
+

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.
To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): DEREK F. HOLT and CLAAS E. RÖVER
Article Title: ON REAL-TIME WORD PROBLEMS
Year of publication: 2003
Link to published
version: http://dx.doi.org/10.1112/S0024610702003770
Publisher statement: None

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/48731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap

J. London Math. Soc. (2) 67 (2003) 289–301 Cf2003 London Mathematical Society
DOI: 10.1112/S0024610702003770

ON REAL-TIME WORD PROBLEMS

DEREK F. HOLT and CLAAS E. RÖVER

Abstract

It is proved that the word problem of the direct product of two free groups of rank 2 can be recognised
by a 2-tape real-time but not by a 1-tape real-time Turing machine. It is also proved that the Baumslag–
Solitar groups B(1, r) have the 5-tape real-time word problem for all r 6= 0.

1. Introduction

For a finite alphabet A, a language L ⊆ A∗ is said to be real-time recognisable (or
just real-time, for short), if it is recognisable by an n-tape deterministic real-time
Turing machine for some integer n > 0. Such a machine consists of a tape containing
the input word with the tape-head initially at the beginning of the word, together
with n work-tapes, which are two-way infinite tapes and initially empty. It has a
finite number of states, including a unique initial state and a collection of accepting
states. On every transition it must read one input symbol and the input tape-head
then moves one place to the right. At the same time, each of the work-tapes may
write one symbol or a blank in its current location from a fixed finite set S of
work-symbols, and then move at most one square to the left or right, depending
on the state, the input symbol, and the symbols currently being scanned by the
work-tapes. We shall call this process of writing a symbol and then possibly moving
one square left or right a basic move on that work-tape. The word is accepted if the
machine is in an accepting state on reaching the end of input.

Consider an apparently more general class of languages in which, for some fixed
positive integer k, the work-tapes are allowed to perform up to k basic moves for
each input symbol read. It is proved in [6, Theorem 2] that for any language L in
this class, by increasing the number of states and work-symbols, we can construct
a standard real-time Turing machine with the same number of work-tapes that
recognises L.

An example is given in [11] of a language that is acceptable by a 2-tape real-time
Turing machine but not by a 1-tape machine. Then, in [1], examples are given of
languages that are accepted by k-tape but not by (k − 1)-tape real-time Turing
machines for each k > 1.

Now let G = 〈U〉 be a finitely generated group, let A = U ∪ U−1, and let A∗ be
the set of all words in A. The word problem WU(G) of G with respect to U is defined
to be the set {u ∈ A∗ | u =G 1}.

The problem of which finitely generated groups G have real-time word problem
was investigated in [7]. In particular, it was proved that this property is independent
of the choice of generators of G, and various closure properties were established,

Received 31 October 2001; revised 9 May 2002.

2000 Mathematics Subject Classification 03D40.

The second author is supported by an EPSRC research grant.

290 derek f. holt and claas e. röver

such as closure under direct products, passing to finitely generated subgroups, and
passing to supergroups in which the original group has finite index. By using the
remark above about allowing k work-tape operations for each input symbol read,
it is easy to show that, for any positive integer n, the property of WU(G) being
recognisable by a real-time Turing machine with n work-tapes is also independent
of the choice of generators of G, and so it is a property of the group G alone. Let
us say that groups with this property have n-tape real-time word problem. It can
also be easily shown that this class of groups is closed under passing to finitely
generated subgroups and passing to supergroups in which the original group has
finite index. However, our example in Section 4 will show that it is not closed under
direct products, at least in the case n = 1.

The main result of [7] is that various groups, including finitely generated virtually
nilpotent groups, word-hyperbolic groups and geometrically finite hyperbolic groups
have 4-tape real-time word problem. (Recall that, for a property P, a group is said
to be virtually P if it has a subgroup of finite index with property P.) In fact it was
shown that these groups have tidy 4-tape real-time word problem, which means that
all work-tapes are empty at the end of input of any accepted word. For non-zero
integers r and s, the Baumslag–Solitar group B(s, r) is defined by the presentation
B(s, r) = 〈 x, y | y−1xsy = xr 〉. Our first result in this paper is that these groups have
tidy 5-tape real-time word problem when s = 1. We do not know whether they have
real-time word problem when s 6= 1.

A group has 0-tape real-time (that is, regular) word problem if and only if it is
finite. It is proved in [9, 10] that WU(G) is (deterministic or non-deterministic)
context-free if and only if G is virtually free. (Note that this proof makes use of a deep
result of Dunwoody [3].) Now a one-stack pushdown automaton is a 1-tape Turing
machine which is more restrictive in one sense than a 1-tape real-time machine,
because it can only access the top of the stack, but less restrictive in another sense,
because it need not read its input word at constant rate. It is easy to show that finitely
generated free and hence also virtually free groups have 1-tape real-time word prob-
lem. However, it is proved in [4] that finitely generated abelian, and hence also virtu-
ally abelian, groups have 1-tape real-time word problem, so the class of groups with
context-free word problem is strictly contained in that of groups with 1-tape real-time
word problem. We shall show in this paper that the wreath product of any non-trivial
finite group with an infinite cyclic group has 1-tape real-time word problem.

Finally, we use similar ideas to those in [11] to show that the group F2 × F2 has
2-tape but not 1-tape real-time word problem, where F2 is the free group of rank 2.
It would be interesting to know whether or not F1 × F2 has 1-tape real-time word
problem.

2. Baumslag–Solitar groups

In this section, we shall prove the following theorem.

Theorem 2.1. Let r be a non-zero integer, and let G be the Baumslag–Solitar group
B(1, r) = 〈 x, y | y−1xy = xr 〉. Then G has tidy 5-tape real-time word problem.

Note that B(1, 1) is free abelian of rank 2, and B(1,−1) has a free abelian subgroup
〈x, y2〉 of index 2. In these cases, G has 1-tape real-time word problem by the result
proved in [4], and it can easily be seen directly that G has tidy 2-tape real-time word
problem. We shall therefore assume from now on that |r| > 1.

on real-time word problems 291

We denote x−1 and y−1 by X and Y , respectively, and let A = {x, y, X, Y }. By [8,
Theorem 2.1, Chapter IV], any element g ∈ G can be written in a unique way in the
normal form

ylxi1Yxi2Y . . . ximYxn (1)

where l and m are non-negative integers, n is any integer, 0 6 ij < |r| for 1 6 j 6 m,
and i1 > 0 if l, m > 0.

Let us consider what happens to the normal form when we multiply g on the right
by an element of A. When we multiply by x or X, we simply increase or decrease n
by 1.

When we multiply by y then, if m = 0 we increase l by 1 and replace n by rn, and
if m > 0 we decrease m by 1 and replace n by rn+ im.

Let n = rn′ + t with 0 6 t < |r|. When we multiply by Y then n is replaced by
n′. In addition, if m = t = 0 and l > 0, then l is decreased by 1, and otherwise m is
increased by 1 and im is put equal to t.

It is easy to see that, for a given word-length t+ 1, the words xyt and Xyt in A∗
(and also x2yt−1 and X2yt−1 when |r| = 2) define group elements with the largest
possible value of |n| in the normal form (1), namely |n| = |r|t. We therefore have the
following lemma.

Lemma 2.2. Suppose g ∈ G has normal form as in (1) where n 6= 0. Then any word
in A∗ representing g has length greater than log|r| |n|.

We shall now describe a 5-tape real-time Turing machine with language equal
to W{x,y}(G). The set S of work-symbols will contain an end-of-tape symbol E, the
generators y, Y , and symbols xi and Xi, for 1 6 i < |r|, that represent xi and Xi,
respectively. We shall use B to represent a blank cell on a tape.

Two of the five tapes, which we shall call the y-tape and the x-tape, will be used
to store the words ylxi1Yxi2Y . . . ximY and xn, respectively, in the normal form of
the group element g defined by the prefix of the input word that has been processed
so far. We shall refer to the procedure of adjusting the x- and y-tapes as a result of
multiplying g on the right by a generator z ∈ A as processing z.

Two of the other three tapes are called queueing tapes, and play the same rôle
as in the real-time Turing machine described in [7, Section 4]. The fifth tape is
called the reversing tape. As we shall see shortly, there is no uniform bound on
the number of basic moves needed to adjust the normal form stored on the x-tape
when processing a single generator. Since we are obliged to read generators from
the input tape at a constant rate, we sometimes need to queue the input for later
processing. We do this on one of the two queueing tapes. When we have finished
the adjustments to the normal form, we first transfer the queued generators onto
the reversing tape, thereby restoring them to their original order, and then process
them. These generators are deleted from the queueing and reversing tapes as they
are transferred or processed. While we are doing all that, we use the other queueing
tape to queue generators read from the input tape.

An input word is accepted if all five work-tapes are empty on reaching the end of
input.

The word on the y-tape is stored just as it is, except that the symbol xij is used
in place of xij when ij > 0, so this word has length at most 2m + l. The tape-head
is kept pointing at the final symbol at the right-hand end of the word. From the

292 derek f. holt and claas e. röver

description above of the effect on the normal form when we multiply on the right
by an element of A, we see that at most three basic moves are required to adjust the
contents of the y-tape when we process a generator from A. (Note that moving the
tape-head and then writing amounts to two basic moves, not one!)

Let us assume for the moment that r > 0. The changes necessary when r < 0 are
not great, and will be easy to describe later.

The word xn on the x-tape is stored in compressed form, similar to that described
for nilpotent groups in [2] and used in the real-time Turing machine in [7]. The
word is stored as a sequence of symbols σt−1σt−2 . . . σ0, where each σk is equal to xjk
or Xjk for some jk , or to B. We define jk to be 0 when σk = B. The group element

that this represents is defined to be xn with n =
∑t−1

k=0 εkjkr
k , where εk = 1 or −1

when σk = xjk or Xjk , respectively.
Since powers of both x and X are allowed in the word, the expression for a given

element xn is not unique. For example, if r = 2, then x1BBX1 and x1x1x1 are both
legitimate strings representing x7. However, we do make one extra restriction, and
require that no pair of adjacent symbols σk+1σk should be equal to x1Xj or to X1xj
for any j > 0. Whenever such a pair does occur, we immediately replace it by the
equivalent pair Bxr−j or BXr−j , respectively. Let us call this type of replacement a
simplification.

Since the word on the x-tape may need to expand or contract at either end, the
x-tape is a two-way infinite tape, and we keep end-of-tape symbols E to the left of
σt−1 and to the right of σ0. After processing each input generator, the tape-head is
returned to point at the end-of-tape symbol E at the right-hand (least significant)
end of the word.

We define the length lx of the word on the x-tape to be equal to the number of
non-blank symbols σi in the word. Suppose the word stored on the x-tape is xn or
Xn with n > 0. What is the smallest possible value of n for a given value of lx?
For lx = 0 or 1 this is clearly equal to lx. When lx > 1, bearing in mind that we
cannot have x1Xj or X1xj on the tape, we see that the smallest value of n occurs
for r > 2 when t = lx, σt−1 = x2, and σk = Xr−1 for 0 6 k < t − 1, and for r = 2
when t = lx + 1, σt−1 = x1, σt−2 = B and σk = X1 for 0 6 k < t− 2. In either case,
the smallest value of n is equal to rlx−1 + 1. Lemma 2.2 now implies the following.

Lemma 2.3. Suppose that g ∈ G has normal form as in (1) and is stored on the x-
and y-tapes in the manner described above. Then any word in A∗ representing g has
length at least lx.

We now need to consider the adjustment that needs to be made to the x-tape
when a generator is processed. If the generator is Y , then we move the tape-head
one place to the left, and then replace the current σ0 by E. If the generator is y,
then we write the symbol xim (or B if m = 0 or im = 0) that was deleted from
the y-tape in the current position; this becomes the new σ0. We may now need to
make a simplification to the new pair σ1σ0. Finally, we move the tape-head one
place to the right and write E there. The number of basic moves on the x-tape
required to make these adjustments is at most four if a simplification is needed,
and at most two otherwise. When the input generator is x or X, the number of
tape-head moves required to make the adjustment is not bounded uniformly. This
is why we need the queueing tapes. Suppose that the input symbol is x. (When it
is X, simply interchange x and X in the following description.) There is an integer

on real-time word problems 293

j > 0 such that σi = xr−1 for 0 6 i < j and σj 6= xr−1. Then σi must be replaced
by B for 0 6 i < j, and σj must be replaced by the symbol that represents σjx. A
simplification may now be necessary on σj+1σj . It may also be necessary to write
the end-of-tape symbol E to the left of σj . To carry out these changes, the tape-head
on the x-tape needs to be moved up to j + 3 places to the left and then back again
at the end, making a total of up to 2(j + 3) basic moves.

Suppose that our Turing machine is a k-real-time machine; that is, up to k basic
moves on the work-tapes may be made between reading generators from the input
tape. We will specify an appropriate value of k shortly.

The machine starts off in what we shall call normal mode, in which generators are
read from the input tape and processed immediately. Suppose that the machine is in
normal mode, and a generator x or X is read from the input tape when σ0 = xr−1

or Xr−1, respectively. We shall call this generator x or X problematic. Let l0 be the
value of lx immediately before it is read. If l0 = 1, then the x-tape can be updated
with at most six tape-head moves, so provided that we choose k > 6, we can remain
in normal mode. If l0 > 1, however, then the machine goes into queueing mode. It
returns to normal mode when the problematic generator and all generators queued
while in queueing mode have been processed.

The only situation in which this machine could return an incorrect answer would
be if the input word was equal to the identity, and we reached the end of input
while in queueing mode. We need to prove that this cannot happen.

The argument that follows is very similar to the proof of [7, Theorem 4.1].
Each queueing mode is divided into phases. During the first phase, the problematic
generator is processed, while input generators are queued as necessary on a queueing
tape. In each subsequent phase, the generators on the current queueing tape are
transferred to the reversing tape, and then they are processed. Queueing mode ends
when the current queueing tape is still empty at the end of a phase.

Suppose that, for i > 1, ri generators are read and queued from the input tape
during phase i. These ri symbols are processed during phase i + 1. We put r0 = 1,
because only the problematic symbol is processed during phase 1. Let ρi = r0 + r1 +
. . . + ri for i > 0. If we can prove that ρj < l0 for some j > 0, then it will follow
from Lemma 2.3 that, during the first j phases of the queueing mode, the elements
of G represented by the prefixes of the input word that have been read so far from
the input tape cannot be the identity. Hence, if we can prove it for all j, then it will
show that if we run out of input during queueing mode, then the input word cannot
equal the identity in G.

We prove that ρj < l0 by induction on j. It is true for j = 0, because we are
assuming that l0 > 1. Suppose that, for some j, we know that ρj−1 < l0, and hence
that lx remains greater than 0 throughout the first j phases.

As we saw above, when a y or Y is processed, either at most two basic moves are
made on the x-tape and lx is increased by at most 1, or four basic moves are made,
including a simplification, and lx remains constant.

When an x or X is processed then, if a sequence of substitutions is provoked,
almost all of the ensuing moves of the x-tape-head to the left result in lx being
decreased by 1. Since the total number of basic moves is equal to twice the number
of tape-head moves to the left, we find that in all cases, if a total of t basic moves
are made on the x-tape, then lx is decreased by at least t/2− 3.

Hence, whatever generator is processed, it is true that if t basic moves are made
on the x-tape, then lx is decreased by at least t/2 − 3. Suppose that ti basic moves

294 derek f. holt and claas e. röver

are made on the x-tape during the ith phase, and let τi = t1 + . . .+ ti. Then, during
the first i phases, lx is decreased by at least τi/2 − 3ρi−1 and since, by inductive
hypothesis, lx > 0 throughout the first j phases, we must have

τj/2− 3ρj−1 < l0. (2)

Since each phase except the first begins with the ri−1 basic moves needed to transfer
symbols from the queueing tape to the reversing tape, we have kri 6 ti + ri−1

for i > 0, and summing from i = 1 to j gives k(ρj − 1) 6 τj + ρj−1. Combining
this equation with (2) yields k(ρj − 1) 6 2l0 + 7ρj−1 and so using our inductive
hypothesis that ρj−1 < l0, we get k(ρj − 1) < 9l0. Thus, since we are assuming that
l0 > 1, we get ρj < l0 provided that k > 18. This completes the induction and the
proof of Theorem 2.1 in the case r > 0.

When r < 0, the only difference is that when a y or Y is processed, the element
of 〈x〉 represented by the word stored on the x-tape needs to be inverted. Rather
than change every xi to an Xi and Xi to an xi, which would take too much time, we
simply double the number of states of the machine, and introduce 1 or −1 as an
extra component of each state. When this component is −1 it means that each xi
on the x-tape now represents Xi, and each Xi represents xi.

3. Wreath products

Let A and C be groups. The restricted wreath product G := A o C of A with C

is defined as follows. Let B be the set of all functions b :C −→ A with b(c) = 1
for all but finitely many c ∈ C . Then, under coordinate-wise multiplication, B is
isomorphic to the direct sum of |C| copies of A, and G is the semi-direct product of
B with C where the action of C is given by

bc(c′) = b(c′c−1). (3)

Theorem 3.1. The restricted wreath product of an arbitrary finite group with an
infinite cyclic group has tidy 1-tape real-time word problem.

Proof. Let A be a finite group, and G = A o 〈t〉 = Bo 〈t〉. For a ∈ A define ba ∈ B
by

ba(t
i) =

{
a if i = 0

1 otherwise.
(4)

Then G is generated by A0 = {ba | a ∈ A} together with t, and every element g of G
is of the form g = bti with b ∈ B and i ∈ Z. Hence gt±1 = bti±1 and gba = bbt

−i
a t

i,
and, by (4) and (3),

(bbt
−i
a)(tj) =

{
b(tj) if j 6= −i
b(tj)a if j = −i.

Now g is the identity in G if and only if i = 0 and b(tj) = 1 for all j ∈ Z. Thus,
if we interpret b(tj) as the content of the jth square on a two-way infinite tape
and ti as ‘the tape-head scans the −ith square of the tape’, then multiplication by
a generator can be carried out by a single basic move of a 1-tape Turing machine
M with work-symbols A. If we let the identity of A be represented by the blank
symbol, then, in order to accept the word problem of G, M has to accept an input

on real-time word problems 295

word if and only if its work-tape is empty and the tape-head is scanning the 0th
square after the input has been read. Using an end-of-tape symbol E and another
disjoint copy of A, say Ā, whose symbols appear only in the 0th square which is
now banned for A-letters, it is a routine matter to turn M into a proper tidy 1-tape
real-time Turing machine accepting the word problem of G. q

It is well known that, unless A is trivial, G is not finitely presentable. Hence we
have the following.

Corollary 3.2. The class of groups with tidy 1-tape real-time word problem con-
tains groups that are not finitely presentable.

As far as we are aware this is the first example of a group which is not finitely
presentable with 1-tape real-time word problem. It is well known that the direct
product of two free groups of rank 2 contains finitely generated subgroups that
are not finitely presentable, which provides a source of such examples with 2-tape
real-time word problem.

4. Direct products of free groups

This section is devoted to the proof of the following result.

Theorem 4.1. The word problem of a direct product of two free groups of rank 2
is not a 1-tape real-time language.

In fact we shall prove a stronger result. Let G be a finitely generated group with
finite generating set A = A−1. For each positive integer n, let sG,A(n) be the number
of elements of G that can be represented by a word over A of length n but not
by a word of length less than n. Alternatively, sG,A(n) can be viewed as the size
of the sphere of radius n in the Cayley graph of G with respect to A. Then G is
said to have exponential growth if there is a constant K such that, for all n > 1,
sG,A(Kn) > 2n. It is easy to see that this definition is independent of the choice of
A and that non-abelian free groups have exponential growth. Hence, Theorem 4.1
follows immediately from the following result.

Theorem 4.2. The word problem of a direct product of two groups of exponential
growth is not a 1-tape real-time language.

Theorem 4.2 has the following corollary, by the remarks in the introduction about
the closure properties of the class of groups with n-tape real-time word problem.

Corollary 4.3. The word problem of a group which has a subgroup isomorphic
to the direct product of two groups of exponential growth is not a 1-tape real-time
language.

Since non-elementary hyperbolic groups have exponential growth (see for example
[5]) we have the following result.

296 derek f. holt and claas e. röver

Corollary 4.4. The word problem of the direct product of two non-elementary
hyperbolic groups is not a 1-tape real-time language.

We also get the following result about complexity classes of word problems.

Corollary 4.5. The class of groups with 1-tape real-time word problem is a proper
subclass of the class of groups with 2-tape real-time word problem.

4.1. Proof of Theorem 4.2

From now on let Gi, i = 1, 2, be finitely generated groups of exponential growth,
and put G = G1 ×G2. By the remarks in the introduction we may choose any finite
generating set for G, so we fix finite generating sets Ai for Gi, i = 1, 2, and take
A = A1 ∪ A2 as generating set for G. We are interested in the word problem W of
G with respect to A.

The proof is by contradiction, so we assume that we have a 1-tape real-time
machine M which accepts W . In the sequel, ‘tape’ always means the work-tape of
M. When w is a word over A, then t(w) denotes the tape of M after processing w, by
which we mean all tape squares that were visited during that computation together
with their contents. The tape t(w) together with the internal state and the current
position of the tape-head is called the configuration of M after w has been processed,
and is denoted by c(w). The length of the tape t(w), written |t(w)|, is the number of
tape squares that were visited while processing w. By definition, this is also the length
of the configuration c(w). It is clear that |t(w)| never exceeds the length of w plus one.

The idea behind the proof is to apply the bottleneck argument of Rabin [11] twice
to find words u, v ∈ A∗1 and z ∈ A∗2 such that uzv−1z−1 is accepted by M but u and
v represent distinct elements of G1. Here and in the sequel, u−1 denotes the inverse
of the word u as in free groups; that is, reverse the order of the letters and invert
them, for example (abc−1a)−1 = a−1cb−1a−1.

Let K be a constant satisfying

sGi,Ai(Kn) > 2n for i = 1, 2. (5)

Such a K exists by hypothesis and we lose nothing by assuming that K is a
non-negative integer. Let m be a power of 2 greater than the number of internal
states of M and also greater than the number of work-symbols of M, where the
blank is considered to be a work-symbol. Then m > 2. Clearly there are at most
mk · k · m different configurations of length at most k, and for sufficiently large k,
mk · k · m 6 m2k holds. In the sequel logarithms are to the base 2. Define

c =
1

2 logm
, d =

20K

c
, and N = m2 + m4 + . . .+ m2d.

Notice that 1/c and d are integers, by the choice of m and K . It is clearly possible
to find an integer l0 > 1 such that for all integers l > l0

(i) m9(l+1)9(l + 1)m 6 m2·9(l+1);
(ii) 2l > 2(Kl + 1)N2(10K(Kl + 1)/c)2d.

Now fix an integer l > l0 and put

L = Kl, i =
10(L+ 1)

c
, I = Ki, and f =

2l

2l + 1
.

on real-time word problems 297

Notice that i, I and L are integers, for 1/c and K are. Because

ci = 9(L+ 1) + log 2L+1 > 9(L+ 1) +
log (2l + 1)

2 logm

with these choices we have

ci > 9(L+ 1)− log (1− f)

2 logm
(6)

and

2l > 2(L+ 1)(NId)2. (7)

Let U be a set of 2l words in A∗1 of length L such that distinct elements of U
represent distinct elements of G1, and let V be a set of 2i words in A∗2 of length I

such that distinct elements of V represent distinct elements of G2. The existence of
U and V are guaranteed by (5).

Lemma 4.6. For every u ∈ U there are at least f2i different v ∈ V with |t(uv)| >
9(L+ 1).

Proof. By the definition of c and (6), we get

(1− f)2i > m2·9(L+1). (8)

For a given u and different v1 and v2 in V the configurations c(uv1) and c(uv2) must
also be different because uv1 and uv2 represent different elements of the group G.
Since L > l > l0, by (i) above, the right-hand side of (8) exceeds the number of
different configurations of length at most 9(L+ 1), and the lemma follows. q

Together with the fact that the intersection of 2l subsets of V each of size at least
f2i is of size at least (1− f)2i > 1, and hence not empty, Lemma 4.6 implies the
following result.

Corollary 4.7. There exists w ∈ V such that for all u ∈ U, |t(uw)| > 9(L+ 1).

Lemma 4.8. Let u ∈ U and v ∈ V . Then fewer than L+ 1 of the squares of t(uv)
are visited more than d times while processing uv.

Proof. Since i > l, the length of uv is less than 2I , and so the total number of
moves done by M while processing uv is less than 2I , but if there were at least
L+ 1 of the squares of t(uv) visited more than d times, then M needed to do at least
(d + 1)(L + 1) − 1 moves, that is 1

10
(d + 1)ci 6 2I , or equivalently d + 1 6 20K/c.

This contradicts the choice of d, and the lemma is proved. q

From now on u will always denote an element of U and w will be an element
whose existence is established in Corollary 4.7; in particular |t(uw)| > 9(L+1). Divide
the tape t(uw) into three parts X, t(u) and Y, as in Figure 1. In the figures labels like
t(u) indicate those tape squares visited while processing u no matter whether their
contents are changed later in the computation. Since |t(u)| 6 L + 1 6 1

9
|t(uw)|, for

at least half of the u ∈ U one of the parts X or Y of t(uw) contains at least 4
9

of the
tape squares of t(uw). For definiteness assume it is Y, and let U0 be the set of such
u’s, so |U0| > |U|/2.

298 derek f. holt and claas e. röver

t(u)X Y t(uw)

Figure 1.

t(uw)Bu Rut(u) I I II 1239

Figure 2.

Let u ∈ U0 and divide the tape t(uw) into nine equally long parts (as accurately as
possible), labelled I1, . . . , I9 from right to left. Since each Ij comprises at least L+ 1
tape squares, by Lemma 4.8, there is a square Bu in part I4 which is visited at most
d times during the processing of uw. Fix such a Bu and denote by Ru the square to
the right of Bu (see Figure 2).

Now the pair (Bu, Ru) defines a factorisation w0w1 . . . wr of w by the following
conditions. The tape-head of M moves from Bu to Ru if and only if the last letter of
a wj with even j < r is being processed, and it moves from Ru to Bu if and only if
the last letter of a wj with odd j < r is being processed.

The crossing sequence of w with respect to (Bu, Ru) is the r-tuple

((q0, p0), . . . , (qr−1, pr−1))

where qj is the internal state and pj is the scanned symbol on the tape in the config-
uration c(uw0 . . . wj), 0 6 j 6 r − 1. In particular, the tape-head in the configuration
c(uw0 . . . wj), 0 6 j 6 r − 1, is scanning Bu or Ru according to whether j is odd or
even, respectively. In the sequel a phrase like ‘the tape to the right of the square S ’
means all tape squares to the right of but not including S .

Notice that the number r does not exceed d and hence there are at most N
possible crossing sequences and not more than

(
I
d

)
6 Id different factorisations of

w. Thus there is a subset U1 of U0 of size at least |U0|/(NId) so that, for all u ∈ U1,
the computations of uw give exactly the same crossing sequences and factorisations
of w with respect to (Bu, Ru). Moreover, the tapes t(uw) are all identical to the right
of Bu and, for all prefixes z of w for which the tape-head is to the right of Bu in the
configuration c(uz), the internal states of the configurations c(uz), u ∈ U1, are all
equal. This is because the part of the tape to the right of Bu, Y say, is changed only
while wj with odd j are being processed and for each such wj the change depends
solely on the pair (qj−1, pj−1) and the previous contents of Y which are the same for
all u ∈ U1 because all factorisations of w are the same and t(u) is to the left of Bu.

Let z be the prefix of w such that the right-most square of t(uw), say E, is occupied
for the first time precisely after the processing of uz for some, and hence for all
u ∈ U1. The following follows from this discussion.

Lemma 4.9. For all u ∈ U1, the computations of uz give exactly the same crossing
sequences and factorisations of z with respect to (Bu, Ru). Moreover, all of the tapes
t(uz) are identical to the right of Bu and the internal states of the configurations c(uz)
are also all equal.

Align all of the tapes t(uz) for u ∈ U1 at their (right-most) squares E, and let J
denote the interval of those L + 1 tape squares such that there are precisely L + 2

on real-time word problems 299

t(uzu)−1t(u)

Bu

Bu

t(u)

Bt(v)

t(uzv)

t(vzv)

−1

−1

t(u) t(uz)J

B

B

B

v S

S

S

identical

identical

E

E

E

E

align tapes

L+1 L+2

=tape head position (only certain for)t(uz)

Figure 3.

tape squares of t(uz) to the right of J (see Figure 3). Observe that Bu is always to
the left of J .

Next consider the tapes t(uzu−1), u ∈ U1. Since u is of length L, the tape-head of
c(uzu−1) must be to the right of J . Similarly to the proof of Lemma 4.8 one sees
that there is a square, Cu say, inside J which is visited at most d times during the
computation of z−1 that starts in the configuration c(uzu−1).

Since there are at most L + 1 possibilities for Cu, there is a subset U2 of U1

satisfying |U2| > |U1|/(L+ 1) and a fixed square B in J such that for all u ∈ U2,
B is visited at most d times during the computation of z−1 which starts in the
configuration c(uzu−1). Let S denote the square to the left of B. Just as before
this gives rise to a factorisation of z−1 and an associated crossing sequence from
the computation of z−1 starting in the configuration c(uzu−1), only this time by
considering moves from B to S and moves from S to B.

Again there are at most NId possible combinations of such factorisations and
crossing sequences. Since by (7),

|U2| > |U1|
L+ 1

>
|U0|

(L+ 1)NId
>

2l

2(L+ 1)NId
> NId,

we get the following.

Lemma 4.10. There exist u, v ∈ U2, u 6= v, such that the computations of z−1 start-
ing in c(uzu−1) and c(vzv−1) both give the same factorisation of z−1, z−1 = z0z1 . . . zs
say, as well as the same crossing sequence, say ((q0, p0), . . . , (qs−1, ps−1)), with respect
to (S, B).

The final contradiction in the proof of Theorem 4.2 is now obtained by the
following result.

Lemma 4.11. Let u and v be distinct elements of U2 satisfying the conclusion of
the previous lemma. Then the configuration c(uzv−1z−1) is an accept configuration.

300 derek f. holt and claas e. röver

Proof. The point is that the part of t(uzv−1) to the left of B is identical to the
part of t(uzu−1) to the left of B and that the part of t(uzv−1) to the right of S is
identical to the part of t(vzv−1) to the right of S (see Figure 3).

Let us be a little more precise. When w is a word over A, then q(w) denotes the
internal state and h(w) the position of the tape-head in the configuration c(w). For
w ∈ {uzu−1, vzv−1, uzv−1}A∗2 let tl(w) and tr(w) denote the parts of t(w) to the left of
B and to the right of S , respectively. By the choice of u and v, Lemma 4.9, and the
discussion following it, the following hold:

tl(uzv
−1) = tl(uzu

−1),

tr(uzv
−1) = tr(vzv

−1),

q(uzv−1) = q(vzv−1),

h(uzv−1) = h(vzv−1).

(9)

We call a prefix x of z−1 even (odd) if the minimal j for which x is a prefix of
z0 . . . zj is even (odd). We will prove the following.

Claim 4.12. For every prefix x of z−1,
(a) tl(uzv

−1x) = tl(uzu
−1x);

(b) tr(uzv
−1x) = tr(vzv

−1x);

(c) q(uzv−1x) =

{
q(vzv−1x) if x is even

q(uzu−1x) if x is odd;

(d) h(uzv−1x) =

{
h(vzv−1x) if x is even

h(uzu−1x) if x is odd.

This completes the proof because M accepts uzu−1z−1 and vzv−1z−1 solely on the
basis of its internal state and the scanned tape symbol at the end of the computation.
Also one of these equations agrees, by the claim, with that of c(uzv−1z−1) depending
on whether z−1 is odd or even.

Proof of Claim 4.12. The claim is proved by induction on the length of x, the
case when x is the empty word being (9). Let x′ and x = x′a be prefixes of z−1,
where a ∈ A2. Suppose that x′ satisfies (a)–(d). There are two cases to consider.

Case 1: Both x and x′ are even; the case when both are odd is similar.

By the definition of the factorisation, h(uzv−1x′) scans a square in tr(uzv
−1x′), so

(a) holds by induction. Since the action of M is determined by a, q(uzv−1x′), and
the contents of the square scanned by h(uzv−1x′), the induction hypothesis implies
that also (b)–(d) hold for x.

Case 2: Suppose that x′ is even and x is odd; the opposite case is similar again.

Then x′ = z0 . . . zj with j even. By the properties of the crossing sequence, the
factorisation of z−1, and the induction hypothesis we have

q(uzv−1x′) = q(vzv−1x′) = q(uzu−1x′) = qj ,

h(uzv−1x′) = h(vzv−1x′) = h(uzu−1x′) = S,

and S contains pj . Hence (b) holds by induction, because the part of the tape

on real-time word problems 301

to the right of S is not changed by the following move of M. (Recall from the
introduction that M may only print a symbol on the tape square it is currently
scanning.) Statements (a), (c) and (d) follow now from the induction hypothesis,
again because the action of M is determined by a, qj and pj . q

This now establishes Lemma 4.11 and Theorem 4.2. q

References

1. S. O. Aanderaa, ‘On k-tape versus (k − 1)-tape real time computation’, Complexity of computation,
SIAM-AMS Proceedings VII (American Mathematical Society, Providence, RI, 1974).

2. J. Cannon, O. Goodman and M. Shapiro, ‘Dehn’s algorithm for non-hyperbolic groups’, preprint,
University of Melbourne.

3. M. J. Dunwoody, ‘The accessibility of finitely presented groups’, Invent. Math. 81 (1985) 449–457.
4. M. J. Fischer and A. L. Rosenberg, ‘Real-time solutions of the origin-crossing problem’, Math.

Systems Theory 2 (1968) 257–263.
5. E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov (Birkhäuser,

Boston, 1990).
6. J. Hartmanis and R. E. Stearns, ‘On the computational complexity of algorithms’, Trans. Amer.

Math. Soc. 117 (1965) 285–306.
7. D. F. Holt and S. Rees, ‘Solving the word problem in real time’, J. London Math. Soc. 63 (2001)

623–639.
8. R. C. Lyndon and P. E. Shupp, Combinatorial group theory (Springer, Berlin, 1977).
9. D. E. Muller and P. E. Schupp, ‘Groups, the theory of ends, and context-free languages’, J. Comput.

System Sci. 26 (1983) 295–310.
10. D. E. Muller and P. E. Schupp, ‘The theory of ends, pushdown automata, and second-order logic’,

Theoret. Comput. Sci. 37 (1985) 51–75.
11. M. O. Rabin, ‘Real time computation’, Israel J. Math 1 (1963) 203–211.
12. A. L. Rosenberg, ‘Real time definable languages’, J. Assoc. Comput. Mach. 14 (1967) 645–662.

Derek F. Holt
Mathematics Institute
University of Warwick
Coventry CV4 7AL

dfh@maths.warwick.ac.uk

Claas E. Röver
Department of Mathematics
University of Newcastle-upon-Tyne
Merz Court
Newcastle-upon-Tyne NE2 7RU

c.h.e.w.roever@newcastle.ac.uk

	ADP104.tmp
	+
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

