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Summary 

        As a beam of light hits an object, the object’s information is transferred to 

the scattered light with various wave vectors including both propagating and 

evanescent components. The propagating components carry the large features of 

an object and can reach the far field, while the miniature details of any object are 

carried by the scattered evanescent components, localized in the object’s near 

field, and cannot reach the far field. Consequently, the resolution of the ultimate 

image is always “diffraction-limited”. During the past decade, numerous efforts 

have been devoted to overcome diffraction limit. The near-field scanning optical 

microscope (NSOM/SNOM) enables a resolution of a few ten nanometers by 

collecting the evanescent waves localized in the objects near field. However, it 

has many limitations, related to a very low working distance and extremely 

shallow depth of field. Also the transmission efficiency of a small aperture is very 

low. It also takes a long time for scanning over a large sample area for a high 

resolution imaging. The diffraction limit can be also overcome by some other 

techniques, e.g. with surface-plasmon superlenses, nanoscale solid-immersion-

lens and molecular fluorescence microscopy, negative refractive index super lens 

which is related to the enhancement of evanescent waves within a slab of artificial 

material with a negative refractive index and far-field super lens (FSL). 

In spite of the impressive progress in this field, surface plasmon polariton 

(SPP) energy loss, sophistications in nanofabrication, specific laser sources, and 

parameter configuration of SPP excitation are factors which hamper far-field and 

near-field subwavelength imaging in the whole visible spectrum. In various fields 

of science, technology and medicine there is a continual need to obtain 

increasingly higher resolution images.      

This research is motivated by the opportunity to develop an artificial 

media with effective optical property to manipulate light for the application in 

subwavelength imaging. Analytic and numerical investigation is allocated to 

apply the field that is scattered by metallic or dielectric nanoparticles, for the 
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near-field and far-field subwavelength imaging. An aggregate of plasmonic 

nanoparticles with different shapes and orientations are embedded in a dielectric 

host is studied for near-field tunable subwavelength imaging. An effective 

medium theory is extended to the optical range to homogenize the optical 

property of the metal-dielectric mixture. Optimal values for shape, dimension, and 

orientation of nanoparticles and their probability distribution function (PDF) are 

provided for successful near-field subwavelength imaging for different 

frequencies in the optical range. 

Far-field subwavelength imaging with a dielectric particle in white light 

source is studied to overcome (i) the sensitivity of plasmon resonance on the 

frequency of the incident light, (ii) inevitable metal loss in metal-based 

subwavelength imaging techniques. A complete analytical explanation of near-

field virtual image formation by dielectric micro-spheres is presented for the first 

time. 
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CHAPTER 1 

INTRODUCTION 

 

 

 
1.1 Negative Index of Refraction and Super Resolution   

It is well-known that the resolution of conventional optical imaging systems is 

restricted by the Abbe diffraction limit. The observation of the subwavelength 

details of an object is difficult due to the considerable attenuation of the scattered 

waves with high spatial frequency, in the nano-metric vicinity of the object. In 

2000, John Pendry from the Imperial College of London made a groundbreaking 

prediction and, mathematically demonstrated that the negative index material 

(NIM) slab not only focuses propagating waves, but also turns the evanescent 

decay of the near-field to exponential amplification [1]. The electric component of 

the scattered field from an object can be given by [1], 

      𝐸(𝑟, 𝑡) = ∑ 𝐸𝜎�𝑘𝑥 ,𝑘𝑦� exp(𝑗𝜔𝑡 − (𝑗𝑘𝑧𝑧 + 𝑗𝑘𝑥𝑥 + 𝑗𝑘𝑦 𝑦))𝜎,𝑘𝑥 ,𝑘𝑦 ,          (1.1)              

 

Here the z axis is considered to be the axis normal to the lens. According to the 

Maxwell’s equations: 

 

⎩
⎪
⎨

⎪
⎧𝑘𝑧 = �𝜔2𝜇𝜀 − 𝑘𝑥2 − 𝑘𝑦2         propagating component (𝑘𝑥2 + 𝑘𝑦2  <  𝜔2𝜇𝜖) 

                                                          

𝑘𝑧 = −𝑗�𝜔2𝜇𝜀 − 𝑘𝑥2 − 𝑘𝑦2       evanescent component  (𝑘𝑥2 + 𝑘𝑦2 > 𝜔2𝜇𝜖 )

�,       (1.2)    
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Taking advantage of the negative phase property of the NIM slab, the spatial 

harmonics,k′z, in the NIM slab will be of the following form 

                                                    𝑘𝑧′ = −𝑘𝑧.                                                    (1.3) 

   Consequently the property of phase reversal of the NIM slab is observed, 

resulting in reconstruction of every spatial frequency component carried with the 

scattered light. Imaging with the help of the near-field is now possible for an 

electromagnetic lensing system and in the case of no material losses a perfect 

image could be reconstructed, Pendry dubbed this slab a ‘perfect lens’. 

Furthermore, Pendry suggested that a silver slab exposed with Transverse 

Magnetic (TM) polarization under UV light could act as a near-field perfect lens 

or superlens. This gave solid direction for a surface-Plasmon-mediated, 

sub100nm, super-resolution imaging system. Pendry dubbed the superlens as the 

‘poor-mans perfect lens’. Figure 1.1 demonstrates the growth mechanism of an 

evanescent wave in a NIM slab where exponential decay becomes exponential 

amplification. 

 

                                  

 

Figure 1.1 The proposed amplification of evanescent waves in a perfect lens, reprinted with a 

permission of [2]. 
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Pendry’s paper added some much needed drive to the search for negative 

refraction, but progress from this point onwards would prove challenging. 

Pendry’s general case was for a medium where μ and ε are exactly equal to −1, 

and specifically for a steady state environment. The effect of material losses was 

not studied in detail. Pendry stated that the concept was far from being a closed 

book, and he could not have been more correct. An intense debate broke out over 

whether a NIM was a realizable material. Initially, Hooft [3] and Williams [4] 

commented on Pendry’s mathematical calculations and claimed there were errors 

in causality assumptions and believed the diffraction losses would cause some 

problems and even questioned whether a negative index material was a 

mathematical possibility. Pendry replied to these questions with [4,5] and 

concluded that their claims either did not apply to his summation or were wrong. 

However, Pendry stated that the simultaneous -1 for ε and µ  only occur at one 

frequency for any real material, due to the inevitability of strong dispersion with 

frequency. Consequently the flawless image of a real source will not be realizable 

since it will always radiate a bandwidth of frequencies. He also confessed to not 

being able to answer questions posed by Williams [4] relating to the diffraction 

losses in a subwavelength imaging system. Valanju et al. were the first group who 

questioned the physics of NIM materials and claimed that “causality and finite 

signal speed always prevent negative wave signal (not phase) refraction” [6]. 

Valanju et al. believed that they mathematically proved that the group velocity of 

a wave packet is always positively refracted and negative refraction only occurs 

for the phase velocity. In return, Pendry et al. [7] showed that Valanju et al. had 
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used a dual-frequency wave packet and failed to test a generalized wave packet 

and their claim was based on an incorrect definition of group velocity. In order to 

support their claim, Valanju et al. [8] mentioned that Pendry et al. unconsciously 

disproved their own case; they still believed that negative refraction violates 

causality. As support to the plausibility of negative refractive materials, 

Foteinopoulo et al. performed detailed numerical simulations to study the 

electromagnetic wave interactions at a free space-NIM interface and demonstrated 

that the causality was not violated [9]. Kolinko et al. also proved that negative 

refractive index material is passive and physically realizable via simulation [10]. 

They also investigated the imaging ability of a NIM slab and could resolve two 

sources which were λ 20⁄   apart. The debate over the perfect lens was continued 

by the most convincing paper by Garcia et al. who tried to prove that any source 

of loss would destroy any perfect imaging (specially, evanescent field 

amplification) [11]. Garcia et al. expressed his argument in [13] against Shelby et 

al.  [12] where they attempted to prove negative refraction through the 

consistency of Snell’s law for a negative refractive index. Garcia et al. argument 

was that the introduction of losses into Pendry’s details of his origin-nal perfect 

lens paper destroyed any perfect lensing action. During 2003 there was a dramatic 

increase in publications who support Pendry’s idea. At that time Pendry quoted, 

“It is time to move on and start making use of these amazing new 

materials.”Perfect resolution might not be achievable completely due to inevitable 

metal’s loss and material dispersion, but undoubtedly the developed and growing 

interest would result in materials that would perform similar functionality. 
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1.2 Negative Refraction in Optical Regime 

Although NIMs were first developed for the microwave range, providing them for 

optical uses is important from application and theoretical perspective. Direct 

downward scaling of the microwave NIM structure is not a realistic method to 

achieve optical NIMs due to fabrication challenges and material limitations. The 

challenges in the optical regime are restricted not only to fabrication but also to 

experimental characterization. Experimental verification of negative refraction is 

achieved through the observation of the bending direction of the Poynting vector 

in the interface. Until now, most of the fabricated optical NIMs are of planar 

subwavelength thicknesses fabricated by optical or electron-beam lithography 

(EBL). Consequently the direct observation of negative bending beams of light is 

from a wedge shape made out of optical NIM is not feasible. The key to design 

optical NIM is to manage a spectral overlap of magnetic and electric resonance. A 

negative permittivity can be obtained using artificial materials consisting of a 

metallic structure which mimics Lorentz model through special design. After an 

early paper by Lagrakov and Sarychev about large paramagnetic responses by 

nanorods [13], and Podosky et al.’s work demonstrating the feasibility of diama-

gnetic responses by a pair of metal nano rods [14], the first optical metamaterial 

with negative index of refraction was experimentally demonstrated by a research 

group at Purdu University using a layer of paired metal nanorods (figure 1.2) [15]. 

An alternative current (AC) electric field parallel to both rods induces parallel 

currents in both rods, and the magnetic field oriented perpendicular to the plane of 

rods, causes anti-parallel currents in both rods causing a magnetic response of the 
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                                       (a)                                                                     (b) 

Figure 1.2 Experimental verification of double negative materials in optical range (a) A schematic 
of the array of paired nanorods (b) Field-emission scanning electron microscope images of the 

fabricated array and a single pair of nanorods [15]. 
 

system. A common approach for the realization of optical metamaterial is to cons- 

truct a magnetic resonant along with taking the advantage of a metallic structure 

which provides negative permittivity for a broad frequency range. Consequently 

the whole concept centers about generating an asymmetric current, which 

provides the magnetic resonance, in the optical range. This general guideline, 

results in a fishnet style structure, which currently is the most common form of 

negative index metamaterial at optical frequencies (Figure 1.3). Until now, 

extensive effort has been dedicated toward realizing the negative index of 

refraction in the optical range [16-20]. Although the negative index was achieved 

in certain optical frequencies the existence of unavoidable loss and material 

dispersion dramatically reduces for super resolution (λ 6⁄  or less) in the optical fr- 

                                               
                                 (a)                                                                               (b) 

Figure 1.3 Fishnet structure: (a) resonant magnetic structure with non-resonant electric grating, and (b) 

Electron microscope images of the fabricated material [18]. 
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-equency. In addition to the loss and dispersion issues, a waveguide approach [21] 

and an estimate based on the Nyquist-Shannon sampling criteria, indicate that a 

resolution of 100 nm requires unit cell sizes of 20 nm or smaller. At this unit cell 

size, fabrication of the required negative magnetic response remains a challenge 

[22].  

 

1.3Estimation of the Unit Cell Size of Metamaterials for 

Subwavelength Imaging 

 
In order to investigate the requirements to be satisfied by metamaterial imaging 

systems, the ideal arrangement composed of the metamaterial slab with refractive 

index n = -1 and thickness d, surrounded with air is considered. The source plane 

and the image plane are positioned at a distance d/2 in front and behind of the 

slab, respectively. It is known, from system theory, that a system has ideal trans-

mission if the transfer function has constant magnitude and linear phase. 

However, metamaterials are subwavelength periodic structures, with finite sized 

unit cells and unavoidable metal losses attributed to the building materials. 

Therefore, the transfer function cannot be ideal and the imaging system will have 

a spatial cutoff frequency corresponding to the highest spatial harmonic, which 

can be passed. The bandwidth of the transfer function characterizes the quality of 

the metamaterial imaging system. In the following, the transfer function of the 

ideal low pass filter is considered as the transfer function of the hypothetical  

metamaterial imaging system as it can be seen in figure 1.4 (a). The objective here 

is to investigate that for an object with subwavelength features how many spatial 
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harmonics required to pass by the lens, to form an image with the same 

subwavelength feature in the image plane. 

                              
                                                                 (b) 

Figure 1.4 The requirement of high spatial harmonics for subwavelength imaging (a) the Fourier 
transform of the source and the Transfer Function, (b) the intensity distribution of the source and 

image: the highest spatial harmonic which is passed has a wavelength of 21.24 nm. 
 

The intensity distribution in the image plane is calculated by convolving 

the Fourier transform of the source field with the transfer function and then 

performing an inverse Fourier transform. The quality of the image, which is 

described by the absolute difference between the intensity distribution of the 

source and image, is investigated in function of the bandwidth of the transfer 

function. The source to be imaged is the double slot illuminated with 

monochromatic light of 357 nm wavelength. The intensity distribution in the 

source plane can be approximated with a double Gaussian function. The half 

width of this source is 20 nm and the peeks are positioned 100 nm apart. The 

magnitude of the source Fourier transform is plotted in red, in figure 1.4 (a), and 

the transfer function with cutoff at 𝑘𝑥 𝑘0⁄ = 2.674 is shown in black. The intensity 

(a) 
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distribution in the image plane is plotted in figure 1.4 (b), where for reference; the 

intensity distribution of the source plane is also shown. Note that in the absence of 

the metamaterial, the two peeks are indistinguishable in the image plane and the 

parameters are configured in such a way that the peeks can be distinguished only 

when evanescent components are transmitted. Upon observing the image, the 

position of the two peeks can be distinguished with a proper threshold which can 

be determined by the noise level in the imaging system, however the magnitude 

and the half-width of the source cannot be accurately obtained. The evolution of 

the absolute difference between the source and image is a function of the cutoff 

frequency of the transfer function and is presented in figure 1.5.  

                    
Figure 1.5 The quality of the image as a function of the bandwidth of the transfer function. The 
error function is the sum of absolute difference of the intensity of the field in object plane and 

image plane, figure 1.4 (b), which is normalized to the number of samples in the space domain. 
 
 

The more evanescent components passed by the imaging system, the 

better the quality of the image becomes. The Nyquist-Shannon sampling criterion 

indicates that the unit cell size of the metamaterial lens has to be smaller than half 

of the wavelength of the highest spatial harmonic transmitted by the system. In 
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the case of figure 1.4, the wavelength of the transmitted highest spatial harmonic 

is λx= 21.24nm. Therefore, the required metamaterial unit cell size should be 10 

nm or less in order to obtain a resolution of 100 nm with a source wavelength of 

357 nm. 

   With the development of the Finite Difference Time Domain (FDTD) 

method, extensive research has been performed to estimate the accuracy of the 

solution as a function of temporal and spatial discretization. The FDTD method 

requires four to ten times smaller unit cell sizes than the optical wavelength to 

propagate plane waves in a homogeneous medium with acceptable accuracy over 

a distance of a few wavelengths. At this unit cell size, it remains a challenge to 

fabricate the required negative magnetic response from resonant elements. 

Consequently, another alternative is to perform subwavelength imaging with TM 

polarized light which only requires negative permittivity [1].  

 

1.4 Near Field Superlens  

As Pendry predicted in his early paper about super resolution [4], a silver lens can 

be the solution for TM polarization. Pendry suggested using a thin slab of silver 

as it naturally has a negative permittivity  at ultraviolet (UV) wavelengths and 

additionally has relatively low loss compared with other metals, allowing imaging 

of the TM wave light components parallel to the lens. Silver achieves its surface 

plasmon (SP) resonance at a real relative permittivity of –1 at 𝜆= 338nm (with a 

loss term ε′= 0.4), and occurs when the SP oscillation is 90∘ out of phase with the 

electric field. Thus, the negative value of permittivity and hence the potential 
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focusing of the near-field through a thin layer of silver is mediated by strong SP 

oscillations. The growth of the evanescent waves is experimentally verified in 

[23]. The generation of a SP relies on the coupling between an electric field and 

longitudinal charge density oscillations at the interface between a metal and a 

dielectric. In order to transfer the amplified evanescent waves, the SP oscillations 

should be coupled from the first interface of “air-silver” to the second interface of 

“silver-air”. The efficiency of the coupling is proportional to the exponential of 

the thickness, and superlensing occurs till the slab’s loss dominates the 

amplification of evanescent waves. Figure 1.6 illustrates the experimental 

verification of imaging with a silver slab performed by Zhang et al. [24]. In 

Zhang’s experiment, near-field optical lithography was used to examine the 

imaging capability of a silver slab sandwiched between photoresist layers.   

 

                            
Figure 1.6 Optical super lensing with silver slab operating near Ultra-violet wavelength [24] 

  

The subwavelength imaging is realized at λ= 365 nm for a grating with a 60-nm 

half pitch (∼λ/6). 

1.5 Motivation  

According to our observations that magnetism vanishes at higher frequencies for 

all natural materials and the refractive index is always positive, the research of 
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metamaterials has started with the goal of producing materials with a negative 

refractive index, i.e., simultaneous negative electric permittivity and magnetic 

permeability for imaging applications below the diffraction limit. However, the 

design of metamaterial lenses with a negative refractive index is not an easy task. 

Despite extensive research efforts, existing optical metamaterial based imaging 

systems work only for narrow frequency ranges of plane waves incident with a 

specific angle and polarization. Metals have a negative electric permittivity; 

therefore the main challenge of metamaterial research is to produce the required 

negative magnetic properties. The metamaterial structures proposed in the 

literature achieve the high frequency magnetism with subwavelength current 

loops or metallic structures, which can support anti-symmetric modes. The 

associated current flow produces a magnetic moment. A metamaterial with a 

customized optical response can be built as a superposition of resonant nano 

elements. The advances in nano-fabrication lead to possibilities to produce such 

subwavelength structures. The most common designs to produce artificial 

magnetism are variations of the split ring resonators and pairs of nano-rods. The 

single wires and cut-wire pairs can be arranged in so called “fishnet” geometries, 

leading to structures with consecutive negative electric permittivity and magnetic 

permeability at optical frequencies [16-20]. However, the resulting metamaterial 

based imaging system will have a cutoff frequency due to unavoidable losses and 

the finite size of the unit cell. As discussed in the next section, the required unit 

cell size can be estimated based on frequency domain analysis of image formation 

and the Nyquist-Shannon sampling criteria. The calculations indicate that 100 nm 
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resolution requires unit cell sizes smaller than 20 nm. At this unit cell size, it 

remains a challenge to fabricate the required negative magnetic response. For 

imaging applications, to overcome the difficulties of producing double negative 

metamaterial, it was shown that a metamaterial with negative permittivity, is 

suitable only for imaging transverse magnetic (TM) sources in the near field 

region. In the literature, this type of material is referred to as single negative 

metamaterial, and an experimental demonstration made using a 35 nm thick silver 

layer to obtain a resolution of approximately 65 nm [24]. Multilayer metal-

dielectric systems were developed to increase the separation between the object 

and image plane [25]. 

   However, metal based structures can only support subwavelength imaging 

in one frequency due to the monotone nature of dispersion curve. This situation 

can dramatically change when a composite metal-dielectric material is used as a 

superlens. The composite materials are engineered of naturally occurring 

materials made from two or more constituent substances with significantly 

different physical or chemical properties which remain separate and distinct at 

the macroscopic or microscopic scale within the finished structure. In contrast to 

metal slabs, metal-dielectric composite films are characterized by an effective 

permittivity  𝜀𝑒𝑓𝑓 that depends critically on the permittivities and filling factors of 

both the metal and dielectric components. The dependence of the effective 

dielectric permittivity on the light wavelength and on the metal filling factor is the 

key to realizing a tunable near-field superlens.  
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1.6 Thesis Outline  

Chapter one provides a brief introduction to the application of negative index 

material (NIM) in subwavelength imaging and the challenge to fabricate such 

material. 

    Chapter two introduces a lattice of metallic nano particles embedded in a 

dielectric medium as an intriguing alternative of negative-epsilon slabs which 

overcomes the “solo-frequency” nature of near-field subwavelength imaging with 

metallic slabs. The material of the lens is a composite of spherical Ag 

nanoparticles embedded in a SiO2 host material. The effective optical property of 

the metal dielectric composite is approximated from the direct solution of 

Poisson’s equation; the image formed by the lens is calculated by solving the 

Maxwell equations with the Transfer Matrix Method (TMM). The formula of the 

composite material, the optimum working frequency and the thicknesses of the 

layers are determined minimizing the absolute difference between the source and 

image. The details of the design procedure are presented, and optimized 

configurations obtained under different constrains are discussed. The main 

advantage of the composite lens is that it can eliminate the hotspots present in the 

images of a metallic superlens and the working frequency is tunable to the 

available industrial laser sources. 

   Chapter three presents a metal dielectric composite material with non-

spherical metallic inclusions of different shapes, sizes and orientations that has 

higher degrees of freedom in imaging with available laser sources. The effects of 
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shape and alignment of nanoparticles are studied and an optimum single and 

multilayer lens system is designed with improved resolution and more robustness 

against metal’s loss. In addition, as the composite material made with aligned 

inclusions has an anisotropic effective index of refraction, an analytical algorithm 

is developed to study the interaction of light with an arbitrary anisotropic layered 

structure. It is shown that subwavelength imaging in different wavelengths is 

heavily dependent on the shape of the nano-particles and one can perform 

imaging in the desired wavelength by changing the shape of the composite 

inclusions. It is also analytically demonstrated that the anisotropy of the 

composite material with aligned nanoparticles makes the imaging more robust to 

loss and enables one to perform subwavelength imaging for even higher 

resolutions due to different imaging mechanisms. 

    Chapter four pursues fundamental theoretical studies which extend the 

classic effective medium theory (Maxwell-Garnett (MG) here) to the optical 

range. In order to have a valid approximated optical property for the aggregate of 

nanoparticles, upper and lower limits are set for the geometry of nanoparticles and 

their PDF in the host medium by analytical calculation. The general assumptions 

and bounds of effective medium theory is discussed and the validity of MG theory 

is tested.    

    Although imaging with a metal dielectric composite overcomes several 

difficulties apparent with metallic slabs, such as formation of hot spots and 

imaging in only one frequency, the performance of the composite lens is still 

hampered by metal loss and sensitivity of Plasmon resonance to the frequency of 
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the incident field. Particularly the loss forces, the metal-based flat superlenses to 

perform only in near-field region. 

   Chapter five presents the analytical investigation of subwavelength far-

field imaging in a white light source with dielectric particles. A complete 

analytical explanation of near-field virtual image formation by a dielectric micro-

sphere is presented for the first time, and the phenomenon is explained by the 

exact solution of Maxwell’s equation. The derived explicit solution and developed 

algorithm reconstructs Mie theory completely in the simplest form of the problem. 

It is shown that only evanescent waves, which carry high frequency spatial 

subwavelength information, are responsible for the formation of a near field 

image. It is also demonstrated analytically that while the evanescent waves 

improve the resolution of the real image, the imaging performance is due to 

nanoscope’s subwavelength near field focusing size.  
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                                CHAPTER 2 

THE VALIDATION OF MAXWELL-GARNETT 
EFFECTIVE MEDIUM THEORY 

 

 

 

 

2.1   Introduction  

The Maxwell-Garnett (MG) effective medium theory claims to assign a 

quantitative estimation for a macroscopic property, to a particular sample of 

heterogeneous material. This chapter is dedicated to determine the geometrical 

specifications i.e. the size of nanoparticles, the filling fraction of the inclusions in 

the composite, and the probability distribution function (PDF) of nanoparticles, 

that a heterogeneous material can be homogenized with classical MG theory 

accurately.  

2.2 Assumptions of Effective Medium Model  

 In the MG theory the optical properties of collection of nanoparticles are mainly 

determined by two contributions: the properties of the particles as well-isolated 

individuals and the collective properties of whole ensemble [1]. However, only in 

the case of well-separated particles in optically thin samples, the response of an 

N-particle system is equal to N-fold of the individual. Consequently, the 
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following conditions are required in order to be restricted to a simplified model 

system which the effective optical property can be predicted by MG theory 

accurately. 

• The particle sizes are strictly limited to the quasistatic regime so that the 

scattering of light by particles become ineffective.  

• The shape of particle can be approximated by spherical or nonspherical 

i.e. spheroidal, shapes with closed form solution when the particle is 

illuminated by light. 

• Easily treatable geometries of the nano-scale assemblies can be selected. 
• The predicted optical property remains in general bonds regardless of the 

geometry of the mixture and statistical distribution of each inclusion 

 

2.3 The Size of the Nanoparticles 

For any individual particle, the size parameter (𝛾 = 2𝜋𝑟
𝜆

) should obey the Rayleigh 

limit thus, the scattering of light by the particles becomes ineffective. It is not 

straightforward to decide when this condition is satisfied, because the quantity, 

which has to be compared with the particles radius (r), is the guided wavelength 

in the composite (𝜆), which depends on the effective refractive index. However, it 

is possible to avoid the particle’s scattering, if an upper bound is set to the 

maximum size of the nanoparticle. In order to investigate the effect of particle’s 

scattering the high frequency effective medium model of spherical inclusions is 

introduced by Rupin in [2], which takes into account the scattering between the 

particles based on the Mie theory [3]. The scattering coefficients of the Mie 



21 
 

expansion in case of standalone spherical particle, when the magnetic 

permeability of the particle and of the surrounding medium is the same, can be 

expressed as, 

                           𝑎𝑛 =  𝑚𝜓
′
𝑛(𝑥)𝜓𝑙(𝑚𝑥)−𝜓′

𝑛(𝑚𝑥)𝜓𝑙(𝑥)

𝑚 𝜉′𝑛(𝑥)𝜓𝑛(𝑚𝑥)−𝜓′
𝑛(𝑚𝑥)𝜉𝑛(𝑥)

,                             (2.1) 

                      𝑏𝑛 = 𝜓′
𝑛(𝑥)𝜓𝑙(𝑚𝑥)−𝑚𝜓′

𝑛(𝑚𝑥)𝜓𝑙(𝑥)

 𝜉′𝑛(𝑥)𝜓𝑛(𝑚𝑥)−𝑚𝜓′
𝑛(𝑚𝑥)𝜉𝑛(𝑥)

,                                     (2.2) 

                      𝑚 =  𝑛𝑖
𝑛ℎ

= �𝜀𝑖𝜇𝑖
�𝜀ℎ𝜇ℎ

   , 𝑥 =  �𝜀ℎ𝜇ℎ 𝜔𝑟 𝑐0⁄ ,                                 (2.3.a) 

                           𝜓𝑛(𝑥) = �𝜋𝑥
2
𝑗𝑛+12

(𝑥)   ,    𝜉𝑛(𝑥) = �𝜋𝑥
2
ℎ𝑛+12
1 (𝑥)                  (2.3.b) 

where Ψ and ξ are the Riccati-Bessel and Riccati-Hankle functions respectively, 

the difference of  Riccati-Bessel and Riccati-Hankle functions Bessel and Hankle 

functions is shown in equation (2.3.b). The coefficient m is the ratio of the 

inclusion and host refractive index, ϵi , µi , ϵh ,and µh  are the relative electric 

permittivity and magnetic permeability of the inclusion and host respectively, x is 

the size parameter in the host medium, ω is the angular frequency of the incident 

light, r is the radius of the sphere and c0 is the speed of light in vacuum. The 

electric and magnetic dipole polarizabilities can be expressed with the first terms 

of the scattering coefficients as [2], 

                                           𝛼𝑒 = 𝑖 3𝑟
3

2𝑥3
𝑎1 ,  𝛼𝑚 = 𝑖 3𝑟

3

2𝑥3
𝑏1.                                 (2.4) 

   For standalone spheres these polarizabilities are exact for any size of the 

sphere and for any wavelength of the incident light. A high frequency extension 
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of the MG theory can be derived by introducing the polarizabilities (2.4) in the 

Clausius-Mossotti formula, 

                                                         
𝜀𝑒𝑓𝑓−𝜀ℎ
𝜀𝑒𝑓𝑓+2𝜀ℎ

= 𝑓
𝑟3
𝛼𝑒.                                  (2.5) 

Equation (2.5) leads to the following relation for the effective permittivity, 

                                                    𝜀𝑒𝑓𝑓 = 𝑥3+3𝑖𝑓𝑎1
𝑥3−3 2⁄ 𝑖𝑓𝑎1

𝜀ℎ .                                (2.6) 

   The power series expansion of Riccati-Bessel functions and their 

derivatives for n =1 and x<<1, Raleigh limit, can be simply expressed, 

                                                     𝜓1(𝑥) = 𝑥2

3
− 𝑥4

30
 ,                                        (2.7) 

                                                     𝜓′
1(𝑥) = 2𝑥

3
− 2𝑥3

15
 ,                                     (2.8) 

                                                  𝜉1(𝑥) = − 𝑖
𝑥
− 𝑖𝑥

2
+ 𝑥2

3
 ,                                  (2.9) 

                                                    𝜉′1(𝑥) = 𝑖
𝑥2
− 𝑖

2
+ 2𝑥

3
 .                                (2.10) 

   The first electric and magnetic scattering coefficients then, can be 

expanded by above power series [3], 

      𝑎1 = −𝑖 2𝑥
3

3
𝑚2−1
𝑚2+2

− 𝑖2𝑥5

5
�𝑚2−2�(𝑚2−1)

(𝑚2+2)2
+ 4𝑥4

9
(𝑚

2−1
𝑚2+2

)2 + 𝑂(𝑥7) ,       (2.11) 

                              𝑏1 = − 𝑖𝑥5

45
(𝑚2 − 1) + 𝑂(𝑥7).                                           (2.12) 

   For quasi static limit which x << 1, the term x3 >> x5, then a1 >> b1 and a1 

is approximated by its first term,   
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                                               𝑎1 = −𝑖 2𝑥
3

3
𝑚2−1
𝑚2+2

.                                         (2.13) 

Replacing equation (2.13) in equation (2.4) the electric polarizability is, 

                                             𝛼𝑒 = 𝑚2−1
𝑚2+2

,                                                (2.14) 

which is the well known Clausius-Mossotti relation and the effective permittivity 

of equation (2.6) should be the effective dielectric function derived by classical 

MG effective medium theory.  For nanoparticles with 2r > 50 nm, the higher order 

multipole modes also contribute and the resonance’s  peak and width are  affected 

also by quadropole and octopole absorption as well as scattering. As the size of 

nanoparticle increases, the higher harmonics become prominent as the light can 

no longer polarize the nano particle homogenously.  

                                                                                   

Figure 2.1.  UV-visible absorption spectra of 9, 22, 48, and 99 nm gold nano particles in 
water. Reprinted with permission of [9]. 

 

   The larger the particles become, the more the resonance peak is red shifted 

and broadened. This phenomena is investigated intensively both experimentally 
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[4-6] and theoretically [7, 8]. Figure 2.1(a) presents the red shift in the absorption 

peak of colloidal gold nano particles as the size of nanoparticles increases [9].  

   For the dipole approximation, there is no size dependence however 

experimentally a strong size dependence of the Plasmon bandwidth is observed 

[10]. To modify Mie theory for small particles, the dielectric function of 

nanoparticles itself is assumed to be size dependence due to the intrinsic size 

effect [10]. At optical frequencies, the electric permittivity of silver is determined 

not only by the motion of the free electrons in the lattice of metallic atoms; 

however the contribution of the bound electron vibration is also substantial. When 

the size of the metallic components is smaller than the mean free path of the 

conduction electrons (≈50 nm), the bulk electric permittivity of metals has to be 

modified to take into account the scattering of the conduction electrons form the 

particle boundary, which leads to an additional loss mechanism [10]. The electric 

permittivity can be decomposed as, 

                                                              𝜀𝑟 = 𝜀𝑟
𝑓 + 𝜀𝑟𝑏,                                     (2.15) 

where 𝜀𝑟 is the measured electric permittivity, 𝜀𝑟
𝑓 is the free electron and 𝜀𝑏𝑟is the 

bounded electron contribution. The contribution of the free electrons to the 

electric permittivity is modeled with the Drude model, 

                                                    𝜀𝑟
𝑓 = 1 − 𝜔𝑝

2

𝜔2+𝑖𝛾𝑒𝜔
 .                                 (2.16)      

    In this relation the plasma frequency 𝜔𝑝 and the damping constant γe are 

determined form the measured bulk electric permittivity at a sufficiently low 

frequency, where the free electron motion is the major factor, which determines 
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the electromagnetic properties. In figure 2.2 the real and imaginary part of the 

measured bulk electric permittivity and its decomposition into components, which 

depends on free and bounded electron contributions, is shown. The size reduction 

effect on the electric permittivity is taken into account by modifying the damping 

constant in the Drude model [10], 

                                         𝛾𝑒 = 𝛾𝑒𝑏𝑢𝑙𝑘 + 𝑣𝑓
𝐿𝑒𝑓𝑓

 .                                         (2.17) 

   

       

Figure 2.2. Decomposition of the electric permittivity of silver into free and bound electron 
contributions. In (a) the real part, while in (b) the imaginary part of the electric permittivity is 

shown. 

here 𝛾𝑒𝑏𝑢𝑙𝑘  is the bulk value of the damping constant, 𝑣𝑓= 1.4*1e6 m/s is the 

Fermi velocity of  electron in silver, and  𝐿𝑒𝑓𝑓 is the effective mean free path to 

take into account the effect of collisions with the boundary of the nanoparticle. 

For particles with arbitrary shape the effective mean-free path can be expressed 

with the billiard or Lambertian scattering model as Leff = 4V/S, where V is the 

volume and S is the surface area of the nanoparticle [11]. Figure 2.3 presents the 

contribution of intrinsic size effect to the real part and imaginary part of dielectric 

function of nanoparticles with various radii. 

       (a)                                                                   (b) 
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Figure 2.3.  Dielectric function for nanoparticles with different radius (a) Real part (b) Imaginary 
part. 

    As it is presented in figure 2.3, while the real part of dielectric function is 

almost the same for nanoparticles with different radii, the imaginary part differs 

noticeably. Consequently one should expect that the width of the plasmon 

resonance peak is more affected than the place of the resonance. Figure 2.4 

demonstrates the effective permittivity for metal-dielectric composites which is 

approximated with MG theory while the intrinsic size effect for small particles is 

taken into account. The filling fractions for all samples are 0.5 and the inclusions 

for each composite have the same size. As it is expected the widths of resonances 

are more affected than  the location of resonances by the intrinsic size effect. 
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Figure 2.4. The effective permittivity of metal dielectric composites made of silver 
nanospheres with different radius (a) Real part (b) Imaginary part 
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   Within the dipole approximation, by increment in the radius of 

nanoparticle, the resonance peak is slightly blue shifted and the width of the 

resonance is noticeably narrowed. In addition to intrinsic size effect, for 

nanoparticles smaller than 2 nm the quantum effect should be taken into account 

as well [12]. Consequently to avoid the quantum effects the lower bound for 

nanoparticles is set to 𝑟𝑚𝑖𝑛 = 2 𝑛𝑚. In order to satisfy the Raleigh limit, which 

makes the scattered field by the nanoparticles ineffective, an upper bound should 

be determined for the maximum radius that a nanoparticle can take. The effect of 

size of nanoparticle on the scattering coefficients of different excited harmonics is 

studied in figure2.5. Figure 2.5 demonstrates the scattering coefficients (a1-a6) 

which are normalized to a1 for a silver nanoparticle embedded in SiO2 host.  

 

Figure 2.5 normalized scattering coefficients for different sizes of silver nanoparticle embedded in 
SiO2 (a) the contribution of higher order modes for nano particles (b) the particle radius that the 

second harmonic contribution becomes prominent. 

 

    The working frequency is chosen to be in UV range (𝜆 = 248 𝑛𝑚 ) 

where the wavelength is more sensitive to the particle size. The radius of the 
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particle is varied from 2nm to 50 nm and the intrinsic size correction is considered 

for the dielectric function of silver nano particles.  As it is shown in figure 2.5 (b), 

the second harmonic which represents the dynamic dipole starts to grow for nano 

particle with radius r = 10 nm and becomes prominent for r = 20 nm onward. 

Consequently the upper limit is set 𝑟𝑚𝑎𝑥 = 10 𝑛𝑚 to assure the quasi static limit.  

2.4 Geometry of Nanoparticles Assembly  

Maxwell-Garnett theory was generally derived by considering the dipolar 

character for sactterers and neglecting the particles’ spatial distribution in the host 

medium. The assumption in homogenization is that the effective medium has the 

same behavior when illuminated by electromagnetic wave, as the heterogeneous 

mixture does. Consequently forward-scattering and backward-scattering 

amplitudes of a cell of composite medium immersed inside the effective 

homogenous background, figure 2.6, should be zero [13-16].In figure 2.6 the 

white dotted line represents the boundary of the sample under calculation; the 

forward and back ward scattering is calculated for this sample, 

                             ∑ 𝑆𝑖(𝜃 = 0) =  ∑ 𝑆𝑖 (𝜃 = 𝜋) = 0 𝑖 ,                               (2.18) 

where  i represents harmonics of scattered field. A rigorous proof of (2.18) has 

been given by Stroud and Pan [14] from Mie theory, and the forward-scattering 

and backward-scattering amplitudes are given by, 

                            ∑ 𝑆𝑖 (𝜃 = 0) = 1
2
∑ (2𝑛 + 1)(𝑎𝑛 + 𝑏𝑛)∞
𝑛=1𝑖 ,                     (2.19) 

              ∑ 𝑆𝑖 (𝜃 = 𝜋) = 1
2
∑ (2𝑛 + 1)((−1)𝑛+1𝑎𝑛 + (−1)𝑛𝑏𝑛)∞
𝑛=1𝑖 .           (2.20) 
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Figure 2.6 A cell of composite medium immersed inside the effective homogenous background. 

   As it is discussed in previous sections for nanoparticles with size much 

smaller than the wavelength, the first harmonic is the dominating term; hence 

equations (2.19) and (2.20) are simplified to,  

                                    ∑ 𝑆𝑖 (𝜃 = 0) = 3
2𝑖 (𝑎1 + 𝑏1),                                      (2.21) 

                                      ∑ 𝑆𝑖 (𝜃 = 𝜋) = 3
2𝑖 (𝑎1 − 𝑏1).                                    (2.22) 

   This technique is sometimes called scattering matrix method. The 

scattering coefficients for a spherical core-mantle grain shown in figure 2.6, is 

written as,                     

     𝑎1 =  2𝑖
3

(𝜀ℎ−𝜀𝑒𝑓𝑓)(𝜀1+2𝜀ℎ)+𝑓�𝜀𝑒𝑓𝑓+2𝜀ℎ�(𝜀1−𝜀ℎ)

(𝜀ℎ+2𝜀𝑒𝑓𝑓)(𝜀1+2𝜀ℎ)+2𝑓(𝜀ℎ−𝜀𝑒𝑓𝑓)(𝜀1−𝜀ℎ)
 𝑥3 ,  𝑏1 = 0,                 (2.23) 

where x is the size parameter introduced in equation (2.1), 𝜀𝑒𝑓𝑓, 𝜀1 and 𝜀ℎ are the 

effective permittivity, the permittivity of the inclusion and host respectively and f 

is the filling fraction of the inclusion. The magnetic scattering coefficient 𝑏1 is 0 

based on the assumption that the effective optical property of the mixture remains 

nonmagnetic, 𝜇𝑒𝑓𝑓 = 1.The expression for effective permittivity of the medium is 

derived by replacing equation( 2.23) in equation (2.21) or( 2.22) 

𝜺𝒆𝒇𝒇 

𝜺𝒉 
𝜺𝟏  
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                                           𝜀𝑒𝑓𝑓 = 𝜀ℎ
1+2𝑓

𝜀1−𝜀ℎ
𝜀1+2𝜀ℎ

1−𝑓
𝜀1−𝜀ℎ
𝜀1+2𝜀ℎ

 .                      (2.24)                                                                                      

d Equation (2.24) is the exactly effective permittivity, derived by classical MG 

theory. More sophisticated models based on multiple scattering have been 

proposed [18, 19]; for most of these expressions, the MG is found to be the 

limiting case as the size parameter x tends to zero, which is the long wavelength 

limit.   

    The main limitation of MG theory is that it does not discriminate between 

two random mediums with the same density of scatterers. Neglecting N–particle 

distribution functions is justified in the single scattering regime, when mean field 

inside the material only depends on the particle density. This is the reason why it 

is often claimed that a weak particle interaction is a condition for the validity of 

MG theory [20]. In addition, the accuracy of MG theory is suspected for high 

concentration of scatterers. However Mallet et al. [20] point out a rigorous 

derivation of MG expression that accounts for the density fluctuation of the 

particles and for the presence of multiple scattering. Their mathematical approach 

is quite similar to Draine et al.[21]; in [21] Draine et al. applied discrete dipole 

approximation (DDA) technique to find the best prescription for the dipole 

polarization in a polarizable lattice such that, the lattice mimics a continuum with 

effective permittivity 𝜀 (𝜔). Mallet et al. [20] analytically explained that if the 

single scattering is the dominant mechanism, the effective permittivity predicted 

by MG theory is quite accurate regardless of the statistical distribution of the 

particles, as long as the distribution is uniform. On the other hand, if multiple 
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scattering is important, the effective permittivity depends strongly on the n-point 

PDF of the aggregate. Yet, if the particle positions can be considered 

uncorrelated, the effective permittivity reduces to the MG expression.  

   Consequently, even for high concentration of nano particles (f = 52% for 

the full lattice), the MG theory predicts accurate effective permittivity for the 

metal-dielectric system investigated in this dissertation. As it is shown in the 

previous section, an upper bound is set for the nanoparticles’ radius to remain in 

the quasistatic working frame and the only additional condition needed to be 

satisfied is the uniform distribution of the particles in the host medium. In case the 

particles’ sizes are different the ladius of the largest particle should not exceeds 

the upper limit. 

2.5 General Bounds for Effective Medium Theory  

As finding an exact solution for the field behavior in a complex medium such as a 

metal-dielectric composite is impossible, it is beneficial to at least set some 

bounds, consistent with the physical nature of the problem, for the approximated 

effective optical property. Consider a two phase mixture where permittivities of 

the phases are 𝜀𝑖 and 𝜀𝑒. Searching for absolutely loosest bound, in other words, 

bounds that cannot be exceeded regardless of which volume fraction and 

geometries the particles take, intuitively it can be said that the permittivity of the 

mixture has to fall in between two component’s permittivities [22]: 

                                         min(𝜀𝑖 , 𝜀𝑒) < 𝜀𝑒𝑓𝑓 < max(𝜀𝑖 , 𝜀𝑒).                          (2.25) 
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   A good analogy is to consider the conductivity of a mixture of a 

conductor and a resistor. If a good conductor is mixed with a material that has 

smaller conductivity, a better conduction is not expected eventually. However, a 

stricter bound can be written for the effective permittivity of the final mixture. 

This bound can be found by considering how conductivity or permittivity can be 

decreased or increased effectively. The increment in the conductivity is made by 

creating “easy path” to the current flow or flux; which means that the boundary 

between the inclusion and host should be parallel to the flow. Likewise, in order 

to minimize the current flow, the flow should be blocked as effectively as possible 

by locating the boundaries perpendicular to it, 

                                           𝜀𝑒𝑓𝑓,𝑚𝑎𝑥 = 𝑓𝜀𝑖 + (1 − 𝑓)𝜀𝑒,                                 (2.26) 

                                             𝜀𝑒𝑓𝑓,𝑚𝑖𝑛 = 𝜀𝑖𝜀𝑒
𝑓𝜀𝑒+(1−𝑓)𝜀𝑖

 .                                  (2.27) 

  Here f is the filling fraction of material with permittivity of 𝜀𝑖 .The two bounds 

in equation (2.26) and (2.27) are called Wiener bounds. The Wiener bounds can 

also be extended to complex value of permittivities [23, 24]. The mixtures 

corresponding to Wienner bounds are anisotropic. If the mixtures are isotropic 

stricter bound can be proposed. The analysis by Hashin and Shtrikman [25] 

establishes variation theorems which are then used to derive limits for the 

magnetic permeability of a mixture. By the duality between electrostatic and 

magneto-static problems, the results are equally valid for the effective permittivity 

of a mixture,  

                                𝜀𝑒𝑓𝑓,𝑚𝑎𝑥 = 𝜀𝑒 + 3𝑓𝜀𝑒
𝜀𝑖−𝜀𝑒

𝜀𝑖+2𝜀𝑒−𝑓(𝜀𝑖−𝜀𝑒)
 ,                             (2.28) 
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                           𝜀𝑒𝑓𝑓,𝑚𝑖𝑛 =  𝜀𝑖 + 3(1 − 𝑓)𝜀𝑖
𝜀𝑒−𝜀𝑖

𝜀𝑒+2𝜀𝑖−(1−𝑓)(𝜀𝑒−𝜀𝑖)
 .                   (2.29) 

This bound is developed based on the electrostatic energy within the material.  

This function is volume integral of the field and polarization density. Depending 

on which of the components is dielectrically denser the values of this function 

gives the upper and lower limit. Although remaining inside the bounds introduced 

by equations (2.26) – (2.29) does not verify the validity of any effective medium 

theory, exceeding these bounds can disqualify the effective property predicted by 

an effective medium theory.  

              

 

 

 

   Figure 2.7 presents the Weiner bounds and Hashin-Shtrikman bounds for a 

mixture of 𝜀𝑖 = 2.5 and 𝜀𝑒 = 1, and the effective permittivity of the same mixture 

approximated with MG theory. It can be seen that the Hashin-Shtrikman (HS) 

bounds are equal to MG mixing rules for isotropic spherical inclusions; the MG 

for spherical inclusions 𝜀𝑖 in the environment 𝜀𝑒  is equal to the lower HS bound 

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

Inclusion volum fraction (f) 

Ee
lat

ive
 ef

fec
tiv

e 
pe

rm
itti

vit
y l

im
it

 

 

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

Inclusion volum fraction (f) 

Ee
lat

ive
 ef

fec
tiv

e 
pe

rm
itti

vit
y l

im
it

 

 
Wmax
Wmin
HSmin
HSmax
MG

Wmax
Wmin
HSmin
HSmax
MG

                                        (a)                                                                      (b) 

Figure 2.7 Wiener bounds (W) and Hashin-Shtrikman (HS) bounds and MG theory for the 
effective permittivity of a mixture with  𝜀𝑖 = 2.5 and 𝜀𝑒 = 1 (a) The spherical inclusions 𝜀𝑖 in the 

environment 𝜀𝑒 (b) The spherical inclusions 𝜀𝑒 in the environment 𝜀𝑖 
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and the MG for spherical inclusions 𝜀𝑒  in the environment 𝜀𝑖   is equal to the 

higher HS bound. In addition according to the figure 2.7 it is evident that HS 

bounds are quite stricter bounds than Wiener bounds. The Hashin-Shtrikman 

effective medium model is developed based on calculating the strain energy stored in the 

material when subjected to gross uniform strains or stresses. In order to evaluate this 

strain energy it is necessary to find the stress or displacement fields in the composite 

body, which appears to be an impossible task. Consequently, attempts to find expressions 

for effective elastic moduli, or other physical constants, have invariably been based on 

simplifying assumptions, concerning geometrical form and physical behavior of phase 

regions. A simplifying approach is to use variational principles in order to bound the 

strain energy and thus also the effective elastic moduli regions. In Hashin-Shtrikman 

model the strain energy is bounded by minimum complementary energy principle which 

reveals why the model is more restrict in comparison to the other models. 

2.6 Conclusion  

In this chapter, appropriate geometrical specifications are allocated to the size, 

filling fraction, and probability distribution function (PDF) of metallic inclusions 

to suggest a well-defined structure for the metal-dielectric composite, which its 

effective optical property can be approximated by MG theory accurately. The 

effect of the size of nanoparticle is studied through Mie scattering theory; it is 

shown that   the high frequency extension of MG, Mie Maxwell-Garnett (MGG), 

is reduced to the classical MG in the quasi static work frame. The dielectric 

function of silver nanoparticles with radius smaller than silver’s mean free path 

length is corrected in order to take into account the intrinsic size effect. It is 
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shown that while the position of resonance peak of effective permittivity is not 

affected by the intrinsic size effect, the width of the resonance is decreased as the 

radius increases. In order to avoid the quantum effect and inter-particle mutual 

interaction the lower bound (𝑟𝑚𝑖𝑛 = 2 𝑛𝑚) and upper bound (𝑟𝑚𝑎𝑥 = 10 𝑛𝑚) are 

set for the radius of the nanoparticles. In addition it is shown by scattering matrix 

method that as long as the inclusions are not overlapping and their radius size is 

restricted in long wavelength regime the effective permittivity is reduced to the 

expression derived by MG theory. This investigation provides estimation for the 

maximum filling fraction that MG theory is still accurate. It is concluded that if 

the single scattering is the dominant mechanism, the effective permittivity 

predicted by MG theory is quite accurate regardless of the statistical distribution 

of the particles, as long as the distribution is uniform. Consequently for the 

uniform distribution of silver nanoparticles in the dielectric host the filling 

fraction for accurate result can be up to 52% which is the filling fraction for the 

full lattice.  
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CHAPTER 3 

TUNABLE SUBWAVELENGTH IMAGING WITH 

METAL-DIELECTRIC COMPOSITES 

 

 

 

 
3.1 Effective Medium Theory  

Maxwell-Garnett (MG) effective theory [1] and Brugemman effective medium 

approximation [2] are two of the most widely used and well known effective 

medium approaches. Each of these two methods is based upon slightly different 

assumption regarding the composite topology and material properties of each 

constituent in mixture. Depending on the relative concentration of the inclusions 

and process of fabrication, metal-dielectric composite may have different 

macroscopic structure. Figure 3.1 demonstrates the macroscopic structure of (a) 

Maxwell-Garnett and (b) Bruggeman prototypes. 

   

                                                                     
                                   (a)                                                                    (b) 
            Figure 3.1   Macroscopic structure of (a) Maxwell-Garnett (b) Bruggeman [5]. 
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The effective permittivity in most of effective medium approximations is 

calculated based on the Clausius–Mossotti formula [3,4], also known as Lorentz-

Lorenz equation. Lorentz pointed out that the local field experienced by molecule 

is not macroscopically averaged field E but instead𝐸𝐿, which is called local field. 

Assuming an incident electric field of E is imposed to a material, the local field 

which is experienced by the molecule can be expressed as follow, 

                                         𝐸𝐿 = 𝐸 + 𝐸𝑑 + 𝐸𝑠 + 𝐸𝑛𝑒𝑎𝑟.                                    (3.1)    

As is shown in figure 3.2, E is the incident electric field, 𝐸𝑑 is the depolarization 

field due to the polarization charges lying at the external surface of the medium. 

The relationship between 𝐸𝑑  and the macroscopic polarization P is 𝐸𝑑 =

−𝑃 𝜀0⁄ .  𝐸𝑠  is the electric field on the spherical cavity, appropriately named  

Lorentz sphere, surrounding the molecule.  

                                         
                      Figure 3.2     Lorentz sphere concept for calculating local field [5]. 

 

   The radius of the sphere R is macroscopically small in order to 

accommodate the discrete nature of the medium very close to the molecule while 

microscopically large enough, so that the matrix lying outside may be treated as 

continues medium. 𝐸𝑛𝑒𝑎𝑟 is depending on the lattice structure of the medium and 
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how molecules are arranged in the media. 𝐸𝑛𝑒𝑎𝑟 is zero owing to the symmetry of 

cubic lattice here. Consequently,  

                                               𝐸𝐿 = 𝐸 + 𝑃
3𝜀0

,                                                       (3.2)   

which is known as Lorentz relation: the field acting at an atom site in a cubic 

lattice is the macroscopic field E plus 𝑃
3𝜀0

 from polarization of other atoms in the 

system. If 𝛼 denote the polarizability of one molecule, then the polarization P is 

expressed as: 

                                               𝑃 = 𝑁𝛼𝐸𝐿 = 𝑁𝛼 ( 𝐸 + 𝑃
3𝜀0

).                               (3.3) 

   Hence the relationship between the polarisability of a molecule in a 

material and the macroscopic permittivity of it can be written as: 

                                                        𝛼 =  3𝜀0
𝑁

𝜀−1
𝜀+2

 ,                                     (3.4) 

which is called Clausius–Mossotti relation. Assume that a metal-dielectric 

composite is formed by embedding metallic spheres with relative permittivity of 

𝜀1   in dielectric host with relative permittivity of  𝜀ℎ .The Clausius–Mossotti 

relation is applied to find the effective permittivity of the composite by the 

following order, 

                                           
𝑁𝛼

3𝑓𝜀0𝜀ℎ
=  𝜀𝑒𝑓𝑓−𝜀ℎ

𝜀𝑒𝑓𝑓+2𝜀ℎ
,                                        (3.5) 

where for the metal-dielectric composite 𝛼 is written as: 

                                               𝛼 =  3𝜀0𝜀ℎ
𝑁

𝜀1−𝜀ℎ
𝜀1+2𝜀ℎ

,                                      (3.6) 

where ‘f’ is the feeling fraction of the metallic spheres. Substituting  𝛼 from (3.6) 

to equation (3.5) the effective permittivity of the composite, 𝜀𝑒𝑓𝑓, is obtained as, 
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                                            𝜀𝑒𝑓𝑓 = 𝜀ℎ
1+2𝑓

𝜀1−𝜀ℎ
𝜀1+2𝜀ℎ

1−𝑓
𝜀1−𝜀ℎ
𝜀1+2𝜀ℎ

 .                         (3.7)                

f  Equation (3.2) is known as the Maxwell-Garnett mixing rule. Figure 3.3 

demonstrates the real part and the imaginary part of the effective permittivity for a 

silver-silica composite for different filling fraction of the metal in the optical 

range. 

          
   

 

 

 

   As it is shown the value of the 𝜀𝑒𝑓𝑓  is varying according to the filling 

fractions, operational wavelength and permittivity of the constituents, which 

makes the composites suitable to engineer tunable superlens. Figure 3.4 shows the 

rang of operation wavelengths (UV-visible)  that composite material  can provide 

negative permittivity and lower amount of loss in comparison with silver 

simultaneously. Although the effective permittivity in MG can reach the 

permittivities of the two constituents when the filling fraction approaches the two 

extreme values of f = 0 and f= 1, equation (3.7) shows that MG treats the 

inclusions in an unsymmetrical manner.   
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Figure 3.3   the effective complex permittivity of silver nanoparticles embedded in silica host 

for different filling fractions of silver  (a) Real part (b) Imaginary part 
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(a) (b) 

 

 

    

 

   Therefore, before evaluating the effective parameters of a two-phase or 

multi-phase composite using MG, one constituent has to be considered the “host” 

and the others “inclusion.” this asymmetry is particularly strong when the 

difference in the permittivities of the two materials is large. Using the Clausius–

Mossotti relation and assuming that both phases of the composite (metal and 

dielectric) are embedded in the media with effective permittivity of 𝜀𝑒𝑓𝑓,another 

expression for effective permittivity is derived which is known as Bruggeman 

mixing rule, 

  
   𝜀𝑒𝑓𝑓 = 1

4
 {(3𝑓1 − 1)𝜀1 + (3𝑓2 − 1)𝜀2 ∓ �[(3𝑓1 − 1)𝜀1 + (3𝑓2 − 1)𝜀2]2 + 8𝜀1𝜀2}.            (3.8)    

 

   The sign in the equation above is chosen in a way that the imaginary part 

shows consistency with causality. Figure 3.5 shows the real part and imaginary 

part of the effective permittivity for a silver-silica composite for different filling 

fraction of the metal in the optical range. 
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Figure 3.4  Effective permittivity of silver silica composite approximated by MG 

theory  (a) Negative permittivity for sub-wavelength in different wavelength is 

realized by composite super lens (b) the amount of composite’s loss is smaller in 

comparison with bulk silver 
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                                     (a)                                                                          (b) 

Figure 3.5 Effective permittivity of silver silica composite approximated by Bruggeman theory  

(a) Real part (b) Imaginary part. 

 

   Unlike the MG, the two components here are symmetrical with respect to 

the exchange of roles of 𝜀1 and 𝜀2. In other words in Bruggeman both phases are 

considered to be embedded in the effective medium, and there is no requirement 

to give preference to one phase over the other. 

   In order to have an accurate value for the effective parameters of a 

composite material, a suitable mixing rule according to the filling fractions and 

the arrangement of metallic nanoparticles in the dielectric host should be chosen. 

The composite is made of silver nanoparticles embedded in silica slab. An upper 

limit of 0.5 is set for filling fraction, to avoid percolation, consequently for 

nanoparticles with size much smaller than the wavelength the nanoparticles are 

not connected and their effect on the adjacent particles is via their far-field 

radiation. For the given configuration, the Maxwell-Garnett theory is applicable to 

approximate the effective permittivity of the metal dielectric composite. To 

evaluate the imaging performance of composite super lens, the refraction of light 

for a metal-dielectric composite slab is studied and its ability to transfer the 

transverse spatial harmonics, propagating and evanescent is investigated.  
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3.2   Optics of a Single Homogenous Isotropic Layer         

 The transmission and reflection of electromagnetic radiation at a thin dielectric 

layer between two semi-finite mediums is a well-known problem. The general 

solution for this problem starts from writing set of Maxwell equations for each 

media and imposing boundary conditions on each interface to find the 

transmission and reflection coefficients. If a TM polarized plane wave is an 

incident wave in the first media according to figure 3.6, the reflected and 

transmitted wave are TM polarized as well.  

                              
Figure 3.6 Reflection and transmission of TM wave at the semi-finite isotropic-isotropic interface. 

 

   The plane of incidence is considered to be x-y plane. If the polarization of 

magnetic field (H-field) for the TM wave is in y direction, the electric field (E-

field) polarization vector and propagation vector are lying in x-z plane. The 

configuration in figure 3.7 is formed if the second medium in figure 3.6 is 

bounded. The light interaction with such geometry involves the incidence and 

reflection of light in the first semi-finite medium, the transmission and reflection 
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of light in the bounded medium and the transmission of light into the second 

semi-finite medium, figure 3-7. The fields in three mediums can be written as 

 follow, 

                   𝐻𝑦 =

⎩
⎪
⎨

⎪
⎧ 𝐴𝑒𝑥𝑝�−𝑖𝑘1.� 𝑟̂ + 𝑖𝜔𝑡� + 𝐵𝑒𝑥𝑝�−𝑖𝑘1′ .� 𝑟̂ + 𝑖𝜔𝑡�     𝑧 < 0

𝐶𝑒𝑥𝑝�−𝚤𝑘2.� 𝑟̂ + 𝑖𝜔𝑡� + 𝐷𝑒𝑥𝑝�−𝚤𝑘2′ .� 𝑟̂ + 𝑖𝜔𝑡�        0 < 𝑧 < 𝑑       

𝐹𝑒𝑥𝑝�−𝑖𝑘3.� 𝑟̂ + 𝑖𝜔𝑡�                                                   𝑧 > 𝑑

�       (3.9)   

 

where for each media,  

                                                       𝑘𝚤� = 𝑘𝑥𝑖𝑥� + 𝑘𝑧𝑖𝑧̂.                                      (3.10) 

A,C, and F are coefficients for forward propagating waves ,+z direction, B and D 

are reflected waves propagating backwards ,–z direction, and d is the thickness of 

the slab, Figure 3.7. 

 

 

 

 

 

                                                               
                                   Figure 3.7 Forward and backward propagating TM waves 

 

Based on the wave equation, for an isotropic medium with𝜀𝑖 𝑎𝑛𝑑 𝜇𝑖: 

                                                  𝑘𝑖2 = 𝑘𝑥𝑖2 + 𝑘𝑧𝑖2 = 𝜔�𝜀𝑖𝜇𝑖 .                            (3.11)  

 Since  𝑘𝑥 is reserved in interfaces, 

                                                    𝑘𝑥𝑖 = 𝑘𝑥                                                       (3.12) 

B 

 

A 

C 

D 

F 



46 
 

where 𝑘𝑥  is the tangential component of the K vector of the incident wave which 

is known. The transfer function is found by the calculation of 𝐹 𝐴⁄  ratio in figure 

3.7.  The electric field in each medium is, 

 

         𝐸𝑥 =

⎩
⎪⎪
⎨

⎪⎪
⎧

−𝑘𝑧2𝐶
𝜀2

−𝑘𝑧1𝐴
𝜀1

𝑒𝑥𝑝�−𝚤𝑘1.� 𝑟̂ + 𝑖𝜔𝑡� + 𝑘𝑧1𝐵
𝜀1

𝑒𝑥𝑝�−𝚤𝑘1′ .� 𝑟̂ + 𝑖𝜔𝑡�     𝑧 < 0

𝑒𝑥𝑝�−𝑖𝑘2.� 𝑟̂ + 𝑖𝜔𝑡� + 𝑘𝑧2𝐷
𝜀2

𝑒𝑥𝑝�−𝑖𝑘2′ .� 𝑟̂ + 𝑖𝜔𝑡�         0 < 𝑧 < 𝑑       

−𝑘𝑧3𝐹
𝜀3

𝑒𝑥𝑝�−𝑖𝑘3.� 𝑟̂ + 𝑖𝜔𝑡�                                                   𝑧 > 𝑑

�   . (2.13) 

 

The relation between the amplitude of the incident field, A, and the amplitude of 

the transmitted field in the exit medium, F is found by the continuity of the 

tangential components of E-field and H-field and the phase shift that the plane 

wave is experiencing while propagating in each medium,     

 

      
𝐹
𝐴

=                                                                                                        ,  (3.14)                        

 

                                                                 ,                             .                          (3.15)  

 

  𝑇(𝑘𝑥) is the transfer function for the TM polarized wave. Here 𝑘𝑧1, 𝑘𝑧2, 𝑘𝑧3 and   

 𝜀𝑟1, 𝜀𝑟2, 𝜀𝑟3are the normal components of the wave vector and the complex rela-

tive permittivity of first, second and third medium respectively, Figure3.7. The 

expression for the TE polarized wave is the same as equation (3.14) while 𝜀𝑖  is 

replaced by 𝜇𝑖. 

   As it is presented in equation (3.14), the transfer function only depends on 

normal component of propagation vector and intrinsic property of the media. As 

the transfer function for TM polarized wave, is not a function of permeability, the 
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negative permittivity is sufficient for subwavelength imaging. In order to test the 

accuracy of derived expression for the transfer function, a silver slab is simulated 

with CST full-wave simulator and the result of the simulation, S21, is compared 

with analytic expression, (3.14). Figure 3.8 is the schematic of silver slab in CST 

and demonstrates the good agreement of analysis and simulation. The CST result 

is provided for limited number of k values (propagating) as there is no source in 

frequency domain analysis which can generate evanescent waves. 

 

                      
 

Figure  3.8   Transfer function of silver slab CST  simulation versus analytical  calculation (a) 

Schematic of silver slab in CST (b) Agreement of analysis and simulation. 

 

3.3 Tunable Composite Superlens 

The advancement of metamaterial research led to the extension of the theory of 

transmission and reflection of single and multilayer isotropic thin films to single 

negative ( 𝜀 < 0 , 𝜇 > 0)  and double negative ( 𝜀 < 0 , 𝜇 < 0)  materials. The 

subwavelength feature of an object is considered by setting two Gaussian pulses 

100 nm away in the object plane. The objective is to design a lens capable of 

carrying enough spatial harmonics such that that the two Gaussian peaks are 
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distinguishable in the image plane, figure 3.9. The Fourier transform of the 

electromagnetic field distribution g (x, y) of in the source plane is: 

                       𝐺� 𝑓𝑥 ,𝑓𝑦 � =  ∫𝑔(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑓𝑥𝑥+𝑓𝑦𝑦)𝑑𝑥𝑑𝑦,                            (3.16) 

where kx = 2πfx and ky = 2πfy are the components of the wave vector in the 

longitudinal direction, satisfying the relation 𝑘𝑥2 + 𝑘𝑦2 +  𝑘𝑧2 = (𝜔 𝑐0⁄ )2.  kZ is the 

wave number in the transverse direction z , ω is the angular frequency and c is the 

speed of light in the medium which fills up the space in front of the lens. The 

algorithm in the present form is not taking any assumption how the source is 

generated, consequently there is no account for the interaction of the source and 

the metamaterial lens. The transfer function of the imaging system, in case of the 

double Gaussian source, which is independent of the spatial dimension y can be 

written as,                                                

                                      𝑇(𝑘𝑥) =  𝑇1(𝑘𝑥)𝑇2(𝑘𝑥)𝑇3(𝑘𝑥),                                 (3.17) 

where 𝑇1(𝑘𝑥) =  𝑒−𝑘𝑥0𝑑0  is the transfer function of the homogeneous medium 

with electric permittivity 𝜀𝑟0 , magnetic permeability µr0 and thickness d0 , filling 

the space from the source plane to the lens; 𝑇2(𝑘𝑥) =  𝑒−𝑘𝑥2𝑑2  is the transfer 

function of the homogeneous medium 𝜀𝑟2, µr2 and thickness d2 filling the space 

from the lens to the image plane, and 𝑇3(𝑘𝑥)  is the expression provided in 

equation (3.14).   

        The field distribution in the image plane can be calculated by inverse Fourier 

transforming the convolution of the source Fourier transform multiplied by the 

transfer function as, In order to test the tunable character of subwavelength 

imaging with lens made of metal dielectric composite , table 3.1 provides the 
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filling fractions and different working frequencies which composite slabs succeed 

subwavelength imaging. 

                     
                                        Figure   3.9   Imaging system set up. 

                     𝑔( 𝑥, 𝑦, 𝑧2 ) =  ∫𝐺� 𝑓𝑥 ,𝑓𝑦 �𝑇(𝑘𝑥)𝑒𝑖2𝜋(𝑓𝑥𝑥+𝑓𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦.           (3.18)                     

 

   It also provides the complex values for the dielectric function silver slabs 

at the same frequency.  

Table  3.1   relative effective permittivity for silver-silica composite and relative permittivity for  

𝜀 for bulk silver 

         Ag-SiO2     Composite                    Silver        

         𝜀𝑟𝑒𝑓𝑓′ 𝜀"𝑟𝑒𝑓𝑓  𝜀𝑟′ 𝜀"𝑟 

𝜆 = 397 𝑛𝑚 

      f=0.1 

            

         -1 

      

      0.172 

      

      -3.71 

      

  0.059 

𝜆 = 385 𝑛𝑚 

      f=0.2 

           

         -1 

      

      0.092 

       

       -3.2 

       

    0.054 

𝜆 = 375 𝑛𝑚 

      f=0.3 

          

         -1 

      

        0.067 

     

       -2.78 

   

     0.05 
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         Figures 3.10 to 3. 12 compare the imaging ability of the Ag-SiO2 composite 

and bulk Ag for given wavelengths in table 3.1. As it is shown the composite 

superlens is capable of subwavelength imaging at different wavelengths while the 

silver slab fails to carry enough spatial harmonics for the image with 

subwavelength feature in the image plane. 

 

     

Figure 3.10   λ=397 nm, Slab thickness = 20 nm, (a) Composite ( ε = -1 – i 0.172) (b) Silver ( ε = 
-3.71 – i 0.059) 

               
 

Figure 3.11  λ=385 nm, Slab thickness = 30 nm, (a) Composite ( ε = -1 – i 0.092) (b) Silver ( ε = -
3.51 – i 0.054). 
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      (a)                                                                               (b) 

    (a)                                                                                 (b) 
Figure 3.12  λ=375 nm, Slab thickness = 30 nm, (a) Composite ( ε = -1 – i 0.067) (b) 

Silver ( ε = -2.78– i 0.05). 
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  3.4 Optimized Single Layer Tunable Composite Superlens  

Although the subwavelength imaging with composite slabs is achieved for 

different frequencies, the provided values in the table 3.1 are not optimized yet.  

In addition the intrinsic size effect which corrects the dielectric function of the 

silver nanoparticles is not considered. The primary parameters of the design 

procedure are the filling factor of the nanoparticles, the working frequency and 

the thickness of the lens, which are determine with optimization procedure. 

Constrains are enforced on the design parameters to obtain implementable 

composite parameters and to remain in the frame of the developed mixing rules. 

In the following composite lens made of silver nanoparticles with a radius of 2 nm 

immersed in SiO2 host is considered. Two composite material based imaging 

configurations are investigated. In the first configuration the thickness of the lens 

is 20 nm and it is surrounded with air. The source-lens and lens-image distances 

are 10 nm. In the second configuration the thickness of the lens is 30 nm and the 

surrounding material is SiO2. The source-lens and lens-image distances are 15 

nm. To understand the nature of the optimization problem in order to successfully 

design the metamaterial based imaging device the error surface of the objective 

function which is defined as the normalized absolute difference between the 

source and image, is mapped. 

                                                                                            ,                             (3.19)                                                                                                                                          

where Nx is the number of points in the x direction. Figures 3.13 (a) and (b) 

present the error surfaces in function of the frequency and filling factor for the air-
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composite-air configuration and for the SiO2-composite-SiO2 case. The error 

surface demonstrates the optimized filling fraction and frequency, that the best 

imaging quality can be achieved. For instance in figure 3.13(a), the best imaging 

quality can be achieved for 𝑓~0.5 at the frequency of 0.84 PHz.  The maps of 

the objective function are extremely complex with several hills and valleys and 

large flat regions, therefore gradient based optimizations fails to find useful 

parameters unless the optimization procedure is not started form the close 

proximity of the parameter regions where imaging is possible. Nevertheless the 

differential evolution based optimization [8] can be successfully applied for such 

objective functions. For the current problem a population size of 200-300 and 

maximum iterations of 100-200 are sufficient to converge to the proximity of the 

global minimum. The procedure requires to set searching interval for the variables 

of the optimization. The optimum frequency is searched in the interval [0.4-1] 

PHz. The lower limit of the filling factor is set to 0 but the upper limit is set 

successively to 0.2, 0.3, 0.4 and 0.5 for different instances of the optimization. 

The differential evolution algorithm converges to the upper limit of the filling 

factor. The marked points of figure 3.13 (a) and (b) are the results of the 

optimization procedure obtained for the different constrains of the filling factor. 

The blue color indicates the regions where subwavelength imaging is possible, 
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which is a thin curved valley in the space of the related frequencies and filling 

factors. The regions with high filling factors are out-side of the range where the 

Maxwell-Garnett type mixing rules can produce accurate results and they are 

plotted only as reference, to join the case of the dense Ag thin film with filling 

factor ζ = 1. In  figure 3.13 (c) the transfer function of the 20nm thick composite 

lens (red) surrounded with air, filling factor ζ = 0.5 and working frequency f = 

0.843 PHz are presented, which corresponds to point 4 in figure 3.13 (a). Figure 

3.13 (e) presents the source, the image calculated with the Maxwell-Garnett and 

with the Mie scattering based effective medium theory. The size of the inclusions 

is deep subwavelength; therefore the high frequency mixing rule produces similar 

results as the Maxwell-Garnett theory, which approximates the metallic inclusions 

with static electric dipoles. For reference the transfer function and the image 

without the lens which corresponds to a 40 nm thick air region, is presented as 

well. The flat piece of the transfer function of the air corresponds to the frequency 

region bellow cutoff where propagating waves are resent. In the absence of the 

lens the propagating waves can reach the imaging plane without any distortion, 

therefore for propagating components the magnitude of the transfer function 

equals one. The lens is not impedance matched consequently for the propagating 

components reflections occurs and the magnitude of the transfer function is less 
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than one. In the absence of the lens the evanescent components are exponentially 

attenuated. The optimized lens can amplify several evanescent components and 

achieves higher resolution in the image plane. In figure 3.13 (d) and (f) the 

transfer function and the image produced by the 30 nm thick composite lens 

surrounded with SiO2, filling factor ζ = 0.5 and working frequency f = 0.79 PHz 

are presented, which corresponds to point 4 in figure 3.13 (b). The intensity 

distributions in the image plane in function of the filling factor are collected in 

figure 3.14 (a) and 8(b). Increasing the upper limit of the filling factor in the 

optimization procedure the resolution of the image is improving and the optimum 

working frequency is shifting to higher values. The parameters of the lens 

corresponding to points 1-4 of figure 3.13 (a) and (b) and the corresponding 

effective electric permittivity calculated by taking into account the intrinsic size 

effect are summarized in Table 3.2.  

 

    Lens surrounded with air                                    Lens surrounded with SiO2 
           d = 20 nm                                                              d = 30 nm 
    𝜉              f (PHz)             𝜀𝑒𝑓𝑓              𝜉             f (PHz)             𝜀𝑒𝑓𝑓  

1   0.2          0.8036         0.19 – 1.54 i          0.2           0.7744         -0.28 - 2.42i 
2   0.3          0.8179         -0.29 – 1.47i          0.3           0.7791         -1.18 - 2.35i 
3   0.4          0.8310         -0.55 – 1.37i          0.4           0.7842         -1.72 – 2.14i 
4   0.5          0.8431         -0.78 – 1.31i          0.5           0.7906         -2.01 – 1.91i 

 

The simulations show that with an increase in the filling factor the effective elect- 

Table 3.2 The filling factor, the frequency and the effective electric 

permittivity of the single layer composite lens 
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electric permittivity converges to values where the losses are minimum and the 

lens is impedance matched to the surrounding medium as much as it is possible. 

   

        

       

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.13 Design of the imaging device with the single layer composite lens. The first column refers to the lens 
with thickness of 20 nm and surrounded with air, while in the second column the thickness of the lens is 30 nm 

and it is surrounded with SiO2. The error surfaces, which are searched by the optimization procedure are 
presented in (a) and (b). The markers indicate optimized results obtained with constrains on the filling factor. The 
transfer functions of the composite lenses are presented in (c) and (d). The intensity distributions in the source and 

image planes are plotted in (e) and (f). For reference the transfer function and the image without the lens are 
presented as well. 
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Figure 3.14 The intensity distributions in the image plane corresponding to points 1-4 of figure 
3.13 (a) and (b). Intensity in the image plane formed by (a) air-composite-air (b) SiO2-composite-

SiO2 

  3.5 Imaging with Multilayer Composite Superlens  

In subwavelength imaging systems with isotropic metal layer based superlenses, 

the evanescent waves grow exponentially until a particular film thickness 

thereafter; the material loss becomes more prominent [6,7]. Hence, the multilayer 

lens is greatly advantageous to establish a feasible spacing between the sample 

and its image. For multilayer lenses the steps of the computational methodology 

are similar, except the calculation of the transfer function which is performed with 

the Transfer Matrix Method (TMM). The method is based on (i)defining a 

boundary condition matrix [D] which is developed based on continuity of 

tangential components of E-field and H-field on the interfaces and (ii) phase shift 

matrix [P] which focuses on the phase shift the plane waves experience while 

travelling inside a layer. The transfer matrix for mth layer then is defined as   

𝑀𝑚 = [ 𝐷𝑃𝐷−1], 

                                                                                              ,                           (3.20) 

 (a)  (b) 

𝑀𝑚 =

⎣
⎢
⎢
⎢
⎡cos (𝑘𝑧𝑚𝑑𝑚) 𝑖

𝜔𝜀𝑟𝑚

𝑘𝑚𝑧
sin (𝑘𝑧𝑚𝑑𝑚)

𝑖
𝑘𝑚𝑧

𝜔𝜀𝑟𝑚
sin (𝑘𝑧𝑚𝑑𝑚) cos (𝑘𝑧𝑚𝑑𝑚)⎦

⎥
⎥
⎥
⎤
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 where dm is the thickness, 𝜀𝑟𝑚   is the electric permittivity and𝑘𝑧𝑚  is the wave 

number of the layer with index m. Starting from the image plane, the matrices Mm 

are multiplied consecutively:    

                           𝑀 =  ∏ 𝑀𝑚 = �𝑀11 𝑀12
𝑀13 𝑀14

�0
𝑚=𝑛+1 .                                       (3.21)   

  The transfer function is given by the following expression, 

                       𝑇(𝑘𝑥) = 2

𝑀11+
𝜔𝜀𝑟

0

𝑘𝑧0
𝑀21+

𝑘𝑧
𝑛+1

𝜔𝜀𝑟
𝑛+1(𝑀12+

𝜔𝜀𝑟
0

𝑘𝑧0
𝑀22)

  ,                          (3.22) 

where 𝑘𝑧0 is the wave number and 𝜀𝑟0 is the electric permittivity in front, while 

𝑘𝑧𝑛+1  is the wave number and 𝜀𝑟𝑛+1  is the electric permittivity behind the 

multilayer lens, figure 3.15. In the presented methodology, the interactions 

between the inclusions of different layers are disregarded, and the electromagnetic 

material parameter of each layer is considered independent by the composition of 

any other layer. 

                                    

                                

                                      

                              Figure 3.15  The configuration of the multilayer lens. 
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  In order to test the accuracy of the derived expression for the transfer function, a 

silver-PMMA multilayer structure is simulated with CST full-wave simulator and 

the result of the simulation, S21, is compared with analytic expression in equation 

(3.22).  

      
                          (a)                                                                                
                              

 

 

 

 

 

                                   

(b) (d) 

 

 

   The developed effective medium theory allows the calculation of the 

effective electric permittivity of spherical multilayer metal-dielectric inclusions. 

The developed procedure is applied to design multi-layer lenses made of metallic 

composite and SiO2 layers. The metallic composite is made of silver 

nanoparticles with a radius of 2 nm immersed in SiO2 host. The medium in front 

and behind of the multilayer lens is air. The parameters of the optimization are the 

     𝜺𝒓    Silver :  -2.7 – 0.23i         PMMA : 2.3013- .0014 i 

Dimension(nm)  10  5     10      10     10     10       10      10      1 0      10      10 
 

 

               

                                                               (b) 

 

Figure 3.16  Transfer function of silver-PMMA layered structure CST  simulation versus 

analytical  calculation (a) &(b) Schematic of silver slab in CST (c) Magnitude of transfer 

function  (d)  Phase of the transfer function.  
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filling factor, the frequency and the thicknesses of individual layers. The 

searching intervals of the frequency and filling factor are set in a similar way as 

the bounds of the single layer lens. The number of composite layers is two or 

three and their thickness are optimized independently. 

   The first and the last layer of the lens are always made of composite 

material. In the optimization procedure the maximum value of the thickness of all 

individual layers, including the air regions in front and behind of the lens is set to 

50 nm. The minimum thickness of the air regions is 5 nm, of the composite layers 

is 10 nm and of the SiO2 separation layers is 5 nm or 10 nm respectively. The 

optimization returns the upper bound for the filling factor and the lower bound for 

the thicknesses. The design parameters of the multilayer lens are collected in 

Table 3.3 The third column presents the geometry parameters, where the 

thicknesses of the air regions are indicated with italic and the thickness of the 

composite layers with bold numbers. The absolute error between the intensity 

distribution in the source and image planes are presented in the forth column. For 

reference the effective electric permittivity of the designed composite material are 

included in the table. 

 
 

𝜉              f (PHz)            Thicknesses (nm)            Error (x10-2)         𝜀𝑒𝑓𝑓  

1   0.4          0.8171                                        1.98          -0.85 - 1.54 i 
2   0.5          0.8272                                        1.92          -1.06 - 1.43 i 
3   0.4          0.8235                                        1.89         -0.72 - 1.46 i            
4   0.5          0.8348                                        1.81          -0.89 - 1.36 i 
5   0.4          0.8227                                        2.16         -0.73 - 1.47 i  
6   0.5          0.8336                                        2.11         -0.92 – q.37 i 

 

5  10  10  10  5 

5  10  5  10  5 

5  10  5  10  5  10 5 

Table 3.3     The design parameters of the multilayer lens 
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The imaging capabilities of the designed multilayer lenses with the parameters 

listed in Table 3.3 are presented in figure 3.17. The curves 1-4 refer to the lens 

with arrangement of composite-SiO2-composite, while curves 5 and 6 to the lens 

with composite-SiO2-composite-SiO2-composite arrangement. The transfer 

functions are presented in figure 3.17(a), and the intensity distributions of the 

image plane are plotted in figure 3.17 (b).  

 

      
(a)                                                                        (b) 

 
 

                                    
                                                                         (c) 
 

Figure 3.17 Imaging with the multilayer lens. In (a) the transfer functions, and in (b) the images 
corresponding to the parameters presented in Table 3.2 are shown. The intensity distribution of the 
source and of the image for the lens, with parameters presented in the fourth row of the table3.2, 

along with the reference image without the lens are shown in (c) 
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   Similar to the single layer lens, the figures show increase of the resolution 

in function of the filling factor. The resolution is increased as well by decreasing 

the SiO2 separation layer between the metallic composite films, therefore the 

highest resolution can be achieved with the layers 10 nm composite, 5 nm SiO2- 

10 composite as it is plotted in 3.17(a). The separation between the source and 

image plane can be increased by adding more layers to the composite lens, which 

does not alters the shape of the transfer function considerably, only the 

magnitudes are reduced according to the additional losses. 

 

3.6 Conclusion 

The methodology to design single and multilayer flat metamaterial lenses has 

been presented. The composite layers of Ag inclusions immersed in SiO2 

 host are proposed as lens and implementable geometrical dimensions and 

composition has been determined with optimization. These results support the use 

of a waveguides with metallic composite layer- dielectric layer- metallic 

composite layer arrangement for tunable optical imaging application with high 

subwavelength spatial resolution. In addition metallic composites with deep 

wavelength inclusions may also eliminate the hotspots present in the images of 

metallic superlens. 
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CHAPTER 4 

SUBWAVELENGTH IMAGING WITH METAL-

DIELECTRIC COMPOSITES MADE OF NON-

SPHERICAL NANOPARTICLES 

 

 

 

4.1   Introduction 

The tunable imaging with isotropic metal-dielectric composite is discussed in 

previous section. In metal-dielectric composite the only controlling factor which 

offers the tunability is the filling fraction of the metal or in another word the 

radius and numbers of the spheres. In this chapter, the composite thin film is made 

of deep subwavelength non-spherical metallic nano-particles embedded in a 

dielectric host. The optical properties of the composite depend on the shape, size, 

and orientation of the nano-particles, which provide sufficient degrees of freedom 

to optimize the superlens according to the wavelength of the available laser 

source. In addition to the higher degree of freedom, the aligned metallic nano 

ellipsoid in dielectric host can be effectively approximated as an anisotropic slab. 

The anisotropic slab with specific design is capable of subwavelength imagining 

for higher resolutions and is more robust to the loss due its specific mechanism of 

imaging. 



64 
 

    In this chapter the application of effective medium theory to homogenize 

the composite with embedded randomly oriented/ aligned non-spherical metallic 

nano-particles is discussed. To evaluate the imaging performance of composites 

with randomly oriented ellipsoid nano-particles, the optical transfer function is 

calculated based on the transfer matrix method for an isotropic layered structure. 

To evaluate the imaging performance of composites with aligned nano-ellipsoid a 

novel algorithm is developed [1]. This algorithm offers a simple and completely 

analytical solution for the light interaction with generally anisotropic layered 

media. Finally, to achieve the highest possible resolution of the lensing system, 

the geometrical parameters and the orientation of the nano-particles, the filling 

fraction and the thickness of the individual layers are determined with differential 

evolution optimization algorithm. 

4.2   Effective Medium Theory for Composites with Non-Spherical 

Nanoparticles 

To homogenize composites with ellipsoidal inclusions, the key is to find the 

depolarization factor of ellipsoids. Fortunately, ellipsoid inclusions are among 

few shapes with available analytical solution for their depolarization.  

                                               
Figure 4.1 The geometry of an ellipsoid. The semi-axes 𝑎𝑥 ,𝑎𝑦 and 𝑎𝑧 fix the Cartesian co-

ordinate system. 
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According to figure 4.1, the depolarization factor 𝑁𝑥(the factor in 𝑎𝑥  direction) is [2], 

                             𝑁𝑥 = 𝑎𝑥𝑎𝑦𝑎𝑧
2 ∫ 𝑑𝑠

(𝑠+𝑎𝑥2)�(𝑠+𝑎𝑥2)(𝑠+𝑎𝑦2)(𝑠+𝑎𝑧2)

∞
0  .                            (4.1)                      

 For the other polarization factor 𝑁𝑦(𝑁𝑧), interchange 𝑎𝑦  and 𝑎𝑥  (𝑎𝑧  and 𝑎𝑥) in 

the above integral. The three depolarizations for any ellipsoid should satisfy  

                                                    𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 = 1.                                                    (4.2) 

   Hence, for the sphere (𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧) , the depolarization factor is 1 3⁄ . If 

the co-ordinate is chosen such that 𝑎𝑥 > 𝑎𝑦 >𝑎𝑧 , then the polarization factors will 

be [2], 

                               𝑁𝑥 =
𝑎𝑥𝑎𝑦𝑎𝑧

(𝑎𝑥2−𝑎𝑦2)�(𝑎𝑥2−𝑎𝑧2)
 [ F(𝜑, 𝑘) − 𝐸(𝜑, 𝑘)] ,                                (4.3) 

                                    𝑁𝑧 = 𝑎𝑦
(𝑎𝑦2−𝑎𝑧2)

[𝑎𝑦 - 𝑎𝑥𝑎𝑧

�(𝑎𝑥2−𝑎𝑧2)
 𝐸(𝜑, 𝑘)] ,                                    (4.4) 

                                               𝑁𝑦 = 1 −𝑁𝑥 − 𝑁𝑧 .                                                        (4.5) 

F(𝜑, 𝑘) and 𝐸(𝜑, 𝑘) are the incomplete elliptic integrals, 

                                             𝐹(𝜑, 𝑘) = ∫ 𝑑𝜃
√1−𝑘2𝑠𝑖𝑛2𝜃

𝜑
0  ,                                       (4.6) 

                                        𝐸(𝜑, 𝑘) = ∫ √1 − 𝑘2𝑠𝑖𝑛2𝜃𝜑
0 𝑑𝜃,                               (4.7)                             

where k is the elliptic modulus and 𝜑 is the amplitude. 

 

4.3   Polarisability Components of an Ellipsoid  

The broken geometry of the ellipsoid results in the dipole moment induction 

which depends on the direction of incident electric field. Hence the dipole 
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moment has a different direction than the field. In fact, the incident field and the 

dipole moment can be in the same direction only if  the field’s direction is aligned 

to the principal axis of the ellipsoid [2]. For instance, if an ellipsoid is shined with 

a uniform electric field polarized in the x direction (𝐸𝑖), the internal field (𝐸𝑒) is 

also uniform and x-directed with the ratio of  

                                                                                         .                                  (4.8)                                       

Consequently, the polarisability component of the ellipsoid in x-direction field is, 

                                  𝛼𝑥 = 4𝜋𝑎𝑥𝑎𝑦𝑎𝑧
3

(𝜀𝑖 − 𝜀𝑒) 𝜀𝑒
𝜀𝑒+𝑁𝑥(𝜀𝑖−𝜀𝑒)

.                         (4.9) 

Following the same routine for the field in y and z direction the polarisability 
tensor is, 

                                                𝛼� = �
𝛼𝑥 0 0
0 𝛼𝑦 0
0 0 𝛼𝑧

�    .                                       

(4.10) 

 In equation (4.10) 𝑁𝑦  and 𝑁𝑧  are found by replacing 𝛼𝑥  with 𝛼𝑦  and 𝛼𝑧  in 

equation (4.9), respectively. In the homogenization process, the polarisability ten-

sor can be considered as an operator which acts on the external field to produce 

the dipole moment vector, as following, 

                                                       𝑃 = 𝛼�.𝐸𝑒.                                                  (4.11) 

4.4 Effective Permittivity of Composites Made of Randomly Oriented 

Inclusions 

The classical way to determine the effective permittivity of a mixture is to follow 

the constitutive relation for a dielectric material [2] which is simple relation 

𝐸𝑖 =
𝜀𝑒

𝜀𝑒 + 𝑁𝑥(𝜀𝑖 − 𝜀𝑒)
𝐸𝑒  
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between electric flux density D and electric field E. The effective permittivity 

connects the averaged value of D to averaged value of E,     

                                 < 𝐷 >= 𝜀𝑒𝑓𝑓 < 𝐸 >= 𝜀𝑒 < 𝐸 > +< 𝑃 >.                              (4.12) 

 

  As the induced dipole moment in the ellipsoidal nano particles depends on the 

polarization of incident field two scenarios for effective permittivity of a 

composite with ellipsoidal inclusion may be considered: I. a composite with 

aligned ellipsoidal inclusions II. a composite with randomly oriented ellipsoidal 

inclusions. 

4.4.1 Randomly Oriented Inclusions  

For randomly oriented inclusions(figure 4.2) , macroscopically there is no longer 

any preferred direction as the dipolar moments in different directions cancel out 

each other due to the randomness in the orientation of nano-particles. 

Consequently the effective permittivity is no longer anisotropic and the mixture is 

isotropic. 

                                                
                 Figure 4.2 A composite randomly oriented nano-ellipsoid particles. 

The polarisability of each component participates equally to the macroscopic 

polarization density (𝛼). The effective permittivity of the mixture is [2]: 
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                      𝜀𝑒𝑓𝑓 = 𝜀𝑒(1 +
𝑓
3
∑ 𝜀𝑖−𝜀𝑒

𝜀𝑒+𝑁𝑗�𝜀𝑖−𝜀𝑒�
 𝑗=𝑥,𝑦,𝑧

1−𝑓3∑
𝜀𝑖−𝜀𝑒

𝜀𝑒+𝑁𝑗�𝜀𝑖−𝜀𝑒�
 𝑗=𝑥,𝑦,𝑧
),                          (4.13) 

   Figure 4.3 demonstrates the optical property of a mixture with randomly 

oriented ellipsoidal nano particles with different shapes. The composites are made 

of silver inclusions embedded in SiO2  host. 

 

4.5 Imaging with Randomly Oriented Non-Spherical Nanoparticles 

As the optical property of a mixture with randomly oriented inclusions is 

isotropic, the same optical transfer function developed in chapter is used to 

evaluate the subwavelength imaging performance. This transfer function is 

calculated based on the transfer matrix method which provides the exact solution 

of Maxwell equations for waves propagating in isotropic multilayer structures. 

Figure 4.4 shows the optical imaging system. The composite thin film is made of 

deep subwavelength metallic non-spherical nanoparticles, which can support 

dipolar plasmonic modes, embedded in a dielectric host. The optical properties of 
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Figure 4.3 the optical property of mixture with randomly oriented 
ellipsoids 
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the composite depend on the shape, size, and filling fraction of nanoparticles, 

which provide sufficient degree of freedom to optimize the superlens according to 

the wavelength of the available laser sources. To achieve the highest possible 

resolution of the lensing system, the geometrical, the filling fraction and the 

thickness of the individual layers are determined with differential evolution 

optimization algorithm [3]. 

                                  

Figure  4.4 The image formation of the imaging system made of composite thin film layers 

separated with dielectric slabs. 

 

Similar to the previous chapter the objective function is defined as the normalized 

absolute difference between the source and image:   

                                                                                                            .                                      (4.14)                                                                           

4.5.1 Subwavelength Imaging with Single Layer Composite Lens 

Figure 4.5 presents the subwavelength imaging with mixtures with randomly 

oriented ellipsoids nanoparticles and special cases of ellipsoid shapes such as 

needles, oblates, and prolates, disks, and needles. The geometrical information, 

filling fraction of plasmonic nanostructure in each layer, number and thickness of 
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the layer and effective optical property of each mixture is provided in table 4.1. 

As it is shown in figure 4.5 (b), a composite slab with nano-disk metallic 

inclusions provides the best result for subwavelength imaging, and the image has 

the highest peak which results in better signal to noise ratio in a realistic noisy 

system. 

    

                                       (a)                                                                           (b) 

Figure 4.5 Subwavelength imaging (a) with and without lens (b) imaging with single layer 
composite-dielectric lens for composite made of inclusions with different ellipsoidal shape 

 

   In addition, as the optimized working wavelength is the highest (475nm) 

for this composite, table 4.1 shows that the achieved resolution is the best among 

all composite slabs with different inclusion’s shape. As it is shown in table 4.1 the 

real part of effective permittivity of composite with nano-disk inclusions is the 

closest match to the air and the imaginary part is the lowest among all which 

reveals the reason behind the better performance of this particular composite. 
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4.5.2 Subwavelength Imaging with Layered Composite-dielectric Lens                            

In subwavelength imaging systems with isotropic metal layer based superlenses, 

the evanescent waves grow exponentially until a particular film thickness 

thereafter; the material loss becomes more prominent. Hence, the multilayer lens 

is greatly advantageous to establish a feasible spacing between the sample and its 

image. Figure 4.6 demonstrates the subwavelength imaging with layered 

composite-dielectric structure. The working frequency, thickness of layers and 

filling fractions are optimized by differential evolution algorithm. The respective 

information is given in table 4.2. As optical property of composites are 

approximated with Maxwell-Garnett effective medium theory the upper bound of 

filling fraction in the optimization process is set to 5, to avoid percolation. The 

nano particles are chosen to have 5 nm for their biggest diameter. The lower 

      Shape               Sphere     Prolate      Oblate   Ellipsoid  Needle     Disc               Geometry                
 
  Filling Fraction       0.5           0.5            0.5         0.5            0.5            0.5  
 
  Wavelength(nm)        352     356           361          368       412         475     
 
         c (nm)                5                  5                  5             5                  5                 5    

 
          b (nm)              5                 4                  5              4                 << c            5  
   
         a (nm)                 5                4                  4               3                 << c          << c 
 
        d (nm)                 30              30               30            30                 30             30 
 
  Resolution      𝜆 3.52⁄       𝜆 3.56⁄            𝜆 3.61⁄       𝜆 3.6⁄ 8         𝜆 4.12⁄       𝜆 4.75⁄  
             
    𝑅𝑒(𝜀𝑒𝑓𝑓)          -0.95         -0.92                -0.6          -0.62          -0.767                 -1  
      𝐼𝑚(𝜀𝑒𝑓𝑓)            – 0.94        - 0.96                 - 1.1         - 1.1              - 1               - 0.47                                

 

 
 
 
 
 
 
 
 
 

Table 4.1 Optimized parameters for subwavelength imaging with single layer composite- 
dielectric lens 

 

d 
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bound of layers thickness is chosen to be 10 nm and the upper bound to be 25 nm. 

From the provided data in table 4.2 it is concluded that the optimizer always tends 

to the highest filling fraction and lowest slab thickness for the lowest cost 

function. In order to compare the performance of single layer and multilayer lens 

the same thickness of the lens in single layer is divided into three slabs and spaced 

by dielectric medium (air here) to form a 5 layer arrangement as is shown in table 

4.2.  

      
                                        (a)                                                                            (b) 
Figure 4.6 (a) Subwavelength imaging with and without multilayer composite-dielectric lens (b) 

imaging with multilayer composite-dielectric lens for composite with inclusions of different 
ellipsoidal shape 

 

D is the thickness of the dielectric slabs which is set to be (d1+d2+d3)/4 and the 

same spacing is considered for the distance between source plan and image plane 

and the lens. It is observed that the layered structure is more robust to loss and can 

provide higher intensity of Gaussian pulses in the image plane by comparing 

figure 4.5(b) and figure 4.6(b) as it is expected. This conclusion is correct except 

to composite with disk-shape inclusions. 
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4.6 The Effect of the Shape 

Numerous experiments have been performed that measure the frequency variation 

of metallic nanoparticles based on changes in shape [3-7].As the position of 

resonance wavelength of depends on the shape of the particle, for non-spherical 

particles, multiple resonances will appear under unpolarized light, due to the 

difference in the size of allowed surface modes in different directions. For gold 

and silver nano ellipsoids, increasing the eccentricity causes red shifting of the 

largest peaks. This fact provides a degree of freedom to control the desired 

wavelength of imaging, with the shape of metallic nanoparticles. Figure 4.7 

demonstrates the shift in the resonance peak of composite as the shape of the 

inclusion changes. The provided result in table 4.3, figure 4.5, table 4.4 and figure 

               Shape               Sphere     Prolate      Oblate   Ellipsoid     Needle    Disc               Geometry                
 
Filling Fraction        .5              .5               .5            .5                 .5              .5  
 
 Wavelength(nm)        346        352.4       352.8        361          375         428     
 
       c (nm)                       5               5                  5             5                  5                 5    
 
       b (nm)                      5               4                 5              4                 << c            5  
 
       a (nm)                       5               4                 4               3                 << c          << c 
 
     d1 (nm)                   10              10               10            10                  10             10 
 
      d2 (nm)                   10              10               10            10                  10             10 
 
      d3 (nm)                10              10               10            10                  10             10 
 
    Resolution           𝜆 3.4⁄       𝜆 3.52⁄      𝜆 3.52⁄    𝜆 3.6⁄       𝜆 3.75⁄       𝜆 4.28⁄  
             
          𝜀𝑒𝑓𝑓        -1.11 – i0.9    -1- i0.99      -.66 - i1.15   -0.64 - i1.18  -0.76- 1.1  -0.7 - i0.48                                                                                                       

 

 
 
 
 
 
 
 
 
 
 
 

Table 4.2 Optimized parameters for subwavelength imaging with layered composite-dielectric 
lens 

 

d1   D    d2  D   d3  
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4.6 agree well with the above discussion. As eccentricity increases from the 

sphere to the disk the optimum wavelength for imaging increases or red shifted. 

               

 

                                          (a)                                                                            (b) 

 

 

    Figure 4.7 also provides the evidence for the superiority of imaging with 

nano-disc As the resonant frequency of composite with nano-discs inclusions 

happens in higher wavelength , the matching condition is satisfied with smaller 

amount of loss which result in image with higher peak in the image plane.   

4.7 Effective Permittivity of Composites Made of Aligned Inclusions 

Figure 4.8 shows a composite with aligned ellipsoid inclusions. Based on the 

polarisability tensor in equation (4.10) and equation (4.11) for effective 

permittivity, it is evident that the effective permittivity of the mixture is 

anisotropic and has different permittivity components in the different principal 

directions.   
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Figure 4.7 The effect of the shape of inclusions on the effective permittivity (a) real part, (b) 

imaginary part of metal-dielectric composite. The metallic inclusions are Ag embedded in SiO2 

as a host medium. The filling fraction for all composites is 0.5 
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   The Maxwell Garnett formula for the principal directions of the effective 

permittivity of this mixture is [2], 

                     𝜀𝑒𝑓𝑓,𝑗 = 𝜀𝑒 + 𝑓𝜀𝑒
𝜀𝑖−𝜀𝑒

𝜀𝑒+(1−𝑓)𝑁𝑗(𝜀𝑖−𝜀𝑒)
        𝑗 = 𝑥, 𝑦, 𝑧 .                    (4.15) 

The effective permittivity tensor is then, 

                                      𝜀𝑒𝑓𝑓����� = �
𝜀𝑒𝑓𝑓𝑥 0 0

0 𝜀𝑒𝑓𝑓𝑦 0
0 0 𝜀𝑒𝑓𝑓𝑧

�.                                  (4.16) 

   Figure 4.9 demonstrates the optical property of a mixture with aligned 

ellipsoidal nano particles. 

                   
                              Figure 4.9 the optical property of mixture with aligned ellipsoids  

 

  

 

 

  

  

 

 

  

 

 

  

  

 

 

  

 

 

  

  

 

 

  

 

 

  

  

 

     

Figure 4.8 A composite with aligned nano-ellipsoid particles 
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4.8   The Importance of Systematic Solution for Wave Propagation in 

Layered Anisotropic Medium  

The state of the art technology of the nano-fabrication facilitates the science and 

engineering society to implement intriguing applications with multilayer 

anisotropic structures. Novel layered anisotropic structures are applied in material 

science [8], electroanalytical chemistry [9, 10], biological interfaces and tissue 

engineering [11,12], physics and optics [8]. In nanostructuring of bulk silicon, by 

the variation of etching current in time, a layered structure with three-dimensional 

variation of the refractive index is fabricated. This structure offers variety of 

novel, polarization sensitive and silicon based optical devices such as efficient 

optical retarders, dichroic Brag reflectors, dicroic micro-cavitie, and Si-based 

polarizer [8]. In electrochemistry by anisotropic etching of silicon in alkaline 

solutions, complex micro electrical mechanical systems devices can be fabricated 

for various applications such as sensor, actuator or micro-fluidics systems [9]. In 

recent advances in tissue engineering, an anisotropic collagen gel scaffold with a 

hierarchical structure is developed to mimic the complicated anisotropic structure 

of native tissue [11]. 

   To characterize the microscopic structural changes in these thin films, 

investigate their structure and their morphology and to delineate atomic and 

molecular level details of them, various characterization techniques are being 

used. In particular, Small X-ray scattering measurement [11], x-ray reflectivity 

[13], Raman spectroscopy [14], fluorescent spectroscopy [15], optical 
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ellipsometric spectroscopy [16], and infrared reflection spectroscopy [17] have 

proven to  be  the  most  useful  techniques because  of  the  high  information  

content  present  in  these spectroscopies,  the  relatively  nondestructive  

sampling,  high sensitivity  for  monolayer  detectability,  and  the  feasibility  of 

in  situ  analysis  in  the  presence of  gases  and  liquids[18]. The functionality of 

these techniques depends on the propagation of the light in thin films. Usually the 

electric field component of the light interacts with the sample. This interaction is 

governed by the dielectric functions of the material and the sample geometry. The 

properties and the performance of the sample are then obtained by the information 

gained from the reflected and/or transmitted field. Consequently, a clear and 

relatively simple analytical approach that can derive the required information 

from the reflected or transmitted spectra is required.  

   Although the analytical investigation for electromagnetic wave 

propagation in anisotropic layered media has been a  subject of interest for many 

years [14-25], the presented solutions are either not systematic enough for the 

treatment of general multilayer birefringent media [14-18], or in the case of 

general solutions, the solution becomes singular for isotropic layers [19, 21]. The 

general solution offered in [20] is involved with power series expansions and no 

explicit expressions are provided for the interaction of the wave with the incident 

and exit medium. In [23], the wave propagation is treated in more detail, but only 

for a single uniaxial layer. None of the papers [14-25] provides explicit 

expressions for the polarization of the electric and magnetic fields in each layer. 

The explicit expressions for the polarization of the electric field,  magnetic field, 
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and the wave vector [21] in each layer, provides accurate information about the 

behavior of the electromagnetic wave propagating through layered structure for 

different applications [14-18, 20-22] and how the layered structure eventually 

transmits and reflects the incident wave [19-21]. Moreover, the polarization-

dependent optical   investigations have become standard methods to explore the 

properties of anisotropic solids and liquids [17-19], and hence it is important to 

derive analytical expressions for the polarizations in each layer for 

characterization purposes. 

    In the next section, based on the full-wave solution of the Maxwell 

equations, the explicit expressions of the electromagnetic field components in a 

multilayer with arbitrary oriented optical axis are presented. The Maxwell 

equations are solved in the k-space to find the explicit expressions of the partial 

fields. As it is convenient to reduce the number of electromagnetic field variables 

to a minimum, the six components of the E-field and H-field in each medium are 

expressed in terms of only one component. Based on the analytical expressions of 

vector field’s polarizations, the boundary condition and propagation matrices are 

introduced for each layer, as the building blocks of the transfer matrix method. 

The methodology is suitable to calculate the transfer matrix of a layer with 

arbitrary thickness and anisotropy, for any angle of incidence under plane wave 

illumination. The reflection and transmission coefficients for the multilayer 

system, is derived from the relations between the amplitudes of the incident, 

reflected, and transmitted waves. It is shown that similar boundary condition 

matrix relates the transfer function of the layered structure to the amplitudes of 
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the waves in the incident and exit media. The method is suitable for propagating 

wave and evanescent wave calculations as well. In addition, it is shown that the 

derived anisotropic relation can be reduced to the isotropic case without any 

singularity in contrast to the method presented in [12, 14].  

4.8.1 Explicit Expressions for E-Field and H-Field Polarizations 

In order to make the procedure transparent, the derivation of the polarizations of 

vector fields from Maxwell equations is provided here. For a non-magnetic 

medium with arbitrary anisotropy, the polarizations of fields depend on the 

permittivity tensor 𝜀  ̿and the wave vector k in each medium. As the tangential 

component of the wave vector, 𝑘𝑥  here, is known since it persists through the 

interface, the normal component,𝑘𝑧, is found by combining basic curl relations in 

Maxwell equation for a generally anisotropic medium,                                                              

                                                              ∇ × 𝐻 = 𝑗𝜔𝐷,                                                           (4.17) 

                                                            ∇ × 𝐸 = −𝑗𝜔𝜇𝐻.                                                        (4.18) 

    The combination of Equation (4.17) and (4.18) results in the wave 

equation in k space. The nontrivial solution of the wave equation in an anisotropic 

medium is a quadratic wave equation that yields four roots. These four roots are 

the z components of the wave vectors in the anisotropic layer. The four explicit 

expressions for 𝑘𝑧 are given in [14]. Two solutions have a real positive part and 

constitute the forward-traveling plane waves with respect to +z, while the other 

two solutions with negative real-parts are the back-propagating waves. In order to 

find the explicit expressions for the E-field and H-field polarization, equations 
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 (4.17) and (4.18) are used. From equation (4.17), 

                                                                    

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−𝜕𝐻𝑦
𝜕𝑧

= 𝑗𝜔𝐷𝑥   

𝜕𝐻𝑥
𝜕𝑧

− 𝜕𝐻𝑧
𝜕𝑥

= 𝑗𝜔𝐷𝑦

𝜕𝐻𝑦
𝜕𝑥

= 𝑗𝜔𝐷𝑧

�          .                           

(4.19)          

   The coordinate system is chosen such that 𝑘𝑦 = 0. From the first and the 

third relations in equation (4.19), 

                                     𝑘𝑧(𝑖)𝐻𝑦 = 𝜔( zxzyxyxxx EEE εεε ++ ),                      (4.20)        

                                  𝑘𝑥𝐻𝑦 = −𝜔( zzzyzyxzx EEE εεε ++ ).                     

(4.21)            

  Here 𝜀𝑖𝑗 (𝑖, 𝑗 ∈ {𝑥,𝑦, 𝑧}) is the component of the permittivity tensor connecting 

𝐷𝑖  to 𝐸𝑗   where D and E are the electric displacement and electric field, 

respectively. The combination of Equations (4.20), (4.21), and (4.19) results in 

the explicit expressions for the E-field polarization vector:  

                                                               𝐸�⃗ =

⎣
⎢
⎢
⎢
⎡

1

−𝛼
𝛾
− 𝛽𝜆

𝜉𝛾
𝜆
𝜉 ⎦

⎥
⎥
⎥
⎤

𝐸𝑥,                                                    (4.22) 

where 𝛼 ,𝛽 , 𝛾 , 𝜉, and 𝜆  are defined as  

                                                    𝛽𝑙 = 𝜀𝑥𝑧
𝑘𝑧(𝑖)

+ 𝜀𝑧𝑧
𝑘𝑥

 ,                                                    (4.23) 
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                                                   𝛼𝑙 = 𝜀𝑥𝑥
𝑘𝑧(𝑖)

+ 𝜀𝑧𝑥
𝑘𝑥

 ,                            (4.24)    

                                                    𝛾𝑙 = 𝜀𝑥𝑦
𝑘𝑧(𝑖)

+ 𝜀𝑧𝑦
𝑘𝑥

 ,                                            (4.25) 

                                     𝜆𝑙 = 𝑘𝑥𝜀𝑥𝑥 + 𝑘𝑧(𝑖)𝜀𝑥𝑧 − (𝜀𝑥𝑦 − 𝜀𝑦𝑧) 𝛼𝑙
𝛾𝑙

,                    (4.26)           

                                 𝜉𝑙 = 𝑘𝑥𝜀𝑧𝑥 + 𝑘𝑧(𝑖)𝜀𝑧𝑧 + (𝜀𝑥𝑦 − 𝜀𝑧𝑦) 𝛽𝑙
𝛾𝑙

,                         (4.27) 

The polarization vector for the H-field is determined by: 

                                    𝐻��⃗ = ∇×𝐸
−𝑗𝜔𝜇

=

⎣
⎢
⎢
⎢
⎢
⎡
−𝑘𝑧(𝑖)
𝜔𝜇

(−𝛼
𝛾
− 𝛽𝜆

𝜉𝛾
)

1
𝜇𝜔

(𝑘𝑧(𝑖) − 𝑘𝑥
𝜆
𝜉
)

𝑘𝑥
𝜔𝜇

(−𝛼
𝛾
− 𝛽𝜆

𝜉𝛾
) ⎦

⎥
⎥
⎥
⎥
⎤

𝐸𝑥 .                           (4.28)                

   As is expected for an arbitrarily anisotropic material, the fields’ 

components are coupled to each other and no decomposition to TE/TM 

polarization with respect to the direction of propagation is possible. In fact a plane 

wave in the arbitrarily anisotropic medium can be decomposed into two 

orthogonal waves, called a-wave and b-wave which are generalizations of the TE 

and TM waves in isotropic and uniaxially anisotropic media. The vectors, a and b, 

each with six components, are defined by the optical property of the medium [20]. 

4.8.2  General Transfer Matrix 

 Assume an incident light wave coming from the incident (-∞<z<0) medium with 

a complex relative permittivity of  𝜀𝑖, at an angle of incidence of 𝜃𝑖 , 𝐴𝑖,𝑇𝐸 ,  𝐴𝑖,𝑇𝑀 ,

𝐵𝑟,𝑇𝐸 , and 𝐵𝑟,𝑇𝑀  are the complex amplitudes of the TE and TM modes of the 

incident and reflected waves, respectively. After interaction with a layered 

structure, the wave enters the exit medium, 𝑧𝑛<z<∞ and is characterized with the 
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complex transmission amplitude of  𝐴𝑡,𝑇𝐸   and 𝐴𝑡,𝑇𝑀  for transmitted TE and TM 

polarization respectively. The propagation occurs along the z direction and the 

layers’ interfaces are in the x-z plane. The origin is set at the plane which 

constitutes the interface of the incident ambient and the first layer. The wave 

vector of the incident field is chosen, without loss of generality, to have x and z 

components. 

 

 

 

 

                               Figure 4.10 Incidence, reflectance and transmittance of a plane wave 

The incident wave, transmitted wave, and reflected wave, are related to each other 

by the transfer matrix of the layered system introduced as TF, in equation (4.31),  

                                                

⎣
⎢
⎢
⎡
𝐴𝑖.𝑇𝑀
𝐵𝑟,𝑇𝑀
𝐴𝑖,𝑇𝐸
𝐵𝑟,𝑇𝐸 ⎦

⎥
⎥
⎤

= 𝑇𝐹 �

𝐴𝑡,𝑇𝑀
0

𝐴𝑡,𝑇𝐸
0

�.                                      (4.29) 

  If 𝐵𝐶0  relates the incident and the reflected amplitudes to the tangential 

components of the E-field and H-field in the incident medium and 𝐵𝐶𝑁 connects 

the transmitted amplitude to the tangential components of the E-field and H-field 

in the exit medium, then 𝑇𝑙 represents the transfer function of each layer, as 

follows,  

                                  𝑇𝐹 = 𝐵𝐶0−1(∏ 𝑇𝑙(𝑑𝑙 , 𝜀𝑙̿ )𝐵𝐶𝑁𝑁
𝑖=1 .                                   (4.30) 
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4.8.3. The Transfer Function Development 

The flowchart of the algorithm showing the development of the transfer matrix 

explicitly for the 𝑙𝑡ℎ layer, is presented in figure 4.11. The ordered product of the 

layers’ transfer function from the first interface, at z=0, to the last interface at, z = 

𝑧𝑛, in figure 4.10, results in the transfer function of the layered structure. In the 

absence of the current density and charge density in the interface regions, the 

tangential components of electric- and magnetic-field are continuous across the 

interfaces. BCl-1, BCl, and BCl+1 in figure 4.11 represent the boundary condition 

matrixes which realize the continuity of the tangential components of the E-field 

and H-field in the l-1, l , and l+1 layers respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

                             

 

l             (l+1)         

    𝛆�𝐥             𝛆�𝐥+𝟏         

𝑩𝑪𝒍

⎣
⎢
⎢
⎡𝑯′𝒍𝟏𝑯′𝒍𝟐
𝑯′𝒍𝟑
𝑯′𝒍𝟒⎦

⎥
⎥
⎤

     = 𝑩𝑪(𝒍+1)

⎣
⎢
⎢
⎢
⎡
𝑯(𝒍+𝟏)𝟏
𝑯(𝒍+𝟏)𝟐
𝑯(𝒍+𝟏)𝟑
𝑯(𝒍+𝟏)𝟒⎦

⎥
⎥
⎥
⎤
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Figure 4.11. Transfer matrix development flowchart for the lth layer           
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To form the BC matrix, four tangential components of the E-field and H-field in 

each medium are required. However, since the polarization vectors of the electric 

field and magnetic field are found analytically in section II, the number of 

variables can be minimized to one. Here, the y component of the H-field, 𝐻𝑦, is 

chosen, but others may be selected where convenient. As there are four different 

wave vectors, with the same kx value but different kz values, there are four partial 

fields which constitute each tangential component. The BC matrix presents the 

association of tangential components to the amplitude of the partial fields that 

constitute 𝐻𝑦, as shown in the following, 

                                               

⎣
⎢
⎢
⎢
⎡
∑𝐻𝑦𝑙
∑𝐸𝑥𝑙
∑𝐸𝑦𝑙
∑𝐻𝑥𝑙⎦

⎥
⎥
⎥
⎤

= 𝐵𝐶𝑙 �

𝐻𝑙1
𝐻𝑙2
𝐻𝑙3
𝐻𝑙4

�.                                          (4.31) 

In equation (4.31) 𝐻𝑙1 − 𝐻𝑙4 are the amplitudes of the four partial fields that form 

the 𝐻𝑦. The explicit expressions for the BC matrix are provided as follows: 

                                        𝐵𝐶𝑙 =

⎣
⎢
⎢
⎡
𝐴1,𝑙

1
𝐵1,𝑙
𝐶1,𝑙

   

𝐴2,𝑙
1
𝐵2,𝑙
𝐶2,𝑙

     

𝐴3,𝑙
1
𝐵3,𝑙
𝐶3,𝑙

     

𝐴4,𝑙
1
𝐵4,𝑙
𝐶4,𝑙 ⎦

⎥
⎥
⎤
 ,                                     (4.32)    

  
                              𝐴𝑖,𝑙 = 𝑘𝑧(𝑖)

𝜔[𝜀𝑥𝑥+𝜀𝑥𝑦�
𝛽𝑙𝜆𝑙
𝛾𝑙𝜉𝑙

−
𝛼𝑙
𝛾𝑙
�−

𝜆𝑙
𝜉𝑙
𝜀𝑥𝑧

 ,                                    (4.33) 

 

                                              𝐵𝑖,𝑙 = (𝛽𝑙𝜆𝑙
𝛾𝑙𝜉𝑙

− 𝛼𝑙
𝛾𝑙

)𝐴𝑖,𝑙,                                        (4.34)  
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                                                    𝐶𝑖,𝑙 = −𝑘𝑧(𝑖)
𝜔𝜇

𝐵𝑖,𝑙.                                          (4.35)        

   The forward and backward propagation of the partial fields, inside the 𝑙𝑡ℎ 

layer, from the 𝑙𝑡ℎ  interface, denoted by [, 𝐻𝑙1 𝐻𝑙2 𝐻3𝑙  𝐻𝑙4]𝑇  to, the (𝑙 +

1)𝑡ℎdenoted by [𝐻′𝑙1 𝐻′𝑙2 𝐻′3𝑙  𝐻′𝑙4]𝑇, is shown analytically as follows equation 

(4.36) and (4.37). where,𝑑𝑙  is the thickness of the layer and 𝑘𝑧𝑙,𝑖  is the z 

component of the wave vector in section II. In this paper,  𝑒−𝑖𝑘𝑧𝑖 is the chosen as 

the sign convention for propagation in the +z direction, 

                                                   �

𝐻𝑙1
𝐻𝑙2
𝐻𝑙3
𝐻𝑙4

� = 𝑃𝑙 �

𝐻′𝑙1
𝐻′𝑙2
𝐻′3𝑙
𝐻′𝑙4

�,                                          (4.36) 

                         𝑃𝑙 = �
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0
0
0

    

0
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0
0

     

0
0

𝑒𝑖𝑘𝑧𝑙,3𝑑𝑙
0

     

0
0
0

𝑒𝑖𝑘𝑧𝑙,4𝑑𝑙
�.                       (4.37) 

  According to figure4.10, the transfer function 𝑇𝑙 relates the tangential 

components of the E-field and H-field of the (𝑙 − 1)𝑡ℎ layer to the (𝑙 + 1)𝑡ℎ layer: 

                                         

⎣
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⎥
⎥
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⎤
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⎡
∑𝐻𝑦𝑙+1
∑𝐸𝑥𝑙+1
∑𝐸𝑦𝑙+1
∑𝐻𝑥𝑙+1⎦

⎥
⎥
⎥
⎤
 .                                     (4.38) 

  Furthermore, equations (4.36), (4.37), and (4.38), form the transfer function for 

the 𝑙𝑡ℎ layer in a layered system, based on the flowchart in figure 4.10, as follows  

                                                𝑇𝑙 = 𝐵𝐶𝑙𝑃𝑙𝐵𝐶𝑙−1.                                              (4.39)  

The ordered product of the layers’ transfer functions from the first interface, at 
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z=0, to the last interface, at z = 𝑧𝑛, relates the tangential field’s components at z=0 

and z=𝑧𝑛,  

                                                             𝑇 =  ∏ 𝑇𝑙𝑁
𝑙=1 .                                       (4.40) 

   The TF term in equation (4.30) is the relation between the amplitudes of 

the incident, reflected, and transmitted waves. In most of the cases the incident 

and exit media are isotropic and 𝐵𝐶𝑙 in equation (4.32) may be simplified to, 

                                        𝐵𝐶0 =
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⎥
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.                               (4.42) 

 

Here 𝑘𝑧0 and 𝑘𝑧𝑁 are the z components of the k- vector in the isotropic incident 

and exit media, respectively, which become imaginary for the incident evanescent 

waves. In a lossless medium, 𝑘𝑧0  and 𝑘𝑧𝑁  are real for propagating waves and 

imaginary for evanescent waves. 

4.9 Imaging with Aligned Non-Spherical Nanoparticles 

The prominent importance between the optical property of composite with 

randomly align non-spherical inclusions and composite with oriented non-

spherical inclusion is anisotropy. An anisotropic slab with specific permittivity 

tensor is able to transmit the high spatial frequencies without major loss due to its 
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hyperbolic dispersion curve [22]. Assume an anisotropic slab with the following 

permittivity, 

                                             𝜀̿ = �
𝜀𝑥𝑥 0 0
0 𝜀𝑦𝑦 0
0 0 𝜀𝑧𝑧

�.                                                   (4.43) 

The normal component of the propagation vector in the slab with above 
permittivity is,  

                                         𝑘𝑧,1 = −𝑘𝑧,2 = �𝑘02𝜀𝑥𝑥 −
𝜀𝑥𝑥
𝜀𝑧𝑧

𝑘𝑥2 ,                                   (4.44a) 

                                          𝑘𝑧,3 = −𝑘𝑧,4 = �𝑘02𝜀𝑦𝑦 − 𝑘𝑥2 .                                        (4.44b) 

   If the sign on real part of 𝜀𝑥𝑥 and 𝜀𝑧𝑧 are opposite, equation (4.44a) represents a 

hyperbola in the k space which means that for the values 𝑘𝑥 of higher than𝑘0, 𝑘𝑧,1 

stays real and the subwavelength details of the object which are carried by the high 

spatial frequencies, 𝑘𝑥, are preserved through the anisotropic layer and carried to 

the image plane, consequently the image at the image plane has subwavelength 

precision. It should be noted that the mechanism for subwavelength imaging with 

isotropic composite slab and anisotropic composite slab is different. Imaging with 

isotropic composite slab the evanescent waves are amplified consequently the 

overall thickness of composite layers and dielectric layers should be equal 

(Veselago ratio). This ratio is not required in with anisotropic slab since the 

evanescent waves are preserved not amplified. Consequently the dielectric spacing 

can be chosen as thin as possible to minimize the attenuation of the evanescent 

waves which result in higher resolution compared to only isotropic multilayer 

designs. The metal dielectric composite with aligned nanoparticle inclusions is 
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intriguing as the permittivity tensor can be engineered for optimum imaging by 

several controlling factors such as: shape and filling fraction of inclusions, 

dielectric constant of the host medium, and the frequency of the incident field. 

     In order to study the effect of inclusions’ alignment, the dimensions of 

nanoparticles and slab thickness are set to the same values in table 4.1, which are 

the optimum values found for imaging with composites made of randomly oriented 

inclusions. The differential evolution algorithm then finds the optimum value for 

the filling fraction and frequency of incident light for the best possible image. In 

figure 4.12 imaging with isotropic composite and anisotropic composite which is 

formed by randomly oriented prolate and aligned prolate respectively is compared.    

 

      

Figure 4.12 (a) Subwavelength imaging with composite made of randomly oriented prolates and 
composite made of aligned prolates  (b)Tensor of effective permittivity (c) Real part of permittivity 
tensor  for the frequency that the imaging is realized (d) Imaginary part of permittivity tensor  for 

the frequency that the imaging is realized 

 

Interestingly it is observed that the anisotropic slab offers higher field intensity in 

the image plane and consequently better signal to noise ratio, owing to its different 

imaging mechanism. Figure 4.12 (b) presents the elements of effective permittivity 

-1 -0.5 0 0.5 1
x 10-7

0

0.05

0.1

0.15

0.2

0.25

x(nm)
(a)

In
te

ns
ity

( |
 E

y2  | 
)

 

 
Source
Image (Composite with Aligned Prolate)
data3  (Composite with randomly Oriented Prolate)

300 400 500 600 700 800
-50

0

50

λ(nm)
(a)

ε

 

 

340 345 350
-2

-1

0

1

2

λ(nm)
(b)

ℜ
(e

ps
ilo

n)

 

 

340 345 350
-1

-0.8

-0.6

-0.4

-0.2

0

λ(nm)
(c)

Im
(ε

)

 

 

εxx
εyy
εzz

εxx
εyy
εzz

Re(εxx)

Re(εyy)

Re(εzz)

Im(εxx)

Im(εyy)

Im(εzz)



89 
 

tensor and figure 4.12 (c) demonstrates the suitable frequencies where the sign of 

real parts of epsilon for two principal axes become opposite to the third one and 

the slab supports the hyperbolic dispersion.   

   The difference in the mechanism of imaging for isotropic and anisotropic slab 

lies in difference between their dispersion relations. The isotropic medium with 

permittivity 𝜀𝑖𝑠𝑜 =  𝜀1 − 𝑖𝜀2 owns the following dispersion, 

                                                     𝑘𝑧𝑖𝑠𝑜 = �𝑘02𝜀1 − 𝑘𝑥2 − 𝑖𝑘02𝜀2 .                              (4.45)       

In addition to the waves with high tangential components, material loss also 

hampers imaging with high resolution. Regarding equation (4.44a) for the 

dispersion relation of anisotropic medium where 𝜀𝑥𝑥 =  𝜀1 − 𝑖𝜀2 and 𝜀𝑧𝑧 =  −𝜀1 −

𝑖𝜀2, 

        𝑘𝑧𝑎𝑛𝑖𝑠𝑜 = �𝑘02𝜀1 −
𝜀22−𝜀12

𝜀22+𝜀12
𝑘𝑥2 − 𝑖(𝑘02𝜀2 + 2 𝜀1𝜀2

𝜀12+𝜀22
) = √𝐴 + 𝑖𝐵 ,               (46.a) 

            √𝐴 + 𝑖𝐵 =  𝑅𝑒−𝑖𝜃, 𝑅 =  √𝐴2 + 𝐵2 & 𝜃 =  tan−1 (𝐵 𝐴⁄ ).                  (46.b)                        

Depending on values for 𝜀1 and 𝜀2 the effective loss in equation (46.b) can be less 

than the loss in equation (4. 45) which results in the higher tolerance of anisotropic 

slab for loss than isotropic slab. Imaging with aligned nano-disk inclusions shown 

in figure 4.13 agrees well with the higher tolerance of anisotropic slabs against the 

loss. Consequently the composite with aligned appropriated non-spherical 

inclusions is an intriguing option when signal to noise ratio in near field 

subwavelength imaging is a critical issue. 



90 
 

           
Figure 4.13 (a) Subwavelength imaging with composite made of randomly oriented discs and 

composite made of aligned discs  (b)Tensor of effective permittivity (c) Real part of permittivity 
tensor  for the frequency that the imaging is realized (d) Imaginary part of permittivity tensor  for 

the frequency that the imaging is realized 

 

 

   Table 4.3 summarizes the optimum filling fraction, frequency, and effective 

permittivity of anisotropic slabs in figure 4.12 and 4.13.  

 
Table 4.3 Optimized parameters for subwavelength imaging with single layer of composite made 

of aligned inclusions 
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becomes imaginary and the propagating waves turn into evanescent waves. In 

other words, cut-off frequency is where the tangential component of the 

propagation vector exceeds the propagation constant of the medium which is 

𝑘0√𝜀1 2𝜋⁄  for isotropic slab and  𝜀2
2+𝜀12

𝜀22−𝜀12
𝑘0√𝜀1 2𝜋⁄  for anisotropic slab. As  𝜀2

2−𝜀12

𝜀22+𝜀12
 factor 

in equation (4.46a) is always smaller than one, it scales down the tangential 

component of propagation vector; hence the cut-off happens for higher value of 𝑘𝑥 

which results in propagation of waves with bigger tangential components. 

Consequently it is expected that anisotropic slab would be capable to do 

subwavelength imaging for higher resolutions. This is demonstrated in figure 4.14 

by reducing the spacing between two Gaussian pulses in the object plane by 40 

nm, and compare the performance of composite made of aligned inclusions and 

composite made of randomly oriented inclusions.  

                                 

Figure 4.14 The success of composite slab made of aligned inclusions in subwavelength imaging 
for higher resolution. 
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the composite slab with randomly oriented nano-disc fails to form two 

distinguishable peaks in the image plane. The filling fraction, incident field’s 

frequency are effective permittivities are taken from table 4.1 and 4.3.  

4.10 Conclusion  

In this chapter subwavelength imaging with single layer and multilayer composite 

slabs which are made of non-spherical plasmonic inclusions embedded in 

dielectric host medium is investigated. The shape, size, and orientation of nano 

particles offer high degree of freedom to realize subwavelength imaging 

according to the available laser sources. For composite made of randomly 

oriented non-spherical inclusions it is shown that the by increasing the 

eccentricity of nanoparticles the resonance peak of effective index of refraction is 

red shifted ;hence the different shapes of nanoparticle is beneficial to design an 

optical system which is compatible with available resources. An optimum values 

for filling fraction, incident field’s frequency, and thickness are found for single 

layer and multi layer lensing system, provided in table 4.1 and 4.2, and 

subwavelength imaging for two Gaussian pulses spaced 100 nm is realized over 

the optical range with composite slabs made of inclusions with different non-

spherical shapes such as general ellipsoids, oblates, prolates, disks and needles. 

As effective refraction index of a composite with aligned nano ellipsoid is 

anisotropic, a fully analytical algorithm is developed to investigate light 

interaction with arbitrary anisotropic layered structure. This algorithm is suitable 

to investigate the near-field/far-field electromagnetic wave interaction at any 

angle of incidence for numerous intriguing applications. It is shown that the 
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composite slab with aligned non-spherical inclusions is not only capable to realize 

the subwavelength imaging at different wavelengths but also it is more robust to 

the material loss due to its different mechanism of imaging. Consequently for two 

composite slabs with the same thickness, one formed from randomly oriented 

inclusions (isotropic) and the other formed by aligned inclusions (anisotropic) of 

same shape and same size, it is shown that the image formed in the image plane 

by anisotropic slab has higher intensity in comparison with image formed by 

isotropic slab, hence anisotropic slabs offer better signal to noise ratio in the 

image plane. Owing to its specific dispersion curve, it is also analytically shown 

that this anisotropic slab can preserve waves with higher tangential component of 

wave vector which result in higher resolution; it is demonstrated while composite 

with randomly oriented inclusions (isotropic) fails to resolve two Gaussian pulses 

spaced 60 nm, the composite with the same thickness made of aligned inclusion 

of same shape and size, successfully resolves the pulses in the image plane.  
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CHAPTER 5 

THE MECHANISM OF MAGNIFIED VIRTUAL 

IMAGE FORMATION IN NEAR FIELD WITH 

MICROSCOPE NANOSCOPE 

  

 

 

5.1 Introduction 

The subwavelength imaging technique that has been discussed so far is confined 

to near-field imaging due to the flat structure and smooth surface of the lens. Far-

field super lens (FSL) used a silver slab to enhance the evanescent waves and 

used an attached line grating to convert the evanescent waves into the propagating 

waves. However, such a FSL did not magnify objects. In order to produce a 

magnifying superlens Smolyaninov et al. [1] suggested the use of two-dimen-

sional surface plasmon Polariton (SPP) confined by a concentric polymer grating 

placed on a gold surface. It generates 3x magnifications and a resolution of 70 nm 

at 495-nm wavelength (𝜆 /7 far-field resolution). Hyperlens is another type of 

magnifying superlens. The hyperlens used an anisotropic medium with a 

hyperbolic dispersion that generates a magnification effect through the cylindrical 

curved multilayer stacks [2]. Due to the SPP energy loss and sophisticated nano-
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fabrication process, the resolutions of existing SPP-superlens and hyperlens are 

limited within λ/7  to λ/3. Moreover, both magnification and resolution of these 

lenses are orientation-dependant, which implies that the final images are not 

isotropic within the imaging plane. The other practical limit is that the SPP-

superlenses must be excited with a specific laser source and configuration 

(wavelength, polarization, incident angle). The latter shortcoming is alleviated by 

the introduction of metal-dielectric composite discussed in previous chapters; 

however it is hard to achieve SPP-superlens function with a standard white light 

source. 

   Subwavelength dielectric structures offer an attractive low-loss alternative 

to plasmonic material for the development of resonant optics functionalities. It is 

shown that a single microsphere illuminated by a tightly focused Gaussian beam 

is capable of subwavelength light confinement and significantly enhances the 

fluorescence emission from a single molecule. In that case, strong confinement of 

light, on the order of 6(𝜆 𝑛)⁄ 3, with a non-resonant dielectric structure was clearly 

demonstrated [3]. The nanoscale solid immersion lenses (nSILs) have been 

recently fabricated using sophisticated techniques for subwavelength imaging [4]. 

It is reported to resolve 220 nm line objects at 475 nm imaging wavelength (λ/2.2 

far-field resolution, × 2 magnification) [5]. Compared with macroscopic SILs, 

wavelength-scale nSILs can produce a 25% smaller focus spot, which enhances 

the resolution [4]. Due to the shortage of high-index lens materials it remains 

practically impossible for SILs to resolve nano-objects below 100 nm with visible 

light sources [4, 5].  
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   Recently a breakthrough 50-nm-resolution optical nanoscope is reported 

that uses ordinary glass microspheres (n = 1.46, 2 μm < diameter< 9 μm) as far-

field superlens [6]. It is experimentally demonstrated that nanoscope can 

overcome the white-light diffraction limit, and attain resolution between λ /8 and 

λ /14 and a magnification between x4 and x8. Although the idea of the object 

magnification with spherical particles was discussed previously [7], it was not 

clear up to which extend one can produce magnification and what is the 

mechanism of the image formation. To our best knowledge, the near field virtual 

image formation and magnification mechanism which reveals the ultimate 

achievable subwavelength resolution is not discussed so far. In this chapter a 

novel methodology based on rigorous multipole expansion is developed to unveil 

the mechanism of subwavelength imaging with microscope nanoscope for the first 

time.  

5.2 Near Field Optics, Microscopic vs. Mesoscopic       

Generally, a near-field region is referred to a region with size in nanoscopic or 

mesoscopic scales. The mesoscopic scale is referred to the situations where the 

sizes are in the order of the incident wavelength λ. In the visible light region this 

scale corresponds roughly to the length range from 0.1 µm to 1 µm. By 

nanoscopic, one usually means low-dimensional structures smaller than 100 nm 

[8]. If these structures can be identified with single molecules, the nanoscopic 

regime also means the molecular range. However, structures smaller than 1 nm 

are commonly viewed as belonging to the atomic range.  
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When λ is much smaller than the size of the scatterers, one speaks of the 

macroscopic regime. Geometrical optics is a first-order approximation which 

describes the scattering of light by macroscopic objects. On a more refined level, 

Kirchhoff’s diffraction theory uses a scalar field to account for phenomena where 

light displays a wave character on a macroscopic scale. Kirchhoff’s theory 

attributes ideal properties to the scatterers such as a perfect conductivity or a real 

refractive index.  

    Microscopic systems are objects which are so small when compared to the 

incident wavelength that the non-retarded approximation becomes applicable. 

This approximation considers the scatterers as dipoles or a set of dipoles whose 

susceptibilities may include dissipative effects. For visible wavelengths, this 

regime corresponds to the atomic range. Near-field optics deals with phenomena 

involving evanescent electromagnetic waves that become significant when the 

sizes of the objects are in the order of λ or even smaller [8].  

    In view of the above classification, it is clear that near-field optics is thus 

concerned with the scattering of electromagnetic waves by mesoscopic and 

nanoscopic systems. Even in the situations where atomic size structure is 

involved, near-field optical detection is affected by the nano- and mesoscopic 

systems embedding the atomic size structure. Evanescent waves are important in 

near-field optics because the typical size of the objects is comparable to λ and the 

decay of evanescent waves occurs within a range given by the wavelength λ and 

the angle of incidence [8]. 



101 
 

5.3 Optical Resonance and Near-Field Enhancement Effects 

The first analysis of the optical resonance was done with respect to conventional 

applications in colloid and aerosol physics. According to Diao et al. [9], the 

optical resonance of a dielectric sphere is caused by sphere cavity resonance 

(SCR). In SCR, the incident field excites resonant but undamped modes in 

dielectric spheres which are distributed as evanescent waves around the sphere. In 

the near-field region of the sphere cavity, the field distribution is dominant with 

these evanescent waves, and is sensitive to the size parameter of the sphere. The 

SCR resonances are very sharp, and the efficient divergence of radiation for 

corresponding modes is very small. It means that optical resonances produce high 

intensities in the near-field region and, naturally, it can lead to formation of “hot 

spots”. Figure 5.1 demonstrates the COMSOL simulation of the formation of hot 

spot by a dielectric nanosphere. 

                                     

                        Figure 5.1 Subwavelength focusing of light by dielectric nanosphere 

                                                     𝜺𝒓 = 𝟐.𝟓𝟔 𝒂 = 𝟐𝟎𝟎 𝒏𝒎  𝐚𝐭 𝝀 = 𝟐𝟒𝟖 𝒏𝒎     

   However it should be noted that the focusing capability of dielectric 

sphere depends critically on two factors, the size parameter of the sphere defined 
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as 𝑞 = 2𝜋𝑎 𝜆⁄  and the refractive index of the sphere. In modeling, SCR can be 

described by Mie theory. This is an exact solution to Maxwell equation for an 

arbitrary sphere under plane wave excitation. The geometrical optics (for big 

particle with λ >> a) and dipole approximation (for small particle with λ << a) can 

be regarded as the two limiting cases of Mie theory. In near field optics (NFO) 

where mesoscopic size particles are concerned, the simulation by dipole 

approximation could lead to inaccurate results due to the excitation of higher-

order multipole resonance modes in particles. It needs careful and theoretical 

analysis with sufficient number of mode terms. The inclusion of a small term in 

Mie series beyond dipole approximation could significantly distort the phase 

portrait of optical near-field and produce a completely different near-field 

distribution. 

5.4 Theoretical Challenge for Light Interaction with Mesoscopic 

Structures 

The theory of electromagnetic waves describes satisfactorily their interaction with 

objects which are macroscopic or microscopic relative to the incident wavelength. 

However, the theoretical knowledge about the scattering of electromagnetic 

waves by mesoscopic systems remains limited. Since many situations involve 

nanoscopic and mesoscopic systems simultaneously, incomplete information 

about the mesoscopic range impedes our understanding of nanoscopic systems. 

Most approximations are not appropriate for studying mesoscopic systems. Unlike 

macroscopic systems (successfully described by Kirchhoff theory) and 
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microscopic systems (for which retardation is negligible), mesoscopic systems 

require the detailed solution of the full set of Maxwell equations. Again, the main 

origin of their problems can be traced to the crucial role played by the evanescent 

components of the field in the near-field zone close to mesoscopic scatterers. In 

the mesoscopic range, the accurate treatment of evanescent waves requires one to 

deal carefully with the electromagnetic boundary conditions at each interface. To 

ensure the accuracy of simulation results, exact models are used in this chapter. 

5.5 Formulation of the Problem and Methodology  

When the size of the particle is much bigger than λ, the magnification effect can 

be illustrated with the help of geometrical optics. The virtual image of a small 

object for this case is magnified by a factor of n / (2 − n) for 1< n < 2. Naturally 

for a sub-diffraction object in the near field, the geometrical optics is not 

applicable and one should solve Maxwell equations. However, as a reciprocal 

effect to the Mie theory, one can expect that an object with size in the order of at 

least λ /8 can be converted into image with a size λ, which can be seen by a 

conventional optical microscope [10]. In other words if a dielectric nano- or 

microparticle is capable to form a subwavelength size “ hot spot” , reciprocally it 

can magnify an object of subwavelength size up to a dimension beyond the 

diffraction limit. An analogy to this phenomenon in geometrical optics, with 

different mechanism, is magnified virtual image of an object with magnifying 

glass lenses, figure 5.2. The magnified virtual near-field image formation by 

dielectric microsphere is demonstrated experimentally in [6]. The schematic of 

the experiment is shown in figure 5.3.  
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                               (a)                                                                        (b) 

Figure 5.2  Magnified Virtual Image Formation (a) Virtual image forms by glass lens (b) Ray 
tracing technique to determine virtual image formation in geometrical optics[16] 

 

 

                         

Figure 5.3 Experimental configuration of white-light microsphere nanoscope with  𝜆 8⁄ − 𝜆 14⁄   
imaging resolution. Schematic of the transmission mode microsphere superlens integrated with a 

classical optical microscope. The spheres collect the near-field object information and form virtual 
images that can be captured by the conventional lens, reprinted with permission of [6]. 

 

   In figure 5.3, the microspheres are placed on the top of the object surface 

by self-assembly. A halogen lamp with a peak wavelength of 600 nm is used as 

the white-light illumination source. The microsphere superlenses collect the 
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underlying near-field object information, magnify it (forming virtual images 

which keep the same orientation as the objects in the far-field) and pick it up by a 

conventional × 80 objective lens [6]. 

   In order to explain the mechanism of virtual image formation in near-field 

and to evaluate the capability of the microsphere in far-field subwavelength 

imaging within the while light source, the following configuration in figure 5.4 is 

analytically investigated.  

 

Figure 5.4 Analytical investigation of virtual image formation in the near-field with the system of 
two radiating dipole and dielectric microsphere. The dielectric microsphere operates as a superlens 

to create magnified virtual image of two dipoles. 

 

  The two Hertzian dipoles are located in nanometeric distance below the 

dielectric sphere with permittivity 𝜀2. The spacing between the dipoles, d, is set to 

be subwavelength to represent an object with subwavelength feature. The field 

radiated by two dipoles is enhanced by microsphere; for the appropriate size 
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parameter and permittivity of the sphere, it is expected to observe the magnified 

virtual image in the image plane which is placed in the near-field of dipoles.    

The analytical investigation procedure consists the following major steps: 

• Expansion of electric field and magnetic field of arbitrarily located and 

polarized Hertzian dipole in the spherical coordinate. 

The subwavelength focus shown in figure 5.1 is due to the field that is 

scattered by sphere. Consequently, to calculate the scattered field by the 

sphere the incident field should be represented in the coordinate consistent 

with the geometry of the boundary of the sphere. This step of the analysis 

is in fact the most rigorous part of the problem. Since the scattering 

problem is a linear system, the achieved exact solution in this step, can be 

applied for any arbitrarily located and polarized collection of dipoles, i.e. 

two dipoles with subwavelength spacing. 

• Calculation of the scattering coefficients for the scattered field. 

The point of interest in this problem is the behavior of the field scattered 

by sphere and the contribution of the scattered field in the virtual image 

formation in near-field.  

• Reconstruction of virtual image, using the reciprocity principle and 

extrapolation of timed averaged Poynting vector. 

In cases of macroscopic spheres, in which geometrical optics applies, the 

virtual image magnification factor can be calculated through ray tracing, 

however as sphere size reduces to the mesoscopic and nanoscopic sizes, 

geometrical ray tracing becomes invalid; the optical rays going through 
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such small spheres could form optical vortices and singularities inside the 

sphere [6]. In fact in such regimes the light’s ray no longer propagates 

along the straight line, hence the rays are not useful for ray tracing. 

 

5.5.1 Rigorous Multipole Expansion   

In this section the electromagnetic field of radiating dipole is derived analytically 

for a dipole with arbitrary location and polarization. In the cases of no free 

charges and currents, the electric and magnetic fields inside and outside the 

sphere both satisfy the vector Helmholtz equation [11]. 

                          (𝛁2 + 𝑘2)𝑬 = 0 , (𝛁2 + 𝑘2)𝑯 = 0 ,                                        (5.1)                                           

where  𝑘 = 𝜔
𝑐 √𝜀  is the wave vector and ∇2 is the Laplacian. The magnetic field 

can be expressed as a curl of auxiliary vector potential, A, which simplifies the 

vector wave equation to the following differential equation for A,  

                                          (∇2 + 𝑘2)𝑨 = 0.                                                      (5.2) 

   The wave equation should be solved in spherical coordinate due to the 

spherical geometry of the problem. The magnetic vector potential, 𝐴𝑑𝑖𝑝 , of a 

dipole at the coordinate 𝑟  due to an oscillating dipole at 𝑟⃗́ with dipole moment 𝑝⃗  

is 

                                 𝐴𝑑𝑖𝑝 = −𝑖𝑘𝑝⃗ 𝑒𝑖𝑘�𝑟��⃗ −𝑟́
��⃗ �

    �𝑟−𝑟⃗́�
 ,                                       (5.3) 
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According to the addition theorem the spherical expansion the of the vector 

potential, when 𝑟 < 𝑟′, is [11],        

            𝐴𝑑𝑖𝑝 = 4𝜋2𝑝⃗ ∑ ∑ 𝑗𝑙(𝑘𝑟)ℎ𝑙
(1)(𝑘𝑟′)𝑙

𝑚=−𝑙 𝑌𝑙,𝑚∗ (𝑟̂′)𝑌𝑙,𝑚(𝑟̂)𝑙 ,            (5.4) 

where 𝑗𝑙 and  ℎ𝑙
(1) are spherical Bessel function of first kind and spherical Hankel 

function of first kind, respectively, and 𝑌𝑙,𝑚 is the spherical harmonics function of 

degree l and order m[12], 

                        𝑌𝑙,𝑚 = (−1)𝑚�2𝑙+1 (𝑙−𝑚)!
4𝜋     (𝑙+𝑚)!

𝑃𝑙𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜑,                       (5.5) 

𝑃𝑙𝑚(𝑐𝑜𝑠𝜃) is associated Legendre function. The magnetic field (𝐵�⃗ 𝑑𝑖𝑝 = ∇ × 𝐴𝑑𝑖𝑝) 

of dipole is: 

           𝐵���⃗ 𝑑𝑖𝑝 = ( 4𝜋𝑘3 ∑ 𝑗′𝑙 (𝑘𝑟)ℎ𝑙
(1)(𝑘𝑟′)𝑙,𝑚 𝑟̂ × 𝑝⃗𝑌𝑙𝑚∗ (𝑌𝑙,𝑚(𝑟) 

          + 4𝜋𝑖𝑘2

𝑟
∑ 𝑗1(𝑘𝑟)ℎ𝑙

(1)(𝑘𝑟′)𝑙,𝑚 𝑌𝑙,𝑚∗ (𝑟)́�𝑟̂ × 𝐿�⃗ 𝑌𝑙,𝑚(𝑟) × 𝑝⃗� ),                      (5.6)         

 where 𝐿�⃗ = −𝑖𝑟 × ∇, which is angular momentum operator. For more systematic 

calculation the magnetic field is decomposed to two components with multipole 

expansion technique. 

                      𝐵�⃗ 𝑑𝑖𝑝 = ∑ {𝑙,𝑚 𝑎𝐸(𝑙,𝑚)𝑗𝑙(𝑘𝑟′)𝑌�⃗𝑙𝑙𝑚(𝑟) 

                                −(𝑖𝑐 𝜔)⁄ 𝑎𝑀(𝑙,𝑚)∇ × [𝑗𝑙(𝑘𝑟)𝑌�⃗𝑙𝑙𝑚(𝑟)]} ,                       (5.7) 

𝑌�⃗𝑙𝑙𝑚(𝑟) is vector spherical harmonics,  

                                                   𝑌�⃗𝑙𝑙𝑚(𝑟) = 1
�𝑙(𝑙+1)

𝐿�⃗ 𝑌𝑚,𝑙 ,                              (5.8) 
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  𝑎𝐸 and 𝑎𝑀 are the coefficients dependant on the position and orientation of the 

dipole and are derived using orthogonal properties of spherical harmonics. 

  For instance   𝑎𝐸 is calculated in the following procedure: 

                        𝑎𝐸(𝑙′,𝑚′)𝑗𝑙 (𝑘𝑟) = ∫𝑌∗����⃗ (𝑟̂).𝑙′𝑙′𝑚′ 𝐵�⃗ 𝑑𝑖𝑝𝑑Ω,                         (5.9)  

Substituting equation (5.8) in equation (5.9), the left side of equation (5.9) is:  

4𝜋𝑖𝑘2

𝑟
𝑝⃗. (−𝑖 ∑ 𝑘𝑟𝑙,𝑚 𝑗′1(𝑘𝑟)ℎ 𝑙

(1)
(𝑘𝑟′)𝑌∗𝑙𝑚 ∫𝑌∗����⃗ 𝑙′𝑙′𝑚′(𝑟) ×

[𝑟̂𝑌𝑙𝑚(𝑟̂)]𝑑Ω                                                                                                                     (5.10)     −

−∑[𝑙(𝑙 + 1)]1 2⁄ 𝑗1(𝑘𝑟)ℎ𝑙
(1)(𝑘𝑟′)𝑌∗𝑙𝑚 ∫ 𝑟̂[𝑌∗����⃗ 𝑙′𝑙′𝑚′(𝑟).𝑌�⃗ 𝑙′𝑙′𝑚′(𝑟)]𝑑Ω , 

 The following property transforms spherical harmonics to vector spherical 

harmonics [12] 

    𝑟̂𝑌𝑙𝑚(𝑟̂) = −( 𝑙+1
2𝑙+1

)1 2⁄ 𝑌�����⃗ 𝑙,𝑙+1,𝑚(𝑟̂) + ( 𝑙
2𝑙+1

)1 2⁄ 𝑌�����⃗ 𝑙,𝑙−1,𝑚(𝑟̂),                    (5.11) 

The relation between spherical harmonics and vector spherical harmonics in 

equation (5-11) reduces the integral in equation (5- 10) to a sum of integrals of 

cross products of vector spherical harmonics. Then the following relation is used 

to simplify the integration calculation [13]  

                    𝑌�⃗𝐽𝐿𝑀(𝜃,𝜑) = ∑𝑌𝑙𝑚(𝜃,𝜑)𝑒𝑞⟨𝑙 𝑚 1 𝑞|𝑙 1 𝐽 𝑀⟩ ,                          (5.12)                                                                                     

    

⎩
⎨

⎧𝑒+1 = − 1
√2

(𝑥� + 𝑖𝑦�)       𝑞 = 1 
𝑒0 = 𝑧̂                               𝑞 = 0
𝑒−1 = 1

√2
(𝑥� − 𝑖𝑦�)          𝑞 = −1

�                                  (5.13) 
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where ⟨𝑙 𝑚 1 𝑞|𝑙 1 𝐽 𝑀⟩  is Clebcsh-Gordan coefficient [13].  𝑎𝐸  and 𝑎𝑀  are 

derived applying orthogonal property of spherical harmonics 

 𝑎𝐸(𝑙,𝑚) = 2𝜋𝑖𝑘3

[𝑙(𝑙+1)(2𝑙+1)]1 2⁄
𝑝⃗. ((𝑙+1)ℎ𝑙�𝑘𝑟′�

[2𝑙−1]1 2⁄ 𝜖− + (𝑙+1)ℎ𝑙+1�𝑘𝑟′�
[2𝑙+3]1 2⁄ 𝜖+),        (5.14)  

 where,  

𝜖𝑥− = [(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)]1 2⁄ 𝑌𝑙−1,𝑚−1
∗ (𝑟′) − [(𝑙 − 𝑚)(𝑙 − 𝑚 − 1)]1 2⁄ 𝑌𝑙−1,𝑚+1

∗ (𝑟′) ,     (5.15.a) 

𝜖𝑦− = −𝑖�[(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)]1 2⁄ 𝑌𝑙−1,𝑚−1
∗ (𝑟′) − [(𝑙 − 𝑚)(𝑙 − 𝑚 − 1)]1 2⁄ 𝑌𝑙−1,𝑚+1

∗ (𝑟′)�(5.15.b) 

𝜖𝑧− = −2[(𝑙 + 𝑚)(𝑙 − 𝑚)]1 2⁄ 𝑌𝑙−1,𝑚
∗ (𝑟′),                                                                (5.15.c) 

𝜖𝑥+ = [(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)]1 2⁄ 𝑌𝑙+1,𝑚+1
∗ (𝑟′) 

                          −[(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)]1 2⁄ 𝑌𝑙+1,𝑚−1
∗ (𝑟′),                                             (5.15.d) 

𝜖𝑦+ = 𝑖�[(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)]1 2⁄ 𝑌𝑙+1,𝑚+1
∗ (𝑟′)�         

                          −𝑖[(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)]1 2⁄ 𝑌𝑙+1,𝑚−1
∗ (𝑟′) ,                             (5.15.e)                                                                         

𝜖𝑧+ = −2[(𝑙 + 𝑚 + 1)(𝑙 − 𝑚 + 1)]1 2⁄ 𝑌𝑙+1,𝑚
∗ (𝑟′),                                                  (5.15.f) 

                                         𝑎𝑀(𝑙,𝑚) = 2𝜋𝑖�𝑘2𝜔 𝑐⁄ �ℎ𝑙(𝑘𝑟′)𝑝.���⃗ 𝑀��⃗

[𝑙(𝑙+1)]1 2⁄  ,                           (5.16) 

where  

 

𝑀𝑥 = [(𝑙 − 𝑚)(𝑙 + 𝑚 + 1)]1 2⁄ 𝑌𝑙,𝑚+1
∗ (𝑟′) 

                                             +[(𝑙 + 𝑚)(𝑙 − 𝑚 + 1)]1 2⁄ 𝑌𝑙,𝑚−1
∗ (𝑟′) ,                      (5.17.a)                      

𝑀𝑦 = 𝑖[(𝑙 − 𝑚)(𝑙 + 𝑚 + 1)]1 2⁄ 𝑌𝑙,𝑚+1
∗ (𝑟′) 

                                      −[(𝑙 + 𝑚)(𝑙 − 𝑚 + 1)]1 2⁄ 𝑌𝑙,𝑚−1
∗ (𝑟′) ,                                       (5.17.b)  

𝑀𝑧 = 2𝑚𝑌𝑙,𝑚+1
∗ (𝑟′) ,                                                                                               (5.17.c)                   
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The analytical expressions derived in equation (5.15) – (5.17) along with equation 

(5.7) enable one to find the explicit expression  for electric field and magnetic 

field of arbitrarily polarized radiating dipole located in any point in the space.    

5.5.2 Scattered Field 

 The scattered field is connected to the incident field on the boundary of the 

scatterer. The scattered field is found by following the same well elaborated 

scheme in Mie theory [14]. When E-fields and H-fields are described with scalar 

potential , 𝜋𝑒  and 𝜋𝑚 , the solution of the wave equation in spherical coordinate 

can be decomposed to three independent ordinary differential equation as function 

of 𝑟,𝜃, and 𝜑  respectively. The differential equations are solved with 

undetermined coefficient and the coefficients are found by using the boundary 

conditions. According to [14] it is sufficient to calculate the radial component of 

E-field and H-field in order to derive the scalar potentials 𝜋𝑒  and 𝜋𝑚  . The 

angular components of  E-field and H-field  are derived from 𝜋𝑒  and 𝜋𝑚 . Hence 

to derive 𝜋𝑚  the radial componenet of H-field is required. The first term in 

equation (5.7) includes only the angular component, consequently the second term 

is calculated first to determine the radial component. After few steps of 

calculation and taking to account that 𝑟2∇2𝑌𝑚,𝑙 = −𝑙(𝑙 + 1)𝑌𝑚,𝑙  the radial 

component of H- field is 
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                 𝐻𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = 1
𝑘2
∑ 𝑐𝑘�𝑙(𝑙+1)

𝜔
𝑎𝑀(𝑙,𝑚) 𝜓𝑙(𝑘𝑟)

𝑟2
𝑌𝑚,𝑙𝑙,𝑚 ,  (5.18) 𝜓𝑙(𝑘𝑟) 

is Ricatti-Bessel function and defined as 
𝐽𝑙(𝑘𝑟)
𝑘𝑟

. The magnetic scalar 

potential, 𝜋𝑚 , is calculated based on the following differential equation,              

                                𝐻𝑟 = 𝑘2𝑟 𝜋𝑚 +  𝜕
2(𝑟 𝜋𝑚 )
𝜕𝑟2

 .                                    (5.19) 

Based on the expression for the H-field in equation (5.18), the trial solution for 

𝑟 𝜋𝑚  is  

                            𝑟 𝜋𝑚 = 1
𝑘2 ∑ 𝛼𝑙,𝑚𝑗𝑙(𝑘𝑟)𝑌𝑚,𝑙𝑙,𝑚  .                                 (5.20) 

Equation (5.20) is substitute to equation (5.19), and we have 

             𝛼𝑙,𝑚[𝑘2𝑗𝑙(𝑘𝑟) + 𝜕2�𝑗𝑙(𝑘𝑟)�
𝜕𝑟2

] = 𝑐𝑘𝜇�𝑙(𝑙+1)
𝜔

𝑎𝑀(𝑙,𝑚)𝜓𝑙(𝑘𝑟)
𝑟2

.           (5.21) 

By simple rearrangement equation (5.21) gets the familiar following form, 

                                     
𝑑2(𝜓𝑙)
𝑑𝑟2

+ �𝑘2 − 𝛼
𝑟2
�𝜓𝑙 = 0.                              (5.22) 

The solution to this differential equation is Ricatti-Bessel function if 𝛼 = 𝑙(𝑙 + 1), 

consequently the unknown coefficient of equation (5-21) is,   

                               𝛼𝑙,𝑚 = 𝑐𝑘
𝜔�𝑙(𝑙+1)

𝑎𝑀(𝑙,𝑚).                                (5.23) 

The scalar potential 𝜋𝑒  is determined with the same procedure; the trial solution 

takes the form of   

                                 𝑟 𝜋𝑒 = ∑ 𝛽𝑙,𝑚𝑗𝑙(𝑘𝑟)𝑌𝑚,𝑙𝑙,𝑚 ,                            (5.24) 
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                                     𝐸𝑟 = 𝑘2𝑟 𝜋𝑒 +  𝜕
2(𝑟 𝜋𝑒 )
𝜕𝑟2

.                             (5.25) 

Since ∇ × 𝐻��⃗ 𝑑𝑖𝑝 = −𝑖 𝜔𝜀
𝑐
𝐸�⃗ 𝑑𝑖𝑝 , the radial component of E field : 

             𝐸𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = 𝑖 𝑐
𝜔𝜀

1
𝑟2 sin𝜃

{𝜕(𝑟𝐻𝜑 sin𝜃)
𝜕𝜃

− 𝜕(𝑟𝐻𝜃)
𝜕𝜑

}.                        (5.26) 

After several steps of calculation the radial component of E field is 

               𝐸𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = 1
𝑘2
∑ −�𝑙(𝑙+1)

√𝜀
𝑎𝐸(𝑙,𝑚) 𝜓𝑙(𝑘𝑟)

𝑟2
𝑌𝑚,𝑙𝑙,𝑚  ,              (5.27)      

                               𝛽𝑙,𝑚 = −�𝑙(𝑙+1)
𝜀

𝑎𝐸(𝑙,𝑚).                                      (5.28) 

The explicit expressions are found for scalar potentials of the fields of a dipole 

                    𝑟 𝜋𝑒 = 1
𝑘1

2 ∑
−1

�𝜀𝑙(𝑙+1)𝑎𝐸(𝑙,𝑚)𝜓
𝑙
(𝑘𝑟)𝑌𝑚,𝑙𝑙,𝑚  ,                     (5.29) 

                     𝑟 𝜋𝑚 = 𝑐
𝜔𝑘1

∑ 1
�𝑙(𝑙+1)𝑎𝑀(𝑙,𝑚)𝜓

𝑙
(𝑘𝑟)𝑌𝑚,𝑙𝑙,𝑚 .                   (5.30) 

The complete solution of fields are derived from the scalar potentials,  

       𝐸𝑟 = 𝑘2𝑟 𝜋𝑒 +  𝜕
2�𝑟 𝜋𝑒 �
𝜕𝑟2

             ,         𝐻𝑟 = 𝑘2𝑟 𝜋𝑚 +  𝜕
2�𝑟 𝜋𝑚 �
𝜕𝑟2

               (5.31.a)   

𝐸𝜃 = 1
𝑟

 𝜕
2�𝑟 𝜋𝑒 �
𝜕𝑟𝜕𝜃

+  𝑖𝜔𝜇
𝑐

1
𝑟𝑠𝑖𝑛𝜃

𝜕(𝑟 𝜋)𝑚

𝜕𝜑
    , 𝐻𝜃 = 1

𝑟
 𝜕

2�𝑟 𝜋𝑚 �
𝜕𝑟𝜕𝜃

−  𝑖𝜔𝜀
𝑐

1
𝑟𝑠𝑖𝑛𝜃

𝜕(𝑟 𝜋)𝑒

𝜕𝜑
   (5.31.b) 

   𝐸𝜑 = 1
𝑟𝑠𝑖𝑛𝜃

 𝜕
2�𝑟 𝜋𝑒 �
𝜕𝑟𝜕𝜑

−  𝑖𝜔𝜇
𝑐

1
𝑟
𝜕(𝑟 𝜋)𝑚

𝜕𝜃
 ,   𝐻𝜑 = 1

𝑟𝑠𝑖𝑛𝜃
 𝜕

2�𝑟 𝜋𝑚 �
𝜕𝑟𝜕𝜑

+ 𝑖𝜔𝜀
𝑐

1
𝑟
𝜕(𝑟 𝜋)𝑒

𝜕𝜃
 . (5.31.c)                

The boundary condition imposes the continuity of the tangential components of 

E-field and H-field over the surface of the scatterer which is sphere in this 

problem. It is evidently sufficient that four quantities  
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                         𝜔𝜀
𝑐

(𝑟 𝜋),      𝜔𝜇
𝑐

(𝑟 𝜋),       𝜕(𝑟 𝜋  𝑚 )
𝜕𝑟

,     𝜕�𝑟 𝜋𝑒 �
𝜕𝑟

 𝑚  𝑒 ,                    (5.32) 

also be continuous over the surface 

                      
𝜕
𝜕𝑟

{𝑟( 𝜋(𝑖) + 𝜋(𝑠))}𝑟=𝑎 = 𝜕
𝜕𝑟

{𝑟( 𝜋(𝑤))}𝑟=𝑎𝑒𝑒𝑒  ,     (5.33.a)          

                  𝜕
𝜕𝑟

{𝑟( 𝜋(𝑖) + 𝜋(𝑠))}𝑟=𝑎 = 𝜕
𝜕𝑟

{𝑟( 𝜋(𝑤))}𝑟=𝑎𝑚𝑚𝑚  ,       (5.33.b)                         

                𝜔𝜀1
𝑐

{𝑟( 𝜋(𝑖) + 𝜋(𝑠))}𝑟=𝑎 = 𝜔𝜀2
𝑐

{𝑟( 𝜋(𝑤))}𝑟=𝑎𝑒𝑒𝑒  ,     (5.33.c)                        

                𝜔𝜇1
𝑐

{𝑟( 𝜋(𝑖) + 𝜋(𝑠))}𝑟=𝑎 = 𝜔𝜇2
𝑐

{𝑟( 𝜋(𝑤))}𝑟=𝑎𝑚𝑚𝑚  .    (5.33.d)                     

   The scalar potentials for scattered field and the field inside the sphere take 

the same form as equation (5.29) and (5.30). Since the sphere’s center is assumed 

to be at the origin, the radial component of the scalar potential for the field inside 

the sphere should be chosen such that the field remains finite. Consequently for 

the scalar potentials inside the sphere, 𝜋(𝑤) 𝑒 and 𝜋(𝑤) 𝑚 , the Hankel 

function, ℎ𝑙(𝑘𝑟), is replaced with the Bessel function of the first kind , 𝐽𝑙(𝑘𝑟), 

which is finite at the origin.                                            

                              𝑟 𝜋(𝑤) 𝑒 = 1
𝑘2

2 ∑ 𝐴𝑙,𝑚 𝑒 𝜓
𝑙
(𝑘2𝑟)𝑌𝑚,𝑙𝑙,𝑚   ,                    (5.34)                   

                              𝑟 𝜋(𝑤) 𝑚 = 𝑐
𝜔𝑘2

∑ 𝐴𝑙,𝑚𝑚  𝜓
𝑙
(𝑘2𝑟)𝑌𝑚,𝑙𝑙,𝑚  .                   (5.35)                   

Here 𝑘2 = 𝜔√𝜀2𝜇2
𝑐

 is the propagation constant for the sphere. The scalar 

potential for the scattered field takes the same radial function as dipole field 
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                                 𝑟 𝜋(𝑠) 𝑒 = 1
𝑘1

2 ∑ 𝐵𝑙,𝑚 𝑒 𝜉
𝑙
(𝑘𝑟)𝑌𝑚,𝑙𝑙,𝑚  ,                      (5.36) 

                                 𝑟 𝜋(𝑠) 𝑚 = 𝑐
𝜔𝑘1

∑ 𝐵𝑙,𝑚𝑚  𝜉
𝑙
(𝑘𝑟)𝑌𝑚,𝑙𝑙,𝑚  .                    (5.37) 

Equations (5.29), (3.30), and (5.34-37) are replaced into the boundary condition 

equation set (5.33) to determine the scattering coefficients. 

    
1

𝜀1√𝜀1

𝜕
𝜕𝑟

{ 𝐵𝑙,𝑚 𝑒 𝜉𝑙(𝑘1𝑟) + 1
�𝑙(𝑙+1)

(−𝑎𝐸)𝜓𝑙(𝑘1𝑟) 𝐵𝑙,𝑚}𝑟=𝑎   𝑒 =

                                                                            1
𝜀2√𝜀2

𝜕
𝜕𝑟

{ 𝐴𝑙,𝑚 𝑒 𝜓𝑙(𝑘2𝑟)}𝑟=𝑎 ,     (5.38.a)                          

    𝜕
𝜕𝑟

{𝜓𝑙(𝑘𝑟) 1
�𝑙(𝑙+1)

𝑎𝑀(𝑙,𝑚) + 𝐵𝑙,𝑚𝜉𝑙(𝑘1𝑟))}𝑟=𝑎 =  𝑚   

                                                                      𝜕
𝜕𝑟

{ 𝐴𝑙,𝑚 𝑚 𝜓𝑙(𝑘2𝑟)}𝑟=𝑎 ,                 (5.38.b)                          

 𝜔𝜀1
𝑐

1
𝜀1√𝜀1

{ 𝐵𝑙,𝑚 𝑒 𝜉𝑙(𝑘1𝑟) + 1
�𝑙(𝑙+1)

(−𝑎𝐸)𝜓𝑙(𝑘1𝑟) 𝐵𝑙,𝑚}𝑟=𝑎 𝑒  =     

                                                           𝜔𝜀2
𝑐

1
𝜀2√𝜀2

{( 𝐴𝑙,𝑚 𝑒 𝐽𝑙(𝑘2𝑟))}𝑟=𝑎 ,         (5.38.c) 

     1
𝑘1

{𝜓𝑙(𝑘1𝑟) 1
�𝑙(𝑙+1)

𝑎𝑀(𝑙,𝑚) + 𝜉𝑙(𝑘1𝑟) 𝐵𝑙,𝑚)}𝑟=𝑎 𝑚 =        

                                                                        1
𝑘2

{ 𝐴𝑙,𝑚 𝑚 𝜓𝑙(𝑘2𝑟)}𝑟=𝑎 .       (5.38.d)  

𝐵𝑙,𝑚 𝑚 and 𝐵𝑙,𝑚 𝑒 which characterize the scattered wave are derived by elimination 

of 𝐴𝑙,𝑚 𝑚 and 𝐴𝑙,𝑚 𝑒  from the above equation set. 

        𝐵𝑙,𝑚 𝑒 = −√𝜀2𝜓′
𝑙(𝑘1𝑎)𝜓𝑙(𝑘2𝑎)−√𝜀1𝜓′

𝑙(𝑘2𝑎)𝜓𝑙(𝑘1𝑎)

√𝜀1𝜓′
𝑙(𝑘2𝑎)𝜉𝑙(𝑘1𝑎)−√𝜀2𝜉′𝑙(𝑘1𝑎)𝜓𝑙(𝑘2𝑎)

𝑎𝐸(𝑙,𝑚)
�𝑙(𝑙+1)

 ,       (5.39) 

       𝐵𝑙,𝑚 𝑚 = √𝜀1𝜓′
𝑙(𝑘1𝑎)𝜓𝑙(𝑘2𝑎)−√𝜀2𝜓′

𝑙(𝑘2𝑎)𝜓𝑙(𝑘1𝑎)

√𝜀2𝜉 𝑙(𝑘1𝑎)𝜓′𝑙(𝑘2𝑎)−√𝜀1𝜓 𝑙(𝑘2𝑎)𝜉′𝑙(𝑘1𝑎)
𝑎𝑀(𝑙,𝑚)
�𝑙(𝑙+1)

.         (5.40) 
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5.5.3 Verification of Calculations 

The analytical solution provided in section 5.5.1 and 5.5.2 can be easily verified 

by setting the location of the radiating dipole far away from the sphere, such that 

the dipole’s field mimics a plane wave. Consequently for sufficiently distanced 

dipole from the sphere, it is expected that the calculations converge to the Mie 

theory. The following configuration is set for the test, as shown in figure 5.5 

where 𝑑 𝜆𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛~8𝑒7⁄ . The sphere is placed at the origin and the dipole on the 

z axis and far away from the sphere. Without the loss of generality the 

polarization of the dipole is chosen to be in 𝑥� direction. 

                                              
     Figure 5.5 The test set up. The sphere is located at the far-field region of the dipole 

Y 

X 

Z 

 (0,0-d) 
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Since dipole is located on (0, 0,–d), 𝜃 = 𝜋, and the only nonzero values of 𝑎𝐸 and 

𝑎𝑀  are for m= 0 and ±1. For the following values of m, equations (5.15) and 

(5.17) can be written in simpler form,       

                        m = 1                                                                   m = -1                                   

    𝜀−�����⃗ = (−1)𝑙−1(𝑙(𝑙+1)(2𝑙−1)
4𝜋

)
1
2  (1,−𝑖, 0)  , 𝜀−����⃗ = (−1)𝑙(𝑙(𝑙+1)(2𝑙−1)

4𝜋
)
1
2  (1, 𝑖, 0)  (5.41.a)   

 𝜀+����⃗ = (−1)𝑙(𝑙(𝑙+1)(2𝑙+3)
4𝜋

)
1
2 (1,−𝑖, 0)      ,     𝜀+����⃗ = (−1)𝑙+1(𝑙(𝑙+1)(2𝑙+3)

4𝜋
)
1
2  (1, 𝑖, 0) (5.41.b)        

     𝑀��⃗ = (−1)𝑙(𝑙(𝑙+1)(2𝑙+1)
4𝜋

)
1
2     (1,−𝑖, 0)  ,   𝑀��⃗ = (−1)𝑙(𝑙(𝑙+1)(2𝑙+1)

4𝜋
)
1
2  (1, 𝑖, 0)   (5.41.c)            

and for m = 0 

  𝜀−�����⃗ = 2𝑙(−1)𝑙((2𝑙−1)
4𝜋

)
1
2  (0,0,1)   ,   𝜀−����⃗ = (−1)𝑙(𝑙(𝑙+1)(2𝑙−1)

4𝜋
)
1
2  (0,0,1)  , 𝑀��⃗ = 0 (5.41.d)                   

With the simplified expressions in equation (5.41),  

𝑎𝐸𝑑  (𝑙, ±1) = ±𝑖𝑘3√𝜋(−1)𝑙(2𝑙 + 1)−
1
2�𝑝𝑥 ± 𝑖𝑝𝑦� × [𝑙ℎ𝑙+11 (𝑘𝑑) − (𝑙 + 1)ℎ𝑙−11 (𝑘𝑑)]    

𝑎𝐸𝑑  (𝑙, 0) = 𝑖𝑘3√𝜋(−1)𝑙(𝑝𝑧) × [4𝜋𝑙(𝑙+1)
2𝑙+1

]
1
2 × [ℎ𝑙+11 (𝑘𝑑) + ℎ𝑙−11 (𝑘𝑑)],                 (5.42.b)                         

𝑎𝑀𝑑  (𝑙, ±1) = 𝑖𝑘3√𝜋(−1)𝑙(𝜋(2𝑙 + 1))
1
2�𝑝𝑥 ± 𝑖𝑝𝑦� × ℎ𝑙1(𝑘𝑑) ,                          (5.42.c)                               

𝑎𝑀𝑑  (𝑙, 0) = 0.                                                                                                (5.42.d)                                 

For d >> a the spherical Hankel function in equation (5.42) is approximated by 
the following expression 

                                                          ℎ𝑙1(𝑧) ~(−𝑖)𝑙+1 𝑒
𝑖𝑧

𝑧
 .                           (5.43) 

Equation (5.43) simplifies equation (5.42) to the following form,  

𝑎𝐸𝑑  (𝑙, ±1) ~ ∓ (𝑖)𝑙+1𝑘3�𝜋(2𝑙 + 1)�𝑝𝑥 ± 𝑖𝑝𝑦� × 𝑒𝑖𝑘𝑑

𝑘𝑑
  ,                             (5.44.a)                                

𝑎𝐸𝑑  (𝑙, 0) ~ 0 ,                                                                                                (5.44.b)                                                              

𝑎𝑀𝑑  (𝑙, ±1) ~ − (𝑖)𝑙+2𝑘3�𝜋(2𝑙 + 1)�𝑝𝑥 ± 𝑖𝑝𝑦� × 𝑒𝑖𝑘𝑑

𝑘𝑑
  ,                             (5.44.c)                                       

𝑎𝑀𝑑  (𝑙, 0) = 0.                                                                                                (5.44.d)                         
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For a dipole oriented in x direction 𝑎𝐸𝑑  and 𝑎𝑀𝑑  are derived by an appropriate 

linear combination of equations (5.44.a) and (5.44.c), 

𝑎𝐸𝑑  (𝑙, ±1) ~ (𝑖)𝑙+1𝑘3�𝜋(2𝑙 + 1)(𝑝𝑥) × 𝑒𝑖𝑘𝑑

𝑘𝑑
(𝛿𝑚 ,−1 − 𝛿𝑚 ,+1) ,      (5.45.a)                                 

𝑎𝑀𝑑  (𝑙, ±1) ~ − (𝑖)𝑙+2𝑘3�𝜋(2𝑙 + 1)(𝑝𝑥) × 𝑒𝑖𝑘𝑑

𝑘𝑑
(𝛿𝑚 ,−1 + 𝛿𝑚 ,+1).             (5.45.b)              

𝑎𝐸𝑑  and 𝑎𝑀𝑑  in equation (5.27) and (5.18) are replaced with (5.45.a) and (5.45.b) to 

derive  the radial component of E-field and H-field for dipole in figure 5.5. 

                  𝐻𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = ∑ 𝑖𝑙−1 𝑒
𝑖𝑘𝑑

𝑑
 𝑎𝑀(𝑙,𝑚) 𝜓(𝑘𝑟)

(𝑟)2
𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑𝑙,𝑚  ,            (5.46.a)                        

                𝐸𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = ∑ 𝑖𝑙−1 𝜔𝑒
𝑖𝑘𝑑

𝑐𝜇𝑑
 𝑎𝐸(𝑙,𝑚)𝜓(𝑘𝑟)

𝑘(𝑟)2
𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑𝑙,𝑚 .             (5.46.b)                      

    For convenience in calculations normalization factor of  𝐶𝜇𝑑
𝑘𝜔

𝑒−𝑖𝑘𝑑  is 

introduced. This factor is introduced to compensate the difference between 

magnetic vector potential of a plane wave in [15] and magnetic vector potential of 

dipole, equation (5.2) in far-field region.  𝐻𝑑𝑖𝑝𝑜𝑙𝑒𝑟   and  𝐸𝑑𝑖𝑝𝑜𝑙𝑒𝑟  are: 

                    𝐻𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = ∑ 𝑖𝑙−1  𝑘𝑐
𝜔𝜇
𝑎𝑀(𝑙,𝑚) 𝜓(𝑘𝑟)

(𝑘𝑟)2
𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑𝑙,𝑚 ,             (5.47.a)                     

                       𝐸𝑑𝑖𝑝𝑜𝑙𝑒𝑟 = ∑ 𝑖𝑙−1 𝑎𝐸(𝑙,𝑚) 𝜓(𝑘𝑟)
(𝑘𝑟)2

𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑𝑙,𝑚 .                (5.47.b)                                   

The two following properties of spherical harmonics are used in derivation of 

equation (5.47) 

⎩
⎨

⎧   (𝑌𝑙,𝑚 +  �−1)𝑚𝑌𝑙,−𝑚� = −2� 2𝑙+1
4𝜋𝑙(𝑙+1)

𝑃𝑙𝑚(𝑐𝑜𝑠𝜃) cos(𝑚𝜑)       𝑚 > 0  

(𝑌𝑙,𝑚 +  �−1)𝑚𝑌𝑙,−𝑚� = −2𝑖� 2𝑙+1
4𝜋𝑙(𝑙+1)

𝑃𝑙
|𝑚|(𝑐𝑜𝑠𝜃) sin(|𝑚|𝜑)       𝑚 < 0 

�.  (5.48)              
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 Equation (5.47) is identical to the given expressions in [15] for spherical 

expansion for H-field and E-field of a plane wave. This complete agreement 

proves the accuracy of the calculation for scattering due to radiating dipole. The 

Debye potentials and scattering coefficients are calculated with the same routine 

introduced in section 5.5.2, 

                          𝑟 𝜋𝑚 = 1
𝑘2 ∑

𝑘𝑐
𝜔𝜇𝛼𝑙,𝑚𝑙,𝑚 𝜓(𝑘𝑟)𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑,                   (5.49.a) 

                            𝑟 𝜋𝑒 = 1
𝑘2 ∑ 𝛽𝑙,𝑚𝑙,𝑚 𝜓(𝑘𝑟)𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑.                     (5.49.b) 

where 𝛼𝑙,𝑚and 𝛽𝑙,𝑚 is  𝑖𝑙−1 2𝑙+1
𝑙(𝑙+1)

 . The fields inside of the sphere are described in 

the same fashion 

                     𝑟 𝜋𝑚 = 1
𝑘22

∑ 𝑘2𝑐
𝜔𝜇𝑙,𝑚 𝐴𝑙,𝑚 𝑚 𝜓𝑙(𝑘2𝑟)𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑,                   (5.50.a) 

                    𝑟 𝜋(𝑤) 𝑒 = 1
𝑘22

∑ 𝐴𝑙,𝑚 𝑒 𝜓𝑙(𝑘2𝑟)𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑𝑙,𝑚 .               (5.50.b)                    

 Here 𝑘2 = 𝜔√𝜀2
𝑐

 is the propagation constant for the sphere. The Debye potential 
for the scattered fields are, 

                    𝑟 𝜋𝑚 = 1
𝑘12

∑ 𝑘1𝑐
𝜔𝜇𝑙,𝑚 𝐵𝑙,𝑚 𝑚 ℎ𝑙(𝑘1𝑟)𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜑 ,                (5.51.a)                        

             𝑟 𝜋(𝑤) 𝑒 = 1
𝑘12

∑ 𝐵𝑙,𝑚 𝑒 ℎ𝑙(𝑘1𝑟)𝑃𝑙1(𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜑𝑙,𝑚 .                      (5.51.b)                                

 After imposing the boundary condition provided in equation (5.33.a), the 

scattering coefficients are, 

     𝐵𝑙,𝑚 𝑒 =  𝑖𝑙+1 2𝑙+1
𝑙(𝑙+1)

√𝜀2𝜓′
𝑙(𝑘1𝑎)𝜓𝑙(𝑘2𝑎)−√𝜀1𝜓′

𝑙(𝑘2𝑟)𝜓𝑙(𝑘1𝑎)

√𝜀1ℎ′𝑙(𝑘1𝑎)𝜓𝑙(𝑘2𝑎)−√𝜀2ℎ𝑙(𝑘1𝑎)𝜓′𝑙(𝑘2𝑎)  ,      (5.52.a)          

      𝐵𝑙,𝑚 𝑚 = 𝑖𝑙+1 2𝑙+1
𝑙(𝑙+1)

√𝜀2𝜓′
𝑙(𝑘2𝑎)𝜓𝑙(𝑘1𝑎)−√𝜀1𝜓′

𝑙(𝑘1𝑟)𝜓𝑙(𝑘2𝑎)

√𝜀1ℎ 𝑙(𝑘1𝑎)𝜓′𝑙(𝑘2𝑎)−√𝜀2ℎ′𝑙(𝑘1𝑎)𝜓𝑙(𝑘2𝑎).     (5.52.b)  

The scattering coefficients in equation (5.52) are the exact given expression 

provided in Mie theory. An algorithm is developed by MATLAB for the general 
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case of field scattered by arbitrarily located and polarized dipole, section 5.5.1 

and 5.5.2. To test the code and verify the calculations the dipole is set far away 

enough. Figure 5.6 (a) presents the field of the E-field’s intensity on the z axis. 

The radius and index of refraction of the sphere is 1𝜇𝑚 and 1.6 respectively and 

the wavelength of the radiation is 248 nm. For the reference, a sphere with the 

same configuration is illuminated with plane wave (𝜆 =248 nm) in COMSOL 

multiphysics. Figure 5.6 (b) presents the intensity of field inside and outside of 

the sphere on the z axis. As can be seen the intensity of E-field in figure 5.6 (a) 

and figure 5.6 (b) are identical which reveals the validity of the calculations and 

the accuracy of the developed algorithm. 

     

Figure 5.6 The intensity of E-Field, inside and outside of a dielectric sphere (a) Full wave based 
algorithm in MATLAB for general case of dipole radiation in presence of sphere when dipole is 
set far away from  the sphere as shown in figure 5.5 (b) COMSOL multiphysics simulation the 

same sphere shined by a plane wave 

The lower accuracy of result in figure 5.6 (b) was due to the increment in 

simulation time for denser mesh in COMSOL, however the algorithm developed 

in MALTAB, based on the exact solution of Maxwell equations provided the 

result with higher accuracy and in considerably higher pace.           

(a)                                                                   (b) 
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 5.5.4 Poynting Vector Lines Extrapolation and Virtual Image 

Formation  

The intensity distribution around particles with feature sizes much bigger than 𝜆  

can be estimated by ray tracing. However for objects smaller than 𝜆, geometrical 

optics suffers lack of accuracy. The Poynting vector ( 𝑆 = 𝐸 × 𝐻) specifies the 

magnitude and direction of the rate of transfer of electromagnetic energy at all 

points of space [16]. Consequently, in near field region the Poynting vector lines 

can accurately map the intensity distribution around and inside of the particle. The 

purpose here is to plot the Poynting vector in order to observe the mechanism of 

image formation in the near field. The total time-averaged Poynting vector can be 

written as, 

                               〈𝑆𝑜𝑢𝑡〉 =  1 2⁄  𝑅𝑒(𝐸𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡∗ ) ,                                  (5.53.a)               

                                 〈𝑆𝑖𝑛〉 =  1 2⁄  𝑅𝑒(𝐸𝑖𝑛 × 𝐻𝑖𝑛∗ ) ,                                      (5.53.b)                         

where out and in refer to the distribution outside and inside of the particle 

respectively. The relation between the 𝑟 and 𝜃 components of Poynting vector in 

the x-z plane (𝜑 = 0) are [16], 

                                               𝑑𝑟
𝑑𝜃

= 𝑟 〈   𝑆� 〉𝑟�

〈   𝑆� 〉𝜃�
.                                     (5.54)                                 

The near-field virtual image formation is investigated for the following 

configuration, figure 5.7.  

 

 

Virtual Image 
  

Figure 5.7 Virtual image formation investigation 
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   The system of two dipole with spacing d, one dipole is located at (𝑥, 𝑧) =

(−𝑑 2 , 𝑧𝑑)⁄  and the other one is at (𝑥, 𝑧) = (𝑑 2 , 𝑧𝑑)⁄ , are located in the nano-

metric distance below the dielectric microsphere. The exact solutions of the 

incident field, scattered field and field inside the microsphere are calculated based 

on derived expression in sections 5.5.2 and 5.5.3. However it should be noted that 

the region of interest in this problem is divided to two sub-regions; (i) The sub-

region where the distance of the dipoles from the origin (𝑟′) is greater than the 

distance of the point which the field is calculated (𝑟), ( 𝑟′ >  𝑟) (ii) The sub-

region where ( 𝑟′ <  𝑟 ). For the first sub-region the calculation provided in 

sections 5.5.2 and 5.5.3 is directly used however for the second sub-region it is 

necessary to interchange 𝑗𝑙 and ℎ𝑙1  for 𝑟′and 𝑟 in equation (5.4) and hence to all 

following equations to conduct calculation correctly. 

    The Poynting vectors inside and outside of the microsphere are calculated 

by solving the differential equation provided in equation (5.54). Since we are 

interested in the virtual image formation, the lines of Poynting vector are plotted 

mostly for the lower half of the microsphere. One can estimate the possible 

magnification in the near field on the basis of reciprocity principle. According to 

this principle, two points on the line of Poynting vector can be conjugated if the 

propagation direction is changed to the opposite [10], as shown in figure 5.8.  

                  
Figure 5.8 Reciprocal configurations [10] 
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Thus forward and backward flow arises along the same Poynting vector line. 

Based on the reciprocity principle, the extrapolation of the Poynting vector line 

could be done by plotting a tangential line to the line with some curvature. The 

results of Poynting vector computation and investigation of virtual image 

formation in near-field, for three different spacing, d, are shown in figure 5.9, 5-

11, and 5-12. The radius and index of the refraction, n, of the microsphere and the 

working wavelength are taken from [6] which is the origin of the inspiration for 

this chapter. The radius and dielectric permittivity of the sphere is a = 2.37  𝜇𝑚 

and 𝑛 = 1.46 respectively and the working wavelength is 𝜆 =  600 𝑛𝑚. For the 

first trial the spacing is set to be d = 100 nm; figure 5.9 (a) demonstrates the 

Poynting vector lines inside and outside of the sphere. As is can be seen the lines 

are not straight line anymore which verifies the inefficiency of ray tracing for 

virtual image formation inspection in the near-field. Figure 5.9 (a) presents the 

extrapolation of Poynting vector and magnified virtual image formation in the 

virtual image plane. As is can be seen, the virtual images of two point dipoles are 

circles with magnified radius in comparison with the dipole. The spacing between 

the dipoles is also magnified to the factor 1.8 x a, which is around 426 .6 nm, 

hence the magnification factor of x4 is achieved.  
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                         (a)                                                                   (b) 

Figure 5.9 Magnified virtual image formations in the near-field (a) Extrapolation of Poynting 
vector. Solid navy lines represent the Poynting vector found by equation (5.54), dashed green line 
is the boundary of microsphere, and dashed red lines are used to extrapolate the Poynting vector 

lines. The image plane is located 273 nm below the microsphere (b) energy vortex formation  

As the diffraction limit at   𝜆 =  600 𝑛𝑚  is around 333 nm, the magnified virtual 

image is detectable with conventional optical microscope and far-field imaging of 

an object with subwavelength feature is possible. The peculiar phenomenon that 

contributes significantly to the virtual image formation is in fact the energy 

vortexes formed inside the particle as is shown  in more detail in figure 5.9 (b).    

There exist few lines which remain inside the particle; this phenomenon might be 

analogous to the internal reflection caused inside the dielectric nanoparticle with 

small refractive index and radius much bigger than 𝜆 as shown in figure 5.10. For 

the small value of n, the “input window” becomes very small. Figure 5.10 

illustrates an interesting effect: a particle can transfer energy from the near-field 

region to a far-field region through a very small “effective aperture” [16].                   
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Analogously the formation of the energy vortexes which depends on the specific 

range of radius for microspheres, 2 𝜇𝑚 < 𝑎 < 9 𝜇𝑚 [6] , can considerably 

contribute to the success of far-field imaging with dielectric microspheres. In the 

second set, the dipoles are located closer to each other, d = 40 nm. As it is 

demonstrated in figure 5.11 (a) ,the extrapolated  Poynting vector lines converge 

to each other and the images of individual dipole sources are not distinguishable 

from each other. Figure 5.11 (b) presents the energy vortex formed in this case. It 

should be noted that the energy vortexes shown in figure 5.9, 5.11, and 5.12 

contain more intensity lines that are not presented here as the developed algorithm 

for Poynting vector lines diverges for several initial points. However, for each 

case, enough number of Poynting vector lines are extrapolated to judge the 

success of imaging fairly. Another subject of interest is that up to which spacing 

between the dipoles, the virtual image of individual sources is distinguishable in 

the image plane. 

1 0.5 0 0.5 1 1.5
zr0.75

0.5

0.25

0

0.25

0.5

0.75

1

y
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            Figure 5.10 Ray-tracing for a big particle with small n,r is the radius of the particle [16] 
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(a) (b) 

 

   

The ultimate spacing between two dipoles is found to be d = 64 nm with the 

current version of the algorithm. Figure 5.12 demonstrates the formation of the 

virtual image of point dipoles in the image plane by extrapolating the Poynting 

vector lines and figure 5.12 (b) presents the energy vortex. It should be noted that 

the spacing of d = 50 nm is experimentally reported in [6] which the current 

version of Poynting vector algorithm is unable to reconstruct. However the author 

believes that by slight improvement in the point-by-pint iterative solution 

technique for the differential equation (5.54) the improved result can be provided 

shortly. In addition, the difference between the analytical prediction here and 

experimental demonstration in [6] might arise from the constructive effect of 

mutual near-field interaction of microsphere superlenses. Furthermore, it is 

experimentally shown that the gold coating layer on the anodic aluminum oxide 

surface not only enhanced the resolving power but also increased the magnificati- 
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Figure 5.11 Magnified virtual image formation in near field = 40 nm (a) 
Convergence of extrapolated intensity lines (b) Energy vortex  
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-on factor of the microsphere superlens [6]. In addition it should be mentioned 

that this limit is determined in case that the virtual images merge to each other. 

However in the case that the two magnified virtual images are partially 

overlapping the far field imaging might be still possible depending on the 

overlapping percentile. Consequently, even higher resolution is achievable 

considering a threshold for the overlapping percentile.  

   

             (a)                                                                         (b) 

 

Consequently the effect of surface contribution could also be one of the main 

reasons for the difference of the resolution predicted by calculation here and the 

resolution demonstrated experimentally in [6].   
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Figure 5.12 Magnified virtual image formation in the near-field d = 64 nm (a) Ultimate 
achievable resolution ≈ 𝜆
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5.6Conclusion  

In this chapter a novel methodology based on rigorous multipole expansion is 

developed to unveil the mechanism of far-field subwavelength imaging with 

microscope nanoscope for the first time. A systematic methodology is proposed to 

unveil the mechanism of virtual image formation in the near field region. First the 

electromagnetic field radiated by arbitrarily located and polarized dipole is 

expanded in spherical coordinate by rigorous multipole expansion method. A 

dielectric sphere is then illuminated by the dipole and the explicit expressions are 

found for scattered field and the field inside the particle. An algorithm based on 

this full-wave solution is developed in MATLAB and the calculations are verified 

by reconstruction of Mie theory, when the dipole is set far away from the sphere.  

To investigate the image formation the Poynting vector lines are calculated by 

numerically solving a differential equation in x-z plane as Ray tracing fails in 

near-field optics. It is revealed that the formation of energy vortexes inside the 

particle contributes considerably to the success of dielectric microsphere in far-

field imaging of an object with subwavelength features. The image formation for 

three cases is investigated: (i) The dipoles are set 100 nm apart. In this case it is 

shown that the magnified virtual image is successfully formed in the virtual image 
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plane, and the image is magnified by factor x4.  Hence the image is observable 

with conventional optical microscope and far-field imaging is realized. (ii)  The 

spacing between the dipoles is decreased to 64 nm. In this case the virtual image 

of individual dipoles merges to each other in the image plane which reveals the 

ultimate resolution, 𝜆 10� ,  that can be achieved in the set up of microscope 

nanoscope reported in [6]. However the author believes that by refinement in the 

Poynting vector line calculation, more accurate result and probably higher 

achievable resolution can be predicted. In addition, the difference between the 

ultimate resolution predicted by calculation here and the resolution demonstrated 

experimentally in [6] might be due to the constructive effect of the surface. It is 

shown experimentally that the gold coating layer on the anodic aluminum oxide 

surface not only enhanced the resolving power but also increased the 

magnification factor of the microsphere superlens [6]. (iii) The spacing between 

the dipoles is decreased from 64 nm to 40 nm. In this case the virtual images of 

two dipoles are indistinguishable; hence no acceptable resolution is achieved.   
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CHAPTER 6 

COMCLUSION AND FUTURE WORK 

 

 

 

6.1 Conclusion 

 

The research conducted in this thesis is concentrated on the application of 

scattered light from metallic and dielectric particle in subwavelength imaging. 

Subwavelength imaging is of great importance in numerous applications such as 

extension of optical lithography to ultra-small scales, biomedical imaging, and 

optical and magnetic data storage. 

The loss of evanescent waves in imaging with conventional optical system 

results in irrecoverable image imperfection which is crucial in nano-science. 

During the past decade, numerous efforts have been devoted to overcome 

diffraction limit. In spite of the impressive progress in this field, surface plasmon 

polariton (SPP) energy loss, sophistications in nanofabrication, specific laser 

sources, and parameter configuration of SPP excitation are factors which hamper 

far-field and near-field subwavelength imaging in the whole visible spectrum. In 

this dissertation, analytic and numerical investigation is allocated to the 
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application of  the field that is scattered by metallic or dielectric nanoparticles, for 

advances in near-field and far-field subwavelength imaging. The main 

contributions and results can be summarized as follows: 

1. For subwavelength imaging consistent with available laser sources, an 

aggregate of plasmonic nanoparticles with different shapes and 

orientations embedded in a dielectric host, is suggested for near-field 

tunable subwavelength imaging. Appropriate geometrical specifications 

are allocated to the size, filling fraction, and probability distribution 

function (PDF) of metallic inclusions to suggest a well-defined structure 

for the metal-dielectric composite. This structure is used in next chapters 

to approximate the effective optical property of metal-dielectric 

composites by Maxwell-Garnett theory accurately. The effect of the size 

of nanoparticle is studied through Mie scattering theory; it is shown 

that   the high frequency extension of MG, Mie Maxwell-Garnett (MGG), 

is reduced to the classical MG in the quasi static limit. The dielectric 

function of silver nanoparticles with radius smaller than silver’s mean free 

path length is corrected in order to take into account the intrinsic size 

effect. In order to avoid the quantum effect and inter-particle mutual 

interaction the lower bound (𝑟𝑚𝑖𝑛 = 2 𝑛𝑚 ) and upper bound (𝑟𝑚𝑎𝑥 =
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10 𝑛𝑚) are set for the radius of the nanoparticles. In addition it is shown 

by scattering matrix method that as long as the inclusions are not 

overlapping and their radius size is restricted in quasistatic limit the 

effective permittivity is reduced to the expression derived by MG theory. 

It is concluded that if the single scattering is the dominant mechanism, the 

effective permittivity predicted by MG theory is quite accurate regardless 

of the statistical distribution of the particles, as long as the distribution is 

uniform. Consequently MG theory is quite accurate even at high 

concentrations (52% for full lattice) as long as the particles are distributed 

uniformly. 

2. Based on the geometrical model developed for metal-dielectric composite, 

the methodology to design single and multilayer flat metamaterial lenses is 

presented. The composite layers of Ag spherical inclusions immersed in 

SiO2 host are proposed as lens and implementable geometrical dimensions 

and composition have been determined with optimization. The sub-

wavelength imaging is realized for different wavelengths in optical range. 

In addition metallic composites with deep subwavelength inclusions are 

also beneficial for elimination of the hotspots in the images of metallic 

superlens. 
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3. Subwavelength imaging with single layer and multilayer composite slabs 

which are made of non-spherical plasmonic inclusions embedded in 

dielectric host medium is studied. For composite made of randomly 

oriented non-spherical inclusions it is shown that by increment in the 

eccentricity of nanoparticles, the resonance peak of effective index of 

refraction is red shifted; hence the different shapes of nanoparticle is 

beneficial to design an optical system which is compatible with available 

resources. An optimum values for filling fraction, incident field’s 

frequency, and slabs’ thickness are found for single layer and multi layer 

lensing system. 

4. As effective refraction index of a composite with aligned nano ellipsoid is 

anisotropic, a fully analytical algorithm is developed to investigate light 

interaction with arbitrary anisotropic layered structure. The explicit 

expressions are derived for the polarizations of the electric and magnetic 

field in general anisotropic medium. Based on the vector fields’ 

polarizations, a  procedure is introduced to calculate the transmission 

matrix for  the structure with arbirary numbers of anisotropic layers. This 

algorithm is suitable to investigate the near-field/far-field electromagnetic 
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wave interaction at any angle of incidence for numerous intriguing 

applications.   

5. It is shown that the composite slab with aligned non-spherical inclusions is 

not only capable of realizing the subwavelength imaging at different 

wavelengths but also it is more robust to the material loss due to its 

different mechanism of imaging. Consequently for two composite slabs 

with the same thickness, one formed from randomly oriented inclusions 

(isotropic) and the other formed by aligned inclusions (anisotropic) of 

same shape and same size, it is shown that the image formed in the image 

plane by anisotropic slab has higher intensity in comparison with image 

formed by isotropic slab. Hence anisotropic slabs offer better signal to 

noise ratio in the image plane. Owing to its specific dispersion curve, it is 

also analytically shown that the anisotropic slab can preserve waves with 

higher tangential component of wave vector which results in higher 

resolution; it is demonstrated while composite with randomly oriented 

inclusions (isotropic) fails to resolve two Gaussian pulses spaced 60 nm, 

the composite with the same thickness made of aligned inclusion of same 

shape and size, successfully resolves the pulses in the image plane. 
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6. A novel methodology based on rigorous multipole expansion is developed 

to unveil the mechanism of far-field subwavelength imaging with 

dielectric microparticle for the first time. The crucial role of the 

evanescent components of the field in the near-field zone brings 

challenges to theoretical simulation; hence an analytic numeric solution 

based on the full set of Maxwell equations is developed to unveil the 

mechanism of virtual image formation in the near field region. An 

algorithm based on the analytic solution is developed in MATLAB, and 

the calculations are verified by reconstruction of Mie theory, when the 

dipole is set far away from the sphere. To investigate the image formation, 

the Poynting vector lines are calculated by numerically solving a 

differential equation in x-z plane as Ray tracing fails in near-field optics. It 

is revealed that the formation of energy vortexes inside the particle 

contributes considerably to the success of dielectric microsphere in far-

field imaging of an object with subwavelength features. 

6.2 Suggestions for future work 

1. The loss generated by the surface plasmon hampers the quality of 

subwavelength imaging with metal based superlenses i.e. metal-

dielectric composite super lens crucially. However active optical 
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coating for nano particle can alleviate the loss drawback 

considerably. The Maxwell-Garnett effective medium theory can be 

extended for core-mantel particles in a host medium as shown in 

section 4 of chapter two. Hence, much higher resolution is 

predictable for active metal dielectric composites. 

2. Our initial investigation has shown that for anisotropic layered 

superlens, gyrotropy could be beneficial upon careful design of 

permittivity tensor elements. In this dissertation the optical axis of 

nanoparticles is aligned to the lens’s coordinate, consequently the 

effective permittivity tensor is diagonal. The gyrotropy can be 

achieved by an appropriate rotation of aligned non-spherical 

nanoparticle respective to the lens coordinate. 

3. Theoretical modeling of mutual near-field interaction between 

dielectric micro particles in far-field subwavelength imaging with 

dielectric micro particles is suggested. In addition, as the 

microspheres are placed on the surface with subwavelength features 

the effect of surface can be analytically modeled for more accurate 

theoretical prediction. For instance it is shown experimentally  that 

the   gold coating layer on the anodic aluminum oxide surface not 
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only enhanced the resolving power but also increased the 

magnification factor of the microsphere superlens. 
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