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Abstract 
Mycobacterium tuberculosis, the causative agent of human 
tuberculosis, has two proteins belonging to the truncated hemoglobin 
(trHb) family. Mt-trHbN presents well-defined internal hydrophobic 
tunnels that allow O2 and •NO to migrate easily from the solvent to 
the active site, whereas Mt-trHbO possesses tunnels interrupted by a 
few bulky residues, particularly a tryptophan at position G8. 
Differential ligand migration rates allow Mt-trHbN to detoxify •NO, a 
crucial step for pathogen survival once under attack by the immune 
system, much more efficiently than Mt-trHbO. In order to investigate 
the differences between these proteins, we performed experimental 
kinetic measurements, •NO decomposition, as well as molecular 
dynamics simulations of the wild type Mt-trHbN and two mutants, 
VG8F and VG8W. These mutations affect both the tunnels accessibility 
as well as the affinity of distal site water molecules, thus modifying the 
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ligand access to the iron. We found that a single mutation allows Mt-
trHbN to acquire ligand migration rates comparable to those 
observed for Mt-trHbO, confirming that ligand migration is regulated 
by the internal tunnel architecture as well as by water molecules 
stabilized in the active site.
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Introduction
Mycobacterium tuberculosis, the causative agent of human tubercu-
losis, affects approximately two billion people world-wide, causing 
over three millions deaths each year1. The genome of this patho-
genic organism includes two genes, glbN and glbO, which encode 
for two proteins, termed here truncated hemoglobin N (Mt-trHbN) 
and truncated hemoglobin O (Mt-trHbO), belonging to the truncated 
hemoglobin (trHb) family of heme proteins, widely distributed in 
eubacteria, cyanobacteria, microbial eukaryotes and plants2,3.

The truncated hemoglobin family exhibits a three-dimensional struc-
ture similar to the common globin fold of myoglobin, but signifi-
cantly smaller. The secondary structure of trHbs consists of four 
α-helices arranged in a two-over-two antiparallel sandwich instead 
of the common three-over-three helix globin fold. Phylogenetic 
analysis has distinguished three different groups of truncated hemo-
globins, classified as groups I, II and III, also called N, O and P, 
respectively.

It has been shown that group I Mt-trHbN catalyzes the detoxifica-
tion of •NO in the presence of O

2
4,5. The first step of this mechanism 

involves O
2
 migration and binding. Subsequently, •NO migrates to 

the active site and reacts with the heme-bound O
2
 to yield an unsta-

ble peroxynitrite adduct, which isomerizes to generate the relatively 
innocuous nitrate anion.

Several studies have examined the role of internal tunnels in ligand 
migration in trHbs2,5–8. Three different internal tunnels have been 
characterize among the trHb members, in general one or two of these 
tunnels is found in each protein: a long tunnel (LT) topologically 
positioned between helices B and E, and two short tunnels, known 
as the E7 Gate (E7 gate) and the short tunnel G8 (STG8), which are 
roughly normal to the LT, as depicted in Figure 1. The E7 tunnel 
corresponds to the highly conserved E7 pathway widely studied in 
both myoglobin and hemoglobin9–11. The STG8 tunnel is analogous 
to that found in Mt-trHbN, next to the key residues VG8 and IH11. 
Previous results indicate that WG8, an absolutely conserved residue 
in groups II and III truncated hemoglobins, is involved in hinder-
ing ligand migration in Mt-trHbO by blocking both STG8 and LT  
(Figure 1)12–14. In addition, the presence of a smaller residue at 
the G8 position in the Mt-trHbO mutant (WG8F) was observed to 
increase the small ligand association constant, although the molec-
ular details of this process were not investigated12–14. It has also 
been noted that in myoglobin, M. Tuberculosis trHbN as well as in  
T. fusca trHbO, internal water molecules were observed to block the 
heme accessibility, thus delaying ligand binding15–17.

By performing CO association kinetic constant measurements (k
on

 CO), 
•NO decomposition, and molecular dynamics (MD) simulations of 
Mt-trHbN, we addressed molecular mechanisms that control ligand 
association in M. tuberculosis truncated hemoglobins.

Materials and methods
Site-directed mutant construction
The trHbN G8 mutants (VG8W and VG8F) were prepared using 
the Stratagene QuikChange mutagenesis kit. The following prim-
ers were designed using Primer3 http://biotools.umassmed.edu/bio-
apps/primer3_www.cgi18 to generate single amino acid substitutions 
(underlined): i) WG8: forward primer 5’–CACTTCAGCCTGT-
GGGCCGGACACTTGG–3’ and reverse primer 5’–CAAGT-
GTCCGGCCCACAGGCTGAAGTG–3’; ii) FG8: forward primer 
5’–ACCACTTCAGCCTGTTCGCCGGACACTTG–3’ and reverse 
primer 5’–CAAGTGTCCGGCGAACAGGCTGAAGTGGT–3’. 
Polymerase chain reaction (PCR) amplification of pET9b carrying 
the glbN gene with the aforementioned primers was conducted fol-
lowing manufacturer’s instructions. The PCR mix consisted of 5 µl 
10x reaction buffer, 5–50 ng double stranded DNA template, 125 ng 
oligonucleotide primer 1, 125 ng oligonucleotide primer 2, 1 µl 
dNTP mix, 1 µl PfuUltra HF DNA polymerase and double distilled 
H

2
O to a final volume of 50 µl. The PCR reaction was 95°C for 

30 s, followed by 16 cycles of: 95°C for 30 s, 55°C for 1 min and 
68°C for 4 min. The reaction mix was then digested with DpnI to 
remove parental methylated DNA. Plasmid containing the mutated 
gene was then purified and used to transform Escherichia coli XL-1  
Blue electrocompetent cells. Cells were provided by Invitrogen. 
Constructs were checked by sequencing.

Protein purification
All chemicals and reagents were obtained from Sigma Aldrich, 
unless indicated otherwise. The trHbN protein variants were puri-
fied using standard techniques reported for other bacterial globins19. 
Briefly, mutated constructs were used to transform E. coli BL21 
DE3 pLysS. Starter cultures grown overnight in LB supplemented 
with kanamycin (50 μg ml-1) and chloramphenicol (35 μg ml-1) were 
used to inoculate 6 batches of 1 L LB medium at 1% (v/v), sup-
plemented with kanamycin and 3 μM FeCl

3
. Once cultures reached 

an OD
600

 of around 0.4, expression of trHbN was initiated by the 
addition of 1 mM IPTG and grown for a further 4 h. Cells were har-
vested by centrifugation at 5500 rpm for 20 min at 4°C and stored 
overnight at -20°C. After thawing, cells were resuspended in 40 ml 
buffer (10 mM TRIS-HCl (pH 7.0) with 1 mM EDTA, 10 mM DTT, 

            Amendments from Version 1

Minor changes were made to a few sentences in order to be more 
specific and further clarify our intended meaning. 

See referee reports

REVISED

Figure 1. Schematic representation of the two pathways for 
ligand migration presented in M. tuberculosis trHbN. The Long 
Tunnel (LT) and Short Tunnel G8 (STG8) are shown in orange.
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45 μg ml-1 phenylmethylsulphonyl fluoride, 500 μg ml-1 RNase and 
50 μl DNase), homogenized using a Douce homogeniser and ultra-
centrifuged at 44,000 rpm for 1 h at 4°C. The supernatant, red in 
color, was loaded onto a 30 ml DEAE Sepharose Fast Flow column 
(Pharmacia Biotech) equilibrated with 10 mM TRIS-HCl (pH 7.0), 
washed with the same buffer until the UV trace returned to baseline, 
and eluted via a gradient from 0 to 1 M NaCl in 10 mM TRIS-HCl 
using an Akta purifier (GE Healthcare Bio-Sciences, Amersham 
Biosciences, U.K. Ltd.). Fractions that were most red in color were 
concentrated using a Vivaspin 20 concentrator (Sartorius Stedim 
Biotech) to around 5 ml and loaded onto a gel filtration Superdex 
75 column, equilibrated with 0.15 M NaCl in 10 mM TRIS-HCl 
(pH 7.5); again, fractions with the most color were collected, com-
bined and stored at -80°C. Purity was checked using gel electro-
phoresis and analysis of the heme-to-protein ratio (410 nm and 
280 nm in the UV-visible absorption spectrum).

Kinetic stopped flow measurements of CO binding
Rapid mixing experiments were conducted with a thermostated 
stopped flow apparatus (BioLogic SFM-300). Kinetics of carbon 
monoxide (CO) binding to determine the k

on
 CO were measured on 

the deoxy state of mutant and wild type globins at 20°C. Solutions 
containing 5 μM protein in a 100 mM sodium phosphate at pH 7.0 
were degassed in a nitrogen atmosphere and reduced with an equi-
molar concentration of sodium dithionite and mixed with increasing 
CO concentrations. The observed pseudo first-order rate constant 
(k

obs
) was determined by fitting the absorbance decay resulting from 

association of the protein with CO, to a single exponential function. 
Kinetic rate constants (k

on
 CO) were obtained from the slope of the 

plots of k
obs

 as a function of CO concentration.

•NO decomposition
To determine rates of nitric oxide (•NO) decomposition by wild type 
and mutant Mt-trHbN proteins, •NO was added, as ProliNONOate, to 
a solution of 50 mM KPi buffer with 50 μM EDTA (pH 7.5), 100 μM 
NADPH and 100 nM E. coli ferredoxin reductase inside a ther-
moregulated, magnetically stirred reaction vessel. Mt-trHbN (2 μM) 
was added at the apex of the signal response to 2 μM ProliNONOate 
and •NO decay was followed until depleted using an •NO electrode 
(World Precision Instruments). Rates of •NO decay were calculated 
for each protein by determining the time taken for peak •NO con-
centrations to decay by 0.5 μM and were expressed per μM heme, 
determined spectrally by the peak in the Soret region at 410 nm.

Set up of the simulations
The starting structure corresponds to Mt-trHbN crystal struc-
ture (PDB entry 1IDR http://www.rcsb.org/pdb/explore/explore.
do?structureId=1IDR), at 1.9 Å of resolution20. The protonation 
state of the amino acids was assumed based on the environment 
of the residues in the crystal structure. All solvent-exposed His 
residues were protonated at the N-δ atom, as well as the proximal 
HisF8, because of its coordination to the heme iron. An octahedral 
box of 10 Å of radius, which corresponds to 5234 explicit water 
molecules was added to the system. TIP3P water molecules were 
used by tLEaP module of the AMBER12 package21. The param99 
Amber force field was used for all the aminoacid parameters22 except 
heme parameters which were developed in our group23 and strongly 
validated for being used in several studies of heme proteins24–30. 

Periodic boundary conditions were used for all the simulations 
performed with a 9 Å cutoff. Particle mesh Ewald (PME) summa-
tion method for treating the electrostatic interactions. The SHAKE 
algorithm was used to keep constant the non-polar hydrogen equi-
librium distance. Temperature and pressure were kept constant with 
Langevin thermostat and barostat, respectively, as implemented in 
the AMBER12 program21. The equilibration simulation protocol 
was performed as follow: (i) slowly heating the system from 0 to 
300K for 20 ps at constant volume, by using harmonic restraints of 
80 kcal/mol A2 for all Cα atoms and (ii) pressure equilibration of 
the whole system during 1 ns at 300K with restrained atoms in (i).  
(iii) Unconstrained 100 ns molecular dynamics simulation at con-
stant temperature (300K) was performed.

In silico mutant proteins were built by using tLEaP module of 
AMBER12 package21, and underwent the same protocol used for 
wild type protein. Root Mean Square Deviation (RMSD) was used 
as structure stability controls. All structures were observed to be 
stables during the time scale of the simulation (Figure S1).

Ligand migration free energy profiles
The free energy profile for the CO migration process inside the 
protein tunnel/cavity system was computed by the Implicit Ligand 
Sampling (ILS) approach that post-processes, using a probe mol-
ecule, an MD simulation performed in the absence of the ligand. 
This method was thoroughly tested for heme proteins32. ILS calcu-
lations were performed on a rectangular grid (0.5 Å resolution) that 
includes the whole simulation box (i.e. protein and the solvent) and 
the probe used was a CO molecule. Calculations were performed 
on 5000 frames taken from the last 90 ns of simulation time. The 
values for grid size, resolution and frame numbers were tested in a 
previous study32. Analysis of the ILS data was performed using an 
ad-hoc fortran-90 program available upon request32. Moreover, ILS 
has been shown to yield quantitative results for ligand migration 
processes when compared with more costly free energy methods 
that treat the ligand explicitly.

Results
CO association kinetic constant measurements
Although CO is not the natural ligand of the hemeproteins, it is 
widely used as a probe for ligand association studies due to its ease of 
use. In order to address the molecular determinants controlling ligand 
migration we performed CO ligand association constant measure-
ments of wild type Mt-trHbN and two mutants: VG8F and VG8W. 
Kinetic traces for CO binding were measured through the absorp-
tion changes at the CO adduct peak position (λ=423 nm; Figure 2). 
Association of CO is well described by a single exponential decay, 
whose rate constant (k

obs
) depends linearly on CO concentration and 

the slope can be interpreted as k
on

 CO. A significant k
on

 CO decrease 
for VG8F (715 ± 27 mM-1s-1), and an even larger decrease for 
VG8W (48 ± 1 mM-1s-1) was observed in relation to that observed 
for the wild type protein (4495 ± 357 mM-1s-1) (Figure 3). Table 1 
summarizes the measured k

on
 CO values for wild type and mutant 

Mt-trHbs O and N, and is presented alongside literature data.

Molecular dynamics simulations
Small ligand association in the trHb family is presumably regulated 
by two main processes: i) ligand migration from solvent bulk to the 
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protein distal site cavity, ii) displacement of water molecules from 
the distal site cavity15–17,35. With this in mind, we performed classi-
cal MD simulations as they allow us to investigate both processes 
involved in ligand association. Ligand migration was studied using 
ILS calculations for the wild type, as well as both VG8F and VG8W 
mutant proteins. Displacement of retained water molecules in the 
distal site was considered by performing classical MD simulations 
and analyzing the solvation structure in each active site.

The wild type Mt-trHbN presents two tunnels available for ligand 
migration, the LT and the STG8 (Figure 4A). On the one hand, the 
LT connects three internal cavities: (trHb : CO)

1
, (trHb : CO)

2
 and 

(trHb : CO)
3
. The STG8, on the other hand, has the distal site cav-

ity (trHb : CO)
1
 connected to both the cavity (trHb : CO)

2
 and the 

solvent, although the cavity (trHb : CO)
2
 plays only a secondary 

role, due to the fact that it does not alter the energy migration profile 
along the STG8 straight from the distal cavity to the solvent. The 
VG8F mutant conserves both tunnels, although they are constrained 
compared to those in the wild type. In the VG8W case, however, the 
energy profiles suggest a completely blocked STG8 and a LT for 
which the accessibility to the iron heme is partially reduced.

In order to quantify the contribution of the single G8 mutation we 
computed free energy profiles for CO migration through both LT and 
STG8 tunnels (Figure 4B, 4C). The free energy was set to a value of 
0 kcal/mol where CO ligand is fully solvated- at 13 Å and 24 Å from 
the Fe atom, for STG8 and LT respectively. Wild type Mt-trHbN 
presents small barriers (~2 kcal mol-1) for CO migration from the 
solvent to the active site cavity (trHb : CO)

1
 through both tunnels.

The active site water molecules occupancy was computed for 
all three systems by performing 200 ns of MD simulations with 
explicit water molecules. In each case a water molecule was able to 
access the active site and was stabilized by the iron and the distal 
site residues (Figure 5). Specifically, in both wild type and VG8F 
Mt-trHbN a water molecule was present for approximately 40% of 
the length of the simulation (Figure 5A, 5B). The VG8W mutant 
active site, on the other hand, is occupied by water molecules in 
80% of the simulation time, probably due to the hydrogen bonding 
capacity of W (Figure 5C).

•NO decomposition in the presence of M. tuberculosis HbN
Mt-trHbN has previously been described as a dioxygenase, capable 
of O

2
-dependent •NO consumption36,37. Consequently, •NO decom-

position by purified Mt-trHbN and the VG8F, VG8W mutants was 

Table 1. Association kinetic constants for wild type and 
mutants of Mt-trHbN and Mt-trHbO.

Protein kon CO (mM-1s-1) Reference

Mt-trHbN 4495 This work

Mt-trHbN VG8F 715 This work

Mt-trHbN VG8W 48 This work

Mt-trHbO 13 (79%) - 180 (21%) * 33 

Mt-trHbO WG8F 3700 (75%) - 1200 (25%) * 12 

*major and minor rate contributions to a biphasic fitting are indicated 
between brackets.
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Figure 2. Stopped-flow time course for the reaction of reduced 
5 μM wild type (A), VG8F (B), and VG8W (C) mutants in 100 mM 
phosphate buffer at pH 7. The reaction was monitored at 423 nm 
(grey dots) and the line shows the best first order fit.
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Figure 3. Apparent rates kobs for CO binding to ferrous Mt-trHbN. 
Curves for wild type (green), VG8F (orange) and VG8W (violet) 
mutants as a function of CO concentration in stopped flow 
measurements are shown. The time courses are measured at 
different CO concentrations ranging from 10 to 200 µM (after mixing). 
Continuous line corresponds to linear fit of kobs rates.
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Figure 4. CO ligand migration along possible pathways in Mt-trHbN. (A) Schematic representations of the residues involved in the heme 
distal site and tunnels, the two tunnels and cavities estimated with ILS for the wild type form. Free energy profiles over STG8 (B) and LT (C) 
connecting the solvent with the distal site through the cavities (trHb : CO)1, (trHb : CO)2 and (trHb : CO)3, for wild type (green), VG8F (orange) 
and VG8W (violet) mutant Mt-trHbN. Circles represent calculated free energy values with the ILS method and lines correspond to a fitting 
estimation of these calculated values. The x coordinate represents the Fe-CO distance along the pathways.

Figure 5. Schematic representations of the distal site of Mt-trHbN. (A) wild type, (B) VG8F and (C) VG8W forms showing, on the basis of 
MD simulations, the hydrogen-bond network (dotted lines) stabilizing a water molecule above the iron heme. The percentages depicted as 
insets in the figure correspond to active site water occupancy during MD simulation.
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determined in a reaction mixture containing buffer, NADPH and 
E. coli FdR, to enable cyclic restoration of heme iron to the oxyfer-
rous state. Figure 6A shows that in the absence of protein (red trace) 
decay of the •NO signal was monophasic until •NO was exhausted. 
The decay of NO in the presence of Mt-trHbN (black trace) was 
biphasic, with an almost linear initial rapid rate in decay, which 
was used to compare the various Mt-trHbN derivatives, followed 
by a slower rate in decay. This suggests that •NO is not being turned 
over in a cyclic manner, but is simply binding available heme. The 
chemical step being measured in this assay is the reaction between 
•NO and the oxyferrous heme; once this reaction has concluded, we 
assume that the heme is restored from ferric back to ferrous. We 
are unsure why the reaction is single turnover but it could be due 
to (a) rapid binding of •NO to the ferrous complex before oxygen 
can bind, rendering it unable to bind oxygen and initiate the reac-
tion or (b) due to slow reduction of Mt-trHbN by the non-native 
E. coli FdR. •NO consumption results show that the VG8F and 
VG8W mutants have a statistically significant reduced •NO binding 
capacity compared to HbN (Figure 6B).

Dataset 1. Experimental and theoretical calculations raw data

http://dx.doi.org/10.5256/f1000research.5921.d42091

Detailed legends describing the raw data can be found in the text 
file provided.

Discussion
CO association kinetic constant measurements as well as MD simu-
lations of Mt-trHbN wild type and site-specific mutants were per-
formed to analyze the role of tunnels and water molecules in the 
ligand association process. ILS calculations showed that the main 
tunnels of wild type Mt-trHbN, STG8 and LT, were partially blocked 
in the VG8F mutant and STG8 was nearly completely blocked in 
the VG8W mutant. The analysis of water molecules showed that 
VG8W increases the probability of the presence of a water mole-
cule in the distal site, which may interfere with the association proc-
ess. Consistently, the association kinetic constants of CO for both  
Mt-trHbN mutants showed a decrease of slightly less than one 
order of magnitude when VG8 is replaced with F and two orders of 
magnitude when VG8 is replaced with W. Moreover, our data also 
showed that both mutants have less capacity of •NO binding than 
wild type Mt-trHbN.

Interestingly, the Mt-trHbN VG8W mutant presents a similar k
on

 CO  
to the wild type Mt-trHbO, showing that a single residue is respon-
sible for the differential accessibility in these proteins. The results 
support the idea that STG8 and LT are the main channels for 
CO migration in the deoxygenated Mt-trHbN, as blocking these 
tunnels decreases the ability of CO to access the heme pocket. 
Although in both the mutated Mt-trHbN and wild type Mt-trHbO 
the STG8 is blocked by WG8, the LT remains open in Mt-trHbN, 
allowing CO access into the heme cavity, whereas the main tun-
nel for CO migration in Mt-trHbO is the E7, as was previously 
described7. This fact shows that although the k

on
 CO from mutant 

trHbN and wild type trHbO members are very similar, the ligand 
enters through different pathways, evidencing the complexity of 
mechanisms that regulate the ligand association process in these 
proteins.

Data availability
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This article shows that the previously observed structural and functional features of trHbO, using 
its G8 mutants, can be duplicated in trHbN. As such, the critical role of the G8 residue and LT and 
STG8 channels, and E7 gate in functions of trHbO as well as trHbN is demonstrated. 
 
Some technical questions to be answered are:

In Fig. 2, the identical concentrations (5μM) of trHbNs are used. However, values of Δ
Absorbance of Figs. 2A (an estimated value of ΔA=0.05), 2B (an estimated value 
[extrapolated to t = 0] of ΔA=0.55), and 2C (an estimated value of ΔA=0.25). Why do such 
large discrepancies in ΔAs exist among Figs. 2A, B, and C, though sample concentrations are 
identical (5μM)?  Why is the noise level of the trace in Fig. 2A is much smaller than those of 
Fig. 2B and 2C, though the latters have much larger ΔA values of 0.55 and 0.25, respectively? 
 

1. 

The interpretation of the results of the Fig. 6A experiments is not convincing, because not 
enough data are presented. The NO decay assays were performed under the background of 
rapid spontaneous decay of NO (approximately 5.4 μM/100sec) to determine Δ[NO] 
(between with and without trHbN) = approximately 0.5 μM.  Kinetic curves shown are 
extremely smooth to indicate a very large time constant of the NO assay instrument. 
Therefore, quantitative assay of Δ[NO]  from the time courses of kinetic curves are 
unreliable. In order to prove the proposed one-cycle hypothesis, why didn’t they measure Δ[
NO] values as a function of [trHbN]? From these reasons, the error bars in Fig. 6B seem 
unusually small. Are these differences in the NO decay rate (X-axis), shown in Fig. 6B, 
statistically significant? 
 

2. 

MD analyses are done under the condition of a single molecule of CO binding to trHbN or to 
its mutants. Since the hemes themselves in trHbN and mutants have low-affinity for CO, 
though the apparent affinity for CO of trHbN is known to be high, which I believe, binding of 
a single molecule of CO to the heme of deoxy trHbN is an energetically unfavorable up-hill 
process. How are the energy levels of the initial stage (deoxy trHbN + CO), relative to the 
final stage (trHb: CO)1 shown in Fig. 4B, determined? Are they initially assumed? Or they are 

3. 
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results of MD analysis? Shouldn’t the MD analyses be done under conditions where solvents 
contain large numbers of CO molecules, rather than a single CO molecule, 
thermodynamically speaking?
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This is a succinct and generally well written paper reporting experimental data on ligand binding 
to Mt-trHbN and to two mutants (VG8F anndVG8W)).These latter have been designed to test 
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hypotheses regarding the possible routes by which access is gained to the heme by small neutral 
gaseous molecules. The experiments and the molecular modelling that supports them, and which 
provides mechanistic insights, have been carefully performed. The results are of interest to the 
field as they add to the body of accumulated evidence that proteins, including those with the 
function of binding small neutral molecules, provide specific, and often dynamic, channels to 
permit rapid access to the binding site. Furthermore the kinetics of binding are seen to be strongly 
influenced by single amino acid substitution in the access channels. 
  
Although the results support the general conclusions drawn by the authors some clarification of a 
number of points would be helpful. These are given below. 
 

Why in Figs 2A and B does time appear not to start at t=0? 
 

1. 

In Fig and discussion is it proposed that the water molecule is bound to the iron (common 
for ferric but not for ferrous iron) or stabilised in that location only by hydrogen binding. It 
is presumed that for the modelling the iron is in the ferrous state as the authors are 
discussing CO binding. 
 

2. 

Although the authors discuss the decomposition of NO catalysed by Mt-trHbN in the 
presence of oxygen the assays do not make it clear that this is the reaction under study. No 
mention of the oxygen concentration is made in the legend to Fig 6. It seems oxygen is 
present to account for the disappearance of NO. From Fig 6 it is stated that NO binds to the 
protein but is not degraded (e.g. to nitrate via peroxynitrite). Is this because regeneration of 
the reduced heme (necessary for oxygen binding) is so slow or is it because as ferric heme 
is reduced by the NADPH/ferredoxin system NO binds before oxygen and thus no turnover 
occurs as it is known that the NO-ferrous complex does not react with oxygen? In any case it 
is not made clear to what chemical step the measured kinetics refer. It would improve the 
manuscript if the authors clarified these points.

3. 
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Why in Figs 2A and B does time appear not to start at t=0? 
 
We thank the reviewer for noticing that specific issue. We decided to discard the first 
8ms because they were too noisy. 
 

1. 

In Fig and discussion is it proposed that the water molecule is bound to the iron (common 
for ferric but not for ferrous iron) or stabilised in that location only by hydrogen binding. It 
is presumed that for the modelling the iron is in the ferrous state as the authors are 
discussing CO binding.  

2. 
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We agree with the reviewer that the water bounds in general very weak to the ferrous 
iron. However, there is evidence showing that in a polar distal site (with polar 
residues), as in the case of truncated hemoglobins, water molecules remain inside 
stabilized by the polar residues, and thus slow ligand binding to ferrous iron (Olson 
and Phillips Jr, 1997; Ouellet et al., 2008). 
 
Although the authors discuss the decomposition of NO catalysed by Mt-trHbN in the 
presence of oxygen the assays do not make it clear that this is the reaction under study. No 
mention of the oxygen concentration is made in the legend to Fig 6. It seems oxygen is 
present to account for the disappearance of NO. From Fig 6 it is stated that NO binds to 
the protein but is not degraded (e.g. to nitrate via peroxynitrite). Is this because 
regeneration of the reduced heme (necessary for oxygen binding) is so slow or is it because 
as ferric heme is reduced by the NADPH/ferredoxin system NO binds before oxygen and 
thus no turnover occurs as it is known that the NO-ferrous complex does not react with 
oxygen? In any case it is not made clear to what chemical step the measured kinetics refer. 
It would improve the manuscript if the authors clarified these points. 
 
As suggested by the review we modified the caption of Figure 6, and also we add a 
sentence. 
 
The legend of the caption can be changed to: 
 
Figure 6. •NO decomposition by Mt-trHbN at ambient oxygen concentrations (approx. 
200 µM, not measured). (A) •NO decay was monitored amperometrically in the 
absence (red trace) and the presence (black trace) of Mt-trHbN added at the apex of 
the signal response to 2 μM ProliNONOate. Data are representative of 3 technical 
repeats. (B) Mean rates of •NO decay in the presence of wild type Mt-trHbN or site-
directed mutants from 3 technical repeats ± S.E.M *P < 0.05, unpaired t-test. 
 
The sentence added is: 
 
The chemical step being measured in this assay is the reaction between •NO and the 
oxyferrous heme; once this reaction has concluded, we assume that the heme is 
restored from ferric back to ferrous. We are unsure why the reaction is single 
turnover but it could be due to (a) rapid binding of •NO to the ferrous complex before 
oxygen can bind, rendering it unable to bind oxygen and initiate the reaction or (b) 
due to slow reduction of Mt-trHbN by the non-native E. coli FdR.

3. 

 

Competing Interests: No competing interests were disclosed.

Reviewer Report 09 February 2015

https://doi.org/10.5256/f1000research.6326.r7468

 
Page 13 of 19

F1000Research 2015, 4:22 Last updated: 28 MAR 2022

http://link.springer.com/article/10.1007/s007750050169
http://link.springer.com/article/10.1007/s007750050169
http://www.ncbi.nlm.nih.gov/pubmed/18676995
http://www.ncbi.nlm.nih.gov/pubmed/18676995
http://www.ncbi.nlm.nih.gov/pubmed/18676995
https://doi.org/10.5256/f1000research.6326.r7468


© 2015 Nardini M. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Marco Nardini  
Department of Biosciences, University of Milan, Milan, Italy 

This manuscript describes CO association kinetic constant measurements, ●NO decomposition, 
and molecular dynamics simulations on the wild type truncated Hb from Mycobacterium 
tuberculosis (Mt-trHbN) and two mutants (VG8F and VG8W) which introduce modifications in the 
two-tunnel system of the protein. The data are then compared to those from Mt-trHbO, 
suggesting that ligand migration is regulated by the internal tunnel architecture as well as by 
water molecules stabilized in the active site. 
 
Although the topic of the structure and the dynamic behavior of protein matrix tunnels in 
truncated Hb, and in particular in Mt-trHbN, has been “squeezed” a lot during the past years, the 
data reported in this paper add some new information and might be of interest in the field. The 
paper is well written (with regards to the requirements of the journal) and describes a technically 
sound piece of scientific research with data that supports the conclusions. Indexing is 
recommended, if the (few) minor comments below are addressed. 
  
Minor remarks:

Abstract: line 4 
The authors write that “Mt-trHbO” possesses tunnels that are partially blocked ..” In fact 
normally trHbOs are associated with internal discrete cavities and not with tunnels. The 
authors should rephrase the sentence. 
 

○

Abstract: line 11 
Mt-trHbN should not be in Italics. 
 

○

Abstract: line 12 
The sentence “mutations introduce modifications in both tunnel topologies” is quite cryptic 
and it is not clear what the author mean with “tunnel topologies”. The authors should 
rephrase the sentence to clarify it. 
 

○

Introduction: page 3, first column, line 8 
The authors might want to include a review on trHbs more recent than that indicated in 
reference (3). There are several of them published in the last few years. 
 

○

Introduction: page 3, first column, line 23 
The paragraph starting from line 23 is a bit misleading because the authors try to 
generalize the description of the protein matrix tunnels in trHbs by mixing what happens in 
trHbNs and trHbOs. This is confusing since it might give the impression that three tunnels 
co-exist in trHbs, which is not true. In this respect, Figure 1 contributes a lot to make 
confusion, since it is not clear which trHb protein represents and it seems that it has three 
co-existing tunnels. It is probably better to keep separate trHbNs and trHbOs, both in the 
text description and in Figure 1. The authors should describe the tunnel features in trHbN 

○
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(short and long tunnel) and trHbO (cavities, small E7 residues an possible E7 gating), and 
show two panels in Figure 1 with depicted the tunnel/cavity systems in Mt-trHbN (panel A) 
and Mt-trHbO (panel B), possibly using a similar protein orientation and highlighting the 
role of the G8 residue in the two cases. 
 
Introduction: page 3, second column, line 7 
The sentence regarding the “internal water molecules” is too generic as it is written now, 
since it is not clear if the authors refer to globins, to trHbs or to Mt-trHbs. The authors 
should rephrase the sentence to clarify this issue. 
 

○

Introduction: page 3, second column, line 10 
The authors should say that the experimental measurements and the MD simulations have 
been performed only on Mt-trHbN and mutants, and not, for instance, on Mt-trHbO. 
 

○

Materials and Methods: page 3, second column, line 40 
The purification paragraph seems to refers only to trHbN. What about its mutants? The 
authors should add a sentence to clarify this issue. 
 

○

Materials and Methods: page 4, first column, line 44 
The following sentence is not written fully correctly: 
“Amino acids protonation states were assumed based on environment of the residue in the 
crystal structure. All solvent-exposed His were protonated at the N- δ delta atom, as well as 
HisF8, because of its coordination to the heme iron”. 
 
One possibility is to rephrase it as follows: 
“The protonation state of the amino acids was assumed based on the environment of the 
residues in the crystal structure. All solvent-exposed His residues were protonated at the N-
δ atom, as well as the proximal HisF8, because of its coordination to the heme iron”. 
 

○

page 5, second column, line 12 
It is not clear what the authors mean when they write that the STG8 “has only the distal site 
cavity, (trHb : CO)1, …”, especially if this sentence is coupled with Figure 4A, where (trHb : 
CO)1 seems to be connected to STG8 through (trHb : CO)2. 
 

○

page 5, Title of Table 1 
It is probably better to change “..for wild type and mutants Mt-trHbs O and N” to “..for wild 
type and mutants of Mt-trHbN and Mt-trHbO” 
 

○

page 6, Figure 4 legend 
In the legend of Panel C there is no mention of the (trHb : CO)3 site.  
 

○

References: page 9 
Reference (21) is missing the title

○
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Author Response 13 Jul 2015
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Abstract: line 4 
The authors write that “Mt-trHbO” possesses tunnels that are partially blocked ..” In fact 
normally trHbOs are associated with internal discrete cavities and not with tunnels. The 
authors should rephrase the sentence. 
 
We rephrase the sentence “whereas Mt-trHbO possesses tunnels that are partially 
blocked by a few bulky residues, particularly atryptophan at position G8” by writing 
“whereas Mt-trHbO possesses tunnels interrupted by a few bulky residues, 
particularly a tryptophan at position G8” 
 

○

Abstract: line 11 
Mt-trHbN should not be in Italics. 
 
Corrected, thanks  
 

○

Abstract: line 12 
The sentence “mutations introduce modifications in both tunnel topologies” is quite cryptic 
and it is not clear what the author mean with “tunnel topologies”. The authors should 
rephrase the sentence to clarify it. 
 
We rephrase the sentence “These mutations introduce modifications in both tunnel 
topologies and affect the incoming ligand capacity to displace retained water 
molecules at the active site.” By writing “These mutations affect both the tunnels 
accessibility as well as the affinity of distal site water molecules, thus modifying the 
ligand access to the iron” 
 

○

Introduction: page 3, first column, line 8 
The authors might want to include a review on trHbs more recent than that indicated in 
reference (3). There are several of them published in the last few years. 
 
As suggested by the review we modified the references by more recent ones: Davidge 
& Dikshit (2013). 
 

○

Introduction: page 3, first column, line 23 
The paragraph starting from line 23 is a bit misleading because the authors try to 
generalize the description of the protein matrix tunnels in trHbs by mixing what happens 
in trHbNs and trHbOs. This is confusing since it might give the impression that three 
tunnels co-exist in trHbs, which is not true. In this respect, Figure 1 contributes a lot to 
make confusion, since it is not clear which trHb protein represents and it seems that it has 
three co-existing tunnels. It is probably better to keep separate trHbNs and trHbOs, both in 
the text description and in Figure 1. The authors should describe the tunnel features in 
trHbN (short and long tunnel) and trHbO (cavities, small E7 residues an possible E7 

○
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gating), and show two panels in Figure 1 with depicted the tunnel/cavity systems in Mt-
trHbN (panel A) and Mt-trHbO (panel B), possibly using a similar protein orientation and 
highlighting the role of the G8 residue in the two cases. 
 
As suggested by the review, we modified the sentence to clarify. 
 
“Three internal tunnels were found in the truncated hemoglobin family:” by “Three 
different internal tunnels have been characterize among the trHb members, in 
general one or two of these tunnels is found in each protein:” 
 
We also change Figure 1 and its caption as suggested. 
 
Caption Figure 1. Schematic representation of the two pathways for ligand migration 
presented in M. tuberculosis trHbN. The Long Tunnel (LT) and Short Tunnel G8 (STG8) 
are shown in orange. 
 
Introduction: page 3, second column, line 7 
The sentence regarding the “internal water molecules” is too generic as it is written now, 
since it is not clear if the authors refer to globins, to trHbs or to Mt-trHbs. The authors 
should rephrase the sentence to clarify this issue. 
 
As suggested by the review we clarify the sentence: “It has also been noted that in 
myoglobin, M. Tuberculosis trHbN as well as in T. fusca trHbO, internal water 
molecules were observed to block the heme accessibility, thus delaying ligand 
binding” 
 

○

Introduction: page 3, second column, line 10 
The authors should say that the experimental measurements and the MD simulations have 
been performed only on Mt-trHbN and mutants, and not, for instance, on Mt-trHbO. 
 
As suggested by the review we clarify the sentence by adding explicitly the name of 
the protein studied “By performing CO association kinetic constant measurements (…) 
of Mt-trHbN, we addressed molecular mechanisms that control ligand association in 
M. Tuberculosis truncated hemoglobins”  
 

○

Materials and Methods: page 3, second column, line 40 
The purification paragraph seems to refers only to trHbN. What about its mutants? The 
authors should add a sentence to clarify this issue. 
 
We clarify this by modifying “The trHbN protein was” by “The trHbN protein variants 
were”   
 

○

Materials and Methods: page 4, first column, line 44 
The following sentence is not written fully correctly: 
“Amino acids protonation states were assumed based on environment of the residue in the 
crystal structure. All solvent-exposed His were protonated at the N- δ delta atom, as well as 
HisF8, because of its coordination to the heme iron”. 

○
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One possibility is to rephrase it as follows: 
“The protonation state of the amino acids was assumed based on the environment of the 
residues in the crystal structure. All solvent-exposed His residues were protonated at the N-
δ atom, as well as the proximal HisF8, because of its coordination to the heme iron”. 
 
We thank the reviewer for the suggestion, the phrase was modified as suggested. 
 
page 5, second column, line 12 
It is not clear what the authors mean when they write that the STG8 “has only the distal 
site cavity, (trHb : CO)1, …”, especially if this sentence is coupled with Figure 4A, where (trHb 
: CO)1 seems to be connected to STG8 through (trHb : CO)2. 
 
We modified the sentence by adding information: 
 
On the one hand, the LT connects three internal cavities: (trHb : CO) 1 , (trHb : CO) 2 
and (trHb : CO) 3 . The STG8, on the other hand, connected to both the cavity (trHb : 
CO) 2 and the solvent. 
 

○

page 5, Title of Table 1 
It is probably better to change “..for wild type and mutants Mt-trHbs O and N” to “..for wild 
type and mutants of Mt-trHbN and Mt-trHbO” 
 
We thank the reviewer for the suggestion; the phrase was modified as suggested. 
 

○

page 6, Figure 4 legend 
In the legend of Panel C there is no mention of the (trHb : CO)3 site. 
 
We thank the reviewer for the suggestion, we rephrase as “Free energy profiles over 
STG8 (B) and LT (C) connecting the solvent with the distal site through the cavities 
(trHb : CO) 1, (trHb : CO) 2 and (trHb : CO) 3, for wild type (green), VG8F (orange) and 
VG8W (violet) mutant Mt-trHbN.” 
 

○

References: page 9 
Reference (21) is missing the title 
 
We thank the reviewer; the reference was modified

○
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