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Critical exponents of the Kawasaki dynamics in the Ising chain are re-examined numerically through the
spectrum gap of evolution operators constructed both in spin and domain-wall representations. At low-
temperature regimes the latter provides a rapid finite-size convergence to these exponents, which tend to z
.3.11 for instant quenches under ferromagnetic couplings, while approaching to z.2 in the antiferro case.
The spin representation complements the evaluation of dynamic exponents at higher temperature scales, where
the kinetics still remains slow.
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I. INTRODUCTION

Kinetic Ising models have long been helpful in under-
standing general questions of nonequilibrium statistical
physics, as well as for elucidating particular issues of experi-
mental relevance f1g. There is by now a vast body of re-
search studying these models under Glauber and Kawasaki
dynamics f2,3g, the so-called models A and B, respectively,
in the terminology of Hohenberg and Halperin f4g. The first
type of dynamic considers single spin flip processes for de-
scribing relaxation toward equilibrium in a variety of mag-
netic materials, while the second case consists of spin ex-
changes specially aimed to study stochastic processes under
conservation of total magnetization. This constraint makes
relaxation slower and is instrumental in studying phase sepa-
ration, domain growth, and freezing observed after rapid
cooling in several systems, such as binary fluids and alloys
f1g. All these phenomena are characterized by a long relax-
ation time t which near critical points diverges as t~jz,
where j denotes the spatial correlation length sproportional
to the typical system sized and z is the dynamic exponent of
the universality class to which the dynamic belongs.

When it comes to one dimension s1Dd, these dynamics are
still largely amenable to experimental probe f5g apart from
being interesting in their own right f6g, and as is well known,
in the Glauber case allow for an exact treatment f2,5g. In
contrast to that latter aspect, the equations of motion for the
Kawasaki dynamics conform an infinite hierarchy which do
not admit analytic solution, so the problem can only be ap-
proached from approximations f5g. Even though there is no
finite critical temperature through which to quench, using
random-walk arguments to derive an approximate kinetic
equation for the kink density under ferromagnetic sFd inter-
actions f7g, interestingly, the dynamic exponent has been put
forward to be the same as observed in higher dimensions,
namely, z=3, after a deep quench to a low temperature sLTd.
Although for d$2 such exponent was also accounted for by
renormalization-group arguments f1,8g as well as by surface
dynamical considerations f9g, other studies in 1D related sys-
tems f10g suggest instead a value of z=5 f11g, in agreement
with linear-response schemes f12g.

In this work we re-examine this exponent by constructing
and diagonalizing numerically the kink evolution operator
associated to the master equation of the Kawasaki dynamics

in finite chains. Following the physical picture given in f7g,
at late evolution stages and LT regimes such operator would
essentially describe a highly diluted system as the kink or
domain-wall density is basically a measure of the average
inverse domain size. Consequently, in evaluating dynamic
exponents from finite samples it might be expected that size
effects will pose no severe limitations for the kink represen-
tation. In fact, as we shall see, the kink density will get fairly
small even for the low lying levels of the evolution operator,
that is what ultimately matters at large times. On the other
hand there is also the question about estimating dynamic
exponents at finite temperatures for which the Kawasaki ki-
netics still remains critical, as opposed to the exponential
decay of the Glauber dynamics in 1D. Although in this situ-
ation dynamic exponents are no longer related to domain
growth—these are cut off by a finite correlation length—they
still provide the fundamental relation between the typical
system size and its relaxation time. We shall also address this
issue by diagonalizing the evolution operator of the original
spins. Insofar temperature is not too low, these latter become
weakly correlated and finite-size effects will not be para-
mount. A posteriori, our results will lend further support to
this view.

Therefore these dual representations—kinks and spins—
provide a means for probing the robustness of dynamic ex-
ponents throughout different regimes. As a result, it will turn
out that for F couplings z varies continuously from .3.11 to
.2 at low and high-temperature sHTd scales, respectively.
Such nonuniversality should come as no surprise since in the
HT limit the Kawasaki dynamics simply reduces to a diffu-
sive disordering kinetics. However under antiferromagnetic
sAFd exchanges these exponents are rather robust and, in line
with previous findings f10g, their values will remain diffu-
sive even at LT regimes, just as the z of the Glauber univer-
sality class. We shall return to this question later on within a
context of antikink operators.

The layout of this work is organized as follows. In Sec. II
we recast the 1D-Kawasaki dynamics in terms of a quantum
spin analogy that readily lends itself to evaluate spectrum
gaps of evolution operators, i.e., dynamic exponents, both in
the spin and domain-wall representations. Due to detailed
balance, either of these descriptions can be brought to a sym-
metric representation by means of simple nonunitary spin
rotations. This simplifies considerably the subsequent nu-
merical analysis of Sec. III in which spectrum gaps are ob-
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tained via standard recursive techniques f13g in various situ-
ations. For now let us remark that already modest chain
lengths are able to yield clear finite-size trends both at LT
and HT scales. Finally, Sec. IV contains a summarizing dis-
cussion along with some remarks on extensions of this work.

II. SPIN AND KINK REPRESENTATIONS

As is well known, the Ising model has no intrinsic dynam-
ics because all spin operators involved in its Hamiltonian
commute with one another. Therefore, an ad hoc dynamics
must be prescribed by coupling the system to a heath bath at
temperature T so as to induce energy changes in the model.
This is described by a master equation f14g for which we
introduce briefly here some preliminary considerations.

Basically, the dynamics is associated to a gain-loss equa-
tion, constructed generically as

]tPss,td = o
s8

fWss8 → sdPss8,td − Wss → s8dPss,tdg , s1d

which governs the evolution of the probability Pss , td that the
system will be at state usl at time t. The elementary change
steps are embodied in the transition probability rates Wss
→s8d per unit time at which configuration usl, evolves to us8l.
For our purposes, it is convenient to think of this equation as
a Schrödinger evolution in an imaginary time, namely,
]tuPstdl=−HuPstdl, under a pseudo-Hamiltonian or evolution
operator H=Hd+Hnd whose diagonal and nondiagonal ma-
trix elements are given by

ksuHdusl = o
s8Þs

Wss → s8d , s2d

ks8uHndusl = − Wss → s8d . s3d

Formally, this enables one to derive all subsequent probabil-
ity distributions uPstdl;osPss , tdusl, from the action of H on
a given initial distribution, i.e., uPstdl=e−HtuPs0dl f14g. In
particular, the relaxation time of any observable with non-
zero matrix element between the steady state and the first
excitation mode of H is singled out by the eigenvalue l1
corresponding to this latter, i.e., t−1=Re, l1.0, whereas
the former merely corresponds to an eigenvalue l0=0 f14g.
If the steady solution should actually coincide with the
Boltzmann equilibrium distribution, the above rates must be
chosen to satisfy detailed balance, that is, Wss→s8d ,
e−bEssd=Wss8→sd , e−bEss8d, ∀s ,s8, where E stands for the
respective energy configurations of the system in question
and b;1 /kBT.

Detailed balance itself cannot determine entirely the form
of such rates, thus for the specific case of the Kawasaki
dynamics hereafter considered we take up the common
choice f1,3g

Wss → s8d =
1

2
F1 − tanhSb

2
DEs,s8DG , s4d

where usl , us8l are states differing at most in a pair of
nearest-neighbor sNNd spins exchanged at some location

i=1,2 , . . . ,L, and DEs,s8;Ess8d−Essd is the change in the
Ising energy E=−Joisisi+1, ssi= 61d either with F sJ.0d or
AF sJ,0d interactions. Therefore depending on the spin
states at locations i−1 and i+2, the rate at which spins
ssi ,si+1d= ss ,−sd exchange their states results in

Ri−1,i+2s6Kd =
1

2
6

aK

4
ssi+2 − si−1d , s5d

where K=bJ, aK=tanh 2K, and the signs 6 denote forward
and backward hoppings as depicted schematically in Fig. 1.

If we think of the spin configurations usl as being already
diagonal in the z direction, say, then by promoting si vari-
ables to Pauli matrices si

z, the operational analog of Eq. s3d
will read

Hnd = − o
i

fRi−1,i+2
z sKdsi+1

+ si
− + Ri−1,i+2

z s− Kdsi
+si+1

− g , s6d

where s+ ,s− are the usual spin-1
2 raising and lowering op-

erators, while Ri−1,i+2
z s6Kd= 1

2 6
aK

4 ssi+2
z −si−1

z d, is simply the
operational counterpart of Eq. s5d. As for the diagonal ele-
ments of Eq. s2d needed for conservation of probability, no-
tice that these basically count the number of hoppings in
which a given configuration can evolve to different ones by
exchanging NN spins at a time. This can be properly tracked
down in terms of number operators n̂=s+s− probing and
weighting all NN spins, namely,

Hd = o
i

fRi−1,i+2
z sKdn̂is1 − n̂i+1d + Ri−1,i+2

z s− Kdn̂i+1s1 − n̂idg .

s7d

Although the correlated exchange terms of Eq. s6d leave
us with a nonsymmetric evolution operator, in preparation
for the numerical analysis of Sec. III we can make some
progress by exploiting detailed balance. This latter warrants
the existence of representations in which H is symmetric and
thereby diagonalizable f14g. For our purposes, it suffices to
consider the diagonal nonunitary similarity transformation

S = e−K/2ojsj
zsj+1

z
, s8d

under which the hopping terms of Hnd transform as

si+1
6 si

7 → expf7Kssi+2
z − si−1

z dgsi+1
6 si

7, s9d

while leaving invariant all the above mentioned diagonal op-
erators. Hence, after straightforward manipulations it can be
readily verified that Hspin=SHS−1 actually produces a self
adjoint spin representation which for periodic boundary con-
ditions sPBCsd is found to be

Ri−1,i+2(K)

si−1 ↑ ↓ si+2 *) si−1 ↓ ↑ si+2

Ri−1,i+2(−K)

FIG. 1. Transition probability rates for neighboring spin ex-
changes, as defined in Eq. s5d.
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Hspin = −
1

8
s1 + gKdo

i

s1 + tanh2 Ksi−1
z si+2

z dssi
xsi+1

x + si
ysi+1

y d

+
1

4o
i

f1 + aKsi
zsi+2

z − s1 + aKdsi
zsi+1

z g , s10d

where gK=sech 2K. In passing, it is worth pointing out that
in the HT limit this operator coalesces into a Heisenberg
ferromagnet, i.e., Hspin→− 1

4oissW i ·sW i+1−1d, with a spectrum
gap behaving like ~1 /L2, as it should for a disordering dif-
fusive kinetics. On the other hand, in such regime the equi-
librium correlation length becomes of the order of the lattice
spacing, thus the numerical diagonalization of Hspin in finite
chains can be a reasonable starting point to evaluate dynamic
exponents as temperature is quenched slightly sthough in-
stantly to a constant value, because transition rates have been
taken time independent throughoutd.

When it comes to LT regimes however, Eq. s10d is not of
much practical use, since the system approaches a state con-
sisting of long magnetic domains whose typical sizes are of
the order of the correlation length j,e2uKu snonetheless, for
J.0 see the upper bounds to z and their extrapolations pro-
vided in Sec. III Ad. In this more interesting scenario the
dynamics is strongly affected by whether the coupling ex-
changes are F or AF, thus it is convenient at this point to
separate the discussion accordingly.

A. Kink representation: J.0

As was mentioned in Ref. f7g, the dynamics of this situ-
ation is basically mediated by single spins detaching from a
domain wall sa kinkd, and then performing a random walk.
Some of these spins will return to their original domains,
while others will reach the next ones. On average, as a result
of many of these processes the domains themselves will per-
form a random walk until they meet and merge into larger
domains. Besides, single meandering spins may eventually
nucleate and trigger the growth of a new domain. The key
issue in this description is that for large times very few kinks
will survive at LT scales. In particular, in equilibrium these
are totally uncorrelated and with an average density ,1 /j,
whereas that of the spins mediating the whole process is of
order 1 /j2 as they are made up of two consecutive kinks fsee
Fig. 2sad belowg. Thus, for large times it makes sense to
attempt a nonequilibrium description in terms of kinks rather
than spins. Presumably sas confirmed later on in Sec. IIId, the

first excitation mode of the kink evolution operator will also
correspond to a diluted state, so size effects in a numerical
estimation of z will not be as severe as in the spin descrip-
tion.

To recover the equilibrium behavior of the Ising model
from now on we consider the case of zero magnetization, so
this dual representation corresponds to the two-to-one map-
ping outlined schematically in Fig. 2. If we imagine these
kinks as hard core particles A, then the Kawasaki dynamics
involve two basic processes sid dimer diffusion A+A
+ x ­ x+A+A, and siid “assisted” deposition-evaporation
x+A+ x ­A+A+A, as schematized, respectively, in Figs.
2sad and 2sbd. The first situation represents the meandering
spins referred to above and involves no energy changes
srates 1/2d. Notice that these dimers sdouble kinksd do not
preserve their identity as they may eventually dissociate
when contacting a domain wall ssingle kinkd. The second
process corresponds to a spin detachment sattachmentd from
a domain wall, and its rates eK se−Kd parallel those of Eq. s5d
when si−1=−si+2, thus

e6K =
1

2
s1 7 tanh 2Kd . s11d

Therefore, following the reasoning steps discussed for the
spin representation and reinterpreting kinks as 1

2 -spinors in a
dual chain, clearly the nondiagonal terms Hnd

a +Hnd
b of the

evolution operator associated to the sad and sbd processes of
Fig. 2 can be constructed as

Hnd
a = −

1

2o
i

n̂issi+1
+ si−1

− + H.c.d , s12d

Hnd
b = − o

i

n̂iseKsi−1
+ si+1

+ + e−Ksi−1
− si+1

− d , s13d

with number operators acting here as projectors that rule out
vacancy mediated processes. To recast the nondiagonal op-
erator into a symmetric representation, we recur once more
to detailed balance and rotate all s6s around the z direction
using a common pure imaginary angle w= iK. This is carried
out by the nonunitary similarity transformation

S = eK/2ojsj
z
, s14d

for which it is straightforward to show that

si−1
6 si+1

6 → e62Ksi−1
6 si+1

6 , s15d

thus producing the symmetrization of Hnd
b while keeping all

terms of Hnd
a salready Hermitiand unaltered.

As before, preservation of probability is taken into ac-
count by a diagonal operator Hd

a+Hd
b balancing both of the

above smutually exclusived events, in turn probed, respec-
tively, by

Hd
a =

1

2o
i

fn̂i−1n̂is1 − n̂i+1d + s1 − n̂i−1dn̂in̂i+1g , s16d

1/2

(a) ◦ | • | ◦ ◦ *) ◦ ◦ | • | ◦

²K

(b) • • | ◦ ◦ *) • | ◦ | • | ◦
²−K

FIG. 2. Transition rates for sad diffusion of double kinks and sbd
assisted deposition-evaporation of kinks. These latter are denoted
by vertical lines separating domains of opposite spin orientations.
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Hd
b = o

i

feKs1 − n̂i−1dn̂is1 − n̂i+1d + e−Kn̂i−1n̂in̂i+1g . s17d

Since the imaginary rotation Eq. s14d is also diagonal, it has
no effect on these latter operators. Thus, collecting all terms
and using PBC throughout, after some algebraic steps we
finally obtain a self adjoint representation for the kink evo-
lution operator, namely,

Hkink = −
1

8o
i

s1 + si
zdfs1 + gKdsi−1

x si+1
x + s1 − gKdsi−1

y si+1
y g

+
1

4o
i

s1 + aKsi
zsi+1

z d +
1

2
e−Ko

i

si
z, K . 0. s18d

As can be readily verified from this equation, in the limit T
→0+ the action of Hkink on any configuration having non NN
kinks vanishes like Ose−4Kd, thus yielding a metastable state.
In the spin representation this corresponds to configurations
with domains lengths larger than the lattice spacing, which
amounts to hindering spins to detach and so diffuse through.
In turn, from Eq. s10d it can be checked that this situation
also yields metastable states of Hspin so long as J.0.
Clearly, the number of these configurations grows exponen-
tially with the system size, and most of them take over the
asymptotic dynamics with long lifetimes ~j2. This marks an
important difference with respect to the AF dynamics to be
introduced briefly in Sec. II B.

As an aside, we finally mention that by construction Hkink
not only preserves the parity of kinks eipojn̂j sbeing even for
PBCd but in turn satisfies

FHkink,o
j

s j
zexpSipo

k#j

n̂kDG = 0, s19d

which simply expresses the conservation of the total spin
magnetization in the original system. In practice, for the nu-
merical evaluation of gaps we will just build up the adequate
kink states from the corresponding spin ones.

B. Antikinks: J,0

While most of the above ideas and procedures applies to
the AF dynamics as well, ultimately the relaxation to equi-
librium becomes faster than in the F case. By changing from
a description based on kinks to AF domain walls, i.e., to
antikinks, we can easily construct an evolution operator that
for large times and LT regimes essentially describes a diluted
antikink system. As before, if we think of antikinks as hard
core particles A sformer vacancies x under F couplingsd, the
basic processes now involve sid next NN hopping, i.e., A
+ x+x ­ x+x+A, and siid deposition-evaporation “as-
sisted” by vacancies, that is, x+x+x ­A+ x+A.

With the aid of these schematic events, illustrated, respec-
tively, in Figs. 3sad and 3sbd, and after carrying out the rota-
tion referred to in Eq. s14d but with an argument w̄=−iK, the
symmetric representation of the antikink operator can be fi-
nally cast as

Hanti =
1

8o
i

s1 − si
zdfs1 + gKdsi−1

x si+1
x + s1 − gKdsi−1

y si+1
y g

+
1

4o
i

s1 + aKsi
zsi+1

z d −
1

2
e−Ko

i

si
z, K , 0. s20d

Of course, by exchanging the role of particles and vacancies,
i.e., using the canonical transformation s6→s7, one recov-
ers the form of Eq. s18d, but this likelihood is only superfi-
cial. Note that for K→−` the effect of the uniform field e−K
vanishes like Ose4 Kd, so the only jammed state on which the
action of the diagonal terms cancels out at this order is the
vacuum of antikinks. Thus, in the limit T→0+ the dynamics
is no longer dominated by metastable states sinstead prolif-
erating exponentially for J.0d. In this situation AF domains
can grow unhindered, as single antikinks now detach and
diffuse freely sFig. 3d, thus allowing the dynamics to run
smoothly toward equilibrium. As a result the dynamic expo-
nent, whose numerical analysis we next turn to consider,
becomes smaller sactually diffusived than for F exchanges.

III. NUMERICAL RESULTS

We now investigate numerically the spectral gaps of the
Kawasaki operators given in Eqs. s10d, s18d, and s20d along
with their dynamic exponents in different situations. As a
consistency check first we verified that the srotatedd Boltz-
mann distribution corresponds in fact to the steady state of
those operators. This also served to start up the Lanczos
recursion with a random state but chosen orthogonal to that
equilibrium configuration. Thereafter we obtained the first
excited eigenmodes of our symmetric Hs using periodic
chains of up to 24 sites, the main limitation for this being the
exponential growth of the space dimensionalities. Another
restrictive issue is that below kBT / uJu,0.1–0.2 the Lanczos
convergence slows down progressively because in most situ-
ations the spacing of low lying levels turns out to decay as
e−4uKu. Thus, in what follows we content ourselves with giv-
ing results above that region where nonetheless clear satu-
rated tendencies can be already obtained.

A. J.0

Turning to the F dynamics, in the insets of Figs. 4sad and
4sbd we exhibit the finite-size behavior of spectral gaps for

1/2

(a) ◦ • ◦ | ◦ *) ◦ | ◦ • ◦

²K

(b) • | • ◦ | ◦ *) • ◦ • ◦
²−K

FIG. 3. Transition rates for sad next-nearest-neighbor antikink
hoppings mediated by vacancies and sbd assisted deposition-
evaporation of antikinks. As in Fig. 2, these latter are represented by
vertical lines but separating antiferro domains.

M. D. GRYNBERG PHYSICAL REVIEW E 82, 051121 s2010d

051121-4



the case of spins and kinks, respectively. They are all con-
sistent with a gap vanishing like 1 /Lz although with a non-
universal temperature dependent dynamic exponent zsTd. For
the purpose of observing in more detail the trend of size
effects on these exponents under different temperature re-
gimes, we considered a sequence of effective approximants
defined as

zL =
lnfl1sL − 2d/l1sLdg

lnfL/sL − 2dg
s21d

sL evend, which simply provide successive measures of the
gap closing in either of the above representations. These are
shown in the main panels of Figs. 4sad and 4sbd. As expected,

in the HT region Hspin is able to yield fairly convergent esti-
mations of zs,1.99d, so recapturing the plain diffusive limit
above T /J.3 shenceforth the Boltzmann constant kB is set
equal to 1d. Besides, in this representation the above approxi-
mants turn out to constitute upper bounds of this exponent
for almost all temperatures studied, though exhibiting differ-
ent spreadings. We attempted to extrapolate these bounds
using several procedures, but owing to the variable spreading
this resulted in a rather noisy limiting curve. Nevertheless, in
the region that most interests us the spreading becomes more
stable, thus upon using a van den Broeck-Schwartz extrapo-
lation scheme f15g we found that z,3.10, in reasonable
agreement with analysis and Monte Carlo simulations under
instantaneous quenches f7g. Moreover, this result is also con-

2

2.5

3

3.5

1 10
T / J

Z
L

(a)

8 12 18 24

λ
1

L
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10
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-2

-1

2

2.5

3

1 10
T / J

Z
L

(b)

8 12 18 24

λ
1

L

10
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-2

-1

2

2.5

3

1 10
T / J

Z
k,s

(c)

0

0.04

0.08

1 10
T / J

∆ Ζ
L

FIG. 4. sColor onlined Effective dynamic exponents of Eq. s21d for J.0 using 12#L#24 with L even, computed for sad spins and sbd
kinks. Sizes increase downward almost throughout sad and upward in sbd at both leftmost and rightmost temperature regions. The respective
insets display the gap behavior with the system size for T /J=10, 1, 1/2, and 1/4 stop to bottomd. To compare slopes, data have been shifted
upward with respect to T /J=10. Straight lines are fitted with slopes −z24sTd as calculated from the main panels. In scd we compare these
exponents for kinks and spins sdashed and solid linesd. At low as well as at high temperatures zk and zs yield, respectively, lower and upper
bounds for the thermodynamic limit of z. The inset of scd provides a measure of convergence for these quantities by depicting DLz;zL−2

−zL for our maximum sizes. Horizontal short doted line in sad stands for the extrapolations referred to in the text.
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sistent with estimations of z arising from Hkink approximants
around the same region sT /J&0.4d where, as discussed
above, the kink description in finite sizes is most reliable. In
fact, no extrapolations are needed here since already the val-
ues of z20&z22&z24 follow very closely one another, collaps-
ing near a value of z.3.11. This is the main result of this
section.

As an added bonus, note that in the LT regime the kink
approximants come out conforming a sequence of lower
bounds which conveniently complement the upper ones pro-
vided by the spin representation. This is illustrated in Fig.
4scd where for T /J&0.4 both kink and spin approximants
should actually enclose the value of z in the limit L→`
spresumably much closer to the kink borderd. Using the re-
sults of our maximum reachable sizes, this suggests that in
the ordering regime the dynamic exponent is bounded as
3.11&z,3.18. For 0.5&T /J&2 the trend of finite sizes of
the kink approximants now reverses and, alike the spin zLs,
turn out to yield upper bounds of z. The kink approximants
converge slightly faster in this region fsee inset of Fig. 4scdg,
until for T /J*2 the trend of bounds reverses once more.
Hence, at HT scales the actual value of z is enclosed again by
our kink and spin approximants though this time these latter
take the lead, as it should.

As mentioned earlier, the LT convergence of kink ap-
proximants was somehow foreseeable on the basis of equi-
librium considerations but it is not yet clear whether these
apply to nonequilibrium as well. In Fig. 5 however we show
that this also the case, at least for the sizes at hand. There, we
display the kink density r1= 1

Loikc1un̂iuc1l for the first ex-
cited mode of Hkink which for T /J&1 closely follows the
diluted kink picture already expected for equilibrium, i.e.,
r1→2 /L. Also, preliminary evaluations of kink-kink corre-
lations kc1un̂in̂juc1l show that these become negligible below
T /J,0.5, thus resembling the fully segregated equilibrium
state. In passing it is worth pointing out that while l1 is
doubly degenerate, the correlations and r1 remain indistin-
guishable in both of these eigenmodes.

B. J,0

In studying numerically the AF dynamics, the approxi-
mants Eq. s21d pose severe difficulties at intermediate tem-

peratures. Owing to low lying level crossings, now the spec-
trum gap is bisected in temperature regions having opposite
monotonic behaviors. For instance, it is instructive to con-
sider the case of L=4 where this feature already appears in
the spectrum of Hspin. By diagonalizing its associated 636
stochastic matrix, we find that there are two branches of
eigenvalues crossing at Kp=− 1

4 ln 2, thus producing the
nonanalytic gap

l1s4d = H2eK, threefold degenerate if K $ Kp,

4e−K, nondegenerate otherwise,
J

s22d

as seen in the uppermost curve of Fig. 6sad. Alike this simple
case, for larger sizes it is found numerically that l1sLd re-
mains degenerate only above certain temperatures below
which level crossings occur, and l1 results in a nondegener-
ate value. This is signaled by the emergence of the cusps
observed in Fig. 6sad. At LT regions the gap recovers the
exponential decay referred to above but the data collapse
now precludes finite-size estimations of effective exponents
from Eq. s21d. Although level crossings come out at succes-
sively smaller temperatures, these cannot keep pace with the
increasing lattice sizes. To bypass these limitations we re-
sorted to the antikink operator especially constructed for this
region fEq. s20dg. As can be seen in Fig. 6sbd, now the LT
spectrum no longer collapses so the approximants Eq. s21d
can be employed once more. However, as evidenced by the
cusps of that figure, the problem of low lying level crossings
yet persists. In nearing the crossing temperatures this brings
about pronounced size effects in zL, partly because of the
mismatches occurring between eigenvalue branches, alike
those observed in Fig. 6sad.
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0 2 4

T / J

ρ

FIG. 5. Density of kinks for the first excitation ssolid lined and
ground state sdashed lined of Hkink fEq. s18dg with L=24 and J
.0. Lowermost dots indicate the equilibrium density s2 /Ld when
T→0.
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FIG. 6. Spectrum gaps of sad spin and sbd antikink operators
fEqs. s10d and s20d, respectivelyg for various inverse temperatures
K=J /T, sJ,0d. Sizes increase from top to bottom. In sad the
dashed line stands for the soluble case L=4 already indicating the
appearance of a cusp due to level crossings fsee Eq. s22dg, a feature
holding also for L=6,8 , . . . ,24. At low temperatures l1sLd decays
as e−4uKu with an almost size independent amplitude. In sbd this latter
problem is remedied although level crossings for 8, 10,…, and 24
sites now give rise to nonanalyticities near which size effects be-
come severe scf. Fig. 7d.
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All the above considerations result in fair convergent es-
timations of dynamic exponents both for LT and HT regimes,
but as displayed in Fig. 7, the intermediate zone is out of
reach. Despite this setback, what matters is the usefulness of
the antikink representation Eq. s20d in the more interesting
LT region which otherwise would have remained inacces-
sible. As in the F case, no extrapolations to the thermody-
namic limit are needed here since already for T / uJu&0.3 our
higher antikink approximants lie within the interval 1.98
.z20&z22&z24.1.99, thus indicating a Glauber universal-
ity class for this ordering regime, cf. f10g.

In the other extreme, when disorder prevails, already for
T / uJu*3 the spin approximants derived from the data of Fig.
6sad converge within one percent to our LT exponents, thus
suggesting for these latter a rather robust diffusive behavior.

Finally, in Fig. 8 we exhibit the antikink density r1 for the
first excited state of Hanti. As before, this confirms the diluted
antikink picture expected at LT scales, in turn accounting for
the convergent approximants obtained below T /J&0.3.
However, this time r1 does not quite follow there the van-
ishing equilibrium density of the plain AF vacuum state and
adopts instead the limiting value referred to in Fig. 5, indi-
cating the presence of two antikink excitations. At interme-
diate temperatures the jump of r1 just reflects the aforemen-
tioned level crossings.

IV. CONCLUDING DISCUSSION

To summarize, we have constructed symmetric represen-
tations of the Kawasaki dynamics in the Ising chain using a
quantum spin analogy with both direct and dual processes.
The kink description f7g, either in its F or AF versions fEqs.
s18d and s20dg, is well suited to low-temperature regimes
where it is able to provide a rather fast finite-size conver-
gence to dynamic exponents sFigs. 4sbd and 7d. For F cou-
plings, the ordering kinetics arising from these latter sz

.3.11d turns out to be slightly slower than the Lifshitz-
Slyozov behavior fjstd~ t1/3g characteristic of higher dimen-
sions f9g. By contrast, for AF interactions the kinetics is no
longer activated by metastable states, and dynamic expo-
nents converge rapidly sz.1.99d to the typical diffusive val-
ues of the Glauber universality class fjstd~ t1/2g.

On the other hand, the spin representation fEq. s10dg is
more appropriate for higher temperature scales where the
kinetics remains slow and is still characterized by relaxation
times diverging as Lz finset of Fig. 4sadg. For the F dynamics,
the finite-size approximants of these exponents turn out to
form a sequence of upper bounds which also extends down
to low-temperature regions fFig. 4sadg, where it nicely
complements the series of lower bounds emerging from the
kink approach fFig. 4sbdg. On wider temperature scales, both
representations are consistent with a nonuniversal set of dy-
namic exponents interpolating continuously between a sub-
diffusive ordering kinetics and the plain diffusive limit fFig.
4scdg. In this regard, the field theory associated to Eqs. s10d
and s18d becomes rather involved due to the correlated hop-
ping terms appearing in those pseudo-Hamiltonians. Hence,
the eventual emergence of marginal operators accounting for
such nonuniversality is an open issue which deserves further
investigation. For J,0, part of the intermediate temperature
region proved inaccessible due to size effects caused by low
lying level crossings in the spectrum of both spin and anti-
kink operators scusps of Fig. 6d. However, as the dynamics
of this case is not activated, the diffusive exponents obtained
by both representations within their natural range of applica-
bility sFig. 7d suggest a rather universal sGlauberd dynamics
throughout.

The success of the kink description at low-temperature
regimes would probably allow to extend the ideas of this
work to other interesting 1D-dynamics under instantaneous
quenches si.e., constant transition ratesd. For instance, the
nonuniversal behavior alleged for the ordering kinetics of the
alternating bond Kawasaki chain f10g, might well be further

1.9
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0.1 1 10
-T / J

Z
L

antikinks

spins

FIG. 7. Effective dynamic exponents as defined in Eq. s21d, for
Hamiltonians s10d and s20d with J,0 and L=10,12, . . . ,24 in-
creasing upward. In nearing the cusps of Fig. 6 size effects become
progressively pronounced, i.e., l1sLd and l1sL−2d belong to differ-
ent branches. High- and low-temperature regimes are both consis-
tent with a typical diffusive exponent sz24.1.99d.
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FIG. 8. Density of antikinks for the first level and ground state
of operator Eq. s20d with L=24 and J,0 ssolid and dashed lines
respectivelyd. For comparison, horizontal dots indicate the equilib-
rium density of ferro kinks sJ.0d at T=0, cf. Fig. 5. The discon-
tinuity denoted by vertical dots stems from level crossings in the
low lying spectrum of Hanti falso, see cusp in the lowermost curve
of Fig. 6sbdg.
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investigated with our numerical approach. Other lines of re-
search that would also be worth pursuing are certain dynami-
cal processes involving composite objects se.g., dimersd
which exhibit strongly broken ergodicity as a result of hav-
ing an extensive number of conservation laws f16g. As the
issue of universality classes in nonequilibrium statistical sys-
tems is often linked to the existence of these latter f17g, it
would be important to determine whether dynamic exponents
actually depend on the subspaces where the evolution takes
place. Dual representations constructed for such processes
could therefore provide reliable computations of these expo-

nents within ordering regimes. Further work in this direction
is in progress.
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