dummy path a path that will be cut by the end of the execution of Φ(X,Y) for all
(X,Y) ∈ I.

pA(X, t) or p(X, t) ∃v ∈ p such that FA(X, v) ≤ t|p|
pB(Y, t) or p(Y, t) ∃v ∈ p such that FB(Y, v) ≤ t|p|

Pα the finite set of all non-dummy α-paths
Pβ the finite set of all non-dummy β-paths
Pα<p the set of all paths in Pα whose lengths are smaller than the length of p
Pβ<p the set of all paths in Pβ whose lengths are smaller than the length of p
Pα(X, t) either Pα = ∅ or p′(X, t) holds for all p′ ∈ Pα

Pα(Y, t) either Pα = ∅ or p′(Y, t) holds for all p′ ∈ Pα

Pβ(X, t) either Pβ = ∅ or p′(X, t) holds for all p′ ∈ Pβ

Pβ(Y, t) either Pβ = ∅ or p′(Y, t) holds for all p′ ∈ Pβ

Pα<p(X, t) either Pα<p = ∅ or p′(X, t) holds for all p′ ∈ Pα<p

Pα<p(Y, t) either Pα<p = ∅ or p′(Y, t) holds for all p′ ∈ Pα<p

Pβ<p(X, t) either Pβ<p = ∅ or p′(X, t) holds for all p′ ∈ Pβ<p

Pβ<p(Y, t) either Pβ<p = ∅ or p′(Y, t) holds for all p′ ∈ Pβ<p

Table 6.1: Notations and definitions used in Section 6.4.2 and 6.4.3

we say that an α-path or β-path p is dummy if for all (X,Y) ∈ I, p is cut by the end
of the execution Φ(X,Y). Otherwise p is non-dummy. A non-dummy path p may
still be cut in the execution of Φ(X,Y) for some (X,Y) ∈ I. Intuitively, a dummy
path p can be easily dismissed in our proofs later since we will be focusing on the
input pairs in I and a dummy path is always cut in the corresponding executions. So
usually we will only need to focus on non-dummy paths. We use Pα (Pβ) to denote
the finite set of all non-dummy α-paths (β-paths). Note that the paths in Pα and Pβ are
not necessarily edge-disjoint or vertex-disjoint. For any given non-dummy α-path or
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β-path p, we use Pα<p to denote the set of all paths in Pα whose lengths are smaller
than the length of p. Similarly define Pβ<p.

For any input X of Alice’s, if node v has a stable failure in the simulation, we use
the function FA(X, v) to denote v’s failure time. Otherwise FA(X, v) is undefined.
Similarly define the function FB(Y, v). For any path p and integer t, we use pA(X, t)
to denote the existence of some node v ∈ p satisfying FA(X, v) ≤ t|p|. Intuitively,
this means that the path p will be cut in round t|p| or earlier if Alice’s input is X

and if the execution continues up to round t|p|. We similarly define pB(Y, t). We
will often drop the subscripts in pA(X, t) and pB(Y, t) since they are usually obvious.
We say that Pα<p(X, t) holds if either Pα<p is empty or if p′(X, t) holds for all p′ ∈

Pα<p. Similarly define Pα<p(Y, t), Pβ<p(X, t), and Pβ<p(Y, t). Also similarly define Pα(X, t),
Pα(Y, t), Pβ(X, t), and Pβ(Y, t). For any given input pair (X,Y) ∈ I, we say that a non-
dummy α-path or β-path p is a focal path iff both of the following two properties
hold:

• Pα<p(X, b), or Pα<p(Y, b), or both hold.

• Pβ<p(X, b), or Pβ<p(Y, b), or both hold.

Recall that b is the time complexity of the Sum protocol, in terms of flooding rounds.
As we will prove later, a focal path p has the nice property that all α-paths and β-
paths shorter than p will by cut by the end of the execution Φ(X,Y). This is often a
necessary precondition for us to reason about various properties on p.

Finally, recall the definition of an flooding round from Chapter 2. We define λ(X,Y)
to be the number of rounds in an flooding round in the execution of Φ(X,Y). In
other words, λ(X,Y) = maxG′∈GΛ(G′) where G is the set of topologies that have ever
appeared in the execution of Φ(X,Y). Since an oblivious reduction needs to work for
any arbitrary and black-box Sum oracle protocol whose time complexity is up to b

flooding rounds for some given b, the oblivious reduction needs to work even under
the worst case scenario where the execution of Φ(X,Y) takes as long as bλ(X,Y)
rounds.

Key challenge in the proof. Recall that Lemma 6.4.1 intends to claim that τ will be
disconnected from the root in the execution of Φ(X,Y) for any (X,Y) ∈ I. To prove
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that τ will be disconnected from the root, we need to show that there does not exist
any path in G (which can be arbitrary) for τ to reach the root when the execution
ends. The key challenge here is that a failure in the reference setting for (X,Y) may
or may not actually occur in the execution of Φ(X,Y) — if the execution terminates
before the failure time of a node v, then node v does not actually fail in Φ(X,Y). This
is further complicated by the fact that the total number of rounds in Φ(X,Y) (i.e.,
bλ(X,Y)) depends on the value of λ(X,Y), which is itself affected by failures.

The above challenge implies that conceptually in our proof, we will need to start
with an initial pessimistic guess (i.e., a loose lower bound) on λ(X,Y) and on the
total number of rounds in Φ(X,Y). Based on this pessimistic guess, we can show
that certain failures must occur by the end of Φ(X,Y). Those failures in turn allow
us to obtain a better guess on λ(X,Y) (i.e., raising our lower bound on λ(X,Y)). This
better guess then enables us to prove that some more failures will occur. Repeating
this process (implicitly via an induction) will address the above challenge.

Some technical lemmas. In the next, we will prove a series of technical lemmas
(Lemma 6.4.3 through 6.4.9), which will be need for the proof of Lemma 6.4.1 later.

Lemma 6.4.3. Any path p from τ (τ , α and τ , β) to the root must contain an

α-path or a β-path as a part.

Proof. Trivially follows from the fact that α is the root. In fact, it is possible to prove
the following stronger claim: p must either be an α-path itself or contains a β-path as
a part. We chose to still state the lemma in its current form since we want the lemma
to be symmetric for α and β. �

The following lemma says that if a path p is a focal path for an input pair (X,Y) ∈ I,
then λ(X,Y) will be no smaller than the length of p. Intuitively, this holds because
λ(X,Y) is no smaller than the length of the shortest path from τ to α at the end of the
execution Φ(X,Y). This shortest path must contain an α-path or a β-path as a part.
But since p is a focal path, we will show that all α-paths and β-paths that are shorter
than p must have been cut by the end of the execution. Hence this shortest path is no
shorter than p.

Lemma 6.4.4. Consider any focal path p for any input pair (X,Y) ∈ I. We have

|p| ≤ λ(X,Y).
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Proof. By the construction of I, we know that for any input pair (X,Y) ∈ I, τ has
a value of 1 in the execution of Φ(X,Y). Lemma 6.3.1 tells us that τ will not be
disconnected from the root in Φ(X,Y). Let p1 denote the shortest path from τ to
the root at the end of the execution Φ(X,Y). By definition of an flooding round, we
know that the number of round in an flooding round is no smaller than the root’s
eccentricity in the graph, and thus we have |p1| ≤ λ(X,Y). Next consider the set of
all α-paths and β-paths. We claim that any α-path or β-path that is shorter than p

will no longer exist (i.e., been cut) by the end of the execution Φ(X,Y). If this claim
does hold, then notice that by Lemma 6.4.3, p1 must contain an α-path or a β-path.
This means that |p| ≤ |p1| ≤ λ(X,Y).

We prove the earlier claim via a contradiction, and assume that there exist some
α-paths and/or β-paths that are shorter than p and they still exist at the end of the
execution Φ(X,Y). Let p2 be the shortest one of those paths (if there are multiple
such p2’s, simply pick an arbitrary one). Note that p2 must be a non-dummy path.
Again since Lemma 6.4.3 tells us that p1 must contain an α-path or a β-path, we
must have |p2| ≤ |p1| ≤ λ(X,Y). If p2 ∈ P

α, then p2 ∈ P
α
<p since |p2| < |p|. Since p

is a focal path, we know that either Pα<p(X, b) or Pα<p(Y, b) hold, implying that either
p2(X, b) or p2(Y, b) hold. Since b|p2| ≤ bλ(X,Y), there will be a failure on p2 by the
end of the execution of Φ(X,Y). Contradiction. The case for p2 ∈ P

β is similar. �

The following lemma says that for any input pair (X,Y) ∈ I, Pα(X, b) and Pβ(Y, b)
cannot both hold. Intuitively, this is because if they both held, then τ would be
disconnected from the root (i.e., α) by the end of the execution Φ(X,Y).

Lemma 6.4.5. For any input pair (X,Y) ∈ I, it is impossible for Pα(X, b) and Pβ(Y, b)
to both hold.

Proof. By Lemma 6.3.1, we know that τ will not be disconnected from the root in
the execution of Φ(X,Y). This means there exists some path p1 from τ to the root
at the end of the execution. Lemma 6.4.3 tells us that p1 must contain an α-path or
a β-path. This means that at the end of the execution, there is at least one α-path
or β-path that has not been cut. Let p be the shortest α-path or β-path that has not
been cut at the end of the execution (if there are multiple such p’s, simply pick an
arbitrary one). Clearly p must be a non-dummy path.
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First consider the case where p is a non-dummy α-path. By how we pick p, we know
that p is a focal path for (X,Y). Lemma 6.4.4 tells us that |p| ≤ λ(X,Y). Now since p

has not been cut at the end of the execution in round bλ(X,Y), we know that p(X, b)
must not hold. This means that Pα(X, b) does not hold.3 If p is a non-dummy β-path,
then one can similarly show that Pβ(Y, b) does not hold. �

The next lemma considers any given focal path p with respect to an input pair
(X,Y) ∈ I. The lemma intuitively says that if some node in p is already spoiled
for Alice’s input X in a certain round, then this spoiled node will cause all other
nodes in p to become spoiled within the next |p| rounds, unless a stable failure is
simulated on the path to “block” such spreading of spoiled nodes.

Lemma 6.4.6. Consider any focal path p for any input pair (X,Y) ∈ I. In the

execution of Φ(X,Y), for all t ≤ b − 1:

• If some node in p is spoiled for Alice’s input X in round t|p| and if p(X, t + 1)
does not hold, then all nodes in p are spoiled for Alice’s input X in round

(t + 1)|p|.

• If some node in p is spoiled for Bob’s input Y in round t|p| and if p(Y, t+1) does

not hold, then all nodes in p are spoiled for Bob’s input Y in round (t + 1)|p|.

Proof. First, Lemma 6.4.4 tells us that |p| ≤ λ(X,Y), and thus (t + 1)|p| ≤ bλ(X,Y).
The remainder of the proof follows directly from the definition of spoil paths. In
particular, by definition of spoil paths, only stable failures can block spoil paths. �

The next lemma still considers any given focal path p with respect to an input pair
(X,Y) ∈ I. The lemma intuitively says that if some node on p has a stable failure
with respect to Y and is not simultaneously a stable failure with respect to X, then
that node becomes an epicenter for Alice. Unless we simulate a stable failure (with
respect to X) on p to “block” the spreading of spoiled nodes caused by this epicenter,
all nodes on p will be spoiled for Alice’s input X within the next |p| rounds.

Lemma 6.4.7. Consider any focal path p for any input pair (X,Y) ∈ I. In the

execution of Φ(X,Y), for all t ≤ b − 1:
3One can also simultaneously show that Pα(Y, b) does not hold, though we do not need that claim.
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• If p(Y, t) holds and if p(X, t + 1) does not hold, then all nodes in p are spoiled

for Alice’s input X in round (t + 1)|p|.

• If p(X, t) holds and if p(Y, t + 1) does not hold, then all nodes in p are spoiled

for Bob’s input Y in round (t + 1)|p|.

Proof. First, Lemma 6.4.4 tells us that |p| ≤ λ(X,Y), and thus (t + 1)|p| ≤ bλ(X,Y).
Without loss of generality, we only prove the first part of the lemma. By definition
of p(Y, t), we know that there exists some node v ∈ p such that FB(Y, v) ≤ t|p| < (t +

1)|p| ≤ bλ(X,Y). Since p(X, t + 1) does not hold, the failure of v in round FB(Y, v)
must not be a stable failure for Alice’s input X. But since v does fail in the reference
setting for (X,Y) in round FB(Y, v), it means that v is an epicenter for Alice’s input
X. (Note that v may still be either a value epicenter or a failure epicenter.) The
occurrence time of this epicenter is round FB(Y, v) or earlier. This means that v must
be spoiled in round FB(Y, v) ≤ t|p|. Apply Lemma 6.4.6 then finishes the proof. �

The next lemma still considers any given focal path p with respect to an input pair
(X,Y) ∈ I. The lemma intuitively says that if τ is spoiled for Alice’s input X, in
order to prevent α from being spoiled within th next |p| rounds, we must simulate a
stable failure with respect to X somewhere on p.

Lemma 6.4.8. Consider any focal path p for any input pair (X,Y) ∈ I. For all

t ≤ b − 1:

• If p ∈ Pα and if τ is spoiled for Alice’s input X in round t|p|, then p(X, t + 1)
must hold.

• If p ∈ Pβ and if τ is spoiled for Bob’s input Y in round t|p|, then p(Y, t +1) must

hold.

Proof. First, Lemma 6.4.4 tells us that |p| ≤ λ(X,Y), and thus (t + 1)|p| ≤ bλ(X,Y).
Without loss of generality, we only prove the first part, via a contradiction. By
Lemma 6.4.6, if p(X, t + 1) does not hold, then in the execution of Φ(X,Y), all nodes
in p are spoiled for Alice’s input X in round (t+1)|p|. Since (t+1)|p| ≤ bλ(X,Y), this
means that α (which is in p) is spoiled by the end of the execution, which contradicts
with Corollary 6.4.1. �
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The following will use the above lemmas to prove the final technical lemma in this
section. Even though the proof only uses elementary induction, it is rather complex
because while we are doing an induction on the input pairs in the problematic input
set I, we need to simultaneously reason about the multiple paths in G and these two
issues are entangled together. Later we will only need to use the second claim in the
following lemma — the first claim in the lemma is proved so that we can carry both
claims in the induction, which is critical for the proof to work.

Lemma 6.4.9. Suppose b ≥ 27. Let X(0), Y (1), X(1), Y (2), ..., X(k), Y (k+1) (where

k + 1 ≤ b
√

b/3c) be those inputs in the proof of Lemma 6.3.2 that correspond to the

problematic input set I. For any path p ∈ Pα, any integer i ∈ [1, k + 1], and any

integer ti ∈ [0, b − 2i2 − 2i], we have:

• If Pα<p(X(i−1), ti + 4i) and Pβ<p(Y (i), ti) holds, then p(X(i−1), ti + 4i) holds.

• In particular, if Pα<p = Pβ<p = ∅, then p(X(i−1), ti + 4i) holds.

Proof. First, note that i ≤ k + 1 ≤ b
√

b/3c and b ≥ 27 imply b − 2i2 − 2i ≥ 0. This
means that the range for ti is never empty. We only prove the first part of the lemma,
since the second part is the special case of the first part. We prove the first part via an
induction on i. For i = 1, since t1 < t1 + 4 ≤ b, we have Pα<p(X(0), b) and Pβ<p(Y (1), b).
This means that p is a focal path for the input pair (X(0),Y (1)). In the execution of
Φ(X(0),Y (1)), τ has a value of 1 and is spoiled for Alice’s input X(0) in round 1 ≤ |p|.
Apply Lemma 6.4.8 and we have p(X(0), 2), which implies p(X(0), t1 + 4) for all t1 ∈

[0, b − 4].

Now consider any i ≥ 2, while assuming that the lemma holds for i − 1. We are
given the condition Pα<p(X(i−1), ti + 4i) and Pβ<p(Y (i), ti). We will prove p(X(i−1), ti + 4i)
via a contradiction and assume that it does not hold. The final contradiction will be
obtained by sequentially proving the following claims:

• Claim 1: Pβ<p(X(i−1), ti + 1) holds, which will be proved via the execution of
Φ(X(i−1),Y (i)).

• Claim 2: Pβ<p(Y (i−1), ti + 2) holds, which will be proved via the execution of
Φ(X(i−1),Y (i−1)).
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• Claim 3: Pα<p(X(i−2), ti + 4i − 2) holds, which will be proved via the inductive
hypothesis and implicitly via the execution of Φ(X(i−2),Y (i−1)).

• Claim 4: p(X(i−2), ti + 4i − 2) holds, which will be proved via the inductive
hypothesis and implicitly via the execution of Φ(X(i−2),Y (i−1)).

• Claim 5: p(Y (i−1), ti + 4i − 1) holds, which will be proved via the execution
Φ(X(i−2),Y (i−1)).

• Claim 6: p(X(i−1), ti + 4i) holds, which will be proved via the execution of
Φ(X(i−1),Y (i−1)).

Figure 6.2 illustrates these 6 claims in an example topology.

Proving Claim 1. We prove Pβ<p(X(i−1), ti + 1) via a contradiction and let p1 be any
path in Pβ<p where p1(X(i−1), ti + 1) does not hold. We first show that p and p1 are
both focal paths for the input pair (X(i−1),Y (i)). For p, we have Pα<p(X(i−1), ti + 4i) and
Pβ<p(Y (i), ti). Since ti < ti + 4i < b, we know that p is a focal path for (X(i−1),Y (i)). For
p1, since Pα<p1

⊂ Pα<p and Pβ<p1
⊂ Pβ<p, by similar argument we know that p1 is a focal

path for (X(i−1),Y (i)) as well.

Next by the original condition, we have p1(Y (i), ti). Invoke Lemma 6.4.7 for p1 and
we know that all nodes on p1 (including τ) are spoiled for Alice’s input X(i−1) in the
execution of Φ(X(i−1),Y (i)) in round (ti + 1)|p1| < (ti + 1)|p|. We next invoke Lem-
ma 6.4.8 for p and we know that p(X(i−1), ti+2) must hold, which implies p(X(i−1), ti+

4i). Contradiction.

Proving Claim 2. Consider any path p1 ∈ P
β
<p. We first show that p1 is a focal path

for the input pair (X(i−1),Y (i−1)). From the original condition of Pα<p(X(i−1), ti + 4i)
and since Pα<p1

⊂ Pα<p, we have Pα<p1
(X(i−1), ti + 4i) which implies Pα<p1

(X(i−1), b). Next
Claim 1 tells us that Pβ<p(X(i−1), ti +1). By a similar argument, we have Pβ<p1

(X(i−1), b).
Thus p1 is a focal path for (X(i−1),Y (i−1)).

From Claim 1, we also have p1(X(i−1), ti + 1). Now invoke Lemma 6.4.7 for p1.
We will then have p1(Y (i−1), ti + 2), since otherwise all nodes in p1 (including β) are
spoiled for Bob’s input Y (i−1) in the execution of Φ(X(i−1),Y (i−1)) in round (ti + 2)|p1|.
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Figure 6.2: Illustration of the 6 claims proved in Lemma 6.4.9 in an example topolo-
gy. For the given τ, this example topology has 4 α-paths and 3 β-paths. Nodes other
than α, β, and τ are not shown in the figure. The α-path marked by p is the path p in
the lemma. For clarity, we omit the labels for α, β, and τ when illustrating the claim-
s. For each of the claims, the figure indicates on the left the input (e.g., X(i−1)) to
Alice, and on the right the input to Bob. Solid arrows indicate those (stable) failures
that we already know, given the corresponding input to Alice or Bob. Dashed arrows
indicate those (stable) failures whose existence is proved in the corresponding claim.
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Proving Claim 3. Prove by contradiction and assume that Pα<p(X(i−2), (ti+2)+4(i−1))
does not hold. Let p1 be the shortest path (if there are multiple such p1’s, simply pick
an arbitrary one) in Pα<p such that the p1(X(i−2), (ti + 2) + 4(i − 1)) does not hold. We
next want to invoke the inductive hypothesis for i − 1 on p1 ∈ P

α with ti−1 = ti + 2.
Such invocation is possible since:

• ti−1 = ti + 2 ≤ b − 2i2 − 2i + 2 < b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1).

• By definition of p1, we have that Pα<p1
(X(i−2), (ti + 2) + 4(i − 1)) holds.

• We know from Claim 2 that Pβ<p(Y (i−1), ti + 2) holds, implying that
Pβ<p1

(Y (i−1), ti + 2) holds.

This invocation tells us that p1(X(i−2), (ti + 2) + 4(i − 1)) holds, leading to a contra-
diction.

Proving Claim 4. We want to invoke the inductive hypothesis for i − 1 on p with
ti−1 = ti + 2. Such invocation is possible since:

• ti−1 = ti + 2 ≤ b − 2i2 − 2i + 2 < b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1).

• Claim 3 gives us Pα<p(X(i−2), (ti + 2) + 4(i − 1)).

• Claim 2 gives us Pβ<p(Y (i−1), ti + 2).

This invocation tells us that p(X(i−2), (ti + 2) + 4(i − 1)) holds.

Proving Claim 5. We first show that p is a focal path for (X(i−2),Y (i−1)). We already
have Pα<p(X(i−2), ti + 4i − 2) from Claim 3 and Pβ<p(Y (i−1), ti + 2) from Claim 2. Since
ti + 2 ≤ ti + 4i − 2 ≤ b − 2i2 − 2i + 4i − 2 < b, we now know that p is a focal path for
(X(i−2),Y (i−1)). We next prove p(Y (i−1), ti + 4i − 1) via a contradiction.

We already have p(X(i−2), ti +4i−2) from Claim 4. Since p(Y (i−1), ti +4i−1) does not
hold, we can invoke Lemma 6.4.7 for p. That lemma tells us that in the execution of
Φ(X(i−2),Y (i−1)), all nodes in p (including τ) become spoiled for Bob’s input Y (i−1) in
round (ti + 4i − 1)|p|. This is a critical property which we will use later.
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Next consider the two properties Pα(X(i−2), ti + 8i − 4) and Pβ(Y (i−1), ti + 4i). By
Lemma 6.4.5, it is impossible for both of them to hold, since otherwise they would
imply that both Pα(X(i−2), b) and Pβ(Y (i−1), b) hold. Let p1 be the shortest path (if there
are multiple such p1’s, simply pick an arbitrary one) in Pα ∪ Pβ where p1(X(i−2), ti +

8i − 4) (if p1 ∈ P
α) or p1(Y (i−1), ti + 4i) (if p1 ∈ P

β) does not hold.

We consider two cases. If p1 ∈ P
β, we will first show that p1 is a focal path. By

definition of p1, we have Pα<p1
(X(i−2), ti + 8i − 4) and Pβ<p1

(Y (i−1), ti + 4i) holds. Since
ti+4i ≤ b−2i2−2i+4i < b, Pα<p1

(X(i−2), b) and Pβ<p1
(Y (i−1), b) holds. This means that p1

is a focal path for the input pair (X(i−2),Y (i−1)). We next want to show that |p| ≤ |p1|.
By how we chose p1, we know that p1(Y (i−1), ti+4i) does not hold. On the other hand,
Claim 2 tells us that Pβ<p(Y (i−1), ti + 2) holds, implying that Pβ<p(Y (i−1), ti + 4i) holds
(since i ≥ 2). Thus we must have p1 < P

β
<p and |p1| ≥ |p|. Finally, as shown earlier,

in the execution of Φ(X(i−2),Y (i−1)), the node τ must be spoiled for Bob’s input Y (i−1)

in round (ti + 4i − 1)|p| ≤ (ti + 4i − 1)|p1|. Now we can invoke Lemma 6.4.8, which
shows that p1(Y (i−1), ti + 4i) holds and thus leads to a contradiction.

For the second case where p1 ∈ P
α, we want to invoke the inductive hypothesis for

i − 1 on p1 with ti−1 = ti + 4i. Such invocation is possible since:

• ti−1 = ti + 4i ≤ b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1).

• By definition of p1, we have that Pα<p1
(X(i−2), (ti+4i)+4(i−1)) and Pβ<p1

(Y (i−1), ti+

4i) holds.

The invocation gives us p1(X(i−2), (ti + 4i) + 4(i − 1)), leading to a contradiction.

Proving Claim 6. We first show that p is a focal path for (X(i−1),Y (i−1)). From the
original condition, we have Pα<p(X(i−1), ti +4i), which implies Pα<p(X(i−1), b). By Claim
2, we have Pβ<p(Y (i−1), ti + 2), which implies Pβ<p(Y (i−1), b). Thus p is a focal path for
(X(i−1),Y (i−1)).

Claim 5 gives us p(Y (i−1), ti + 4i − 1). Now invoke Lemma 6.4.7 for p. That lemma
tells us that p(X(i−1), ti + 4i) must hold, since otherwise all nodes in p (including α)
will be spoiled for Alice’s input X(i−1) in round (ti + 4i)|p|. �
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6.4.3 Proof for Lemma 6.4.1

Using the technical lemmas proved in the previous section, we can now finally prove
Lemma 6.4.1:

for Lemma 6.4.1. By Lemma 6.4.3, a path from τ to the root must contain either an
α-path or a β-path. Thus to prove the lemma, it suffices to prove that all α-paths and
β-paths are dummy. Prove by contradiction and assume that some α-paths and/or
β-paths are non-dummy. Let p be the shortest path among all such paths (if there are
multiple such p’s, simply pick an arbitrary one). This means that there exists some
(X,Y) ∈ I such that p is not cut by the end of the execution Φ(X,Y). Also by how
we chose p, we trivially have Pα<p = Pβ<p = ∅.

Next first consider the case where p is a non-dummy α-path. For all i where 1 ≤ i ≤

k + 1 ≤ b
√

b/3c, invoke the second claim in Lemma 6.4.9 with ti = 0 and we have
p(X(i−1), 4i). Since 4i ≤ 4b

√
b/3c < b when b ≥ 27, this in turn implies p(X(i−1), b)

for 1 ≤ i ≤ k + 1. Next since Pα<p = Pβ<p = ∅, we trivially know that p is a focal path
for (X,Y). Invoke Lemma 6.4.4 and we have |p| ≤ λ(X,Y). Together with p(X, b),
we know that p will be cut by the end of the execution of Φ(X,Y). Contradiction.

For the second case where p is a β-path, the proof is entirely symmetric. In particular,
the only difference between α and β is that α is the root while β is not. However, we
only used the fact that α is the root in the proof of Lemma 6.4.3. Lemma 6.4.3 itself is
already symmetric for α and β. In other words, if we view the proof for Lemma 6.4.3
as a black-box, then α and β are entirely symmetric throughout Sections 6.4.1 and
6.4.2. �
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Chapter 7

Lower Bounds on FT Communication
Complexity of Sum for All b

Our previous FT lower bounds from Chapter 4 become trivial when b ≥ f
log N or√

1
ε log n . Chapter 6 have suggested that such limitation might be inherent in the ap-

proach used in Chapter 4. This section uses a different approach to obtain logarith-
mic FT lower bounds for such b, which is more than exponentially far away from the
corresponding O(1) NFT upper bounds for such b. Specifically, this section aims to
eventually prove the following theorem:

Theorem 1.4.2 (Restated). For any b ≥ 1, we have:

R
syn,ft
0 (SumN , 2N, b) = Ω(log N)

R
syn,ft
ε, 1

3
(SumN , 2N, b) = Ω

(
log

1
ε

)
, for ε = Ω

(
1
N

)

Note that i) under sufficiently large b, a message of any given size can be encoded
using a single bit. Hence Ω(log N) and Ω(log 1

ε
) actually lower bound the number

of messages, and the theorem can only be proved by reasoning about the number of
messages; ii) we focus on ε = Ω( 1

N ) since if the summation is O(N), there isn’t much
interesting to study the case where ε = o( 1

N ).

In the following, Section 7.1 first gives some intuitions and reveals the key challenge
in proving the theorem. Next Section 7.2 describes the topology and the failure ad-
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Figure 7.1: Example FT lower bound topology for n = 4 and unrestricted b.

versary used for proving the theorem. Section 7.3 defines a simple single-player
probing game, and then proves a connection (or a reduction in the general sense) be-
tween the probing game and the Sum problem. This is the key step since it enables us
to focus on lower bounding the “performance” of the probing game, which is much
easier to study than the Sum problem. Section 7.4 then proves a lower bound on the
“performance” of the probing game. This lower bound, together with the connection
established earlier, enables us to prove Theorem 1.4.2 finally in Section 7.5.

7.1 Obtaining Some Intuitions under the Gossip As-
sumption

We first provide some intuitions for Theorem 1.4.2 under a strong gossip assumption.
Doing so also helps to reveal the key technical challenges to be addressed by our
proof later.

Under the gossip assumption, the root computes the sum by explicitly collecting
from each node a gossip containing its value. We will intuitively show that to do
so, some node will need to send Ω(log N) messages, and hence Ω(log N) bits even
if the gossips can be fully aggregated/compressed. Here the lower bound topology
will be an N-node clique with one of nodes being the root (Figure 7.1). Imagine
for now that the adversary can fail edges in this topology, and further there is never
more than one node sending messages in a round. We also assume that the number
of edge failures can be larger than Θ(N). These assumptions can be easily removed
later once we insert some dummy nodes into each edge. Our adaptive adversary
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waits until exactly N−1
2 non-root nodes have sent a message (e.g., nodes 1 and 2 in

Figure 7.1). Call these N−1
2 nodes as marked nodes. The adversary then fails enough

edges so that each unmarked non-root node (e.g., node 3) is paired up with a marked
node (e.g., node 1) and the marked node is the only gateway for the unmarked node
to reach the root. Now each marked nodes has already sent a message, and yet it
has one new gossip (from the corresponding unmarked node) to forward to the root.
Next apply this procedure recursively on these N−1

2 marked nodes, and inject a second
batch of edge failures when exactly N−1

4 of them (e.g., node 2) have sent a second
message. Continuing this argument can easily show that for all the gossips to reach
the root, some node needs to send at least log(N − 1) + 1 messages.

Formalizing the above arguments would be sufficient to prove Theorem 1.4.2, if
the gossip assumption were valid. Unfortunately, the gossip assumption is actually
rather strong and nodes can communicate “via silence”. For example, a protocol
may be such that if a node’s value is 0, then the root does not need to collect a gossip
from that node and simply uses 0 as the default value. It is also possible that node i

sends a message to node j iff node i’s value is 1, and then node j conceptually relays
i’s value to the root, by sending a message to the root iff this value is 0. Here the root
never collects a gossip from node i. Properly capturing all such possibilities will be
the key challenge in our proof.

7.2 Topology and Adversary for Proving Theo-
rem 1.4.2

Having explained the basic intuition and challenges, we now construct the topology
and failure adversary for later proving Theorem 1.4.2. We assume that each node can
take an integer value in the domain of [0, 3n−1] — this assumption will be removed
later in Section 7.5. We construct the lower bound topology starting from a clique
with n + 1 nodes, with n being a power of 2. One of these nodes will be the root,
while all other nodes are called worker nodes. We next insert a degree-two dummy

node in the middle of each edge in the previous clique, so that failing the dummy
node essentially fails the corresponding edge. The topology thus has total (n+1)(n+2)

2

nodes. Each worker node has an integer value in [0, 3n − 1]. All other nodes have
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value of 0. We use a vector W = (w1,w2, ...,wn) to denote the input (to the system),
where wi ∈ [0, 3n − 1] is the input value of worker node i.

Our deterministic and adaptive failure adversary here is the same as the simple failure
adversary in the previous section, except that the adversary here fails the dummy
nodes instead of failing the edges. (Since all dummy nodes are of degree 2, the
number of edges incidental to failed nodes is at most 2N.) Specifically, our adversary
here conceptually partitions the worker nodes into groups, where each group has
some group members and one group member is the group leader. Group membership
and leadership change whenever the adversary inject failures. Initially each worker
is in its own group, with itself being the sole member (and thus the leader). The
adversary keeps track of the set L of current leaders. A leader in L is marked once
it sends a message. Once the number of marked leaders reaches |L|2 , the adversary
pairs up each unmarked leader node j with a distinct marked leader node i. In cases
where multiple leaders send messages in the same round, the adversary will mark
them sequentially (by their ids), until the number of marked leaders becomes exactly
|L|
2 . Next for each such node j, consider each of its neighboring dummy nodes. The

dummy node may connect j with i) the root, ii) some leader node other than node i,
iii) leader node i, or iv) some non-leader node. If the dummy node connects j with
the root or with some leader node other than node i, then at the beginning of the next
round, the adversary fails that dummy node. After all these failures are injected,
node i’s group and node j’s group are conceptually merged into one new group, with
node i being the new group leader. Finally, the adversary updates L to be the set of
those |L|2 leaders of the new groups, clears all the marks on those leaders, and repeats
the above process until |L| reaches 1 or the protocol terminates.

7.3 The Probing Game and Its Connection to Sum

We next define a simple probing game. We will draw a connection (or a reduction
in the general sense) between this game and deterministic Sum protocols, when we
run such Sum protocols under the topology and failure adversary as constructed in
the previous section. Later in Section 7.5, we will use some well-known technique
to establish a connection between randomized and deterministic Sum protocols.
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The probing game is played by a single player, against an input W = (w1,w2, ...,wn)
where wi is an integer in [0, 3n − 1]. W is initially not known to the player, but
the player knows n. The player proceeds in rounds. In each round, the player may
choose to sequentially do zero, one, or multiple probes, where each probe is in the
form of a tuple (i, j). The outcome of the probe (i, j) is a hit if wi = j. Otherwise
it is a miss. For each probe, the player may adaptively choose what probe to do,
based on the probing outcomes in previous rounds and so far in the current round.
The goal of the player is to determine

∑n
i=1 wi based on the outcomes of the probes,

while minimizing the total number of hits. Note that the player is not concerned with
the total number of probes. For convenience later, we require that the player never
does the same probe multiple times. In addition, if there has been a hit (i, j), then the
player does not further probe (i, j′) for any j′ since the player has already learned wi

precisely. Clearly, if the player is required to output correctly for every input pattern,
there is a trivial lower bound Ω(n) on the number of hits. Later in Section 7.4, we
will show this lower bound continue to hold even if the player only need to output
correctly in 2/3 fraction of all possible inputs.

Consider any deterministic Sum protocol running under the topology and adversary
as constructed in the previous section. The protocol can obviously play various
tricks to minimize communication (e.g., by communicating “via silence”). But The-
orem 7.3.1 below reveals that what the protocol fundamentally can do is no different
from a virtual player playing the probing game and upon a hit, having some leader
node in the topology send a message. In turn, the total number of messages sent by
the leaders will be no smaller than the number of hits in the probing game.

Theorem 7.3.1. Given any deterministic Sum protocol P, there always exists a de-

terministic (adaptive) probing strategy S for the player in the probing game that

satisfies the following property. For any input W, the player using S in the prob-

ing game against W always generates the same result as the result generated by the

Sum protocol P running against W under the topology and adversary in Section 7.2.

Furthermore, if the total number of hits in the probing game reaches n when using

S against W, then the maximum number of bits sent by a node (across all nodes),

when running P against W under the topology and adversary in Section 7.2, is at

least log n + 1.

Proof. We will construct S based on the given (black-box) deterministic protocol
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P. The constructed strategy S will determine the sequence of probes that the player
should do in each round r, so that the probing outcomes will enable the player to
simulate the execution of P in round r. During the course of the probing game, we
say that a worker node i has been hit if there has been some probe (i, j) that is a hit.
In any given round r of P’s execution, we say that a group leader node i sends an
influential message in round r if node i sends (i.e., locally broadcasts) a message in
round r and the adversary does not fail the dummy node connecting node i with the
root at the beginning of round r + 1. Note that since node i is a group leader in round
r, it is guaranteed (by design of our adversary) that the dummy node connecting i

with the root has not failed in round r or earlier. If the adversary indeed fails that
dummy node at the beginning of round r + 1, then node i will no longer be a group
leader in round r + 1. Furthermore, node i (and node i’s group) will be merged with
another group, with another node being the new (merged) group’s leader.

We will prove that when the player uses our constructed probing strategy S, all the
following properties hold for all round r where 0 ≤ r ≤ R. Here R is the total number
of rounds in P’s execution over W, which must be finite. Recall that round 1 is the
first round where there can possibly be a message sent in P’s execution.

Property 1 In round r of the probing game, if the player does a probe (i, j) and if
this probe is a hit, then in round r ofP’s execution, nodes i’s group leader must
send an influential message.

Property 2 In P’s execution, if a group leader sends an influential message in round
r, then all nodes in that group have been hit by the player in the probing game
by the end of round r.

Property 3 In P’s execution, immediately after the adversary injects potential fail-
ures at the beginning of round r + 1, in each group there is at most one worker
node that has not been hit by the player in the probing game.1

Property 4 In round r, the player in the probing game can generate all influential
messages sent by all group leaders in round r of P’s execution.

1First, we explicitly mention “after failure injection” since group membership is affected by fail-
ures. Second, we consider the beginning of round r+1 instead of the beginning of round r to facilitate
our later proof by induction.
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Lemma 7.3.1 below proves that the above 4 properties indeed hold under a properly
constructed probing strategy S. Now by Property 4, since the influential messages
from group leaders are the only messages that can affect the root via the dummy
nodes, the player will be able to simulate those dummy nodes and all incoming
messages to the root throughout the execution. Then the root will be able to produce
a final result in round R, and the player simply uses this result as the result for the
probing game. Next if the total number of hits in the probing game reaches n, then all
nodes must have been hit since each node can only contribute one hit. By Property
3, we know that in any round, each group can have at most one worker node that
has not been hit. Initially there are n groups, and thus there must exist at least n

2

groups where each group contributes a hit. By Property 1, the n
2 leaders of these n

2

groups will each send an influential message. Once all these influential messages
are sent, our adversary will introduce failures so that there will be n

2 new groups,
with these n

2 nodes as new leaders. Since we still need to have n
2 more hits and since

each group can contribute at most one hit, among those n
2 groups, there must exist n

4

groups whose leaders will each send a second influential message. Continuing such
argument will show that in order for the total number of hits in the probing game
to reach n, some node in the Sum protocol P will have to send at least a influential
messages, where a is the total number of terms in the summation of n = n

2 + n
4 + ...+

2 + 1 + 1. Observing that a = log2 n + 1 and that a messages translate to at least a

bits completes the proof. �

Lemma 7.3.1. Under the conditions of Theorem 7.3.1, there exists a probing strategy

S such that the 4 properties described in the proof of Theorem 7.3.1 hold for all

round r where 0 ≤ r ≤ R. Here R is the total number of rounds in P’s execution over

W.

Proof. We prove via an induction on r. For r = 0, we construct S such that no probes
are done in round 0. The 4 properties trivially hold for round 0. Now consider any
round r > 0, while assuming that they hold for all rounds before r.

We first construct the set of probes that the player should do in round r. Consider
any group g in round r of P’s execution, after the adversary injects potential failures
at the beginning of round r. (Note that failures affect group membership, and thus
we explicitly state that g is defined after the failures have been injected in round r.)
By inductive hypothesis on Property 3, there is at most one worker node miss(g) in
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g that has not been hit. Thus the player knows the value of all other nodes in g. If
miss(g) exists, then the player will exhaustively enumerate all j’s such that there has
not been a probe (miss(g), j). Intuitively, j has not been ruled out as a possible value
for miss(g). For each such j, the player tries simulating P’s execution on all nodes in
g, from round 0 to round r (inclusive). Doing so will enable the player to determine
the message (if any) sent in round r by g’s group leader. Such simulation is possible
since the player has the values of all the nodes in that group, and also because by
inductive hypothesis on Property 4, the player can generate all influential messages
sent by other group leaders up to round r − 1. In particular for a node i in g, all
incoming messages from nodes outside of g must be sent from those dummy nodes
connecting node i with those group leaders in round 1 through round r − 1. The
reason is that in any round from 1 through r−1, non-leader group members can only
have neighboring dummy nodes connecting them to other nodes in their own groups
and not to node i. Furthermore, non-influential messages from a group leader can
never affect either the root or nodes in other groups (via the corresponding dummy
nodes), since those dummy nodes will be failed right after they receive those non-
influential messages. Finally, we do not yet know what influential messages other
group leaders will send in round r, but those will not affect the potential message
sent in round r by g’s group leader.

We say that a (miss(g), j) combination is a candidate probe if miss(g) exists and
by the above process, the player has determined that there will be a message sent
in round r by g’s group leader if j is the value of node miss(g). (We do not yet
know whether this message will be influential.) Next the player orders all candidate
probes, using g as the primary key and j as the secondary key. In round r, the
player sequentially issues the probes in this ordered list, subject to the following two
constraints. First, if a certain (miss(g), j) probe is a hit, then the player will skip all
following probes in the form of (miss(g), j′) for all j′. Second, if the number of hits
so far is such that the adversary is ready to inject the next batch of failures, the player
skips all the remaining probes in the ordered list.

We next prove that the probing strategy constructed as above does satisfy the 4 prop-
erties. Property 1 clearly holds since a hit of (miss(g), j) means that node miss(g)
indeed has a value of j. Given the trial simulation and since everything is deter-
ministic, miss(g)’s group leader will send a message in round r of P’s execution.
Furthermore, since the probes are done sequentially and since the player must have
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encountered this hit before the adversary is ready to inject the next batch of failures,
the adversary will not fail the dummy node connecting miss(g)’s group leader to the
root at the beginning of round r + 1.

For Property 2, we need to prove that if a group g’s group leader sends an influential
message in round r, then all nodes in g have been hit by the end of round r. If
miss(g) does not exist, we already hit all nodes in g. If miss(g) exists, let j be the
value of the node miss(g). Clearly, there has never been a probe (miss(g), j). By
our construction of the probing strategy in round r, (miss(g), j) will be a candidate
probe. If the player indeed probes (miss(g), j) in round r, then miss(g) will be hit
in round r and we are done. If the player does not probe (miss(g), j) in round r,
the only possibility is that the adversary is ready to inject the next batch of failures
at the beginning of round r + 1. In such a case, the adversary will fail the dummy
node connecting g’s group leader to the root, making the message (if any) sent by
g’s group leader non-influential.

For Property 3, if the adversary does not inject failures at the beginning of round r+1,
then clearly the property inherited from the beginning of round r continues to hold
at the beginning of round r + 1. If the adversary does inject failures at the beginning
of round r + 1, then the group membership in round r and the group membership in
round r + 1 are different. Let g1, g2, ..., gl be the l groups in round r, immediately
after the adversary potentially inject failures at the beginning of round r. Without
loss of generality, assume that after the failures are injected, gi+l/2 is merged with
gi (for 1 ≤ i ≤ l/2) to form a new group, with gi’s leader being the leader of the
new group. By inductive hypothesis on Property 3, immediately after the adversary
potentially injects failures at the beginning of round r, gi+l/2 (1 ≤ i ≤ l/2) has at most
one node that has not been hit. Given how the adversary injects failures, we know
that the leader of gi (1 ≤ i ≤ l/2) must have sent an (influential) message in round r

or earlier and after group gi is formed. By Property 2 (both in round r and in earlier
rounds), we know that all nodes in group gi have been hit by the end of round r. This
means that after merging gi and gi+l/2, the new group still only has at most one node
that has not been hit.

Finally for Property 4, consider any given group g whose leader sends an influential
message in round r. By Property 2, we know that all nodes in g have been hit by
the end of round r, and thus the player knows all their values. Same as in the earlier
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trial simulation, by inductive hypothesis on Property 4, the player can generate all
influential messages sent by other group leaders up to and including round r−1. This
means that the player can generate all incoming messages (up to and including round
r − 1) that may affect nodes in g. By same arguments as earlier, the player will be
able to simulate P’s execution on all nodes in g from round 0 to round r (inclusive).
Also note that the messages received in round r, which we do not know yet, will not
affect the messages sent by g’s group leader in round r. Thus the player can generate
that influential message sent by the group leader in round r. �

7.4 Lower Bound on the Number of Hits in the Prob-
ing Game

With the connection between Sum and the probing game proved in the previous sec-
tion, we now intend to obtain a lower bound on the number of hits in the probing
game. Such lower bound will later translate to a lower bound on the communication
complexity of Sum. A simpler version of this probing game was analyzed in [25] to
reason about silence-based communication, in a failure-free setting. There the player
is not allowed to interleave probes on wi with probes on wi′ . Thus for our purpose,
we prove the following lower bound result on the probing game where the probes
may be arbitrarily interleaved:

Lemma 7.4.1. Consider the set U of all the (3n)n possible inputs to the probing game

(n ≥ 2) and any given (adaptive) deterministic probing strategy that can give correct

(zero-error) results for at least 2
3 fraction of those inputs. There must exist an input

such that using that strategy, the player encounters n hits under that input.

Proof. We prove by contradiction, and assume that there exists a deterministic prob-
ing strategy S that gives correct results for at least 2

3 fraction of inputs and has at
most n − 1 hits for all inputs.

Consider any given input W = (w1,w2, ...,wn) ∈ U, which is initially unknown to
the player. At any point of time during the game, we define wi’s residual domain
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(denoted as Di) to be the set { j} if there has been a probe (i, j) so far which is a hit.
Otherwise wi’s residual domain Di is defined to be the set:

{0, 1, 2, ..., 3n − 1} \ { j | there has been a probe (i, j)}

Intuitively, wi’s residual domain is the possible domain of wi given the probe out-
comes so far. When the game ends under S, W has a unique residual domain vector

D = (D1,D2, ...,Dn), where Di is the residual domain of wi. We next prove a simple
useful property on W’s residual domain vector to facilitate later reasoning. We claim
that for any input Z = (z1, z2, ..., zn) where zi ∈ Di, the probes done by the player and
all the probe outcomes must be identical under input W and input Z. This in turn
implies that Z will have the same residual domain vector as well as the same final
output as that of W. We prove this claim for the kth probe, via a simple induction on
k. The induction base for the zeroth probe clearly holds. Now consider the kth probe.
We already know that all previous probes and their outcomes are identical under W

and under Z. Since the player is deterministic, we know that the kth probe will be
the same under W and Z. Let this probe be (i, j). If (i, j) is a hit for W, then we must
have Di = { j}. Since zi ∈ Di, we know that zi = j and the probe (i, j) will be a hit for
Z as well. If (i, j) is a miss for W, then we must have j < Di. Since zi ∈ Di, we know
that zi , j and thus the probe will be a miss for Z as well. Thus the outcome of the
kth probe will be identical under input W and input Z.

We now leverage the above property to prove the following claim. Define U′ to be
that set of inputs such that for each input W ∈ U′, when the game ends, in W’s
residual domain vector D = (D1,D2, ...,Dn) there exists some Di where |Di| ≥ 2. We
claim that in order for the player to generate results correctly for at least 2

3 fraction
of all the inputs, |U′| must be no larger than 2

3 |U |.

We prove the above claim by contradiction and assume that |U′| > 2
3 |U |. We partition

U′ into disjoint subsets such that all inputs in the same subset have the same residual
domain vector. Consider any such subset U′D where all inputs in the set has the
same D = (D1,D2, ...,Dn) as their residual domain vectors. By the earlier property
on residual domain vector, we know that U′D contains at least all those inputs Z

where zi ∈ Di for 1 ≤ i ≤ n, and all such inputs Z will result in the same output.
Furthermore, if an input Z′ is such that z′i < Di for some i, then it is impossible for
Z′ to be in U′D. In other words, U′D must be exactly the set of those inputs Z where
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zi ∈ Di for 1 ≤ i ≤ n. Next without loss of generality, assume that |D1| ≥ 2. Consider
any given j2 ∈ D2, j3 ∈ D3, ..., jn ∈ Dn. For each j ∈ D1, Z = ( j, j2, j3, ..., jn) must be
in U′D, and the player will produce the same output. Such output can be correct for at
most one j. This in turn means that the player can generate a correct result for at most
1
2 fraction of the inputs in U′D. Therefore for all the inputs in the set U′, the player can
generate correct results for at most 1

2 fraction as well. Thus the player can generate
a result correctly for at most 1

2 |U
′|+ |U \U′| = 1

2 |U
′|+ |U | − |U′| = |U | − 1

2 |U
′| < 2

3 |U |

inputs.

We have just proved that |U \ U′| ≥ 1
3 |U |. We next use this result to prove that under

some input in U \ U′, the number of hits will be n. For every input W ∈ U \ U′, we
know that W’s residual domain vector D = (D1,D2, ...,Dn) satisfies |Di| = 1 for all i.
Essentially, the player has “pinpointed” the value of each wi and knows W precisely,
instead of only its sum. This means that in the probing game, the player actually
needs to learn the input precisely for at least 1

3 fraction of all the inputs. We next
prove that for the player to achieve such a goal, there will be n hits on at least one of
the inputs in U \ U′.

Given such a goal, consider any given point of time where the player decides to do
a probe (i, j). (This necessarily means that there has not been a hit on wi, and also
means that j ∈ Di where Di is current residual domain of wi.) Since the goal is to
learn the input precisely, doing such a probe is no different from doing any other
probe (i, j′) as long as j′ ∈ Di. With such an observation, we can now make the
following without loss of generality assumption: For any given input W and any
given i, consider all probes done by the player in the form of (i, j0), (i, j1), (i, j2),
. . . . Without loss of generality, we can assume that j0 = 0, j1 = 1, j2 = 2, . . . . We
know that under the probing strategy S, there are at most n − 1 hits under all inputs,
including all inputs W ∈ U \U′. Consider any given W ∈ U \U′ and let i be the index
of the component that has not been hit. Since |Di| = 1 and by our earlier without loss
of generality assumption, we know that wi = 3n − 1. However, the number of such
inputs is:

|{W | W ∈ U and ∃i such that wi = 3n− 1}| = (3n)n − (3n− 1)n <
1
3

(3n)n , for n ≥ 2.

This contradicts with |U \ U′| ≥ 1
3 |U |. Thus under some W ∈ U \ U′, there will be n

hits. �
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7.5 Proof for Theorem 1.4.2

We are now ready to prove a series lemmas, which directly lead to Theorem 1.4.2.
The following lemma is proved by first establishing a connection between random-
ized complexity and distributional complexity via well-known techniques [50], and
then using Theorem 7.3.1 and Lemma 7.4.1 to obtain a lower bound on the distribu-
tional complexity. In the following, the notation Rsyn,ft

0,δ simply means Rsyn,ft
ε,δ with

ε = 0.

Lemma 7.5.1. Consider any b ≥ 1 and any integer N =
(n+1)(n+2)

2 where n is a power

of 2. If in the Sum problem each node may take an integer value in {0, 1, ..., 3n − 1},
then there exists a connected topology G with N nodes, such that:

R
syn,ft
0, 1

3
(Sum,G, 2N, b) ≥ log n + 1

Proof. We let G be the topology constructed in Section 7.2, and consider the deter-
ministic and adaptive adversary described there. It is easy to verify the number of
edge failures is at most 2N. For the sake of convenience, we view this adversary
as part of the Sum protocol. Namely, given any randomized Sum protocol, we can
consider a randomized “augmented protocol” which repeatedly executes one round
of the randomized Sum protocol and then invokes the (deterministic) adversary to
potentially inject failures. We thus no longer need to discuss the adversary separate-
ly.

Now consider the optimal randomized augmented protocol that generates a zero-
error result with probability at least 2

3 for all input W, while incurring a worst-case

(over the coin flips) communication complexity of Rsyn,ft
0, 1

3
(Sum,G, 2N, b). If we

subject this protocol against an input chosen uniformly randomly out of all possible
inputs, then trivially the protocol still generates a zero-error result with probabili-
ty at least 2

3 , where the probability is taken over both the input distribution and the
random coin flips. Now let us view this randomized augmented protocol as a dis-
tribution over deterministic augmented protocols. Then there must exist at least one
deterministic protocol P which can generate a zero-error result with probability at
least 2

3 under this uniform input distribution, since otherwise the expectation taken
over all deterministic augmented protocols cannot reach 2

3 . Finally, let a denote the
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maximum number of bits sent by a node, across all nodes when we run P against
the worst-case input (that maximizes a). Since P is selected by the randomized al-
gorithm with positive probability and since Rsyn,ft

0, 1
3

(Sum,G, 2N, b) is defined over

worst-case coin flips, we have a ≤ Rsyn,ft
0, 1

3
(Sum,G, 2N, b).

On the other hand, Theorem 7.3.1 tells us that given such a P, there exists a corre-
sponding probing strategy S in the probing game so that using S, the player in the
probing game can generate the same result as P. Since P generates a zero-error re-
sult for at least 2

3 fraction of the inputs, we know that the player using S generates a
zero-error result for so many inputs as well. Next by Lemma 7.4.1, there exists some
input W such that the player encounters n hits. In turn, Theorem 7.3.1 now tells us
that when running the Sum protocol P against this input W, some node sends at least
log n + 1 bits. Thus we have Rsyn,ft

0, 1
3

(Sum,G, 2N, b) ≥ a ≥ log n + 1. �

The following corollary extends the above lemma to our standard setting where n-
odes only have binary values and also where N can be any integer.

Corollary 7.5.1. Consider any b ≥ 1 and any integer N ≥ 5. Let n be the largest

integer that is a power of 2 and satisfies (n+1)(n+2)
2 + n(3n − 1) ≤ N. There exists a

connected topology G with N nodes, such that:

R
syn,ft
0, 1

3
(Sum,G, 2N, b) ≥ log n + 1

Proof. Let N1 =
(n+1)(n+2)

2 and we first construct a connected topology G1 with N1

nodes as described in Section 7.2. Next we attach (3n − 1) degree-1 follower nodes
to each work node in G1, and attach (N − N1 − n(3n − 1)) degree-1 nodes to the
root of G1. All those degree-1 nodes attached to G1’s root will always have value
0. Let G be the resulting N-node connected topology. One can trivially obtain a
reduction from the Sum problem on G1 (where each worker node has an integer value
in {0, 1, ..., 3n − 1}) to the Sum problem on G (where each node has a binary value).
In particular in the reduction, the root in G1 will simulate the root in G and also all
the degree-1 neighbors of the root in G. Each worker node in G1 will simulate the
corresponding worker node and its (3n − 1) followers in G. If the worker node i in
G1 has a value of wi, then in G the first wi of the corresponding work node’s follower
nodes will have value 1 and the remaining (3n − 1 − wi) follower nodes will have
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value 0. Combining this reduction with the lower bound on the Sum problem on G1

from Lemma 7.5.1, we have Rsyn,ft
0, 1

3
(Sum,G, 2N, b) ≥ log n + 1. �

The next corollary extends the above corollary to Rsyn,ft
ε, 1

3
for ε ≥ 1

N .

Corollary 7.5.2. Consider any b ≥ 1, any integer N ≥ 15, and any ε ∈ [ 1
N ,

1
15 ]. Let

n be the largest integer that is a power of 2 and satisfies (n+1)(n+2)
2 + n(3n − 1) ≤ 1

3ε .

There exists a connected topology G with N nodes, such that:

R
syn,ft
ε, 1

3
(Sum,G, 2N, b) ≥ log n + 1

Proof. Let N1 = 1
3ε and we first construct a connected topology G1 with N1 nodes

such that Rsyn,ft
0, 1

3
(Sum,G1, 2N, b1) ≥ log n + 1 for any b1. Corollary 7.5.1 ensures

that such G1 exists. Next we attach N2 = N − N1 nodes to the root of G1, and let
the resulting topology be G. Those N2 nodes will always have a value of 0 and will
never fail. Note that the final sum on G can never be above 1

3ε . If we have at most ε
relative error on the final sum on G, then the absolute error is at most 1

3ε ·ε = 1
3 . Since

the exact sum must be an integer, to generate a result with ε relative error in G, the
protocol intuitively needs to produce a zero-error result. Putting it another way, if
the output is not an integer, we can always output the closest integer instead. Doing
so will never cause an output that was previously within ε-error bound to exceed the
ε-error bound after the conversion. The above observation enables a trivial reduction
from Rsyn,ft

0, 1
3

(Sum,G1, 2N, b1) to Rsyn,ft
ε, 1

3
(Sum,G, 2N, b), which gives:

R
syn,ft
ε, 1

3
(Sum,G, 2N, b) ≥ Rsyn,ft

0, 1
3

(Sum,G1, 2N, b1) ≥ log n + 1

�

Combining Corollary 7.5.1 and Corollary 7.5.2 enables us to easily prove Theo-
rem 1.4.2:

Proof for Theorem 1.4.2. We first prove the lower bound on Rsyn,ft
0 (SumN , b). For

any N ≥ 5, consider the N-node connected topology G as constructed by Corol-
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lary 7.5.1. Together with Lemma 2.6.1, we trivially have:

R
syn,ft
0 (SumN , 2N, b) ≥

1
3
R

syn,ft
0, 1

3
(SumN , 2N, b) ≥

1
3
R

syn,ft
0, 1

3
(Sum,G, 2N, b) ≥

1
3

(log n + 1)

By Corollary 7.5.1, here n is the largest integer that is a power of 2 and sat-
isfies (n+1)(n+2)

2 + n(3n − 1) ≤ N. Thus we have n = Θ(
√

N), which implies

R
syn,ft
0 (SumN , 2N, b) = Ω(log N).

We next prove the lower bound on Rsyn,ft
ε, 1

3
(SumN , 2N, b) for ε ≥ 1

N . For any N ≥ 15,
consider the N-node connected topology G as constructed by Corollary 7.5.2. We
trivially have:

R
syn,ft
ε, 1

3
(SumN , 2N, b) ≥ Rsyn,ft

ε, 1
3

(Sum,G, 2N, b) ≥ log n + 1

By Corollary 7.5.2, here n is the largest integer that is a power of 2 and sat-
isfies (n+1)(n+2)

2 + n(3n − 1) ≤ 1
3ε . Thus we have n = Θ( 1

√
ε
), which implies

R
syn,ft
ε, 1

3
(SumN , 2N, b) = Ω(log 1

ε
).

Finally, for ε = Ω( 1
N ) but ε < 1

N (in which case ε is necessarily Θ( 1
N )), we have:

R
syn,ft
ε, 1

3
(SumN , 2N, b) ≥ Rsyn,ft

1
N ,

1
3

(SumN , 2N, b) = Ω(log N) = Ω(log
1
ε

)

�
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Chapter 8

Upper Bound on the FT
communication complexity of general
CAAFs

This chapter proposes a novel fault-tolerant protocol for Sum. From the protocol,
we show an upper bound on the FT communication complexity of Sum as following
theorem:

Theorem 8.0.1. For any b ≥ 21c and 1 ≤ f ≤ N, Rsyn,ft
0 (SumN , f , b) = O(( f

b + 1) ·
min( f log N, log2 N)).

As can be seen later, same as some existing Sum protocols, our Sum protocol and
its guarantees trivially generalized to arbitrary CAAFs as well. This gives an upper
bound on general CAAFs as follow:

Corollary 1.4.2 (Restated). For any b ≥ 21c and 1 ≤ f ≤ N,

R
syn,ft
0 (CAAFN , f , b) = O

((
f
b

+ 1
)
·min

(
f log N, log2 N

))

In the following, Section 8.1 first gives an overview of our fault-tolerant protocol
for Sum. The protocol relies on two novel building blocks, i.e., Agg and Veri. Sec-
tion 8.2 presents Agg and proves its properties while Section 8.3 is for Veri. Having

98



CHAPTER 8. UPPER BOUND ON THE FT COMMUNICATION
COMPLEXITY OF GENERAL CAAFS

N number of nodes in the topology G
b Sum protocol’s time complexity, in terms of flooding rounds
n size of two-party problems
d diameter of the topology G
f upper bound on the number of edge failures
c diameter of the topology never exceeds cd due to failures
t parameter in Agg and Veri
l a node’s level in the aggregation tree

Table 8.1: Key notations in Chapter 8.

these properties, we will finally prove Theorem 8.0.1 in Section 8.4. Our protocol
assumes that f is known to the protocol. Section 8.5 generalize our protocol to deal
with unknown f .

8.1 Overview and Intuition

This section gives an overview of the structure of our upper bound protocol (Al-
gorithm 3) that is used to prove Theorem 8.0.1. Our protocol relies on two novel
building blocks:

• We first propose a novel deterministic aggregation protocol Agg (parameter-
ized by t ≥ 0), with time complexity of O(1) flooding rounds and communi-
cation complexity of O((t + 1) log N) bit. If the actual number of edge failures
is no more than t, Agg always generates a correct result. Note that setting
t = f directly gives us O(1) time complexity and O( f log N) communication
complexity, which is already much better than the two existing Sum protocols
mentioned earlier. The key technique in Agg is to take speculative actions to
save time, instead of waiting for failures to be detected and then falling back to
a second plan. We further carefully design a distributed mechanism to deter-
mine which speculative actions’ effects should be retained or discarded, while
using only local information.

• If the number of edge failures exceeds t, Agg may unknowingly generates a
wrong result. We hence design a novel distributed verification protocol Veri,
which aims to tell whether Agg’s result is correct. Veri is also parameterized
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by t and incurs O(1) time complexity and O((t + 1) log N) communication
complexity. The key technique in Veri is that we allow it to have one-sided
error. Specifically, we allow Veri to sometimes err when Agg does not err.
Veri also employs a similar distributed mechanism to the one in Agg to avoid
the need for global information in its execution.

Algorithm 3 Our upper bound protocol. Here b, c, and f are input parameters with
b ≥ 21c.

1: x = bb−2c
19c c; use public coins to select log N integers, with replacement, from the range

of [1, x]; let the selected integers be y1, y2, ..., ylog N , in non-decreasing order;
2: for all integer i ∈ [1, log N] where (i = 1 or yi , yi−1) do
3: sequentially invoke Agg and Veri, both with t = b

2 f
x c, from flooding round ((yi − 1)×

19c + 1) to (yi × 19c);
4: if (Agg does not abort and Veri outputs true) then output Agg’s result and terminate;
5: end for
6: invoke the existing brute-force Sum protocol in the last 2c flooding rounds, output its

result, and terminate;

Here we give an overview of the structure of our upper bound protocol (Algorithm 3)
that is used to prove Theorem 8.0.1. Given total b flooding rounds as a constraint
on time complexity, we divide the first b − 2c flooding rounds into x = Θ(b) inter-

vals, with each interval having Θ(1) flooding rounds. Thanks to the small O(1) time
complexity of Agg and Veri, running Agg followed by Veri will take at most one
interval. If the f edge failures were evenly distributed across all the intervals, then
each interval would have f

x edge failures. In such a case, running Agg parameterized
with t =

f
x in any single interval would already produce a correct result, while in-

curring a desirable communication complexity of O(( f
b + 1) log N). Here recall that

t is the number of edge failures that Agg intends to tolerate, and the communication
complexity of Agg is O((t + 1) log N).

Since the edge failures are not always evenly distributed, we need a more complex
design. Specifically, the nodes use public coins to select log N intervals uniformly
randomly. In each selected interval, the nodes execute Agg and Veri sequentially,
both with t = b

2 f
x c. One can easily see that with probability at least 1

2 , a random
interval has no more than t edge failures. Hence with probability at least 1 − 1

N ,
the number of edge failures in some selected interval is small enough for Agg to
tolerate. But if there have been more than t edge failures in an interval, then Agg
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may unknowingly produce a wrong result. A difficulty here is that we cannot easily
determine the number of edge failures that have occurred in a given interval, since it
involves fault-tolerant counting while tolerating potential additional failures during
counting. Hence instead of checking the number of edge failures in a given interval,
our protocol invokes Veri after Agg, and then checks the condition at Line 4. If the
condition is met, the protocol outputs Agg’s result and terminates. By Theorem 8.2.3
and 8.3.2 later, such a result must be correct. Furthermore by Theorem 8.2.2 and
8.3.2 later, if the number of edge failures in an interval is no more than t, then the
condition at Line 4 is guaranteed to be met.

Having given an intuitive overview on the protocol’s correctness, we move on to
look at its communication complexity. Since there can be at most f intervals with
failures, Agg and Veriwill be executed at most min( f +1, log N) = O(min( f , log N))
times. The communication complexity incurred by each Agg and Veri invocation
is O((t + 1) log N) bits, resulting in total O(( f

b + 1) min( f log N, log2 N)) bits in all
the intervals. Next, the probability of reaching Line 6 is at most 1

N . As explained
in Section 1.3.1, the communication complexity of the brute-force Sum protocol is
O(N log N). Hence the communication complexity incurred at Line 6, over average
coin-flips, is O(log N).

The above intuitions eventually lead to Theorem 8.0.1, whose full proof is deferred
to Section 8.4. Next in Section 8.2 and 8.3, we focus on Agg and Veri and prove
their properties.

8.2 The Agg Protocol

Overview. Agg has an input parameter t (t ≥ 0), which is the number of edge failures
that it intends to tolerate. When running Agg, a node will flood1 a special symbol
to abort Agg once it has sent (11t + 14)(log N + 5) bits. Such an abort will never be
triggered (as we prove later) if the actual number of edge failures is no larger than t.
If the actual number of edge failures exceeds t, aborting before the communication
complexity gets large enables Agg to properly bound its communication complexity.

1Throughout this chapter, a node floods a certain message by first sending the message to its
neighbors, and then the other nodes simply forward that message upon first receiving it.
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Agg first constructs a spanning tree and does a standard tree-based aggregation,
where each non-root node sends its partial sum upstream along the tree. The par-

tial sum of a node (either non-root or root) is the sum of the node’s own input and
all the partial sums received from its children. A key impact of failures is that they
may block and prevent certain partial sums from propagating upstream. If a partial
sum from a node B is blocked, a natural solution is to have B flood its partial sum,
since flooding has the maximum resilience against failures. If the flooding does
reach the root, the root can then incorporate B’s partial sum to the final result. A
second thought, however, shows that even with flooding, B’s partial sum may still
fail to reach the root if B’s entire neighborhood fails immediately after B initiates
the flooding. When this happens, the system needs to fall back and flood the partial
sums of B’s children, or B’s descendants if B’s children have also failed.

The key challenge here is that we need to do this within O(1) flooding rounds. We
cannot afford to wait to see whether B’s partial sums get successfully flooded, and
then fall back to flooding some other partial sums if things did not go well. To save
time, we will have to do floodings speculatively, before knowing which floodings
will be needed. This in turn leads to a second challenge: There will be overlap (or
duplicates) in the partial sums received by the root (e.g., partial sums from both B and
some of B’s descendants). We need a careful mechanism to avoid double counting,
which is non-trivial, especially without global knowledge about the tree topology.

The following sections present the details of Agg. At a high-level, Agg has 3 se-
quential phases: i) spanning tree construction and tree-aggregation (Section 8.2.1),
ii) identifying potentially blocked partial sums and (speculatively) flooding them
(Section 8.2.2), and iii) using a distributed mechanism based on witnesses to avoid
double counting (Section 8.2.3). To facilitate understanding, the discussion in these
3 sections will be intuitive — we leave the pseudo-code to Section 8.2.4 and formal
proofs to Section 8.2.5 and Section 8.2.6.

8.2.1 Tree Construction/Aggregation and Some Key Concepts

This section first describes the tree construction/aggregation phase in Agg, which is
largely standard. Next we formalize a number of new concepts that are key for our
later design.
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Tree construction and aggregation. To construct the tree, the root first sends a
tree construct message. A node B waits for the first tree construct message it receives.
Let A denote the sender of that message. B sends an ack message indicating to A that
B is A’s child, and then sends a tree construct message itself to continue constructing
the tree. B’s failing before sending ack will be equivalent to B not present in the
network. The failure of B after sending ack will be dealt with later in Agg.

From now on in this chapter, the notions of “parent”, “child”, “ancestor”, and “de-
scendant” will always be with respect to this tree. Next Agg does standard tree-
aggregation. Consider a given node B, and let l be its level (i.e., its distance from the
root). Node B acts in the (cd − l + 1)th round during tree-aggregation, by summing
up its own input with all the partial sums received from its children so far, and then
sending the new partial sum to B’s parent. Note that B does not necessarily wait for
a message from each of its children, since some may have failed. Each partial sum
thus is the sum of inputs from a subset of the nodes, and we also say that the partial
sum includes those inputs.

Some key concepts. We say that a node B at level l experiences a critical failure

if it fails after sending ack during tree construction and before taking its action in
the (cd − l + 1)th round during tree-aggregation. Such a critical failure can be easily
detected by B’s parent A (if A is alive) during that round, when A does not receive
the scheduled message from B. We want critical failure to become global knowledge
when possible. To do so, A will flood a message claiming that B experiences a critical
failure. We say that a flooding is successful if the flooded message eventually reaches
the root. One can easily see that a successful flooding must reach all live nodes
within cd rounds. We say that a critical failure is visible if it is eventually seen by
the root. Otherwise it is invisible. To help understanding, the next will first assume
that all critical failures are visible, and then remove that assumption in Section 8.2.6
(see Lemma 8.2.3).

Imagine that we remove all those edges connecting visible critical failures with their
corresponding parents. Doing so partitions the aggregation tree into many smaller
trees which we call fragments (Figure 8.1). A node’s local ancestors (descendants)

are all its ancestors (descendants) within the node’s fragment. Each fragment also
has its own local root. A fragment has a clean property: The partial sum of a node n-
ever includes inputs from nodes outside of its fragment, since those inputs have been
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root (also local root)

visible
critical
failurefragments

invisible
critical
failure

local root

Figure 8.1: Example aggregation tree and fragments.
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Figure 8.2: Why speculative flooding is needed.

blocked by the visible critical failures. Hence we can restrict most of our discussions
to within a fragment.

A node A’s partial sum is a representative of a node B iff i) A is either B itself or A

is B’s local ancestor, and ii) the tree path from A to B (excluding A and B) contains
no invisible critical failures. Intuitively, B’s representative must include B’s input. A
representative set is a set of partial sums with the following property: For any node B,
if B is alive at (has failed by) the end of the Veri execution that immediately follows
Agg, then a representative set contains exactly one (at most one) representative of B.
Intuitively, if we obtain a representative set and sum up all the partial sums there, we
get a correct sum result.

8.2.2 Identify and Flood Potentially Blocked Partial Sums

With the above notion of representative set, our goal in the remainder of Agg is for
the root to obtain a representative set. If there were no critical failures at all, then
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the root’s partial sum by itself is already a representative set. With critical failures, a
representative set will contain not only the root’s partial sum but also those blocked
partial sums. Consider the example in Figure 8.2. Here, the root’s partial sum, A’s
partial sum, and F’s partial sum form a representative set. Imagine that we have A

and F flood their partial sums, so that the root can get those and add those to the final
result. However, A, B, and C all fail right before A intends to flood. Hence A’s partial
sum is lost and we now need D and E to flood their partial sums, which will form a
second representative set together with the root’s and F’s partial sum. Ideally, D and
E should do so after they know that A’s flooding has failed. Unfortunately, it can
take one flooding round before such determination can be made, since A’s flooding
could traverse a long non-tree path before reaching E (Figure 8.2). Similarly, if E’s
flooding also fails, then E’s local descendants (if any) may need to wait one more
flooding round before taking action.

This example shows that to have small time complexity, nodes need to flood specu-
latively, before knowing that the flooding is needed. Agg uses the following elegant
design to decide which node initiates flooding at what time: The root always floods
its partial sum in the first round of the partial sum flooding phase. A non-root node
B at level l floods its partial sum in the (l + 1)th round of the phase, iff in that round
it does not receive any flooding message (containing any partial sums) from its par-
ent A. Here A may or may not be the initiator of the corresponding flooding. This
design has two important features. First, the design never does excessive floodings:
If A has not failed by the (l + 1)th round, B must receive some message from A and
will not initiate its own flooding. This implies that the total number of floodings
is linear with the number of edge failures. Second, Lemma 8.2.4 in Section 8.2.6
proves that the design always floods a superset of those partial sums that need to be
flooded. Namely, if B did not flood its own partial sum, then B must have forwarded
a “better” partial sum that includes all those inputs included by B’s partial sum.

8.2.3 Avoid Double Counting While Using Only Limited Infor-
mation

The root potentially receives many flooded partial sums, and it needs to pick a rep-
resentative set to avoid double counting. The partial sums seen by the root can be
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classified into three mutually-exclusive categories: The partial sum of a node B is
dominated if the root also sees A’s partial sum where A is B’s local ancestor. A non-
dominated partial sum of a node B is compulsory if either B or at least one of B’s
local descendants is still alive at the end of the Veri execution that immediately fol-
lows Agg, otherwise the non-dominated partial sum is called optional. Lemma 8.2.5
in Section 8.2.6 proves that the union of all compulsory partial sums and any subset
of optional partial sums forms a representative set.

Without knowledge of the global tree topology for labeling each partial sum, Ag-
g maintains distributed topology information to do so. Specifically, when initially
constructing the tree, Agg lets each node learn the ids of its nearest 2t ancestors.
Interestingly, such limited information is already sufficient for Agg to select a repre-
sentative set, in the following way via witnesses.

Having witnesses label partial sums. A node B’s witness is either B itself or some
local descendant of B whose distance to B is at most t. Let the local root of B’s
fragment be X and consider B’s witness C. First, if C sees X among its 2t ancestors,
then its 2t ancestor must contain all of B’s local ancestors. Note that partial sums
seen by the root must be seen by all live nodes as well. Hence if C sees a partial
sum from some local ancestor of B’s, C knows that B’s partial sum is dominated
and will thus flood its determination 〈dominated, B〉 to inform the root. Otherwise
C floods its determination 〈compulsory‖optional, B〉. When B has multiple witnesses,
such determination may be flooded multiple times. This does not increase commu-
nication complexity since all the determinations are identical, and a node only needs
to participate in one such flooding.

Second, if C does not see X among its 2t ancestors, then there must be at least
2t − t = t nodes on the tree path from B to X (excluding B and X). If the number of
edge failures is no more than t, then there must be at least one live node on that tree
path between B and X. That live node must have successfully flooded a partial sum
of either itself or one of its local ancestors. This implies that B’s partial sum must
be dominated. C will thus flood the determination 〈dominated, B〉. If the number of
edge failures exceeds t, such determination might be wrong, which will be dealt with
later by Veri.

Finally, it is possible for all of B’s witnesses to fail (or for their floodings to fail to
reach the root). In such a case, B’s farthest local descendant must be no more than
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t hops away from B, since otherwise the number of edge failures will be more than
t. (Again, the case where the number of edge failures exceeds t will be dealt with by
Veri.) This implies that B and its local descendants must have all failed, since they
are all B’s witnesses. Hence if the root does not receive any determination on B’s
partial sum, the root knows that the partial sum cannot be compulsory, and must be
either dominated or optional.

Take all three cases into account and by Lemma 8.2.5 discussed earlier, to form a
representative set, the root simply includes in the set a partial sum from a node B iff
〈compulsory‖optional, B〉 has been received.

8.2.4 Pseudo-Code for The Agg Protocol

Algorithm 4 presents the pseudo-code for the Agg protocol. Following are some
additional comments on the pseudo-code. By default, the sender of a message always
attaches its id on the message (not shown in the pseudo-code), allowing the receiver
to infer the sender. A “ ” field in a received message means that we do not care about
the value of that field. The pseudo-code allows a node to send multiple messages in a
single round. In actual implementation, all these messages should be combined into
one, and can thus be sent in one round. The pseudo-code invokes the flood primitive
in several places, whose (trivial) implementation is not included in the pseudo-code.
For a node to flood a message, the node sends the message to its neighbors. Any
node receiving a flooded message simply forward that message upon first receiving
that message. The initiating node is called the source of the flooding. Note that if a
node receives a second flooded message (potentially initiated by a different source)
with the same context, the node will not forward it again. Finally, each node in
Agg keeps track of the total number of bits it has sent. Once the number reaches
(11t + 14)(log N + 5), a node will flood a special symbol to cause all nodes to abort
Agg. This mechanism is not shown in the pseudo-code, for clarity.

8.2.5 Time Complexity and Communication Complexity of Agg

Following theorem summarizes the time and communication complexity of Agg
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Algorithm 4 The Agg Protocol
1: /* Tree Construction Phase (total 2cd + 1 rounds) */
2: if (I am the root) then
3: level = 0; parent = null; ancestor[i] = null for all i ∈ [1, 2t]; children = ∅;
4: send 〈tree construct, level, ancestor〉 in round 1;
5: else
6: wait to receive the first message (with arbitrary tie breaking if multiple messages received in the same

round) in the form of 〈tree construct, sender level, sender ancestor 〉 from any node u;
7: let the current round be r; level = sender level + 1; parent = u; children = ∅;
8: ancestor[1] = parent; ancestor[i] = sender ancestor[i − 1] for all i ∈ [2, 2t];
9: send 〈ack, parent〉 in round r; send 〈tree construct, level, ancestor〉 in round r + 1;

10: end if
11: upon receiving message in the form of 〈ack, my id〉 from any node v: children = children

⋃
{v};

12: /* Aggregation Phase (total 2cd + 1 rounds) */
13: psum = my input; max level = level; // psum is for “partial sum”
14: for all v ∈ children do
15: if (in round cd − level + 1 of this phase, message in the form of 〈aggregation, sender psum,

sender max level〉 from node v is received) then
16: psum = psum + sender psum; max level = max(max level, sender max level);
17: else
18: flood 〈critical failure, v〉 in round cd − level + 1 of this phase;
19: end if
20: end for
21: send 〈aggregation, psum, max level〉 in round cd − level + 1 of this phase;
22: /* Speculative Flooding Phase (total 2cd + 1 rounds) */
23: if (I am the root) then flood 〈flooded psum, my id, psum〉 in round 1 of this phase;
24: if (I am not the root and no message from parent is received in round level + 1 of this phase) then
25: flood 〈flooded psum, my id, psum〉 in round level + 1 of this phase;
26: end if
27: /* Partial Sum Selection Phase (total cd + 1 rounds) */
28: ancestor[0] = my id;
29: for all message received in the form of 〈flooded psum, source id, 〉 do
30: let i ∈ [0, 2t] be the smallest i such that ancestor[i] = source id; let i = ∞ if such i does not exist;
31: let j ∈ [0, 2t] be the smallest j such that ancestor[ j] is the root or 〈critical failure, ancestor[ j]〉 has

been received; let j = ∞ if such j does not exist;
32: dom = I have received a message 〈flooded psum, ancestor[k], 〉 with k ∈ [i + 1, j];
33: if (i ≤ t) and (i ≤ j) then // I am a witness
34: If ( j = ∞) then flood 〈dominated, source id〉 in round 1 of this phase;
35: If ( j , ∞ and dom) then flood 〈dominated, source id〉 in round 1 of this phase;
36: If ( j , ∞ and (!dom)) then flood 〈compulsory‖optional, source id〉 in round 1 of this phase;
37: end if
38: end for
39: /* Output Phase (only executed by the root) */
40: sum = 0;
41: for all received message in the form of 〈flooded psum, source id, source psum〉 do
42: if (〈compulsory‖optional, source id〉 has been received) then sum = sum + source psum;

// messages 〈dominated, source id〉 are not actually needed, and we sent those only for clarity
43: end for
44: output sum;
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Theorem 8.2.1. The time complexity and communication complexity of Agg are no

more than 11c flooding rounds and O((t + 1) log N) bits, respectively.

Proof. The pseudo-code in Algorithm 4 obviously shows that Agg terminates within
7cd + 4 rounds, which are at most 11c flooding rounds. For communication com-
plexity, recall that in Agg, a node will flood a special symbol to abort Agg once it
has sent (11t + 14)(log N + 5) bits. Hence the communication complexity is O((t +

1) log N). �

8.2.6 Correctness Properties of Agg

This section will prove following two theorems which summarize the correctness
property of Agg:

Theorem 8.2.2. If there are at most t edge failures during the execution of Agg, then

Agg never aborts and always outputs a correct result.

Theorem 8.2.3. If there is no LFC, then Agg either outputs a correct result or aborts.

Here the concept of LFC is defined as follow:

Definition 8.2.1 (Long failure chain (LFC)). With respect to a pair of Agg and Veri
execution (both with parameter t), a long failure chain (LFC) is a chain of t nodes

A1, A2, ..., At within the same fragment such that i) Ai is the parent of Ai+1 (1 ≤ i ≤

t − 1), ii) all of them have failed by the end of the Agg execution, and iii) At has at

least one local descendant that is alive at the end of the Veri execution. Here the

notions of fragment, parent, and etc are all defined based on the Agg execution. A1

and At are called the head and tail of the LFC, respectively.

Note that having no more than t edge failures implies no LFC, while the reverse is
not true. Theorem 8.2.3 claims that regardless of the number of edge failures, Agg
will not err as long as there is no LFC.

Throughout this section, unless otherwise mentioned, nodes on a tree path from
node A to node B includes all nodes on the path as well as the two end points A and
B. All “Phases” and “Lines” in the proofs, by default, refer to phases and lines in
Algorithm 4.

109



CHAPTER 8. UPPER BOUND ON THE FT COMMUNICATION
COMPLEXITY OF GENERAL CAAFS

Lemma 8.2.1. At the end of the Tree Construction Phase in Agg, there exists a dis-

tributed aggregation tree in the system where each node on the tree knows its chil-

dren, parent, and 2t ancestors. Furthermore, if a node in the system is not included

in this aggregation tree, then it must have failed by the end of the Tree Construction

Phase.

Proof. Trivial from the pseudo-code. �

From now on, whenever we refer to a node, by default we mean a node in the above
aggregation tree. By the above lemma, nodes not on the tree must have failed by the
end of Agg and hence their inputs do not need to be included in the sum result.

Lemma 8.2.2. Consider any flooding done in any phase in the Agg protocol. If the

flooded message is initiated or received by a node that is still alive at the end of the

phase, then all nodes that are still alive at the end of the phase will have received the

message by the end of the phase.

Proof. In Agg, flooded messages are initiated at Line 18, 25, 34, 35, and 36. One
can easily verify that in all cases, there are at least cd +1 rounds (including the round
during which the flood is initiated) remaining in the corresponding phase. Within
those cd + 1 rounds, such flooding is either seen by all live nodes, or is completely
smothered by failures and does not reach any of the remaining live nodes. But since
the message is initiated or received by a node that is still alive at the end of the phase,
it is impossible for the flooding to be completely smothered. �

Lemma 8.2.3. If Z is an invisible critical failure, then all of Z’s local ancestors must

have failed by the end of the Aggregation Phase in Agg.

Proof. Prove by contradiction and assume that Z’s local ancestor A is still alive.
Let Y be the node with the smallest level on the tree path from Z to A such that
Y is a critical failure. In fact in this case, Y must be an invisible critical failure.
Y can be Z itself, but Y must not be A since A is still alive. In the next we will
prove that Y’s parent will initiate a flooding claiming that Y is a critical failure, and
this flooded message will successfully reach A. Since A is alive even at the end of
the Aggregation Phase, by Lemma 8.2.2, this flooding will be forwarded by A and
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eventually reach the root. This will imply that Y is a visible critical failure instead of
an invisible one, leading to a contradiction.

To see why Y’s parent will initiate a flooding and why such flooding will successfully
reach A, consider any give node B on the tree path from Y’s parent to A. Let l be B’s
level. By definition of Y , B must not be a critical failure, and hence B is alive during
round cd − l + 1 at Line 21. Hence Y’s parent will initiate a flooding of message
〈critical failure, Y〉 at Line 18. Furthermore, this flooded message will be properly
relayed by every node on the path from Y’s parent to A. �

The next lemma shows that our design on when to do speculative floodings has the
following nice property: If a live node B does not flood its own partial sum, then it
must have forwarded a “better” partial sum that includes all those inputs included by
B’s partial sum. In other words, we never run into the situation where we need B’s
partial sum but B did not flood it.

Lemma 8.2.4. Consider any node B that is alive by the end of the Speculative Flood-

ing Phase of Agg and whose level is l. Then in round (l + 1) of the Speculative

Flooding Phase, B must either flood its own partial sum at Line 25 or forward a par-

tial sum (of its local ancestor) that includes all those inputs included by B’s partial

sum.

Proof. We will prove, via a simple induction, that if B doesn’t flood its own partial
sum then B must have forwarded a partial sum of one of its local ancestors. By
definition of a local ancestor and by Lemma 8.2.3, we know that such a partial sum
includes all those inputs included by B’s partial sum.

Let l be B’s level. The induction base for l = 0 is trivial. Assume that our claim
holds for l = k − 1, and consider the node B at level k. If B does not flood its own
partial at Line 25 of the Agg protocol, then B must have received a message contains
some partial sums from its parent A at Line 24. Since B is alive by the end of the
Speculative Flooding Phase, B must not be a critical failure and hence A must be
B’s local ancestor. Also, all of A’s local ancestors must be B’s local ancestors. If
the message contains A’s partial sum, we are done. If the source of this flooded
message is not A, by inductive hypothesis, A must have forwarded (in the message)
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a partial sum of one of A’s local ancestors. Since A’s local ancestors must be B’s
local ancestors, we are done as well. �

Lemma 8.2.5. The union of all compulsory partial sums and any subset of optional

partial sums must form a representative set.

Proof. Let the given union be S . We need to prove that for any node B, if B is alive
at (has failed by) the end of the Veri execution that immediately follows Agg, then S

contains exactly one (at most one) representative of B. We first prove that S contains
at most one representative of B, via a contradiction. A representative of B is either
B’s partial sum or B’s local ancestor’s partial sum. Hence if S contains two partial
sums s1 and s2 that are both representatives of B, then one of s1 and s2 must be
dominated. This contradicts to the fact that S contains no dominated partial sums.

We next prove that if B is alive at the end of the Veri execution that immediately
follows Agg, then S contains at least one representative of B. By Lemma 8.2.4, B

must either flood its own partial or forward a partial sum that includes B’s input.
In either case, the partial sum flooded or forwarded is B’s representative. Since B is
alive at the end of the Veri execution that immediately follows Agg, by Lemma 8.2.2,
this partial sum will be received by the root. Now consider the set containing all of
B’s representatives that are received by the root. This set is hence non-empty. There
must be at least one partial sum in this set that is non-dominated. We claim that this
non-dominated partial sum must be compulsory. To see why, note that this partial
sum must be from either B or B’s local ancestor. Since B is alive at the end of the
Veri execution that immediately follows Agg, this non-dominated partial sum must
be compulsory. By definition of S , this compulsory partial sum must be in S . �

The next lemma proves that if there is no LFC, then the labels (i.e.,
“compulsory‖optional” and “dominated”) assigned by the witnesses on the partial
sums are always correct:

Lemma 8.2.6. Consider all partial sums received by the root at Line 41. If there is

no LFC, then at Line 42:

• For every dominated partial sum from a node B, the root does not receive

〈compulsory‖optional, B〉.
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• For every compulsory partial sum from a node B, the root receives

〈compulsory‖optional, B〉.

Proof. We prove the two cases one by one:

• Prove by contradiction, and assume that the root receives 〈compulsory‖optional,
B〉 flooded by a node C. By Line 33, C is at most t hops away from B, and
C must be either B’s local descendant or B itself. Since B’s partial sum s1 is
dominated, then there must exists another partial sum s2 (seen by the root and
hence all nodes in the system) that is from B’s local ancestor A. If C does not
see the local root of the fragment among its 2t ancestors, C will have j = ∞

at Line 31 and thus will not flood 〈compulsory‖optional, B〉 at Line 36. If C

sees the local root among its 2t ancestors, C must also see A among its local
ancestors. This means that the dom variable at Line 32 is true, and hence C

will not flood 〈compulsory‖optional, B〉 at Line 36 either. Contradiction.

• We first claim that there exists a node C that is still alive at the end of the
Agg and C satisfies the conditions at Line 33 (i.e., C must be B’s witness). To
see why, note that since B’s partial sum is compulsory, B must have a local
descendant D that is still alive at the end of the corresponding Veri execution.
Now consider the tree path from D to B. There must be a node C that is within
t hops of B and that is still alive at the end of Agg, since otherwise together
with the existence of D, we would have an LFC. Such a C obviously satisfies
the conditions at Line 33.

Next we prove, via a contradiction, that C must see the local root of C’s frag-
ment among C’s 2t ancestors. If C does not see the local root, then there are
at least 2t − t = t nodes on the tree path from B to the local root (excluding B

and the local root). Since B’s partial sum is compulsory, B must have a local
descendant D that is still alive at the end of the corresponding Veri execution.
Now we can claim that there must exists a node A on the tree path from B to
the local root (excluding B and the local root) that is still alive at the end of
Agg. This is true because otherwise we would have an LFC. Next by Lem-
ma 8.2.4, A must have flooded its own partial sum or a partial sum of one of
its local ancestors. By Lemma 8.2.2, the flooded partial sum will be received
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by the root in time. Since this partial sum is from B’s local ancestor, it means
that B’s partial sum is dominated, leading to a contradiction.

Hence C must see its local root within its 2t ancestors and C will have j , ∞

at Line 31. Since B’s partial sum is compulsory, the root (and C as well) must
have not seen another partial sum from one of B’s local ancestors. This means
that the dom variable at Line 32 is false for C. Now C has satisfied the
conditions at Line 36, and thus will flood 〈compulsory‖optional, B〉. Finally,
since C is still alive at the end of the Agg, by Lemma 8.2.2, such flooding will
reach the root.

�

Theorem 8.2.3 (Restated). If there is no LFC, then Agg either outputs a correct result

or aborts.

Proof. We prove that if there is no LFC and if Agg does not abort, then
it outputs a correct sum. Agg computes a final output by summing up al-
l source psum’s in messages 〈flooded psum, source id, source psum〉 (Line 41)
where 〈compulsory‖optional, source id〉 has been received (Line 42). By Lem-
ma 8.2.5 and 8.2.6, all these source psum’s exactly form a representative set S .
Each partial sum in S is the sum of the inputs from some of the nodes. By definition
of a representative set, for any node B that is still alive at (has failed by) the end
of the Veri execution that immediately follows Agg, S must contain exactly one (at
most one) partial sum (i.e., B’s representative) that includes the input of B. Hence
the sum of all the partial sums in S includes B’s input exactly once if B is still alive at
the end of the Veri execution that immediately follows Agg, or at most once if B has
failed. Finally, the sum of all the partial sums in S obviously does not include the
input of any nodes that are not in the aggregation tree. By Lemma 8.2.1, nodes that
are not on the aggregation tree must have failed by the end of the Tree Construction
Phase and hence there is no need to include their inputs. All these imply that the sum
result must be correct. �

Theorem 8.2.2 (Restated). If there are at most t edge failures during the execution

of Agg, then Agg never aborts and always outputs a correct result.
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Proof. No more than t edge failures implies no LFC. Hence by Theorem 8.2.3, it
suffices to prove that no node sends (11t + 14)(log N + 5) bits to abort Agg. Algo-
rithm 4 shows that in Agg a node may i) send messages at Line 9, 9, and 21, and
ii) initiate floodings at Line 18, 23, 25, 34, 35, and 36. One can easily verify that
Line 9, 9, and 21 incur at most 10 + 2 log N, 10 + 2 log N + 2t log N, and 10 + 3 log N

bits respectively. Note that here the 10 bits are sufficient to encode the type of each
message. Also, each message needs to reserve log N bits for the sender’s id.

Next because there are at most t edge failures, the total sizes of all the mes-
sages flooded at Line 18, 23, and 25 are t(10 + 2 log N), 10 + 3 log N, and t(10 +

3 log N) bits, respectively. Finally, at Line 34, 35, and 36, a node may flood ei-
ther 〈dominated, source id〉 or 〈compulsory‖optional, source id〉 for each received
〈flooded psum, source id, source psum〉. Because the number of distinct source id

is at most t + 1, the number of flooded messages with distinct contents will be at
most 2t + 2. Since each such message has no more than 10 + 2 log N bits, all those
floodings at Line 34, 35, and 36 incur at most (2t + 2)(10 + 2 log N) bits for each
node. Adding all these numbers up yields exactly 60 + 40t + 14 log N + 11t log N

bits, which is less than (11t + 14)(log N + 5) bits. �

8.3 The Veri Protocol

Overview. Veri aims to determine whether Agg’s output is correct. The natural
approach is for Veri to determine whether there have been more than t edge failures.
This turns out to be difficult since it involves fault-tolerant counting while tolerating
potential additional failures during counting. Instead, our approach is to i) identify
a weaker requirement that is nevertheless sufficient for Agg not to err, and ii) allow
Veri to sometimes err when Agg does not err. Such a weaker requirement on Veri
eventually makes an efficient design possible.

Specifically, with respect to a pair of Agg and Veri execution (both with parameter
t), a long failure chain (LFC) is a chain of t nodes A1, A2, ..., At within the same
fragment such that i) Ai is the parent of Ai+1 (1 ≤ i ≤ t−1), ii) all of them have failed
by the end of the Agg execution, and iii) At has at least one local descendant that is
alive at the end of the Veri execution. Here the notions of fragment, parent, and etc
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scenario Agg Veri
1. no more than t edge failures

output correct result output true
(implying no LFC)

2. more than t edge failures and
output correct result or abort no guarantee

no LFC
3. more than t edge failures and

no guarantee output false
exists LFC

Table 8.2: Guarantees of Agg and Veri under different scenarios.

are all defined based on the Agg execution. A1 and At are called the head and tail of
the LFC, respectively. Note that having no more than t edge failures implies no LFC,
while the reverse is not true. Theorem 8.2.3 claims that regardless of the number of
edge failures, Agg will not err as long as there is no LFC.

Theorem 8.2.3 (Restated). If there is no LFC, then Agg either outputs a correct result

or aborts.

The theorem implies that Verimay safely err in the 2nd scenario in Table 8.2, where
there are more than t edge failures but no LFC. Table 8.2 also summarizes the guar-
antees of Agg and Veri in all other possible scenarios.

Next, section 8.3.1 focuses on intuitions of our design. Pseudo-code is presented in
and we leave formal proof to Section 8.3.3 and Section 8.3.4.

8.3.1 Design of The Veri Protocol

Recall that Veri aims to determine whether Agg’s output is correct. The natural
approach is for Veri to determine whether there have been more than t edge failures.
This turns out to be difficult since it involves fault-tolerant counting while tolerating
potential additional failures during counting. Instead, our approach is to i) identify
a weaker requirement (i.e., no LFC exists) that is nevertheless sufficient for Agg not
to err, and ii) allow Veri to sometimes err when Agg does not err. Such a weaker
requirement on Veri eventually makes an efficient design possible.
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By the above discussion, we design Veri by focusing on detecting LFCs. Similar to
Agg, in Veri once a node has sent (5t + 7)(3 log N + 10) bits, it will flood a special
symbol to cause Veri to output false.

Strawman design assuming no additional failures. To help understanding, we
first describe a strawman design while assuming that there are no additional failures
occurring during Veri’s execution. A simple way to detect LFCs is for each node to
ping its parent and children on the (aggregation) tree, and to flood the information
about detected failures to all other nodes. Those failed parents and failed children

are potentially tails and heads of LFCs. Without knowing the global tree topology,
we will leverage the same witnesses as in Section 8.2.3 to determine whether they
are indeed tails and heads of LFCs. Consider a failed parent B and a witness C of
B’s. Recall that B’s witness is either B itself or some local descendant of B whose
distance to B is at most t. C finds, among its 2t ancestors, B’s nearest ancestor A such
that A is either a failed child or a fragment boundary. One can easily see that B is the
tail of an LFC iff A is at least t−1 hops away from B. Thus C can precisely determine
whether B is the tail of an LFC, and can flood such determination to inform the root.

Failures of the witnesses. We now move on to the actual Veri design, by explaining
how different kinds of failures during Veri’s execution are addressed. We first con-
sider the failures of the witnesses: In the earlier example, it is possible for all of B’s
witnesses to fail, so that no node can make a proper determination. We overcome
this key challenge precisely by allowing Veri to err, as explained below.

First, we need Agg to maintain some additional information: During Agg’s aggrega-
tion phase, we have each node learn the maximum level among its local descendants.
This can be easily done by having nodes propagate upstream, along with the partial
sum, the maximum level it has seen among its local descendants. Now in Veri,
imagine that we can infer the distance x from B to B’s farthest local descendants.2

If the root does not receive any determination on whether B is the tail of some LFC
(implying that all of B’s witnesses have failed), the root applies the following rule:
If x ≤ t, it claims that B is not the tail of an LFC. Otherwise it claims that B is the
tail of an LFC, and outputs false.

2Since B may have failed early on, we may not be able to actually get x. Nevertheless, one can
achieve a similar functionality by using the maximum level information from B’s descendants. See
Section 8.3.4 for details.
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To see when the above rule gives a correct/wrong determination, we separately con-
sider two cases. First, x ≤ t implies that all of B’s local descendants are B’s witness-
es. They must have all failed since all witnesses have failed. In turn, by definition B

must not be the tail of an LFC. Second, x > t implies that B has at least t witnesses
and all of them have failed. We still cannot determine whether there exists an LFC.
But since Veri is allowed to make one-sided error when there are more than t edge
failures (i.e., the 2nd and 3rd scenario in Table 8.2), Veri can simply output false
in such a case.

When to detect failures. We move on to consider additional failures during the
detection of failed parents/children. Those failures may prevent the floodings of
information about failed parents/children from reaching the root. This is similar to
flooded partial sums getting lost in Section 8.2.2 and Figure 8.2. To deal with this,
Veri uses the following elegant design similar to the one in Agg: The root floods
a single bit. If a node at level l does not receive this bit or any message (claiming
the detection of failed parents) from its own parent within l + 1 rounds, it floods a
message claiming that its own parent is a failed parent. If B is the tail of an LFC,
such design guarantees (Lemma 8.3.2 in Section 8.3.4) to inform the root that either
B or some of B’s local descendant is a failed parent.

Detection of failed children is similarly done by propagating a single bit upstream
along all the tree edges. Finally, Veri always detects failed parents first and then
detects failed children. This is necessary for correctness, if additional failures may
occur during Veri. We leave the details on how this ordering is leveraged in our
proofs to Section 8.3.4.

8.3.2 Pseudo-Code for The Veri Protocol

Algorithm 5 presents the pseudo-code for the Veri protocol. All the additional com-
ments in Section 8.2.4 about Algorithm 4 apply to Algorithm 5 as well, except the
following: In Veri, once a node has sent (5t + 7)(10 + 3 log N) bits, it will flood a
special symbol to terminate Veri and cause the root to output false.

It is worth noting that Veri detects failed parents first, and then failed children. This
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Algorithm 5 The Veri Protocol. The initial values of the variables parent, children, ancestor, level,
and max level are all from the previous Agg execution.

1: /* Failed Parent Detection Phase (total 2cd + 1 rounds) */
2: if (I am the root) then
3: flood 〈detect failed parent〉 in round 1;
4: else
5: if (no message from parent is received in round level + 1) then
6: flood 〈failed parent, parent, max level − level + 1〉 in round level + 1;
7: end if
8: end if

9: /* Failed Child Detection Phase (total 2cd + 1 rounds) */
10: if (children = ∅) then // I am a leaf
11: flood 〈detect failed child〉 in round cd − level + 1 of this phase;
12: else
13: for all node v ∈ children do
14: if (no message from node v is received in round cd − level + 1 of this phase) then
15: flood 〈failed child, v〉 in round cd − level + 1 of this phase;
16: end if
17: end for
18: end if

19: /* LFC Detection Phase (total cd + 1 rounds) */
20: for all received messages in the form of 〈failed parent, v, 〉 do
21: let i ∈ [0, 2t] be the smallest i such that ancestor[i] = v; let i = ∞ if such i does not exist;
22: let j ∈ [0, 2t] be the smallest j such that ancestor[ j] is either the root or 〈critical failure, ancestor[ j]〉

was previously received in Agg; let j = ∞ if such j does not exist;
23: if (i ≤ t and i ≤ j) then // I am a witness
24: let k ∈ [i, 2t] be the smallest k such that i) 〈failed child, ancestor[k]〉 has been received, or ii)

ancestor[k] is the root, or iii) 〈critical failure, ancestor[k]〉 was previously received in Agg;
let k = ∞ if such k does not exist;

25: if (k − i + 1 ≥ t) then
26: flood 〈LFC tail, v〉 in round 1 of this phase;
27: else
28: flood 〈not LFC tail, v〉 in round 1 of this phase;
29: end if
30: end if
31: end for

32: /* Output Phase (only executed by the root) */
33: if (I have received message 〈LFC tail, v〉 for any node v) then output false; // LFC exists
34: for all received message in the form of 〈failed parent, v, x〉 where x ≥ t do
35: if (〈not LFC tail, v〉 has not been received) then output false; // LFC may exist — Veri may have

one-sided error here
36: end for
37: output true; // no LFC
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ordering is intentional and is necessary for correctness – the proofs for Theorem 8.3.3
and Lemma 8.3.4 rely on such ordering.

8.3.3 Time Complexity and Communication Complexity of Veri

Theorem 8.3.1. The time complexity and communication complexity of Veri are no

more than 8c flooding rounds and O((t + 1) log N) bits, respectively.

Proof. The pseudo-code in Algorithm 5 clearly shows that Veri always terminates
within 5cd + 3 rounds, which are at most 8c flooding rounds. For communication
complexity, recall that in Veri, a node will flood a special symbol to terminate Veri
once it has sent over (5t+7)(10+3 log N) bits. Hence the communication complexity
is O((t + 1) log N). �

8.3.4 Correctness Properties of Veri

This section will prove following theorem which suberizes the correctness property
of Veri:

Theorem 8.3.2. Consider a pair of Agg and Veri execution, both parameterized by

t. If there exists an LFC, then Veri must output false. If there are at most t edge

failures, then Veri must output true.

Throughout this section, we use X.level and X.max level to denote the value of the
local variables level and max level on node X at the end of the Agg execution, re-
spectively. Same to Section 8.2.6, whenever we refer to a node in this section, by
default we mean a node in the aggregation tree as constructed in the Agg execution.
Also nodes on a tree path from node A to node B, by default, includes all nodes on
the path as well as the two end points A and B. All “Phases” and “Lines” in the
proofs, by default, refer to phases and lines in Algorithm 5.

Lemma 8.3.1. Consider any flooding done in any phase in the Veri protocol. If the

flooded message is initiated or received by a node that is still alive at the end of

the phase, then all nodes that are still alive at the end of the phase will receive the

message by the end of the phase.
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Proof. In Veri, floodings are potentially initiated at Line 3, 6, 11, 15, 26, and 28.
One can easily verify that in all cases, there are at least cd + 1 rounds (including
the round during which the flooding is initiated) remaining in the corresponding
phase. Within those cd + 1 rounds, such flooding is either seen by all live nodes,
or is completely smothered by failures and does not reach any of the remaining live
nodes. But since the message is initiated or received by a node that is still alive at the
end of the phase, it is impossible for the flooding to be completely smothered. �

The next lemma formalizes the property of the Failed Parent Detection Phase. The
lemma shows if a node B has failed and if it has a live descendant F, then the protocol
is guaranteed to find a failed parent C on the tree path between B and F. (Note that
the protocol does not necessarily find B itself as a failed parent, due to additional
failures during Veri’s execution.)

Lemma 8.3.2. Consider a node B and any of its local descendant F. If B failed

before the Failed Parent Detection Phase starts and if F is still alive at the end of

that phase, then there must exist a node C such that: i) C is on the tree path from F

to B, ii) all nodes on the tree path from C to B have failed by the end of the phase,

and iii) every node that is alive at the end of the phase has received the message

〈failed parent, C, x〉 by the end of that phase with x ≥ F.level −C.level.

Proof. Let E be the node with the smallest level on the tree path from F to B, such
that E is still alive at the end of the phase. Since F is alive, such E must exist. Let C

be the node on the tree path from E to B with the largest level that did not send the
message which it is supposed to send in round C.level + 1. (Note that this intended
message can either be a new flooding initiated by C itself at Line 6 or it can be a
message received from C’s parent and then forwarded by C.) C must exist since at
least B, which failed before the phase starts, did not send the message. C already
satisfies the first two properties needed in the lemma. The next proves that C satisfy
the last property as well.

Let D be C’s child that on the tree path from E to B. D must exist since C cannot be
E which is alive at the end of the phase. Since C did not send any message in round
C.level + 1, D will flood 〈failed parent, C, x〉 where x = D.max level − D.level + 1
at Line 6. By definition of C, all nodes on the tree path from E to D manage to send
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the messages that they are supposed to send during the corresponding rounds. Hence
the message 〈failed parent, C, x〉 will reach E. Finally, because E is alive at the end
of the phase, Lemma 8.3.1 tells us that the every node that is alive by the end of the
phase will receive 〈failed parent, C, x〉.

We still need to show x ≥ F.level − C.level. By the definition of C, D is still alive
at the end of the previous Agg execution. By Lemma 8.2.3, there are no (invisible)
critical failures on the tree path from F to D. This implies that D.max level ≥

F.max level ≥ F.level, and x = D.max level − D.level + 1 ≥ F.level − D.level + 1 =

F.level −C.level. �

Next we use the above lemma to prove the following theorem:

Theorem 8.3.3. If there exists an LFC, Veri must output false.

Proof. Let A and B be the head and tail of the given LFC, respectively. By definition
of LFC, B has a local descendant F that is still alive at the end of Veri. By Lem-
ma 8.3.2, there exist a node C on the tree path from F to B such that i) all nodes on
the tree path from C to B have failed by the end of that phase, and ii) every node that
is alive at the end of the Failed Parent Detection Phase receives 〈failed parent, C, x〉

by the end of that phase where x ≥ F.level −C.level.

We first claim that the root may receive the message 〈LFC tail, C〉 but will never
receive the message 〈not LFC tail, C〉, as proved in the following. For the message
〈failed parent, C, x〉, consider any node D that satisfies Line 23 (i.e., D is C’s wit-
ness). Since all nodes on the tree path from C to A have failed by the end of the Failed
Parent Detection Phase, none of those nodes will flood 〈failed child, 〉 at Line 15.3

There are at least t nodes on the tree path from C to A. Thus at Line 25, D will have
k − i + 1 ≥ t and hence D will never flood 〈not LFC tail, C〉 at Line 28.

Now if the root does receive the message 〈LFC tail, C〉, then it will output false at
Line 33 and we are done. Next consider the case where the root does not receive
〈LFC tail, C〉. We claim that this implies that all of C’s witnesses have failed by
the end of the LFC Detection Phase. Prove by contradiction and assume that C’s

3Note that the argument here relies on the fact that the Failed Parent Detection Phase is before the
Failed Child Detection Phase.
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witness D is still alive. D must have received 〈failed parent, C, x〉 with x ≥ F.level −

C.level. Since D is a witness, it must satisfy the conditions at Line 23. It will either
executed Line 26 or 28. By arguments in the previous paragraph, D will not flood
〈not LFC tail, C〉 and hence D must flood 〈LFC tail, C〉 at Line 26. Since D is still
alive at the end of the LFC Detection Phase, Lemma 8.3.1 tells us that the root will
receive this message flooded by D, leading to a contradiction. Because F is still alive
and is C’s local descendant, and since all of C’s witnesses have failed, it implies that
F.level − C.level ≥ t + 1 and thus x ≥ t + 1. Thus the message 〈failed parent, C, x〉

must satisfy the condition of x ≥ t at Line 34. Finally, since the root never receives
〈not LFC tail, C〉 by our earlier argument, it will output false at Line 35. �

The next lemma formalizes the property of the Failed Child Detection Phase. The
lemma shows if a node D has failed, then unless all nodes from D to its local root
have failed, the protocol is guaranteed to find a failed child C on the tree path be-
tween D and its local root. (Note that the protocol does not necessarily find D itself
as a failed child, due to additional failures during Veri’s execution.)

Lemma 8.3.3. For any node D that failed before the Failed Child Detection Phase

starts, there must exist a node C such that: i) C is on the tree path from D to D’s

local root, ii) all nodes on the tree path from D to C have failed by the end of the

phase, and iii) either C is D’s local root or every node that is alive at the end of the

phase receives 〈failed child, C〉 by the end of the phase.

Proof. If all nodes on the tree path from D to its local root has failed by the end of
the phase, the lemma trivially hold with C being the local root. Otherwise let A be
the node with the largest level on the tree path from D to its local root, such that A is
still alive at the end of the phase.

Let C be the node on the tree path from D to A with the smallest level that did not
send the message which it is supposed to send in round cd − C.level + 1. (Note that
this intended message can either be a new flooding initiated by C itself at Line 15
or it can be some message received from C’s children and then forwarded by C.) C

must exist since at least D, which failed before the phase starts, will not send the
message. C already satisfies the first two properties needed in the lemma. The next
proves that C satisfy the last property as well.
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Let B be C’s parent. B is on the tree path from D to A since C cannot be A which
is alive at the end of the phase. Since C did not send any message in round cd −

C.level + 1, B will flood 〈failed child, C〉 at Line 15. By definition of C, all nodes
on the tree path from B to A manage to send the messages that they are supposed
to send at the corresponding rounds. Hence the message 〈failed child, C〉 will reach
A. Finally, because A is alive at the end of the phase, Lemma 8.3.1 tells us that the
every node that is alive at the end of the phase will receive 〈failed child, C〉. �

Leveraging the above lemma, we can now prove the following lemma. This lemma
claims that if there are no more than t edge failures, then no node will ever flood
〈LFC tail, 〉, and some node may flood 〈not LFC tail, 〉.

Lemma 8.3.4. Consider any pair of Agg and Veri executions during which the total

number of edge failures is no more that t. For any node D such that the root has

received 〈failed parent, D, 〉 by the end of the Failed Parent Detection Phase, no

node will ever flood 〈LFC tail, D〉. Furthermore, if a witness of D is still alive at the

end of the Veri execution, then that witness will flood 〈not LFC tail, D〉 at Line 28.

Proof. For the root to receive 〈failed parent, D, 〉, some node must have flooded this
message earlier at Line 6. For such flooding to be initiated, the condition at Line 5
must be met, implying that D has failed before the Failed Child Detection Phase.4

Lemma 8.3.3 tells us that there exists node C on the tree path from D to its local
root such that i) all nodes on the tree path from D to C have failed by the end of the
Failed Child Detection Phase, and ii) either C is D’s local root or 〈failed child, C〉 is
received by all nodes which is alive at the end of the Failed Child Detection Phase.
Since C has failed by the end of the phase, it must not be the root and hence it has a
parent.

If all of D’s witnesses failed before the Failed Child Detection Phase starts, the
lemma trivially holds. Otherwise let E be any witness of D’s which is still alive at
the beginning of the Failed Child Detection Phase. E cannot be D since D failed
before the phase starts, and thus D has at least one child. Together with the earlier
fact that C has a parent and the given condition that there are no more than t edge

4Note that the argument here relies on the fact that the Failed Parent Detection Phase is before the
Failed Child Detection Phase.
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failures, this implies that C is at most t − 2 hops away from D. Finally, recall that
either C is the D’s local root (and hence E’s local root) or the message 〈failed child,
C〉 is received by E. Hence at Line 24, E will find a k such that k − i ≤ t − 2. Such
a value of k does not satisfy the condition at Line 25, preventing E from flooding
〈LFC tail, D〉. In fact with such a value of k, if E is alive at the end of the Veri
execution, E must flood 〈not LFC tail, D〉 at Line 28. �

Next we use the above lemma to prove the following theorem:

Theorem 8.3.4. If there are no more than t total edge failures (during the executions

of Agg and Veri), then Veri must output true.

Proof. Prove by contradiction and assume that Veri outputs false. Verimay output
false only in three cases. The first case is at Line 33, where the root receives
〈LFC tail, D〉 for some node D. For the root to receive this message, there must
have been some node E that floods 〈LFC tail, D〉 at Line 26. For E to do so, it
must see the message 〈failed parent, D, 〉, which must also be seen by the root.
Apply Lemma 8.3.4 and we know that no node will ever flood 〈LFC tail, D〉. This
contradicts with the fact that the root later receives this message.

The second case where Veri outputs false is at Line 35. This means that the root
receives a message 〈failed parent, D, x〉 with x ≥ t, and it does not receive any
message 〈not LFC tail, D〉. Let D’s child E be the node that initially flooded the
message 〈failed parent, D, x〉 at Line 6. Hence x = E.max level−E.level+1 ≥ t. Thus
E has at least t − 1 local descendants, and in turn D has at least t + 1 witnesses (i.e.,
D, E, and E’s nearest t−1 local descendants). Since there are at most t edge failures,
D must have at least one witness C that is still alive at the end of the Veri execution.
Lemma 8.3.4 then tells us that C will flood 〈not LFC tail, D〉, and Lemma 8.3.1 tells
us that such flooding will reach all live nodes. This contradicts with the fact that the
root does not receive 〈not LFC tail, D〉.

The last case where Veri outputs false is when some node has sent (5t + 7)(10 +

3 log N) bits and hence floods a special symbol to terminate Veri. We will show that
this will not happen, by carefully count the total number of bits sent by each node.
In Veri, nodes only communicate by floodings. A node may initiate floodings at
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Line 3, 6, 11, 15, 26, and 28. The size of the flooded messages is always no larger
than (10 + 3 log N). Here 10 bits is sufficient to encode the message type. Also, each
message needs to allocate log N bits for the sender’s id. At each line except Line
11, the total number of floodings initiated system-wide is at most (t + 1). At Line
11, each leaf initiates a flooding for the message 〈detect failed child〉. By our design,
since all these floodings have the same content, a node will only forward the first
such message received. Thus this is equivalent to a single flooding, in terms of the
number of bits sent by each node. Taking all the above into account, a node will send
at most (5t + 6)(10 + 3 log N) bits, which is less than (5t + 7)(10 + 3 log N) bits. �

Directly combining Theorem 8.3.3 and 8.3.4, we have:

Theorem 8.3.2 (Restated). Consider a pair of Agg and Veri execution, both param-

eterized by t. If there exists an LFC, then Veri must output false. If there are at

most t edge failures, then Veri must output true.

8.4 Proof for Theorem 8.0.1

Theorem 8.0.1 (Restated). For any b ≥ 21c and 1 ≤ f ≤ N, Rsyn,ft
0 (SumN , f , b) =

O(( f
b + 1) ·min( f log N, log2 N)).

Proof. : We prove the theorem by constructing an upper bound protocol (Algorith-
m 3). For any given b ≥ 21c, we divide the first b − 2c flooding rounds into x =

b b−2c
19c c = Θ(b) intervals, with each interval having at least 19c flooding rounds. The

nodes use public coins to select log N intervals uniformly randomly (with replace-
ment) out of all the intervals. Within each selected interval, the nodes execute Agg
and Veri (both parameterized with t = b

2 f
x c) sequentially. If Agg does not abort and

Veri outputs true, the protocol terminates and outputs the result generated by Agg.
If the protocol does not output within the first b − 2c flooding rounds, the root will
flood a single bit to all nodes, taking c flooding rounds. After receiving this bit, all
nodes will invoke the brute-force protocol for computing sum, in the last c flooding
rounds. In this brute-force protocol, each node floods its id and its input to all other
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nodes. Within c flooding rounds, the root is guaranteed to receive all flooded mes-
sages initiated by nodes that are still alive at the end of the protocol. The root then
adds up the input for each id, and outputs the sum.

We first prove that the above protocol always produces a correct sum result. If the
protocol outputs a sum by invoking the brute-force protocol, the result is trivially
correct. If the protocol outputs the result generated by Agg, then we know that Agg
does not abort and Veri outputs true. By Theorem 8.3.2, we know that there must
have been no LFC. In turn by Theorem 8.2.3, we know that the result generated by
Agg (if it did not abort) must be correct.

We move on to prove that the communication complexity of our upper bound pro-
tocol is O(( f

b + 1) · min( f log N, log2 N)). By Theorem 8.2.2 and 8.3.2, if there are
no more than t = b

2 f
x c edge failures within an interval, then Agg will not abort and

Veri will output true. This will then allow the upper bound protocol to terminate
immediately after that interval. Since there are no more than f edge failures and
since we selected log N intervals, we know that Agg and Veri will be executed at
most min( f + 1, log N) times. By Theorem 8.2.1 and 8.3.1, the communication com-
plexity of Agg and Veri are both O((t + 1) log N). Hence the total communication
complexity in all the intervals is O((t + 1) ·min( f log N, log2 N)).

We next aim to reason about the communication complexity in the last 2c flooding
rounds, where the brute-force protocol is invoked if no results have been generated
so far. Since there are at most f edge failures in all the x intervals, with probability
at least 1

2 , a uniformly random interval contains no more than b 2 f
x c edge failures.

Hence with probability at least 1
2 , by Theorem 8.2.2 and 8.3.2, Agg will not abort

and Veri will output true, causing the upper bound protocol to terminate. The
probability of invoking the brute-force protocol is thus at most 1

2log N = 1
N . The brute-

force protocol itself has a communication complexity of O(N log N), implying that
the communication complexity (over average-case coin flips) incurred in the last 2c

flooding rounds is at most O( 1
N · N log N) = O(log N).

Putting everything together, the communication complexity of the upper bound
protocol is O((t + 1) · min( f log N, log2 N)) + O(log N) = O(( f

b + 1) ·
min( f log N, log2 N)). �
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8.5 Dealing with Unknown f

Our upper bound of O(( f
b + 1) ·min( f log N, log2 N)) in Theorem 8.0.1 assumes that

f (i.e., the upper bound on the number of edge failures) is known to the protocol. It
is trivial to generalize our upper bound protocol (in the proof of Theorem 8.0.1) to
deal with unknown f , using the standard doubling trick.

Specifically, given b flooding rounds where b ≥ 19c log N + 21c, we divide the
first b − 2c flooding rounds into 1 + log N blocks. In the ith block, our guess for
f will be f = 2i−1. Each block is further divided into x = b b−2c

19c(1+log N) c = Θ( b
log N )

intervals. Within the ith block, the nodes uniformly randomly select log N intervals.
In each selected interval, we again run Agg and Veri, with t = b2·2i−1

x c. As before, if
Agg does not abort and Veri outputs true, the protocol terminates. Finally, if the
protocol does not terminate within the first b − 2c flooding rounds, we again resort
to the brute-force protocol.

The correctness of the above generalized protocol is obvious. Next we show that the
communication complexity of the protocol is O(( f

b +1)·min( f log2 N, log3 N)), which
is still within polylog factor from our lower bound. For blocks 1 through dlog f e+ 1,
by same argument as earlier, the total communication complexity incurred is:

dlog f e+1∑
i=1

O
((⌊

2 · 2i−1

x

⌋
+ 1

)
·min( f log N, log2 N)

)
= O

((
f
x

+ log f + 1
)
·min( f log N, log2 N)

)
Next in block dlog f e + 1 and later blocks, our guess on f (i.e., 2i−1) already reaches
the actual f . By same argument as earlier, the protocol will terminate in each of
these blocks independently with at least 1− 1

N probability. Hence the communication
complexity incurred in block dlog f e + 2 and later blocks is at most:

log N+1∑
i=dlog f e+2

1
N i−dlog f e−1 · O

((⌊
2 · 2i−1

x

⌋
+ 1

)
·min( f log N, log2 N)

)
= O

(
1
N
·

(
f
x

+ 1
)
·min( f log N, log2 N)

)
Finally, the probability of the protocol of reaching the last 2c flooding rounds is
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at most 1
N . Hence the communication complexity incurred in the last 2c flooding

rounds is at most O( 1
N · N log N) = O(log N). Adding the three part up and we get

the communication complexity of the protocol as:

O
((

f
x

+ log f + 1 +
1
N
·

(
f
x

+ 1
))
·min( f log N, log2 N)

)
+ O(log N)

= O
((

f
b

+ 1
)
·min( f log2 N, log3 N)

)
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Chapter 9

Conclusions and Future Work

Tolerating failures has been a key focus of distributed computing research from the
very beginning. Adding this fault tolerance requirement to multi-party communica-
tion complexity leads to the following natural question: “If we want to compute a
certain function while tolerating a certain number of failures, what will the commu-
nication complexity be?” This thesis centers on above question, specifically on i)
tolerating node crash failures, and ii) computing the function over general topolo-
gies.

This thesis has made following contribution: 1) We’ve shown an exponential gap
between the non-fault-tolerant and fault-tolerant communication complexity of Sum;
2) We’ve proved near-optimal lower and upper bound on the fault-tolerant communi-
cation complexity of general commutative and associative aggregates; 3) We’ve in-
troduced UnionSizeCP, a new two-party problem comes with a novel cycle promise.
We’ve further shown that such a problem not only enables our lower bounds on the
fault-tolerant communication complexity of Sum, but also plays a fundamental role
in reasoning about fault-tolerant communication complexity of many functions be-
yond Sum.

There are many interesting follow-up open questions on the subject:

• This thesis has proved a series of lower bounds for fault-tolerant communica-
tion complexity for Sum. Can we further strengthen our lower bounds? Note
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that even our randomized (ε, δ)-approximate lower bound on the communica-
tion complexity of UnionSizeCP is not tight (i.e., roughly 1

q factor from the
upper bound), and thus improvement might be possible even there.

• This thesis has focused on oblivious adversary, i.e., failure adversaries ad-
versarially decide beforehand (i.e., before the protocol flips any coins) which
nodes fail at what time. It is also meaningful to consider adaptive adversaries
which decide during the execution. Our lower bounds can trivially extend to
adaptive adversaries while our upper bound protocol can not. Can we find out
a protocol for adaptive failure adversaries?

• This thesis has assumed that a node can send infinity number of bits in a s-
ingle round. Many researches has considered the model that a node can send
O(log N) bits in one round. Can we obtain interesting results in this setting?

For answering these questions, we believe that some of the insights developed in this
thesis (e.g., on the role of failures in the reduction and on the cycle promise) can be
valuable.
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