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We study a model in d = 2 + 1 space-time dimensions with two sectors. One of them, which can be 
considered as the visible sector, contains just a U (1) gauge field which acts as a probe for the other 
(hidden) sector, given by a second U (1) gauge field and massive scalar and Dirac fermions. Covariant 
derivatives of these matter fields and a BF gauge mixing term couple the two sectors. Integration over 
fermion fields leads to an effective theory with Chern-Simons terms that support vortex like solutions 
in both sectors even if originally there was no symmetry breaking Higgs scalar in the visible sector. We 
study numerically the solutions which correspond to electrically charged magnetic vortices except for a 
critical value of the BF coupling constant at which solely purely magnetic vortices exist.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Theories in which there are two gauge fields coupled via a 
gauge-mixing term, originally proposed in ref. [1], have recently 
received much attention both in high energy physics and in con-
densed matter. In the former case the idea is to construct models 
that account for the possible existence of dark matter compos-
ite sectors and also to implement supersymmetry breaking (see 
[2–4]). Concerning condensed matter, this kind of models have 
been used to describe the so-called intertwined orders in high-
temperature superconductors [5–9] and also to study topological 
insulators and superconductors [10,11].

Fields in the dark matter hidden sector are in general taken 
as (complex) scalar fields and gauge fields (see for example [12]
and references therein) but there are also very interesting pro-
posals in which fermion fields play a central role as WIMPs, as 
for example to calculate the effective number of neutrinos species 
[13]. Of course, in supersymmetry breaking models the inclusion of 
fermions is mandatory (see [4] and references therein). Other rel-
evant cosmological effects in which fermionic fields in the hidden 
sector play a central role have been studied in [14].

In general, the coupling constants that mix fields of the two 
sectors should be taken much smaller than those in the observ-
able sectors. This is the case, for example, concerning the pos-
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sible existence of millicharged particles with an electric charge 
²e for small ² [3], being e the elementary charge in the visible 
sector. In fact, recent experimental studies of the previously unex-
plored range 10−3 ≤ ² ≤ 10−1 have increased the exclusion region 
for millicharged particles with masses greater than 0.1 GeV and 
² < 10−1 ref. [15].

Remarkably, related ideas to those described above were put 
forward in the field of condensed matter physics to describe the 
complexity of phase diagrams in certain highly correlated elec-
tronic materials. Indeed, within a phenomenological Ginzburg-
Landau superconductivity approach, distinct broken-symmetry 
phases associated to different competing orders were studied in 
models with several complex scalars [5,6]. There have also been 
interesting results concerning multicomponent superconducting 
systems. In particular it has been shown in ref. [7] that in a generic 
two component superconductor model (i.e. with two component 
scalars) a novel type of thermodynamically stable vortices with 
very unconventional magnetic properties can be found, which are 
relevant to the description of two-band superconductors. Progress 
in the analysis of dualities in d = 3 has also been applied in con-
nection with materials in which topological order plays a central 
role (see for example [10]).

In the present note we propose a model in d = 2 + 1 space-time 
dimensions in which the “hidden” sector includes a U (1) gauge 
field and matter fields (fermions and a scalar) that are coupled to 
a U (1) external gauge field belonging to the “visible” sector. As it 
is well-know, at high temperatures a 4-dimensional quantum field 
theory becomes effectively 3 dimensional. In particular, certain ef-
fective d = 4 gauge theories coupled to fermions lead, in the high 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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temperature limit [16,17], to a residual Chern-Simons term. Hence, 
the d = 3 effective theory that we discuss in this note could be of 
interest in connection with theories in d = 4 at high temperature 
in which an external gauge field can be taken as a probe for the 
“hidden” sector. The coupling of the hidden sector with the exter-
nal visible field is provided by covariant derivatives of matter fields 
with a hidden charge and also by a gauge mixing BF portal.

2. The model

As stated in the introduction, we shall consider a model in 
2 + 1 space-time dimensions with metric diag gμν = (1, −1, −1), 
having a “visible” and a “hidden” sector. Concerning the former, 
it consists of the observable U (1) gauge field Aμ , which can be 
considered as an external field. As for the hidden sector, it is 
composed of a complex scalar field φ with a symmetry breaking 
potential, a U (1) gauge field Cμ and two massive Dirac fermions 
ψ i (i = 1, 2) coupled to Aμ and Cμ respectively.

The dynamics of the model is governed by the action S

S =
Z

d3x

µ
1

2
|Dμ[A]φ|2 − V [φ] + ψ1/D[A]ψ1 − m1ψ1ψ1

+ ψ2/D[C]ψ2 − m2ψ2ψ2 (1)

+ κ

4π
εμνα Aμ∂νCα

¶
. (2)

Note that the only observable field coupled to the hidden sector is 
Aμ .

The presence in the dark sector of a U (1) gauge boson and a 
scalar breaking this symmetry is a key ingredient in the proposal 
of a dark matter theory as discussed in ref. [18]. In our proposal, 
the complex scalar φ couples to the visible gauge field Aμ ,

Dμ[A]φ = (∂μ + i²e Aμ)φ , φ = φ1 + iφ2 , (3)

and this will have relevant consequences as we shall see below.
Concerning the remaining terms of the first line in Eq. (2), the 

hidden fermions ψ i (i = 1, 2) are each one minimally coupled to 
the visible and the hidden gauge fields Aμ, Cμ ,

/D[A]ψ1 = (/∂ + i²e/A)ψ1 , /D[C]ψ2 = (/∂ + ieh/C)ψ2 . (4)

Here, e represents the elementary charge in the visible sector. The 
coupling between hidden matter fields and the visible gauge field 
corresponds to a charge ²e. If we take ² ¿ 1, then ²e can be in-
terpreted as a milli-charge [21], as discussed in the introduction. 
As for eh , it is the charge of the hidden fermion ψ2.

The symmetry breaking potential V [φ] takes the form

V [φ] = λ

4

³
|φ|2 − φ0

2
´2

. (5)

Finally, the last term in the action (2) corresponds to a BF term 
coupling the visible and the hidden gauge fields.

As for the fields and parameters mass dimensions, one has

[φ] = m1/2 , [A] = [C] = [ψ i] = m ,

[e] = [eh] = [²] = [κ] = m0 , [λ] = m .

Electric and magnetic fields are

B A = −F 12[A] , Ei
A = −F i0[A] , (6)

and analogous formulæhold for Cμ field.
2.1. The effective action

As it is well known, each fermion determinant in d = 3 dimen-
sions has a parity odd and a parity even contribution. The parity 
odd one is the well-honoured Chern-Simons term [22]

Z
Dψ̄ 1Dψ1 exp

µ
−

Z
d3xψ̄1 ¡

/D[A] + m1
¢
ψ1

¶¯̄̄
¯
odd

=

exp

µ
i
(²e)2

8π

Z
d3x

µ
±1 + |m1|

m1

¶
εμνα Aμ∂ν Aα

¶
(7)

and an analogous formula holds for the ψ2 contribution, namely

Z
Dψ̄ 2Dψ2 exp

µ
−

Z
d3xψ̄ 2 ¡

/D[A] + m2
¢
ψ2

¶¯̄̄
¯
odd

=

exp

Ã
i

e2
H

8π

Z
d3x

µ
±1 + |m2|

m2

¶
εμνα Aμ∂ν Aα

!
(8)

with eh and m2 hidden charge and mass respectively. Note that in 
Eqs. (7)-(8) we have used the gauge invariant results obtained in 
[23] using the ζ -function regularization. Within this method, the 
origin of the double sign has to do with the possible extensions of 
the complex powers of the Dirac operators. Indeed, depending on 
the choice of upper or lower half plane, the results differ in a fac-
tor (−1)d , with d the space-time dimensions. Hence the ambiguity 
is always present in any odd dimensional case. Within Pauli-Villars 
regularization the ambiguity is related to the fact that mass terms, 
the physical and the regulator ones, violate P and T invariance. 
Finally, note that Eqs. (7)-(8) can be also used in the limm→0 case, 
still giving a non-trivial gauge-invariant result. A thoroughly dis-
cussion on these issues can be found in ref. [23].

As for the even parity contribution to the fermionic determi-
nant, after an expansion in ∂/m1 we obtain, to the leading order,Z

Dψ̄ 1Dψ1 exp

µ
−

Z
d3xψ̄1 ¡

/D[A] + m1
¢
ψ1

¶¯̄̄
¯
even

= exp

µ
i

(²e)2

48π |m1|
Z

d3xFμν [A]F μν [A]
¶

, (9)

and an analogous result holds for ψ2. We then have for the effec-
tive Lagrangian associated to action (2) after the fermionic path-
integration,

Leff = − ²2e2

48π |m1| Fμν [A]F μν [A] + 1

2
|Dμ[A]φ|2 − V [φ]

+ 1

4π
εμνα

³
²2e2 Aμ∂ν Aα + e2

hCμ∂νCα + κCμ∂ν Aα

´
,

(10)

where we dropped the kinetic term for Cμ and assume for sim-
plicity that |m2| À |m1|. From here on we shall consider positive 
fermion mass m1 and comment at the end on the negative mass 
case. As for the sign indetermination, we chose to work with the 
positive sign (the result (7) was obtained using a ζ -function reg-
ularization in which the double sign arises in odd-dimensional 
theories).

We now introduce a field C̃μ defined as

C̃μ = Cμ + κ

2e2
h

Aμ , (11)

in terms of which Lagrangian (10) reads
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Leff = − ²2e2

48πm1
Fμν [A]F μν [A] + 1

2
|Dμ[A]φ|2 − V [φ]

+ 1

4π
εμνα

ÃÃ
e2²2 − κ2

4e2
h

!
Aμ∂ν Aα + e2

hC̃μ∂ν C̃α

!
.

(12)

Given Lagrangian (12), the field equations read

Dμ[A]Dμ[A]φ + δV /δφ∗ = 0 , (13)

1

12πm1
∂μF μν [A] + 1

4π

Ã
1 − κ2

4²2e2e2
h

!
εαβν Fαβ [A] = − jν ,

(14)

εαβν Fαβ [C̃] = 0 , (15)

where the current jν is defined as

jν = |φ|2 Aν + i

2²e

¡
φ∂νφ∗ − φ∗∂νφ

¢
. (16)

We see that the first two equations corresponds to a Maxwell-
Chern-Simons-Higgs system completely decoupled from the C̃μ

field. Concerning C̃μ , Eq. (15) implies that it can be gauged away 
and then one has, using Eq. (11),

Cμ = − κ

2e2
h

Aμ . (17)

The associated magnetic BC and electric EC fields can then be re-
lated to those of the Aμ field,

B A = −2e2
h

κ
BC , EE A = −2e2

h

κ
EEC , (18)

and hence the associated magnetic fluxes 8A and 8C should take 
the form

8A =
Z

B Ad2x = 2πn

²e
= −2e2

h

κ

Z
BC d2x = −2e2

h

κ
8C (19)

Finally, we can deduce from (14) that

1

12πm1

E∇ · EE A + 1

2π

Ã
1 − κ2

4²2e2e2
h

!
B A = j0 = |φ|2 A0 . (20)

As it is always the case when a Chern-Simons term is present, 
there is a relation between magnetic fluxes 8 and electric charges 
Q , in this case given by

Q A = 1

2π

Ã
1 − κ2

4²2e2e2
h

!
8A , Q C = − κ

2e2
h

Q A . (21)

Note that when κ takes a critical value κc ,

κc = 2²eeh (22)

both electric charges vanish. This is due to the fact that, at κ =
κc , the Chern-Simons contribution for the Aμ gauge field equation 
(14) vanishes and, as it is well known, in that case there are not 
finite energy electrically charged solutions.

In order to find vortex like solutions we propose the usual axi-
ally symmetric ansatz

Aϕ = −a(r)

r
, A0 = a0(r) , (23)

Cϕ = − c(r)

r
, C0 = c0(r) , (24)

φ = φ0 f (r)einϕ (25)
which yields to the field equations

f 00 + f 0

r
− f

r2
(n − ²ea)2 + ²2e2 f a2

0 − λφ2
0

2
f ( f 2 − 1) = 0 , (26)

a00 − a0

r
+ 12πm1

²e
φ2

0 f 2(n − ²ea)

− 6m1

Ã
1 − κ2

4e2
h²

2e2

!
a0

0r = 0 , (27)

a00
0 + a0

0

r
− 12πm1φ

2
0a0 f 2 − 6m1

Ã
1 − κ2

4e2
h²

2e2

!
a0

r
= 0 , (28)

c0 + κ

2e2
h

a0 = 0 , (29)

c0
0 + κ

2e2
h

a0
0 = 0 . (30)

As for the boundary conditions, we set

f (0) = a(0) = c(0) = 0 , (31)

f (∞) = 1 , a(∞) = n

²e
, a0(∞) = 0 . (32)

We have not set conditions for a0 at the origin, since its behaviour 
is constrained by equations (26)-(28) (see [25]).

The electric and magnetic fields for the Aμ gauge field take the 
form

EE A = −a0
0ř , B A = −a0

r
. (33)

(Here ř is the radial unit vector). From this we can write the en-
ergy in the form

E = 2π

Z
rdr

µ
²2e2

24πm1

³
B2

A + E2
A

´
− 1

2
|Dμ[A]φ|2 + V [φ]

¶
(34)

= 2π

Z
rdr

Ã
²2e2

24πm1

³
B2

A + E2
A

´
+ φ2

0

2

µ
f 02 + f 2

r2
(n − ²ea)2

¶

+²2e2φ2
0

2
a2

0 f 2 + λφ4
0

4

³
f 2 − 1

´2
!

≡
Z

ε(r)rdr , (35)

where ε(r) is the energy density. It is interesting to note that there 
is no hidden sector contribution to the energy. This is due to the 
fact that the C S[C] term is metric independent and hence its T00 =
0 and since there is no hidden scalar there is no C0 contribution 
through the Gauss law.

3. Asymptotic behaviour

For large r, with the same calculations in [24] it can be shown 
that the fields behave as

a(r) → n

²e
+ α±φ0

√
re−μ±r , (36)

a0(r) → ±α±
φ0

e−μ±r

√
r

, (37)

f (r) → 1 + β±
φ0

e−mhr

√
r

, (38)

where α± and β± are dimensionless constants, mh ≡ 1/ζ =
φ0

√
λ/2 is the Higgs mass (with ζ the coherence length), and



4 A. Rapoport, F.A. Schaposnik / Physics Letters B 806 (2020) 135472

Fig. 1. Profiles of magnetic and radial electric fields for the Aμ and Cμ gauge fields (dashed and solid lines, respectively) as m1 changes, in units of φ2
0 . The parameters were 

set to: n = 1, φ0 = 1.0, κ = 0.1, e = 1.0, eh = 0.1, λ = 0.25, ² = 0.4.
μ± = ±μ

2
+

s
μ2

4
+ 12πm1φ

2
0 (39)

are the gauge field masses, with

μ ≡ 3m1

Ã
1 − κ2

4e2
h²

2e2

!
. (40)

As it is well known, when the Higgs field and gauge field masses 
coincide, the abelian Higgs model can be supersymmetrized [20], 
both when the gauge field dynamics is governed by a Maxwell or 
a Chern-Simons term. This is not the case when both terms are 
present, as it is the case of Lagrangian (10). However, let us note 
that in the low energy limit one can disregard the Maxwell term, 
and in that case supersymmetry would be achieved whenever

η± = mh

μ±
= 1 . (41)

Let us also note that η± ≥ 1 corresponds to type II superconduc-
tivity, which is equivalent in the present case to

1 ≥ κ2

4e2
h²

2e2
≥ 1 −

r
2

λ
φ0

µ
λ

6m1
− 4π

¶
(42)

for the μ+ case, whereas for μ− we have

1 ≤ κ2

4e2
h²

2e2
≤ 1 +

r
2

λ
φ0

µ
λ

6m1
− 4π

¶
. (43)

For each inequality, these expressions define a hypersurface of 
phase transition in the space of the present parameters, as can be 
found in [25] for the Maxwell Chern-Simons Higgs model.

4. Numerical results

We have studied numerically Eqs. (26)-(30) in the type II super-
conductivity region using a second-order central finite difference 
procedure with an accuracy of O(10−4). We tested the solver for 
the bosonic sector of the action (2) setting κ = 0, and accurately 
reproduced the exact result of the Bogomol’nyi lowest bound for 
the lowest-energy n = 1 vortex, E = φ2

0π [19,20].
We studied the behaviour of the resulting profiles for the mag-

netic, electric and Higgs fields, and the energy density, for different 
values of the parameters of the model. In Figs. 1a-1b we show the 
dependence of vortex-like magnetic fields (B A and BC ) and elec-
tric fields (E A and EC ) on m1, the fermion ψ1 mass, leaving the 
other parameters fixed. Note that, for fixed κ and eh , B A and BC
are proportional and with opposite signs, according to Eq. (18), as 
it is seen in the figures, and the same happens for E A and EC . We 
observe that the maximum of BC increases as m1 does for small 
values of m1, whereas it decreases as m1 increases for larger val-
ues. For large masses BC tends to ever smaller values at the origin, 
which is consistent with the fact that the magnetic field vanishes 
at r = 0 for a pure Chern-Simons model. Indeed, making m1 → ∞
implies dropping the Maxwell term in our original Lagrangian.

Concerning small masses, the Maxwell term becomes dominant 
and vortex solutions are similar to those for the Abelian Higgs 
model, with the magnetic field maximum tending to r = 0. For a 
given value of m1 (which could be estimated numerically) there is 
a transition and the maximum departs from the origin. It should 
be noted that, for the chosen values of the rest of the parameters 
of the model, this behaviour holds for all different values of ² in 
the studied range [0.1, 1], except for the case ² = 0.5. According 
to Eq. (40), ² = 0.5 implies μ = 0, in which case the effective La-
grangian (12) becomes the Abelian Higgs model Lagrangian, whose 
magnetic field attains its maximum at r = 0 as stated above, no 
matter how large m1 might be. Indeed, this behaviour can be seen 
in Figs. 2a-2b, showing the maximum of BC and the value rmax
where it is attained, as a function of m1 and for three different val-
ues of ² . It can be seen that, for ² 6= 0.5, this maximum decreases 
for both large and small values of m1, whereas it keeps increas-
ing along with m1 for the case ² = 0.5. Moreover, for ² 6= 0.5, we 
see that rmax departs from the origin r = 0 for some value of m1
(depending on ²).

The qualitative behaviour of EC , on the other hand, does not 
differ much from the usual pure CS model. For m1 → 0, EC van-
ishes since the Maxwell contribution dominates the Chern-Simons 
one and, as it is well known, there is no finite energy solution 
with non-zero electric field for the abelian Higgs model without 
a Chern-Simons contribution. The solution is the well-honoured 
Nielsen-Olesen vortex for the magnetic field.

In Figs. 3a-3b we present the field profiles for different val-
ues of the visible coupling ² . Contrary to what happens with m1, 
the maximum of BC increases as ² does for large values of ² , 
whereas it decreases as ² increases for smaller values. However, 
for small values of ² the field spreads and becomes less localized, 
whereas for large values of m1 it remains localized around the 
same region. This behaviour was to be expected since, for ² → 0, 
Aμ decouples from the ψ1 fermions and the Higgs field φ, and 
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Fig. 2. Maximum values of BC (a) and the value rmax where it is attained (b) as a function of m1, for three different values of ² . The parameters were set to: n = 1, φ0 = 1.0, 
κ = 0.1, e = 1.0, eh = 0.1, λ = 0.25.

Fig. 3. Profiles of magnetic and radial electric fields for the Aμ and Cμ gauge fields (dashed and solid lines, respectively) as ² changes. The parameters were set to: n = 1, 
φ0 = 1.0, κ = 0.1, e = 1.0, eh = 0.1, λ = 0.25, m1 = 1.0.
there is no Aμ dynamics. According to the effective Lagrangian 
(12), all that remains is a Chern-Simons term for Aμ , and hence 
Fμν [A] = Fμν [C] = 0. This phenomenon also arises for the electric 
field, as it can be seen in Fig. 3b.

As for the electric field EC , it can be seen in Fig. 3b that there is 
a change in its sign when passing from ² < 0.5 to ² > 0.5. Accord-
ing to Eq. (40) and the values of the other parameters, this implies 
a change in sign for μ. As stated above, for μ = 0 the effective La-
grangian (12) becomes the abelian Higgs model Lagrangian, which 
has zero electric field solution, as the figure shows.

Concerning the Higgs field, its behaviour does not depend con-
siderably on the model parameters. Moreover, its profiles coincide 
qualitatively with those of the Nielsen-Olesen vortices, vanishing 
at the vortex core and reaching its VEV for larger r.

As for the energy density, it is interesting to analyze its be-
haviour as ² changes. One can see in Fig. 4 that, for small values 
of ² , the concentration of energy spreads further away from the 
origin, consistently with the analogous behaviour of the electric 
and magnetic fields.

The results described above were obtained using the overal +
sign in the ambiguity of the Chern-Simons term arising from the 
regularization of determinants in odd dimensions. Choosing the 
overall negative sign yields a change in the sign of the constant 
μ (see Eqs. (39)-(40)) and in turn a change of the sign of the elec-
Fig. 4. Energy density ε(r) as ² changes. The parameters were set to: n = 1, φ0 =
1.0, κ = 0.1, e = 1.0, eh = 0.1, λ = 0.25, m1 = 1.0.

tric fields E A and EC . It should be also mentioned that the curves 
shape are similar to those corresponding to the + sign discussed 
above. It should be also mentioned that this analysis for different 
values of ² was also carried out for other values of m1, yielding 
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qualitatively similar results, without any particular case for any 
value of m1 (as opposed to the previous analysis for different val-
ues of m1, where the case for ² = 0.5 was particularly different).

5. Summary and discussion

We have studied in this work a 2 + 1 dimensional model in 
which the gauge and matter fields in a hidden sector are cou-
pled to an external gauge field in the visible sector. Integration 
over fermion fields yielded an effective Lagrangian Leff (10) where 
instead of fermions one has Chern-Simons terms for both gauge 
fields and also Maxwell terms corrections at order 1/m.

Proposing a Nielsen-Olesen like ansatz we studied the field 
equations associated to Leff and found vortex-like solutions for 
both gauge fields when the masses m1 and m2 of each of the two 
fermions are such that m2 À m1.

Interestingly enough, despite that the U (1) symmetry associ-
ated to the Aμ gauge field has no explicit symmetry breaking 
potential, vortex-like solutions for this field with quantized B A flux 
do exist because of the mixing among both sectors. Analogously, 
there was no coupling between Cμ and the symmetry breaking 
potential V [φ] and yet a non-trivial flux was found for the mag-
netic field BC . Indeed, ansatz (25) for the scalar field forces Aμ

to have an asymptotic behaviour Aϕ → n/(²e) since otherwise the 
energy term associated to the covariant derivative Dϕ [A] would 
diverge. This the reason why there is a quantized B A flux. Then, 
since fields Aμ and Cμ are related according to Eq. (17) also the 
BC flux is nontrivial quantized,

8A =
Z

B Ad2x = 2πn

²e
= −2e2

h

κ
8C , (44)

and hence we see that 8C is also quantized, given by

8C = πκ

²ee2
h

n . (45)

Let us note at this point that related models in which Chern-
Simons terms were included in one or both sectors have been 
studied in refs. [26–28]. However, in those cases the idea was to 
consider supersymmetric extensions that guarantee the existence 
of first order BPS equations, and of course this requires that gauge 
and scalar fields should be present in both sectors. Moreover, as 
stated in the introduction, in the present case one can think of the 
Aμ gauge field in the visible sector as an external field much like 
the role played by the external magnetic field in the phenomeno-
logical Landau-Ginzburg superconductivity theory, except that the 
order parameter is not in the visible sector.

As for the gauge symmetry breaking in a sector where there 
was no appropriate potential, it has been previously discussed in 
ref. [12] for the case of Maxwell gauge field dynamics in both sec-
tors and with the gauge mixing was of the Fμν [A]F μν [C] type. 
Even in the absence of a gauge symmetry breaking associated to 
the Aμ gauge field, a quantized Aμ magnetic flux was generated 
because of the gauge mixing. But since no Chern-Simons term was 
present, no electric charge could be generated neither in the vis-
ible nor in the hidden sector. In contrast, there exist electrically 
charged solutions, a result that could be relevant in the analysis of 
topological superconductors.

Another interesting result is that there is a critical value of the 
gauge mixing coupling constant κ = κc at which the vortex elec-
tric charges vanish since the field equations become those of a 
Maxwell-Higgs model which has no electrically charged finite en-
ergy solutions (see for example [29]).

As mentioned in the introduction, there is a connection of the 
model we studied and those related to materials in which duali-
ties in 2 + 1 dimensions and topological order plays a central role. 
In particular, the effective dual theory discussed in reference [30]
can be related to ours if one takes the external gauge field Aμ as 
a probe with the dynamical fields describing the surface of topo-
logical insulators. We expect to discuss this issue thoroughly in a 
future work.
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