
+ 

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap
This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 
 
Author(s): Iain Gordon and Dmitriy Rumynin 
Article Title: Subregular Representations of ${\frak s} {\frak l}_{n}$ and 
Simple Singularities of Type An−1

Year of publication: 2003 
Link to published version: http://dx.doi.org/10.1023/A:1027381710548 
Publisher statement: None 

 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/48726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


Subregular Representations of sln and Simple

Singularities of Type An�1

IAIN GORDON1 and DMITRIY RUMYNIN2

1Department of Mathematics, University of Glasgow, Glasgow, G12 8QW, U.K.
e-mail: ig@maths.gla.ac.uk
2Mathematics Department, University of Warwick, Coventry, CV4 7AL, U.K.
e-mail: rumynin@maths.warwick.ac.uk

(Received: 19 March 2001; accepted in final form: 26 June 2002)

Abstract. Alexander Premet has stated the following problem: what is a relation between
subregular nilpotent representations of a classical semisimple restricted Lie algebra and non-

commutative deformations of the corresponding singularities? We solve this problem for type A.

Mathematics Subject Classifications (1991). Primary: 17B50; Secondary: 14J17, 16G10, 16S80.

1. Introduction

1.1. The last few years have seen interest grow in the representation theory of reduc-

tive Lie algebras in positive characteristic. Classical results of Kac and Weisfeiler

show that the nilpotent coadjoint orbits of the Lie algebra comprise a natural para-

meter set for the representation theory, [25]. It is thus a basic problem to understand

how the geometry of the nilpotent coadjoint orbits influences representation theory.

A milestone in this direction is Premet’s theorem which asserts that the dimension of

any simple module associated to the orbit O has dimension divisible by p1=2ðdimOÞ,

where p is the characteristic of the field, [21]. Building on Premet’s theorem, Jantzen

studied the subregular nilpotent coadjoint orbit in detail, obtaining a great deal of

information on not only the simple modules, but also baby Verma modules, [14].

1.2. More recent work of Lusztig suggests a relationship between the representation

theory associated to a nilpotent coadjoint orbit O and the geometry of a transverse

slice to O, together with its desingularisation in the Springer resolution, [18]. The

relationship would tie the simple and projective modules associated to O to certain

elements in the K-theory of the transverse slice and its desingularisation. In the sub-

regular case, the transverse slice is a Kleinian singularity and the Springer resolution

provides its minimal resolution.

1.3. Quantisations of Kleinian singularities were introduced by Hodges [11] for type

A and later by Crawley-Boevey and Holland [7] for all types. Premet has suggested a

possible relationship between these quantisations and subregular representations of a
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simple Lie algebra. In [22] Premet examines this in characteristic zero. This paper is

concerned with exploring Premet’s suggestion in the modular type A case. In a sub-

sequent paper we consider Lusztig’s conjectures in the subregular case. It is the quan-

tisations which build a bridge between the representation theory and the geometry,

allowing us to connect the two sides.

1.4. Let us give some more detail. We refer the reader to later sections of the paper

for unexplained definitions and notation. Fix an integer n > 0. Let K (respectively L)

be an algebraically closed field of characteristic p (respectively arbitrary characteris-

tic). We will assume throughout that p and n are coprime. Let F be the prime subfield

of K. Given an integer m 2 Z we denote its reduction modulo p by �mm 2 F.

1.5. Let U be the enveloping algebra of slnðKÞ and for v 2 K½t� let TðvÞ be Hodges’

non-commutative deformation of a Kleinian singularity of type A over K. Let Uw

be the reduced enveloping algebra for a subregular nilpotent functional w and let

Uw;l be the central reduction of Uw determined by the weight l. We show in Theorem 7.2

that, for p > n, there exists a polynomial vl 2 K½t� such that Uw;l ffiMatðtðvlÞÞ,

where tðvlÞ is a central reduction of TðvlÞ. Moreover, this isomorphism respects a

natural Z-grading on the algebras Uw;l and tðvlÞ and so induces an equivalence

between the category of Uw;l-T0-modules and a category of suitably graded tðvlÞ-

modules.

1.6. A crucial step in the above theorem is the comparison of Uw;l and tðvlÞ with a

basic algebra we call the no-cycle algebra. This algebra is defined over any field L,

depends on a positive integer k, and is denoted NLðkÞ. The no-cycle algebra is a

string algebra and hence its indecomposable modules can be described by a simple

combinatorial procedure. As an application of this comparison we give a sufficient

condition for the indecomposability of a baby Verma module belonging to the block

of Uw determined by a regular weight l. This is formulated in terms of the geometry

of the Springer fibre Bw.

1.7. There are several clear directions for future work arising from this paper.

Firstly, the hypothesis p > n should be weakened to p and n being coprime. It

would also be highly desirable to extend the results to other types. At the end

of Section 7 we sketch how to extend our results to type B. It seems likely, how-

ever, that the techniques used here are not sufficient for this in general. Further-

more, we expect NCðnÞ-modules to correspond to a central reduction of the

subregular representations of a quantum group of type A at a root of unity. We

have not, however, checked this here.

1.8. The paper is organised as follows. In Section 2 we introduce the notation we will

require when we deal with categories having group actions. We define the no-cycle

algebra in Section 3 and describe some of its indecomposable representations. In
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Section 4 we study subregular representations of slnðKÞ and relate them to the no-

cycle algebra. Section 5 takes a brief look at Gröbner–Shirshov bases for non-

commutative algebras and their representations. In Section 6 we study Hodges’ quan-

tisation using, in particular, the results of the previous section. In Section 7 we prove

Theorem 7.2, whilst in Section 8 we present the application to baby Verma modules.

2. Z-Categories

2.1. A Z-category is an Abelian L-category equipped with exact shift functors, ½i � for

each i 2 Z, together with natural isomorphisms ½i � � ½ j � ! ½iþ j �. If C and D are both

Z-categories, we say that an L-linear functor F : C! D is a Z-functor if the functors

F � ½i � and ½i � � F are naturally isomorphic for every i 2 Z. A Z-functorF : C! D is a

Z-equivalence if there exists a Z-functor C : D! C such that CF ffi 1C and FC ffi 1D.

We say C andD are equivalent Z-categories. Note that an equivalence between C andD
need not be a Z-equivalence [10, Section 5].

2.2. Let R ¼
L

i2Z Ri be a Z-graded (noetherian) algebra, that is RiRj � Riþj.

A Z-graded R-module is an R-module, M, together with a L-space decomposi-

tion M ¼
L

i2Z Mi satisfying Ri Mj �Miþj. The category of Z-graded (finitely

generated) R-modules, denoted R-Grmod (R-grmod) is an example of a Z-category.

By definition, we have ðM½i �Þj ¼Mj�i: for all i; j 2 Z.

2.3. Given X;Y 2 C and i 2 Z, set HomðX;Y Þi ¼ HomCðX ½i�;Y Þ. We define

HomðX;Y Þ ¼
M
i2Z

HomðX;Y Þi;

a Z-graded vector space. The identification HomCðX ½i�;Y Þ ffi HomCðX ½iþ j�;Y½ j�Þ

yields a composition law for X;Y;Z 2 C: HomðY;Z Þj �HomðX;Y Þi !

HomðX;Z Þiþj. Then, thanks to 2.2, the space EndðX Þ ¼ HomðX;X Þ becomes a

Z-graded L-algebra and HomðX;Y Þ a Z-graded EndðX Þ-module. The functor

HomðX;�Þ is a Z-functor from C to EndðX Þ-Grmod.

3. The No-cycle Algebra

3.1. Let k 2 N be a fixed integer. Let Q be the directed graph with k vertices and 2k

edges labelled ai and bi for i 2 Z=kZ, see Figure 1. Let LQ be the path algebra of Q.

The no-cycle algebra, NLðkÞ, is the quotient of LQ by the two sided ideal generated

by all non-trivial paths in Q which start and end at the same vertex. By inspection,

NLðkÞ is a kð2k� 1Þ-dimensional algebra.

3.2. If L admits a primitive nth root of unity z then the no-cycle algebra can be

described as a ‘skew coinvariant algebra’. Let G be a cyclic group of order n acting

on L½X;Y � by gm : ðX;Y Þ 7!� ðzmX; z�mY Þ. There exists an isomorphism

NLðkÞ ffi
L½X;Y �

ðXn;XY;YnÞ
� G ¼ L½X;Y �G � G
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which sends X to
Pn

k¼1 bk, Y to
Pn

k¼1 ak and g to
Pn

k¼1 z
n�kek. This realization is of

fundamental importance since the ‘skew coinvariant algebra’ controls much of the

geometry surrounding the resolution of the Kleinian singularity of type Ak�1.

3.3. The algebra NLðkÞ is Z-graded: a vertex idempotent ei has degree 0, ai has degree

�1 and bi has degree 1. Following 2.2 the category of Z-graded modules will be

denoted by NLðkÞ-grmod.

3.4. We need some notation before describing several NLðkÞ-modules. For

i 2 Z=kZ, introduce formal inverses of the arrows ai (respectively bi), written a�i
(respectively b�i ). The head (respectively tail) of an arrow, c, is denoted hðcÞ (respec-

tively tðcÞ), and we define hðc�Þ ¼ tðcÞ (respectively tðc�Þ ¼ hðcÞ). We form formal

paths of length t, c1; . . . ; ct, where each cj is of the form c or c� for some arrow

c and tðcjÞ ¼ hðcjþ1Þ. Given a formal path c1; . . . ; ct, we define its inverse to be

c�t ; . . . ; c
�
1, where ðc�Þ� equals c.

3.5. For t4 k, let St be the set of formal paths c1 . . . ct such that if cj ¼ ai (respec-

tively bi) then cjþ1 is either ai�1 or b�i�1 (respectively biþ1 or a�iþ1), and similarly if

cj ¼ a�i (respectively b�i ). Furthermore, if t ¼ k then exclude from Sk the formal paths

consisting entirely of a’s or entirely of b’s and also the inverses of such formal paths.

For t < k (respectively t ¼ k) let rt be the equivalence relation on St which identifies

a formal path with its inverse (respectively its cyclic permutations and their inverses).

Let Wt be a set of equivalence class representatives in St for rt.

3.6. For t < k, an element C ¼ c1 . . . ct 2Wt defines a tþ 1-dimensional indecompo-

sable string NLðkÞ-module StðCÞ. A basis is given by fz0; . . . ; ztg where, for 14 j4 t,

the element zj is concentrated at vertex hðcjÞ, and z0 is concentrated at vertex tðc1Þ.

For 14 j4 t if cj ¼ c, an arrow, define cðzjÞ ¼ zj�1, whilst if cj ¼ c�, define cðzj�1Þ ¼

zj. All other arrows in Q act as zero.

Figure 1.
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3.7. For t ¼ k, and element C ¼ c1; . . . ; ck 2Wk together with a scalar l 2 L�, define

an indecomposable band NLðkÞ-module BdlðCÞ. A basis is given by fz0; . . . ; zk�1g

where, for 04 j4 k� 1, the element zj is concentrated at vertex hðcjÞ. If ck ¼ c,

an arrow, define cðz0Þ ¼ lzk�1, whilst if ck ¼ c�, define cðzk�1Þ ¼ l�1z0. For

14 j4 k� 1, if cj ¼ c, an arrow, then cðzjÞ ¼ zj�1, whilst if cj ¼ c� define

cðzj�1Þ ¼ zj. All other arrows of Q act as zero.

3.8. The algebra NLðkÞ belongs to a family of tame algebras called string algebras.

Any non-zero indecomposable NLðkÞ-module of dimension no greater than k is

isomorphic to either StðCÞ or BdlðCÞ for some unique C and l [6, Section 3] (see also

[2]). Observe that the modules StðCÞ admit a Z-grading compatible with the Z-grading

on NLðkÞ introduced in 3.3.

4. The Reduced Enveloping Algebra

4.1. Let w 2 slnðLÞ
� be the functional vanishing on upper triangular matrices and

defined as follows on the strictly lower triangular matrices

wðEi; jÞ ¼
1 if i ¼ jþ 1 and 14 j4 n� 2;
0 otherwise:

�
Let P (respectively Pþ) be the weight lattice (respectively dominant weights) of

SLnðLÞ with respect to the standard choice of torus and Borel subgroup. Let

f$1; . . . ;$n�1g be the fundamental weights and let r ¼ $1 þ    þ$n�1. The Weyl

group W is the symmetric group Sn acting on P. The W-orbit through l 2 P

contains a unique representative in Pþ. We also need a dot action given by

w � l ¼ wðlþ rÞ � r; w 2W; l 2 P:

4.2. Let B be the flag variety. As a set this consists of all Borel subalgebras of slnðLÞ,
that is those subalgebras which are conjugate under SLnðLÞ to the upper triangular

matrices. The cotangent bundle of B is naturally identified with the variety

fNN ¼ fðx; bÞ : xðbÞ ¼ 0g � slnðLÞ
�
� B

where the first projection p1 becomes the moment map. The Springer fibre Bw is the

subvariety p�1
1 ðwÞ of B.

There is a simple way to parametrise Bw, [24, Section 6.3]. Given a basis ui of Ln,

let F ðu1; . . . ; unÞ be a flag with the span of u1; . . . ; uk as the k-dimensional space.

Let vi be an element of the standard basis of Ln so that Ei; jvj ¼ vi. We introduce

the flag

F k;a ¼ F ðv1; v2; . . . ; vk�1; vk þ avn; vn; vkþ1; vkþ2; . . . ; vn�1Þ
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for all ðk; aÞ 2 ðf1; . . . ; n� 1g �LÞ [ fð0; 0Þg. The irreducible components of Bw are

projective lines Pk, 14 k4 n� 1 where

Pk ¼ fF n�k;a j a 2 Lg [ fF n�k�1;0g:

For 24 k4 n� 1 the components Pk�1 and Pk intersect transversally at a point

pk�1;k ¼ F n�k;0. Components Pi and Pj with ji� jj > 1 do not intersect.

Consider the following one parameter subgroup of the diagonal matrices in

SLnðLÞ

T0 ¼ fnðtÞ ¼ tE1;1 þ tE2;2 þ    þ tEn�1;n�1 þ t1�nEn;n : t 2 L�g:

Notice that T0 stabilises Bw, since nðtÞ  F i;a ¼ F i;t�na.

4.3. Let us further assume that L ¼ C. By the Jacobson-Morozov theorem there

exists an sl2-triple e; h; f 2 slnðCÞ such that TrðexÞ ¼ wðxÞ for each x 2 slnðCÞ. Let

N be the variety of nilpotent elements in slnðCÞ. Let

Vw ¼ fm 2 slnðCÞ
�
j 8x 2 slnðCÞ mð½x; f �Þ ¼ wð½x; f �Þg:

By [24, Theorem 6.4 and Section 7.4] Vw is a Kleinian singularity of type An�1 and

Lw ¼ p�1
1 ðVwÞ is its minimal desingularisation with the exceptional fibre Bw.

4.4. For the rest of this section we will assume that p > n. We expect, however, all

results to hold under the weaker condition that p and n are coprime. The proof of

Proposition 4.13 is the crucial point where we require the restriction p > n and all

other results of this section, up to 4.17 inclusive, will continue to hold if this pro-

position can be proved under the weaker hypothesis.

4.5. We are going to work with the Lie algebra slnðKÞ now. For any element

X 2 slnðKÞ let X½p� 2 slnðKÞ denote the pth power of X.

Let UðslnðKÞÞ be the universal enveloping algebra of slnðKÞ. For any X 2 slnðKÞ
the element Xp � X½p� 2 UðslnðKÞÞ is central. We will study representations of the

following subregular reduced enveloping algebra

Uw :¼
UðslnðKÞÞ

ðXp � X½p� � wðX Þp : X 2 slnðKÞÞ
:

Let L ¼ P=pP, an F-vector space, and let c: P! L be the quotient map. Both the

usual and the dot actions of W on P pass to L. Let WðlÞ be the stabiliser of l 2 L
under the dot action. Set

C0 ¼ l 2 P : lþ r ¼
X

ri$i with ri 5 0 and p5 ðr1 þ    þ rn�1Þ

n o
:

A weight in the interior of C0 is called regular.
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4.6. BLOCKS

By [5, Theorem 3.18] we have a block decomposition

Uw ¼
M
l

Bw;l;

where l runs over a set of representatives of the W�-orbits on L.

Let h be the diagonal Cartan subalgebra of slnðKÞ. The Weyl group acts by alge-

bra automorphisms on the polynomial ring SðhÞ. For l 2 L the partial coinvariants

give a local, graded algebra

Cl ¼
SðhÞWðlÞ

ðSðhÞWþ Þ
:

Thanks to ([19], Theorem 10) and ([22], Theorem 8.2) there is an injective algebra

homomorphism Cl�!Bw;l, whose image is central in Bw;l;. Henceforth, we will

identify Cl with its image in Bw;l.

4.7. We will be concerned with the category of finite-dimensional Uw-modules, Uw-

mod, or more specifically the subcategory of Bw;l-modules. These categories have

graded analogues which we introduce now.

By construction wðtXt�1Þ ¼ wðX Þ for all X 2 slnðKÞ and t 2 T0. As a result the

action of T0 on UðslnðKÞÞ passes to an action on the quotient Uw.

Following Jantzen [12], a Uw-T0-module is a finite-dimensional vector space V over

K that has a structure both as a Uw-module and as a rational T0-module such that

the following compatibility conditions hold:

(1) We have tðXvÞ ¼ ðtXt�1Þtv for all X 2 slnðKÞ; t 2 T0 and v 2 V;

(2) The restriction of the slnðKÞ-action on V to LieðT0Þ is equal to the derivative of

the T0-action on V.

We obtain the category Uw-T0-mod, whose objects are the Uw-T0-modules and whose

morphisms are the T0-equivariant Uw-module homomorphisms.

For i 2 Z, there are shift functors ½i� : Uw-T0-mod�!Uw-T0-mod. These send a

given Uw-T0-module V to the object having the same Uw-module structure but with

T0 acting by nðtÞv ¼ tipnðtÞv for nðtÞ 2 T0 and all v 2 V. This makes Uw-T0-mod a

Z-category.

By [9, 9.3] the full Z-subcategory Bw;l-T0-mod of Uw-T0-mod is well-defined.

Its objects are Bw;l-modules with a compatible rational T0-action. The projection

functor prl:Uw-T0-mod�!Bw;l-T0-mod is a Z-functor.

4.8. Let F : Uw-T0-mod�!Uw-mod denote the functor which forgets the T0-struc-

ture. The objects of Uw-mod which are in the image of F are called gradable. It fol-

lows from ([10], Corollary 3.4) and ([15], Corollary 1.4.1) that the simple Uw-modules

and their projective covers are gradable. Moreover, any lift of a simple Uw-module is
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simple in Uw-T0-mod and any lift of a projective indecomposable Uw-module is pro-

jective indecomposable in Uw-T0-mod. Suppose M is gradable, that is there exists a

Uw-T0-module V such that FðV Þ ¼M. Then, by ([15], Remark 1.5), we have

Fðsoc V Þ ¼ soc M and Fðrad V Þ ¼ rad M.

For any M;N 2 Uw-T0-mod, using the notation of 2.3, we have

HomUw ðFðMÞ;FðNÞÞ ¼ �iHomUw-T0
ðM½i�;NÞ, ([10], Section 2).

4.9. The category Uw-T0-mod admits a contravariant self-equivalence, D whose

square is canonically isomorphic to the identity functor, ([13], Sections 1.13 and

1.14). Moreover D fixes the simple modules in Bw;l-T0-mod, ([13], Proposition 2.16).

4.10 TRANSLATION FUNCTORS

Using the map c : P! L, we will abuse notation by writing Bw;l-T0-mod and prl for

l 2 P (we should really take the image of l under c). Given l; m 2 C0 we define a

translation functor

T m
l :Bw;l-T0-mod! Bw;m-T0-mod

by T m
l ðV Þ ¼ PrmðE� V Þ, where E is the simple SLnðKÞ-module with the highest

weight wðm� lÞ 2 Pþ for some w 2W.

Note that we get (in general) more than one functor Bw;l-T0-mod! Bw;m-T0-mod

for fixed l and m: if m and m0 are two distinct weights in C0 with cðmÞ and cðm0Þ in the

same W-orbit then T m
l and T m0

l will be two (in general) distinct functors from Bw;l-

T0-mod to Bw;m-T0-mod ¼ Bw;m0 -T0-mod.

4.11. BABY VERMA MODULES

Given b 2 Bw and l 2 P we have a one dimensional representation of U0ðbÞ, the sub-

algebra of Uw generated by the elements of b, described as follows. Let g 2 SLnðKÞ be

such that g conjugates b to the upper triangular matrices in slnðKÞ, say bþ. There is a

one dimensional U0ðbþÞ-module which is annihilated by strictly upper triangular

matrices and on which diagonal matrices act via cðlÞ. Conjugation by g provides

an isomorphism between U0ðbÞ and U0ðbþÞ, and so gives a one dimensional U0ðbÞ-
module, say Kl. It can be checked that this module is independent of the choice

of g 2 SLnðKÞ. Induction yields a baby Verma module

Vðb; lÞ ¼ Uw �U0ðbÞ Kl

This is a Bw;l-module on which Cl acts by scalar multiplication.

4.12. The module Vðbþ; lÞ can be given the structure of a Bw;l-T0-module where T0

acts on 1� 1 through l. Set Vðbþ; lÞ
0
¼ DðVðbþ; lÞÞ (it follows from [12, 11.16(1)]

that this is a baby Verma module with respect to the Borel subalgebra obtained

by conjugating bþ by the Coxeter element s1s2 . . . sn�1).
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PROPOSITION [13, Theorem 2.6]. Suppose l 2 C0 with lþ r ¼
P

ri$i and let

r0 ¼ p� ðr1 þ    þ rn�1Þ.

ðiÞ The category Bw;l-T0-mod has simple modules L0;L1; . . . ;Ln�1 ðup to isomor-

phism and shiftÞ where the module Li has dimension pðn
2�n�2Þ=2rn�1�i ðif rn�1�i ¼ 0

then Li should be omitted from the list of simple modulesÞ.

ðiiÞ For each i between 0 and n� 1 there exists a uniserial module Vi 2 Bw;l-T0-mod

whose Loewy layers are Li;Liþ1½�1�; . . . ;Li�1½1� n� ðcount the subscripts modulo

n, and omit Vi and Li whenever rn�1�i ¼ 0Þ.

ðiiiÞ For each i between 0 and n� 1 there exists a uniserial module V 0i 2 Bw;l-T0-mod

whose Loewy layers are Li;Li�1½1�; . . . ;Liþ1½n� 1� ðcount the subscripts modulo

n, and omit V 0i and Li whenever rn�1�i ¼ 0Þ.

ðivÞ For any m 2 P such that cðmÞ and cðlÞ are in the same W�-orbit there exists a

unique i and j 2 Z ðrespectively i 0; j 0Þ such that Vðbþ; mÞ ffi Vi½ j� ðrespectively

Vðbþ; mÞ
0
ffi V 0i 0 ½ j

0 �Þ.

4.13 ENDOMORPHISMS

Let l 2 P and let Zl be the centre of Bw;l. Recall Cl � Zl. Let M be in Bw;l-T0-mod.

There is a homomorphism

yM:Zl�!EndBw;l ðFðM ÞÞ;

sending z 2 Zl to the endomorphism ðm 7 �!� z mÞ.

PROPOSITION. Let l 2 C0 and Q be a projective indecomposable module in

Bw;l-T0-mod. The homomorphism

yQ:Zl�!EndBw;l ðFðQÞÞ

is surjective.

Proof. To make the paper as self-contained as possible, we will give a direct proof

of this for regular weights l, since the general case relies on an unpublished result of

Jantzen and Sörgel, [16].

It is enough to prove this in the ungraded case. Let P0; . . . ;Pr be all distinct (up to

isomorphism) projective indecomposable Bw;l-modules. The algebra Cl has a simple

socle [8, Corollary 3.9]. Therefore if AnnCl ðPiÞ is non-zero it must contain the socle

of Cl. The equality 0 ¼ AnnClðBw;lÞ ¼ \i AnnCl ðPiÞ, implies that Cl acts faithfully

on at least one projective indecomposable, say P0. By Proposition 4.12 and a result

of Jantzen ([12], Proposition 10.11) the dimension of EndBw;l ðP0Þ ¼ dim Cl, so Zl

generates EndBw;lðP0Þ.

Now assume l is regular. It follows from ([13], Section 2.3) that we can find a

translation functor T such that TðP0Þ ffi Pi and, by ([12], Section 11.21), that T is

a self-equivalence of Bw;l-mod. Since Zl can be identified with the endomorphism

ring of the identity functor on Bw;l-mod, conjugation by T induces a ring auto-
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morphism of Zl, say ~TT. It follows that EndBw;lðPiÞ is generated by ~TTðClÞ � Zl, as

claimed.

If l is not regular the above argument fails since it need no longer be true that we

can find a translation functor T which is a self-equivalence and sends P0 to Pi. In this

situation we use the following fact, ([16], C.6 Claim 2): if the highest weight of Pi (in

the graded category) belongs to C0 and does not lie on the affine wall, then the cano-

nical map Cl! EndBw;l ðPiÞ is an isomorphism. Hence, it is enough to show that we

can find a representative of the isomorphism class of Pi whose highest weight belongs

to C0 and does not lie on the affine wall. A straightforward calculation shows that

this follows from ([14], Section 2.3). &

4.14. It is possible to slightly weaken the hypothesis p > n when using the results of

[16], and hence the hypothesis of this whole section. The proof of Jantzen’s results,

however, do not apparently generalise to the best case where p and n are coprime.

We leave these details to the interested reader.

4.15. Let J be the unique maximal ideal of Zl.

LEMMA. LetPi be theprojective coverofLi inBw;l-T0-mod.Then ½Pi=JPi :Li½ j ��¼ dj0.

Proof. It is enough to prove this for ungraded Bw;l-modules. Suppose that

FðLiÞ is a composition factor of FðPiÞ=JFðPiÞ. Thus FðLiÞ appears as a direct

summand of radmFðPiÞ=radmþ1FðPiÞ for some m 2 N. Hence we have a commutative

diagram

Thanks to Lemma 4.13 there exists z 2 Zl such that the above endomorphism of

FðPiÞ is multiplication by z. Then z =2 J since, by hypothesis, the composition factor

FðLiÞ does not lie in JFðPiÞ. Since Zl is local it follows that the endomorphism is an

isomorphism and so FðLiÞ lies in the head of FðPiÞ as required. &

4.16. TWO CENTRAL REDUCTIONS

Let ~JJ be the unique maximal ideal of Cl and recall that J is the unique maximal

ideal of Zl. We introduce two central reductions

~UUw;l ¼
Bw;l

~JJBw;l
; Uw;l ¼

Bw;l

JBw;l
:

Since ~JJ and J are homogeneous both ~UUw;l and Uw;l inherit Z-gradings from Bw;l. The

category of graded modules Uw;l-T0-mod is thus a full subcategory of Bw;l-T0-mod

and there is a Z-action on Uw;l-T0-mod, inherited from Bw;l-T0-mod.
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4.17. The main result of this section follows.

PROPOSITION. Suppose l 2 C0 with lþ r ¼
P

ri$i, and let r0 ¼ p� ðr1 þ    þ

rn�1Þ. Let k be the number of non-zero ri’s. Then Uw;l is Morita equivalent to the

no-cycle algebra NKðkÞ. Moreover, if l is regular there is a Z-equivalence of categories

Uw;l-T0-mod�!NKðnÞ-grmod:

Proof. Let A be a finite dimensional algebra with simple modules S1; . . . ;Sr. The

Gabriel quiver of A is the directed graph with vertices labelled from 1 to r and

dim Ext1AðSi;SjÞ edges from i to j. By ([3], Proposition 4.17) A is Morita equivalent to

the the path algebra of its Gabriel quiver factored by some admissible ideal, that is

an ideal generated by linear combinations of paths of length at least two.

Recall the notation of Proposition 4.12. Let 04 i1 < i2 <    < ik 4 n� 1 be such

that Lit 6¼ 0, or, equivalently, rn�1�it 6¼ 0. Set st ¼ itþ1 � it for 14 t < k and set

sk ¼ nþ i1 � ik. Since Li appears only once as a composition factor of Vi, ZðBw;lÞ

acts by scalars on Vi, making Vi a Uw;l-module. By [13, Proposition 2.19], for

t 6¼ t0 modulo k and j 2 Z

Ext1Uw;l�T0
ðLit ½ j�;Lit0 Þ ¼

K; if t0 ¼ tþ 1; j ¼ st or t0 ¼ t� 1; j ¼ �st�1;

0; otherwise.

(

Thus the Gabriel quiver of Uw;l is of the form 3.1, possibly with loops added at the

vertices. Let B be the quotient of this quiver which is Morita equivalent to Uw;l. We

will show B is isomorphic to NKðkÞ.

The projective covers of the simple B-modules are spanned by the paths ending in

a fixed vertex. Hence, Lemma 4.15 shows that there can be no loops at vertices and

further, that B is therefore a quotient of NKðkÞ. In particular, its dimension is at most

kð2k� 1Þ.

Let Tit be the kernel of the sum of two projections Vit � V 0it ! Lit . By Proposition

4.12

½FðTit Þ : FðLit 0 Þ� ¼
2; if t 6¼ t0

1; if t ¼ t0:

�
Since FðTit Þ is a quotient module of FðPit Þ, the dimension of B can be estimated by

dim B¼End
Mk

t¼1

FðPit Þ

 !
¼
X
t;t0
½FðPitÞ :FðLit0 Þ�5

X
t;t0
½FðTit Þ : FðLit0 Þ� ¼ kð2k�1Þ:

We deduce that B ffi NKðkÞ, proving the first statement of the theorem. This also

proves that Tit is the projective cover of Lit in Uw;l-T0-mod.

Let l be regular, so that k ¼ n, and let T ¼ �Tit . Thanks to 2.3 and 4.8 the algebra

E ¼ EndUw;l ðFðT ÞÞ
op has a Z-grading. By ([10], Theorem 5.4) Uw;l-T0-mod and

NKðnÞ-mod are equivalent Z-categories if E ffi NKðnÞ as a Z-graded algebra.
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But, up to a choice of scalars, bi corresponds to a Uw;l-T0-module homomorphism

sending Ti½1� to Tiþ1, and ai corresponds to the a Uw;l-T0-module homomorphism

sending Tiþ1½�1� to Ti. This proves the second claim. &

4.18. TWO CENTRAL REDUCTIONS (II)

In general the inclusion Cl � Zl is strict, ([8], Corollary 3.9). However, the natural

homomorphism ~UUw;l ! Uw;l is an isomorphism. This follows from the fact in the

proof of Proposition 4.3 that the map

y1 : Cl�!EndBw;l ðFðPÞÞ

is an isomorphism for any projective indecomposable module P. The arguments

of 4.15 and 4.17 are then valid for ~UUw;l, from which the isomorphism follows.

We expect this continues to hold under the weaker hypothesis that p and n are

coprime.

5. Gröbner-Shirshov Bases

5.1. We are going to use Gröbner-Shirshov bases for associative algebras (see [4]

for two-sided ideals and [17] for one-sided ideals). In this section we quickly

explain the technique to make our paper self-contained. Although the version

for one-sided ideals [17] is sufficient for our ends, we generalise to arbitrary mod-

ules to avoid repetitions.

5.2. Let R ¼ LhX1;X2; . . . ;Xli be a free associative algebra. Let F be a free R-mod-

ule with generators Y1; . . . ;Yk. Although l and k are natural numbers here, one can

use, with certain care, the technique for transfinite ordinals.

Let R be the set of monomials in R, F the set of monomials in F. The set R [ F
admits a partial multiplication with a two-sided unit 1R (one agrees that m1 ¼ m for

m 2 F ). We always make the assumption that a product is defined when we write the

product. We start with a linear order � on R [ F such that

. 8z 2 R [ F z � 1R;

. z1 � z2 ¼)wz1v � wz2v;

. 8z 2 R [ F the set fw 2 R [ F jz � wg is finite.

A degree lexicographical order is most practical but there are different orders. For

a nonzero element f of R [ F we denote the highest term of f by �ff .

5.3. A pair of subsets S � R and T � F determine an algebra A ¼ R=RSR and a

left A-module M ¼ A�R ðF=RT Þ ¼ F=ðRTþ RSFÞ. The technique of Gröbner–

Shirshov pairs allows to solve questions about M by producing an explicit basis of M.
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Each f 2 S [ T gives a rewriting rule �ff ! �ff � f. We write a? b if b can be

obtained from a by using rewriting rules. Note that one cannot rewrite a monomial
�ff t unless t ¼ 1 or f 2 S.

5.4. COMPOSITION

For certain f; g 2 R [ F, w 2 R [ F , we can form a composition ð f; gÞw. If

w ¼ �ff V ¼W �gg ¼WZV for some W;Z;V 2 R [ F with Z 6¼ 1 then the composition

is

ð f; gÞw ¼ f V�Wg:

If w ¼W �ff V ¼ �gg for some W;V 2 R [ F then the composition is

ð f; gÞw ¼Wf V� g:

These two cases are mutually exclusive.

A pair ðS;T Þ is a Gröbner–Shirshov pair if ð f; gÞw ? 0 for all possible f; g 2 S [ T

and w 2 R [ F .

The following version of Shirshov’s composition lemma can be proved by stan-

dard methods [4]. If k ¼ 1 and T ¼ ; then the statement is the standard version of

Shirshov’s composition lemma [4]. If k ¼ 1 and T arbitrary then it is a version for

left ideals [17].

5.5. SHIRSHOV’S COMPOSITION LEMMA

For S and T as above, we consider the set of monomials

B ¼ fZ 2 F j 8f 2 S [ T 8W;V Z 6¼W �ff Vg:

If ðS;T Þ is a Gröbner–Shirshov pair then the image of B is a basis of M as an

L-vector space.

Moreover, for every ðS;T Þ there exits a Gröbner–Shirshov pair ðS 0;T 0Þ such that

RSR ¼ RS0R and RSFþ RT ¼ RS0Fþ RT 0.

5.6. BUCHBERGER’S ALGORITHM

A proof of existence of a Gröbner–Shirshov pair uses transfinite recursion, called

Buchberger’s algorithm. It proceeds as follows. One starts with ðS0;T0Þ ¼ ðS;T Þ.

Given ðSm;TmÞ we produce the next pair ðSmþ1;Tmþ1Þ such that RSmR ¼ RSmþ1R

and RSmFþ RTm ¼ RSmþ1Fþ RTmþ1. Consider all possible compositions ð f; gÞw
with f; g 2 Sm [ Tm. To each such composition, apply a sequence of rewriting rules

�vv! �vv� v with v 2 Sm [ Tm so that ð f; gÞw ? ½ f; g�w and ½ f; g�w cannot be rewritten

any further. Note that the element ½ f; g�w is not canonical since we choose a sequence
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of rewriting rules to use. Another sequence can give a different answer. Define the

following sets

Im ¼ f½ f; g�w j f; g 2 Sm [ Tm; ½ f; g�w 6¼ 0g;

Jm ¼ fg j f; g 2 Sm [ Tm; ð f; gÞw ¼Wf V� g; ½ f; g�w 6¼ 0g:

Now we can make the recursion step,

Smþ1 ¼ ðSm [ ðIm \RÞÞ n Jm;Tmþ1 ¼ ðTm [ ðIm \ F ÞÞ n Jm:

5.7. TERMINATION OF BUCHBERGER’S ALGORITHM

If ðS;T Þ is a Gröbner-Shirshov pair then S1 ¼ S0, T1 ¼ T0, and the procedure

terminates immediately. If S is a Gröbner-Shirshov basis (equivalently ðS; ;Þ is a

Gröbner–Shirshov pair), and R=RSR is noetherian then the procedure terminates

after finitely many steps.

6. Hodges’ Quantisation

6.1. KLEINIAN SINGULARITIES

Let z 2 K be a primitive root of unity of degree n. Set

G ¼ gi : g ¼
z 0
0 z�1


 �� �
;

a subgroup of SL2ðKÞ. The natural action of G on K
2 induces an action on

K½X;Y � : g  X ¼ zX; g  Y ¼ z�1Y. The invariants of K½X;Y � under this action are

generated by Xn;XY and Yn. Thus, the orbit space K
2=G has co-ordinate ring

OðK2=GÞ ¼ K½Xn;XY;Yn� ffi
K½A;B;H �

ðAB�HnÞ
:

The variety K
2=G has an isolated singularity at 0, a Kleinian singularity of type An�1.

6.2. Let vðzÞ 2 K½z� be a polynomial of degree n, whose roots lie in F. Following

[11,1], we define an associative algebra, TðvÞ, over K with generators a; b and h satis-

fying the relations

ha ¼ aðhþ 1Þ; hb ¼ bðh� 1Þ; ba ¼ vðhÞ; ab ¼ vðh� 1Þ: ð1Þ

There exists a filtration on TðvÞ such that grðTðvÞÞ ffi K½A;B;H�=ðAB�HnÞ: In other

words, TðvÞ is a deformation of a Kleinian singularity of type An�1.

Using the translation h 7!� h� 1 we will assume without loss of generality that 0 is

a root of vðzÞ.
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6.3. A Z-CATEGORY

There is also a Z-grading on TðvÞ: we assign a degree n, b degree �n and h degree 0.

We want to study a category of graded TðvÞ-modules similar in spirit to the construc-

tion of Bw;l-T0-mod in Section 4.8.

Since p and n are coprime, we can find an inverse of �nn in F, say �cc. We will consider

the full subcategory of finitely generated Z-graded TðvÞ-modules consisting of

objects

M ¼
M
j2Z

Mj;

such that h acts on Mj through scalar multiplication by �jj �cc. Note that a Mj �Mjþn

(respectively b Mj �Mj�n) showing that this definition is compatible with the relation

ha ¼ aðhþ 1Þ (respectively hb ¼ bðh� 1Þ). Denote this category by TðvÞ-grmod.

For i 2 Z, there is a shift functor ½i �:TðvÞ-grmod! TðvÞ-grmod: given M 2

TðvÞ-grmod, set ðM½i �Þj ¼Mj�pi for all j 2 Z. This makes TðvÞ-grmod a Z-category.

We let F : TðvÞ-grmod�!TðV Þ-mod denote the functor which forgets the

Z-structure.

6.4. We will be interested in a finite dimensional central quotient of TðvÞ.

LEMMA 6.1. The centre of TðvÞ is generated by ap; bp and hp � h. It is isomorphic to

the algebra of functions on a type An�1 Kleinian singularity.

Proof. It is straightforward to check that ap, bp and hp � h are central elements.

By construction TðvÞ is a free K½h�-module with basis fai; b j : i; j5 0g. It follows from

the relations in TðvÞ that the degrees of the homogeneous components of any non-

zero central elements must be a multiple of pn. Since ap and bp are central we must

find which polynomials in h are central. Let qðhÞ be such a polynomial. Since

aqðhÞ ¼ qðhþ 1Þa we deduce that the roots of q are invariant under integer addition.

It follows that qðhÞ is a polynomial in hp � h as required.

Using the defining relations once more we have

apbp ¼ vðhÞvðhþ 1Þ . . . vðhþ p� 1Þ:

Since vðhÞ has degree n in h, it follows that apbp ¼ ðhp � hÞ n. Hence, the centre of

TðvÞ is a quotient of the ring of functions of a Kleinian singularity of type An�1.

Any proper quotient of the ring of functions on a Kleinian singularity has dimension

0 or 1. Thus since TðvÞ is finitely generated over its centre and has Gelfand–Kirillov

dimension 2, the centre must be the entire ring of functions. &

6.5. Now we can introduce the protagonist of this section:

tðvÞ ¼
TðvÞ

ðap; bp; hp � hÞ
:
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Since the ideal ðap; bp; hp � hÞ is homogeneous, tðvÞ inherits a Z-grading from TðvÞ.

We denote the full subcategory of TðvÞ-grmod consisting of Z-graded tðvÞ-modules

by tðvÞ-grmod.

6.6. In order to study tðvÞ we introduce an intermediate algebra

TðvÞ ¼ TðvÞ=ðap; bpÞ: ð2Þ

Let us use a degree lexicographical order on non-commutative associative mono-

mials in a of degree 1, b of degree 2n� 1, and h of degree 1 with h > b > a.

The relations of (1) already form a Gröbner–Shirshov basis. It follows that mono-

mials not containing ha, hb, ba, or ab as submonomials form a basis of TðvÞ.

For any polynomial fðzÞ 2 K½z� and a positive integer i, we denote

fðiÞðzÞ ¼
Yi�1

k¼0

fðzþ �kkÞ; fð�iÞðzÞ ¼
Yi�1

k¼0

fðz� �kkÞ:

LEMMA 6.2. The following relations, together with those in ð1Þ and ð2Þ, form a

Gröbner-Shirshov basis of TðvÞ,

a p�ivð�iÞðh� 1Þ for i ¼ 1; . . . ; p; ð3Þ

bp�ivðiÞðhÞ for i ¼ 1; . . . ; p� 1: ð4Þ

Proof. Let us obtain all relations in (6.6) recursively. For i ¼ 1; . . . ; p,

ðba� vðhÞ; ap�ivð�iÞðh� 1ÞÞbap�ih ni ¼ bap�ivð�iÞðh� 1Þ � ðba� vðhÞÞap�i�1hni

¼ bap�iðvð�iÞðh� 1Þ � hniÞ þ vðhÞap�i�1hni
? vðhÞap�i�1ðvð�iÞðh� 1Þ � hniÞþ

þ vðhÞap�i�1hni ¼ vðhÞap�i�1vð�iÞðh� 1Þ?avðhþ 1Þap�i�2vð�iÞðh� 1Þ?   

? ap�i�1vðhþ p� i� 1Þvð�iÞðh� 1Þ ¼ ap�i�1vð�i�1Þðh� 1Þ:

Similarly, for i ¼ 1; . . . ; p� 1; ðbp�ivðiÞðhÞ; ab� vðh� 1ÞÞabp�ih ni ? bp�i�1vðiþ1ÞðhÞ. Now

we need to show that all remaining compositions are trivial. The highest terms of

defining relations are ha, hb, ba, ab, ap�ih ni, and bp�ih ni. Let us make certain that all

compositions are trivial. Firstly,

ðba� vðhÞ; ab� vðh� 1ÞÞbab ¼ bvðh� 1Þ � vðhÞb? bvðh� 1Þ � bvðh� 1Þ ¼ 0:

Similarly, ðab� vðh� 1Þ; ba� vðhÞÞaba ? 0: Then

ðhb� bhþ b; bp�ivðiÞðhÞÞhbp�ih ni ¼ hbp�iðhni � vðiÞðhÞÞ � bhbp�i�1hni þ bp�ih ni
?

? bp�iððh� pþ iÞðhni � vðiÞðhÞÞ � ðh� pþ iþ 1Þhni þ hni ¼ bp�ivðiÞðhÞh? 0:
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Analogously, the compositions ðap�ivð�iÞðhÞ; ab� vðh� 1ÞÞapb and ðbp�ivðiÞðhÞ;

ab� vðh� 1ÞÞabp are trivial. Then

ðha�ah�a;ab�vðh�1ÞÞhab

¼ hvðh�1Þ�ahb�ab?hvðh�1Þ�aðbh�bÞ�ab

¼ hvðh�1Þ�abh?0:

Another possible composition to consider is

ðha� ah� a;ap�ivð�iÞðhÞÞhap�ihni

¼ hap�iðvð�iÞðhÞ � hniÞ þ ahap�i�1hniþ ap�ihni
?

? ap�iððh� iÞðvð�iÞðhÞ � hniÞ þ ðh� i� 1Þhniþ hniÞ

¼ ap�ivð�iÞðhÞðh� iÞ?0:

The remaining compositions ðha� ah� a;ap�ihniÞap�ihnia, ðhb� bhþ b;ap�ihniÞap�ihnib,

ðha� ah� a; bp�ih niÞbp�ih nia, and ðhb; bp�ih niÞbp�ih nib are trivial by a similar

argument. &

COROLLARY 6.7. The dimension of TðvÞ is np2. Moreover, there is a direct sum

decomposition

TðvÞ ¼
Mp

i¼1

ap�iK½h�=ðvðiÞðh� 1ÞÞ

" #
�

Mp�1

j¼1

b jK½h�=ðvð p�jÞðhÞÞ

" #
: ð5Þ

Proof. The direct sum decomposition (5) follows at once from the description of

the Gröbner–Shirshov basis of TðvÞ. Adding dimensions of summands, we arrive at

the dimension of TðvÞ, that is 2ðnþ 2nþ    ð p� 1ÞnÞ þ pn ¼ np2. &

6.8. If we write gcdð fðZ Þ; gðZ ÞÞ for the greatest common divisor of two polynomials

then decomposition (5) is inherited:

tðvÞ ¼
Mp

i¼1

ap�iK½h�

ðgcdðvðiÞðh� 1Þ; hp � hÞÞ
�
Mp�1

j¼1

bjK½h�

ðgcdðvð p�jÞðhÞ; hp � hÞÞ
: ð6Þ

This decomposition allows one to compute the dimension of tðvÞ.

Let r1; . . . ; rn�1 2 Z be such that ri 5 0 and p5 r1 þ    þ rn�1 and

vðzÞ ¼
Yn�1

i¼0

ðz� ðr1 þ    þ riÞÞ:

Set r0 ¼ p� ðr1 þ    þ rn�1Þ.

COROLLARY. The dimension of tðvÞ is 2p2 �
P n�1

i¼0 r2
i .
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Proof. If f ðz; iÞ ¼ z� ðr1 þ    þ riÞ then the roots of fðjÞðz; iÞ are r1 þ    þ ri; . . . ;

r1 þ    þ ri � �jj. If j5 ri then r1; . . . ; ri�1; . . . ; r1 þ    þ ri � �jj are already roots of

fðjÞðz; iþ 1Þ. Thus, the dimension of the first summand in (6) is

p2 �
Xn�1

i¼0

ð1þ 2þ    þ ðri � 1Þ þ ri þ ri þ    riÞ;

where the number of summands in the parenthesis is p. This sum equals

p2 þ ð p�
P n�1

i¼0 r2
i Þ=2. Similarly, the second summand has dimension p2 � ð pþ

P n�1
i¼0 r2

i Þ=2, so that the total dimension is 2p2 �
P n�1

i¼0 r2
i . &

6.9. BABY VERMA MODULES (II)

Let u (respectively u0) be the subalgebra of tðvÞ generated by a and h (respectively, b

and h). Similarly let U (respectively, U0) be the subalgebra of TðvÞ generated by a and

h (respectively b and h).

We introduce two sets of baby Verma modules. For l 2 Z let Kl (respectively, K0l)

be the one-dimensional U-module (respectively, U0-module) with basis j0i (respec-

tively j1i) and

hj0i ¼ �llj0i; aj0i ¼ 0; hj1i ¼ �llj1i; bj1i ¼ 0:

The baby Verma module VðlÞ (respectively VðlÞ0) is

VðlÞ ¼ TðvÞ �U Kl ðrespectivelyVðlÞ0 ¼ TðvÞ �U0 K
0
lÞ:

LEMMA 6.10. ðiÞ If �ll is not a root of vðzÞ then VðlÞ ¼ 0, whilst if �ll is a root of

vðzÞ then VðlÞ has a basis of p elements j0i; bj0i; . . . ; bp�1j0i. We have

abkj0i ¼ vð�ll� �kkÞbk�1j0i; hbkj0i ¼ ð�ll� �kkÞbkj0i:

ðiiÞ If �ll� 1 is not a root of vðzÞ then VðlÞ0 ¼ 0, whilst if �ll� 1 is a root of vðzÞ then

VðlÞ0 has a basis of p elements j1i; aj1i; . . . ; ap�1j1i. We have

bakj1i ¼ vð�llþ �kk� 1Þak�1j1i; hakj1i ¼ ð�llþ �kkÞakj1i:

Proof. (i) For the generator j0i 2 VðlÞ one observes that

0 ¼ baj0i � ðba� vðhÞÞj0i ¼ vðhÞj0i ¼ vð�llÞj0i:

Thus if �ll is not a root of vðzÞ then j0i ¼ 0 and VðlÞ ¼ 0.

Let �ll be a root of vðzÞ. Let S be the Gröbner–Shirshov basis of TðvÞ constructed in

Lemma 6.6. The module VðlÞ is determined by the pair ðS; fðh� �llÞj0i; aj0igÞ and

this turns out to be a Gröbner–Shirshov pair. Indeed, there are three elements in

S whose leading monomials end with a:

ðaj0i;ha�ah�aÞa¼ haj0i�ðha�ah�aÞj0i¼ ðahþaÞj0i?ðlaþaÞj0i?0;
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ðaj0i; ba� vðhÞÞa ¼ baj0i � ðba� vðhÞÞj0i ¼ vðhÞj0i? vð�llÞj0i ¼ 0;

ðap; aj0iÞa ¼ apj0i � ap�1aj0i ¼ 0:

Elements of S whose leading monomials end with h fall into two types:

ðap�ivðiÞðh� 1Þj0i; ðh� �llÞj0iÞh ¼ ð�lla
p�ih ni�1 þ ap�iðvðiÞðh� 1Þ � hniÞÞj0i ?

vðiÞð�ll� 1Þap�ij0i? 0;

ðbp�ivðiÞðhÞ;ðh� �llÞj0iÞh¼ð�llb
p�ihni�1þbp�iðvðiÞðhÞ�hniÞÞj0i?bp�ivðiÞð�llÞj0i ¼0:

Direct computation now yields the formulas for the action.

(ii) The proof is analogous. &

Thanks to the lemma we can consider VðlÞ and VðlÞ0 as objects in TðvÞ-grmod.

Indeed if VðlÞ (respectively VðlÞ0) is nonzero we let bkj0i (respectively akj1i) span

the ðl� kÞn (respectively ðlþ kÞn) homogeneous component.

6.11. Under our assumptions, we have ð�ll� �kkÞ p ¼ �ll� �kk. It follows that

ðhp � hÞVðlÞ ¼ 0 (respectively ðhp � hÞVðlÞ0 ¼ 0), and so VðlÞ and VðlÞ0 are objects

in tðvÞ � grmod.

PROPOSITION. Let vðzÞ ¼
Q n�1

i¼0 ðz� ðr1 þ    þ riÞÞ be as in 6:8 and let r0 ¼

p� ðr1 þ    þ rn�1Þ.

ðiÞ The category tðvÞ-grmod has simple modules L0; . . . ;Ln�1 ðup to isomorphism and

shiftÞ where the dimension of Li is rn�1�i ðif rn�1�i ¼ 0 then Li should be omitted

from the list of simple modulesÞ.

ðiiÞ For each i lying between 0 and n� 1 there exists a uniserial module

Vi 2 tðvÞ-grmod whose Loewy layers are Li;Liþ1½�1�; . . . ;Li�1½1� n� ðcount sub-

scripts modulo n, and omit Vi and Li whenever rn�1�i ¼ 0Þ.

ðiiiÞ For each i lying between 0 and n� 1 there exists a uniserial module

V 0i 2 tðvÞ-grmod whose Loewy layers are Li;Li�1½1�; . . . ;Liþ1½n� 1� ðcount sub-

scripts modulo n, and omit V 0i and Li whenever rn�1�i ¼ 0Þ.

ðivÞ For any l 2 Z such that �ll is a root of vðzÞ there exists a unique i and j 2 Z

ðrespectively i 0; j 0Þ such that VðlÞ ffi Vi½ j � ðrespectively Vðlþ 1Þ0 ffi V 0i 0 ½ j
0�Þ.

Proof. Set V0 ¼ Vð0Þ and Vi ¼ Vðr1 þ    þ rn�1�iÞ½i�. Note that if rn�1�i ¼ 0 then

Vi ffi Viþ1½�1�. Since every tðvÞ-module has a u-fixed point we see that any simple

tðvÞ-module is a quotient of FðViÞ for some i (where F is the forgetful functor to

ungraded modules). By Lemma 6.10(i) FðViÞ is isomorphic to K½b�=ðbpÞ as a

K½b�=ðbpÞ-module. Since K½b�=ðbpÞ is a local algebra it follows that Vi has a simple

head.
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In Vi the element brn�1�i j0i is annihilated by a and belongs to the

nðr1 þ    þ rn�1�ðiþ1ÞÞ þ pi component, so there is a graded tðvÞ homomorphism

yi : Viþ1½�1� �!Vi:

The cokernel of yi, say Li, has dimension rn�1�i and is simple if rn�1�i 6¼ 0 since it is

generated by any basis vector bij0i it contains. If rn�1�i 6¼ 0 it follows from Lemma

6.10 that Li has a unique u-fixed point, namely j0i. Hence, if rn�1�i and rn�1�j are

non-zero Li and Lj are isomorphic if and only if i ¼ j. This proves (i).

Since Vi is simple-headed, dim Vi ¼ p and
P n�1

i¼0 ri ¼ p the chain of homomor-

phisms

Vi�1½1� n� �!
yi�2

Vi�2½2� n� �!
yi�3
   �!

yiþ1

Viþ1½�1� �!
yi

Vi

proves (ii). The proof of (iii) is similar. Part (iv) is clear. &

PROPOSITION 6.12. Let vðzÞ ¼
Q n�1

i¼0 ðz� ðr1 þ    þ riÞÞ be as in 6:8 and set

r0 ¼ p� ðr1 þ    þ rn�1Þ. Let k be the number of nonzero ri’s. Then tðvÞ is Morita

equivalent to NKðkÞ. Moreover, if k ¼ n, there is a Z-equivalence of categories

tðvÞ-grmod�!NKðnÞ-grmod:

Proof. Let 04 i1 4    4 ik 4 n� 1 be such that rn�1�it 6¼ 0. Let Qit be the

projective cover of Lit in tðvÞ-grmod. Recall the general formula, [3, Section 1.7]

dim tðvÞ ¼
Xk

t¼1

dim Qit dim Lit :

Let Tit be the kernel of the sum of two projections Vit � V 0it ! Lit . Then Tit has head

isomorphic to Lit so is a quotient of Qit . By Lemma 6.9 and Proposition 6.11

dim Tit ¼ 2p� rn�1�it . Using Lemma 6.8 we findXk

t¼1

dim Qit dim Lit 5
Xk

t¼1

dim Tit dim Lit ¼
Xk

t¼1

ð2p� rn�1�it Þrn�1�it

¼ 2p2 �
Xk

t¼1

r2
n�1�it

¼ dim tðvÞ;

proving that Tit ffi Qit .

Let T ¼ �Tit . The basic algebra of tðvÞ is EndtðvÞðFðT ÞÞ
op. Let bt (respectively at) be

the homomorphism FðTit Þ ! FðTitþ1
Þ (respectively FðTitþ1

Þ ! FðTit Þ) associated to

the composition factor FðLit Þ of FðTitþ1
Þ (respectively FðTit Þ) lying in the second

Loewy layer of FðVitþ1
Þ (respectively FðV0it Þ). It is straightforward to check that at

and bt, together with the idempotents arising from the projections in

EndtðvÞðFðT ÞÞ, generate the basic algebra and satisfy the relations of the no-cycle

algebra. Since

dim EndtðvÞðFðT ÞÞ ¼ kð2k� 1Þ
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the first statement of the proposition follows. The second statement is proved in the

same manner as Proposition 4.17. &

7. Proof of Premet’s Conjecture

7.1. We require p > n for the following theorem. Thanks to 4.18 we can replace Uw;l

with ~UUw;l throughout, if we wish.

THEOREM 7.2. Let p > n. Suppose l 2 C0 with lþ r ¼
P

ri$i and let vðzÞ ¼
Q n�1

i¼0 ðz� ðr1 þ    þ riÞÞ. There is an isomorphism

Uw;l ffiMatpðn2�n�2Þ=2ðtðvÞÞ:

Moreover, there is a Z-equivalence of categories

Uw;l-T0-mod�! tðvÞ-grmod:

Proof. Set r0 ¼ p� ðr1 þ    þ rn�1Þ and let k be the number of nonzero ri’s. Let

04 i1 4    4 ik 4 n� 1 be such that rn�1�it 6¼ 0. Let L1; . . . ;Lk (respectively

M1; . . . ;Mk) be the simple Uw;l-T0-modules (respectively graded tðvÞ-modules)

appearing in Proposition 4.12 (respectively Proposition 6.11) and let P1; . . . ;Pk

(respectively Q1; . . . ;Qk) be their projective covers. We have

Uw;l ffi EndUw;lð�FðPtÞ
pðn

2�n�2Þ=2rn�1�it Þ ffiMat
pðn

2�n�2Þ=2ðEndUw;l ð�FðPtÞ
rn�1�it ÞÞ

and

tðvÞ ffi EndtðvÞð�FðQtÞ
rn�1�it Þ:

Thanks to our construction of Pt in Proposition 4.17 and Qt in Proposition 6.12 we

have a graded isomorphism

EndUw;l ð�FðPtÞ
rn�1�it Þ ffi EndtðvÞð�FðQtÞ

rn�1�it Þ;

proving the first statement of the theorem, together with an equivalence. The equiva-

lence is a Z-equivalence by ([10], Theorem 5.4). &

7.3. EXTENSION TO TYPE B

For subregular representations of Lie algebras of type B, Jantzen has proved

an analogue of Proposition 4.12 and calculated several extension groups, ([13],

Section 3). Then, if we can prove an analogue of Proposition 4:13, it follows formally

from the arguments of Sections 4, and 6 and the above that the central reduction of

a block of a subregular reduced enveloping algebra of type B is a matrix ring over

a central reduction of Hodges’ deformation of a Kleinian singularity of type A.

Unfortunately, the proof of Proposition 4.13 does not immediately generalise to

type B since it is no longer true that we can find all highest weights in the funda-

mental alcove, C0. For regular weights, however, this can be remedied as follows.

Let Bw;l denote a block of a subregular reduced enveloping algebra of type Bn
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associated to a regular weight l. Rickard’s results in ([23], Section 3) remain valid

in this situation. To check this requires the specific information on the wall-cross-

ing functors, denoted gi for 14 i4 n, provided by Jantzen in ([14], Section H).

Thus, for 14 i4 n, there are derived self-equivalences Fi on the bounded derived

categories of Bw;l-modules. In particular, given any Bw;l-module M, FiðMÞ is the

complex giðMÞ !M, the map being given by the counit of gi. Combining the

known behaviour of baby Verma modules under wall-crossing, [12, 11.20], with

existing results on filtrations of the projective indecomposable modules by baby

Verma modules, ([12], Proposition 10.11), it can be shown that, given two projective

indecomposable Bw;l-modules Q and Q0, there are integers 14 i1; . . . ; it 4 n such

that Fi1 ; . . . ;Fit ðQÞ is quasi-isomorphic to Q0. Since it is known that the centre

of Bw;l is a derived-invariant, the proof of Proposition 4.13 can be generalised,

using the derived category, to deal with Bw;l. As a result we find the central reduc-

tion of Bw;l is a matrix ring over the central reduction of Hodges’ deformation of a

Kleinian singularity of type A2n�1.

8. More on Baby Verma Modules

8.1. We want to study baby Verma modules in ‘general position’. To do so, we need a

general lemma.

LEMMA 8.1. Let A be a finite dimensional L-algebra and Y a connected algebraic

variety over L. Suppose Ma, a 2 Y, is a flat family of finite-dimensional A-modules

over Y. Then the Grothendieck group element ½Ma� 2 K0ðAÞ is independent of a.
Proof. Let B be the basic algebra of A. There exists a ðB;AÞ-bimodule N, flat over

A, such that the functor N�A �induces an equivalence between the categories of

finite-dimensional A-modules and finite-dimensional B-modules. Let Ka ¼ N�A Ma,

a flat family of B-modules over Y. Given a primitive idempotent e 2 B, it suffices to

show that the dimension of eKa is independent of a 2 U, a Zariski open neigh-

bourhood of a point. Without loss of generality we can trivialise the family locally on

U, giving K�U. Then e defines an algebraic family of projection operators on the

finite dimensional vector space K,

ea: k 7!� prK ðe  ðk; aÞÞ:

Since the dimension of eKa is equal to the rank of ea, and the latter is constant since

Y is connected. &

8.2. Given l 2 X, it is an interesting problem to describe the isomorphism classes of

all baby Verma modules Vðb; lÞ as b runs over Bw. If l is regular then the description

of Bw, Proposition 4.12 and Lemma 8.1 show that, for every b 2 Bw,

½Vðb; lÞ� ¼
Xn�1

i¼0

½Li� 2 K0ðUw;lÞ:
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Therefore, on passing to the no-cycle algebra, we see that such Vðb; lÞ corresponds

to a NKðnÞ-module MðbÞ, such that eiMðbÞ is one-dimensional for all i. Thanks to

Section 2, all modules of this dimension are known.

Let ðk; aÞ 2 ðf1; . . . ; n� 1g �KgÞ [ ð0; 0Þ and let bk;a be the stabiliser of F k;a. Sup-

pose first that a ¼ 0. Since the torus T0 stabilises bk;0 for any k, twists by elements of

T0 provide a grading of Vðbk;0; lÞ. Therefore Mðbk;aÞ is gradable and, by Section 3,

must be a direct sum of string modules if n is odd (note that some band modules are

gradable for even n). When l is regular, we expect that gradable band modules are

not baby Verma modules, and that baby Verma modules are indecomposable.

The generic case is dealt with in the following proposition.

PROPOSITION 8.3. Keep the above notation and let l 2 X be a regular weight,

14 k4 n� 1 and a 6¼ 0. Then the baby Verma module Vðbk;a; lÞ is indecomposable.

Proof. It follows from Section 3 that if Mðbk;aÞ is not gradable it is necessarily a

band module and, hence, indecomposable. Thus, by Proposition 4.17, it suffices to

show that Vðbk;a; lÞ does not admit a T0-grading.

Suppose for a contradiction that Vðbk;a; lÞ admits a T0-grading. Let Lk be the

sl2ðKÞ-subalgebra generated by En�k;n;En�k;n�k � En;n and En;n�k. Any Borel sub-

algebra belonging to Pk is uniquely determined by its intersection with Lk. Let

lk ¼ lðEn�k;n�k � En;nÞ. A straightforward calculation shows that the restriction of

Vðbk;a; lÞ to Lk has a direct summand isomorphic to the baby Verma module for

Lk induced from bk;a \ Lk with highest weight lk.

For t 2 T0 the element tð1� 1Þ 2 Vðbk;a; lÞ is a highest weight vector for the Borel

subalgebra t  bk;a, yielding an isomorphism Vðbk;a; lÞ ffi Vðt  bk;a; lÞ. Since l is regular

lk 6¼ �1, and so, by ([20],MainTheorem), the babyVermamodules forLk induced from

different Borel subalgebras of Lk with highest weight lk are not isomorphic. Hence, by

the last paragraph, the isomorphism Vðbk;a; lÞ ffi Vðt  bk;a; lÞ forces Vðbk;a; lÞ to have

infinitely many nonisomorphic direct summands, a contradiction. &
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19. Mirković I. and Rumynin, D.: Centers of reduced enveloping algebras, Math. Z. 231

(1999), 123–132.

20. Premet, A.: The Green ring of a simple three-dimensional Lie p-algebra, Soviet Math.
(Iz. VUZ) 35 (1991), 61–67.

21. Premet, A.: Irreducible representations of Lie algebras of reductive groups and the

Kac–Weisfeiler conjecture, Invent. Math. 121(1) (1995), 79–117.
22. Premet, A.: Special transverse slices and enveloping algebras, Preprint.
23. Rickard, J.: Translation functors and equivalences of derived categories for blocks of

algebraic groups, Finite-Dimensional Algebras and Related Topics (Ottawa, ON, 1992),
NATO Sci. Ser. C Math. Phys. Sci. 424, Kluwer, 1994, pp. 255–264.

24. Slodowy, P.: Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math.

815, Springer, New York, 1980.
25. Weisfeiler, B. Ju. and Kac, V. G.: The irreducible representations of Lie p-algebras,

Funkt.Anal.i Prilozen, 5(2) (1971), 28–36; English transl. in Funct. Anal. Appl. 5 (1971),
111–117.

360 IAIN GORDON AND DMITRIY RUMYNIN


	ADP181.tmp
	+
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


