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ABSTRACT Fractional calculus is finding increased usage in the modeling and control of nonlinear systems
with the enhanced robustness. However, from the implementation perspectives, the simultaneous modeling
of the systems and the design of controllers with fractional-order operators can bring additional advantages.
In this paper, a fractional order model of a nonlinear system alongwith its controller design and its implemen-
tation on a field programmable gate array (FPGA) is undertaken as a case study. Overall, three variants of the
controllers are designed, including classical slidingmode controller, fractional controller for an integermodel
of the plant, and a fractional controller for a fractional model of the plant (FCFP). A high-level synthesis
approach is used to map all the variants of the controllers on FPGA. The integro-differential fractional
operators are realized with infinite impulse response filters architecturally implemented as cascaded second-
order sections to withstand quantization effects introduced by fixed-point computations necessary for FPGA
implementations. The experimental results demonstrate that the fractional order sliding mode controller-
based on fractional order plant (FCFP) exhibits reduced dynamics in sense of fractional integration and
differentials. It is further verified that the FCFP is as robust as the classical sliding mode with comparable
performance and computational resources.

INDEX TERMS Fractional order control, computational resources, nonlinear system, chattering.

I. INTRODUCTION
Fractional calculus is an emerging mathematical field which
finds interesting applications in system models and control.
The combination of the fractional operators with the integer
order systems are advantageous due to the enhanced closed
loop performance and robustness [1], [2].

The fractional order controllers are proven to have the
ability in outperforming the integer order controllers in all
aspect. With more degree of freedom, the fractional order
controllers exhibit better transient response and enhanced
robustness to the uncertainties. [3], [4] Moreover fractional
order controllers are more robust to the measurement noise
and with minimum chattering in the control signal [4]. It is
a common practice to derive fractional order controllers
based on integer order system models. The authors in the

references [4], [5], [29] have proposed fractional order con-
trollers based on integer order nonlinear system models and
showed that the fractional order controllers outperform the
conventional integer order control system.

The physical phenomena can be realistically modeled with
fractional order dynamics [6], [7]. The authors of [6], [7]
proved that the dynamic response of the approximated frac-
tional order models representing a physical phenomenon is
nearly equivalent to their integer order models. Similarly
the anomalous diffusion phenomenon in nonhomogeneous
media is modeled using fractional calculus [8]. Some other
examples of fractional order modeling applications include
fractance, fractional impedance [9], heat conduction [10],
biology [11], [12], fractional transforms [30]–[32], frac-
tional RC circuits [12], [33], [34] and non-integer finance
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systems [13]. Some researchers have utilized fractional order
models for the formulation of fractional order controllers. The
authors of [14]–[19] proposed fractional order controllers
based on the fractional order system models that include the
industrial process, servos and physical phenomena. It has
been proved in the above cited work that the control per-
formance of the fractional controllers that are derived based
on the fractional models are comparable to the fractional
controllers that are formulated based on the conventional
integer order systems.

However, from the implementation point of view the frac-
tional controllers utilize more resources as compared to the
integer order controllers [20]–[23]. This overhead is intro-
duced by the inclusion of fractional operators in the controller
implementation. Minimizing the number of the fractional
operators required for controller realization will not only
reduce the hardware complexity but also the power consump-
tion due to reduced system dynamics. This paper leverages
the degree of freedom offered by the fractional modeling
of the plant to optimize the hardware resources by deriving
a novel reduced order fractional controller. A model based
high level synthesis methodology is used to implement the
fractional order controllers using FPGA in the loop. Three
variants of the controllers are designed for a well-known
nonlinear system [25]. It includes a classical sliding mode
control (ICIP), fractional order controller based on integer
plant (FCIP) and fractional order controller based on frac-
tional plant (FCFP). The experimental results demonstrate
that the FCFP controller has reduced area overhead, power
and chattering with comparable robustness to FCIP and clas-
sical sliding mode.

II. CONTROLLER’s FORMULATIONS
The formulation of the high performance control for nonlin-
ear dynamic system is always a challenging task. This section
is devoted to the integer and fractional order mathematical
modeling aspect and fractional order controller’s formulation.

A. FRACTIONAL ORDER CONTROLLER
BASED ON INTEGER MODEL
Consider the nonlinear dynamic system of Eq. 1 [24]–[26]

ẋ1(t) = −ux1(t)+ wx4(t)− ϕ(t)
+ vx5(t)− x5(t)V (t)+ d1

ẋ2(t) = ϕ(t)− (u+ σ )x2(t)+ d2
ẋ3(t) = −(u+ γ )x3(t)+ σx2(t)+ d3
ẋ4(t) = −(u+ w)x4(t)+ γ x3(t)+ x5(t)V (t)+ d4

(1)

The nominal parameters of the above nonlinear system are
defined as
u : Death rates due to other causes, v : Natality rate
w : Rate of immunity loss, γ−1 : Infective period
σ−1 : Latent period

Generally the 5th state is represented as: x5(t) = x1(t) +
x2(t)+x3(t)+x4(t) [24]–[26]. By utilizing Eq.1, the dynamics

of x5(t) are formulated as: ẋ5(t) = (v − u)x5(t) + d1 + d2 +
d3+d4. Here the terms [d1 d2 d3 d4] represent the parametric
uncertainty which can be expressed as

d1 = −1ux1(t)+1wx4(t)+1vx5(t)
d2 = (−1u−1σ )x2(t)
d3 = (−1u−1γ )x3(t)+1σx2(t)
d4 = (−1u−1w)x4(t)+1γ x3(t)

(2)

In Eq. 2 the terms involving represent the uncertainty in the
parameter. The sum of all uncertainty terms is represented as
d1 + d2 + d3 + d4 = D = (1v − 1u)x5(t). Using Eq. (2),
x5(t) is represented as ẋ5(t) = (v − u)x5(t) + (v − u)x5(t).
In Eq. (1) [x1(t) x2(t) x3(t) x4(t)] represent the state vector,
ϕ(t) is a nonlinear function expressed as ϕ(t) =

βx1(t)x3(t)/x5(t) [26].
Assumption 1: System uncertainty is bounded such that

d1 ∈ �1 : {d1min ≤ d1 ≤ d1max},

d2 ∈ �2 : {d2min ≤ d2 ≤ d2max}

d3 ∈ �3 : {d3min ≤ d3 ≤ d3max},

d4 ∈ �4 : {d4min ≤ d4 ≤ d4max}

Here dimin and dimax represent the upper and lower bounds
of the uncertainty with i = [1, 2, 3, 4]. It is assumed that the
upper bounds of the uncertainty terms are known.
Assumption 2: The Sum of the system uncertainty is upper

bounded such that D ∈ �(d1, d2, d3, d4) : {Dmin ≤

D ≤ Dmax}.
Here Dmin and Dmax represent the upper and lower bounds

of the sum term. The control objective of this article is to
design a robust controller with bounded control signal V (t)
such that the three states x1(t), x2(t), x3(t) are asymptotically
zero i.e. x1(t) → 0; x2(t) → 0; x3(t) → 0 while the
remaining two states arrive the respective equilibrium points
such that x4(t) → x4ref (t); x5(t) → x5ref (t). Here x5ref (t)
represents a reference command input. To achieve the above
goal, a fractional order sliding manifold is utilized to derive
a fractional order controller. The proposed fractional order
sliding manifold is given by

S(t) = e(t)+ c1Dα ė(t) (3)

In Eq. (3) the error dynamics are expressed as: e = x4(t) −
x5(t)ref ; ė = ẋ4(t) − ẋ5(t)ref , c1 is a constant and Dα

represents the fractional operator. By applying Dα to Eq. 3
one obtains

DαS(t) = Dαe(t)+ c1D2α ė(t) (4)

Using the error signals dynamics e(t) = x4(t) − x5(t)ref ,
ė(t) = ẋ4(t) − ẋ5(t)ref and by combining the dynamics of
Eqs. (1) with Eq. (4), one obtains

DαS(t) = Dα{x4(t)− x5(t)ref } + c1D2α
{−(u+ w)x4(t)

+ γ x3(t)+ x5(t)V (t)+ d4 − ẋ5(t)ref } (5)
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From Eq. (5), the proposed control law is expressed as
V (t) = Veq + Vd
Veq = x5(t)−1{(u+ w)x4(t)− γ x3(t)+ ẋ5(t)ref

− c−11 D−α(x4(t)− x5(t)ref )}
Vd = −x5(t)−1c

−1
1 kdD−2αsgn{S(t)}

(6)

In Eq. (6) the term kd represents the discontinuous control
gain. All other parameters of Eq. (6) have been defined in
section IIA.
Remark 1: The discontinuous control Vd contains a frac-

tional integrator applied to the signum function. This concept
is already verified by the authors of reference [17].
Introduction to Theorem 1: Satisfying Assumption 1 and 2,

the proposed fractional order controller given in Eq. (6)
will asymptotically converge all the states of Eq. (1) to their
respective equilibrium points regardless of the uncertainties
in the model. i.e. x1 → 0, x2 → 0, x3 → 0x4(t) →
x5(t)x4(t)→ x5(t), t →∞,
Proof 1: To prove the stability of the proposed controller,

the Lyapunov candidate function isVL = 0.5S(t)2. Moreover,
the following inequality holds [27]∣∣∣∣∣∣
∞∑
j=1

0(1+ α)
0(1− j+ α)0(1+ j)

DjS(t)Dα−jS(t)

∣∣∣∣∣∣ ≤ τ |S(t)| (7)

Here τ is a positive constant. By applying the fractional
operator Dα to the Lyapunov function VL one obtains

DαVL = S(t)DαS(t)

+

∣∣∣∣∣∣
∞∑
j=1

0(1+ α)
0(1− j+ α)0(1+ j)

DjS(t)Dα−jS(t)

∣∣∣∣∣∣ (8)

Using Eq. (7), the Eq. (8) is upper bounded as;

DαVL ≤ S(t)DαS(t)+ τ |S(t)| (9)

DαS(t) is explicitly calculated by using Eqs. (5), (6) and (9)
as following

DαVL ≤ S(t)[Dα{x4(t)− x5(t)ref } + c1D2α
{−(u+ w)x4(t)

+ γ x3(t)+ x5(t)V (t)+ d4 − ẋ5(t)ref }]+ τ |S(t)|

≤ S(t)[Dα{x4(t)− x5(t)ref } + c1D2α
{−(u+ w)x4(t)

+ γ x3(t)+ d4 − ẋ5(t)ref + ẋ5(t)ref + (u+ w)x4(t)

− γ x3(t)− c
−1
1 D−α(x4(t)− x5(t)ref )

− c−11 kdD−2αsgn{S(t)})}]+ τ |S(t)|

≤ S(t)c1D2α[−c−11 kdD−2αsgn{S(t)} + d4]+ τ |S(t)|

≤ −kd |S(t)| + τ |S(t)| + S(t)D2αd4 (10)

The discontinuous gain kd is chosen such that the following
criterion is satisfied: kd > |τ + D2αd4max|. The single loop
controller will only cancel the uncertain terms of ẋ4(t). Based
on Assumption 2, the remaining uncertain dynamics of the
states ẋ1(t), ẋ2(t), ẋ3(t) can degrade control performance of
the closed loop system. To guarantee the reaching condition
of the sliding surface and to preserve the robustness of the

single loop controller, the discontinuous gain is chosen as
kd > |τ + Dmax|. Then expression (10) can be simplified
as

DαVL ≤ −kd |x1(t)| + τ |S(t)| − S(t)D2αd1
− S(t)D2αd2 − S(t)D2αd3. (11)

Since the last three terms of Eq. (11) are already negative,
so the discontinuous gain kd > |τ |. Hence, then it is shown
using the Eq. (11) that the fractional derivative of Lyapunov
function is still less than zero, i.e. DαVL ≤ 0, which means
that reaching condition of sliding surface is satisfied and
S(t) = 0.

B. FRACTIONAL ORDER CONTROLLERS BASED
ON FRACTIONAL ORDER MODEL
The nonlinear model presented in Eq. (1) is integer order.
After replacing the integer order derivative with the fractional
order the resultant system is represented as:

Dα ẋ1(t) = −ux1(t)+ wx4(t)− ϕ(t)
+ vx5(t)− x5(t)V (t)+ d1

Dαx2(t) = ϕ(t)− (u+ σ )x2(t)+ d2
Dαx3(t) = −(u+ γ )x3(t)+ σx2(t)+ d3
Dαx4(t) = −(u+ w)x4(t)+ γ x3(t)+ x5(t)V (t)

+ d4

(12)

Remark 2: Assumption 1 and 2 also hold for Eq. (12)
Here the error dynamics are expressed as e(t) = x4(t) −

x5ref (t), ė(t) = ẋ4(t)−ẋ5ref (t). The analogous fractional order
sliding manifold of Eq. (3) is given as

S(t) = e(t)+ c1DαDαe(t) (13)

Eq. (13) is analogous to Eq. (3) in the fractional order sense.
Applying Dα to Eq. 13 one obtains

DαS(t) = Dα{x4(t)− x5(t)ref }+ c1D2αDα{x4(t)− x5(t)ref }}

= Dα{x4(t)− x5(t)ref } + c1D2αDα{x4(t)}

− c1D3αx5(t)ref }}

= Dα{x4(t)− x5(t)ref } + c1D2α
{−(u+ w)x4(t)

+ γ x3(t)+ x5(t)V (t)+ d4} − c1D3αx5(t)ref }}

(14)

The proposed control law is derived from Eq. 14 as;
V (t) = Veq + Vd
Veq = x5(t)

−1
ref {(u+ w)x4(t)−γ x3(t)+D

α
{x5(t)ref }

− c−11 D−α{x4(t)− x5(t)ref }}
Vd = −x5(t)

−1
ref c
−1
1 kdD−2αsgn{S(t)}

(15)

The control law given in Eq. (15) is analogous to the expres-
sion (6) but in the fractional order sense. Here kd represents
the discontinuous control gain and c1 is the sliding surface
constant. The rest of the parameters are already defined in the
previous section. A disadvantage of the control law presented
in Eq. (15) is in the form of large fractional order dynamics
i.e. in the form of D−2α and D2α . Since the controller is
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formulated based on the fractional order model of the system,
so the large fractional order dynamics in the model will lead
to large fractional orders in the control law correspondingly.
In contrast to the above the control law of expression (6)
is derived based on the integer order model so the selection
of lower fractional orders for the controller is not restricted.
To deal with the above mentioned problem, an analogous
reduced dynamics based fractional order sliding mode mani-
fold is proposed as

S(t) = e(t)+ c1Dαe(t) (16)

After applying Dα to Eq. 16 one obtains

DαS(t)

= Dα{x4(t)− x5(t)ref } + c1DαDα{x4(t)− x5(t)ref }

= Dα{x4(t)− x5(t)ref } + c1DαDα{x4(t)} − c1D2αx5(t)ref
= Dα{x4(t)− x5(t)ref } + c1Dα{{−(u+ w)x4(t)+ γ x3(t)

+ x5(t)V (t)+ d4 − ẋ5(t)ref }} − c1D2αx5(t)ref }} (17)

The new control law with reduced dynamics is derived as;
V (t) = Veq + Vd
Veq = x5(t)−1{(u+ w)x4(t)−γ x3(t)+Dα{x5ref (t)}

− c−11 {x4(t)− x5ref (t)}}
Vd = −x5(t)−1c

−1
1 kdD−αsgn{S(t)}

(18)

Remark 3: The fractional order control law given in
Eq. (18) is of the reduced fractional order dynamics as com-
pared to that given in expression (15). The control law of
Eq. (18) with reduced dynamics contains only a fractional
derivative and an integral while the control law of Eq. (15)
consists of a fractional derivative, fractional integral and a
fractional integral of double fractional order. From practical
implementations point of view, the control law of Eq. (18)
will require fewer computations as compared to the one given
in expression (15). The fractional order dynamics of the
control law given in the expression (15) is always the same as
to that of the fractional order model. Another disadvantage of
the control law given in the expression (15) is the increase
of its fractional order beyond 1 when the fractional order
dynamics of the model is greater than 0.5.
Introduction to Theorem 2: Satisfying Assumption 1 and 2,

the proposed fractional order controller of Eq. (18) will
asymptotically converge all the states of Eq. (12) regardless of
the uncertainties in the model. i.e. x4(t)→ x5(t); x3(t)→ 0;
x2(t)→ 0; x1(t)→ 0 at t →∞,
Proof 2: To prove the stability of the proposed controller

given in Eq. (18), the Lyapunov candidate function is VL =
0.5S(t)2. By solving Eqs (17), (18) and (12) one obtains

DαVL ≤ S(t)[Dα{x4(t)− x5ref (t)}

+ c1Dα{−(u+ w)x4(t)+ γ x3(t)+ x5(t)V (t)+ d4}

− c1D2αx5ref (t)]+ τ |S(t)|

≤ S(t)[Dα{−kdD−αsgn{S(t)} + d4}]+ τ |S(t)|

≤ −kd sgn|S(t)| + τ |S(t)| + S(t)Dαd4 (19)

To choose the discontinuous gain we use the similar concepts
to that presented in Theorem 1. The discontinuous gain must
satisfy kd > |τ + Dmax|, which implies that DαVL ≤ 0.
With DαVL ≤ 0, this meaning that reaching condition of
the sliding surface is satisfied and S(t) = 0. The discontin-
uous control Vd of the expression (18) contains a fractional
integrator. Since the fractional integrator acts as a low pass
filter so the chattering phenomena will minimize. Chattering
phenomena can be eliminated by using sat(.) function instead
of the signum function.

III. DIGITAL IMPLEMENTATION OF
FRACTIONAL OPERATORS
The digital realization of the fractional order integrals and
differential operators requires careful considerations in the
discretization and numerical representation phases. First, the
fractional order operators are derived using the Oustaloup
method [28] for a specified bandwidth. This method is used
to design the fractional order differential and integrals by
controlling the α-parameter bounded in the range 0 to 1.
The positive values of alpha are used for differentials while
negative values for the integrals. The corresponding frac-
tional order operator is a continuous domain transfer function
represented in s-terms. For digital implementation of these
operators on FPGA, it should be discretized from continuous
domain and then converted to fixed point representation.
This can be accomplished with a number of well-established
discretization methods widely available in commercial
software’s. However, the discretized version of the transfer
function in z-domain representing the fractional operator is
not really amenable to digital implementation, as it is in form
of improper polynomial fractions. As an example for
α = −0.99, designed in bandwidth of [0.001, 1500], with
filter order of 2, the s-domain numerator and denominator
polynomials of the filter are calculated as

N = [0.0007172 1.126 97.23 486.7 141.3 2.255]

D = [1 93.98 485.7 145.5 2.529 0.002416]

Here N represents the numerator coefficient andD represents
the denominator coefficients. Applying Tustin’s approxima-
tion for discretization on the above transfer function yields
the following z-domain co-efficient

N = [0.0060 − 0.0154 0.0091 0.0060 − 0.0073 0.0017]

D = [1.0000 − 4.3330 7.3651 − 6.0969 2.4307 − 0.3659]

The z-domain transfer function is an improper polynomial
fraction, in order to reduce it to the proper fraction; we can
proceed in the following manner. Q = N1/D1 = 0.0060,
R = N − QD. Here Q is the quotient, R represents the
remainder and N1, D1 are the first elements of numerator
and denominator. The polynomial division process can be
re-written as Q(R/D) → Q + (R/D). As a result of the
above process numerically the following results are achieved
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TABLE 1. IIR filter coefficient.

as following

Q = 0.0060

R = [0 0.0104 − 0.0349 0.0423 − 0.0218 0.0039]

D = [1 − 4.3330 7.3651 − 6.0969 2.4307 − 0.3659]

The reduced z-domain polynomial form is a summation of a
constant and a proper fraction representation of the transfer
function which does not cause any numerical issues for the
solvers. Then, the z-domain coefficients are used for real-
ization of a discrete infinite impulse response filter that has
similar behavior in the corresponding band to that of the
fractional operator discussed above. To reduce the sensitivity
of the filter to numerical representation and quantization
perturbations, the cascaded direct form I second-order sec-
tions of biquad filter is adopted as hardware architecture.
Table 1 shows the corresponding coefficients for the IIR filter.
It can be noted that the range is now limited from −2 to +2
compared to the wide variation in range and the precision of
numerators and denominator coefficients in the s/z-domains.
The results of passing a sinusoid through the fractional oper-
ator implemented in continuous, discrete and digital domain
are shown in Fig. 1.

FIGURE 1. Continuous and discrete implementation of fractional operator.

IV. EXPERIMENTAL SETUP AND RESULTS
This section presents the details of the software and hard-
ware implementations of the proposed controllers. The over-
all model is first designed in software using MATLAB’s
Simulink using the floating point arithmetic. After the soft-
ware verification, the design is mapped onto FPGA for hard-
ware validation.

The employed FPGA platform is based on the latest 28 nm
7 series Artix-7 FPGA embedded in a Nexus 4 development
board. For hardware validation, the plant model runs in the

FIGURE 2. (a) Experimental setup and (b) block diagram.

Simulink environment while the controllers run on the FPGA
platform connected with the host PC through 10/100 Mbps
Ethernet cable for bi-directional communication. On the
PC side, the Simulink environment is responsible for control-
ling the simulation parameters and data transfer mechanism
while on the FPGA side the Ethernet PHY chip is connected
through a Reduced Media Independent Interface (RMII) to
Medium Access Layer (MAC). The MAC layer in our case is
our controller logic wrapped into communication layers con-
firming to RMII interface as shown in Fig 2. Several signals of
interest are shown in this figure including the ETH_TXD and
ETH_RXD representing the transmit data and receive data
signals each two bit wide. The host PC sends and receives
two-bit data through the PHY layer which operates on a
50 MHz while the RMII Bridge accumulates this data and
communicates back and forth with 8-bit data to the design
represented by FPGA in the Loop (FIL) core both operating
at 25 MHz The actual controller design embedded inside the
FILcore operates on a clock of 10 MHz Thus, the overall
design is a multi-clock system imposing strict constraints on
timing and synchronization.

From design and implementation standpoint, first a contin-
uous time s-domain model is developed and then discretized
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to z-domain. The discrete model uses the fractional operators
realized with infinite impulse response filters as discussed in
section III. As the controllers are to be mapped onto FPGA,
they are converted to fixed-point numeric format using the
built in fixed point tool leaving out the plant to operate on
the default floating point numeric format. The resultant fixed-
point model is simulated and compared with the floating
point simulations to calculate the error due to the quantiza-
tion effects. This process is iterated several times to have
an error within acceptable margins. The trade-off here is
between the precision and accuracy of the results against the
hardware complexity. Increasing the number of bits increases
the accuracy and precision but also increases FPGA resource
consumption. The fixed-point model is further adapted to
adhere to the hardware mapping and HDL code generation
by using HDL supported Simulink blocks. The HDL coder
has built-in options for several optimizations during code
generation process and has the capabilities to auto-annotate
critical paths in the Simulink model, which then, can be
manually optimized for timings. Similarly, area optimization
can be accomplished with macro blocks like DSP48s or by
sharing operators.

After a synthesizable code is generated, the HDL verifier
tool is used which generates the corresponding wrappers
and communication commands processing cores. This high-
level synthesis and rapid prototyping approach allows quick
design modifications and design-space explorations seam-
lessly relieving the designer from the painful process of
manual HDL design. Instead, the critical design parts can be
manually implemented and optimized for the desired goals.
Following this methodology, several controllers are mapped
onto the FPGA platform and their behavior, resources, execu-
tion times control and signal errors are compared which are
presented in the following sub-sections.

FIGURE 3. Device Utilization chart.

The resource variation is evident in the slice registers and
slice LUTs which are the main resources for logic imple-
mentation. The number of slice LUTs and FFs utilized by
each controller is good matrix for comparison and is the one
that is applicable across a range of different device families
as state-of-the-art FPGAs are widely based on 6-LUT slice
architecture. From the device utilization chart given in Fig 3,

TABLE 2. Utilized resources by controllers.

it is evident that the fractional controller integer plant (FCIP)
is the most resource consuming design taking 44% LUTs and
almost 3% slice flip-flops using 33 bits fixed point represen-
tation. The Integer Controller and Integer Plant (ICIP) are
considered as the baseline for comparison and it is realized
in 22-bit fixed point numeric format. The integer controller
integer plant takes the least resources almost 7% LUTs and
2% flip-flops while the fractional controller fractional plant
takes 20% LUTs and 2% flip-flops using 22-bit fixed point
representation. Further details and comparsion about the uti-
lized resources for each variant of the controller are tabulated
in Table 2. The degree of freedom offered by the fractional
modeling of plant to the controller reflects in the area con-
sumption due to the reduced computational complexity. It is
worth mentioning that the results are obtained without any
manual or automatic optimization procedure employedwhich
can in term result in resource savings further.
Remark 1: To have acceptable results in case of FCIP

controller, the minimum fixed point bits’ representation is
chosen as 33. Below 33 bits the results of the FCIP controller
are not realistic.

A. POWER CONSUMPTION
The post-implementation power consumption statistics gen-
erated with Vivado power estimator of the three controllers
are presented in Figure 4 and Table 3. These results are
obtained with the switching activity settings of 12.5 as tog-
gling rate and 0.5 as the static probability. The percentage
breakdown of the power consumption on the axis of its
internal hardware components and into static and dynamic
components is shown in Figure 4.

FIGURE 4. Static and dynamic power consumption.
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TABLE 3. Power consumption of implemented controllers.

TABLE 4. Model parameters and parametric uncertainty.

TABLE 5. Controllers parameters.

The device static power consumption remains the same
for all the three controllers; however, the dynamic power
consumption varies according to the complexities on the
controllers. It can be noted that the MMCM, Block RAMs,
and I/Os are consuming the same amount of power as these
resource is unchanged. However, the signals and logic power
consumption greatly varies following the same trends as that
of the area resource consumption. From Figure 7, it is clear
that the FCIP design is consuming almost double the power
consumption of FCFP design which is consuming two times
the power consumption of ICIP design. These figures are
based on the signal and logic power consumption components
of each controller. Thus the FCFP controller has a reduced
the power consumption as well as the areas resources by
half while maintaining the same system dynamics as will be
shown in the control and signal errors section.

B. CONTROL AND SIGNAL ERRORS
This section is devoted to the comparison of the control
performance and robustness property for all the three variants.
The parameters of the pant and controllers are tabulated in
Table 4 and 5. From the experimental results presented in
section 1V, it is concluded that the fractional order con-
troller with 22 bits’ realization (FCFP) utilize less resources

FIGURE 5. States x4 and x5 convergence and response comparison.

FIGURE 6. State x1 convergence and response comparison.

as compared to the first case i.e. fractional controller with
33 bits (FCIP). As it is proved from the literature survey
that the classical sliding mode controller is robust to the
matched uncertainties but its major disadvantage is the high
frequency chattering. So the classical sliding mode controller
is treated as benchmark case for comparing the robustness
property for the other two cases. Fig 5 compares the con-
vergence of the states x4 and x5 to the reference command
i.e. x5(ref). The experimental results of the classical sliding
mode controller (ICIP) are compared with fractional con-
troller (FCFP-22 bits) and (FCIP-33 bits). From Fig. 5 it is
obvious that for all the three cases, the average convergence
time is comparable i.e. 23˜25 days. Moreover, the steady state
error is negligible. The convergence times of the remaining
three states x1, x2 and x3 are compared in Fig. 6, 7 and 10.
To show the convergence time more precisely arrows of the
same colors as original states are marked on time axis. The
convergence time of state x1 with classical sliding mode
controller (ICIP) is 17.5 days, with fractional order con-
troller (FCIP-33 bits) 19 days and fractional order controller
(FCFP-22 bits) is 19.8 days.

Similarly, the state x2 converges to zero at t = 14 days
using classical sliding mode control (ICIP), at t = 15 days
using fractional order control (FCIP-33 bits) and at t =
17.5 days using fractional order controller implemented with
FCFP-22 bits.
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FIGURE 7. State x2 convergence and response comparison.

FIGURE 8. State x3 convergence and response comparison.

FIGURE 9. Control signal comparison.

Near similar behavior can be observed from Fig. 8 showing
the convergence time of state x3. The convergence times
of the states using fractional order controller implemented
with FCFP-22 bits are comparable with the classical slid-
ing mode control (ICIP) which is a benchmark to evaluate
the convergence property. Fig 9 compares the experimental
results of the control signals for all the three variants of the
controllers. It is noticeable that the classical sliding mode
control (ICIP) offersmaximum chatteringwhile the fractional
order controllers exhibits chattering with smaller magnitude.
The main reason of the reduced chattering in the fractional
order controllers of expression (15) and (18) is the existence
of the fractional integrator across the discontinuous signum

FIGURE 10. Floating point–fixed point error plot of control signal
(fractional controller fractional plant).

FIGURE 11. Floating point–fixed point error plot of control signal
(fractional controller integer plant).

FIGURE 12. Floating point–fixed point error plot of control signal
(classical sliding mode control- integer plant).

function. For digital implementations of the algorithms an
important aspect is to analysis the errors generated due to
fixed point representation of the signals.

A comparative analysis of the fixed point implementa-
tion errors generated in the control signals is shown in
Fig. 10, 11 and 12. The error signals represent the amplitude
difference of the control signal between floating point and
fixed point representation. From the comparative results pre-
sented in Fig. 10, 11 and 12, it is noted that fractional order
controller with 22 bits (FCFP) implementation have small
error as compared to the other two cases. Another important
aspect of the performance measurement for the implanted
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controllers is the chattering phenomenon. The experimental
results presented in Fig. 10, 11 and 12 show that the frac-
tional order controller with 22 bits (FCFP) implementation
offers the least amount of chattering as compared to the other
variants.

V. CONCLUSION
This article is focused on the implementation and compu-
tational resources study of the fractional order controllers.
Three variants of the controllers are under considera-
tion namely classical sliding mode controller (ICIP), frac-
tional order controller-integer plant (FCIP) and fractional
order controller-fractional plant (FCFP). From the results
it has been explored that the fractional controller-fractional
plant (FCFP) is computationally less expensive as com-
pared to FCIP. Moreover, it is as robust as classical sliding
mode controller with additional advantage of having reduced
chattering. The future work will be focused on using high-
level synthesis based design-space exploration techniques for
improving performance, area and power consumption along
with minimizing quantization errors further.

REFERENCES
[1] N. K. Quang, N. T. Hieu, and Q. P. Ha, ‘‘FPGA-based sensor-

less PMSM speed control using reduced-order extended Kalman fil-
ters,’’ IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6574–6582,
Dec. 2014.

[2] C. I. Muresan, S. Folea, G. Mois, and E. H. Dulf, ‘‘Development
and implementation of an FPGA based fractional order controller
for a DC motor,’’ Mechatronics, vol. 23, no. 7, pp. 798–804,
Oct. 2013.

[3] Z. Ma, J. Gao, and R. Kennel, ‘‘FPGA implementation of a hybrid sen-
sorless control of SMPMSM in the whole speed range,’’ IEEE Trans. Ind.
Informat., vol. 9, no. 3, pp. 1253–1261, Aug. 2013.

[4] N. Ullah, W. Shaoping, M. I. Khattak, and M. Shafi, ‘‘Fractional order
adaptive fuzzy sliding mode controller for a position servo system sub-
jected to aerodynamic loading and nonlinearities,’’ J. Aerosp. Sci. Technol.,
vol. 43, pp. 381–387, Jun. 2015.

[5] N. Ullah, S. Han, and M. Khattak, ‘‘Adaptive fuzzy fractional-order
sliding mode controller for a class of dynamical systems with uncer-
tainty,’’ Trans. Inst. Meas. Control, vol. 38, pp. 402–413, Jun. 2015,
doi: 10.1177/0142331215587042.

[6] M. Tavakoli-Kakhki, M. Haeri, and M. S. Tavazoei, ‘‘Simple fractional
order model structures and their applications in control system design,’’
Eur. J. Control, vol. 16, no. 6, pp. 680–694, 2010.

[7] M. Deepyaman and K. Amit, ‘‘Approximation of a fractional order system
by an integer order model using particle swarm optimization technique,’’ in
Proc. IEEE Sponsored Conf. Comput. Intell., Control Comput. Vis. Robot.
Autom. (CICCRA), 2008, pp. 149–152.

[8] A. Chechkin, R. Gorenflo, and I. Sokolov, ‘‘Fractional diffusion in
inhomogeneous media,’’ J. Phys. A, Math. General, vol. 38, no. 42,
pp. L679–L684, 2005.

[9] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis
and Simulation (Nonlinear Physical Science). Berlin, Germany:
Springer-Verlag, 2011, doi: 10.1007/978-3-642-18101-6.

[10] V. D. Djordjevic and T. M. Atanackovic, ‘‘Similarity solutions to nonlin-
ear heat conduction and Burgers/Korteweg–deVries fractional equations,’’
J. Comput. Appl. Math., vol. 222, no. 2, pp. 701–714, 2008.

[11] K. S. Cole, ‘‘Electrical conductance of biological systems,’’ in Proc. Symp.
Quant. Biol., New York, NY, USA, 1933, pp. 107–116.

[12] W. G. Glöckle and T. F. Nonnenmacher, ‘‘A fractional calculus approach
to self-similar protein dynamics,’’ Biophys. J., vol. 68, no. 1, pp. 46–53,
1995.

[13] N. Laskin, ‘‘Fractional market dynamics,’’ Phys. A, Statist. Mech. Appl.,
vol. 287, nos. 3–4, pp. 482–492, 2000.

[14] A. G. Radwan, K. Moaddy, K. N. Salama, S. Momani, and I. Hashim,
‘‘Control and switching synchronization of fractional order chaotic sys-
tems using active control technique,’’ J. Adv. Res., vol. 5, no. 1,
pp. 125–132, Jan. 2014.

[15] L. Dorcak, I. Petras, I. Kostial, and J. Terpak, ‘‘Fractional-order state space
models,’’ in Proc. Int. Carpathian Control Conf. (ICCC), Malinovoice,
Czech Republic, May 2002, pp. 193–198.

[16] A. Razminia and D. Baleanu, ‘‘Fractional order models of industrial
pneumatic controllers,’’ Abstract Appl. Anal., vol. 2014, Art. no. 871614,
Feb. 2014, doi: 10.1155/2014/871614.

[17] M. Ö. Efe, ‘‘Fractional order sliding mode controller design for frac-
tional order dynamic systems,’’ in New Trends in Nanotechnology and
Fractional Calculus Applications, D. Baleanu, Z. B. Guv̈enc, and J.
A. T. Machado, Eds. Dordrecht, The Netherlands: Springer, Oct. 2010,
pp. 463–470.

[18] D. Valerio, ‘‘Introducing fractional sliding mode control,’’ in Proc. II
Encontro Jovens Investigadores Laeta Feup, Porto, Portugal, Apr. 2012,
pp. 1–9.

[19] N. Bouarroudj, D. Boukhetala, and F. Boudjema, ‘‘A hybrid fuzzy frac-
tional order PID sliding-mode controller design using PSO algorithm for
interconnected nonlinear systems,’’ Control Eng. Appl. Inform., vol. 17,
no. 1, pp. 41–51, 2015.

[20] C. X. Jiang, J. E. Carletta, T. T. Hartley, and R. J. Veillette, ‘‘A system-
atic approach for implementing fractional-order operators and systems,’’
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 3, pp. 301–312,
Sep. 2013.

[21] Y.-H. Chang, C.-I. Wu, H.-W. Lin, C.-H. Hsu, and G.-W. Liao, ‘‘Design
of fractional-order PID controller for vector-controlled induction motors,’’
in Proc. 9th WSEAS Int. Conf. Robot., Control Manuf. Technol., 2009,
pp. 142–147.

[22] G. E. Santamaría, J. V. Valverde, R. Pérez-Aloe, and B. M. Vinagre,
‘‘Microelectronic implementations of fractional-order integrodifferential
operators,’’ J. Comput. Nonlinear Dyn. vol. 3, no. 2, p. 021301, Feb. 2008,
doi: 10.1115/1.2833907.

[23] A. A. Aldair and W. Wang, ‘‘FPGA based adaptive neurofuzzy inference
controller for full vehicle nonlinear active suspension systems,’’ Int. J.
Artif. Intell. Appl., vol. 1, no. 4, pp. 1–15, 2010.

[24] M. De la Sen, A. Ibeas, and S. Alonso-Quesada, ‘‘Vaccination rules
for a true-mass action SEIR epidemic model based on an observer
synthesis. Preliminary results,’’ Discrete Dyn. Nature Soc., pp. 1–15,
2011. [Online]. Available: http://arXiv:1103.4992

[25] S. Alonso-Quesada, M. De la Sen, A. Ibeas, and R. Nistal, ‘‘A vaccination
strategy based on linearization control techniques for fighting against
epidemic diseases propagation,’’ Adv. Difference Equ., vol. 2013, p. 364,
Dec. 2013, doi: 10.1186/1687-1847-2013-364.

[26] A. Ibeas, M. de la Sen, and S. Alonso-Quesada, ‘‘Robust sliding control
of SEIR epidemic models,’’ Math. Problems Eng., vol. 2014, Mar. 2014,
Art. no. 104764, doi: 10.1155/2014/104764.

[27] M. P. Aghababa, ‘‘A Lyapunov-based control scheme for robust stabi-
lization of fractional chaotic systems,’’ Nonlinear Dyn., vol. 78, no. 3,
pp. 2129–2140, 2014.

[28] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, ‘‘Frequency-band
complex noninteger differentiator: Characterization and synthesis,’’ IEEE
Trans. Circuits Syst., vol. 47, no. 1, pp. 25–39, Jan. 2000.

[29] Y. Chen, I. Petras, and D. Xue, ‘‘Fractional order control—A tutorial,’’
in Proc. Amer. Control Conf. (ACC), St. Louis, MO, USA, Jun. 2009,
pp. 1397–1411.

[30] F. Gao, H. M. Srivastava, Y.-N. Gao, and X.-J. Yang, ‘‘A coupling method
involving the Sumudu transform and the variational iteration method for a
class of local fractional diffusion equations,’’ J. Nonlinear Sci. Appl., vol. 9,
no. 11, pp. 5830–5835, 2016.

[31] X. J. Yang, D. Baleanu, and H. M. Srivastava, Local Fractional Integral
Transforms and Their Applications. New York, NY, USA: Academic,
Oct. 2015.

[32] X.-J. Yang, H. M. Srivastava, and J. A. T. Machado, ‘‘A new fractional
derivative without singular kernel: Application to the modelling of the
steady heat flow,’’ Thermal Sci., vol. 20, no. 2, pp. 753–756, 2016,
doi: 10.2298/TSCI151224222Y.

[33] X.-J. Yang, J. A. T. Machado, C. Cattani, and F. Gao, ‘‘On a fractal LC-
electric circuit modeled by local fractional calculus,’’ Commun. Nonlinear
Sci. Numer. Simul., vol. 47, pp. 200–206, Jun. 2017.

[34] X.-H. Zhao, Y. Zhang, D. Zhao, and X. Yang, ‘‘The RC circuit described
by local fractional differential equations,’’ Fundam. Inform., vol. 151,
nos. 1–4, pp. 419–429, 2017, doi: 10.3233/FI-2017-1501.

7722 VOLUME 5, 2017



N. Ullah et al.: Improving the Hardware Complexity by Exploiting the Reduced Dynamics Based Fractional Order Systems

NASIM ULLAH received the Ph.D. degree in
mechatronic engineering from Beihang Univer-
sity, Beijing, China, in 2013. From 2006 to 2010,
he was a Senior Design Engineer with IICS,
Pakistan. He is currently an Associate Professor of
Electrical Engineeringwith the CECOSUniversity
of Emerging Science and Information Technology,
Peshawar, Pakistan. His research interests include
renewable energy, flight control systems, integer
and fractional order modeling of dynamic sys-

tems, integer/fractional order adaptive robust control methods, fuzzy/NN,
hydraulic and electrical servos, epidemic, and vaccination control strategies.

ANEES ULLAH received the M.S. degree in
electrical engineering from the University of
Engineering and Technology, Peshawar, Pakistan,
in 2011, and the Ph.D. degree in computer
and control engineering from the Politecnico di
Torino, Italy, in 2015, with a focus on radiation
effects on SRAM-based FPGAs and its mitiga-
tion approaches through combination of fing-grain
redundancy and reconfiguration. He is currently an
Assistant Professor with the Department of Elec-

trical Engineering, City University of Science and Information Technol-
ogy, Peshawar. His research interests include fault-tolerant digital systems,
reconfigurable computing, and computer aided design for reliability-oriented
synthesis, placement, and routing for FPGAs and ASICs.

ASIER IBEAS was born in Bilbao, Spain, in 1977.
He received the M.Sc. degree in applied physics
and the Ph.D. degree in automatic control from
the University of the Basque Country, Spain, in
2000 and 2006, respectively. He is currently an
Associate Professor of Control Systems with the
Autonomous University of Barcelona, Spain. He is
also a Full Professor with the Catalan Agency for
Quality in Higher Education. His research inter-
ests include time-delayed systems, robust adaptive

control, applications of artificial intelligence to control systems design, and
nonconventional applications of control, such as to epidemic systems, supply
chain management and financial systems. He has authored over 130 contri-
butions in international journals and conferences. He has supervised and is
currently advising several doctoral thesis and has participated in numerous
research projects funded by regional and national agencies.

JORGE HERRERA received the degree in elec-
tronic engineering from the University of Quindío,
Colombia, in 2004, and the Ph.D. degree in
industrial computing and advanced techniques of
production from the Universidad Autonoma de
Barcelona, Spain, in 2011. He is currently a Full
Professor with the Engineering Department, Uni-
versity Jorge Tadeo Lozano, Bogotá, Colombia.
He is also the Director of the Industrial Engineer-
ing Program and the Director of the Master in

Engineering Management. Among its active research lines are parametric
identification and adaptive control.

VOLUME 5, 2017 7723


