
ART: A Large Scale Microblogging Data Management
System

Li Feng

Bachelor of Science

Peking University, China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48732387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that this thesis is my original work and it has been written

by me in its entirety.

I have duly acknowledged all the sources of information which have been

used in the thesis.
This thesis has not been submitted for any degree in any university previ-

ously.

Li Feng 19 May 2014

ACKNOWLEDGEMENT

This thesis would not have been possible without the guidance and help of many

people. It is my pleasure to thank these people for their valuable assistance to

my PhD study in these years.

First and foremost, I would like to express my sincere gratitude to my

supervisor, Prof Beng Chin Ooi, for his patient guidance throughout my time

as his students. He taught me the research skills and right working attitude,

and offered me the internship opportunities at research labs.

I would like to thank Prof M. Tamer Ozsu, for his valuable guidance for

my third work and the survey, as well as his painstaking effort in correcting

my writings. I would also like to thank Dr Sai Wu, who is also a close friend

to me, for his support and advice to my first two works. In addition, I would

like to thank Vivek Narasayya, Manoj Syamala, Sudipto Das, and all the other

researchers in Microsoft Research Redmond, from who learned the right working

style of a good researcher.

I would also like to thank all my fellow labmates in database research lab,

for the sleepless nights we were working together before deadlines, and for all

the fun we have had in the last four years.

At last, I would like to thank my family: my parents Fusheng Li and Zhimin

Liu, and my wife Lian He. They were always supporting me and encouraging

me with their best wishes.

i

CONTENTS

Acknowledgement i

Abstract vi

1 Introduction 1

1.1 Overview of ART . 2

1.2 Query Processing in Microblogging Data Management System . 6

1.2.1 Multi-Way Join Query 7

1.2.2 Real-Time Aggregation Query 9

1.2.3 Real-Time Search Query 11

1.3 Objectives and Significance . 12

1.4 Thesis Organization . 14

2 Literature Review 15

2.1 Large Scale Data Storage and Processing Systems 15

2.1.1 Distributed Storage Systems 16

2.1.2 Parallel Processing Systems 18

2.2 Multi-Way Join Query Processing 19

2.2.1 Theta-Join . 21

2.2.2 Equi-Join . 21

2.2.3 Multi-Way Join . 22

2.3 Real-time Aggregation Query Processing 23

2.3.1 Real-Time Data Warehouse 23

ii

CONTENTS

2.3.2 Distributed Processing 24

2.3.3 Data Cube Maintenance 25

2.4 Real-Time Search Query Processing 26

2.4.1 Microblog Search . 26

2.4.2 Partial Indexing and View Materialization 27

2.5 Summary . 28

3 System Overview 30

3.1 Design Philosophy of ART . 30

3.2 System Architecture . 32

4 AQUA: Cost-based Query Optimization on MapReduce 35

4.1 Introduction . 36

4.2 Background . 39

4.2.1 Join Algorithms in MapReduce 39

4.2.2 Query Optimization in MapReduce 42

4.3 Query Optimization . 42

4.3.1 Plan Iteration Algorithm 43

4.3.2 Phase 1: Selecting Join Strategy 48

4.3.3 Phase 2: Generating Optimal Query Plan 51

4.3.4 Query Plan Refinement 52

4.3.5 An Optimization Example 55

4.3.6 Implementation Details 56

4.4 Cost Model . 56

4.4.1 Building Histogram . 56

4.4.2 Evaluating Cost of MapReduce Job 59

4.5 Experimental Evaluation . 64

4.5.1 Effect of Query Optimization 66

4.5.2 Effect of Scalability . 68

4.6 Summary . 70

5 R-Store: A Scalable Distributed System for Supporting Real-

Time Analytics 71

5.1 Introduction . 72

5.2 R-Store Architecture and Design 74

5.2.1 R-Store Architecture . 74

iii

CONTENTS

5.2.2 Storage Design . 76

5.2.3 Data Cube Maintenance 77

5.3 R-Store Implementations . 78

5.3.1 Implementations of HBase-R 79

5.3.2 Real-Time Data Cube Maintenance 82

5.3.3 Data Flow of R-Store . 84

5.4 Real-Time Aggregation Query Processing 85

5.4.1 Querying Incrementally-Maintained Cube 86

5.4.2 Correctness of Query Results 88

5.4.3 Cost Model . 89

5.5 Evaluation . 91

5.5.1 Performance of Maintaining Data Cube 92

5.5.2 Performance of Real-Time Querying 94

5.5.3 Performance of OLTP 98

5.6 Summary . 99

6 TI: An Efficient Indexing System for Real-Time Search on

Tweets 100

6.1 Introduction . 101

6.2 System Overview . 103

6.2.1 Social Graphs . 103

6.2.2 Design of the TI . 104

6.3 Content-based Indexing Scheme 107

6.3.1 Tweet Classification . 108

6.3.2 Implementation of Indexes 115

6.3.3 Tweet Deletion . 116

6.4 Ranking Function . 117

6.4.1 User’s PageRank . 117

6.4.2 Popularity of Topics . 118

6.4.3 Time-based Ranking Function 121

6.4.4 Adaptive Index Search 122

6.5 Experimental Evaluation . 123

6.5.1 Effects of Adaptive Indexing 124

6.5.2 Query Performance . 127

6.5.3 Memory Overhead . 129

iv

CONTENTS

6.5.4 Ranking Comparison . 130

6.6 Summary . 132

7 Conclusion 133

7.1 Future Work . 134

Bibliography 136

v

ABSTRACT

Microblogging, a new social network, has attracted the interest of billions of

users in recent years. As its data volume keeps increasing, it has becomes

challenging to efficiently manage these data and process queries on these data.

Although considerable researches have been conducted on the large scale data

management problems and the microblogging service providers have also de-

signed scalable parallel processing systems and distributed storage systems,

these approaches are still inefficient comparing to traditional DBMSs that have

been studied for decades. The performance of these systems can be improved

with proper optimization strategies.

This thesis is aimed to design a scalable, efficient and full-functional mi-

croblogging data management system. We propose ART (AQUA, R-Store and

TI), a large scale microblogging data management system that is able to han-

dle various user queries (such as updates and real-time search) and the data

analysis queries (such as join and aggregation queries). Furthermore, ART is

specifically optimized for three types of queries: multi-way join query, real-

time aggregation query and real-time search query. Three principle modules

are included in ART:

1. Offline analytics module. ART utilizes MapReduce as the batch parallel

processing engine and implements AQUA, a cost-based optimizer on top

of MapReduce. In AQUA, we propose a cost model to estimate the cost of

each join plan, and the near-optimal one is selected by the plan iteration

algorithm.

vi

CONTENTS

2. OLTP and real-time analysis module. In ART, we implement a dis-

tributed key/value store, R-Store, for the OLTP and real-time aggregation

query processing. A real-time data cube is maintained as the historical

data, and the newly updated data are merged with the data cube on the

fly during the processing of the real-time query.

3. Real-time search module. The last component of ART is TI, a distributed

real-time indexing system for supporting real-time search. The rank-

ing function considers the social graphs and discussion topics in the mi-

croblogging data, and the partial indexing scheme is proposed to improve

the throughput of updating the real-time inverted index.

The result of experiments conducted on TPC-H data set and the real Twitter

data set, demonstrates that (1) the join plan selected by AQUA outperforms

the manually optimized plan significantly; (2) the performance of the real-time

aggregation query processing approach implemented in R-Store is better than

the default one when the selectivity of the aggregation query is high; (3) the

real-time search results returned by TI are more meaningful than the current

ranking methods. Overall, to the best of our knowledge, this thesis is the first

work that systematically studies how these queries are efficiently processed in

a large scale microblogging system.

vii

LIST OF TABLES

2.1 Summary of well-known OLTP systems. 18

2.2 map and reduce Functions . 18

4.1 Parameters . 59

4.2 Cluster Settings . 64

4.3 List of Selected TPCH Queries 65

5.1 Data Cube Operations . 88

5.2 Parameters . 90

5.3 Cluster Settings . 92

6.1 Example of Tweet Table . 106

6.2 Cluster Settings . 123

viii

LIST OF FIGURES

1.1 Overview of ART . 5

1.2 Example Twitter Tables . 6

1.3 Multi-way Join . 8

1.4 Example of Twitter Search obtained on 10/29/2010 10

2.1 Join Implementations on MapReduce 20

2.2 Matrix-to-reducer mapping for cross-product 21

3.1 Architecture of ART . 32

4.1 Replicated Join . 40

4.2 Join Plans . 44

4.3 Basic Tree Transformation . 45

4.4 Joining Graph For TPC-H Q9 49

4.5 Plan Selection . 52

4.6 MapReduce Jobs of Query q0 53

4.7 Shared Table Scan in Query q0 54

4.8 Optimized Plan for TPC-H Q8 55

4.9 Query Performance . 66

4.10 Optimization Cost . 66

4.11 Accuracy of Optimizer . 67

4.12 Twitter Query (QT1) . 67

4.13 Twitter Query (QT2) . 67

x

LIST OF FIGURES

4.14 TPC-H Q3 . 68

4.15 TPC-H Q5 . 68

4.16 TPC-H Q8 . 68

4.17 TPC-H Q9 . 68

4.18 TPC-H Q10 . 69

4.19 Performance of Shared Scan . 69

5.1 Architecture of R-Store . 75

5.2 Data Flow of R-Store . 85

5.3 Data Flow of IncreQuerying . 87

5.4 Throughput of Real-Time Data Cube Maintenance 92

5.5 Performance of Data Cube Refresh 92

5.6 Scalability . 94

5.7 Data Cube Slice Query on Twitter Data 95

5.8 Data Cube Slice Query on TPCH data 95

5.9 Accuracy of Cost Model . 96

5.10 Performance vs. Freshness . 97

5.11 Effectiveness of Compaction . 97

5.12 Throughput . 98

5.13 Latency . 98

6.1 Tree Structure of Tweets . 104

6.2 Architecture of TI . 105

6.3 Structure of Inverted Index . 106

6.4 Data Flow of Index Processor 107

6.5 Statistics of Keyword Ranking 111

6.6 Matrix Index . 112

6.7 Following Matrix . 118

6.8 Popularity of Topics (computed based on Equation 6.6 by using

unnormalized PageRank values) 120

6.9 Number of Indexed Tweets in Real-Time 124

6.10 Indexing Cost of TI with 5 slaves (per 10,000 tweets) 124

6.11 Indexing Throughput . 125

6.12 Accuracy of Adaptive Indexing . 126

6.13 Accuracy by Time (constant threshold) 126

6.14 Accuracy by Time (adaptive threshold) 126

xi

LIST OF FIGURES

6.15 Effect of Adaptive Threshold . 126

6.16 Performance of Query Processing (Centralized) 127

6.17 Performance of Query Processing (Distributed) 127

6.18 Performance of Query Processing 127

6.19 Popular Tree in Memory . 127

6.20 Size of In-memory Index . 129

6.21 Distribution of PageRank . 130

6.22 Score of Tweets by Time . 130

6.23 Distribution of Query Results . 130

6.24 Search Result Ranked by TI . 131

6.25 Search Result Ranked by Time . 131

xii

CHAPTER 1

Introduction

Microblogging is an emerging social network that has attracted many users

in recent years. It is well known for its distinguishing features, which can be

summarized as follows:

1. Limited length of content. Different from traditional blogging system, the

length of a microblog is fairly short (e.g. in Twitter, it is capped at 140

characters).

2. Real-time information sharing. Due to the limited length of the mi-

croblogs, it is quite convenient for users to post their opinions or the

surrounding events, and this information is immediately shared to their

friends. Thus, the microblogs contain the most real-time information

about what are happening in the world.

3. Massive amount of data. The number of users and the amount of data

in a microblogging system have been dramatically increased in the past

a few years. It is reported that the number of twitter (one of the most

popular microblogging vendors1) accounts has reached 225 million by the

end of 2011. And there were more than 250 million tweets posted per

day.

Because of the popularity of microblogging and the valuable information

contained in the microblogging data, it is important that a microblogging data

1https://twitter.com/

1

CHAPTER 1. INTRODUCTION

management system should be able to efficiently process various OLTP and

OLAP queries. However, due to the unexpected increase of microblogging data,

the existing database management systems are no longer qualified for process-

ing the queries on the data at such a scale. Therefore, many researches have

been proposed to investigate how a microblogging data management system

should be designed. For example, twitter has designed a distributed datas-

tore, Gizzard, for accessing the distributed data quickly [13], and Facebook has

implemented Cassandra [70] to store the large amount of data. In addition,

MapReduce [44] has been widely used by these social network companies to

handle the data analysis jobs. However, most of these works only focus on the

subsystem (storage, parallel processing or search engine) of a microblogging

system, and the performance of these subsystems can be further improved with

proper optimization strategies. In this thesis, instead of delving in only a spe-

cific subsystem of a microblogging system, we design a complete and scalable

microblogging data management system, ART (AQUA, R-Store and TI), that

can process the major queries in microblogging systems. These queries include

the basic user queries (such as update, insert, delete and real-time search) and

the complex data analysis queries (like join and aggregation). In addition to

simply supporting these queries, ART is specifically designed to improve the

performance of multi-way join query, aggregation query and real-time search

query compared to the existing systems.

In this chapter, we will first introduce the overview of ART in Section 1.1.

We then discuss the research challenges in microblogging data management

in Section 1.2. Specifically, we will show the limitations of the methods for

processing the multi-way join query, real-time aggregation query and real-time

search query in existing systems, and briefly discuss our solution. At last, we

will summarize the objectives and significance of this work (Section 1.3) and

introduce the synopsis of this thesis (Section 1.4).

1.1 Overview of ART

A microblogging data management system typically has two major modules:

the offline analytics module that is used to analyze the microblogging data;

and the OLTP and online analytics module for updating the data based on

user actions and supporting the real-time analytics. These two modules must

2

CHAPTER 1. INTRODUCTION

be scalable in order to cope with the increasing data volume in microblogging

system. In addition, in microbloging system, a search module is also required

to support the real-time search query, which has attracted much research since

the emergence of microblogging.

• Offline Analytics Module. Offline data analytics module is an im-

portant part of a microblogging data management system. It is used to

analyze microblogging data in order to extract some valuable information

that will be used for decision making. DBMSs have evolved over the last

four decades as platforms for managing the data and supporting data anal-

ysis, but they are now being criticized for their monolithic architecture

that is hard to scale to satisfy the requirement of current microblogging

companies. Instead, MapReduce[44], a parallel query processing platform

that is well known for its scalability, flexibility and fault-tolerance, has

been widely used as the offline analytics module2. However, since MapRe-

duce has a simplified programming language that requires a large amount

of work from the programmers, the high level systems such as Hive [101]

and Pig [83] are usually used to automatically translate the OLAP queries

to MapReduce jobs.

In ART, we adopt an open sourced implementation of MapReduce, Hadoop,

as the parallel processing module. In addition, we propose AQUA, a high

level system that is implemented by embedding a cost based query op-

timizer into Hive. AQUA provides similar functionality to Hive, which

automatically translates a SQL query into a sequence of MapReduce jobs.

In addition, for a multi-way join query, AQUA is able to iterate the pos-

sible join plans using a heuristic plan iteration algorithm and estimate

the cost of each plan based on the proposed cost model. Finally, the

near-optimal join plan is selected by AQUA and will be submitted to

MapReduce for execution.

• OLTP and Real-Time Analytics Module. To store and update the

microblogging data at such a scale, distributed key/value stores, instead

of the single node database management systems (DBMSs), have been

adopted. For example, Cassandra3 has been used by the GEO team in

2shading https://blog.twitter.com/2012/generating-recommendations-mapreduce-and-
scalding

3https://blog.twitter.com/2010/cassandra-twitter-today

3

CHAPTER 1. INTRODUCTION

twitter to store the tweet data, and HBase4 has been adopted by tumblr as

part of their storage system. User actions such as posting a new microblog

or replying to friends incur OLTP operations (update, delete, insert, etc)

to the storage system.

ART also uses a distributed key/value store to store and update the

microblogging data. Different from the other distributed key/value stores,

to enable real-time data analytics, the underlying storage module in ART,

R-Store, is redesigned so that the latest data can be quickly accessed

by the analysis engine. We implement R-Store by extending an open

source distributed key/value system, HBase, to store the real-time data

cube and the microblogging data. R-Store can handle the OLTP queries

and update the tables according to the user queries. In addition, these

updates are shuffled to a streaming module inside R-Store, which updates

the real-time data cube on incremental basis. We propose techniques to

efficiently scan the microblogging data in R-Store, and these data will be

combined with the real-time data cube during the processing of the real-

time aggregation queries. We will discuss R-Store in detail in Chapter 5;

• Real-time Search Module. The increasing popularity of social net-

working systems changes the form of information sharing. Instead of is-

suing a query to a search engine, the users log into their social networking

accounts and retrieve news, URLs and comments shared by their friends.

Therefore, in addition to the basic data storage and analytics, supporting

real-time search is a new requirement for microblogging system. (e.g.,

Twitter [16] has released their real-time search engines recently.) A real-

time search query consists of a set of keywords issued by the users, and it

requires that the microblogs are searchable as soon as they are generated.

For example, users may be interested in the latest discussion on the pop

star Britney Spears and thus submit the query “Britney spears” to the

system. Different from the traditional search engine where the inverted

index is built in batch, the index in microblogging system must be main-

tained in real-time to ensure that the latest microblogs posted should be

4http://www.cloudera.com/content/cloudera/en/resources/ library/hbasecon/hbasecon-
2012–growing-your-inbox-hbase-at-tumblr-bennett-andrews.html,
http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-
month-and-harder.html

4

CHAPTER 1. INTRODUCTION

Offline AnalyticsOffline Analytics

AQUA Real-Time

Search: TI

Search

OLTP and Real-Time Analytics: R-Store

Hadoop

Update

SQL
Query

Real-Time
Aggregation

Query

U
sers

A
d

m
in

istrato
rs

Figure 1.1: Overview of ART

considered if they contain the keywords in the queries.

In ART, a distributed adaptive indexing system, TI, is proposed to sup-

port real-time search. The intuition of TI is to index the microblogs that

may appear as a search result with high probability and delay indexing

some other microblogs. This strategy significantly reduces the indexing

cost without compromising the quality of the search results. In TI, we

also devise a new ranking scheme by combining the relationship between

the users and microblogs. We group microblogs into topics and update

the ranking of a topic dynamically, and the popularity of the topic will

affect the ranking scores of the microblogs in our ranking scheme. In TI,

each search query is issued to an arbitrary query processor (in TI slaves),

which collects the necessary information from other nodes and sorts the

search results using our ranking scheme. We will discuss TI in detail in

Chapter 6.

In summary, Figure 1.1 shows an overview of ART. ART consists of three

major modules, and we focus on AQUA, R-Store and TI. In ART, the mi-

croblogging data are stored in R-Store. The user actions such as posting a

microblog incur the OLTP transactions, and the microblogging data is updated

accordingly. The data are periodically exported to the file system of Hadoop

(HDFS), and AQUA will translate the SQL queries to MapReduce jobs to ana-

lyze these data offline. Different from the offline analysis queries, the real-time

analysis queries are directly handled by R-Store. In addition, the newly pub-

5

CHAPTER 1. INTRODUCTION

Tweet

PK tid

 content
 uid
 coord
 date

User

PK uid

 age
 gender
 name
 #post

TweetGraph

PK tid
PK uid

 date

Location

PK coord

 country
 city
 zipcode

UserGraph

PK uid
PK fid

 date

Figure 1.2: Example Twitter Tables

lished microblogs in R-Store are shuffled to TI, and the real-time inverted index

are updated accordingly. With these three modules, ART is able to support the

requirements of a microblogging data management system. Furthermore, ART

is also specifically designed for efficiently processing the multi-way join query,

real-time aggregation query and real-time search query. In the next section, we

will briefly discuss the research challenges in processing these queries in existing

work and how ART addresses these challenges.

1.2 Query Processing in Microblogging Data

Management System

Various queries are being executed in the microblogging system, such as OLTP

queries, OLAP queries, search queries etc. In this section, we discuss three

query types that are common in a microblogging system: multi-way join query

and aggregation query are data analysis queries, while real-time search query

is a fundamental requirement of microblogging system to ensure that the users

can obtain the real-time information about what they are interested in.

To demonstrate these queries more clearly, we first give an example for the

schema of the Twitter data. As shown in Figure 1.2, there are five tables in

the schema: the Tweet table stores the content of each tweet published by

6

CHAPTER 1. INTRODUCTION

the users; the User table stores the information of each user, such as age and

gender; the UserGraph table stores the following relationship between users;

TweetGraph stores the replying/retweeting relationship between tweets; and

Locations stores the mapping between the coordinates and the address. We

will refer to this schema in the rest of this thesis.

1.2.1 Multi-Way Join Query

In a data management system, multi-way join query is used most frequently

and has by far attracted most attention. For example, the administrator of

a microblogging system may be interested in the number of tweets published

in USA by the followers of Obama, and the following query could solve this

problem:

SELECT count(∗)

FROM Tweet T, User U, Location L, UserGraph UG

WHERE T.coord = L.coord

AND T.uid = UG.uid

AND UG.fid = U.uid

AND L.country = USA

AND U.name = “Obama”

The above multi-way join can be executed as a sequence of equi-joins repre-

sented as a tree (as shown in Figure 1.3(a)). Equi-join is an atomic operator of

multi-way join. Given tables Tweet and User, the equi-join operator creates

a new result table by combining the columns of Tweet and User based on the

equality comparisons over one or more column values such as uid.

To implement the multi-way join in MapReduce, each of the equi-joins in

the join tree is performed by one MapReduce job. Starting from the bottom

of the tree, the result of each MapReduce job is treated as an input for the

next (higher-level) one. The multi-way join has been implemented on top of

MapReduce in [101]. However, the order of the equi-join operator is specified

by the users. As expected, different join orders lead to different query plans

with significantly different performance, but even skilled users cannot select the

7

CHAPTER 1. INTRODUCTION

on

on

on

T L

UG

U

(a) Left Deep Plan

on

on

T L

on

UG U

(b) Bushy Plan

Figure 1.3: Multi-way Join

best join orders when the number of tables involved in the multi-way join is

large.

To find the best join order, we need to collect the statistics of the data [60]

and estimate the processing cost of each possible plan using a cost model. Many

plan generation and selection algorithms [95] that were developed for relational

DBMSs can be applied here to find a good plan, but these algorithms have

not been designed specially for MapReduce and can be further improved in a

MapReduce system. In particular, more time-consuming algorithms may be

employed for two reasons. First, the relational optimization algorithms are

designed to efficiently balance query optimization time and the query execu-

tion time. MapReduce jobs usually run longer than relational queries, and thus

call for more time-consuming algorithms that require longer query optimization

time to reduce the query execution time. Second, in most relational DBMSs,

only left-deep plans [53] (Figure 1.3(a)) are typically preferred to reduce the

plan search space and to pipeline the data between operators. There is no

pipeline between the operators in the original MapReduce, and, as we indi-

cated above, query execution time is more important. Thus, the bushy plans

(Figure 1.3(b)) are often considered for their efficiency.

In ART, to efficiently find a better plan for the multi-way join query in

MapReduce, we propose a cost based query optimizer, which uses a heuristic

plan generator to reduce search space and considers the bushy plans.

8

CHAPTER 1. INTRODUCTION

1.2.2 Real-Time Aggregation Query

Aggregation query is usually used to compute a summary of the data stored

in data warehouse. For example, if the administrator would like to compute

the number of tweets published in a certain day, he may write the following

aggregation query to solve the problem:

SELECT sum(#post)

FROM User U

WHERE U.age = 30

However, in the current data management system, the freshness of the above

query has become an issue. Currently, data management systems implemented

for large scale data processing (including microblogging system) are typically

separated into two categories: OLTP systems and OLAP systems. The data

stored in OLTP systems are periodically exported to OLAP systems through

Extract-Transform-Load (ETL) tools. In recent years, MapReduce framework

has been widely used in implementing large scale OLAP systems because of its

scalability, and these include Hive [101], Pig [83] and HadoopDB [17]. Most

of these only focus on optimizing OLAP queries, and are oblivious to updates

made to the OLTP data since the last loading. However, with the increasing

need to support real-time online analytics, the issue of freshness of the OLAP

results has to be addressed, for the simple fact that more up-to-date analytical

results would be more useful for time-critical decision making.

The idea of supporting real-time OLAP (RTOLAP) has been investigated in

traditional database systems. The most straightforward approach is to perform

near real-time ETL by shortening the refresh interval of data stored in OLAP

systems [102]. Although such an approach is easy to implement, it cannot

produce fully real-time results and the refresh frequency affects system perfor-

mance as a whole. Fully real-time OLAP entails executing queries directly on

the data stored in the OLTP system, instead of the files periodically loaded from

the OLTP system. To eliminate data loading time, OLAP and OLTP queries

should be processed by one integrated system, instead of two separate systems.

However, OLAP queries can run for hours or even days, while OLTP queries

9

CHAPTER 1. INTRODUCTION

Figure 1.4: Example of Twitter Search obtained on 10/29/2010

take only microseconds to seconds. Due to resource contention, an OLTP query

may be blocked by an OLAP query, resulting in a large query response time.

On the other hand, if updates by OLTP queries are allowed as a way to avoid

long blocking, since complex and long running OLAP queries may access the

same data set multiple times, the result generated by the OLAP query would

be incorrect (the well-known dirty data problem).

Fully supporting real-time OLAP in a distributed environment is a chal-

lenging problem. Since a complex analysis query can be executed for days, by

the time that the query is completed, the result is in fact not “real-time” any

more. In this thesis, we focus on supporting real-time processing for a subset of

the OLAP queries: aggregation queries. A real-time aggregation query in our

system accesses, for each key, the latest value preceding the submission time

of the query [52]. Compared to the other queries such as join queries, pure

aggregation query only involves one table, and thus its processing logic is much

simpler and has more opportunities to be improved. We will discuss how we

optimize the real-time aggregation query in Chapter 5

10

CHAPTER 1. INTRODUCTION

1.2.3 Real-Time Search Query

To ensure that the users can search for the current happening events or dis-

cussions that they’re interested in, the search service is a required component

of microblogging system. Figure 1.4 illustrates an example on the search re-

sults of Twitter for the keyword “inception”. As shown in this figure, even the

tweets that are published less than 20 seconds ago can be searched. However,

in conventional search engines, the search service is provided via crawling the

web pages and updating the index periodically. The freshness of the index and

relevance of the web pages with respect to the search results would therefore

rely on the frequency in which pages are crawled and the indexes are updated.

Such approach is not ideal for supporting search in microblogging systems,

where thousands of concurrent users may upload their microblogs or tweets

simultaneously. To make a blog or tweet searchable as soon as it is produced,

the index must be created or updated in real time.

Providing real-time search service is indeed very challenging in large-scale

microblogging systems. In such a system, thousands of new updates need to be

processed per second. To make every update searchable, we need to index its

effect in real time and provide effective and efficient keyword-based retrieval at

the same time. The objectives are therefore contradictory since maintenance

of up-to-date index will cause severe contention for locks on the index pages.

Another problem of real-time search is the lack of effective ranking functions.

For example, the user is perhaps looking for the reviews and comments about

the movie “Inception”. However, most search results in Figure 1.4 are not

related to the movie, and most of returned tweets do not even provide any useful

information. This is because the current Twitter search engine sorts the results

based on time, and therefore, the latest tweets have the higher rankings. Recall

that one key factor of Google’s early success is its PageRank [85] algorithm.

Without proper ranking functions, the search results are meaningless.

In ART, we propose TI, a distributed adaptive indexing system for support-

ing real-time search. It only indexes the tweets when they have high probability

to be searched by a search query, and offers a new ranking scheme that considers

the relationship between the tweets and the users.

11

CHAPTER 1. INTRODUCTION

1.3 Objectives and Significance

Microblogging is a popular social network that has attracted billions of users

throughout the world. Because of the huge amount of data generated in the

microblogging systems, it has become more challenging to efficiently process

the queries using existing DBMSs. Therefore, the large scale systems discussed

in section 1.1 has been used by the microblogging service providers. However,

there are still some unsolved problems in existing systems, which are summa-

rized as follows:

• Most of the existing systems only focus on a particular subsystem of a

microblogging data management system.

• In current offline analytics module, the order of the multi-way join is

decided by the programmer. Unfortunately, manual query optimization

is time-consuming and difficult, even for an experienced database user or

administrator.

• The microblogging data are usually stored in OLTP module and periodi-

cally exported to OLAP module. The OLAP query, such as aggregation,

does not consider the newly updated data, and the freshness of the query

result becomes a concern.

• The ranking scheme of exiting real-time search query is not proper, and

thus the search results are meaningless. In addition, as there are huge

amount of microblogs updated per day, the exiting indexing scheme may

not be able to index these updates in real-time.

The main aim of this thesis is to propose a full-functional and scalable

microblogging data management system that is optimized for the three query

types discussed in Chapter 1.2. The specific objectives of this thesis are:

• To design a full-functional microblogging data management system that

supports OLTP, offline data anlytics, real-time data analytics and real-

time search.

• To improve the performance of multi-way join query by a cost based

optimization in the offline analytics module.

12

CHAPTER 1. INTRODUCTION

• To efficiently process the real-time aggregation queries in the real-time

analytics module.

• To devise a more effective ranking scheme for the real-time search module,

and design a more efficient approach to build and update the real-time

inverted index.

The main contributions of this thesis are as follows:

• First, we design a cost-based optimizer to efficiently translate the multi-

way join queries to MapReduce jobs. Our proposed plan iteration al-

gorithm can be completed within a short period of time compared to

the execution time of the join queries, and the plan selected by our cost

optimizer significantly outperforms the manually optimized plans.

• Second, we propose a large scale system for supporting real-time aggre-

gation queries. The real-time data cube and the real-time data are stored

in the system and will be used during the processing of the aggregation

queries. We develop different algorithms for the real-time aggregations

and the better algorithm is automatically selected based on the statistics

of the data, which is transparent to the users.

• Third, we propose an adaptive indexing scheme for microblogging systems

such as Twitter. It reduces the indexing cost by only indexing the tweets

that may appear as a search result in real-time. The other tweets are

indexed in batch. We also devise a new ranking scheme that considers

the relationship between the users and tweets.

• Last, we implement subsystem for each of the methods we propose in the

three works, and these systems are integrated to ART(AQUA, R-Store,

TI), a large scale microblogging data management system. Though the

purpose of this thesis is to efficiently process queries in a microblogging

data management system, the approaches proposed can be applied to

other large scale systems (such as blogging systems, search engines and

distributed key/value stores) as well.

13

CHAPTER 1. INTRODUCTION

1.4 Thesis Organization

The remaining of this thesis is organized according to the three components

(AQUA, R-Store and TI) that we have proposed in Figure 1.1:

1. Chapter 2 reviews the related work of the three works in this thesis.

2. Chapter 3 presents the design philosophy and architecture of ART.

3. Chapter 4 introduces AQUA, a cost-based query optimizer for multi-way

join queries on MapReduce.

4. Chapter 5 presents R-Store, a modified version of HBase that supports

large scale real-time aggregation query processing.

5. Chapter 6 presents TI, an efficient indexing system for supporting real-

time search queries on tweets.

6. Chapter 7 concludes this thesis and discusses possible directions for future

work.

14

CHAPTER 2

Literature Review

In recent years, microblogging systems such as Twitter and Tumblr have become

basic communication methods for the people to share their opinions, discoveries

and activities with their friends. According to a report, Twitter has more than

500 million active registered users by May, 20131. Due to its popularity and the

huge data volume, it has attracted the design of a distributed data management

system to handle the OLTP or search queries issued by the users, and the data

analysis queries submitted by the administrators. In this chapter, we shall first

review some exiting large scale systems used in the industry (Section 2.1), and

then review the related works on multi-way join, real-time aggregation and

real-time search query processing.

2.1 Large Scale Data Storage and Processing

Systems

Database management systems (DBMSs) [87] have evolved over the last four

decades in managing business data and are now functionally rich. However,

DBMSs have been criticized for their monolithic architecture that is hard

to scale to satisfy the requirement of the current internet applications where

petabyte of data are generated every day. There have been various proposals to

1http://www.statisticbrain.com/twitter-statistics/

15

CHAPTER 2. LITERATURE REVIEW

restructure DBMSs (e.g., [33, 97]), but the basic architecture has not changed

dramatically. Though database systems have been extended and parallelized

to run on multiple hardware platforms to manage scalability [84], with the ever

increasing amount of data and the availability of high performance and rela-

tively low-cost hardware, some new “big data” platforms have been designed

and implemented by companies such as Google, Facebook and Microsoft. These

systems have the following two fundamental features:

1. Scalability. A major challenge in many existing applications is to be

able to scale to increasing data volumes. In particular, elastic scalability

is desired, which requires the system to be able to scale its performance

up and down dynamically as the computation requirements change. Such

a “pay-as-you-go” service model is now widely adopted by the cloud com-

puting service providers.

2. Fault tolerance. The data are usually replicated in multiple machines,

and the failure of a task or a machine is compensated by assigning the

task to a machine that is able to handle the load.

We classify these systems into two categories: distributed storage systems and

parallel processing systems.

2.1.1 Distributed Storage Systems

In recent years, the rapidly growing popularity of web applications, such as

online social network and shopping, significantly raises the transaction volume,

and the workload of the OLTP systems as a consequence. Nevertheless, it is

found that the traditional databases, which enforce the strong consistency on

data models, are incapable of achieving the requirements discussed above. An

early study [51] proves that any binary combination of consistency, availability

and scalability is achievable but not ternary. Hence, the consensus is to trade

consistency for the other two metrics. Google’s BigTable [30] is one of the first

systems following this design philosophy. Bigtable is a sparse, distributed, per-

sistent multi-dimensional sorted map, which is indexed by a row key, column

key, and a timestamp. Rows are sorted by key and the whole Bigtable is par-

titioned into a number of tablets according to the specified row key ranges. In

addition to row keys, columns have keys as well (equivalent the attribute names

of tables in relational databases), and are grouped into the column family.

16

CHAPTER 2. LITERATURE REVIEW

HBase [3] is an open source version of BigTable, which adopts BigTable’s

master-slave architecture as well. The master server is responsible for distribut-

ing tablets to tablet servers, monitoring the states of tablet servers, balancing

the workload of them. Moreover, it handles metadata modifications such as

table and column family creations and updates. Each tablet server hosts a set

of tablets, handles read and write requests to the tablets, and also partitions

the tablets if they have grown large enough.

Cassandra is a distributed storage system originating from Facebook [69],

and is now a popular open source project under Apache Foundation [1]. It

adopts similar data model as BigTable, but has a different system architecture:

it uses consistent hashing to organize the data in the cluster. A hash function

is employed to generate keys within some key space, which forms a circle by

concatenating the largest value to the smallest one. Each node is assigned a

key that represents the position of it in the system. Each data item also has a

key to be identified. The key also determines on which node the data item is

stored: the first node whose key is no larger than the data item’s.

In addition to the BigTable-like storage model, Dynamo [45], which is de-

signed by Amazon Inc, adopts the pure key/value storage model. Dynamo

uses consistent hashing to partition data as well. Moreover, through real-world

deployment and operation, Amazon found the basic partition method did not

work well with nonuniform data distribution and heterogeneous node capacity.

To improve the performance, they made some modifications: the whole key

space is divided into a number of equal-size partitions; and each node is re-

sponsible for multiple partitions, proportional to its capacity. The replication

strategy is straightforward in Dynamo. Assume k replications are required.

Then, the data item is stored on the node that is responsible for its key, and is

replicated on k − 1 nodes who are the clockwise successors of the node.

Whereas Dynamo [45] and Cassandra [69] can only support eventual con-

sistency, Cooper et al. [43] claims that the eventual consistency model is often

too weak and hence inadequate for web applications. The argument given by

Cooper et al. is based on the observation of Yahoo!’s applications. According

the specific requirements of their applications, the authors designed and im-

plemented a centrally-managed, geographically-distributed and automatically-

load-balancing storage system, named PNUTS. With PNUTS [43], a consider-

able number of concurrent requests can be replied within a short latency. Table

17

CHAPTER 2. LITERATURE REVIEW

Dynamo Cassandra PNUTS HBase
Consistency Eventual Eventual Timeline Full
Replication Asynchronized Asynchronized Asynchronized Asynchronized
Data Model Key-value Column-family Table Column-family

Underlying Storage Local file system Local file system Local database HDFS [2]
Architecture P2P P2P Master-slave Master-slave

Optimized For Writes Writes Writes Reads

Table 2.1: Summary of well-known OLTP systems.

Table 2.2: map and reduce Functions
map (k1, v1)→ list(k2, v2)

reduce (k2, list(v2))→ list(v3)

2.1 summarizes the characteristics of the distributed storage systems discussed

in this section.

2.1.2 Parallel Processing Systems

As the traditional DBMSs can hardly scale to thousands of nodes, many new

parallel processing systems have been proposed recently. Among these systems,

the most popular one is MapReduce [44]. MapReduce is a simplified parallel

data processing approach for execution on a computer cluster. (We have written

a detailed survey on MapReduce in [72].) Its programming model consists of

two user defined functions, map and reduce(Table 2.2). The inputs of the map

function is a set of key/value pairs. When a MapReduce job is submitted to the

system, the map tasks (which are processes that are referred to as mappers) are

started on the compute nodes and each map task applies the map function to

every key/value pair (k1, v1) that is allocated to it. Zero or more intermediate

key/value pairs (list(k2, v2)) can be generated for the same input key/value

pair. These intermediate results are stored in the local file system and sorted

by the keys. After all the map tasks complete, the MapReduce engine notifies

the reduce tasks (which are also processes that are referred to as reducers) to

start their processing. The reducers will pull the output files from the map tasks

in parallel, and merge-sort the files obtained from the map tasks to combine the

key/value pairs into a set of new key/value pair (k2, list(v2)), where all values

with the same key k2 are grouped into a list and used as the input for the

reduce function. The reduce function applies the user-defined processing

18

CHAPTER 2. LITERATURE REVIEW

logic to process the data. The results, normally a list of values, are written

back to the storage system. MapReduce processing engine has two types of

nodes, the master node and the worker nodes. The master node controls the

execution flow of the tasks at the worker nodes via the scheduler module. Each

worker node is responsible for a map or reduce process.

An interesting line of research has been to develop parallel processing plat-

forms that have MapReduce flavor, but are more general. Two examples of this

line of work are Dryad [58] and epiC [34].

Dryad [58] represents each job as a directed acyclic graph whose vertices

correspond to processes and whose edges represent communication channels.

Dryad jobs (graphs) consist of several stages such that vertices in the same

stage execute the same user-written functions for processing their input data.

Consequently, MapReduce programming model can be viewed as a special case

of Dryad’s where the graph consists of two stages: the vertices of the map stage

shuffles their data to the vertices of the reduce stage.

Driven by the limitations of MapReduce-based systems in dealing with “va-

rieties” in cloud data management, epiC [34] was designed to handle variety of

data (e.g., structured and unstructured), variety of storage (e.g., database and

file systems), and variety of processing (e.g., SQL and proprietary APIs). Its

execution engine is similar to Dryad’s to some extent. The important charac-

teristic of epiC, from a MapReduce or data management perspective, is that

it simultaneously supports both data intensive analytical workloads (OLAP)

and online transactional workloads (OLTP). Traditionally, these two modes of

processing are supported by different engines. The system consists of the Query

Interface, OLAP/OLTP controller, the Elastic Execution Engine (E3) and the

Elastic Storage System (ES2) [28]. SQL-like OLAP queries and OLTP queries

are submitted to the OLAP/OLTP controller through the Query Interface. E3

is responsible for the large scale analytical jobs, and ES2, the underlying dis-

tributed storage system that adopts the relational data model and supports

various indexing mechanisms [36, 103, 107], handles the OLTP queries.

2.2 Multi-Way Join Query Processing

The philosophy of MapReduce is to provide a flexible framework that can be

used to solve different problems. Therefore, MapReduce does not provide a

19

CHAPTER 2. LITERATURE REVIEW

MapReduce join implementations

θ-join

Equi-join

Repartition
join

Semi-join Map-only join

Broadcast
join

Partition
join

Multi-way join

Multiple
MapReduce

jobs

Replicated
join

Figure 2.1: Join Implementations on MapReduce

query language, expecting the users to implement their customized map and

reduce functions. While this provides considerate flexibility, it adds to the

complexity of application development. To make MapReduce easier to use, a

number of high-level languages have been developed, some of which are SQL-like

(HiveQL [101], Tenzing [31]), others are data flow languages (Pig Latin [83]),

and some are declarative machine learning language (SystemML [50]). Among

these languages, HiveQL is the most popular one as SQL-like language has been

used for years in data management system. In this section, we review how

the SQL operators are implemented using the MapReduce interface. Simple

operators such as select and project can be easily supported in the map

function, while complex ones, such as theta-join [82], equi-join [26] and

multi-way join [108, 62] require significant effort.

The projection and filtering can be easily implemented by adding a few

conditions in the map function to filter the unnecessary columns and tuples.

The implementation of aggregation was discussed in the the original MapRe-

duce paper. The mapper extracts an aggregation key for each incoming tuple

(transformed into key/value pair). The tuples with the same aggregation key

are shuffled to the same reducers, and the aggregation function (e.g., sum, min)

is applied to these tuples. Join operator implementations have attracted by far

the most attention, as it is one of the most expensive operators and a better

implementation may potentially lead to a significant performance improvement.

Therefore, in this section, we will focus our discussion on the join operator. We

20

CHAPTER 2. LITERATURE REVIEW

1

1

1
2

2

2

3

3

3
4

4

4

R
S

Figure 2.2: Matrix-to-reducer mapping for cross-product

summarize the existing join algorithms in Figure 2.1.

2.2.1 Theta-Join

Theta-join [113] is a join operator where the join condition θ belongs to {<,≤
,=,≥, >, 6=}. It is a very expensive database operator, since |R onθ S| is close to

|R|×|S| and few optimization techniques are available. To efficiently implement

theta-join on MapReduce, the |R| × |S| tuples should be evenly distributed on

the r reducers, which means that each reducer generates about the same number

of results: |R|×|S|
r

. To achieve this goal, a randomized algorithm, 1-Bucket-

Theta algorithm, was proposed [82] that evenly partitions the join matrix into

buckets (Figure 2.2), and assigns each bucket to only one reducer to eliminate

the duplicate computation, while also ensuring that all the reducers are assigned

the same number of buckets to balance the load.

2.2.2 Equi-Join

Equi-join is a special case of θ-join where θ equals to “=”. The strategies for

MapReduce implementations of the equi-join operator follows earlier parallel

database implementations [90]. Given tables R and S, the equi-join operator

creates a new result table by combining the columns of R and S based on

the equality comparisons over one or more column values. There are three

variations of equi-join implementations (Figure 2.1): repartition join, semijoin-

based join, and map-only join (joins that only require map side processing).

Repartition Join [26] is the default join algorithm for MapReduce in Hadoop.

The two tables are partitioned in the map phase, followed by shuffling the tuples

with the same key to the same reducer that joins the tuples.

21

CHAPTER 2. LITERATURE REVIEW

Semijoin-based join has been well studied in parallel database systems (e.g.,

[24]), and it is natural to implement it on MapReduce [26]. The semijoin

operator implementation consists of three MapReduce jobs. The first is a full

MapReduce job that extracts the unique join keys from one of the relations,

say R, where the map task extracts the join key of each tuple and shuffles the

identical keys to the same reducer, and the reduce task eliminates the duplicate

keys and stores the results in DFS as a set of files (u0, u1, ..., uk). The second job

is a map-only job that produces the semijoin results S ′ = S n R). In this job,

since the files that store the unique keys of R are small, they are broadcast to

each mapper and locally joined with the part of S (called data chunk) assigned

to that mapper. The third job is also a map-only job where S ′ is broadcast to

all the mappers and locally joined with R.

Map-only join can be used if the tables are already co-partitioned based

on the join key. In this case, for a specific join key, all tuples of R and S

are co-located in the same node. The scheduler loads the co-partitioned data

chunks of R and S in the same mapper to perform a local join, and the join

can be processed entirely on the map side without shuffling the data to the

reducers. This co-partitioning strategy has been adopted in many systems

such as Hadoop++ [46].

2.2.3 Multi-Way Join

The multi-way join can be executed as a sequence of equi-joins, each of which

is performed by one MapReduce job. The result of each MapReduce job is

treated as input for the next MapReduce job. As different join orders lead to

different query plans with significantly different performance, it is important

to find the best join order for a multi-way join. The first step is to collect the

statistics of the data (e.g., in [60], the problem of efficiently building histogram

on MapReduce was investigated), and the second step is to estimate the pro-

cessing cost of each possible plan using a cost model. Using the estimated cost

for each binary join in the join tree, we can step-by-step calculate the cost of

the multi-way join.

Many plan generation and selection algorithms that were developed for re-

lational DBMSs can be directly applied here to find the optimal plan. These

optimization algorithms can be further improved in a MapReduce system [108];

22

CHAPTER 2. LITERATURE REVIEW

in particular, more elaborate algorithms may be deployed. As MapReduce jobs

usually run for a long time, justifying more elaborate algorithms (i.e., longer

query optimization time) if they can reduce query execution time. In addi-

tion, instead of considering only the left-deep plans, the bushy plans are often

considered for their efficiency.

2.3 Real-time Aggregation Query Processing

As discussed in previous section, the large scale data management system usu-

ally consists of two parts: OLTP module and OLAP module. The OLTP

module handles a large number of short transactions oriented from the user

interactions in the website, while the OLAP module processes the data analy-

sis queries issued by the administrators or database users. The data stored in

OLTP module are periodically exported to OLAP module. Therefore, freshness

of the OLAP results is an issue that needs to be resolved. The idea of support-

ing real-time OLAP has been studied in traditional database systems, and we

will review these work in this section. In addition, there have been some work

on distributed stream processing, which are related to our work as they also

focus on how the timely results are returned.

2.3.1 Real-Time Data Warehouse

The growing demand for fast business analysis coupled with increasing use of

stream data have generated great interest in real-time data warehousing [105].

Some have proposed near real-time ETL [64, 102], as a means to shorten the

data warehouse refreshing intervals. These works require fewer modifications

to the existing systems, but they cannot achieve 100% real-time. Other studies

proposed online updates in data warehouses by using differential techniques [56,

98], or multi-version concurrency control [68]. In C-store [98] two separate

stores are used to handle in-place updates. The updates are stored in a write-

store (WS), while queries run against the read-store (RS), and merged with

the WS during execution. In existing studies, the incoming updates are usually

cached to improve the performance. The cached data are then flushed to disk

once the size exceeds the upper bound. The performance of these studies are

limited by the size of the memory, and MaSM [21] overcomes these limitations

23

CHAPTER 2. LITERATURE REVIEW

by utilizing the SSDs to cache incoming updates. Recently, with the drastic

increase of main memory capacity, some in-memory data warehouses have been

proposed to process both OLTP and OLAP queries together, and these work

include SAP Hana [47] and Hyper [66]. In the main memory data warehouse,

the OLAP queries are run on the up-to-date snapshot of the real-time data.

The tuples in the snapshot are deleted once the OLAP query is completed

and new updates are applied to the tuples. In R-Store, the similar approach

is adopted to compact the tuples that have multiple versions. However, our

approach are disk-based as in a “big data” system where thousands of nodes

are deployed on commodity machines, it is not cost-effective to use the pure

in-memory structure.

2.3.2 Distributed Processing

Some recent distributed stream systems support real-time data stream process-

ing that returns the aggregation result of the up-to-date data. HStreaming [4]

and MapReduce Online [42] are extensions to the MapReduce framework, which

support stream processing by the following three aspects: (1) the input of the

mappers could be stream data; (2) the data are streamed from mappers to

reducers; and (3) the output of MapReduce job can be streamed to the next

job.

Different from the above two systems that extends MapReduce to process

data streams, S4 [80] is a distributed stream processing system that follows the

Actor programming model. Each keyed tuple in the data stream is treated as

an event and is the unit of communication between Processing Elements (PEs).

PEs form a directed acyclic graph, which can also be grouped into several stages.

At each stage, all the PEs share the same computation function, and each

PE processes the events with certain keys. The architecture of S4 is different

from the MapReduce-based systems: it adopts a decentralized and symmetric

architecture. In S4, there is no master node that schedules the entire cluster.

The cluster has many processing nodes (PNs) that contains several PEs for

processing the events. Since the data are streaming between PEs, there’s no

on disk checkpoint for the PEs. Thus, the partial fault tolerance is achieved in

S4: if a PN failure occurs, its processes are moved to a standby server, but the

state of these processes is lost and cannot be recovered.

24

CHAPTER 2. LITERATURE REVIEW

Storm is another stream processing system in this category that shares

many features with S4. A Storm job is also represented by a directed acyclic

graph, and its fault tolerance is partial due to the streaming channel between

vertex. The difference is the architecture: Storm is a master-slave system like

MapReduce. A Storm cluster has a master node (called Nimbus) and worker

nodes (called supervisor).

Different from these streaming systems where new tuples are appended to

the existing table, in R-Store, we also consider the case in which the tuples are

updated (e.g., the users of the microblogging system may update their status,

current address, etc).

There have been some researches on supporting both OLTP and OLAP, such

as Cloudera [67]. It adopts similar architecture as R-Store: the MapReduce

framework is directly run on top of HBase. And thus, it can also support real-

time analytics using MapReduce. Different from systems like Cloudera, in this

thesis, we investigate how to efficiently process the RTOLAP queries in such a

hybrid architecture by materializing the historical data into a data cube and

dynamically combining the data cube with the real-time data.

2.3.3 Data Cube Maintenance

As introduced in [54], data cube is N-dimensional array, in which each dimen-

sion represents a dimension attribute of the original table, while the value of

the array stores the aggregated value of a numerical attribute. Data cube

maintenance has been studied for a long time. The earliest works focused on

efficient incremental view maintenance for data warehouses [29, 55]. However,

as the number of dimension attributes increases, the cost of incrementally up-

dating data cube increases significantly. To improve the performance of data

cube maintenance, instead of generating the delta value for all the cuboids dur-

ing the update process, an method of refreshing multiple cuboids by the delta

value of a single cuboid has been proposed [71]. Most of these algorithms were

designed for a single node configuration and are not scalable to a distributed

environment. However, MapReduce has been used to construct data cube in

a large scale distributed environment [92]. The MR-Cube algorithm [79] was

proposed to efficiently compute the data cube for holistic measures. In these

works, the data cube is usually used for processing OLAP queries without the

25

CHAPTER 2. LITERATURE REVIEW

real-time requirement, while our system considers both the data cube and the

real-time data to process RTOLAP queries.

2.4 Real-Time Search Query Processing

In microblogging social networking, people instantly upload their opinions on

the current happening events. If these microblogs can be searched in real-time,

the users can understand what other people are discussing and utilize these

information to help themselves make some decisions. For example, if a user

plans to buy a new ipad in New York but he is not willing to queue in the apple

store for a long time, he can search for the keywords such as ”apple store New

York queue” in twitter. And if he can find some complaint about the length

of the queue or the long waiting time, he’d better chose another time to go to

the apple store. Because of the importance of supporting real-time search, it

has been a basic requirement of traditional search engine since microblogging

social networking became popular. Recently, Google and Bing added the real-

time search feature into their search engine, where the latest post published

in twitter and facebook are returned as part of the search result if they are

related to the query2. In addition, microblogging companies such as Twitter

also have their own real-time search engine. In this section, we will first review

the status of the research in real-time search. Moreover, since our proposed

real-time search engine, TI, adopts the partial indexing strategy to reduce the

cost of indexing, we also review some related work in this area.

2.4.1 Microblog Search

Google [11] and Twitter [16] have released their real-time search engines re-

cently. Google designs its web crawler to adaptively crawl the microblogs,

while Twitter relies on an existing technique, such as Lucene [5], to provide the

search service. Both of them treat a query as a continuous query and update

the results in real time. However, the ranking function only considers the time

dimension, and as a result, the results are sorted by time. By studying the

users’ behavior in the microblogging systems [59], more sophisticated ranking

schemes, such as [88], were proposed. However, most ranking schemes are too

2http://en.wikipedia.org/wiki/Google Real-Time Search

26

CHAPTER 2. LITERATURE REVIEW

complex and therefore too expensive to compute in real-time, and hence they

are precomputed in an offline manner. To address this problem, in [89], noisy

tweets are pruned and similar tweets are clustered together. Ranking is com-

puted for the tweets of the same cluster so that the computation cost can be

significantly reduced.

Similar to the ranking scheme in [104], in the TI, we also considers the

relationships between the users to identify the influential tweets. In addition,

we group tweets into some topics by examining their relationships captured in a

tree structure. In particular, tweets replying to the same tweet or belong to the

same thread are organized as a tree. Similar schemes were adopted for forum

search [91, 110]. To reduce the ranking cost, TI maintains the popular topics

in memory and modifies the structure of an inverted index. Compared to the

previous work, TI ’s ranking function is more efficient and incurs less overhead.

2.4.2 Partial Indexing and View Materialization

In database systems, indexes are created to facilitate efficient query processing.

However, index maintenance incurs significant overhead and causes lock con-

tention if the update load is high. Instead of indexing the whole dataset, a par-

tial index was proposed for indexing the records that may be queried with high

probability. The idea of partial indexing was first proposed in [96], where the

advantages of a partial index are analyzed. In [93], a statistical model is built

to monitor the query distribution and the partial index is created adaptively.

Partial indexing technique is also adopted in the distributed environment. In

PIER [77], only rare items are indexed in the DHT (Distributed Hash Table)

based peer-to-peer network, while the popular items are searched via flood-

ing. In PISCES [109], a just-in-time indexing scheme that can be dynamically

tuned to follow query patterns was proposed to facilitate query processing in a

peer-to-peer based data management system.

View materialization shares some similar principles with the partial indexing

technique. As it is expensive to materialize the whole dataset, a small portion

of data is therefore selectively materialized. [23] and [111] discuss how to adap-

tively materialize the views in multi-dimensional databases and data warehouse

systems. Cost models were proposed in [20] and [39] to automatically select

views for materialization. In [94], the adaptive view materialization strategy

27

CHAPTER 2. LITERATURE REVIEW

is applied to reduce the overhead of stream feeding systems. The proposed TI

adopts a similar design philosophy with the above work. In the TI, only data

that are deemed essential for the queries are indexed in real-time, while the

remaining data are processed in bulk and batch mode.

2.5 Summary

In this chapter, we first reviewed existing works on the large scale data man-

agement as a background of this thesis. We then reviewed the related works

on multi-way join, real-time aggregation and real-time search query processing

in existing large scale systems. In summary, the following limitations exist in

these works:

1. For large scale multi-way join query processing, only rule based query

optimizer has been implemented. A cost-based query optimizer can sig-

nificantly improve the performance of multi-way join. In addition, the

existing plan iteration algorithms for cost-based optimization were only

designed for the centralized DBMSs. A more adequate algorithm can

further improve the effective of the cost based optimizer and reduce the

execution time of the query.

2. In existing large scan query processing, the OLTP query and OLAP query

are usually processed in separate systems. The data stored in OLTP

module are periodically exported to OLAP module, and the freshness of

the OLAP results become an issue. Though the idea of supporting real-

time query processing has been studied in traditional DBMSs, it is still a

difficult problem in distributed environment. The distributed streaming

systems such as S4 tries to return timely results to the users, but they

assume that the new tuples are only appended to the data. Our work

considers the scenario where the existing data might be updated.

3. Real-time search has become an important requirement of microblogging

systems, but the existing ranking scheme offered by the microblogging

vendors such as Twitter cannot return meaningful results. The search

results are only sorted by the uploading time of each microblog. It would

helpful if the ranking scheme considers the relationships between the mi-

croblogging users, and the reply/retweet relationships between the mi-

28

CHAPTER 2. LITERATURE REVIEW

croblogs. Furthermore, it is also important to efficiently index the mi-

croblogs and rank the search results in a distributed environment.

In the rest of this thesis, we will first discuss the system overview of our pro-

posed microblogging data management system, ART. We then show how ART

addresses the above three challenges respectively.

29

CHAPTER 3

System Overview

With the development of social networking, the amount of data in the web is

growing exponentially. Taking microblogging as an example, there are more

than 115 million number of active twitter users every month, and million of

tweets are published every day. The valuable information contained in these

data and the challenges to manage these data have attracted many researchers’

interest on designing the “big data” systems for microblogging. In this thesis,

we propose ART, a full-functional, scalable and efficient microblogging data

management system. It is capable of processing major queries required by a

microblogging system and is optimized for three types of queries (multi-way

join, aggregation and real-time search). In this chapter, we will discuss the

design philosophy and architecture of ART in detail.

3.1 Design Philosophy of ART

ART is designed to support the following features:

1. Functionality. First, ART must be a full-functional system that is able to

process all the fundamental queries required by a microblogging system.

In a microblogging system, there are mainly two groups of queries: (1) the

user queries such as the OLTP queries (update, insert, delete) and real-

time search query; (2) the data analysis queries (including offline analytics

and real-time analytics) that are issued by the system administrators. We

30

CHAPTER 3. SYSTEM OVERVIEW

design ART to support the above two groups of queries so that it can

be directly used as a back-end microblogging data management system

without further extension.

2. Modularity. As ART is required to support various queries, it is not

feasible to implement all these functionalities within one module. Based

on the query types, we divide a ART into three modules. The first one

is the OLTP module that is responsible for processing the OLTP queries

issued by the users. To enable real-time analytics, the latest updates

caused by user actions must be reflected in the result of the real-time

analysis queries. Thus, the real-time analysis queries are also handled

by this module. The second one is the offline analytics module, which

processes the analysis queries on the data that are periodically loaded

from the OLTP module. The third module is real-time search module that

maintains a real-time inverted index to serve the real-time search query.

To ensure that the processing logic inside each module is independent of

the implementations of other modules, the higher level modules can only

load data from the lower level system through the data loading API.

3. Scalability. The most important requirement of ART is to scale up as

the data volume increases. To ensure that ART has high scalability and

to minimize the efforts on implementing ART, we extend the existing

“big data” systems (such as Hadoop, HBase and Hive) to implement the

modules of ART. These stable systems have already been widely used to

provide scalable service, and ART can inherit the scalability feature of

these systems as well.

4. Efficiency. In addition to the above features, we also optimize each module

of ART so that they are more efficient than exiting systems. Specifically,

the offline analytics module is optimized to improve the performance of

multi-way join query, and the real-time analytics module is optimized

to efficiently process the real-time aggregation query. For the real-time

search query, ART offers a better ranking scheme than exiting method

within an acceptable response time.

31

CHAPTER 3. SYSTEM OVERVIEW

Offline Analytics

Hadoop

SQL

Query
AQUA

Real-Time Search: TI

HDFSMapReduce

Tweets

OLTP and Real-Time Analytics: R-Store

HBase
Meta

Store

Streaming

System

Real-Time

Query Twitter Tables

Data Cube

Search

Query

OLTP

QueryLog

MapReduce

Index

Processors

Distributed Inverted Indexes

Query

Processors

Figure 3.1: Architecture of ART

3.2 System Architecture

Figure 3.1 shows the system architecture of ART, which consists of three major

modules.

1. Offline Analytics Module. The offline analytics module is responsible

for analyzing the twitter data in a batch mode. In this module, the

SQL queries are submitted to AQUA and are automatically translated

into a sequence of MapReduce jobs based on the proposed cost-based

optimizer. These jobs are submitted to Hadoop, the most popular open-

sourced MapReduce implementation, for execution. Although Hadoop

can be deployed on different storage systems, the released Hadoop package

includes HDFS as the default storage system. In ART, the Twitter data

stored in the low level storage module are periodically exported to HDFS,

and the MapReduce jobs translated from AQUA are executed to analyze

these data offline.

2. OLTP and Real-Time Analytics Module. R-Store is the low level dis-

tributed storage system implemented by extending HBase. The OLTP

transactions caused by the user actions, such as publishing a tweet and

updating status, are submitted to HBase directly. The Twitter tables

stored in HBase are then updated accordingly. In addition, R-Store is

designed to support real-time data analytics so that the latest updates

of the data can be considered during the processing of the data analysis

32

CHAPTER 3. SYSTEM OVERVIEW

queries. Specifically, we enable the real-time aggregation query processing

through the following modifications: (1) We embed a streaming module

in R-Store, which maintains a real-time data cube by the update streams

from HBase. This streaming module also periodically materializes the

real-time data cube into HBase. (2) The real-time aggregation queries,

which are written by our defined data cube operators, are submitted to

the MetaStore inside R-Store. The MetaStore translates these data cube

operators into MapReduce jobs. (3) Instead of loading the data from

HDFS, these MapReduce jobs directly scan the data stored in HBase in

order to return the real-time results.

3. Real-Time Search Module. TI is the distributed real-time search engine

for microblogs (tweets). The tweets are streamed from R-Store to the

index processors inside TI, and the index processors index the tweets

that have high probability to be searched in real-time. The tweets that

are not indexed immediately are written to a log in R-Store and will be

indexed in batch later. The query processors will use the distributed

inverted indexes to serve the real-time search queries.

In general, as shown in Figure 3.1, the system can handle four types of

queries, and thus four query and data flows exist in the system.

1. OLTP query. The OLTP queries are directly submitted to HBase (the

dashed line arrow), and the twitter data are updated accordingly.

2. Offline analysis query. As shown by the black line arrows in the fig-

ure, the offline analysis queries written by a SQL-like language (including

the multi-way join queries) are issued to AQUA, which translates the

queries into MapReduce jobs and submits the jobs to Hadoop for exe-

cution. These queries analyze the data exported from R-Store to HDFS

(the black rectangle arrows show the data flow of SQL queries).

3. Real-time query. The real-time queries are submitted to R-Store and

translated to MapReduce jobs as well (the dotted line arrow). Different

from the SQL queries, these MapReduce jobs directly process the data

stored in HBase based on our implemented scan interface (the dotted

rectangle arrow shows the data flow inside R-Store).

33

CHAPTER 3. SYSTEM OVERVIEW

4. Search query. The search queries are submitted to TI (the grey line

arrow), which updates the distributed inverted index based on the tweet

streams transmitted from R-Store (the grey rectangle arrow).

In this chapter, we have presented the design philosophy and the system archi-

tecture of ART, which consists of three modules: offline analytics, OLTP and

real-time analytics, and real-time search modules. In the rest of this thesis, we

will discuss the details of these modules (since we didn’t modify MapReduce

framework itself, for the offline analytics module we only focus on AQUA, the

cost-based query optimizer on top of MapReduce).

34

CHAPTER 4

AQUA: Cost-based Query Optimization

on MapReduce

MapReduce has been widely recognized as an efficient tool for large-scale data

analytics. It achieves high performance by exploiting parallelism among pro-

cessing nodes while providing a simple interface for upper-layer applications.

Some microbloging vendors, including Twitter, Google and Facebook, have en-

hanced their data management systems by integrating MapReduce into the

systems. In ART, we also adopt MapReduce as the parallel processing engine

to handle the offline data analysis workloads. However, existing MapReduce-

based query processing systems, such as Hive, fall short of the query optimiza-

tion competency of conventional database systems. Given an SQL query, Hive

translates the query into a set of MapReduce jobs sentence by sentence. This

design assumes that the user can optimize his query before submitting it to

the system. Unfortunately, manual query optimization is time consuming and

difficult, even to an experienced database user or administrator. In ART, to

improve the performance of multi-way join queries, we propose a query op-

timization scheme for MapReduce-based processing systems. Specifically, we

embed into Hive a query optimizer which is designed to generate an efficient

query plan based on our proposed cost model. Experiments carried out on our

in-house cluster confirm the effectiveness of our query optimizer.

35

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

4.1 Introduction

MapReduce [44] has been widely used as an large scale data processing plat-

form. It achieves high performance by exploiting parallelism among a set of

nodes. Massively Parallel Processing (MPP) data warehouse systems, such as

Aster [10] and Greenplum [12], have recently integrated MapReduce into their

systems. Experiments in [49] show that combining MapReduce and data ware-

house systems produces better performance. Besides efficiency, MapReduce

simplifies the deployment of MPP systems by providing two user-friendly in-

terfaces: map and reduce. Applications implemented through the extension of

the framework are naturally parallelizable and fault-tolerant.

To build applications on MapReduce, users must transform and code them

as customized map and reduce functions. One major weakness of MapReduce

is its lack of high-level declarative languages. In comparison, SQL, which is sup-

ported by most DBMSs, hides implementation details (e.g., access method and

plan optimization), thereby simplifying application programming. Recently,

some high-level languages have been proposed for MapReduce, such as Pig [83]

and Hive [101]. These languages resemble SQL in many ways and are thus

familiar to database users. Given a query, they automatically transform the

query into a set of MapReduce jobs. Compared to the original MapReduce

system, such systems are more suited for MPP data warehousing applications.

Users can leverage them to process their data without having to model their

application as a sequence of MapReduce operators.

Although the syntax and grammar of these systems are similar to SQL,

such systems interpret declarative queries procedurally and strictly follow the

processing logic specified by users in generating the corresponding map and

reduce operations [9, 83]. For example, consider the following Hive query for

the TPC-H [14] schema:

SELECT avg(quantity), avg(totalprice), nationkey

FROM (

SELECT temp.quantity, temp.totalprice, c.nationkey

FROM (

SELECT l.quantity, o.totalprice, o.custkey

FROM lineitem l JOIN orders o

ON (l.orderkey=o.orderkey)

36

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

) temp JOIN customer c ON (temp.custkey=c.custkey)

) finaltable GROUP BY nationkey

There are three candidate query plans: P1, P2 and P3. P1 is the default

plan of Hive, and it translates the query into three MapReduce jobs. The first

job processes temp = lineitem ./ orders; the second job handles finaltable =

temp ./ customer; and the third job computes the aggregation results for

table finaltable. P1 is an inefficient plan, as its first job generates a large

intermediate table temp 1, which will be written back to HDFS and read by

the second job. To avoid high I/O costs, P2 changes the orders of jobs. Its

first job performs customer ./ orders and the join operation involving table

lineitem is delayed to the second job. The third job of P2 is similar to P1’s last

job, where the aggregation result is computed. Unlike P1 and P2, P3, applies

the replicated hash join scheme [18] and only one MapReduce job is required to

process lineitem ./ orders ./ customer. It reduces the overhead of initializing

MapReduce jobs. However, it incurs more shuffling costs, as data need to be

replicated among the reducers. Therefore, depending on the data distribution,

P3 may be superior to P1 and P2.

As has been well recognized in conventional query processing, good plans can

indeed improve query performance by orders of magnitude. Current systems,

such as Pig [83] and Hive [101], require users to translate SQL queries into

their languages manually. The translation process, in fact, defines a specific

query plan. However, users may not have sufficient knowledge to provide a

good plan. Therefore, as in conventional database systems, a query optimizer

is needed to produce near-optimal query execution plans. In this thesis, we

propose AQUA (Automatic QUery Analyzer), a query optimization method

designed for MapReduce-based MPP systems. Based on our experience of query

processing in Hive, we find that the performance bottleneck of a MapReduce-

based system is the cost of saving intermediate results. In MapReduce systems,

to provide fine-grained fault tolerance, the results of each job are flushed back

to the DFS (Distributed File System) as a backup. The consecutive job reads

results of the previous job to continue with the processing. The I/O cost of

DFS is significantly higher than that of the local storage system as network

cost is incurred and multiple replicas are usually kept. An efficient MapReduce

1This is because lineitem and orders are the two largest tables in TPC-H. Also, each
tuple of orders can join with four tuples of lineitem.

37

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

query plan should therefore avoid generating too many intermediate results.

To address the above requirement, AQUA adopts a two-phase query opti-

mizer. In phase 1, the user’s query is parsed into a join graph, based on which

we adaptively group the join operators. Each group may contain more than one

join operator, which will be evaluated by a single MapReduce job. In this way,

the total number of MapReduce jobs and the intermediate results that need to

be written back to DFS are reduced. In phase 2, the intermediate results of

groups are joined together to generate the final query results. We examine all

plausibly good plans and select the one that minimizes processing cost. The

second phase is similar to a conventional cost-based query optimizer in DBMS.

To facilitate our cost estimation, we design a cost model to analyze rela-

tional operators in MapReduce jobs. Just as in traditional query optimization,

the system maintains statistics about the underlying database to enable the op-

timizer to estimate the cost of various query plans. After a plan is selected, the

expression tree is changed adaptively and translated into a set of MapReduce

jobs.

We believe that ours is the first work that systematically explores how query

optimization can be seamlessly embedded into a MapReduce system. The spe-

cific contributions of AQUA include:

1. Design and implementation of an efficient and novel optimizer tailored

for the MapReduce framework. The optimizer identifies and exploits a

variety of characteristics of the MapReduce framework to improve query

performance.

2. An adaptive replicated join scheme to reduce I/O cost and MapReduce

initialization cost. Based on the cost estimation, join operators are or-

ganized into several groups and one MapReduce job is created for each

group.

3. A heuristics plan generator to reduce the cost of query optimization. The

heuristics generator avoids plans that are obviously bad as early as pos-

sible and adopts shared scan to improve the performance.

4. Extensive experiments on our in-house cluster show that AQUA produces

more efficient query plans than Hive [101] and Pig [83].

38

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

We note that while our implementation is currently based on Hive, our approach

can be applied to other MapReduce-based MPP systems [17, 38] as well.

The rest of this chapter is organized as follows: Section 4.2 formalizes the

optimization problem and discusses two join algorithms. The details of our

query optimizer is presented in Section 4.3. In Section 4.4, we introduce our

cost-model, designed for the relational operators in MapReduce. We evaluate

the performance of our proposed approach in Section 4.5. We summarize this

chapter in Section 4.6.

4.2 Background

4.2.1 Join Algorithms in MapReduce

The default join algorithms in Hive are map-side join and symmetric hash join.

Suppose we are processing Ti ./Ti.k1=Tj .k2 Tj, map-side join can be applied if

1) Ti or Tj is small in size and can be fully cached in memory; or 2) Ti and

Tj are co-partitioned by k1 and k2. In the first case, the mappers fully load

the small table (suppose it is Ti) into memory and scan the other table Tj.

For every incoming tuple of Tj, we perform an in-memory hash join with Ti.

After the whole table has been scanned, we get the complete join results. In

the second case, each mapper loads a co-partition of Ti and Tj and performs a

local symmetric hash join. As the tuples that can be joined together reside in

the same co-partition, the mappers can process the join individually.

If map-side join cannot be applied, the distributed symmetric hash join is

used instead. In particular, a hash function h is defined for all mappers and

reducers. In the map phase, each mapper reads a data chunk of either Ti or Tj.

And it generates keys as h(Ti.k1) or h(Tj.k2). In this way, all joinable tuples are

shuffled to the same reducer, where an in-memory hash join is used to generate

the final results.

In default join algorithms, one MapReduce job is created for a specific join

operator. This strategy may incur high I/O costs for queries involving multiple

joins, as the intermediate join results are written back to the DFS and subse-

quently read out by the next job. To reduce the I/O costs, in [19], a replicated

join algorithm is proposed. Given a query Q = T1 ./ T2 .// Tn, let A
denote the set of join attributes. Namely, if Ti ./Ti.ax=Tj .ay Tj, ax ∈ A∧ay ∈ A.

39

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

T1

T2

T3

1

2

3

4

k1
k2 0 1

0

1

1 2

3 4

mappers reducers

Figure 4.1: Replicated Join

In that case, we consider the two attributes, ax and ay, as equivalent attribute

and only keep one copy in A. In the replicated join algorithm, we create n

types of mappers, one for each table. In particular, type-i mappers scan table

Ti and shuffle the data to reducers adaptively.

Suppose we have m reducers and |A| = k. To enable replicated join, we set

m = c1 × c2 × ...× ck, where cx is an integer, denoting the number of reducers

for attribute ax in A. In mappers, we generate a set of composite keys for

each tuple. The composite key follows the format of < v1, v2, ..., vk >, where

vx is generated for attribute ax in A. The composite keys are generated in the

partition function of the map phase.

Algorithm 4.1 shows the details of partition function in replicated join. In

line 1, we initialize the key set to contain one random key. And then, we iterate

all join attributes in A. Suppose the next attribute is ai. If ai is an attribute

of the tuple t, we set the ith values in current keys to hash(t.ai)%ci (line 4 to

7), where hash is a predefined hash function. Otherwise, for each existing key,

we extend it to ci composite keys by varying the ith values from 0 to ci-1 (line

9 to 15). When all join attributes are processed, we use the key set to shuffle

the tuple to multiple reducers.

The value of ci affects the performance of replicated join. For an attribute

of a large table, we need to assign more reducers, as more tuples need to be

processed. In [19], a sophisticated model is applied to estimate the optimal

assignment of reducers. In this chapter, to reduce the overhead of query op-

timization, a heuristic approach is adopted. Suppose attribute ax belongs to

table Ti, we define function f(ax) to return the size of Ti. Given two attributes

40

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

ax and ay, we assign cx and cy reducers for them respectively, where cx
cy

= f(ax)
f(ay)

.

Namely, the number of reducers for an attribute is proportional to the size of

the corresponding table.

Algorithm 4.1: Partition Function of Replicated Join

input: AttributeSet A, Tuple t
1 KeySet S ← initial();
2 for i = 0 to |A|-1 do
3 Attribute ai ← A.nextAttribute();
4 if ai is an attribute of t then
5 for j = 0 to S.size-1 do
6 Key keyj ← S.nextKey();
7 keyj.vi ← hash(t.ai)%ci;

8 else
9 KeySet S ′ ← initial();

10 for j = 0 to S.size-1 do
11 Key newkey ← S.nextKey();
12 newkey.vi ← x;
13 S ′.add(newkey);

Figure 4.1 shows an example of processing query T1 ./T1.k1=T2.k1 T2 ./T2.k2=T3.k2

T3. Suppose we have three mappers and four reducers. Each mapper responds

for scanning a data chunk of a specific table. We have two join attributes, k1

and k2. Suppose c1 = c2 = 2. Given a value of k1 or k2, the predefined hash

function will map it to 0 or 1. For a tuple t of T1, we will generate two composite

keys, < hash(t.k1)%2, 0 > and < hash(t.k1)%2, 1 >. Similarly, we also gener-

ate two composite keys, < 0, hash(t′.k2)%2 > and < 1, hash(t′.k2)%2 >, for a

tuple t′ of T3. However, only one composite key (< hash(t′′.k1), hash(t′′.k2) >)

is created for a tuple t′′ of T2, as T2 contains both join attributes. In this way,

each tuple of T1 or T3 will be shuffled to two reducers. And all reducers can

process their local joins individually.

Compared to the default join algorithms in Hive, the replicated join algo-

rithm reduces the I/O costs by avoiding writing intermediate results to the DFS

(in our implementation, we use HDFS). But it also incurs more shuffling costs

by forwarding a tuple to multiple reducers. In our optimizer, join operators are

grouped adaptively and one replicated join job is generated for each group.

41

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

4.2.2 Query Optimization in MapReduce

The intuition of AQUA is to adjust a query plan to improve the performance of

large-scale data analysis jobs in MapReduce. In AQUA, we use Query Plan to

denote a sequence of MapReduce jobs. These jobs are used to process a single

SQL-like query.

Definition Query Plan

Given a query Q in SQL-like format, the query plan is a set of MapReduce

jobs P = {j0, j1, ..., jk−1}. ji is submitted to the processing engine after ji−1

completes. And after jk−1 is processed, the final results of Q are cached in the

DFS.

Given a query, different query plans may use different numbers of MapRe-

duce jobs. To measure the efficiency of a query plan, we define the cost of a

query plan as the sum of all its jobs’ costs. Let C(P) and C(ji) denote the

costs of plan P and job ji, respectively. We have:

C(P) =
k−1∑
i=0

C(ji)

Definition Query Optimization

Given a query Q, the query optimization problem is to find a query plan with

least cost. Namely, the optimizer needs to return a sequence of MapReduce jobs

{j0, j1, ..., jk−1}, where
∑k−1

i=0 C(ji) is minimized among all valid plans.

To improve the accuracy of estimation, some pre-computed histograms are

built and maintained in the DFS (HDFS in our implementation). We propose

a cost model to estimate the efficiency of a query plan and build an optimizer

on top of Hive to select a near-optimal plan.

4.3 Query Optimization

AQUA’s optimizer is a two-phase optimizer. In the first phase, the optimizer

partitions the tables into join groups. Each join group is processed by a single

MapReduce job. In the second phase, the optimizer searches for the best plan

42

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

to generate the final results by combining the join groups. In this section, we

present the details of our query optimizer and the cost model is discussed in

the next section.

4.3.1 Plan Iteration Algorithm

As mentioned earlier, phase 1 partitions the join tables into groups, and de-

cides whether the replicated join should be applied to the sub-groups. Each

sub-group has two different implementations: the first implementation is a se-

quence of euqi-join (symmetric hash join) operators, which can be represented

by a binary join tree; the second one is the replicated join algorithm. To se-

lect a better implementation for each sub-group, both the cost of binary join

tree (implemented by symmetric hash join) and replicated join are estimated.

However, for the former implementation, a plan iteration algorithm is required

to iterate the possible plans (join trees) for the sub-group and select the one

with lowest cost. After that, the cost of this best binary join tree is compared

with the cost of the replicated join, and the implementation with fewer cost is

assigned to the sub-group.

In phase 2, this plan iteration algorithm is applied to the join tree (each

tree node represents a sub-group generated in phase 1), and the final hybrid

join tree with lowest cost is outputted by our query optimization algorithm. In

this section, we discuss the plan generation algorithm first, since it will be used

in both phase 1 and phase 2.

In our plan generation algorithm, we consider both left-deep and bushy

plans. As a matter of fact, in [48], Franklin et. al show the bushy plan is

always the best plan in the distributed environment, and bushy plans are also

used in parallel database systems [37]. We observe that MapReduce systems,

by design, are more amenable to bushy query plan optimization. However,

iterating all query plans incur too much overhead. Therefore, a heuristic ap-

proach is employed to prune the search space. The intuition here is similar

to the query optimizer in conventional databases, namely, avoiding bad plans

instead of searching for the optimal one. In the following discussion, we show

the general ideas of how to iterate query plans and how to prune the search

space.

43

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

on

on

on

S N

L

O

(a) Left Deep Plan

on

on

S N

on

L O

(b) Bushy Plan

Figure 4.2: Join Plans

Left-Deep VS Bushy Plans

As the plan space is extremely large for a complex query, most relational

database systems only consider the left-deep plan in query optimization [32].

This strategy works well in many real applications. However, it may lead to an

inferior plan for MapReduce-based query processing. This is because a MapRe-

duce job needs to materialize the internal results of sub-queries.

In a conventional DBMS, the left-deep plan is preferred because it simplifies

pipeline processing as at least one data source is the raw table. In Figure 4.2(a),

after a result is produced for S ./ N , it is pushed to the next operator to join

with L. In contrast, data sources in the last join of bushy plan (Figure 4.2(b))

are both internal results. Without fully materializing the internal results, it is

difficult to provide the correct results.

A significant difference between MapReduce-based query processing and

the traditional query processing is that a MapReduce job will materialize its

outputs in the DFS for fault tolerance (In [41], MapReduce is extended to

support pipelining between the mappers and reducers. However, it significantly

complicates the failure recovery mechanism and provides marginal performance

improvement for batch-based processing). For example, in the left-deep plan,

a MapReduce job is used to perform S ./ N , and the results are written back

to HDFS after the job is done. Then, a second job is initiated to join the

results of the first job with L. After the second job is done, the results of

S ./ N ./ L are written back to HDFS. Namely, the internal results are written

44

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

T R1

R2 T

R1 R2

Figure 4.3: Basic Tree Transformation

back to HDFS in the previous MapReduce job and will be directly retrieved

from HDFS in the subsequent job. As a matter of fact, HDFS I/O dominates

the cost of processing a query. If a large number of results are generated by the

intermediate MapReduce jobs, the cost of the plan would be high due to the

high HDFS I/Os.

In the left-deep plan, we need to write and read the results of S ./ N and

S ./ N ./ L, while in the bushy plan, we need to write and read the results of

S ./ N and L ./ O. In most cases, we can determine which plan is better by

comparing the sizes of S ./ N ./ L and L ./ O.

Pruning of Optimization Space

We apply a recursive algorithm to iterate all possible query plans. Figure 4.3

shows two basic plan variants. Suppose T represents a sub-plan. The left plan

denotes a left-deep plan while the right plan is a right-deep plan. Actually, if

T = R3 ./ R4, the right plan becomes a bushy plan. The recursive algorithm

works from the bottom to the top. It first iterates all possible sub-plans, and

then for each sub-plan, it tries the left-deep and right-deep combinations.

In our query optimizer, we also support bushy plans and this results in a

larger optimization space. Therefore, we apply heuristics to reduce the search

space and prune inefficient plans as early as possible. The idea of the pruning

approach is summarized as follows:

1. We do not generate equivalent sub-plans. For example, plan R1 ./ R2 is

equivalent to plan R2 ./ R1 and plan R1 ./ (R2 ./ R3) is equivalent to

plan (R2 ./ R3) ./ R1. For equivalent sub-plans, we only select one to

expand in our recursive algorithm.

2. We prune inefficient plans as early as possible. For example, if R1 ./ R2

45

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

generates significantly more (e.g., an order of magnitude more) results

than R2 ./ R3, we remove (R1 ./ R2) ./ R3 from the sub-plan set. This

can be done by a rough estimation based on the corresponding histograms.

In this way, the less effective sub-plan will not appear in the final query

plan.

3. We avoid the “low-utility plan”. The performance gain of MapReduce

comes mainly from parallelism. However, some query plans contradict

this principle. As an example, plan ((lineitem ./ orders) ./ customer)

./ nation is not a good plan because customer joins nation on nationkey,

and there are in total 25 distinct nationkey in the TPC-H schema. If

we have more than 25 reducers available, the above plan cannot fully

exploit them. We call such a plan a “low-utility plan”. Low-utility plans

inevitably incur significant performance penalty. Therefore, the query

optimizer needs to avoid such plans. When building histograms, we also

record the number of unique values in each bucket, and based on which,

we can estimate the maximal number of usable reducers.

Query Plan Iteration Algorithms

Algorithm 4.2 shows the pseudo code of our query plan generator. The query

plan generator tries to transform the expression tree of the query to generate

all possible plans. The input parameter is the root node of the expression tree.

If the expression tree node has left child or right child, we first try to generate

variants of the subtrees (line 2-5). Then, for each pair of variants, we generate

an expression tree, which denotes a possible plan (line 8). The plan denoted

by the expression tree is then pruned by the heuristic algorithm. To iterate all

possible plans, the basic transformation in Figure 4.3 is performed for the tree

(line 12). The operators in the left and right sub-trees may be exchanged with

each other, which results in a new tree. And the variants will be added to the

result (line 13-20). After Algorithm 4.3 returns, we apply the histograms to

estimate the pruning selectivity of each plan, and this selectivity will be used to

estimate the cost of that plan. At last, the most optimized one will be selected

by the algorithm.

Algorithm 4.3 shows the basic idea of the heuristic pruning algorithm. First,

we check whether the generated plan is actually equivalent to an existing one

46

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Algorithm 4.2: Iterative Generator

input: ExpressionTreeNode curOp
1 Vector result = NULL;
2 if currentOp.leftchild 6= NULL then
3 Array l variant = IterativeGenerator(curOp.leftchild);
4 if currentOp.rightchild 6= NULL then
5 Array r variant= IterativeGenerator(curOp.rightchild);
6 for i=0 to l variant.size() do
7 for j=0 to r variant.size() do
8 ExpressionTree tree = NewTree(curOp, l variant.get(i),

r variant.get(j));
9 if HeuristicPruning(tree) then

10 continue;
11 result.add(tree);
12 tree=basicTransformation(tree);
13 Array l variant′= IterativeGenerator(tree.root.leftchild);
14 Array r variant′= IterativeGenerator(tree.root.rightchild);
15 for x=0 to l variant′.size() do
16 for y=0 to r variant′.size() do
17 ExpressionTree tree′ = NewTree(tree.root,

l variant′.get(x), r variant′.get(y));
18 if !HeuristicPruning(tree) then
19 result.add(tree′);

20 return result;

47

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Algorithm 4.3: Heuristic Pruning

input: ExpressionTree tree
1 if tree is equivalent to an existing plan then
2 return true;
3 else
4 if tree.root is an operator that cannot exploit all reducers then
5 if tree have equivalent transformation then
6 return true;

7 else
8 R=tree.root.getLeftTable();
9 S=tree.root.getRightTable();

10 size=estimatedSizeOf(R ./ S);
11 size1=estimatedMinSizeOf(R, getJoinableTable(R)-{S});
12 size2=estimatedMinSizeOf(S, getJoinableTable(S)-{R});
13 if size/size1 > θ or size/size2 > θ then
14 return true;

15 return false;

(line 1 and 2). Then, if the root operator cannot exploit all possible reduc-

ers, which means that this candidate plan has a poor resource utilization of

the MapReduce cluster, we discard the plan (line 4-6). Finally, we estimate

the size of intermediate results of the root operator (line 8-14). The func-

tion estimateSizeOf estimates the size of intermediate join result for R and

S (the result of this function is assigned to the variable size). Then, the

getJoinableTable() function returns the tables that can be joined with the

sub-tree R in the query. The estimatedMinSize checks the alternative plans

by joining R with any of the table in getJoinableTable(R) − S, and returns

the one with minimal intermediate size. If size is far larger than size1 or size2

(line 13), we just prune the current plan as it has high probability to generate a

join tree with high cost. θ is a predefined threshold, which controls the tradeoff

between optimization cost and accuracy.

4.3.2 Phase 1: Selecting Join Strategy

As mentioned before, the replicated join may lead to a better performance by

reducing I/O costs in HDFS. But given a query involving multiple joins, the

optimizer needs to figure out when and how to use the replicated join. In [19],

all joins are grouped together and a single MapReduce job is used to process

48

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Part

PartSupp

Supplier

Lineitem Orders

Nation

partkey

suppkey suppkey

partkey

suppkeyp

artkey

nationkey

orderkey

Figure 4.4: Joining Graph For TPC-H Q9

the query. This is not always the optimal solution, as replicated join increases

the shuffling cost. In our optimizer, an adaptive join approach is proposed. To

simplify the discussion, we define a joining graph for queries.

Definition Joining Graph

Given a query Q, its joining graph is defined as GQ = (V,E), where

• If table Ti is involved in Q, we have a node ni in V that denotes the table.

• If Ti ./Ti.k=Tj .k Tj is a join operation in Q, we create an undirected edge

e = (ni, nj) and e’s label is set as k.

Figure 4.4 shows the joining graph for TPC-H [14] Q9, where 6 tables are

involved. The edge (PartSupp, Lineitem) is labeled as “PartKey, SuppKey”,

as the join is performed on two attributes.

Each possible join strategy can be represented as a covering set of the graph,

which is defined as:

Definition Covering Set of Joining Graph

Given a joining graph GQ = (V,E), a covering set (S) of that graph is a set of

sub-graphs, satisfying:

• ∀Gi ∈ S, Gi is a sub-graph of GQ. Namely, given a node nx in Gi and an

edge ey in Gi, nx ∈ V and ey ∈ E.

• ∀Gi ∈ S, if nx and ny are two nodes of Gi, there must be a path in Gi

that connects nx with ny.

• GQ.V =
⋃
∀Gi∈S Gi.V .

49

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

• ∀Gi, Gj ∈ S → Gi.V ∩ Gj.V = ∅. Namely, subgraphs do not share a

common node.

Based on the definition, all the nodes in the joining graph are included in the

covering set, while only a portion of edges are selected. The remaining edges, in

fact, define the join operations between sub-graphs in the covering set. There

is a special covering set S0, where ∀Gi ∈ S0, |Gi.V | = 1 (we use |A| to denote

the number of elements in a set A) and Gi.E = ∅. S0 is used as the initial state

of our query optimization.

For a sub-graph Gi in the covering set S, depending on its node number,

we have the following join strategies. If |Gi.V | = 1, no join is defined. If

|Gi.V | = 2, the default symmetric hash join is used. Otherwise, if |Gi.V | > 2,

we adaptively adopt the replicated join or symmetric hash join for Gi. When

|Gi.V | > 2, we define the cost saving as:

Cs(Gi) = Chjoin(Gi)− Crjoin(Gi)

where Crjoin(Gi) denotes the cost of replicated join for Gi and Chjoin(Gi) is the

estimated costs of using symmetric hash join. The plan iteration algorithm dis-

cussed in Section 4.3.1 is applied to find the optimal join plan using symmetric

hash join. If |Gi.V | <= 2, the cost saving is defined as 0. The intuition is to

select the plan with maximal cost savings.

In fact, we can iterate all possible covering sets by adaptively linking the

sub-graphs.

Definition Graph Linking

Given two sub-graph Gi and Gj of GQ, let e = (nx, ny) be an edge in GQ,

satisfying nx ∈ Gi.V and ny ∈ Gj.V . We can link Gi by Gj via e. The result is a

new sub-graph Gij, where Gij.V = Gi.V ∪Gj.V and Gij.E = Gi.E∪Gj.E∪{e}.

By linking two graphs, we generate a new graph. For any two nodes in the

graph, there is a path connecting the nodes. Algorithm 4.4 shows how to iterate

all possible covering sets by linking graphs. The special covering set S0 is used as

the initial state (line 1). Then, we iterate all possible combinations of picking

i edges from the joining graph (line 4). For a specific combination, we can

generate a joining plan, temp, which is initialized as S0. The selected edges are

used to link sub-graphs in temp (line 7-13). Given a node and a plan, function

50

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Algorithm 4.4: JoinPlans

input: QueryGraph GQ

1 S0 ← createInitialState(GQ);
2 PlanSet SP ← ∅;
3 for i=1 to |GQ.V | do
4 EdgeSets SE ← getAllCombination(GQ.E, i);
5 for ∀E ∈ SE do
6 Plan temp← S0;
7 for ∀ edges e ∈ E do
8 Graph Gi ←getGraph(e.start, temp);
9 Graph Gj ←getGraph(e.end, temp);

10 if Gi 6= Gj then
11 Graph Gnew ← link(Gi, Gj, e);
12 temp.remove(Gi), temp.remove(Gj);
13 temp.add(Gnew);

14 SP .add(temp);

15 return optimal plan in SP ;

getGraph returns the subgraph containing the node. The resulting covering

set is stored as a candidate plan (line 14). After all plans are generated, the

one with maximal savings is selected as our join plan (line 15). Algorithm 4.4

searches for all possible plans. Therefore, the complexity is estimated as

cost =
C∑
i=1

(
C

i

)
= 2C − 1 (4.1)

where C = |GQ.E|. In most cases, only a few tables participate in a join

and hence, C is a small value. We show the cost of query optimization in the

experiments.

4.3.3 Phase 2: Generating Optimal Query Plan

In phase 1, the optimizer selectively groups some nodes into sub-graphs and

generates a single MapReduce job to process each sub-graph. Figure 4.5(a)

shows a possible result for Figure 4.4. To simplify the notation, we use L, O,

N , P , PS, S to represent table Lineitem, Orders, Nation, Part, PartSupp

and Supplier, respectively. In Figure 4.5(a), P , PS and L are put into a

MapReduce job and we use T to denote the intermediate results. We need to

51

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

P

PS L

S N

O

T

(a) Joining Strategy

S N

T

O

S N T O

(b) Possible Plans

Figure 4.5: Plan Selection

join T with the remaining tables to generate the query results. Figure 4.5(b)

lists two possible query plans, which have significantly different processing costs.

Suppose the optimal covering set generated in phase 1 is S, the optimizer needs

to find an efficient query plan in phase 2 to join the sub-graphs in S. For each

Gi in S, Gi denotes an input table in phase 2. If |Gi.V | = 1, the input table is a

raw table. Otherwise, the input table is an intermediate result of a MapReduce

job. Then, the query plan iteration algorithm discussed in Section 4.3.1 is

applied to the join tree generated by phase 1, and the final hybrid plan (with

both symmetric hash join and replicated join) is generated.

4.3.4 Query Plan Refinement

After a plan is selected as the execution plan, it is further refined by our opti-

mizer to reduce the processing cost. Two approaches are applied in this stage,

sharing table scans and submitting concurrent MapReduce jobs.

Sharing Table Scan in Map Phase

An inter-query sharing framework is proposed in [81], where queries with the

same MapReduce jobs are grouped and processed together. In this work, three

levels of sharing is possible: (1) Sharing scans only: the queries have the same

source table while the lters and the aggregation attributes are different; (2)

Sharing map output: the queries have the same source table and the same

aggregation attributes (including both the grouping keys and the aggregated

columns), while the lters are different; and (3) Sharing map functions: the main

purpose of the map function here is to lter the tuples based on the predicates.

52

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

map

lineitem

reduce

key:linestatus, returnflag average

extendedprice

map reduce

key:linestatusaverage

extendedprice

maximal average

extendedprice

map reduce

lineitem join orders lineitem

orders

key:orderkey

map reducelineitem join orders

key:linestatus
maximal average

extendedprice final result

1

2

3

4

Figure 4.6: MapReduce Jobs of Query q0

If the queries have the same source table and the same lters, the map functions

can be shared between these queries.

The queries evaluated in MRShare are mainly aggregation queries, each of

which is implemented by one MapReduce job. Different from this work, our

work tries to exploit the possibility of sharing data inside one recursive query,

which is implemented by several MapReduce jobs.

Considering the following query for the TPC-D schema:

q0: SELECT l0.extendedprice, o0.shippriority

FROM lineitem as l0, orders as o0

WHERE l0.orderkey = o0.orderkey and l0.extendedprice >

(SELECT max(avg(l1.extendedprice))

FROM lineitem as l1

WHERE l0.linestatus = l1.linestatus

GROUP BY l1.returnflag)

lineitem appears in both the outer query and the inner subquery. The sub-

query is correlated with the outer query. In real systems, such queries are not

uncommon. In the TPC-D benchmark, more than 60% queries contain at least

one table with multiple instances.

Lacking an index, MapReduce scans the whole dataset when processing

queries. Figure 4.6 shows the MapReduce jobs for q0. In Figure 4.6, table

lineitem is scanned twice, once for computing the average extendedprice and

53

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

map

lineitem

reduce

key:linestatus, returnflag average

extendedprice

map reduce

lineitem join orders

orders

key:orderkey

1

3

Figure 4.7: Shared Table Scan in Query q0

another for joining with table orders. In the corresponding MapReduce jobs,

mappers perform the same I/O operations, namely, loading tuples of lineitem

from HDFS. If the results of the last scan can be reused, we avoid repeatedly

reading the same table. Therefore, we propose a shared-scan approach to reduce

I/O cost in consecutive MapReduce jobs.

The shared-scan approach generates all required key-value pairs in the first

MapReduce job, which can be loaded by the subsequent jobs from HDFS. For

q0, the first MapReduce scans table lineitem and applies the composite key

(linestatus, returnflag) to generate the average extendedprice. To share the

table scan, in the map phase, we also generate key-value pairs for the third

MapReduce job. Namely, two key-value pairs, ((linestatus, returnflag), t) and

(orderkey, t), are created for each tuple t of lineitem. ((linestatus, return-

flag), t) is sent to the reducers for computing the average extendedprice while

(orderkey, t) is cached as a temporary file in HDFS. In the third MapReduce

job, the mappers only scan table orders and the reducers load key-value pairs

of lineitem from HDFS. Figure 4.7 shows the idea of sharing table scan in query

q0. In this way, we avoid repeatedly scanning table lineitem.

The same strategy can be applied to multiple queries, if they are being

processed concurrently and share some common expressions. For example,

many TPC-H queries have the sub-expression lineitem ./ orders. By sharing

the common results between queries, we can significantly reduce the I/O costs.

In our future work, we will examine how to combine multi-query optimizations

into our system. Specifically, when sharing sub-query results is possible, a new

query plan can be generated to exploit the features.

54

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

C

O

L

P

S

N

N R

C

L P

O

S

N

N R

Plan of HIVE Plan of AQUA

Figure 4.8: Optimized Plan for TPC-H Q8

4.3.5 An Optimization Example

In this section, we show a concrete example of how AQUA’s optimizer works.

For comparison purpose, we use the query plans in Hive’s Benchmark [61] as

our baseline. Note that plans in [61] are not the default plans of Hive. Instead,

they have been manually optimized to avoid ineffective plans.

In Figure 4.8, we show two possible plans for TPC-H Q8. The left plan is

given by [61] and is a left-deep plan. It starts by joining the smallest tables to

avoid high I/O costs. However, as each job can only perform a two-way join, it

generates 8 MapReduce jobs (7 for joins and 1 for aggregation). Based on the

observation of [63], the initialization cost of MapReduce job cannot be ignored

and will increase as more nodes are involved. By transforming the query into

8 jobs, the left plan incurs a significant initialization cost and hence, is not

cost-effective. The right plan is the plan adopted by AQUA. It generates 5

MapReduce jobs, among which two jobs are created for the replicated joins

(e.g. N ./ R ./ C and L ./ P ./ O), two jobs are used to do the two-way joins

and one is used to compute the aggregation results. Compared to the left plan,

AQUA’s plan has the following advantages:

• AQUA reduces the number of MapReduce jobs by using replicated joins.

55

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

• AQUA avoids generating large volumes of intermediate results by adopt-

ing replicated joins and considering bushy plans.

• AQUA adjusts the join sequences by using a cost-based optimizer.

The above advantages of AQUA are further verified by our experiments. A

significant performance boost is observed for various types of queries.

4.3.6 Implementation Details

In our system, the plan is represented as an expression tree. The expression

tree is forwarded to Hive’s analyzer, which applies the metadata of tables to

translate the tree into a set of MapReduce jobs. Those jobs (their java classes)

are serialized into an XML file, which can be submitted to the process engine

for processing.

Shared table scan is implemented by modifying the MapReduce jobs gener-

ated by Hive. First, we modify the job description of the first MapReduce job

by replacing its key-value pairs with composite key-value pairs. Second, two

new operators are implemented for Hive. One is designed for mappers to write

back key-value pairs to HDFS and the other one is used in reducers to load

key-value pairs from HDFS. Those operators are serialized and embedded into

the original job description. When shared scan is applied, the cost model is

modified with the inclusion of the cost of writing back key-value pairs to HDFS.

4.4 Cost Model

To evaluate the performance of a specific plan, we propose a cost model tailored

for the MapReduce framework. For efficiency, the cost model applies some pre-

computed histograms to estimate the selectivity of predicates and joins. Before

we present the details of our cost model, we first discuss how to efficiently build

histograms in MapReduce framework.

4.4.1 Building Histogram

Given a table T , a special MapReduce job is submitted to build histograms for

all its columns. Suppose a0, a1, ..., an−1 are columns of table T and [li, ui] is ai’s

domain. We build an equal-width histogram for each column. Namely, we split

56

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

[li, ui] into K cells, and in each cell, we record the number of tuples within the

cell and assume the data follow uniform distribution.

One naive approach to build a histogram is to apply n MapReduce jobs,

one for each column. In the map phase, we scan the table and partition tuples

according to their values in a specific column. In the reduce phase, each reducer

generates a cell for the column’s histogram. The cells are then inserted into

HDFS. The query optimizer can ask HDFS to retrieve the whole histogram of

the column. Although simple, the naive approach repeatedly scans a table in

multiple MapReduce jobs, which actually can be avoided. In our approach,

a single MapReduce job is used to build histograms for all columns within a

table.

To build histograms on all the columns of a table using a single MapReduce

job, we generate a composite key for each tuple in the map phase. Suppose we

build a histogram with K equal-width buckets for column ai. Let the domain

of ai be [li, ui]. The jth bucket covers the range [li + j(ui−li)
K

, li + (j+1)(ui−li)
K

].

In the map phase, we generate a composite key for each tuple. Key-value pairs

follow the format of < (columnID, bucketID), 1 >, where columnID is the

unique ID of the column and bucketID is the bucket ID of the corresponding

value. When comparing two keys, we first compare their columnIDs and then

the bucketID. Therefore, if the size of T is m, mappers actually generate

n×m key-value pairs, where n is the number of columns involved in histogram

building. To reduce shuffling cost, pre-aggregation is performed in the map

phase. The partition function in the map phase is implemented as mapping

data within the same bucket to the same reducer. We customize the combiner

function to aggregate key-value pairs within the same bucket. In this way, each

mapper only generates at most one key-value pair for a bucket, which reduces

shuffling cost.

In the reduce phase, we classify key-value pairs by their columnID and

combine the results from multiple mappers. In the end, the metadata of a

histogram bucket (table name, column name, bucket range and bucket value)

are written back to HDFS. To efficiently locate a histogram, histograms are

maintained as a directory tree in HDFS. The histogram for column ai of table

T is stored in “/user/hive/histogram/T/ai”.

Algorithm 4.5 and 4.6 illustrate the presudo code of building histograms.

In Algorithm 4.5, we scan a table stored in HDFS. The tuples of the table are

57

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

stored as strings. Hence, we need to parse the string into individual attributes

(line 1). For each attribute, we generate a key-value pair by using the attribute

ID and its corresponding bucket ID as the composite key (lines 2-6). Given

a value data[i] of ith column, suppose low[i] and up[i] denote the column’s

domain, function getBucketID returns the histogram bucket ID that the value

falls in. In the reduce phase, we first retrieve the column ID and the bucket

ID from the key (lines 1 and 2 in Algorithm 4.6). Then, the statistics from

multiple mappers are combined together (lines 3 and 4). When the reduce

phase completes, the histograms are written back to HDFS. Multiple reducers

may write statistics about the same bucket. A file lock is applied to guarantee

consistency. To reduce shuffling cost, before key-value pairs are shuffled to

reducers, pre-aggregation is performed with the use of the same reduce function

defined in Algorithm 4.6.

Algorithm 4.5: map(Object key, Text value, Context
context)

1 //value: serialized string of a tuple
2 Object[] data = parse(value);
3 for i=0 to data.length do
4 if need to build histograms for column i then
5 int bucketID = getBucketID(i, data[i], low[i], up[i]);
6 CompositeKey newKey = new CompositeKey(i, bucketID);
7 context.collect(newkey, 1);

Algorithm 4.6: reduce(Key key, Iterable values, Context
context)

1 int id = key.first();
2 int bucketID = key.second();
3 for IntWritable val : values do
4 histogram[id][bucketID]+= val; //combining the values from

mappers

In current implementation, we build equal-width histograms for each col-

umn individually. Though simple, the histograms can provide good enough

estimations for us to avoid obviously bad plans. Database systems, often use

more complex histograms (e.g., V-optimal, maxdiff [86]) that provide better

selectivity estimation. To build more sophisticated histograms, we can extend

58

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Table 4.1: Parameters
Parameter Definition

rl cost ratio of local disk reads
wl cost ratio of local disk writes
rh cost ratio of HDFS reads
wh cost ratio of HDFS writes
µ cost ratio of Network I/O
ν cost ratio of CPU computation
b size of mapper’s memory buffer
d size of data chunk in HDFS
|T | number of tuples in table T
f(T) size of T ’s tuple (in bytes)
g(T, S) join selectivity of table T and S

getBucketID in the map phase and rewrite the combining algorithm in reduc-

ers. For example, to support MaxDiff histograms, two MapReduce jobs are

generated. In first job, we partition the values into buckets of equal-length.

If the final histogram composes of k buckets, in first job, we will generate ck

buckets, where c is a constant. In this way, we generate more buckets than

necessary. In second job, all buckets are sent to the same reducer for com-

bining. The reducer applies a local MaxDiff algorithm to combine the small

buckets into larger ones. When only k buckets left, the process terminates

and the histogram is written back to HDFS. Techniques to map algorithms to

construct such histograms to the MapReduce framework will be a significant

deviation from the main contribution of this paper and hence are relegated to

future work.

4.4.2 Evaluating Cost of MapReduce Job

After a query plan is transformed into a set of MapReduce jobs, we assume these

MapReduce jobs are processed by the same set of nodes. In the cost model, we

consider two types of costs: I/O costs (including local disk I/O and network

I/O) and CPU costs. The total cost of processing a MapReduce job is used as

the metric. Note that the cost model does not provide an accurate estimation.

Instead, the approximate approach is applied to simplify computation. The

intuition is to avoid bad plans instead of searching for the optimal one. Table

4.1 shows the parameters used in the analysis.

59

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Basically, there are two types of MapReduce jobs: map-only jobs and map-

reduce jobs. For single table select and map-side join, Hive creates a map-only

job. For join and aggregation operations, a map-reduce job is generated. We

handle them differently in the cost model.

Map-Only Jobs

In Hive, single table scan and map-side join are transformed into map-only

jobs. These jobs can be processed by each mapper individually. Therefore, we

do not need to consider the cost incurred during the reduce phase.

For a select query, if it only retrieves data from a single table T and does

not perform aggregations, it can be processed by map-only jobs. To handle

the select query, all tuples of table T are retrieved from HDFS, which incurs

|T |f(T)rh cost. The predicates defined in the query are used as a filter to prune

unqualified tuples. Only the necessary columns are output as results. Suppose

the selectivity of the ith filter is αi and there are k filters for table T , we use

α (α =
∏k

i=1 αi) to denote the accumulative selectivity. Let the projection

selectivity be β (after ruling out unnecessary columns, the tuple size is reduced

to β × 100% of its original size). It costs αβ|T |f(T)wh I/O to write the results

back to HDFS. α is estimated by histograms while β is computed based on

the metadata of the table. For each input tuple, it is compared with k filters.

Hence, the expected number of comparisons is

p(T, k) =
k∑
i=1

(i× (1− αi)× (
i−1∏
j=1

αj)) + k ×
k∏
i=1

αi (4.2)

In summary, a single table select query incurs a cost of

Cselect = |T |f(T)rh + αβ|T |f(T)wh + νp(T, k)|T | (4.3)

In Hive, a map-side join can be used in two cases: 1) one table can be fully

buffered in memory; and 2) both tables are partitioned by the join attribute.

For example, if both Lineitem and Orders are partitioned by orderkey, we

can apply the map-side join to process Lineitem ./Lineitem.orderkey=Orders.orderkey

Orders. Suppose two tables T and S participate in a map-side join. If T can

be fully buffered in memory, T will be read n = |S|f(S)
d

times, where n is the

60

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

number of mappers. In this case, the cost of the map-side join is estimated as:

Cmemory join = (
|S|f(S)|T |f(T)

d
+ |S|f(S))rh + (4.4)

αα′g(T, S)|T ||S|(βf(T) + β′f(S))wh +

ν(αα′|T ||S|+ p(T, k)|T |+ p(S, k′)|S|)

where α, β, α′ and β′ denote the accumulative filter selectivity and projection

selectivity of T and S respectively, and k and k′ represent the number of pred-

icates for T and S respectively. The first term gives the I/O cost of reading

table T and S. The second term estimates the result size and the cost of writing

back results to HDFS. The last term calculates CPU cost (composed of join

cost and filter cost). On the other hand, if neither T nor S can be buffered

in memory and both of them are partitioned based on the join attribute, we

simply replace the first term of Equation 4.4 to (|T |f(T) + |S|f(S))rh.

Map-Reduce Job

To process join or aggregations, a full MapReduce job is created in Hive. Com-

pared to a map-only job, a map-reduce job is more costly as it triggers sort

operations at both the map and reduce sides, and it shuffles data files between

mappers and reducers.

Given an equal-join query T ./ S, suppose neither T nor S can be buffered in

memory, and at least one table is not partitioned by the join attribute, a map-

reduce job is established to process the query. In the map phase, the data of

two tables are loaded from HDFS, which incurs (|T |f(T)+|S|f(S))rh cost. The

input tuples are pruned via corresponding filters. If the tuple passes the filter, a

key-value pair is generated and buffered in memory. We estimate the CPU cost

to be ν(p(T, k)|T |+p(S, k′)|S|), where k and k′ are the numbers of predicates for

table T and table S, respectively. Let α, β, α′ and β′ denote the accumulative

filter selectivity and projection selectivity of T and S, respectively. Suppose

the size of the key is about δ bytes. The sizes of key-value pairs are estimated

as βf(T)+ δ and β′f(S)+ δ for table T and S, respectively. The total numbers

of key-value pairs generated for T and S are α|T | and α′|S|, respectively. When

the memory buffer is full, the mapper applies quick-sort algorithms to sort the

key-value pairs and writes them as a local file. After all key-value pairs have

been generated, the local files are merged together. Suppose the size of the

61

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

memory buffer is b, there will be x = b
βf(T)+δ

key-value pairs for T in the buffer,

and the total size of key-value pairs of T is y = α|T |(βf(T) + δ). We estimate

the cost of sorting and merging for table T as:

C(T)sort = να|T | log2 x+ ywl + y(wl + rl) (4.5)

where the first term represents the quick-sort cost in the memory buffer, the

second term denotes the I/O cost of flushing data from buffer to disk, and the

last term is the I/O cost of merge-sort. Actually, mappers do not perform full

merge-sort as each mapper only reads a data chunk. C(T)sort actually includes

the sort cost in the reducer part. In the same way, we can estimate the sort

cost of table S, C(S)sort. Therefore, the total cost in the map phase is:

Cmap = (|T |f(T) + |S|f(S))rh + ν(p(T, k)|T |

+p(S, k′)|S|) + C(T)sort + C(S)sort (4.6)

When the mapping phase completes, the reducers will pull data files from

the mappers. The network cost is computed as

Cshuffle = µ(α|T |(βf(T) + δ) + α′|S|(β′f(S) + δ)) (4.7)

After that, a multi-way merge-sort is applied. As sorting cost has already been

computed in the map phase, we do not consider it in the reduce phase. For tu-

ples of the same key, an in-memory join is performed, and z = αα′|T ||S|g(T, S)

results are generated. Each result refers to a comparison operation of the in-

memory join. Therefore, the CPU cost of the in-memory join is estimated as

zν. Finally, all the results are written back to HDFS, which incurs z(βf(T) +

β′f(S))wh cost. In summary, the total cost in the reduce phase is:

Creduce = Cshuffle + z(ν + (βf(T) + β′f(S))wh) (4.8)

The above analysis is based on a two-way join. For a replicated join involving

k tables (T1, T2, ..., Tk), we can perform a similar estimation as Equation 4.6 and

4.8. The only difference is the shuffling cost. Suppose the tables are joined on

an attribute set A, where |A| = n, and we have m reducers. We use cx to

62

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

denote the number of reducers for attribute ax. Therefore, we have

m = Πn
x=1cx (4.9)

As mentioned before, to improve the performance, the number of required re-

ducers is set to be proportional to the size of corresponding table. If ax is

an attribute of table Ti, we use f(ax) to denote the size of Ti. Therefore, we

compute cx as

cx =
axδ

Πn
i=1f(ai)

(4.10)

After combining Equation 4.9 and 4.10, we can estimate the value of δ and the

number of required reducers for each attribute.

For table Ti, if it contains a join attribute set A′ (A′ ∈ A) , we need to

replicate its data to ri reducers, where

ri = Π∀ax 6∈A′∧ax∈Acx (4.11)

Therefore, the shuffling cost is computed as:

C ′shuffle = µ
k∑
i=1

(αiri|Ti|(βif(Ti) + δi)) (4.12)

where αi, βi and δi denote the accumulative filter selectivity, projection selec-

tivity and the size of keys of table Ti, respectively.

Compared to join, aggregation is much more similar to a map-only job.

In the map phase, we scan the corresponding table and use the “group by”

attributes as the key. In the reduce phase, aggregations are computed for each

key. For table T , the map phase incurs a cost of

Cmap = |T |f(T)rh + p(T, k)|T |ν +

α|T |ν log2 x+ ywl + y(wl + rl) (4.13)

where x and y are defined as in Equation 4.5, and the cost of the reduce phase

is estimated as:

Creduce = µα|T |(βf(T) + δ) + α|T |ν + γhwh (4.14)

63

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

where α|T |ν denotes the CPU cost of aggregations, γ denotes the number of

keys (groups) and h is the size (in bytes) of the result tuple.

4.5 Experimental Evaluation

Table 4.2: Cluster Settings
Parameter Value

Size of Data Chunk 512M
Reducers per Node 1
Maximal Concurrent Mappers 2
Maximal Memory 4G
Replication Factor 3
Default Node Number 50
Data per Node 4G
θ ∞

We evaluate the effectiveness of AQUA on our in-house cluster, Awan,

which contains 144 cluster nodes. The nodes are connected via three high-

speed switches. Each node is equipped with Intel X3430 2.4 GHz processor, 8

GB of memory, 2x500GB SATA disks, gigabit ethernet, and operates CentOS

5.5. The cluster nodes are evenly divided into three racks. We evaluate the per-

formance of AQUA on two data sets: TPC-H data and a real Twitter data set.

The Twitter data set consist of 5 tables (User, Tweet, UserGraph, TweetGraph

and Location) and the size of the data set is around 100G. For the experiments,

50 nodes of Awan are reserved and each node stores around 4G data. Since the

maximal number of tables for our evaluated queries is 8 (TPCH Q8), which is

quite small, we set θ to∞ in order to generate query plans with higher quality.

When θ is small, our query optimization algorithm tends to trade the quality

of plans for the performance of query optimization. The detail configuration of

the cluster is listed in Table 4.2.

We run some simple read and write jobs in the cluster to test I/O perfor-

mance. Specifically, in our cost model, we set the cost ratio of Table 4.1 as

follows: local read (rl) = 1, local write (wl) =1.2, HDFS read (rh)=1.2, HDFS

write (wh)=2 and network I/O (µ)=1.2. CPU ratio (ν) is set to 0 in these

experiments as most TPC-H queries are I/O intensive jobs .

64

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

Table 4.3: List of Selected TPCH Queries
Query ID Joined Tables of the Query

Q3 customer on orders on lineitem
Q5 customer on orders on lineitem on

supplier on nation on region
Q8 part on supplier on nation on lineitem on

orders on customer on nation on region
Q9 part on supplier on lineitem on partsupp on

orders on nation
Q10 customer on orders on lineitem on nation

For comparison purposes, we list the performances of three plans: HIV E−
MO (Hive-Manually Optimized) denotes the plans adopted by Hive’s Bench-

mark [61], where all queries have been manually optimized for better perfor-

mance; AQUA represents the best plan generated by our query optimizer; and

HIV E − UO (Hive-Unoptimized) is the worst plan based on our cost model.

We test all the TPC-H queries and list the results of query Q3, Q5, Q8, Q9 and

Q10 (which are listed in table 4.3).

These queries provide the representative results. The rest of the queries

either show a similar performance or are too simple to optimize, such as Q1

and Q6. Each query is run 10 times and we compute the average performance.

In addition, we also evaluate the multi-way join query on the Twitter data set:

SELECT count(∗)

FROM Tweets T, Users U, Location L, UserGraph UG

WHERE T.coord = L.coord

AND T.uid = UG.uid

AND UG.fid = U.uid

AND L.state = “state1”

AND U.state = “state2”

The above query is named as QT, which computes the number of tweets pub-

lished in “state1” by the users who follow a user in “state2”. It can show how

close the relationship between these two states are. We evaluate two instances

65

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

 0

 500

 1000

 1500

 2000

 2500

 3000

QT1 QT2 Q3 Q5 Q8 Q9 Q10

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Query ID

PIG-MO
HIVE-UO
HIVE-MO

AQUA-
AQUA

Figure 4.9: Query Performance

 0

 200

 400

 600

 800

 1000

 1200

QT1 QT2 Q3 Q5 Q8 Q9 Q10

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Query ID

processing cost
optimization cost

Figure 4.10: Optimization Cost

of this query, QT1 (“state1” = “WA” and “state2” = “NY”) and QT2 (“state1”

= “CA” and “state2” = “NY”) in the experimental section.

4.5.1 Effect of Query Optimization

Figure 4.9 lists the overall performance of selected queries. In this figure, we

also show the performance of Pig [83], which is denoted by PIG −MO. In

our settings, Pig translates the join queries into MapReduce jobs using the

same plans as HIV E −MO. We find that PIG −MO performs worse than

HIV E−MO for all queries. Therefore, in the remaining experiments, we omit

the results of PIG−MO. AQUA− is a simplified version of AQUA. The final

join tree selected by AQUA− is implemented by a sequence of symmetric hash

joins. We can see how replicated join improves the performance of the query

by comparing AQUA with AQUA−.

In all cases, AQUA performs the best, which shows the effectiveness of our

query optimization. For simple queries such as Q3 and Q10, AQUA generates

two MapReduce jobs. One job performs the replicated join to process all the join

operations, while the other job is used to do the “group by” and aggregations.

For Q5, HIV E − UO results in an “out of memory” exception for Hive, but

before it triggers the exception, its running time is much longer than that of

other schemes. In fact, HIV E − UO generates some bad plans that cannot

exploit all processing nodes (see section 4.2.2). For Q8, Q9 and QT1 and QT2,

AQUA performs significantly better than HIV E −MO, because both queries

are complex (involving eight and six tables, respectively). In that case, it is

difficult to manually optimize the query plan, while our query optimizer is able

66

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

 0

 500

 1000

 1500

 2000

 2500

0 1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

E
st

im
at

io
n

I/O
+

C
P

U
 C

os
t(

xE
11

)

Plan ID

estimated cost
real processing time

Figure 4.11: Accuracy of Optimizer

 0

 500

 1000

 1500

 2000

 2500

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.12: Twitter Query (QT1)

 0

 500

 1000

 1500

 2000

 2500

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.13: Twitter Query (QT2)

to deliver its superior performance. The execution time of QT2 is longer than

QT1 because of two reasons: there are more users in “CA” than “WA” and

the users in “CA” are more connected with the users in “NY” compared to

the users in “WA”. Figure 4.10 shows the cost of query optimization. For

all the queries, our optimizer can complete its plan selection within seconds.

Compared to the query processing cost, optimization cost is negligible. As a

result, we can hardly recognize the white rectangle in the figure.

Figure 4.11 shows the accuracy of our query optimizer. We pick the first five

query plans output by our optimizer for Q5 and show the plan’s estimated cost

and processing time. The optimizer employs a cost model to evaluate the costs

of relational operators in the MapReduce framework, which considers both I/O

cost and network cost. The estimated cost is used to predict the efficiency

of a query plan and the optimizer selects the plan with minimal estimated

cost to execute a query. In Figure 4.11, we observe that when a plan has a

67

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.14: TPC-H Q3

 0

 200

 400

 600

 800

 1000

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.15: TPC-H Q5

 0

 500

 1000

 1500

 2000

 2500

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.16: TPC-H Q8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.17: TPC-H Q9

higher estimated cost, it always requires more processing time, which verifies

the accuracy of our optimizer.

4.5.2 Effect of Scalability

In this experiment, we evaluate the scalability of different schemes. In Fig-

ures 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18, the number of nodes varies from

10 to 50, and correspondingly, the total size of the data increases from 40G to

200G. The figures respectively show the performance of the twitter query (QT1

and QT2), Q3, Q5, Q8, Q9 and Q10.

In our experiments, AQUA and HIV E −MO show linear scalability for

all queries. But HIV E − UO results in an “out of memory” exception for

TPC-H Q5. This is caused by a plan that shuffles most intermedia results

to a few reducers. When data size keeps increasing, the memory will become

insufficient for some reducers eventually. Therefore, selecting good plans is

68

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 4.18: TPC-H Q10

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Number of Nodes

HIVE-MO
AQUA

Figure 4.19: Performance of Shared
Scan

extremely important for large-scale datasets.

AQUA performs better than HIV E −MO for different reasons. For Q3

and Q10, as mentioned before, AQUA generates a single job to process all

join operations. This strategy avoids repeatedly writing and reading data from

HDFS. For Q5, AQUA adopts a similar plan as HIV E −MO, except that it

processes N ./ R ./ S in a single job. However, as nation and region are two

smallest tables in TPC-H, AQUA achieves less improvement by applying the

replicated join. The biggest performance gap is observed in Q8 and Q9. For

these two queries, AQUA’s plans are quite different from those of HIV E−MO.

AQUA generates two replicated joins for each query and adopts the bushy plans

to combine the results. Compared to HIV E−MO, the space of candidate plans

in AQUA is extended to include more possible plans. Therefore, AQUA can

perform better than HIV E −MO.

Figure 4.19 shows the effect of shared scan approach. We use Q17 in TPC-H

as an example.

select sum(l extendedprice) / 7.0 as avg yearly

from lineitem, part

where p partkey = l partkey and p brand = ′[BRAND]′

and p container = ′[CONTAINER]′ and l quantity < (

select 0.2 ∗ avg(l quantity) from lineitem

where l partkey = p partkey);

Q17 accesses lineitem in the outer query and the inner nested query. By

69

CHAPTER 4. AQUA: COST-BASED QUERY OPTIMIZATION ON
MAPREDUCE

applying shared scan strategy, we only need to scan lineitem once, which can

greatly reduce the I/O costs and hence improve the performance.

4.6 Summary

In this chapter, we have presented the design and implementation of AQUA,

the core part of the offline analysis module in ART. Given an SQL-like query,

AQUA generates a sequence of MapReduce jobs, which minimizes the cost

query processing. AQUA adopts a two-phase optimization scheme. In the first

phase, join operators are organized into various groups and one MapReduce

job is generated for each group. In the second phase, a cost-based scheme is

employed to search for an optimized plan that combines the results of differ-

ent join groups. To reduce the search space, AQUA applies the features of

the MapReduce framework to prune the search space. In particular, we con-

sider both the left-deep and bushy plans. Also, we avoid generating a plan

that under-utilizes computing resources. We evaluate our approach by running

multi-way join queries on both TPC-H data and a real Twitter data set on

our in-house cluster. The result verifies the effectiveness of our proposed query

optimizer.

This work is published as a full paper in the ACM Symposium on Cloud

Computing (SOCC) 2011 [108].

70

CHAPTER 5

R-Store: A Scalable Distributed System

for Supporting Real-Time Analytics

It is widely recognized that OLTP and OLAP queries have different data access

patterns, processing needs and requirements. Hence, the OLTP queries and

OLAP queries are typically handled by two different systems, and the data

are periodically extracted from the OLTP system, transformed and loaded into

the OLAP system for data analysis. In microblogging companies, with the

awareness of the ability of big data in providing enterprises useful insights from

vast amounts of data, effective and timely decisions derived from real-time

analytics are important. It is therefore desirable to provide real-time OLAP

querying support, where OLAP queries read the latest data while OLTP queries

create the new versions.

In Chapter 4, we have introduced the offline analysis module of ART, which

assumes that the data are unchanged after they are extracted-transformed-

loaded (ETL) from the OLTP module. In this chapter, we discuss R-Store, the

distributed storage module of ART. In addition to processing the OLTP queries,

R-Store is specifically designed and implemented to enable real-time analytics.

R-Store maintains both the real-time twitter data and the data cube on these

data. When real-time data are updated, they are streamed to a streaming

MapReduce, namely Hstreaming, for updating the cube on incremental basis.

Based on the metadata stored in the storage system, either the data cube

71

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

or OLTP database or both are used by the MapReduce jobs for aggregation

queries. We propose techniques to efficiently scan the real-time data in the

storage system, and design an adaptive algorithm to process the real-time query

based on our proposed cost model. The main objectives are to ensure the

freshness of answers and low processing latency. The experiments conducted

on the TPC-H data and the Twitter data demonstrate the effectiveness and

efficiency of our approach.

5.1 Introduction

Database systems implemented for large scale data processing are typically clas-

sified into two categories: OLTP systems and OLAP systems. The data stored

in OLTP systems are periodically exported to OLAP systems for processing. In

recent years, MapReduce [44] framework has been widely used as a large scale

OLAP system because of its scalability. However, most of these only focus on

how the OLAP queries are efficiently processed. The issue of freshness of the

OLAP results has not been addressed.

In this chapter, we try to address the problem of large scale real-time query

processing using MapReduce framework. Specifically, we focus on a subset of

the OLAP query: the real-time aggregation (RTA) query. The RTA is defined

as follows: a real-time aggregation (RTA) query accesses, for each key, the

latest value preceding the submission time of the query [52]. Specifically, we

propose and design a scalable distributed system called R-Store, in which the

storage system supports multi-versioning, and each version is associated with

a timestamp. Each aggregation query operates on the version of data that ex-

ists at the time it is submitted whereas each OLTP transaction creates a new

version. R-store uses the MapReduce framework where the mappers of the ag-

gregation query directly access the real-time data stored in the storage system.

The storage system is implemented by extending HBase [3]. HBase supports the

HBaseScan operation that takes a timestamp as input and returns the version

of the data with the largest timestamp before the scan operation. Though this

can be used to offer consistent data to RTA queries, simply using this default

scan operation for querying the data stored in HBase is inefficient due to the

following reasons:

1. HBase only stores a fixed number of versions for each key, and automati-

72

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

cally removes the versions that exceed this cap by its default compaction

policy. To support real-time querying, this number has to be set to in-

finity in case the old versions are removed during the running of an RTA

query. However, this will lead to continuously increasing of the data size,

and waste too much space to store the unused data.

2. For each RTA query, the entire HBase table has to be scanned and shuffled

to the mappers, which is a very costly process.

To facilitate efficient processing of RTA queries, we periodically materialize

the real-time data into a data cube and implement an IncrementalScan

operation in HBase to avoid the shuffling of the entire HBase table to MapRe-

duce during real-time querying. To the best of our knowledge, this is the first

work that proposes a scalable RTA distributed system based on MapReduce

framework. In summary, the contributions of this paper are as follows:

1. We propose a scalable distributed system framework called R-Store, for

performing RTA query processing. R-Store evaluates an RTA query by

transforming it into a MapReduce job, which is run on our modified HBase

(in remaining of this paper, we name it as HBase-R in order to differen-

tiate it from HBase), to obtain the real-time data.

2. We propose an efficient storage model for caching the data cube result.

The data cube is treated as historical data, while the data updated after

the refresh time of the data cube are real-time data. We also propose

a more efficient scan operation in the storage model for obtaining the

real-time data.

3. We integrate streaming MapReduce into our system, which maintains a

real-time data cube in the reducers, and periodically materializes the data

cube. This data cube update method is much faster than the data cube

re-computation method, and in turn accelerates the processing of RTA

query since fewer real-time data are scanned during the query execution.

4. We design an algorithm to efficiently process the RTA queries, which takes

both the historical data cube and the real-time table as input. We also

propose a cost model that guides the adaptive processing of RTA.

73

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

5. We perform an extensive experimental study on a cluster with more than

one hundred nodes, which confirms the effectiveness of the cost model,

and the efficiency and scalability of R-Store.

The remaining of the chapter is organized as follows. We first present the

architecture, design and implementations of R-Store in Section 5.2 and 5.3.

In Section 5.4, we discuss the processing of real-time aggregation queries. We

evaluate the performance of R-Store in Section 5.5 and summarize this chapter

in Section 5.6.

5.2 R-Store Architecture and Design

In this section, we present the architecture of R-Store, the design philosophy

of the storage system, and how the data cube is maintained.

5.2.1 R-Store Architecture

Figure 5.1 illustrates the architecture of R-Store. The system consists of four

components: a distributed key/value store, a streaming system for maintaining

the real-time data cube, a MapReduce system for processing large scale OLAP

queries, and a MetaStore for storing some global variables and configurations.

The OLTP queries are submitted directly to the key/value store, while the

aggregation queries are processed by the MapReduce system. The simplest

method of supporting RTA for MapReduce is to scan the whole real-time table

and obtain the latest version before the submission time of the aggregation

query for every key/value pair (FullScan operation), as the input of the

MapReduce job. The key/value store has to support multi-version concur-

rency control in case the OLTP queries and aggregation queries are blocked

by each other. However, this method is not efficient because obtaining one

version for each key/value pair is a costly operation in large scale distributed

systems. Note that in real applications, such as social networks, the updates

usually follow a Zipf distribution, and within a time interval, only a small por-

tion of keys are updated in the table. Based on this observation, we try to

accelerate aggregation queries by materializing the real-time table into a data

cube. When an aggregation query is submitted to the system, it first con-

nects to MetaStore to acquire the timestamp of the query for consistency. The

74

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

 Key/Value Store DataCube

MapReduce

MetaStore

Real-Time DataOLTP

Aggregati

on Query

Refresh Cube

Incremental

Scan
FullScan

Compaction

Distributed Streaming System

Real-Time DataCube

Figure 5.1: Architecture of R-Store

statistics stored in MetaStore are also used to optimize the query based on

our proposed cost model (Section 5.4.3). After the optimization by the cost

model, the aggregation query can be transformed to a MapReduce job that

takes as input both the historical data in the data cube and the real-time data

in the key/value store. To efficiently access real-time data, the key/value store

is designed to support incremental scan (Section 5.2.2). The real-time data is

scanned by the IncrementalScan operation, while the data cube is scanned

by the FullScan operation. The IncrementalScan operation only shuffles

the key/value pairs that are updated after the last building of the data cube,

and thus is much faster than FullScan because fewer data are shuffled.

The data cube is also stored in the distributed key/value store and is peri-

odically refreshed based on the real-time table. The versions of the key/value

pairs before the refresh time of the data cube are compacted in order to accel-

erate the scan time of the real-time table. The performance of refreshing the

data cube is crucial to our system because if the data cube is refreshed fast,

more data are compacted by our compaction scheme, and fewer real-time data

are accessed during the scan operation. In an extreme case where no update is

submitted since the data cube refresh, the MapReduce job only needs to scan

the data cube. To efficiently refresh the data cube, the updates applied to the

key/value store are streamed to the streaming system, and a real-time data

cube is maintained in the local storage of the streaming system. The real-time

data cube is periodically materialized to the key/value store to refresh the data

cube. Based on our experimental results, this method is much faster than the

75

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

method of re-computing the data cube, and the throughput of this method is

sufficiently high to process the update streams from the key/value store.

Once this refresh process is completed, the timestamp of the latest data cube

is sent to MetaStore, and the compaction process is invoked to compact the real-

time data. The MetaStore also stores other global information, including the

submission time of each aggregation query, the frequency of materializing the

data cube, etc.

5.2.2 Storage Design

The key/value store must support multi-version concurrency control techniques

to ensure that the aggregation query and the OLTP query do not block each

other. In addition, our storage design considers many other features including

efficient file scan operations, compaction scheme and load balancing, which we

discuss below.

Full and Incremental Scans

To handle aggregation queries and to build the data cube, a scan operation

needs to be implemented in the key/value store. Two types of scan operations

are required, which are used in different scenarios:

• FullScan(Ti). For each key/value of the table, the FullScan operation

takes a timestamp Ti as input, and returns the latest version of the value

before Ti. The data returned by this operation can be used to create or

re-compute the data cube.

• IncrementalScan(T1, T2). This operation takes two timestamps T1 and

T2 (T1 < T2) as input, and returns two versions for the keys updated after

T1. The first version is the latest value before T2, and the second version is

the latest value before T1. If a new key is inserted (not updated) into the

store after T1, only one version is returned. This operation can be used

in the RTA query processing algorithm. During the query processing, T1

is set to the querying time, while T2 is set to the data cube refresh time.

By combining the data returned by IncrementalScan and the data

cube, we can efficiently re-construct the most real-time data, and using

these data to process the RTA query.

76

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Global and Local Compactions

Since each key may have several versions, the scan operations read more than

one version of the data to obtain the required versions, incurring unnecessary

I/O cost. To reduce the number of stored versions for each key and to improve

the scan performance, the data are automatically compacted. We provide two

forms of compaction:

• Global Compaction. The global compaction process is launched imme-

diately following each data cube refresh. For the same key, all the versions

inserted before the data cube refresh are merged into one version. We call

this version VDC , which is consistent with the data cube and is used in

updating the data cube.

• Local Compaction. The local compaction process is invoked on each

node. At first, the submission time of the current running scan process

(Tscan) on the region is acquired by the compaction process. For each key,

the latest version of the data before Tscan is accessed by this scan process.

Thus, the local compaction only compacts the older versions that will not

be accessed by any scan process. Furthermore, VDC is not changed during

this compaction so that the new data cube can be computed correctly

when the data cube is refreshed.

Load Balancing

In most applications, some key ranges might be updated more frequently than

others, causing skewed load on the nodes. In addition, since the update opera-

tion inserts a new version of the key into the node instead of replacing the old

version, there is a skew on the amount of data on the nodes. This affects the

performance of the scan process on those nodes. The solution is to split heavily

updated ranges in the key/value store and move some data to other nodes.

5.2.3 Data Cube Maintenance

To improve the performance of RTA queries, a data cube is maintained in the

key/value store. A data cube could be either a full data cube, an Iceberg cube,

or a closed cube. The selection of the best suitable data cube depends on the

applications, which is not the focus of this work. To make it general, we only

77

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

consider the full data cube, which consists of a lattice of cuboids. There are

two approaches to refresh the data cube:

Re-Computation. To re-compute the data cube, the FullScan operation

is used. It takes a timestamp Ti as input, and returns the latest version of

the value before Ti for all the keys stored in this region. Each mapper of the

MapReduce job takes the results of the FullScan operation on one region as

input. For each cuboid, a key/value pair is generated. The map output key

is the combination of the dimension attributes for the cuboid, while the map

output value is the numeric value. The reducers compute the aggregation value

for each cell of each cuboid, and output the result to the key/value store.

Incremental Update. The second approach is performed in two steps: prop-

agation step and update step. The propagation step computes 4DC (change

of the data cube) from 4T (change of the table), and the update step updates

data cube based on 4DC. However, not all data cubes can be incrementally

updated. The incremental update only works for self-maintainable aggregate

functions [78] (the new cell value can be computed from the old cell value and

the updated tuples) such as SUM, COUNT, and the algebraic functions derived

from them.

In R-Store, the re-computation approach is used to build the first data cube,

while the incremental update approach is adopted to maintain a real-time data

cube in the stream processing module. The streaming system updates its data

cube with the update streams coming from the key/value store, and periodically

materializes the data cube into the storage system. As the updating of the

data cube consists of two phases, which can be processed by the MapReduce

processing logic in nature, a streaming version of MapReduce is used as the

stream processing module of R-Store.

5.3 R-Store Implementations

In this section, we present the implementations of R-Store. Specifically, we

show how we implement our storage system, namely HBase-R, on top of HBase

to fulfill the design philosophy discussed in Section 5.2.2.

78

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

5.3.1 Implementations of HBase-R

HBase [3] is an open source distributed key/value store. A table stored in HBase

is partitioned to several regions, which are assigned to a certain nodes, and each

node runs a region server to manage regions and serve the transactions. Inside

a region, the data of the same column family (a group of columns) are stored in

the same structure, which is called store. A store has an in-memory structure,

memstore, and several in-disk files, storefiles. When a new version of data is

about to be inserted into this store, it is first inserted into the memstore and

appended to the write ahead logs. Once the size of the memstore reaches its

upper bound, the data in the memstore are transferred to a storefile. The

store files are sorted in inverse chronological order. Inside the memstore or

storefile, the data are sorted by keys, and the versions for each key are sorted

in inverse chronological order. HBase only supports the FullScan operation,

so we designed and implemented IncrementalScan in HBase-R.

IncrementalScan

For a store in a region, by accessing the same key across the storefiles and

memstore in parallel, the IncrementalScan operation scans the keys in as-

cending order. For each key, the version with the larger timestamp is scanned

earlier. For all the versions of a key, the algorithm checks the timestamp of each

version and returns the required two versions. If the key has only one version,

which means the operation on the key is an insertion, the IncrementalScan

only returns that version for the key.

For real-time queries and data cube update, scanning the key/value pairs

in HBase-R is the most costly step. It is, therefore, important to improve the

performance of IncrementalScan. For this purpose, we propose an adaptive

incremental scan algorithm.

First, we maintain an in-memory structure to estimate d(T), the number

of distinct keys updated since the last refresh of the data cube. Estimating

d(T) in a data stream has been well studied [65]. A straightforward method

is to keep all the keys in memory, and, for each key, to maintain a bit value

to indicate whether or not it has been updated. However, this method re-

quires a considerable amount of memory to store the keys. In HBase-R, the

size of a region is configured before the data are inserted. Thus, the num-

79

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

ber of keys for a region has an upper bound (M), which can be estimated by

SizeOfRegion/SizeOfKeyV alue. Since each region usually stores a range of

consecutive keys, a hash function h(key) can be used to map a key to a value

between 0 and M − 1, and a bit array of size M , DistinctKeys, is maintained

in memory to indicate whether or not a key has been updated. Using this bit

array, to compute the number of updated values on a node with even one billion

distinct keys, only 128 MB of memory are required.

To improve the performance of IncrementalScan, the above data struc-

ture is used in the adaptive incremental scan algorithm (Algorithm 5.1). When

an IncrementalScan request is sent to a region server, the first parameter

(T1) is always set to the refresh time of the current data cube (TDC), and the

second parameter (T2) equals to the submission time of the query (TQ). Instead

of scanning all the key/value pairs before TQ, the key/value pairs in memstore

are scanned first. Note that in memstore, there might be several versions for a

key, and only the newest version is cached in kvMap (line 1). The number of

key/values updated after TDC but not in memstore is then computed (line 7),

and the random read cost of these key/values is estimated. If this cost is smaller

than the cost of scanning all the data between TDC and TQ, the storefile index

is used to directly read the values for these keys (lines 8 to 14). In this way, the

latest versions for the updated keys are obtained. Then, by simply scanning the

key/values before TDC , the latest versions before TDC for the updated keys are

returned to the client. Since the cost of scanning memstore (in-memory struc-

ture) is much lower than the cost of scanning storefile), when d(T) is large, the

adaptive incremental scan is almost the same as the default IncrementalScan.

In contrast, when d(T) is small, this adaptive scan strategy incurs fewer I/O

operations.

Compaction

HBase’s default compaction process combines all the storefiles into one file

and retains only one version for each key. If R-Store simply inherits HBase’s

default compaction process, the version of the data which is consistent with

the latest data cube will be lost, and the most real-time data cube cannot be

re-constructed to process the RTA query or data cube slice query. Thus, in

HBase-R, we implemented two different compaction schemes. The global com-

paction in HBase-R is similar to HBase’s default, but with a different triggering

80

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Algorithm 5.1: Adaptive IncrementalScan

input: Timestamp TDC , Timestamp TQ, boolean[] DistinctKeys, int
NumDistinctKeys

1 kvMap ← new HashMap<Key, Value>();
2 for KeyValue kv ∈ MemStore do
3 if kvMap.contain(kv.key) then
4 continue;
5 else
6 kvMap.put(kv.key, kv.value);

7 NumKeysNotInMemory ← NumDistinctKeys - kvMap.size();
8 if CostOfRandom×NumKeysNotInMemory <
CostOfScan×NumOfUpdatedKeyV alues then

9 for key updated but not in kvMap do
10 kv ← randomRead(key);
11 kvMap.put(kv.key, kv.value);

12 for each kv before TDC do
13 if kvMap.exist(kv.key) then
14 send kvMap(kv.key) and kv;

15 else
16 delete kvMap;
17 invoke the default IncrementalScan(TDC , TQ)

condition. In addition, it always keeps one latest version before the data cube

refresh time for each key. The local compaction only compacts the data that

are earlier than a certain timestamp. To ensure that the compaction process

does not block the scan processes, the compacted data are stored in different

files, instead of directly replacing the un-compacted data. The files that con-

tain the old versions are replaced by the compacted files when they are not

accessed by any scan process. Since the compaction process competes with

aggregation queries for CPU and I/O resources, there is a tradeoff between

the frequency of the compaction and the performance of the whole system.

We define a threshold so that the local compaction process is triggered when

(numberOfTuples)/(numberOfDistinctKeys) exceeds this threshold.

81

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Load Balancing

HBase has its default region size, which is 256MB. If the size of the data for

a region is larger than this size, it is automatically split to two sub-regions,

which are distributed to other nodes. In HBase’s default setting, only a fixed

number of versions for a key are stored. Once the number of versions for all

the keys in this region reaches the maximum number, the size of the region

would not change regardless of the frequency of key updates in this region.

This requires users to manually split the hot region. In contrast, in R-Store, we

do not strictly remove the old versions of the updated keys once the number of

versions exceeds HBase’s default setting. We wait until the size of frequently

updated region reaches its upper bound, and the split happens automatically.

5.3.2 Real-Time Data Cube Maintenance

R-Store adopts HStreaming for maintaining the real-time data cube (note that

other streaming MapReduce systems can also be used in R-Store). Each mapper

of HStreaming is responsible for processing the updates within a range of keys.

The map function of the data cube update algorithm is shown in Algorithm 5.2.

When an update for a key arrives, the old value for this key is retrieved from the

local storage if exists. To efficiently retrieve the old value, a clustered index is

built for the key/values, and the frequently updated keys are cached in memory.

In reality, the updates are usually on a small range of keys, and the old value

of the updates have a high probability to be directly retrieved from the cache.

If the key is new (thus, does not exist in local storage), for each cuboid, one

key/value pair is generated and shuffled to the reducers. The map output key

is the combination of the dimension attributes, and the map output value is

the numeric value. If the key of the update exists in local storage and the

updated key/value pair falls into the same cell for a cuboid, one key/value pair

is shuffled to the reducer, and the numerical value is equal to the value change.

Otherwise, two key/value pairs are generated, one is the new value with a tag

“+”, and the other is the old value with a tag “-”.

The reduce function is invoked at a time interval wr specified by the user.

For example, if the time interval is set to one second, the reducers will cache

the incoming intermediate data within the past second, and apply the reduce

function to them. Another time interval, wcube, defines how frequently the data

82

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Algorithm 5.2: Map Function for Incremental Update

input: KeyValue kv
1 oldkv = retrieveFromLocal(kv.key);
2 if oldkv == null then
3 for cuboid in data cube do
4 CuboidK ← extractCuboidKey(cuboid, kv.value);
5 CuboidV ← extractCuboidValue(kv.value);
6 CuboidV.setTag(“+”);
7 Emit(CuboidK, CuboidV);

8 insertToLocal(kv);

9 else
10 oldCuboidV ← extractCuboidValue(oldkv.value);
11 oldCuboidV.setTag(“-”);
12 newCuboidV ← extractCuboidValue(kv.value);
13 newValue.setTag(“+”);
14 for cuboid in data cube do
15 oldCuboidK ← extractCuboidKey(cuboid, oldkv.value);
16 newCuboidK ← extractCuboidKey(cuboid, kv.value);
17 if oldCuboidK == newCuobidK then
18 newCuboidV.set(computeChangeOfCell

(oldCuboidV,newCuboidV));
19 Emit(newCuboidK, newCuboidV);

20 else
21 Emit(oldCuboidK, oldCuboidV);
22 Emit(newCuboidK, newCuboidV);

23 updateToLocal(kv);

cube is materialized. The reduce function to incrementally update the data

cube is shown in Algorithm 5.3. A reducer merges the local data cube (DC)

with the intermediate key/value pairs that it receives from mappers (which

is a cell in a cuboid) if these are due to an update before next cube refresh

time (TDC). Otherwise, it stores these key/value pairs in 4DC ′. When

the timestamps of the incoming updates on all mappers are larger or equal to

TDC , the data cube refresh process is invoked, which writes the local data cube

to HBase-R (different cuboids are written to separate HBase-R tables). The

incoming cells during this refresh process are still written to 4DC ′ since their

timestamps are no less than TDC . When this refresh process is completed, TDC

is incrementally changed, and DC is merged with 4DC ′. In streaming system,

83

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Algorithm 5.3: Reduce Function for Incremental Update

input: Key key, List<Value> vlist, Context context
1 i ← 0, sum ← 0;
2 for Value v in vlist do
3 if v.timestamp < TDC then
4 MergeWith(key, v, DC)
5 else
6 MergeWith(key, v, 4DC ′)

to deal with fault tolerance, the accumulated states of the stream computation

have to be checkpointed periodically. The data streams after the checkpointing

time are stored in logs and will be used during the recovering process. In R-

Store, the data cube materialized to key/value store is indeed a checkpointing

of the real-time data cube. Since the key/value pairs after the last data cube

refresh are still stored in the storage (even though some intermediate versions

of the key/value pairs might be removed by the local compaction process, the

necessary versions for building the next data cube are still there), the real-time

data cube maintenance process can be recovered using the data cube and the

real-time table without extra efforts of checkpointing.

5.3.3 Data Flow of R-Store

Figure 5.2 illustrates the data flow between HBase-R, HStreaming and MapRe-

duce in R-Store. Each HBase-R region server handles several regions. Some of

these regions belong to the real-time table, while the others belong to the data

cube. An OLTP query is submitted to one of the region servers, and stored in

memstore of the region it belongs to. If the size of the memstore reaches its

upper bound, the data are written into HDFS as a storefile. Once the update

is written to HBase-R, it is streamed to a mapper in HStreaming based on the

key of this update. In the mappers of HStreaming, the change of a cell for each

cuboid is computed and shuffled to reducers. On the reduce side, the real-time

data cube is updated and cached in local disk. At time interval, HStreaming

materializes its local data cube into HBase-R and notifies MetaStore with the

timestamp of the latest data cube. The compaction process is then launched

to compact the versions of data before data cube is refreshed.

When an aggregation query arrives, it acquires a timestamp from the Meta-

84

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Hbase-R

Region Server

MapReduce

...

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer Aggregati

on Query

MetaStore

Obtain

timestamp and

statistics

Updates

Region for Original Table

Store Store

...

Region for Data Cube

...

MemStore

StoreFile StoreFile

MemStore

...

...

...

Region Server

...

Region for Original Table

Store Store

...

Region for Data Cube

...

MemStore

StoreFile StoreFile

MemStore

...

...

Hstreaming

Mapper

Mapper

Reducer

Reducer

Compact Region

Refresh

Cube

Figure 5.2: Data Flow of R-Store

Store, together with the statistics of the real-time table stored in HBase-R.

It is then transformed to a MapReduce job based on the data statistics, and

submitted to the system. Each mapper starts a scan operation over its input

region belonging to either the real-time table or the data cube. At the end of

the job, the results of aggregation query are stored in HBase-R.

5.4 Real-Time Aggregation Query Processing

Section 5.2 to 5.3 described in detail the architecture and implementation of

R-Store. In this section, we discuss how the RTA queries are processed. In R-

Store, if the input of the MapReduce job is only the data cube, the performance

of the scan phase on the map side is maximized, but the result might be stale.

To maximize the freshness of the OLAP query, all the updated key/value pairs

before the submission time of the query must be considered. Thus, not only

the data cube, but also the real-time table must be scanned.

Suppose the creation time of the data cube is TDC and the submission time of

the query is TQ. For each updated key after TDC , IncrementalScan running

on the real-time table returns both the old version before TDC and the latest

85

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Algorithm 5.4: Map Function for IncreQuerying Algorithm

input: KeyValueList kvlist, Context context
1 key ← null, value ← null;
2 if kvlist.size == 1 then
3 key ← extractKey(kvlist[0].key);
4 if key is not filtered then
5 value ← kvlist[0].value;
6 value.setTag(“Q”);
7 Emit(key, value);

8 else
9 key ← extractKey(kvlist[0].value);

10 if key is not filtered then
11 value ← extractValue(kvlist[0].value);
12 value.setTag(“+”);
13 context.write(key, value);
14 value ← extractValue(kvlist[1].value);
15 value.setTag(“−”);
16 Emit(key, value);

version before TQ, if its two parameters are set to TDC and TQ respectively. By

merging these two versions with the numeric values of each cuboid, the latest

cubiod value can be computed on demand, and the freshness of the RTA query

can be satisfied. In the following subsection, we present the query process-

ing algorithm (called IncreQuerying) making use of the IncrementalScan

operation.

5.4.1 Querying Incrementally-Maintained Cube

We implement MultiTableInputFormat so that each MapReduce job can scan

the data of multiple tables, and the scan operation of each table can be con-

figured as either full scan or incremental scan. Using this input format, the

MapReduce job for IncreQuerying can access two types of input tables: one

is the cuboid table for which a full scan is performed, and the other is the

real-time table over which the incremental scan is used.

Map. Algorithm 5.4 describes the map function. The mappers filter the cell

and the real-time tuple based on the filtering condition. The cells and tuples

that will be aggregated are assigned the same partition key and shuffled to the

86

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

same reducer. The output value for the cell is the selected numeric value, while

the output value for the real-time tuple is the original value, which will be used

to re-compute the numeric value. The value is attached with a tag “Q”, “-”

or “+” to indicate whether it is the cell value of a cuboid, the old value of a

key/value pair, or the new value, respectively. This phase is similar to the map

phase of incrementally updating the data cube, except that a filtering process

is added, and the partition key could be different from the dimension attributes

of the data cube.

Reduce. The reduce function calculates the new value of each cell based on

the old cell value, the change of the cell and the aggregation function. The cell

key of the reduce function is different from that of Algorithm 5.3. For example,

for the TPC-H part table, to compute a rectangular subset of the cube (mfgr

= “Manufacturer#13”), the key of the reduce function is the combination of

the attributes (brand to container) after removing mfgr.

Cube

User

FullScan

Incremental

Scan v1
C1,S1,831

UID
101

nation,
C1,S1

C2,S1

age
2954

2440

v2
C1,S2,940

Mapper1

Mapper2
C2,S1,690101 C1,S1,540

C2,S2 3513

C1,S2 1945

Filter Condition

“=C1”

state
S1

income
2954,Q

S2 1945,Q

state
S1

income
831,+

S2 940,-
S1 540,-

Reducer1

Reducer2

state
S1

income
3245

S2 1015

Figure 5.3: Data Flow of IncreQuerying

Figure 5.3 shows the data flow of IncreQuerying alogrithm for an RTA query

on a two-dimensional cuboid (mfgr,brand). The query computes the summa-

tion of price for each brand produced by “M1”. To ensure the freshness of the

results, all the data of the queried table and the cuboid are scanned to process

the real-time query. Note that the row key of the stored data cuboid is the

combination of the dimension attributes. Therefore, if the filtering condition

87

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Table 5.1: Data Cube Operations
Operator Parameters

addFilter attribute name, function, value
addGroupBy group-by attribute
setAggregationFunc aggregation function name
setNumericAttribute numeric attribute name

Algorithm 5.5: Example Data Cube Query

input: DataCube cub
1 cub.addFilter(“mfgr”, “=”, “Manufacturer#1”);
2 cub.addFilter(“brand”, “=”, “Brand#13”);
3 cub.addGroupBy(“type”);
4 cub.setNumericAttribute(“retailprice”);
5 cub.setAggregateFunc(“sum”);
6 cub.setOutputTable(“resultTable”);
7 SubmitQuery(cub);

contains some attributes that could form a prefix of the row key, such as “Manu-

facturer#1” and “Brand#13”, the range scan function of HBase-R can be used

to avoid scanning the entire data cube. The min key for the range scan is “Man-

ufacturer#1,Brand#13”, and the max key is “Manufacturer#1,Brand#14”.

To relieve users from having to merge the real-time data and the historic

data cube, we define new data cube operators and automatically translate these

operators into a MapReduce job. The processing of the real-time data is trans-

parently encapsulated into the operators shown in Table 5.1. Algorithm 5.5

shows an example that computes the summation of the retailprice for all the

parts with “Brand#13” produced by “Manufacturer#1”, grouped by type.

5.4.2 Correctness of Query Results

When an aggregation query is submitted to the system, a timestamp TQ is

acquired for this query from the MetaStore. To guarantee correctness, if the

query needs to scan a table several times, the scan process on each node always

returns the data before time TQ. However, in a distributed system, although

clocks can be synchronized to a certain extent, there might still be some dif-

ference between the clocks of different nodes. If the current timestamp Tk on

a certain node k is smaller than TQ, the next scan process on this node would

88

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

return some data between Tk and TQ, which leads to an inconsistent state. To

avoid this inconsistency, if the timestamp TQ is larger than Tk, the scan process

is blocked for a while until TQ is equal to or smaller than Tk. Since clock syn-

chronization can achieve one millisecond accuracy in local area networks under

ideal conditions, the delay of the scan process can be ignored compared to the

processing time.

5.4.3 Cost Model

The IncreQuerying algorithm discussed above is not always better. Since the

IncrementalScan scans not only the real-time table, but also the data cube,

it can incur a higher cost. In addition, it shuffles two versions for each updated

key to MapReduce. When there are fewer OLTP transactions or the OLTP

transactions access a small range of keys, IncreQuerying algorithm is better

because IncrementalScan only transfers a small amount of data to the

mappers. An alternative implementation of real-time querying is similar to

re-computing the data cube: a FullScan operation is used to return one

version for each key/value pair regardless of whether or not it has been updated.

When the updates are uniformly distributed across all the keys, this baseline

implementation could be more efficient. To be able to select a more efficient

approach, we propose a cost model. Table 5.2 shows the parameters of the cost

model. The most important one is s(T), which is the percentage of the keys

that are updated after refreshing the data cube: s(T) = d(T)/|T |.

Cost Analysis of IncreQuerying Algorithm

First, we estimate the cost of the scan phase on the map side. The scan

phase consists of two parts: scanning the local data on each HBase-R node

(FullScan or adaptive IncrementalScan discussed in Section 5.2.2) and

shuffling these data to mappers. The FullScan scans all the storefiles of the

real-time table, while the adaptive IncrementalScan scans fewer storefiles

when d(T) is small and the memstore has enough number of keys. However,

whether the adaptive IncrementalScan is activated depends on the sta-

tus of each HBase-R node and cannot be easily estimated. Thus, we assume

that the cost of reading the local data on each HBase-R node are the same

for FullScan and IncrementalScan. The difference is in the number of

89

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Table 5.2: Parameters
Parameter Definition

|T | number of tuples in table T
d|T | number of distinct keys updated
f(T) size of the tuple in table T
s(T) percentage of the keys that are updated since the last

data cube refresh
|C| number of cells in the selected cuboid
d(C) size of dimension attributes of cuboid
n(C) size of numeric attribute of cuboid
|Q| number of tuples in the query result
s(Q) filtering selectivity of the query
d(Q) size of query result key
n(Q) size of query result value
shHBase cost ratio of shuffling from HBase-R
wHBase cost ratio of HBase-R writes
shMR cost ratio of shuffling in MapReduce
cL cost ratio of local I/Os
mT number of mappers for table T
mC number of mappers for the cuboid
B block size

tuples transferred from HBase-R to mappers. Thus, we base our analysis on

the network transfer cost. At first, the mappers scan both the real-time data

and the data cube. The cost of shuffling the real-time data and data cube to

mappers is:

Cscan−R = shHBase × 2|T | × f(T)× s(T)

while the cost of scanning the data cube is:

Cscan−C = shHBase × |C| × (d(C) + n(C))

After the scan phase, the real-time data and the data cube are sorted. The

size of the map output for these two types of data is:

SMO−R = 2× (s(Q)× |T | × s(T)/mT)× (d(Q) + n(Q))

SMO−C = (|C|/mC)× s(Q)× (d(Q) + n(Q))

90

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

and the cost of external sorting the map output is:

Csort−map−R =mT × 2cL×

((SMO−R × logB(SMO−R/(B + 1)))

Csort−map−C =mC × 2cL×

((SMO−C × logB(SMO−C/(B + 1)))

The data on all the mappers are shuffled to the reducers after the mapper

completes. The cost of shuffling is:

Cshuffling =shMR × s(Q)×

((2× |T | × s(T) + |C|)× (d(Q) + n(Q))

In the reduce phase, the cost of sort merging process is:

Creduce−merge =2cL × s(Q)×

(2× |T | × s(T) + |C|)× (d(Q) + n(Q))

and the cost of writing the data into HDFS is:

Creduce−write = wHBase × |Q| × (d(Q) + n(Q))

The cost of baseline algorithm can be analyzed in a similar way. Based

on the cost model discussed above, the more efficient approach is dynamically

selected when a real-time query is submitted.

5.5 Evaluation

In this section, we evaluate the R-Store on our in-house cluster of 144 nodes.

The cluster settings are shown in Table 5.3. Each node is equipped with Intel

X3430 2.4 GHz processor, 8 GB of memory, 2x500 GB SATA disks, each of

which is connected by a gigabit ethernet and running CentOS 5.5. The cluster

nodes are evenly placed onto three racks. We adopt the Twitter data for the

experiments. However, we only have one copy of the twitter data, while we need

online transactions that update the existing keys. Therefore, we write our own

91

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

Table 5.3: Cluster Settings
Parameter Value

CPU Intel X3430 2.4GHz
Memory 8GB
Disk 2x500 GB SATA disks
Default Node Number 100
Data per HBase Node 4.8G(original) + 2.4G(update)
Number of keys per HBaseNode 40 million

 0

 100

 200

 300

 400

 500

10 20 30 40 50 60 70

U
pd

at
es

 P
er

 S
ec

on
d

(K
)

Number of Nodes

Throughput

Figure 5.4: Throughput of Real-
Time Data Cube Maintenance

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

R
eC

om
p

U
pd

at
e

Pr
oc

es
si

ng
 ti

m
e

(s
)

Number of Updates
8M 400M 800M 1,200M 1,600M

Update
ReCompExe
ReCompScan

Figure 5.5: Performance of Data
Cube Refresh

scripts to simulate the updating of the User table in Figure 1.2. The scripts

can update the information of a UID based on either a uniform distribution

or Zipf distribution. In addition, for the scalability experiments, to ensure

that the size of data on each node are roughly the same, we need to adjust

the total number UIDs as the number of nodes increases. However, the User

table contains only 80 millions of users, which is not enough for the scalability

experiments. Thus, our data generation script takes a scale parameter as input

and generates 200, 000 × scale distinct users based on the original 80 millions

of users.

5.5.1 Performance of Maintaining Data Cube

In this experiment, we first measure the throughput of our real-time data cube

maintenance algorithm to ensure that it has sufficiently high processing capacity

to handle the update streams from HBase-R. As can be seen in Figure 5.4, when

HStreaming is configured with 10 nodes, the algorithm can process more than

100K updates per second, which is even higher than the throughput of HBase-R

92

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

with 40 nodes (the throughput of HBase-R will be discussed in Section 5.5.3).

We compare the two methods for refreshing the data cube: re-computation

and incremental update. We deploy the system on 100 nodes, with 40 nodes for

MapReduce, 40 nodes for HBase-R, and 20 nodes for HStreaming. The scale

factor of the Twitter data is set to 8000, so that there are 1,600,000,000 UIDs

for User table. On each HBase-R node, there are 4.8GB data. The data cube

is built after the User table is loaded into HBase-R.

Figure 5.5 shows the processing time of the two methods. The distribution

of updated keys follows a Zipf distribution. We adjust the factor of the Zipf

distribution so that about 1% keys are updated, while the number of updates

is increased from 8 million to 1,600 million. Since HBase-R does not remove

the previous version of the data, 0.024 GB to 4.8 GB of new data are inserted

into each HBase-R node. The processing time of re-computation has two parts:

the blue rectangle (ReCompScan) is the scan time of the real-time table, and

the yellow rectangle (ReCompExe) is the execution time of the MapReduce

job after the scan phase. As the number of updates increases, the data stored

on each HBase-R node increases as well. Thus, more data are scanned at the

HBase-R side for the re-computation approach, and the running time of the

scan phase for re-computation is increased over time. However, as illustrated

in Figure 5.5, the running time of the ReCompExe decreases as the number of

updates increases, which is counterintuitive. We expected that the execution

time of the MapReduce job should remain the same in different settings as they

process the same number of key/value pairs. The reason for the decrease in

ReCompExe is that ReCompScan and ReCompExe are pipelined. The more

time ReCompScan takes, the more these two phases overlap, reducing the time

ReCompScan takes.

In contrast, the processing time of incremental update consists of only one

part (the red rectangle): the time it takes to write data cube into HBase-R.

This is because our real-time data cube maintenance algorithm is fast enough

to update the real-time data cube with the data streams from HBase-R. Thus

the latency of periodically refreshing the data cube in HBase-R equals to the

time of writing the real-time data cube into HBase-R. This time is related to

the the size of the data cube and does not change as the number of updates

increases.

We also evaluate the scalability of R-Store. In this experiment, the number

93

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

50 75 100 125 145

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of Nodes

ReComputation
IncrementalUpdate

Figure 5.6: Scalability

of nodes and the data size increase with the same ratio. The percentage of up-

dates is set to 1% for different scalability settings. As can be seen in Figure 5.6,

the running time of both re-computation (the brown line) and incremental up-

date (blue line) do not change much as the number of nodes increase, which

demonstrates the scalability of R-Store.

5.5.2 Performance of Real-Time Querying

In this experiment, we investigate the performance of real-time querying. First,

we compare the IncreQuerying algorithm, which optimizes the real-time query

using the data cube, with the Baseline algorithm implemented with the FullScan

operation. The cluster settings are the same as those of Figure 5.5, except that

we fix the number of updates to 8,000 million and vary the percentage of the

keys updated.

Figure 5.7 shows the processing time of both algorithms for a typical data

cube slice query:

SELECT avg(income) FROM users

WHERE country = “USA”

GROUPBY state, gender, age

The processing time of the Baseline algorithm consists of two parts: the

black rectangle (ReCompScan) is the time to scan the real-time table, and

the yellow rectangle (ReCompExe) is the execution time of the MapReduce job

after the scan phase. In contrast, the processing time of IncreQuerying consists

94

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

 0

 500

 1,000

 1,500

 2,000

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

Pr
oc

es
si

ng
 ti

m
e

(s
)

Percentage of keys being updated
1% 5% 10% 15% 20% 25%

IncreQueryExe
IncreQueryScan
CubeScan
BaselineExe
BaselineScan

Figure 5.7: Data Cube Slice Query
on Twitter Data

 0

 1,000

 2,000

 3,000

 4,000

 5,000

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

B
as

el
in

e
In

cr
eQ

ue
ry

Pr
oc

es
si

ng
 ti

m
e

(s
)

Percentage of keys being updated
1% 5% 10% 15% 20% 25%

IncreQueryExe
IncreQueryScan
CubeScan
BaselineExe
BaselineScan

Figure 5.8: Data Cube Slice Query
on TPCH data

of three parts: the red rectangle (CubeScan) is the time to scan the data cube,

the blue rectangle (UpdateScan) is the time to scan the part table in HBase-R,

and the grey rectangle (UpdateExe) is the execution time of the MapReduce

job after the scan phase.

When only a small range of keys are updated, IncreQuerying performs much

better than Baseline. It outperforms the Baseline approach for two reasons: (1)

by using adaptive incremental scan, it scans fewer data in HBase-R and shuffles

fewer data to MapReduce; (2) its MapReduce job processes fewer data than that

of re-computation. However, as the percentage of updated keys increases, more

data are shuffled from HBase-R to MapReduce. Thus, both the scan time and

the execution time increase. In contrast, for Baseline, since the FullScan

always shuffles one version for each key to MapReduce, the amount of data

shuffled from HBase-R is constant. As a result, the running time of Baseline

is almost constant. Due to the existence of the filtering condition on attribute

mft, most tuples of the table are filtered, and fewer data are sorted and shuffled

during the execution of the MapReduce job. As a result, the difference between

the execution times is not so significant. In general, IncreQuerying algorithm

outperforms Baseline algorithm when the percentage of keys being updated is

low.

In addition to the above query, we also evaluate the IncreQuerying algorithm

on TPCH data, a standard benchmark for data warehousing. Figure 5.8 shows

95

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

 0

 400

 800

 1200

 1600

 2000

1% 5% 10% 15% 20% 25%
 0

 3

 6

 9

 12

 15

Pr
oc

es
si

ng
 T

im
e

(s
)

I/
O

s
(X

10
11

)

Percentage of Keys Updated

CubeScan
IncreQueryScan
IncreQueryExe
I/Os estimated for IncreQuery
I/Os estimated for Baseline

Figure 5.9: Accuracy of Cost Model

the result of a data cube slice query with the same experimental settings.

SELECT sum(prices) FROM part

WHERE mft = “Manufacture#1”

GROUPBY brand, type, size, container

Since there are more dimension attributes in the table lineitem for the TPCH-

Q1, more intermediate keys will be generated during the execution of the query.

Thus, the TPCH-Q1 query runs slower than the data cube slice query on twitter

data.

To select the better querying method among the two, we use the cost model

(Section 5.4.3) to estimate the number of I/Os. Figure 5.9 shows the running

time of IncreQuerying, and the I/Os estimated for both Baseline and Incre-

Querying algorithms. The y-axis on the left is the processing time of the query,

while the y-axis on the right is the estimated I/Os. The estimated number of

I/Os for IncreQuerying (the blue line) increases linearly with almost the same

slope (the histogram) as the processing time of the query, while the estimated

number of I/Os for the Baseline (the brown line) is constant, which is around

2.52×1011. This result hence verifies the accuracy of our cost model.

Compared to querying only the data cube, RTA queries require two ad-

ditional steps, which incur additional cost: scanning the real-time data from

HBase-R, and merging the real-time data with the data cube on demand in

MapReduce. On each HBase-R node, the key/values are stored in storefile

format. Though only one or two versions of the same key are returned to

MapReduce, HBase-R has to scan all the storefiles of the part table.

96

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 10 20 30 40 50 60 70 80 90 100

Pr
oc

es
si

ng
 T

im
e

(s
)

Freshness Ratio (%)

CubeScan
IncreQueryScan
IncreQueryExe

Figure 5.10: Performance vs.
Freshness

 0

 2000

 4000

 6000

 8000

1 2 3 4 5 6 7

Pr
oc

es
si

ng
 T

im
e

(s
)

Time since the Creation of Data Cube (day)

Baseline
IncreQuerying
Baseline-NC
IncreQuerying-NC

Figure 5.11: Effectiveness of Com-
paction

Since the memstore is materialized to HDFS when it is full, these files

are sorted by time. Thus, instead of scanning all the storefiles and memstore

between TDC and TQ, only the storefiles between TDC and a user specified

timestamp Ti (Ti < TQ) are scanned. The value of Ti decides the freshness of

the result. There is a tradeoff between the performance of the query and the

freshness of the result: the smaller Ti is, the fewer real-time data are scanned.

Figure 5.10 shows the query processing time with different freshness ratios,

which is defined as the percentage of the real-time data we have to scan for the

query. In this experiment, |User| = 1600 million, and 800 million updates on

1% distinct keys are submitted to HBase-R. When the freshness ratio is 0, the

input of the query is only the data cube. Thus, the cost of scanning the real-

time data is 0. When the freshness ratio increases to 10%, the cost of scanning

the real-time data is around 1500 seconds because the cost of scanning the real-

time table dominates the aggregation query. As the freshness ratio increases,

the running time of IncreQuerying method increases slightly, which is due to

two reasons: (1) the data before TDC still need to be scanned; and (2) the

amount of data shuffled to mappers are roughly the same with different ratios.

Figure 5.11 depicts the effectiveness of our compaction scheme. In this

experiment, we measure the processing time of the data cube slice query when

the compaction scheme is applied (Baseline and IncreQuerying) and when it

is not (Baseline-NC and IncreQuerying-NC). We submit 800 million updates

to the server each day, and the percentage of keys updated is fixed to 1%. The

data cube is refreshed at the beginning of each day, and the aggregation query

is submitted to the server at the end of the day. Since the data are compacted

after the data cube refresh, the amount of data stored in the real-time table

97

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70

U
pd

at
es

 P
er

 S
ec

on
d

(K
)

Number of Nodes

Updates only
Updates + OLAP

Figure 5.12: Throughput

 0

 2

 4

 6

 8

 10

10 20 30 40 50 60 70

R
es

po
ns

e
T

im
e

fo
r

10
00

 U
pd

at
es

(s
)

Number of Nodes

Updates only
Updates + OLAP

Figure 5.13: Latency

are almost the same at the same time of each day. The processing time of

Baseline and IncreQuerying are thus almost constant. In contrast, when the

compaction scheme is turned off, HBase-R stores much more data, and the

cost of locally scanning these data becomes larger than the cost of shuffling

the data to MapReduce. As a result, the processing time of Baseline-NC and

IncreQuerying-NC increases over time.

5.5.3 Performance of OLTP

In this experiment, we investigate the performance of OLTP queries when ag-

gregation queries are running. The workload is update-only, and the keys being

updated are uniformly distributed. We launch ten clients to concurrently sub-

mit the updates when the system is deployed on 100 nodes. Each client starts

ten threads, each of which submits one million updates (100 updates in batch).

Another client is launched to submit the data cube slice query. That is, one ag-

gregation query and approximately 50,000 updates are concurrently processed

in R-Store. The system reaches its maximum usage in this setting based on

our observation. When the system is deployed on other number of nodes, the

number of clients submitting updates is adjusted accordingly.

Figure 5.12 shows the throughput of the system. The throughput increases

as the number of nodes increases, which demonstrates the scalability of the sys-

tem. However, when aggregation queries are running, the update performance

is lower than running only OLTP queries. This result is expected, because the

aggregation queries compete for resources with the OLTP queries. We also

evaluate the latency of updates when the system is approximately fully used.

As shown in Figure 5.13, the aggregated response time for 1000 updates are

98

CHAPTER 5. R-STORE: A SCALABLE DISTRIBUTED SYSTEM FOR
SUPPORTING REAL-TIME ANALYTICS

similar with respect to varying scales.

5.6 Summary

MapReduce is a parallel execution framework, which has been widely adopted

due to its scalability and suitability in a large scale distributed environment.

However, most existing works only focus on optimizing the aggregation queries

and assume that the data scanned by MapReduce are unchanged during the

execution of a MapReduce job. In microblogging systems, the real-time results

from the most recently updated data are more meaningful for decision mak-

ing. In this chapter, we propose R-Store for supporting real-time aggregating

on MapReduce. R-Store leverages stable technology (HBase and HStreaming)

and extends them to achieve high performance and scalability. The storage sys-

tem of R-Store adopts multi-version concurrency control to support real-time

aggregating. To reduce the storage requirement, it periodically materializes

the real-time data into a data cube and compacts the historical versions into

one version. During query processing, the proposed adaptive incremental scan

operation shuffles the real-time data to MapReduce efficiently. The data cube

and the newly updated data are combined in MapReduce to return the real-

time results. In addition, based on our proposed cost model, the more efficient

query processing method is selected. To evaluate the performance of R-Store,

we have conducted extensive experimental study using the TPC-H data and

the tweet data. The experimental results show that our system can support

real-time aggregation queries much more efficiently than the baseline methods.

Though the performance of OLTP degrades slightly due to the competition

for resources with the aggregation queries, the response time and throughput

remain good and acceptable.

This work is published as a full paper in the IEEE International Conference

on Data Engineering (ICDE) 2014 [73].

99

CHAPTER 6

TI: An Efficient Indexing System for

Real-Time Search on Tweets

In traditional search engines, the inverted index is typically reconstructed on a

periodical basis so that search queries can be answered efficiently. The freshness

of the search results thus relies on the frequency of index construction. However,

Such an indexing method naturally does not support real-time search. To make

a blog or tweet searchable as soon as it is published, the index must be updated

in real time.

In this chapter, we propose TI (Tweet Index), a distributed adaptive index-

ing system for supporting real-time search. The basic idea of TI ’s index scheme

is to only index tweets that may appear in the search result in real-time. The

other tweets are indexed in batch. This strategy significantly reduces the in-

dexing cost and yet still provides the search results with high quality. The pro-

cessing of the real-time indexing requests is distributed to multiple TI slaves in

order to handle the increasing data volume in microbloging systems. We also

design a new ranking scheme that considers relationships between the users

and tweets. The experimental study using a real Twitter dataset confirms the

efficiency of TI.

100

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

6.1 Introduction

The increasing popularity of social networking systems changes the form of in-

formation sharing. Instead of issuing a query to a search engine, the users log

into their social networking accounts and retrieve news, URLs and comments

shared by their friends. This is in part caused by the failure of conventional

search engines in providing real-time search service for social networking sys-

tems. For example, it is difficult to search a new blog or tweet uploaded a

few minutes ago using a conventional search engine. The problem is further

amplified in the microblogging systems such as Twitter due to unprecedented

amount of tweets or microblogs being posted each day. For example, Tumblr

[15] estimated that there were more than 2 million posts and fifteen thousands

new users every day [6]; and based on a latest report from Twitter [8], it handled

more than 50 million tweets per day.

Providing real-time search service is very challenging in large-scale mi-

croblogging systems, in which thousands of new tweets are published per second.

To search the newly uploaded tweets, the data need to be indexed in real time,

and the response time of the search query need not be affected much. The ob-

jectives are therefore contradictory since maintenance of up-to-date index will

cause severe contention for locks on the index pages. Another problem of real-

time search is the lack of effective ranking functions. Since the current Twitter

search engine sorts the results based on time, and therefore, the latest tweets

have the higher rankings. Without proper ranking functions, the search results

are meaningless. However, defining a ranking function for real-time search is

not trivial, and the function must have the following two desiderata:

1. The ranking function must consider both the timestamp of the data and

the similarity between the data and the query. As an example, for a given

query submitted to Twitter, we do not want to get tweets posted many

weeks ago, even though they may contain the keywords of the query. On

the other hand, newer tweets with less information are not preferred ei-

ther. Hence, the ranking function is composed of two independent factors,

time and similarity.

2. The ranking function should be cost-efficient. As we want to support real-

time search using a ranking function partially based on time, we have to

101

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

compute the rankings during query time. Thus, the computation of the

ranking function should not incur high overhead.

In this chapter, we propose TI (Tweet Index), a novel indexing system for

supporting real-time search in microblogging systems such as Twitter. TI is

designed based on the observation that most tweets will not appear in the search

results. Therefore, we can significantly reduce the indexing cost by delaying

indexing less useful tweets. In essence, TI classifies the tweets into two types,

distinguished tweets and noisy tweets. TI has of two indexing schemes: a real-

time indexing scheme for distinguished tweets and a background batch indexing

scheme for noisy tweets. Given a new tweet, TI analyzes its contents and

determines its type. If it is a distinguished tweet, we will index it immediately.

Otherwise, it is grouped with other noisy tweets and periodically, the batch

indexing scheme is invoked to index all the noisy tweets in one go. The design

principle of TI is similar in spirit to the partial indexing scheme [96, 93], and

it is also related to the view selection problem [20].

In TI, the ranking function plays the major role in deciding whether the

tweets are distinguished tweets or noisy tweets and in retrieving meaningful

answers. We therefore propose a new ranking function by combining the user

graph and tweet graph. In social networks, each user can be considered as

a node and different nodes are connected together via the friend links. The

user graph denotes the relationship among the users. Naturally, a popular user

will have more friends and his/her blogs/tweets also attract wider readership.

Therefore, the PageRank value for the user graph is calculated to compute the

ranking for each user. Besides the user graph, the tweets also form a graph, as

some tweets are exchanges between people while some tweets are reply to the

other tweets. We group tweets into topics based on their relationships, and we

measure the popularity of topic based on its statistics. Finally, our proposed

ranking function is composed of the user’s PageRank, the popularity of topics,

the TF (Term Frequency) and the timestamp. The IDF (Inverse Document

Frequency) is not used in TI, since the length of a microblog is fairly small and

often capped at certain length (e.g. in Twitter, it is capped at 140 characters).

We evaluate TI by using a real Twitter dataset collected for a user group

within the last three years. The experiments examine the performance of our

indexing scheme and the effect on the quality of query results. We also com-

pare our ranking function with the other relevant ranking functions such as

102

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

Palanteer [75] and Twitter’s default ranking method.

In summary, the contributions of this paper are as follows:

1. We propose TI, a distributed indexing system for supporting real-time

search.

2. TI adopts an adaptive indexing scheme to reduce indexing cost. Only the

tweets that have high ranking scores are indexed immediately into the

real-time index. Others are indexed in the batch mode.

3. The ranking scheme of TI considers the user-relationships, the popular

topics, the similarity between tweets and queries and the timestamp.

4. The experimental results on real twitter data show the efficiency and

effectiveness of TI.

The rest of the chapter is organized as follows. In Section 6.2, we present

the earlier works in social network search and the corresponding database tech-

niques. In Section 6.3, we introduce the overview architecture of TI. The details

of TI ’s indexing scheme and ranking function are discussed in Section 6.4 and

Section 6.5, respectively. We evaluate the performance of the proposed schemes

in Section 6.6. And the chapter is concluded in Section 6.7.

6.2 System Overview

6.2.1 Social Graphs

In order to design an efficient search mechanism for microblogging systems, we

first examine the characteristics of social networks.

In social networks, users are connected together by friend links (in Twitter,

it’s following/follower link). Typically, a popular and famous user will have

more friends than an ordinary or low-profile user. Here, we define a user graph

Gu = (U,E), where U is set of users in the system and E is the friend links

between them.

Apart from the user graph, we have another graph that is induced by the

relationship of microblogs or tweets. Figure 6.1 shows a tree structure of tweets,

where each node denotes a tweet and the directed edge indicates that one tweet

replies to or retweets another tweet. For example, tweet B replies to tweet A

103

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

A

B C D

E F H

G

JI

0

0-0 0-1 0-2

0-0-0 0-0-1 0-1-0

0-2-0

0-1-0-0 0-1-0-1

Figure 6.1: Tree Structure of Tweets

and thus A is the parent node of B in the tree. The tweet that does not reply

to others becomes the root of the tree. In this paper, we use a tweet tree to

represent a discussion topic. When searching, tweets in the same topic can

be grouped together and returned. We do not explicitly maintain the tweet

tree, as it may incur too much overhead. Instead, we assign each tweet a tree

encoding ID, which is similar to the Dewey Order ID [100] in XML search.

Given tweet ti, we sort its child nodes by their timestamps (the time that the

tweet is inserted into the system). Suppose the encoding of ti is “x” and tweet

tj is ti’s kth child, tj’s encoding is “x”+“-”+“j”, where + indicates the string

concatenation. With the help of tree encoding, we can easily reconstruct the

tree structure.

6.2.2 Design of the TI

Figure 6.2 shows the architecture of TI, our distributed indexing system for

tweets. TI adopts a master-slave architecture. The TI master node is respon-

sible for partitioning the user graph based on the number of slave nodes. Each

slave node has two processes: the index processor is responsible for indexing

the incoming tweets for the users in a sub-graph, while the query processor is

responsible for processing the search queries.

When a new tweet is published by a user, it is first stored in our distributed

storage system, R-Store. The tweet is then shuffled to an index processor on

an arbitrary slave node in TI for indexing. If the publisher of the tweet does

not belong to the sub-graph on that slave, the tweet is shuffled to the specific

104

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

TI

RStore

TI Slave

Distributed Lucene

Query

Processor

Index

Processor

TI Slave

TI Master

Inverted Index

Twitter Data

Tweets

Search

Query
Graph

Partitioner

In-memory Structures

Keyword Threshold

Candidate Topic List

Active Trees (Topics)

UID2TISlave Cache

TI Slave

TI Slave

Twitter Log

Figure 6.2: Architecture of TI

slave by looking up the mappings between the user id and the slave id. We

cache the mapping for the active users who frequently publish new tweets in

memory, and thus the slave id of a specific user can be obtained quickly. After

the tweet is sent to the corresponding TI slave, the index processor inside that

TI slave determines whether the tweet should be indexed or not. In general,

the following data are maintained in order to support the real-time indexing in

TI.

1. Distributed Inverted Index. We maintain a distributed inverted index for

the tweet data, which is partitioned by the keywords of tweet data. Given

a keyword, the inverted index returns a tweet list, T . T consists of a set of

tweet IDs, and tweets in T are sorted by their timestamps (the time when

a tweet is inserted into the system). Figure 6.3 shows the index structure

of the inverted index. For each record in the index, we keep its tweet

ID, TID (inherited from the status ID provided by Twitter), to identify

different tweets. Then, for the ranking purpose, we keep the U-PageRank

of a tweet (to be defined in Section 6.5), the TF (Term Frequency) value,

the tree ID and the timestamp of the tweet. Tree ID is the TID of the

root node in a tweet tree. Records of the same keyword are maintained

as a list and the latest record is inserted into the head of the list. As a

result, the records are sorted by their timestamps in the list.

2. Tweet MetaData. To facilitate our ranking scheme, we also keep the meta-

105

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

TID U-PageRank TF timetree

britney: 382035 0.0012 1 682026 2010/3/2 20:04:32

601230 0.00068 1 501230 2010/1/10 07:11:51

213950 0.0035 2 201465 2009/12/8 11:25:01

"...

Figure 6.3: Structure of Inverted Index

Table 6.1: Example of Tweet Table
TID RID tree time count coding UID pointer

26476 76732 25742 ... 0 0-0-0 ... null
57380 76732 25742 ... 0 0-0-1 ... null
26980 null 26980 ... 1 0 ... 1022
47806 null 47806 ... 0 0 ... 1034

data of a tweet. Specifically, we define a tweet table as shown in Table 6.1.

Based on a tweet’s content, we know whether the tweet replies/re-tweets

another tweet. We maintain the ID of the replied tweet as RID, and it

can be used to retrieve the parent tweet. If a tweet belongs to an existing

tree, we keep the root ID of the tree, which can be obtained from its

parent tweet. Otherwise, we create a single node tree by using the tweet

itself as the root. We also keep the timestamp of each tweet and the

count attribute denotes the number of tweets that reply to this tweet. To

enable efficient reconstruction of the tree, the encoding of the tree node

is stored with each tweet. The author ID UID of a tweet is defined as

the foreign key in the tweet table. Finally, if a tweet is not indexed and

written back to the log file, we keep a pointer to its offset in the log file.

Besides the tweet table, TI keeps a log file for recording the unindexed

tweets. TI selectively indexes the inserted tweets, the distinguished

tweets. The noisy tweets are appended to the log file and periodically,

a background batch indexing process will scan the log file to index the

noisy tweets.

3. In-Memory Structures. To facilitate the fast index maintenance and

search query processing, we keep some useful information in the memory,

106

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

Distinguished

Tweet?

Query Set

Tweet Stream

Build Index

Write into Log

Scheduler

perform batch

indexing

tweets

yes

no

Index Processor

Tweet Classifier

Figure 6.4: Data Flow of Index Processor

such as keyword threshold, candidate topic list and active trees (topics).

Keyword threshold records the statistics of recent popular queries. The

candidate topic list maintains the information about recent topics, while

the active trees (topics) represents the hotly discussed topics. We assume

that the users only reply or retweet to the people he follows, and thus

in each TI slave, we only store the topics discussed by the users of the

sub-graph handled by that slave.

Based on above information, we can quickly classify a tweet as a distin-

guished or noisy tweet and adopt different indexing scheme accordingly.

A search request is submitted to an arbitrary query processor in TI. The

query processor first retrieves the TID lists for the keywords from the dis-

tributed inverted index. It then obtains the necessary information (e.g., the

active trees that contains the TIDs) from other slaves, and re-ranks the TIDs

based on these infomation. At last, it retrieves the tweets for the top-k TIDs

and returns the results to the user.

6.3 Content-based Indexing Scheme

The basic idea of the TI ’s indexing scheme is indexing the tweets based on their

contents and their rankings with respect to past queries. Intuitively, it streams

a new tweet into an existing set of popular queries, and based on its ranking,

determines if it should be indexed in real-time or in batch periodically. Figure

6.4 shows the data flow in TI ’s index processor. In this section, we present

107

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

how we classify the tweets and apply the adaptive tweet indexing strategy. The

details of ranking function F will be discussed in the next section.

6.3.1 Tweet Classification

The first challenge in the design of TI’s indexing strategy is on the measure-

ment of the importance of a tweet. Limited by its size, a tweet itself does not

provide too much information. Therefore, we apply a query-based classification

approach. We assume that users are only interested in the top-K results. This

assumption can easily be verified by the statistics of search engines [57] where

62% of the users click a result in the first page and more than 90% of the users

do not browse beyond the third page of the results.

Formally, the problem can be stated as follows.

Definition Tweet Classification

Given a tweet t and a user’s query set Q, t is said to be a distinguished tweet,

if ∃qi ∈ Q and t is a top-K result for qi based on the ranking function F .

Otherwise, t is a noisy tweet.

To answer top-K queries in query set Q, we just need to index the distinguished

tweets, while the noisy tweets can be indexed periodically. In this way, we avoid

high real-time update costs.

Obviously, for a different query set Q, the classification result will be dif-

ferent. Ideally, when all possible queries are considered, the classification will

provide an accurate result for every query. However, the maintenance cost may

neutralize the benefit of partial indexing. Fortunately, it has been confirmed

that, like any social phenomenon, the search engine queries[22] and social net-

working queries [99] do in fact follow the well known Zipf’s distribution. In

other words, the top 20% queries represent 80% of the user requests. There-

fore, only popular queries are maintained in Q to reduce maintenance cost. In

particular, suppose the nth query appears with a probability of

p(n) =
β

nα
(6.1)

where α and β are parameters that describe the Zipf’s distribution. α de-

termines how skew the distribution is. The larger α is, the more skew the

distribution is. In many cases, α is set to a value close to 1. β is a constant

108

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

value, which is used to normalize the zipf’s distribution in order to ensure that

summation of p(n) equals to 1. Let s be the number of submitted queries per

second. The expected time interval of the nth query is

t(n) =
1

p(n)s
(6.2)

That is, after t(n) seconds, the nth query will be submitted to the system with

high probability. Suppose we perform our batch indexing every t′ seconds. We

will keep the nth query in Q, only if t(n) < t′. The intuition of this strategy is

that for infrequent queries, we do not need to update the index frequently.

To estimate the query distribution, we keep a query log in disks. When a

new unseen query arrives at the system, we assume it is an infrequent query and

do not insert it into Q. Q is updated at the next batch indexing process. We

search the query log to build a query histogram and extrapolate the distribution

using Zipf’s law. Based on Equation 6.2, popular queries are inserted into Q.

After having defined the classification problem, a naive method can be de-

signed directly from the definition. Suppose the tweet set is T . Given a query

qi ∈ Q, we use F(qi, tj) to denote the rank of a tweet tj ∈ T . To simplify the

discussion, we define dominant set as:

Definition Dominant Set

Given a tweet t, a query q and a tweet set T , t’s dominant set in relation to q

is defined as the tweets that have higher ranks than t, namely

ds(q, t) = {ti|ti ∈ T ∧ F(q, ti) > F(q, t)}

A straight forward approach would compute t’s dominant set for all queries

in Q. Algorithm 6.1 illustrates the idea. If there exists a query qi satisfying

|ds(qi, t)| < K, we classify t as a distinguished tweet (line 3-4). Otherwise, it is

a noisy tweet. Algorithm 6.1 suffers from two performance problems. First, to

compute the dominant set, we need a full scan of the tweet set. Second, given a

tweet t, we test it against every query in Q. To address the above two problems,

two optimization approaches are proposed respectively. The first optimization

approach is based on the Zipf’s distribution of the natural language and our

theoretical analysis, which will be shown in the rest of this section. The second

one is a typical space-for-time optimization: we reduce the time of discovering

109

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

the candidate query for a tweet by maintaining an in-memory matrix index.

Algorithm 6.1: NaiveClassifier(Tweet t, QuerySet Q)

1 for ∀qi ∈ Q do
2 ds(qi, t)=getDominantSet(Q, t);
3 if ds(qi, t).size< K then
4 return distinguished tweet;

5 return noisy tweet;

Optimization 1: Top-K Threshold

The first optimization is to employ the query statistics to speed up the dominant

set computation. Figure 6.5 shows the statistics of top-K query results in our

Twitter dataset. The X-axis denotes the date of the ranking and the Y-axis is

the ranking score computed by our ranking function F . The naive approach is

invoked to compute the scores of pair (ti, qj), where ti denotes an existing tweet

by that specific day and qj is a query in Q. In Figure 6.5(a) and 6.5(b), we

present the results for the query “coupon” and “database” respectively. Other

queries share the same property. In particular, in the figures, we compare

the scores of the topmost tweet, the top 10th tweet and the 100th tweet (our

threshold). We find that although the score of the topmost tweet varies a lot

with time, the scores of the top 10th and 100th tweet are quite stable. This

is because in natural language, the words follow Zipf’s distribution [74], where

each word tends to appear in the text with a certain frequency. Given a query,

the expected number of hot tweets remains stable over time. We have the

following theorem.

Theorem 6.1. Suppose each keyword appears in the tweets with a fixed prob-

ability and the tweets are inserted into the system with a stable rate. If query

qi has m results (m >> K), the variance of top-K score for qi decreases for a

larger K.

Proof. Suppose we have n tweets and there are m tweets (m > K) containing

the search keyword. We try to estimate the Kth score of m resultant tweets,

assuming they are randomly distributed in the tweet dataset. We sort the

tweets by their ranks and have a list {t1, t2, ..., tn}. The Kth tweet appears in

110

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

 0

 50

 100

 150

 200

 250

10/1 10/2 10/3 10/4 10/5

sc
or

e

day

1thScore
10thScore

100thScore

(a) Query “Coupon”

 0

 20

 40

 60

 80

 100

10/1 10/2 10/3 10/4 10/5

sc
or

e

day

1thScore
10thScore

100thScore

(b) Query “Database”

Figure 6.5: Statistics of Keyword Ranking

the position x with probability of

p(x) =

(
x−1
K−1

)(
n−x
m−K

)(
n
k

)
And the expectation of top-K score is

E(K) =
n∑
i=k

p(i)score(i)

where score(i) denotes the score of the ith tweet. The problem can be trans-

formed into an order statistic problem. Based on the estimated bounds in [25],

when m is sufficiently large, we get a more closer bound for E(K) for a larger

K.

The above observation motivates our classification scheme. We keep a top-

K threshold for each query q ∈ Q, which is called threshold table Tθ. Given a

query q, Tθ(q) returns the threshold for the top K tweets.

Lemma 6.1. For a tweet t, if F(qi, t) < Tθ(qi), the size of t’s dominant set is

larger than K at the moment.

Proof. If F(qi, t) < Tθ(qi), t’s score is smaller than current Kth result. There-

fore, more than K tweets have higher ranks than t.

Theorem 6.2. For a tweet t, if F(qi, t) < Tθ(qi) for all qi ∈ Q and F(qi, t)

decreases with time, t is a noisy tweet.

111

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

2

1

3

1

1

...

0

1

1

0

0

1

0

1

0

1

1

0

1

1

0

...

...

...

...

...

0

0

0

0

0

...

Cq k1 k2 k3 ... kn

Bk

Figure 6.6: Matrix Index

Proof. If F(qi, t) decreases with time, the tweet will never be a top-K result for

a query. Thus, it is a noisy tweet.

In Theorem 6.2, we require F(qi, t) to be monotonically decreasing with

time. In fact, in our ranking function, to catch the hotly discussed topics and

discussion trend, F(qi, t) may increase for a small number of hot tweets. We

shall discuss how to handle such cases in Section 5.2.

Tθ can be constructed and updated by Algorithm 6.2. Initially, Tθ’s values

are set to 0 for all queries. After a query is processed, we update its threshold

based on the query result.

Algorithm 6.2: UpdateThreshold(Tθ, Query q)

1 Result R= getTopResult(K, q);
2 if R.size= K then
3 Score s = R[K].score;
4 Tθ(q) = s;

5 else
6 Tθ(q) = 0;

Optimization 2: Matrix Index for Queries

As analyzed in optimization 1, instead of computing dominant set for every

query, we maintain a top-K threshold Tθ for each of the query. However, for

each incoming tweet, we need to compare it with every query in order to find

112

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

the queries that have common keywords with this tweet, which is still a time-

consuming step. Therefore, our second optimization is to avoid unnecessary

comparison between the tweets and the queries. We consider both queries and

tweets as a bag of words. To simplify our discussion, we define the candidate

query set as follows:

Definition Candidate Query

For a tweet t = {k1, k2, ..., kn} and a query q = {k′1, k′2, ..., k′m}, q is a candidate

query for t, i.f.f.

∀ki ∈ t→ ∃k′j ∈ q ∧ k′j = ki

Instead of checking every query for an incoming tweet t, we just need to compute

F(qi, t) for t’s candidate queries. To facilitate the discovery of candidate queries,

we propose a matrix index.

Figure 6.6 illustrates the index structure. Bk is a m × n matrix index (m

is the size of Q and n is the number of unique keywords in Q) and Cq is the

counter vector for queries. Each row in Bk refers to a query and each column

in Bk denotes a keyword. If the jth keyword appears in the ith query, we set

Bk[i][j] to 1. Otherwise, it is set to 0. Cq keeps the number of keywords in a

query. The ith query has Cq[i] keywords. Given a tweet t, we define its vector

as Vt = (v1, v2, ..., vn), where vi = 1 if t contains the ith keyword. Otherwise,

vi = 0. To find all candidate queries, we compute an evaluation vector as

Ve = Vt ×BT
k (6.3)

where BT
k is the transpose of Bk. If Ve[i] = Cq[i], then the ith query is a

candidate query for tweet t. By applying the matrix index, we transform the

discovery process of candidate queries into matrix computation. Because Bk is

a sparse matrix, Equation 6.3 can be computed efficiently, which is reflected in

our optimized classification algorithm.

Optimized Classifier

Algorithm 6.3 outlines our tweet classification algorithm. It is an evolution

from Algorithm 6.1 by combining the two optimization approaches discussed

previously. Given a tweet t, we first create a temporary counter for recording

the queries that have been processed (line 1). Then we scan each column of

113

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

Algorithm 6.3: Classifier(Tweet t, QuerySet Q)

1 Array count=0;
2 Vt=getTweetVector(t);
3 for j = 0 to n do
4 if Vt[j] == 1 then
5 for i=0 to m do
6 if B[i][j] == 1 then
7 count(j)++;
8 if count[j] == Cq(j) then
9 if t’s ranking is larger than Tθ(j) then

10 return distinguished tweet;

11 return noisy tweet;

matrix index (line 3-10). Once we detect the keyword is contained in a query

(line 6), we will increase the count of the query in the temporary counter. If

the counter indicates that all keywords of the queries have been seen (line 8),

we will test the tweet’s score against the query’s threshold (line 8). If larger

than the threshold, t is classified as the distinguished tweet.

In Algorithm 6.3, we use a temporary counter to simplify the matrix com-

putation. As an example, in Figure 6.6, suppose a tweet t contains k1, k2 and

k3 as the keywords. We will start scanning the columns of the three keywords.

By scanning the first column, we know that query q1 and q2 contain k1. And

after comparing with the value in counter Cq, we know q1 is a candidate query,

as it only has 1 keyword. Hence, we can compare its threshold with the score

of the tweet.

We now discuss the complexity analysis of the above algorithm. Suppose

we have m queries and n keywords. We need m bytes for the counter vector

Cq and nm
8

bytes for the matrix index Bk. The top-K threshold is an array of

floats. Therefore, its takes 4m bytes. Algorithm 6.3 incurs a storage overhead

of

S = 5m+
nm

8
(6.4)

As an example, when m = 100000 and n = 5000, we need approximately 60

MB memory. Suppose the average number of tweet’s keywords is x, Algorithm

6.3 scans x columns of Bk. During scanning, instead of testing each bit one by

one, we test the whole word. In a W-bit system, the time complexity is xm
W

.

114

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

To further optimize the classification algorithm, we adopt compression tech-

nique. For each column in Bk, most bits are 0, as not every query contains the

keyword. Therefore, we apply WAH (Word Aligned Hybrid) encoding [106]

to compress the index. On average, WAH encoding can reduce the index size

by 90%, which significantly reduces the memory overhead of the classification

algorithm. We shall further discuss this in the experimental study section.

6.3.2 Implementation of Indexes

For each incoming tweet, we will classify it as a distinguished or noisy tweet,

and insert into the index or log file for batch update. We shall present both

indexing schemes in this subsection.

Real-Time Indexing

A new tweet that is identified as a distinguished tweet is indexed immediately.

The indexing process entails the following steps,

1. If the tweet belongs to an existing tweet tree, we retrieve its parent tweet

(1 atomic operation in HBase) to get the root ID and generate the cor-

responding encoding. Then, we update the count number in the parent

tweet.

2. The encoding column of the tweet store in HBase is updated correspond-

ingly.

3. Lastly, the tweet is inserted into the inverted index, which incurs a few

I/Os depending on the number of keywords in the tweet. This is the

dominant component of the indexing cost.

The first step is used to maintain the tree structure of tweets, which may

incur one or two database operations. This cost can be saved, if the ranking

function does not consider the effect of the tree structure. However, even in

our case where the tree structure is used, this is not a major cost. Based on

the statistics of [7], less than 23% of the tweets get replies, for which we need

to maintain the tree structures. Furthermore, most of the tweets get replies

within a relatively short period after posting, and thus, caching the recent

tweet records can significantly reduce the cost.

115

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

The main overhead of the indexing process is the cost of updating the in-

verted index. For a given tweet which has n keywords, we need to update n

inverted list, one for each keyword. Moreover, to support real-time search, the

tweets in the inverted list are sorted by their timestamps. The update and

sorting costs dominate the indexing cost.

Batch Indexing

When a noisy tweet is submitted to the microblogging system, instead of in-

dexing it in the inverted index, we append it to the log file. The operation

is straight forward, and it incurs one HBase atomic operation. Hence, batch

indexing is very efficient compared to the real-time indexing.

Periodically, the batch indexing process scans the log file and indexes the

tweets in an offline manner. To reduce the cost of building the inverted index,

we build an in-memory inverted index. We maintain an inverted list (a list

of document ids and necessary attributes for ranking) for each encountered

keyword in memory. If the memory is full, we combine the in-memory inverted

index with the disk based index. In this manner, we can significantly reduce

the I/Os, as the updates to an inverted list of a keyword can be performed in

groups.

6.3.3 Tweet Deletion

In microblogging system, deleting an existing tweet is a common user action.

To deal with a tweet deletion, we adopt the standard method that is widely

used in search engines [76]. The deletion operation on a tweet is written to

a log file in the storage, and the real-time inverted index will be periodically

updated based on this deletion log. For a search query, the tid (tweet id) list is

retrieved from the real-time inverted index first, and then the content of these

tid is retrieved from the storage (R-Store in ART). If a tid does not exist in

R-Store anymore, which means that the tweet has been deleted by its owner

but the inverted index has not been updated yet, we simply ignore this tid and

do not show the tweet in the final search result.

116

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

6.4 Ranking Function

In TI, the indexing scheme is independent of the ranking function. The user

can therefore define different ranking functions. In this section, we propose a

computationally efficient and effective ranking function tailored for the social

networking systems by exploiting the features of user behaviors. Our proposed

ranking function is composed of the user’s PageRank, popularity of the topic,

the timestamp and the similarity between the query and the tweet.

6.4.1 User’s PageRank

To capture the relationships between social networking users, we have a user

graph Gu = (U,E) where U denotes all the available users and E describes the

links between them. In a system such as Twitter, there are two links defined

for a user, the followers and following. Given a user u, its followers is a set of

users, who follow u’s tweets, while its following is another set of users that u

currently follows. We use f(u) and f−1(u) to denote the followers and following

set of user u, respectively. For ease of discussion, we define the complete graph

as below.

Definition Complete Graph

Graph Gu = (U,E) is a complete graph, i.f.f.

1) ∀ui ∈ U∀uj ∈ f(u)→ uj ∈ U
2) ∀ui ∈ U∀uj ∈ f−1(u)→ uj ∈ U

In a complete graph, the following link is analogical to the follower link. The

follower graph can be directly constructed by reverse the direction of the fol-

lowing graph. Therefore, in the remaining discussion, we only consider the

following link. We build a matrix Mf to record the following links between

users. As shown in Figure 6.7, if ui follows uj, we set Mf [i][j] to 1. To compute

PageRank, we also define a weight vector V = (w1, w2, ..., wn), where wi is the

weight of user ui. Currently, wi is set to 1 for all users, by assuming that every

user is equally important initially. We then compute the user’s PageRank as

follows:

Pu = VMx
f (6.5)

x keeps increasing, until Mx
f converges. Pu[i] denotes the PageRank value of

user ui. We normalize it as Pu[i] = Pu[i]∑
1≤i≤n Pu[i]

.

117

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

u1 u2 u3 ... un

u1

u2

u3

...

un

0 1 0 ... 1

1 0 0 ... 1

0 0 0 ... 0

0 1 0 ... 0

...

f

T

1

1

1

1

...

Figure 6.7: Following Matrix

The PageRank values are stored in a user table, which is defined as (UID,

Name, PageRank), where UID is the ID of the user. We also have a follower

and following table for capturing the friend links. In the ranking function,

the tweet inherits the PageRank from its author. In particular, we define the

tweet’s U-PageRank as

Definition U-PageRank

Suppose the tweet t’s author is u, t’s U-PageRank is defined as u’s PageRank

value.

A higher PageRank value indicates that the user has more friends and his

tweets are probably more attractive than others. Therefore, we can use U-

PageRank to decide whether a tweet is important for the users. In [104], an

extended PageRank algorithm is also applied to rank Twitter data.

Computing the user’s PageRank is costly. However, the active users in a

system tend to be stable over time. Hence, the PageRank is computed in an

offline manner. We can periodically, say every ten days, recompute the PageR-

ank values. When a new user joins the system before the next computation,

we set its PageRank value to 0.

6.4.2 Popularity of Topics

In Twitter, users retweet tweets of other people to broadcast the tweets to their

friends. They also express their own ideas when replying to other’s tweets. In

TI, tweets are grouped into a tree by the retweet/reply links. We define a tweet

tree as a discussion topic or thread. To help users retrieve the popular topics,

our ranking function is designed to favor the tweet trees with many discussions.

118

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

This strategy is also adopted by the news group search [110] and community

search [91]. In particular, given a tweet tree T , we define its popularity as:

Pop(T) =
∑
∀ti∈T

ti.UPageRank (6.6)

As a result, the popularity of a tree is equal to the sum of U-PageRank values

of all tweets in the tree. For a single node tree, the popularity of the tree is

equal to the root’s U-PageRank.

The tree’s popularity can be computed fairly easily by joining the tweet

table and user table. For example, the following query can be used for its

computation.

SELECT SUM(U.PageRank) as Popularity, tree

FROM tweet T, user U

WHERE T.UID = U.UID

GROUP BY T.tree

However, processing such queries is costly, especially for a large-scale Twitter

dataset. If we can reduce the number of records that need to be processed, we

can effectively speed up the above query.

It is observed that more than 70% of tweets do not get any response (be

replied or retweeted) [7]. For a majority of tweets, we do not need to compute

the tree popularity, as the single node tree’s popularity is equal to the root’s

U-PageRank, which can be directly obtained from the inverted index. Figure

6.8 verifies our assumption. It shows the changes of popularity values (without

normalization). Most tweet trees exhibit the same behavior. When a tweet is

published, it probably does not attract the interest of other users right away.

As a result, in the first few hours, it has a low popularity. However, if the

tweet belongs to a popular topic, the ranking score of this tweet will benefit

from the popularity of this topic. The popularity of the corresponding tweet

tree increases significantly, until the topic becomes stale some days later. Then,

there will be no new tweets in this tree and the popularity remains stable after

that.

We call a tweet topic that is being hotly discussed an Active Tweet Tree,

which is defined as following:

Definition Active Tweet Tree

119

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

 0

 400

 800

 1200

 1600

 2000

9/21 10/1 10/11 10/21 10/31 11/10

P
op

ul
ar

ity

Date

tree1
tree2
tree3

Figure 6.8: Popularity of Topics (computed based on Equation 6.6 by using
unnormalized PageRank values)

A tweet tree T is an active tweet tree, if the number of tree nodes keeps on

increasing continuously.

For example, in Figure 6.8, tree 1 is an active tweet tree for tweets posted from

October 1st to October 3rd. Instead of computing the popularities of all tweet

trees, we just compute the popularities of active trees and maintain them in

memory. By doing so, we can update the popularities of active trees efficiently

when new tweets are submitted. To process the queries, we can look up the

popularities kept in memory to rank the tweets.

Algorithm 6.4: isActiveTree(Tweet t)

1 ID rid = getRootID(t);
2 if rid is not null then
3 if Lt.containsKey(rid) then
4 Lt(rid).popularity += t.UPageRank;
5 Lt(rid).timestamp = t.timestamp;

6 if t.timestamp-Lc(rid).timestamp> θ then
7 Lc(rid).count = 1
8 else
9 Lc(rid).count++;

10 if Lc(rid).count> γ then
11 Lt.insert(rid, getPopularity(rid), t.timestamp);
12 if some tweets in the tree are not indexed then
13 create index for the tweets on the fly;

14 Lc(rid).timestamp = t.timestamp;

In Algorithm 6.4, we outline the steps entailed in maintaining the active

120

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

tree in memory. Initially, all the trees are assumed to be inactive trees. We

keep two lists, a candidate tree list Lc and an active tree list Lt, and use hash

tables to implement the lists. When a new tweet joins a tweet tree t, we use

t’s root ID to find its corresponding bucket in Lt and Lc. If t belongs to an

active tree, we increase the tree’s popularity and reset its timestamp (line 3-5).

Otherwise, we retrieve t’s record in Lc and compare the timestamp (line 6). If

t.timestamp− Lc(t.rid) > θ, we reset the counter to 1 (line 7). Otherwise, we

update the timestamp and increase the value of counter by 1 (line 9). If the

counter is larger than γ, we promote t as the active tree (line 10). In function

getPopularity(rid), we compute the popularity by issuing the query:

SELECT SUM(U.PageRank) as Popularity

FROM tweet T, user U

WHERE T.UID = U.UID AND T.tree= rid

To efficiently process the above query, we build B+-tree indexes on attribute

T.UID, U.UID and T.tree. Recall that in Theorem 6.2, we require the ranking

function to be decreasing with time. But for an active tree, its popularity may

increase with time. Therefore, we index all the tweets which are not yet indexed

in the active tree (line 12 and 13). This can be done efficiently by following the

pointers in the tweet table.

The active tree will be discarded, if it does not obtain any new tweet in

more than δ time. In fact, in our ranking function, the popularity of a tree

remains steady after a certain time. That is, after δ days, the rank of an

inactive tree becomes too small and does not affect the top-K results. In that

case, we remove it from Lt. The parameters θ, γ and δ are used to control the

accuracy and memory overhead, which can be tuned based on statistics. In our

experiment, θ, γ and δ are set to 8 hours, 3 tweets and 10 days respectively.

6.4.3 Time-based Ranking Function

The final part of our ranking function is the similarity between a query q and

a tweet t. By using the bag-of-words model, we transform q and t into vectors.

Their similarity is estimated as

sim(q, t) =
q × t
|q||t|

(6.7)

121

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

The general ranking function combines all the factors and are computed as

F(q, t) =
w1 × t.UPageRank + w2 × sim(q, t)

q.timestamp− t.timestamp
+

w3 × tree.popularity
q.timestamp− tree.timestamp

(6.8)

where q.timestamp denotes the time when the query is submitted, tree.timestamp

is the timestamp of the tree that t belongs to (computed as the timestamp of

the root node), w1, w2 and w3 are used to normalize the rankings. Currently,

w1, w2 and w3 are set to 1, as we treat all factors equally important. If a

tweet does not belong to a popular tree, we discard the second term in above

formula, as in that case, the popularity should not contribute to its ranking. In

our definition, a tweet’s ranking is affected by its timestamp. An older tweet is

less important than a newly inserted one. When searching, we prefer the latest

tweets with high similarity.

6.4.4 Adaptive Index Search

To process a query, the inverted index is employed to retrieve the result tweets

based on the scores derived from the ranking function. In our ranking function,

the PageRank value, the timestamp and the similarity can be computed based

on the information in the inverted index, while the popularity can be obtained

by querying the active tree list in memory. Hence, the ranking function is

computationally efficient as it does not incur a significant overhead.

Nevertheless, the main problem that affects the search performance is the

size of inverted index. Suppose the inverted index for keyword ki is Ii. The size

of Ii will keep increasing, as more tweets are inserted1. To address this problem,

we propose an adaptive index searching scheme. The maximal possible score

of a tweet at timestamp ts is estimated as:

score =
w1 × UPageRankmax + w2 + w3 × popularitymax

q.timestamp− ts

UPageRankmax denotes the maximal user PageRank. We set similarity to

1. And popularitymax is estimated by current active tree set. Let Stree de-

1In Twitter, only recent tweets can be retrieved and hence, the size of inverted index is
reduced

122

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

note the active trees that have a timestamp before ts. If no such tree exists,

popularitymax is set to 0. Otherwise, popularitymax equals to the maximal

popularity in Stree.

Let Tθ(q) be the top-K threshold for query q. Instead of reading the whole

inverted index blindly, we iteratively read a block of the index. If the last entry

in the block has a timestamp ts and based on the above equation, the maximal

score before ts is smaller than Tθ(q), we will stop reading the index, since

the remaining tweets will not contribute the the search results. This strategy

effectively reduces the index search cost.

After the candidate tweets are retrieved from the index, we sort them based

on the ranking function. The in-memory sort is efficient, as many tweets have

already been pruned by the index searching process. Then we select the top-K

results and group them by their tree structures, based on the tree encoding.

6.5 Experimental Evaluation

Table 6.2: Cluster Settings
Parameter Value
CPU X3430 2.4 GHz
OS CentOS 5.5
Memory 8G
Disk 2x500 GB SATA
Default Node Number 25
Data per Node 4G

In this section, we shall evaluate the performance of TI indexing scheme

and the effectiveness of the propose ranking functions. The cluster settings are

shown in Table 6.2. In the experiments, we use a Twitter dataset collected for

three years [40] from October 2006 to November 2009. 500 random users are

selected from Twitter as the seeds, including politicians, musicians, environ-

mentalists and techies. Following the friend links, more users are discovered

and added into the social graph. The total number of involved users is about

465K. For each user, the tweets are crawled every 24 hours. There are more

than 25 millions of tweets in the dataset. However, since Twitter does not

allow users to crawl their data in a large scale any more, for the scalability

123

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

 0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 o
f T

w
ee

ts
 In

se
rt

ed

TopK

TI

Figure 6.9: Number of Indexed
Tweets in Real-Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

T
im

e(
se

c)

TopK

TI
FullIndex

Figure 6.10: Indexing Cost of TI with
5 slaves (per 10,000 tweets)

experiment, we have to generate synthetic data based on this small data set.

The size of the data per node is around 4GB.

In the experiments, we start from September 26 2009 and simulate users’

behavior for the next ten days. The first five days are used to warm up the

system (e.g. building the top-K threshold, learning the popularities of topics).

The remaining five days are used to measure the performance. We collect

keywords from the first five days’ tweets. After removing the keywords in the

stop-list and the infrequent words (frequency less than 10), we have less than

5K keywords left. Queries are generated by randomly combining the keywords,

and the number of keywords in queries follows Zipf’s distribution, where α is

set to 1. Approximately, 60% are 1-word queries; 30% are 2-word queries; and

10% are queries with more than two keywords. The queries are submitted to

the system at random timestamps, while the tweets are inserted into the system

based on their recorded timestamps. The interval for batch indexing is set to

one day in this experiment, which is a proper setting based on our observations.

When this interval is too large, some important tweets will be missing from the

search results. In contrast, if the interval is too small, the batch indexing would

affect the performance of the real-time indexing. Each experiment is repeated

for ten times and the average result is reported.

6.5.1 Effects of Adaptive Indexing

In the first set of experiments, we study how the adaptive indexing scheme

affects the performance. In Figure 6.9, we show the percentage of tweets that

are indexed in real-time. When only top-10 results are required, we can prune

124

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

 0

 5000

 10000

 15000

 20000

 25000

 5 10 15 20 25
In

de
xt

ed
 T

w
ee

ts
 P

er
 S

ec
on

d

Number of Nodes

TI(index only)
TI(index:search=1000:1)
TI(index:search=100:1)

Figure 6.11: Indexing Throughput

more than 80% of tweets (by using batch indexing scheme). As more results

are returned to users, more tweets need to be indexed to be searchable. When

K = 100, about 70% of tweets need to be indexed in real-time. Because only

a portion of tweets need to be indexed in real-time, the indexing cost is sig-

nificantly reduced. Figure 6.10 compares the indexing time of TI and full

indexing scheme with 5 TI slaves. In TI, the cost of indexing is proportional

to the number of indexed tweets. Therefore, when more tweets are required in

the results, TI will incur higher indexing overhead. Figure 6.11 shows the in-

dexing throughput as the number of nodes increases. We evaluate the indexing

throughput in three scenarios: (1) only index requests exist in TI; (2) the ratio

between the index requests and the search requests is 1000 to 1; (3) the ration

between the index requests and the search requests is 100 to 1. As shown in

the figure, as the number of nodes increases, the number of tweets that can

be indexed in real-time also increases. In addition, since the search requests

are more expensive and will compete for computation resources with the index

requests, as the ratio between the index requests and the search requests de-

creases, the indexing throughput decreases as well. We will show the detailed

experimental studies of the search queries in Section 6.5.2.

To evaluate whether the adaptive indexing scheme reduces the quality of

results, we compute the query accuracy as R
⋂
R′

|R| , where R denotes the result

set returned by the full indexing scheme (all tweets are inserted in real-time),

R′ denotes the result set returned by TI, R
⋂
R′ represents the number of

tweets in both result sets. Figure 6.12 shows the accuracy of TI’s results. For

comparison, we use two strategies. For the Constant Threshold, we do not

update the top-K threshold when processing queries. On the contrary, for the

125

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

50

60

70

80

90

100

 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y(
%

)

TopK

ConstantThreshold
AdaptiveThreshold

Figure 6.12: Accuracy of Adaptive
Indexing

50

60

70

80

90

100

10/1 10/2 10/3 10/4 10/5

A
cc

ur
ac

y(
%

)

Date

Top10
Top50

Top100

Figure 6.13: Accuracy by Time (con-
stant threshold)

50

60

70

80

90

100

10/1 10/2 10/3 10/4 10/5

A
cc

ur
ac

y(
%

)

Date

Top10
Top50

Top100

Figure 6.14: Accuracy by Time
(adaptive threshold)

 0

20

40

60

80

100

10/1 10/2 10/3 10/4 10/5

P
er

ce
nt

 o
f T

w
ee

ts
 In

se
rt

ed

Date

Top10
Top50

Top100

Figure 6.15: Effect of Adaptive
Threshold

Adaptive Threshold, we use Algorithm 6.2 to update the threshold adaptively.

As shown in Figure 6.12, the accuracy of Constant Threshold is just slightly

worse than Adaptive Threshold. The result verifies our observation made in

Figure 6.5, where the top-K threshold remains stable over a period of time.

The accuracy of both strategies decreases as K decreases. This can also be

observed in Figure 6.5. When K is small, the top-K threshold changes more

significantly. An extreme case is when K = 1. Thus, the TI may wrongly

delay indexing some high ranking tweets. This problem can be fixed by setting

a lower bound, e.g. 20, for K. Although user only requests for top 1 result, we

always maintain the threshold for top 20 results.

In Figure 6.13 and Figure 6.14, we show the changes of accuracy by dates.

The accuracy of Constant Threshold degrades, because it never updates its

threshold values. However the quality of the results is still acceptable. For the

Adaptive Threshold, as the threshold is updated by the queries, we always get

results with high accuracy. In Figure 6.15, we show the percentage of indexed

126

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

 0

 30

 60

 90

 120

 150

 20000 40000 60000 80000

Q
ue

ry
in

gT
im

e(
m

s)

Number of Involved Tweets

TimeBased
TI

TIRead
TIRank

Figure 6.16: Performance of Query
Processing (Centralized)

 0

 200

 400

 600

 800

 20000 40000 60000 80000

Q
ue

ry
in

gT
im

e(
m

s)

Number of Involved Tweets

TimeBased
TI

TIRead
TITreeInfo

TIRank
TIReturn

Figure 6.17: Performance of Query
Processing (Distributed)

 0

 100

 200

 300

 400

 500

 5 10 15 20 25

P
ro

ce
ss

in
g

T
im

e

Number of Nodes

TI
Time-based

Figure 6.18: Performance of Query
Processing

0

4

8

12

16

20

10/1 10/2 10/3 10/4 10/5

N
um

be
r

of
 T

re
es

 (
10

4)

Date

TreesInOct
ActiveTrees

Figure 6.19: Popular Tree in Memory

tweets in Adaptive Threshold by dates. We can observe from the figure that the

Adaptive Threshold scheme does lead to a stable performance, independent of

K. As the Adaptive Threshold exploits the query results to update its threshold,

which is almost free, we will always use Adaptive Threshold strategy in the TI

indexing scheme.

6.5.2 Query Performance

To provide better search results, TI adopts a sophisticated ranking function.

In this experiment, we study whether the ranking function leads to a better

query performance. For comparison purposes, we implement a tweet search,

which only ranks tweets via their timestamps. Similar ranking strategy seems

to have been adopted by Twitter [16] and Google [11]. As we sort the tweets

in the inverted index by their timestamps, for a single keyword query, we just

need to read the first K entries from the index, which is quite efficient. For a

127

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

multi-keyword query, we iteratively read a block of the index for all keywords,

and we stop when K results are obtained; Otherwise, more blocks are searched.

Figure 6.16 shows the query performance of the TI and time-based ranking

schemes in a centralized mode. TI’s costs are decomposed into two parts, the

ranking cost TIRank and the index search cost TIRead. We group queries by

their total number of involved tweets. In Figure 6.16, the X-axis ranges from

0 to 80000, indicating that some popular queries get about 80000 hits in our

dataset. Since the size of the inverted index for a keyword ki is proportional

to the number of tweets containing ki, the index search cost increases as more

tweets are involved. This is verified by the results. We have adopted some

optimization approaches, such as the adaptive index search outlined in Section

5.4, in order to reduce the cost. As shown in Figure 6.16, TIRead increases

linearly with the number of involved tweets. On the contrary, the time-based

ranking scheme only retrieves some top tweets, and hence, incurs less overhead.

However, it achieves the efficiency by sacrificing the quality of results. Without

a reasonable ranking scheme, the query results are less useful.

We also evaluate the performance of TI in a distributed mode with 5 nodes,

which is shown in Figure 6.17. In a distributed environment, the main cost is

network communicating. In order to reduce the network communicating cost,

we modify the ranking scheme in the original centralized TI: for each keyword,

instead of retrieving the entire TID list from the distributed index, we only

retrieve the top N TIDs, which are ranked by the combination of timestamp

and users’ PageRank score (TIRead in Figure 6.17, the cost of which increases

as the number of tweets involved increases). The query processor then obtains

the tree info of each TID from other TI slaves (TITreeInfo), and re-ranks these

N TIDs based on the complete ranking function (TIRank). At last, it reads

the content of the top k tweets from the distributed key/value stores, HBase,

instead of local databases, and return it to users (TIReturn). In contrast, the

cost of TimeBased ranking consists of only two part: retrieving the top k TIDs

from the distributed lucene and obtaining the tweets for each TID. Figure 6.18

shows the response time of the search queries as the number of nodes increases.

As can be seen, the response time does not change much as the number of nodes

increases.

128

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

Memory Useage (M)

 3

 6

 9

 12

 15

keywords (103)

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

queries (105)

 0
 2
 4
 6
 8

 10
 12

Figure 6.20: Size of In-memory Index

6.5.3 Memory Overhead

In this experiment, we evaluate the memory overhead in each TI slave. We

have maintained some memory structures to support adaptive indexing and

efficient ranking. Since we partitioned the indexing and retrieval computations

to different nodes based on the user graph, the active tree on each TI slave

is independent of the active trees on the other slaves. Figure 6.19 shows the

total number of active trees. For comparison, we also show the total number

of trees generated in October,2009, where less than ten percent of the trees,

approximately 13000 trees, are identified as active trees. Moreover, we observe

that the number of active trees does not increase with time. In conclusion, the

memory requirement is well controlled and is not high.

Another memory structure is the matrix index. Given n keywords and m

queries, we need nm
8

bytes to maintain the index. To reduce the overhead, we

adopt WAH encoding to compress the matrix index. Figure 6.20 shows how the

size of in-memory index changes for different n and m. We change the number

of keywords from 3000 to 15000 and the number of queries from 100000 to 1

million. The maximum memory usage is only 12 MB, which indicates that the

matrix index is very cost-efficient and we can maintain a much larger one for

holding more keywords and queries. Another interesting observation is that

129

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

0

1

1 20000 40000 60000 80000 100000

N
or

m
al

iz
ed

 P
R

Rank of User

PageRank

Figure 6.21: Distribution of PageRank

0

1

0 10 20 30 40 50

N
or

m
al

iz
ed

 T
w

ee
t S

co
re

Day

tweet1
tweet2
tweet3

Figure 6.22: Score of Tweets by Time

0

1

10/25 10/26 10/27 10/28 10/29 10/30 10/31 11/1

N
or

m
al

iz
ed

 T
w

ee
t S

co
re

Tweet Posting Time

TimeBased-TopK
TI-TopK

OtherTweets

Figure 6.23: Distribution of Query
Results

the memory use does not necessarily increase even when more keywords and

queries are used. This is because more keywords and queries lead to more 0s

and 1s in the matrix index, which improves the compression performance of the

WAH.

6.5.4 Ranking Comparison

In the ranking function, we have three components, the similarity between

query and tweets, the PageRank of authors and the popularity of topics. Fig-

ure 6.21 shows the distribution of users’ PageRanks in our dataset. It is not

surprising that the PageRank value follows a highly skewed distribution, resem-

bling that of Zipf’s or power law distribution. Figure 6.22 shows the effects of

time over the score of tweets. In the figure, X-axis represents the elapsed time,

where 0 indicates the starting time of the tweets. Y-axis is a score computed

by Equation 6.8. In our ranking function, the score is inversely proportional to

time. Thus, the score of a specific tweet will decrease with time. However, a

130

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

Figure 6.24: Search Result Ranked by
TI

Figure 6.25: Search Result Ranked by
Time

few popular tweets receive many replies within a short period of time after they

are posted, contributing to a sudden rise in its score. Figure 6.23 illustrates

the scores of the tweets involved with query “Britney Spears”. In the figure,

the X-axis is the posting time of tweets, while the Y-axis is the score computed

by our ranking function. Based on observation of the results, time-based rank-

ing scheme retrieves all recent queries as its top results, while our approach

considers both time and other factors, which provides better results.

We show a demo result in Figure 6.24 and Figure 6.25. The search is

processed by assuming the time is at Nov 1, 2009 00:00:00, when the last

tweets in our dataset were crawled (tweets after Nov 1 are considered noisy

and pruned). For each result, we show its ranking, author, timestamp and

content. In Figure 6.24, we show the result of TI, where tweets are ordered by

our ranking function. The first three tweets form a group, as they belong to

the same tweet tree. The first tweet is posted by the official account of Britney

Spears to publish a new video link. The second one represents 5 retweets. We

aggregate them together, for all tweets have the same content. The third tweet

is a reply to the first tweet, which shows the song name of the shared video.

By grouping tweets via their tree structures, we provide a better visualization

result.

In Figure 6.25, we show the result of time-based ranking, where tweets are

strictly sorted by their timestamps. This time-based ranking has been adopted

131

CHAPTER 6. TI: AN EFFICIENT INDEXING SYSTEM FOR
REAL-TIME SEARCH ON TWEETS

by Palanteer [75] (a microblogging search engine proposed by Ee-peng Lim, etc)

and Twitter. As a matter of fact, most results in Figure 6.25 also appear in

Figure 6.24. And many results in Figure 6.25 are duplicates. This is because

when a hot tweet is published, many users will retweet it within a short time

after that. These retweets do not provide any new information, but the time-

based ranking will somehow give them a high score. Another problem of the

time-based results is the lack of tree structures. Both the first and second tweets

are replies to another tweet, but the time-based scoring function shows them

individually, while the TI’s ranking scheme groups them together, offering a

better user experience and more meaningful results.

6.6 Summary

The quest for real-time indexing has recently become more pressing due to the

inability of search engines in indexing and retrieving the huge volume of social

networking data as soon as they are produced. The problem is further exacer-

bated by the increasing popularity of microblogging systems where millions of

tweets are produced each day. In this chapter, we have proposed TI, an adap-

tive indexing system for supporting real-time search. TI adopts an adaptive

indexing scheme to reduce the update cost. To this end, a new tweet will be in-

dexed only if it appears in the top-K results of some cached queries. Otherwise,

it is grouped with other unimportant tweets, and a batch indexing scheme is

used to reduce the indexing latency. TI also has a cost-efficient and effective

ranking function, by taking the users’ PageRank, the popularity of topics, the

similarity between the data and the query, and the time into consideration.

To evaluate the performance of TI ’s indexing scheme and ranking function,

we conduct an extensive experimental study using a real dataset from Twitter.

The experimental results show that TI is efficient in handling tweets as they

are produced and is able to achieve high query effectiveness and efficiency at

the same time.

This work is published as a full paper in the ACM Special Interest Group

on Management of Data (SIGMOD) 2011 [35].

132

CHAPTER 7

Conclusion

Increasing data volume in microblogging systems require more scalable frame-

work to process the queries executed in the systems. However, newly emerging

“big data” systems such as parallel processing system, distributed key/value

stores and real-time search engine have their limitations in efficiently process-

ing the queries. In this thesis, we have designed ART (AQUA, R-Store and

TI), a large scale microblogging data management system. We we have conse-

quently proposed three approaches to improve the performance of three types

of queries in ART.

First, we have explored the opportunity to efficiently process the multi-way

join queries on MapReduce. Our proposed cost model theoretically analyzes

the cost of each phase for an equi-join query on MapReduce. By calculating

aggregated cost of the equi-join operators in a join tree, the cost of a multi-

way join plan can be accurately estimated. We have also investigated how the

best plan for the multi-way join is found. By our heuristic plan generating

algorithm, the near-optimal plan can be found within an acceptable time. To

the best of our knowledge, our cost model and plan generating algorithm is the

first work that systematically studies the multi-way join implementations on

MapReduce. By integrating the cost-based optimizer in Hive and evaluating

the performance on both, we show that the cost-based optimization approach

significantly outperforms the exiting rule-based optimization approach.

Second, we have investigated the possibility of supporting real-time aggre-

133

CHAPTER 7. CONCLUSION

gation queries in a large scale system and hense propose RStore. In RStore,

to support the real-time aggregation, the data are stored with multiple ver-

sions, and a snapshot of the versions that contains the most recent updates

before the submission time of the query are directly processed by MapReduce.

To efficiently obtain the snapshot, a real-time data cube is maintained inside

RStore using a streaming approach. When an aggregation query is submitted

to RStore, only the real-time data cube and the latest versions of the tuples that

are updated after the refresh time of the data cube are shuffled to MapReduce.

Furthermore, the global and local compaction schemes greatly reduce the size

of data stored in the storage system, and the adaptive incremental scan opera-

tion proposed in Chapter 5 significantly improves the performance of scanning

the real-time data.

Third, we have designed a new ranking and indexing scheme for the real-

time search queries. Compared to the current ranking function which only

sorts the result based on uploading time, our ranking function considers the

page rank value of the user graph, the ranking score of the entire discussion

topic, the relation between the keywords and the tweets and the freshness of the

tweets. The result shown in Figure 6.24 demonstrates that the searched results

returned by our ranking scheme are more meaningful than the default ranking

approach. Moreover, the adaptive indexing scheme proposed in this thesis only

indexes the tweets that have high probability to be searched by the search

queries in real-time. The other tweets are indexed later with the traditional

batch indexing approach. The experimental results show that this method can

significantly improve the throughput of the indexing service without losing the

quality of the search results much.

7.1 Future Work

Although our first work, AQUA, can efficiently find a near-optimal plan for

multi-way join query, the join operator of the join tree is restricted to “=”.

While the equi-join operator is the most used operator and has attracted most

research interest, it would be useful to extend our proposed cost model to

support the more general join operator, theta-join. Second, in R-Store, due

to the time limit, we only delve in how to efficiently process the real-time

aggregation queries. It might be difficult to process the join queries using

134

CHAPTER 7. CONCLUSION

exactly the same approaches proposed in this thesis, and supporting real-time

processing for more complex queries such as join would be an interesting future

work.

In addition to the multi-way join queries, aggregation queries and real-time

search queries, there are many other queries and tasks, such as iterative compu-

tation and continuous queries, remain to be solved in a microblogging system.

For example, for a PageRank computation that requires several iterations of

MapReduce jobs, it is not feasible to directly process it using MapReduce.

There have been some work on extending MapReduce to support efficient it-

erative computation (e.g. HaLoop [27]) or designing new systems to handle

these queries (e.g. Spark [112]), and it would be timely to address these new

challenges within the context of microblogging data management systems.

135

Bibliography

[1] http://cassandra.apache.org/.

[2] http://hadoop.apache.org/hdfs/.

[3] http://hbase.apache.org/.

[4] http://hstreaming.com/.

[5] http://lucene.apache.org.

[6] http://staff.tumblr.com/post/434982975/a-billion-hits.

[7] http://sysomos.com/insidetwitter/engagement/.

[8] http://thenextweb.com/socialmedia/2010/02/22/ twitter-statistics-full-

picture/.

[9] http://wiki.apache.org/hadoop/hive/languagemanual/ joins.

[10] http://www.aster.com.

[11] http://www.google.com/realtime.

[12] http://www.greenplum.com.

[13] http://www.slideshare.net/yousukehara/introduction-of-twitter-gizzard.

[14] http://www.tpc.org/tpch/.

136

BIBLIOGRAPHY

[15] http://www.tumblr.com.

[16] http://www.twitter.com.

[17] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silber-

schatz, and Alexander Rasin. Hadoopdb: an architectural hybrid of

MapReduce and DBMS technologies for analytical workloads. Proc.

VLDB Endowment, 2(1):922–933, August 2009.

[18] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce

environment. EDBT, 2009.

[19] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce

environment. In Proc. 13th Int. Conf. on Extending Database Technology,

pages 99–110, 2010.

[20] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated

selection of materialized views and indexes in sql databases. In VLDB,

pages 496–505, 2000.

[21] Manos Athanassoulis, Shimin Chen, Anastasia Ailamaki, Phillip B. Gib-

bons, and Radu Stoica. Masm: efficient online updates in data ware-

houses. In SIGMOD, pages 865–876, 2011.

[22] Lars Backstrom, Jon Kleinberg, Ravi Kumar, and Jasmine Novak. Spatial

variation in search engine queries. In WWW, pages 357–366, 2008.

[23] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized

views selection in a multidimensional database. In VLDB, pages 156–

165, 1997.

[24] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins to solve

relational queries. J. ACM, 28(1):25–40, January 1981.

[25] Dimitris Bertsimas, Karthik Natarajan, and Chung-Piaw Teo. Tight

bounds on expected order statistics. Probab. Eng. Inf. Sci., 20(4):667–

686, 2006.

[26] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J.

Shekita, and Yuanyuan Tian. A comparison of join algorithms for log

137

BIBLIOGRAPHY

processing in MapReduce. In Proc. ACM SIGMOD Int. Conf. on Man-

agement of Data, pages 975–986, 2010.

[27] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.

Haloop: efficient iterative data processing on large clusters. Proc. VLDB

Endowment, 3(1-2):285–296, September 2010.

[28] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi,

Hoang Tam Vo, Sai Wu, and Quanqing Xu. Es2: A cloud data storage

system for supporting both oltp and olap. ICDE, pages 291–302, 2011.

[29] Stefano Ceri and Jennifer Widom. Deriving production rules for incre-

mental view maintenance. In VLDB, pages 577–589, 1991.

[30] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable: a distributed storage system for structured

data. In OSDI, pages 205–218, 2006.

[31] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal,

Prathyusha Aragonda, Vera Lychagina, Younghee Kwon, and Michael

Wong. Tenzing: A SQL implementation on the MapReduce framework.

Proc. VLDB Endowment, 4(12):1318–1327, 2011.

[32] Surajit Chaudhuri. An overview of query optimization in relational sys-

tems. In PODS, pages 34–43, 1998.

[33] Surajit Chaudhuri and Gerhard Weikum. Rethinking database system

architecture: Towards a self-tuning RISC-style database system. In Proc.

26th Int. Conf. on Very Large Data Bases, pages 1–10, 2000.

[34] Chun Chen, Gang Chen, Dawei Jiang, Beng Chin Ooi, Hoang Tam Vo,

Sai Wu, and Quanqing Xu. Providing scalable database services on the

cloud. pages 1–19, 2010.

[35] Chun Chen, Feng Li, Beng Chin Ooi, and Sai Wu. Ti: An efficient

indexing mechanism for real-time search on tweets. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’11, pages 649–660, New York, NY, USA, 2011. ACM.

138

BIBLIOGRAPHY

[36] Gang Chen, Hoang Tam Vo, Sai Wu, Beng Chin Ooi, and M. Tamer Özsu.

A framework for supporting DBMS-like indexes in the cloud. PVLDB,

4(11):702–713, 2011.

[37] Ming-Syan Chen, Philip S. Yu, and Kun-Lung Wu. Optimization of par-

allel execution for multi-join queries. IEEE Trans. on Knowl. and Data

Eng., 8(3):416–428, 1996.

[38] Songting Chen. Cheetah: A high performance, custom data warehouse

on top of MapReduce. Proc. VLDB Endowment, 3(2):1459–1468, 2010.

[39] Rada Chirkova, Chen Li, and Jia Li. Answering queries using materialized

views with minimum size. The VLDB Journal, 15(3):191–210, 2006.

[40] M. D. Choudhury, Y-R. Lin, H. Sundaram, K. S. Candan, L. Xie, and

A. Kelliher. How does the sampling strategy impact the discovery of

information diffusion in social media? In ICWSM, 2010.

[41] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,

Khaled Elmeleegy, and Russell Sears. Mapreduce online. Technical Re-

port UCB/EECS-2009-136, EECS Department, University of California,

Berkeley, Oct 2009.

[42] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled

Elmeleegy, and Russell Sears. Mapreduce online. In NSDI, pages 313–328,

2010.

[43] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam

Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel

Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving plat-

form. PVLDB, 1(2):1277–1288, 2008.

[44] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. In Proc. 6th USENIX Symp. on Operating Sys-

tem Design and Implementation, pages 137–150, 2004.

[45] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly

available key-value store. In SOSP, pages 205–220, 2007.

139

BIBLIOGRAPHY

[46] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin,

Vinay Setty, and Jörg Schad. Hadoop++: Making a yellow elephant

run like a cheetah (without it even noticing). Proc. VLDB Endowment,

3(1):518–529, 2010.

[47] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Ste-

fan Sigg, and Wolfgang Lehner. Sap hana database: data management

for modern business applications. SIGMOD Rec., 40(4):45–51, January

2012.

[48] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. Per-

formance tradeoffs for client-server query processing. SIGMOD Rec.,

25(2):149–160, 1996.

[49] Eric Friedman, Peter Pawlowski, and John Cieslewicz. SQL/MapReduce:

a practical approach to self-describing, polymorphic, and parallelizable

user-defined functions. Proc. VLDB Endowment, 2:1402–1413, August

2009.

[50] Amol Ghoting, Rajasekar Krishnamurthy, Edwin P. D. Pednault,

Berthold Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian,

and Shivakumar Vaithyanathan. SystemML: Declarative machine learn-

ing on mapreduce. In Proc. 27th Int. Conf. on Data Engineering, pages

231–242, 2011.

[51] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. SIGACT News,

33(2):51–59, June 2002.

[52] Lukasz Golab, Theodore Johnson, and Vladislav Shkapenyuk. Scheduling

updates in a real-time stream warehouse. ICDE, pages 1207–1210, 2009.

[53] Goetz Graefe. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–169, June 1993.

[54] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don

Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data

cube: A relational aggregation operator generalizing group-by, cross-tab,

and sub-totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

140

BIBLIOGRAPHY

[55] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-

taining views incrementally (extended abstract). In SIGMOD, pages 157–

166, 1993.

[56] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos, and

Peter Boncz. Positional update handling in column stores. In SIGMOD,

pages 543–554, 2010.

[57] iProspect. iprospect search engine user behavior study.

[58] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-

terly. Dryad: distributed data-parallel programs from sequential building

blocks. pages 59–72, 2007.

[59] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter:

understanding microblogging usage and communities. In WebKDD, pages

56–65, 2007.

[60] Jeffrey Jestes, Ke Yi, and Feifei Li. Building wavelet histograms on

large data in mapreduce. Proc. VLDB Endowment, 5(2):109–120, Oc-

tober 2011.

[61] Yuntao Jia. Running TPC-H queries on Hive. Available at:

http://issues.apache.org/jira/browse/HIVE-600 (Accessed on 25 June

2012.), 2009.

[62] David Jiang, Anthony K. H. Tung, and Gang Chen. MAP-JOIN-

REDUCE: Toward scalable and efficient data analysis on large clusters.

IEEE Trans. Knowl. and Data Eng., 23(9):1299–1311, 2011.

[63] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of

MapReduce: An in-depth study. Proc. VLDB Endowment, 3(1):472–483,

2010.

[64] Thomas Jorg and Stefan Dessloch. Near real-time data warehousing using

state-of-the-art etl tools. In Enabling Real-Time Business Intelligence,

volume 41, pages 100–117. 2010.

[65] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal

algorithm for the distinct elements problem. PODS ’10, pages 41–52.

141

BIBLIOGRAPHY

[66] Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main

memory database system based on virtual memory snapshots. In Pro-

ceedings of the 2011 IEEE 27th International Conference on Data Engi-

neering, ICDE ’11, pages 195–206, Washington, DC, USA, 2011. IEEE

Computer Society.

[67] Marcel Kornacker and Justin Erickson. Cloudera impala: real-time

queries in apache hadoop, for real, 2012.

[68] Tei-Wei Kuo, Yuan-Ting Kao, and Chin-Fu Kuo. Two-version based con-

currency control and recovery in real-time client/server databases. IEEE

Trans. Comput., 52(4):506–524, April 2003.

[69] Avinash Lakshman and Prashant Malik. Cassandra: structured storage

system on a p2p network. In PODC, page 5, 2009.

[70] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized

structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, 2010.

[71] Ki Yong Lee and Myoung Ho Kim. Efficient incremental maintenance of

data cubes. In VLDB, pages 823–833, 2006.

[72] Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. Distributed data

management using mapreduce. ACM Comput. Surv., 46(3):31:1–31:42,

January 2014.

[73] Feng Li, M. Tamer Özsu, Gang Chen, and Beng Chin Ooi. R-store: A

scalable distributed system for supporting real-time analytics. In Proc.

30th Int. Conf. on Data Engineering, 2014.

[74] Wentian Li. Random texts exhibit zipf’s-law-like word frequency dis-

tribution. IEEE Transactions on Information Theory, pages 1842–1845,

1992.

[75] Ee-Peng Lim and Palakorn Achananuparp. Palanteer: A search engine

for community generated microblogging data. In ICADL, pages 239–248,

2012.

[76] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and

Ramesh Agarwal. Efficient update of indexes for dynamically changing

web documents. World Wide Web, 10(1):37–69, 2007.

142

BIBLIOGRAPHY

[77] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Scott Shenker,

and Ion Stoica. Enhancing p2p file-sharing with an internet-scale query

processor. In VLDB, pages 432–443, 2004.

[78] Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick.

Maintenance of data cubes and summary tables in a warehouse. In SIG-

MOD, pages 100–111, 1997.

[79] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu Ramakrishnan.

Distributed cube materialization on holistic measures. In ICDE, pages

183–194, 2011.

[80] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4:

Distributed stream computing platform. In ICDMW, pages 170–177,

2010.

[81] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios,

and Nick Koudas. MRShare: Sharing across multiple queries in MapRe-

duce. Proc. VLDB Endowment, 3(1):494–505, 2010.

[82] Alper Okcan and Mirek Riedewald. Processing theta-joins using MapRe-

duce. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages

949–960, 2011.

[83] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,

and Andrew Tomkins. Pig latin: a not-so-foreign language for data pro-

cessing. In SIGMOD, pages 1099–1110, 2008.

[84] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database

Systems. Springer, 3 edition, 2011.

[85] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. In Technical Re-

port, Stanford University, 1998.

[86] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J.

Shekita. Improved histograms for selectivity estimation of range predi-

cates. In Proceedings of the 1996 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’96, pages 294–305, New York,

NY, USA, 1996. ACM.

143

BIBLIOGRAPHY

[87] R. Ramakrishnan and J. Gehrke. Database Management Systems.

McGraw-Hill higher education. McGraw-Hill Education, 2003.

[88] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes

twitter users: real-time event detection by social sensors. In WWW, pages

851–860, 2010.

[89] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D.

Lieberman, and Jon Sperling. Twitterstand: news in tweets. In GIS,

pages 42–51, 2009.

[90] Donovan A. Schneider and David J. Dewitt. A performance evaluation

of four parallel join algorithms in a shared-nothing multiprocessor envi-

ronment. In Proc. ACM SIGMOD Int. Conf. on Management of Data,

pages 110–121, 1989.

[91] Jangwon Seo, W. Bruce Croft, and David A. Smith. Online community

search using thread structure. In CIKM, pages 1907–1910, 2009.

[92] Kuznecov Sergey and Kudryavcev Yury. Applying map-reduce paradigm

for parallel closed cube computation. In DBKDA, pages 62–67, 2009.

[93] Praveen Seshadri and Arun N. Swami. Generalized partial indexes. In

ICDE, pages 420–427, 1995.

[94] Adam Silberstein, Jeff Terrace, Brian F. Cooper, and Raghu Ramakr-

ishnan. Feeding frenzy: selectively materializing users’ event feeds. In

SIGMOD, pages 831–842, 2010.

[95] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and

randomized optimization for the join ordering problem. VLDB Journal,

6:191–208, 1997.

[96] M. Stonebraker. The case for partial indexes. SIGMOD Rec., 18(4):4–11,

1989.

[97] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-

zopoulos, Nabil Hachem, and Pat Helland. The end of an architectural

era: (it’s time for a complete rewrite). pages 1150–1160, 2007.

144

BIBLIOGRAPHY

[98] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch

Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,

Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik.

C-store: a column-oriented dbms. In VLDB, pages 553–564, 2005.

[99] Aixin Sun, Meishan Hu, and Ee-Peng Lim. Searching blogs and news: a

study on popular queries. In SIGIR, pages 729–730, 2008.

[100] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasun-

daram, Eugene Shekita, and Chun Zhang. Storing and querying ordered

xml using a relational database system. In SIGMOD, pages 204–215,

2002.

[101] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham

Murthy. Hive - a warehousing solution over a map-reduce framework.

Proc. VLDB Endowment, 2(2):1626–1629, 2009.

[102] Panos Vassiliadis and Alkis Simitsis. Near real time ETL. In Annals of

Information Systems, volume 3, pages 1–31. 2009.

[103] Jinbao Wang, Sai Wu, Hong Gao, Jianzhong Li, and Beng Chin Ooi. In-

dexing multi-dimensional data in a cloud system. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, pages 591–602, 2010.

[104] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: finding

topic-sensitive influential twitterers. In WSDM, pages 261–270, 2010.

[105] Colin White. Intelligent business strategies: Real-time data warehousing

heats up. DM Review, 2012.

[106] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Compressing bitmap

indexes for faster search operations. In SSDBM, pages 99–108, 2002.

[107] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kun-Lung Wu. Efficient B-

tree based indexing for cloud data processing. Proc. VLDB Endowment,

3(1):1207–1218, 2010.

[108] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimiza-

tion for massively parallel data processing. In Proc. 2nd ACM Symp. on

Cloud Computing, pages 12:1–12:13, 2011.

145

BIBLIOGRAPHY

[109] Sai Wu, Jianzhong Li, Beng Chin Ooi, and Kian-Lee Tan. Just-in-time

query retrieval over partially indexed data on structured p2p overlays. In

SIGMOD, pages 279–290, 2008.

[110] Wensi Xi, Jesper Lind, and Eric Brill. Learning effective ranking functions

for newsgroup search. In SIGIR, pages 394–401, 2004.

[111] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for mate-

rialized view design in data warehousing environment. In VLDB, pages

136–145, 1997.

[112] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Spark: Cluster computing with working sets. 2010.

[113] Xiaofei Zhang, Lei Chen, and Min Wang. Efficient multi-way theta-join

processing using MapReduce. Proc. VLDB Endowment, 5(11):1184–1195,

2012.

146

	Acknowledgement
	Abstract
	Introduction
	Overview of ART
	Query Processing in Microblogging Data Management System
	Multi-Way Join Query
	Real-Time Aggregation Query
	Real-Time Search Query

	Objectives and Significance
	Thesis Organization

	Literature Review
	Large Scale Data Storage and Processing Systems
	Distributed Storage Systems
	Parallel Processing Systems

	Multi-Way Join Query Processing
	Theta-Join
	Equi-Join
	Multi-Way Join

	Real-time Aggregation Query Processing
	Real-Time Data Warehouse
	Distributed Processing
	Data Cube Maintenance

	Real-Time Search Query Processing
	Microblog Search
	Partial Indexing and View Materialization

	Summary

	System Overview
	Design Philosophy of ART
	System Architecture

	AQUA: Cost-based Query Optimization on MapReduce
	Introduction
	Background
	Join Algorithms in MapReduce
	Query Optimization in MapReduce

	Query Optimization
	Plan Iteration Algorithm
	Phase 1: Selecting Join Strategy
	Phase 2: Generating Optimal Query Plan
	Query Plan Refinement
	An Optimization Example
	Implementation Details

	Cost Model
	Building Histogram
	Evaluating Cost of MapReduce Job

	Experimental Evaluation
	Effect of Query Optimization
	Effect of Scalability

	Summary

	R-Store: A Scalable Distributed System for Supporting Real-Time Analytics
	Introduction
	R-Store Architecture and Design
	R-Store Architecture
	Storage Design
	Data Cube Maintenance

	R-Store Implementations
	Implementations of HBase-R
	Real-Time Data Cube Maintenance
	Data Flow of R-Store

	Real-Time Aggregation Query Processing
	Querying Incrementally-Maintained Cube
	Correctness of Query Results
	Cost Model

	Evaluation
	Performance of Maintaining Data Cube
	Performance of Real-Time Querying
	Performance of OLTP

	Summary

	TI: An Efficient Indexing System for Real-Time Search on Tweets
	Introduction
	System Overview
	Social Graphs
	Design of the TI

	Content-based Indexing Scheme
	Tweet Classification
	Implementation of Indexes
	Tweet Deletion

	Ranking Function
	User's PageRank
	Popularity of Topics
	Time-based Ranking Function
	Adaptive Index Search

	Experimental Evaluation
	Effects of Adaptive Indexing
	Query Performance
	Memory Overhead
	Ranking Comparison

	Summary

	Conclusion
	Future Work

	Bibliography

