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Motivation

The current global needs, demand drastic changes in the way we interact with our
environment. Being the production of energy, the pillar that sustains the modern
society, and also, the one that more contribute to the environmental damages that
we now face. The need to reduce the use of fossil fuels, moves us towards a future
with a growing electrical market, full of a diversity of loads such as electric vehicles,
small industries, and homes [1, 2]. The challenges that climate change presents to
humanity have motivated the investigation and development in renewable energies,
a field with so many open issues. One of them is the problem of clustering and
control distributed energy resources (DERs), like photo-voltaics (PV), wind-power
(WP), and small hydro-power (SHP).

A micro-grid group loads and DERs in a single controllable entity, with clearly
defined electrical boundaries. As a small scale power system, a microgrid can ensure
self-supply and a considerable autonomy with respect to the grid, satisfying the
needs of its network, bringing stability and reliability in the service, and isolating
the loads from the grid failures. [3, 1, 4].

In the national context, Colombia’s geographical location makes it one of the
most vulnerable countries in terms of climate change, since its electricity generation
network is composed mostly of hydroelectric power plants, a weak technology against
droughts and phenomena such as El niño. However, the DERs deployment capacity
available in the country, particularly in the Andes region, is virtually unlimited. In
this aspect, the PV and SHP generation methods excel [5, 6]. In addition, with
the growth of the country’s energy demand, is estimated that by 2025 the total
capacity must be increased by 60% [5]. In social terms, is well known that the high
energy costs and the number of failures in remote sites, difficult the implementation
of industrial developments in a little or middle scale. The lack of technology access
for the rural population, makes the investigation and investment in the distributed
generation, a need to achieve economic equity and overcome extreme poverty in the
countryside.
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Abstract

In this document a brief review of the DC microgrids generalities with emphasis in
the control architecture is done. A novel hybrid-control architecture to take care of
the inner, primary and secondary levels of DC microgrids monitoring, is simulated
under different conditions. In the inner control architecture an Modified Exact
Feedback Linearization with integral action approach, is proposed for control
current or voltage in a Buck converter, designed to be part of the DC microgrid.
The controllers are tested in simulation using Matlab-Simulink®. Results are com-
pared with classic PID controllers and evaluated under two different mathematical
tools (Mean Square Error, Integral Time Absolute Error) in order to prove their
effectiveness. The evaluated data show that the proposed approach outperform the
classical methods.

Different models of the said converters are clustered to build the microgrid sce-
nario. Primary and secondary control architectures were designed in a centralized
way with PI regulators of voltage and current. The microgrid was tested in Matlab-
Simulink® with two disturbances, including a forced isolation of the microgrid, show-
ing and acceptable performance.

0.1 Document structure
Chapter 1 enumerates the project objectives. In chapter 2 an introduction over the
microgrids topic is done, considering state of the art in the distributed generators
field, the differences between AC and DC distributions systems, and an introduc-
tion to the control architectures. Chapter 3 present the case study used to design
the microgrid considering the generators topologies and the needs of the Colom-
bian countryside. In chapter 4, the overall control architecture theory is described.
Finally, chapters 5 and 6 present the results of the proposed controllers and the
project’s conclusions, respectively.
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CHAPTER 1

Objectives

1.1 General objective
Design and control a low voltage DC microgrid powered by distributed energy re-
sources.

1.2 Specific objectives
1. Research over the most suitable renewable DGs, their physical characteristics,

dynamic models and control strategies.

2. Design a low voltage DC microgrid with the selected DGs and loads.

3. Design primary control strategies with a non-linear control technique and val-
idate it through simulation.

4. Prove and validate primary and secondary control architecture in order to
achieve acceptable voltage and current regulation.
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CHAPTER 2

Introduction

2.1 Generalities of the microgrids
This section explores the main concepts involved in the microgrids investigation
framework as well as general information relevant to the investigation process.

2.1.1 Distributed energy resources (DERs) and distributed
generators (DGs)

Formally, a DER is any renewable or non-renewable energy source that, by means of
small or medium-scale equipment, called DG, could produce electrical energy.Unlike
the large power plants, the DGs are characterised by being located and distributed
to guarantee the maximum exploitation of a region’s energy resources; with low
monetary and environmental costs, among other strengths.

The global electric market’s projection foresees that by 2030, the 80% of the new
installed capacity will come from fossil fuels, with all the environmental problems
that this implies. Despite these forecasts, the concept of large power plants has been
discussed through the DGs’ high penetration in global networks. Also, the advent of
DERs based on renewable technologies could help mitigate of the damages produced
by the use of fossil fuels. [9].

In the technical field, the main impacts resulting from large-scale DGs integration
are the voltage rise effect, power quality issues, branch overload problems, protection
issues, and stability issues [10]. Tables 2.1 and 2.2 compares the principal DGs
technologies and shows their differences in some remarkable aspects.

3



Chapter 2. Introduction 4

Technology Primary
energy

Output
type

Module
power
(kW)

Electrical
efficiency
(%)

Overall
efficiency
(%)

Advantages Disadvantages

Reciprocating
engines

Diesel or gas. AC mar-00 30-43 ∼ 80 − 85 • Low cost.
• High efficiency.
• Ability to use various.

• Environmentally
unfriendly emissions.

Gas turbine Diesel or gas. AC 0.5-
30000

21-40 ∼ 80 − 90 Environmentally friendly.
• Cost effective

• Too big for Small
costumers.

Micro-
turbine

Bio-gas propane
or natural gas.

AC 30-1000 14-30 ∼ 80 − 85 • Small size and light
weight.
• Easy start-up and shut
down.
• Low maintenance costs

• Expensive technol-
ogy
• Cost-effectiveness
sensitive to the price
of fuel.
• Environmentally
unfriendly emissions.

Fuel Cell Ethanol, H2,
N2, natural
gas, phosphoric
acid or propane.

DC 1-20000 05-55 ∼ 80 − 90 • One of the most envi-
ronmentally friendly
generator.
• Extremely quiet.
• Useful for combined
heat and electricity appli-
cations.

• Expensive infras-
tructure for hydrogen.

Table 2.1: Main non renewable DGs technologies [7].

Technology Primary
energy

Output
type

Module
power
(kW)

Electrical
efficiency
(%)

Overall
efficiency
(%)

Advantages Disadvantages

Wind-
power

Wind AC 0.2-3000 - $\sim50-
80$

• Day and night power generation.
• One of the most developed re-
newable energy.

• Still expensive.
• Need energy storage.

Photo-
voltaic

Sun DC 0.02-1000 - $\sim40-
45$

• Emission free.
• usable in many applications

• Need energy storage.
• High up-front cost.

Biomass
gasification

Biomass AC 100-20000 15-25 $\sim60-
75$

• Minimal environmental impact.
• Available throughout the world.
• Alcohols and other fuels pro-
duced by biomass are efficient, vi-
able, and relatively clean burning.

• Still expensive.

Small Hy-
dro power

Water AC 5-100000 - $\sim90-
98$

• Economic and environmentally
friendly.
• Relatively low up-front invest-
ment costs and maintenance.
• Useful for providing peak power
and spinning reserves.

• Suitable site charac-
teristics required.
• Difficult energy ex-
pansion.
• Local environmental
impact.

Geothermal Hot
water

AC 5000-
100000

10-32 $\sim35-
50$

• Environmentally friendly.
• Low running costs

• No-availability of
geothermal spots in the
land of interest.

Ocean
energy

Ocean
waves

AC 10-10000 - - • High power density.
• More predictable than solar or
wind.

• Lack of commercial
projects.
• Unknown operations
and maintenance costs.

Solar ther-
mal

Sun and
water

AC 1000-
80000

30-40 $\sim50-
75$

• Simple, low maintenance.
•Operation costs nearly zero.
• Developed technology.

• Unknown operations
and maintenance costs.
• Low energy density.
• Limited scalability.

Table 2.2: Main renewable DGs technologies [7].



5 2.1. Generalities of the microgrids

2.1.2 Energy storage systems (ESS)

The ESS are devices that can store energy in any of its forms, and deliver it as elec-
trical power (current or voltage sources). The use of storage systems in microgrids is
fundamental to ensuring power-sharing during fails and operational changes. Table
2.3 shows the most important technologies in this area.

Technology Efficiency
(%)

Capacity
(MW )

Energy
Density
(Wh/kg)

Capital
e/kW

Lifetime
(years)

Maturity Environ-
mental
Impact

Examples

TES 30-60 0-300 80-250 140-220 5-40 Developed Small Solar tow Central Receiver Solar Power Plant
California (USA).

PHS 75-85 100-5000 0.5-1.5 400-1500 40-60 Mature Negative Rocky River PHS plant, Hartford(USA).
CAES 50-89 3-400 30-60 250–1500 20–60 Developed Negative Huntorf (Germany) and MacIntosh, Al-

abama(USA).
Flywheel 93-95 0-25 10-30 250 $\sim15 Demonstration Almost Commercially supplied by AFS-Trinity

(USA), Beacon Power (USA), Piller (USA),
etc.

Pb acid battery 70-90 0-40 30-50 200 5-15 Mature Negative BEWAG Plant, Berlin (Germany).
NiCd battery 60-65 0-40 50-75 350-1100 10-20 Commercial Negative Golden Valley, Alaska USA.
Li-ion battery 85-90 0-1 75-200 3000 5-15 Demostration Negative Kyushu Electric Power and Mitsubishi Heavy

Industries (Japan).
Fuel Cells 20-50 0-50 800-10000 350-1100 5-15 Developing Small Topsoe FuelCell, Lyngby, (Denmark).
Flow battery
capacitors

75-85 0.3-15 10-50 400-1100 5-15 Developing Negative Innogys Little Barford Power Station, (UK).

Capacitors 60-65 0-0.05 0.05-5 250 $\sim5 Developing Small Commercially supplied by SAFT (France),
NESS (Korea), ESMA(Russia) etc.

Supercapacitors 90-95 0-0.3 2.5-15 200 > 20 Developed Small PowerCache (Maxwell,USA), ELIT(Russia),
PowerSystemCo. (Japan), Chubu Electric
Power
(Japan), etc.

SMES 95-98 0.1-10 0.5-5 200 >20 Demonstration Positive Wisconsin Public Service Corporation (USA).
Conventions:
TES: Thermal energy storage.
PHS: Pumped hydro storage.
CAES: Compressed sir energy storage.
Pb-acid battery: Lead-acid battery.
Ni-Cd battery: Nickel-cadmium battery.
Li-ion battery: Lithium-ion battery.
SMES: Superconduction magnetic energy storage.

Table 2.3: Main ESS technologies [7].

2.1.3 Power electronics converters

The central operation systems of a microgrid, are the power electronics converters.
With appropriated control algorithms, these devices enable the transformation of
different forms of electric energy (DC and AC of high and low voltage). The most
used power converters topologies are different variants of the classical converters,
as the Buck, Buck-Boost and Boost, that can be mono-directional or bi-directional
depending of the controlled DG; and the implementation of cascade voltage source
converters (VSC) in DC-AC or AC-DC applications.
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Small Hydropower

Distribution Line

Photo voltaic 

energyWind power 

Diesel Generator 

Load

Energy storage 

systems

PCC

Energy storage 

systems

Load

Load

Load

Figure 2.1: Example of a microgrid with distributed energy resources.

2.1.4 Microgrid definition
In the discussion about the new distribution systems topologies, the integration
of the non-conventional energy resources, and the standardization of the so-called
smart grid, the microgrid concept has won special attention due to the flexibility,
reliability, and benefits that these network topologies will add to the distribution
lines in the near future [9].

Several definitions have been established for a microgrid, and each country has
legislation about the grid features, and its operational capabilities. In general, all
definitions agree that a microgrid is a cluster of distributed generators and loads,
with clearly defined electrical boundaries and the capacity of operating in connection
with the grid or autonomously (island mode) [2, 3, 1]. According with these defini-
tion, Fig. 2.1 shows an arbitrary microgrid architecture with distributed generators
and loads.

A relevant characteristics of every microgrid is the Point of common coupling
abbreviated PCC, in which the system interacts with the utility grid, and the inte-
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gration of several distributed generators.

2.2 DC vs AC
The first known microgrid was made by Thomas Edison in 1882, when he installed
50 small scale power plants in a course of four years [1]. But, as a concept, the word
microgrid was introduced by professor R.H Lasseter of university of Wisconsin-
Madison in 2001. This year is the beginning in the investigation on the microgrid
field. [1], [2]. Multiple laboratories and test facilities were deployed around the world
during this period, some of the most important were located in Greece, United
States, Italy, England, Japan and China.

The development of microgrids around the world revive the old battle between
the two modes of electric energy distribution (AC and DC). This, due to the ad-
vances in the power electronics converters field and the developments in the micro-
grids deployment, leading the integration of new generation technologies. Microgrids
topologies are now divided between AC and DC operation modes. Has been proved
that the implementation of DC-based microgrids, will transform the way of the
energy management; specially, in the fields of transport, telecommunications, infor-
matics and industry. This, due to the design and control simplicity, and efficiency
compared to AC microgrids [4], [8]. Differences between these two technologies can
be seen in table 2.4.

Influence
parameter

AC distribution line DC distribution line

Power
transmitted

Less efficiency due to high line loss, hence less
power transmission.
Require more conductors

More efficiency and more power transmis-
sion.
Require few conductors

System sta-
bility

Less stable due to easily affected by external dis-
turbances

More stable and can also increase the sta-
bility of the AC microgrid systems.

Reluctance Have reactance in line No reactance in the line and hence more
power transmitted

Frequency
(50 Hz or 60
Hz

Frequency monitoring is mandatory Frequency is zero, so no need of frequency
monitoring

Resistance High line resistance and hence high losses Have low line resistance and hence low
line losses.

Susceptance Charging current and over-voltage problem lead to
high cost and low power transmission.

Do no exist, and hence effect of over-
voltage and over-charging leading and
high power transmission.

Analysis Involve complex numbers and hence difficult to an-
alyze.

Involve only real number i.e more simple.

Table 2.4: Comparison between AC and DC distribution lines [8].

Table 2.5 compare research results in the control aspect of AC and DCmicrogrids.
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Operating
mode

AC microgrids DC microgrids

Grid-connected Mode
MGCC • Monitoring system diagnosis by collection information from the

LVAC network, DGs units and loads (AC and DC).
• Performing state estimation and security assessments, evaluate
economic generation scheduling active and reactive power control
of the DGs units and demand side management function using the
available information.
• Ensuring synchronized operation with the main grid, maintaining
the power exchange at prior contract points.

• The main function of the MGCC is to independently con-
trol the power flow and load-end voltage profile of the DC
units in response to any disturbance and load changes.
• Participation in economic generation scheduling, load
tracking or management and demand side management
(DSM) by controlling the storage devices.

DGCS • Ensuring that each DG unit rapidly picks up its generation to
supply its share of the load in stand-alone mode and comes back to
the grid connected mode automatically with the help of the MGCC

• Ensuring that each DG unit quickly picks up its generation
to supply its share of the load in stand-alone mode and comes
back to the grid connected mode automatically with the help
of MGCC.

Island mode
MGCC • Performing active reactive power control of the DGs in order to

maintain stable voltage and frequency at the load ends.
• Managing load interruption/shedding strategies using demand
side management (DSM) with ESS support for maintaining power
balance and voltage.
• Initializing local black start to ensure reliability and continuity
of the service.
• Switching the microgrid to grid-connected mode after the main
grid supply is restored without hampering the stability.

• Independently control the power flow and load-end voltage
profile of the DG units in response to any disturbance and
lad changes.
• Ensuring the DG units rapidly pick ups its generation to
supply its local load islanding mode and automatically recon-
nect to grid with the help of the MGCC.

DGCs • Commanding each DG unit to rapidly pick up this generation to
supply its corresponding local in the stand-alone mode and auto-
matically re-synchronize to grid with the help of the MGCC.

• Ensuring that each DG unit rapidly picks up this genera-
tion to supply this share of the load in stand-alone mode and
comes back to the grid-connected mode automatically with
the help of the MGCC.

Conventions:
MGCC: Microgrid central controller.
LVAC: Low voltage AC network.
DGCS: Distributed generator control system

Table 2.5: Comparison between AC and DC control tasks [8].

Accurate, actualised and detailed information about the state of art in microgrids
control is provided in [11], [12] and [13].

With a exhaustive revision of the literature, is possible to conclude that DC
microgrids have a considerable advantage against AC microgrids.
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2.3 Introduction to DC microgrids control strate-
gies

The growing of the distribution generation, makes the control structure a funda-
mental axes of the microgrids operation. The main control objectives are given
below.

• Efficient voltage and current control in every operating mode.

• Proportional load sharing.

• Stable operation with constant and non-linear loads.

• Coordination among different DERs and ESS.

• Synchronisation with the utility grid.

• Power flow control within DC microgrid and the utility grid.

• Smooth transition between grid-connected to island mode.

Different control task are required by an MG in order to satisfy the objectives
above. The main control challenges in this field arise from the unknown behaviours
of the renewable sources such as photo-voltaic and wind-power.

Usually, the control of microgrids is designed according to the structure depicted
in Fig. 2.2, in which each layer seeks to meet specific control objectives, determined
by the system’s operational needs. The primary layer (field level) takes care of
the internal control of each distributed generator and loads, regulating the power
production and loads consumption. The secondary layer (management level) seeks
to maintain the grid’s stable operation, exchanging information with the tertiary
layer to set the appropriate references to the first layer. In the end, the tertiary
layer (grid level) regulates the economic dispatch, determining the times to sell
or buy energy from the utility grid and the charge or discharge of energy storage
nodes [7, 14, 15].
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Figure 2.3: Classic current PI controller in power electronic devices.
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Figure 2.2: Hierarchical control structure in a microgrid [7].

2.3.1 Internal control

Most of the literature refers the internal control as a part of the primary control
strategies, since it must be located internally in the DG or load interfaces, with the
objective of control the primary variables of the power electronic converter. For
explanatory purposes, a separation of the internal and primary controllers is made
in this research.

A PI controller is applied with current feedback in classical architecture to track
a reference current as is depicted in Fig. 2.3.

To control the output voltage, over the current loop in Fig. 2.3, is implemented
a PI outer loop with an output voltage feedback, as is shown in Fig. 2.4, this is
known as voltage-current cascade control.

PI controllers are simple and with relative easy tuning. This research proposes a
non-linear control technique that has better response and better sturdiness against
perturbations. The detailed explanation is developed in chapter 4.
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2.3.2 Primary control strategies
In the field level, the conventional controller implemented is the droop control. In
DC microgrids the power is proportional to the current, and hence both, voltage
and current, can be used to implement the droop controller [16, 17, 18]. Detailed
explanation about this control architecture is available on chapter 4.

2.3.3 Secondary control strategies
The microgrid’s main control objectives are performed in the second layer. These
control objectives include the turn-on, the turn-down, isolation, and re-connection
protocols, besides the regulation of the internal power production and consump-
tion [10]. The control architecture in this layer does not have a consensus due to the
different topologies proposed in the literature. These are the centralized, distributed,
and decentralized methods, [17, 14, 19].

Centralized control

The centralised control uses an overall communication system ruled by a Microgrid
central controller (MGCC) usually located at the PCC. Generally, it gives better
performance throughout optimising the system by collecting all required information
in one single algorithm driven by the central processor.

Due to the better performance and efficiency, the centralized control has lead
to significant developments in optimization and robustness, as is shown in [20, 21],
and the coordination of different renewable sources power dispatch shown in [22].
Notwithstanding, as demonstrated in [23, 17], a significant issue that centralized
architecture has, is the single point failure, since the central controller carries out
all the microgrid operations, a fail in this point will lead to a generalized system
collapse; also this kind of controller lacks of scalability, which hinders the growth of
the microgrid, associated with the integration of new DGs and loads.
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Decentralized control

The decentralised control methods operates based on local information, observed by
each node of the microgrid, this guarantee the free connection of new nodes.

Examples of decentralized controllers whit significant improvements could be
seen in [24, 25], with a robust drop control strategies in [24], and a sliding mode
control in [25]. A well-known drawback of the decentralized control, also developed
by [23] is the poorer energy and frequency quality (compared with centralized struc-
tures) to the time delays among the controller’s response; this strategy also have
to overcome problems of communication derived of the noise injected in the digital
buses by the power lines, and issues in the regulation of voltage and load sharing.
[26],[27].

Distributed control

The distributed strategies seek to obtain the best features of both architectures:
the improved variable management of the centralized, and the flexibility and plug
and play service of the decentralized. The literature in distributed topologies in-
cludes complex methodologies like H∞ norm, model predictive control (MPC), and
intelligent control, among others, all have in common model-based math techniques
and complex implementation to the algorithms computational cost. In [28] an MPC
technique is applied to a renewable-based microgrid with satisfactory results. In
[29] a novel broadcast gossip technique with applicability in real-world scenarios is
presented. In [30], a resilient distributed control with the capability of avoiding
certain sensor faults is shown.



CHAPTER 3

Design of a low voltage DC microgrid

This chapter present the design criteria of a small scale microgrid, taking as a
reference, the project that served as inspiration to carry out this research.

3.1 Distributed generators classification
According to its utility, every DG could be divided in dispatchable and non-dispatchable
units. Dispatchable units can be controlled to provide the necessary power to main-
tain the grid stability, non-dispatchable units only deliver a specific amount of power
according to the actual capacity of the associated DER. Three variations of these
divisions can be considered [19]:

3.1.1 Grid forming/supporting node
With a classical control scheme depicted in Fig. 2.4, a dispatchable unit could work
as grid forming or grid supporting node. The grid forming node assume the role
of master of the microgrid, setting the voltage reference of the DC-link; in grid
connected mode, usually this role is carried out by the utility grid. A grid support-
ing node, set the voltage to its neighborhood, supporting the grid forming node; in
island operation, all the supporting nodes must work together to maintain stabil-
ity in the microgrid, this is called Cooperative control. A simplified model of grid
forming/supporting node is depicted in Fig. 3.1-(a).

3.1.2 Grid feeding node
The control scheme shown in Fig. 2.3 is normally implemented in non-dispatchable
units called grid feeding nodes. With a maximum power point tracking (MPPT),

13
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like the developed by Ospina [31], these sources only inject power o current to the
DC-link. A simplified model of grid feeding nodes is presented in Fig. 3.1-(b).

+

-

Current

Reference

Voltage

Reference

(a) (b)

Figure 3.1: Simplified microgrid nodes. (a) Grid forming/supporting node. (b) Grid
feeding node.

3.2 Case study: Intensive fish farming project

3.2.1 Generalities
An intensive fish farming project is an automated food production project, in which
the final product is fresh fish. Differs of the traditional fish farms in crucial aspects:
the production volumes, the level of automation, and the energy consumption.

The main aspect of this kind of developments is the production area. In a
small area, a well deployed intensive fish farm, could produce, near six or seven
times the same amount of fish that a traditional farm with same extension. This
is only possible with the implementation of an aeration system that allows bigger
fish concentrations in a smaller space. The aeration system must operate 24 hours,
7 days a week, because if it stops will lead to the loss of all production. However,
the constant use of electro-mechanical aireators is a considerable load to handle
with. Other loads that must to be taken into account are: illumination and general
porpoise sockets, an electric pump, and an industrial freezer.

More information about the issues related to this projects are available in refer-
ences [32, 33, 34]

3.2.2 APISBAL project
Fig. 3.2 refers the location and geography of the project developed by the APISBAL
association.

With an estimated production of 1 ton per month, the project is considered
small. However, about 10 rural families depend on the success of the project.
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Figure 3.2: Project location map.

The total load calculated is shown in table 3.1. This information is a basis of
the microgrid design.

Element Nominal power (Watts)
Variable-frequency drive 7500W

Electric pump 1500W
Other loads 1900W

Total 10900W

Table 3.1: Main loads of the fish farm project.

3.3 Proposed design
Fig. 3.2 shows a near water fall that can sustain an SHP plant. This kind of DG is
optimal to be implemented as a grid supporting node.

Additional information can be obtained of the Global solar atlas provided by The
world bank [35]. With the location coordinates is possible to determine that the full
sun hours (FSH) annually are approximately of 1680h/y, which is an optimal value
to deploy PV arrays. PV generation, as a renewable source is suitable to be a grid
feeding node in a microgrid.

Every microgrid needs an energy supply system, the battery energy storage
(BES) is the best solution in this kind of projects. Due to the size of the battery
bank, BES has better operation as a grid feeding node.

Suggested nominal power of each node is available on table 3.2. These values
were estimated having in account the variability of SHP and PV sources, and the
possibility of a net metering exchange with the utility grid.
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Node Nominal Power
SHP 9500W
PV 7600W
ESS 5700W

Table 3.2: Suggested nominal power of the DGs nodes.
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Figure 3.3: Simplified microgrid design to the fish farm project.

With this information is easy to propose a simple DC microgrid design that can
handle the local loads in connection with the utility grid. Fig. 3.3 shows the one-line
diagram of the proposed microgrid.

In terms of reliability this kind of microgrid might have energy losses due to
the variability of the renewable sources. This model could be improved with the
inclusion of a diesel generator.



CHAPTER 4

Hierarchical control in a DC microgrid

This chapter explores the theoretical and mathematical background related to the
microgrid control levels from the internal converter control to the secondary level.

4.1 Inner control

This chapter references are supported in [36].
The constant search for more robust primary level controllers has become a

relevant field of investigation in the state of the art of DC distribution systems.
The Buck converter has been widely studied in recent years due to its simplicity,
reliability, and relatively low construction cost, which make it suitable to be part of
every DC microgrid. Being a reducer-type converter, in exchange for the difference
between input and output voltages, the Buck converter can handle higher output
currents than the input equivalent [37]. These facts make it suitable to be located in
the load-side, controlling voltage, current or power of led-based illumination systems,
internet servers, industrial automation arranges, and other DC loads.

As said above, a Buck converter integrated into a microgrid must have a ro-
bust controller with the capability to operate over contingencies and disturbances
like changes in the input voltage or the load size. This capability is required to
improve the whole system performance. The Exact Feedback Linearization (EFL)
is a non-linear control technique that searches for a linear transformation of non-
linear systems. The objective is to construct a control signal that can eliminate
nonlinearities’ effects on the dynamic system’s behavior [38, 39].

17
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4.1.1 The Buck Converter
In Fig. 4.1, the classic electrical structure of a buck converter is shown, where E is
the input voltage, µ is the boolean control signal that activates the electronic switch
(usually a MOSFET or IGBT transistor), i is the inductor current, and v is the
output voltage.

Figure 4.1: General structure of a Buck converter.

The constants of the model that define its operation characteristics are the in-
ductance L in Henrys, the capacitance C in Farads, and the load resistance R in
Ohms.

Design

The design of a converter depends on its application. In this case, it must be part
of a DC microgrid with a structure, as shown in Fig. 3.3. The Buck converter could
be connected to the DC bus, feeding the led lighting system or the variable DC-load
node.

In terms of the design criteria, the most used switching strategy is the known
pulse width modulation (PWM), in which the energy of the input voltage is managed
by the time of the "On" state of the switch. In Fig. 4.2 is shown the behavior of the
diode voltage during the PWM signal period (T ).

Vd

E

t
TT

=1 =0

D(t)

Figure 4.2: Waveform of the diode voltage in period T of the PWM.
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This lets the introduction of the duty cycle variable (D(t)), as a percentage of
T , that can be expressed along with µ as presented in (4.1).

µ =


1; 0 ≤ t ≤ D(t)T

0; D(t)T < t ≤ T
(4.1)

Equation (4.1) can be simplified in terms of D giving (4.2).

µ =


1 D(t)

0 (1 −D(t))
(4.2)

With this, it is possible to calculate the critical inductor and capacitor in terms
of a continuous conduction mode of operation.

Lc = (1−D∗)R
2f

; Cc = 1−D∗

16Lcf2 (4.3)

where f is the switching frequency related to the switching period by expression (4.4),
and D∗ is the nominal value of the duty cycle in the equilibrium point. Being f
defined as:

f = 1
T

(4.4)

being T the time between two consecutive rising flanks.
With the above set of equations is possible to design a standard Buck converter

in continuous conduction mode. It is important to note that E and R are taken
theoretically as constants, but they are subject to disturbances that test the control’s
robustness in practice.

Dynamic model

To obtain a proper dynamic model is a need to understand the input signal yield’s
behaviors in the system.

Let be the input µ = 1. Then, Fig. 4.1 neglecting power losses, can be simplified
as shown in Fig. 4.3.

Defining the states of the new system (i,v), the differential equation that model
its behavior in function of the time are (4.5).

L
di

dt
= E − v(t) (4.5a)

C
dv

dt
= i(t) − 1

R
v(t) (4.5b)
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Figure 4.3: Buck converter when µ = 1, neglecting power losses.

Figure 4.4: Buck converter when µ = 0, neglecting power losses.

Now, let be µ = 0. The new schematic of the converter could be simplified as
shown in Fig. 4.4

And the resulting differential equations are shown in (4.6), as follows:

L
di

dt
= −v(t) (4.6a)

C
dv

dt
= i(t) − 1

R
v(t) (4.6b)

The sets (4.5) and (4.6) depend exclusively on the state of the input signal µ.
Multiplying (4.2) by both expressions respectively, the set (4.5) becomes (4.7).

L
di

dt
=
(
E − v(t)

)
D(t) (4.7a)

C
dv

dt
=
(
i− 1

R
v(t)

)
D(t) (4.7b)

The same procedure is performed with the set (4.6), resulting in (4.8).
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L
di

dt
= −v(t)

(
1 −D(t)

)
(4.8a)

c
dv

dt
=
(
i− 1

R
v
)

(1 −D(t)) (4.8b)

Finally, equations (4.7) and (4.8) are added in order to create an averaged model
of converter, as presented in (4.9).

L
di

dt
= ED(t) − v(t) (4.9a)

C
dv

dt
= i(t) − 1

R
v(t) (4.9b)

The pack of equations (4.9) could be expressed in state space, as shown in (4.10).[
ẋ1
ẋ2

]
=
[

0 −E
L

1
C

− 1
RC

] [
x1
x2

]
+
[

E
L

0

]
∆u (4.10)

With (4.9) and (4.10) it is possible to introduce the different control strategies
implemented below.

Behavior analysis

Calculation of the transfer function throw essential facts about the dynamic response
of the converter’s state variables. By applying the Laplace transform to (4.9) and
building the equivalent transfer functions of current (4.11) and voltage (4.12), it
is possible to analyze some facts that guarantee the performance of the non-linear
controllers.

I(s) =

(
E
L
s+ E

LCR

)
D(s)

s2 + 1
RC
s+ 1

LC

(4.11)

V (s) =
E

LR
D(s)

s2 + 1
RC
s+ 1

LC

(4.12)

One remarkable thing about the Buck converter is the zero location of both
of the transfer functions. Unlike other kinds of converters like the Boost or the
Buck-Boost, the Buck does not present zeros located on the positive side of the
complex plane for both transfer functions. This means that it is a minimum-phase
system, so the voltage and current have stable inner dynamics [31, 38]. Replacing
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the parameters of table 5.1 in (4.11) and (4.12), is possible to get the poles and zeros
values of both transfer functions.

Current transfer function is depicted in Fig. 4.5, and have a zero located in the
negative side of the complex plane.

Figure 4.5: Poles and zeros locations of the current transfer function.

Voltage transfer function has two poles and does not have zeros, as presented in
Fig. 4.6.

Figure 4.6: Poles and zeros locations of the voltage transfer function.

This is a key to develop the EFL controllers since the order stability of the inter-
nal dynamic determines the designed control law’s applicability. It can be concluded
that both state variables: current, and voltage, have stable inner dynamics, so that
an EFL technique could be proposed for each one [39].
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4.1.2 Modified Feedback linearization with integral action
to control current and voltage

The generalized model of a nonlinear dynamic system is given by (4.13)

ẋ = f(x) + g(x)u(t) (4.13)

A nonlinear state space model, where x(t) is a vector that contains the state
variables, and f(x) and g(x) are independent functions of x.

The set of equations of (4.9) can be transformed into state space model giv-
ing (4.14).

ẋ1 = E

L
D(t) − 1

L
x2(t) (4.14a)

ẋ2 = 1
L
x1(t) − 1

RC
x2(t) (4.14b)

where x1 is the inductor current (i) and x2 is the output voltage (v).

Current control

By defining the output of the system as x1(t), as is shown in (4.15).

y(t) = x1(t) (4.15)

The derivative of this equation is given by (4.16).

ẏ(t) = ẋ1 = E

L
D(t) − 1

L
x2(t) (4.16)

In this case, for current control, the output of a second-order system appears in
the first derivative, throwing a reduced-order control. This is not a problem since it
was demonstrated that the current inner dynamics are stable. Thus, equation (4.16)
can be compared to a corrective function Ψ as shown in (4.17).

ẋ1 = Ψ (4.17a)
E

L
D(t) − 1

L
x2(t) = Ψ (4.17b)

Defining e(t) as the error (4.18), the following equation is obtained:

e(t) = x1(t) − x1d(t) (4.18)
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where x1d(t) is the reference. The function Ψ can be defined to guarantee a reference
tracking, with a proportional gain K and an integral action that ensures the error
correction, adjusting the value of the integral gain Ki. Resulting Ψ is (4.19).

Ψ = −Ke(t) +Kiei(t) (4.19)

where ei(t), known as the integrative error, is defined as:

ei(t) =
∫ t

0
e(τ)dτ (4.20)

By applying derivatives at both sides of expression (4.20), the expression (4.21)
is obtained.

ėi = e(t) = x1(t) − x1d(t) (4.21)

A new closed-loop state space model can be built from the first order differential
equations (4.17) and (4.21), as shown in (4.22).[

ẋ1
ėi

]
=
[
0 0
1 0

] [
x1
ei

]
+
[
1
0

]
Ψ −

[
0
1

]
x1d (4.22)

And the control law that guarantee the reference tracking is given by (4.23), as
follows:

D(t) =
(

−Ke(t) +Kiei(t) + 1
L
x2(t)

)
L

E
(4.23)

Since the input voltage E is a non-controlled input instead of a constant, and
for microgrids applications, must be a global variable available for all the primary
level controllers, then the feedback of E ensures a fast response against changes in
the main DC bus. This guarantees the operation of the node.

Fig. 4.7, shows a simplified schematic, in which the control law of (4.31) is
embedded in the the inner control block.

Voltage control

Unlike other standard converters, the Buck does not present unstable behaviors in
the voltage loop side, this means that an EFL procedure can be developed. Lets
define the voltage as the output of the system. In order to guarantee a linear
transformation of the model, a new space must be defined, lets call this as the
vector z(t).

y(t) = x2(t) = z1(t) (4.24)

The first derivative of (4.24) is given by (4.25).
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Figure 4.7: EFL current control schematic.

ż1 = − 1
RC

x2(t) + 1
C
x1(t) = z2(t) (4.25)

Since the control signal D doesn’t exist in the first derivative, the second deriva-
tive must be calculated. The resulting expression contains the control signal so it
can be equalized to the corrective function Ψ as shown in (4.26).

ż2 = − 1
RC

x1(t) +
(

1
(RC)2 − 1

LC

)
x2(t) +

(
E

LC

)
D(t) = Ψ (4.26)

The corrective function Ψ is designed for a complete order model. By adding the
integral action, the expression (4.27) is obtained.

Ψ = −K1z1(t) −K2z2(t) +Kiei(t) (4.27)

where the error is given by (4.28),

e(t) = x2 − x2d (4.28)

And the integrative error ei given by (4.29)

ei(t) =
∫ t

0
e(τ)dτ (4.29)

The augmented state space model is presented in (4.30), as follows:ż1(t)
ż2(t)
ėi(t)

 =

0 1 0
0 0 0
1 0 0


z1(t)
z2(t)
ei(t)

+

0
1
0

Ψ −

0
0
1

x2d (4.30)

Clearing D(t) from expression (4.26) the model’s control law is given (4.31).
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Figure 4.8: EFL voltage control schematic.

D(t) =
[

−K1z1(t) −K2z2(t) +Kiei(t) + ...

...
1

RC2x1(t) +
(

1
LC

− 1
(RC)2

)
x2(t)

]
LC

E
(4.31)

where z1 = e(t), is defined in function of the error, and z2 is defined by the expres-
sion (4.25).

As explained in section 4.1.2, feedback of the input voltage E might ensure a
fast response against changes in the DC bus. In voltage control (4.31) is dependant
of the load resistance R. In a variable load node, R could change abruptly, leading
to instabilities. In the buck converter case, this problem can be solved by doing a
digital calculation of the resistances value, from the known values of i and v. With
this feedback, the control law is strong enough to overcome several disturbances at
the load side.

Fig. 4.7, shows a simplified schematic, in which the control law of (4.31) is
embedded in the the inner control block.

4.2 Primary control:Droop control
The droop control is implemented as a primary control strategy in grid forming
and grid supporting converters (see 3.1) in order to neglect the effects of the lines
resistance among the DC-link circuit. Equation (4.32) shows the general form of
the droop law, where V ref is the reference voltage of the converter, V is the dc-link
nominal voltage, Rd is the droop coefficient, and io is the source current.

V ref = V +Rdio (4.32)
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Figure 4.9: Voltage vs current graphic based on (4.32).
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Figure 4.10: Simplified droop law circuit approach.

As can be seen, the droop law depicted in (4.32) has the general form of the line
equation; this could be graphically represented in Fig 4.9, in which is easy to see
that the droop gain is the slope of the line.

For that reason, Rd must be calculated such that it guarantees the stability of
the system. Therefore the maximum allowable voltage variations, and the rated
capacity of the converter are the factors that must be taken into account in the
droop gain design procedure. This lead expression (4.33), where, In is the rated
current of the converter, Vmin is the minimum voltage deviation allowed, and V is
the microgrid nominal voltage.

Rd = V − Vmin

In

(4.33)

Otherwise Rd could be adjusted experimentally with a voltage regulation ap-
proach. The droop law (4.32) can be seen, electrically, as a voltage source (V ∗)
provided by the power electronic device, with (Rd) as a virtual series resistance as
shown in Fig. 4.10. This simplified approach eases the simulation process.
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PI

PI

Figure 4.11: (a) Voltage regulator. (b) Current regulato.

Higher droop gains reduce the effect of line resistances on the current sharing
accuracy, however, may cause large voltage drops in the output terminal of the
converters [16].

Though The droop control acts as a primary proportional regulation that estab-
lish the output voltage reference of each converter in a microgrid, as every propor-
tional control, has not reference tracking, so present a steady state error, known as
voltage deviation. By itself, the droop law cannot guarantee the appropriate oper-
ation of the microgrid. To correct this issue a secondary control architecture must
be implemented.

4.3 Secondary control

[16]
In chapter 2.3.3 a brief introduction to the main secondary control strategies

was presented. In terms of reliability, efficiency and sturdiness, was said that the
centralized architecture is the most accurate option in small microgrid applications.

4.3.1 DC link Voltage Regulation
Is expected that a centralized voltage regulator track a reference of the DC-link volt-
age, in a small microgrid, with a single DC-bus and relatively small line resistance,
this task could be accomplished with a simple PI voltage controller as depicted in
Fig. 4.11 (a). Where V ∗dc is the reference voltage of the DC-link, Vdc is the DC-link
actual voltage, and V ∗ is the voltage reference of the distributed generators.

4.3.2 Current Regulation
Proportional power load sharing is a common term that refers a percentage sharing
of the load, based on the nominal output values of each dispatchable DG unit. This
is, that every DG contributes with the current injection according with its nominal
capacity. A PI current control could achieve this goal as depicted in Fig. 4.11 (b).
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Figure 4.12: Diagram of a centralized control architecture with voltage and current
regulation.

Where Ipu
n is the per-unit value of the current shared by the n DG, being n the

number of dispatchable units, and Iavg is a value computed by the expression (4.34).

Iavg = mean
(
[Ipu

1 , ..., Ipu
n ]T

)
(4.34)

This means that the current regulator has an on-site controller 4.11 (b), and a
centralized estimator that computes the current reference Iavg

4.3.3 General scheme
.

The current regulator output I∗ is added to the voltage regulator output V ∗
to compute the reference voltage of the droop law V ref , and the per-unit value of
the injected current Ipu

n is computed with (4.35), where I is the actual value of the
injected current, and Inom is the nominal current of the DG unit.

Ipu
n = I

Inom

(4.35)

The hierarchical control scheme until the second layer could be summarized in
Fig. 4.12, where [R1, ...Rn] are the line resistances, and [RL1, ...RLi] are the load
resistances being i the number of loads.
To refer the control schematic that rules over the grid feeding converters see Fig. 4.7,
the load side converters use the same structure than depicted by Fig. 4.8.



CHAPTER 5

Simulation Results

This chapter summarizes the results of the inner, primary and secondary control
architectures developed in chapter 4 and tested with a simulation tool.

5.1 Feed back linearization control

5.1.1 Experimental Setup

Model constants

Table 5.1 shows the model parameters, taking into account the critical inductor and
capacitor given by (4.3).

Gains of the PID are adjusted with the PID tune environment of Simulink® and
are presented in the table 5.2.

The constants of the non-linear controllers K and Ki, for current control, and

Name Symbol Value
Input voltage E 220V

Nominal output voltage vn 24V
Nominal inductor current in 16.66A

Switching frequency f 80kHz
Capacitance C 220µF
Inductance L 6.7mH
Resistance R 1.44Ω

Equilibrium Duty Cycle D∗ 11%

Table 5.1: Simulation development.

30
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PID CONTROLLER Constant Value

Current controller
Ki 106.830662
Kp 0.106327
Kd 7.852402e− 6

Voltage controller
Ki 9.45698
Kp 0.023592
Kd 1.15975e− 5

Table 5.2: Constants of the PID controllers.

EFL controller Constant Value

Current controller K 1.009e+ 04
Ki −9e5

Voltage controller
K1 12.711e6
K2 15.845
Ki −54e7

Table 5.3: EFL control Constants.

K1, K2 and Ki, for voltage control, are adjusted experimentally and are shown in
table 5.3.

Simulation Settings

Simulations are made in Matlab-Simulink® with a duration of 230ms. All controllers
begin with the reference value in 0 and have a reference change at t = 5ms. For
current control, the new reference is set to in, and for voltage control, the reference
is set to vn. In order to test the controllers’ robustness, two different disturbances
are programmed, the first one at t = 110ms, an input voltage loss of 30%. The
second one, at t = 150ms, is a parallel connection of a resistive load equal to R’s
nominal value, simulating a sudden load increase.

To compare the performance of the EFL and PID controllers, mean square error
(MSE) and Integral time absolute error (ITAE) are applied to each simulation and
compared in tables 5.4 and 5.5.
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Figure 5.1: Current control performance: (a) PID. (b) EFL.

5.1.2 Results and discussion

Current control

In Fig. 5.1 is depicted the response of PID (a) current controller, and EFL (b) current
controller whose control law is defined by the expression (4.23). Note that both
methods fulfill the objective, reaching the reference and overcoming the disturbances.

Due to the speed of both responses, a detailed analysis is presented. In Fig. 5.2
is shown the transitory response to the reference change at t = 5ms. There is a
clear difference between both graphs. Fig. 5.2 (a), depicts a maximum overshoot of
2.3649A and a settling time less than 5ms, instead Fig. 5.2 (b), depicts a maximum
overshoot of 0.3963A and a settling time of 20ms. It can be concluded that the
EFL, although it is slower than the PID, has a better transient response.

Fig. 5.3 depicts a zoom over the disturbances between t = 100ms and t = 200ms.
Note that PID (a), has a current loss of 0.3347A at t = 110ms due to the first
disturbance. The same graph depicts a current increment of 0.4371A at t = 150ms
due to the load connection. EFL (b) does not present representative changes against
any of the disturbances, showing more sturdiness than the PID control.
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PID Inductor Current (i)

Reference

Reference

EFL Inductor Current (i)

Figure 5.2: Current control transient state behaviour: (a) PID. (b) EFL.

PID Inductor Current (i)

PID Inductor Current (i)

Reference

Reference

Figure 5.3: Current control disturbance response behaviour: (a) PID. (b) EFL .
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PID Duty Cycle (D)

EFL Duty Cycle (D)

Figure 5.4: Current control duty cycle comparison: (a) PID. (b) EFL.

EFL Output Voltage (v)

PID Output Voltage (v)

Figure 5.5: Current control voltage response comparison: (a) PID. (b) EFL.
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Control method MSE ITAE
PID 2.6482e+ 05 2.1765e+ 03
EFL 2.3316e+ 05 1.5045e+ 03

Table 5.4: Comparison of current controllers performance.

Fig. 5.4 shows the performance of the control signal, the duty cycle (D), through
all the simulation. It can be seen that PID response (a), and EFL response (b),
have a similar behaviour, with a slightly difference at the disturbances response,
at t = 5ms, 110ms, 150ms. It is worth noting that the PID is slower but has less
oscillations, meanwhile the EFL is faster, and virtually avoids the overshoots caused
by the disturbances. The output voltage response (v) presented in Fig. 5.5 shows
the voltage behaviour through all the simulation, showing a sudden voltage loss at
t = 150ms due to the second load connection, equivalent to a half o the nominal
output voltage v = 12V . To clarify the results, table 5.4 compare the MSE and
ITAE measures of both controllers, where the higher performance of the current
EFL controller is validated.
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Figure 5.6: Voltage control performance: (a) PID, (b) EFL.

Voltage control

Fig. 5.6 is depicts the response of PID (a), and EFL (b) whose control law is defined
by expression (4.31).

Transient response is clearer presented in Fig. 5.7, where PID (a), have a max-
imum overshoot of 1.7545V , and a settling time less than 15ms. In contrast, EFL
(b), have a maximum overshoot of 2.0498V , and a settling time less than 26ms. In
this case, PID control shows a better transient response. Disturbances response is
depicted in Fig. 5.8. The input voltage loss at t = 110ms, in PID graph (a), induce
a sudden oscillation with a negative peak of 1.2738V . Note that this disturbance
is virtually ignored by the EFL (b). It can be seen that the extra load connection
at t = 150ms trigger a highly oscillatory response in both methods. On the other
hand, the PID reaches a maximum deviation of 9.3431V . However, the EFL reaches
a maximum deviation of 7.9628V . Therefore, the EFL with input voltage (E), and
load ( R) feedback, demonstrate better sturdiness than the PID control.
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Figure 5.7: Voltage control transient response behaviour: (a) PID. (b) EFL.
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Figure 5.8: Voltage control disturbance response comparison: (a) PID. (b) EFL.
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PID Duty Cycle (D)

EFL Duty Cycle (D)

Figure 5.9: Voltage control, duty cycle comparison: (a) PID. (b) EFL.

PID Inductor Current (A)

EFL Inductor Current (A)

Figure 5.10: Voltage control, inductor current response: (a) PID. (b) EFL.
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The control signal comparison is presented in Fig. 5.9. In this case EFL (b),
have a more aggressive response compared with the PID (a). In order of overcome
the disturbances at t = 150ms, the EFL duty cycle shows a higher oscillatory peak.

Behaviour of the current with the voltage controllers is presented in Fig. 5.10.
It can be seen that both models ensure acceptable stability even in front of major
disturbances. At t = 150ms the second load is connected in parallel, demanding
an increase on the output current, equivalent to the nominal value of the inductor
current i = 16.66A. To clarify the results, table 5.5 compare the MSE and ITAE
measures resulting from the experimental setup for both controllers. In this case, the
higher performance of the voltage EFL controller against the voltage PID controller,
is proved by a narrow margin.

Control method MSE ITAE
PID 2.0264e+ 06 2.8987e+ 04
EFL 1.3401e+ 06 8.8262e+ 03

Table 5.5: Comparison of voltage controllers performance.

These experimental results are summarized in Ref. [36].
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5.2 Simulation of the microgrid

5.2.1 Experimental Setup
Fig. 5.11 show the general structure of the microgrid tested in the simulation tool.
Three different DGs with different line resistances are connected to a common DC-
bus. The DGs configuration obeys all the theory documented in chapters 3,4. Note
the switches S1, S2 are included to simulate two different disturbances. All the vari-
ables involved in the microgrid control are average values, this due to the converters
commutation, that cause interruptions in the current flux.
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Figure 5.11: Experimental setup of the microgrid.

Model constants

Internal constant parameters of the converters, inductance and capacitance, are the
same of the table 5.1. In order to test the EFL method in different conditions,
some variations were considered in each of the converters and the whole microgrid
operation.
Table 5.6 refers the properties of the grid forming/supporting nodes which inner
control strategy is the voltage controller described in the section 4.1.2.
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Forming/Supporting node Name Value

Utility grid (Forming)

Input voltage (Controlled variable) -
Nominal output voltage 380V

Nominal inductor current (controlled variable) 30A
Line resistance 0.01Ω

Drop coefficient Rd 0.09

SHP (Supporting)

Input voltage (controlled variable) 1200V (Nominal)
Nominal output voltage 380V

Nominal inductor current (controlled variable) 25A
Line resistance 0.204Ω

Drop coefficient Rd 0.1

Table 5.6: Grid forming/supporting Nodes nominal parameters.

DG node Name Value

PV
Input voltage 760V
Output voltage 380V

Nominal inductor current (controlled variable) 20A
Line resistance 0.4Ω

ESS
Input voltage 645V
Output voltage 380V

Nominal inductor current (controlled variable) 15A
Line resistance 0.2Ω

Table 5.7: Grid feeding node’s nominal parameters.

Load converters nominal parameters Name Value

Load 1

Input voltage 380V
Output voltage (controlled variable) 48V

Nominal inductor current 41.66A
Nominal resistance (RL1) 1.1520Ω

Load 2

Input voltage 380V
Output voltage (controlled variable) 36V

Nominal inductor current 31.25A
Nominal resistance (RL2) 1.1520Ω

Load 3 (Directly connected to the DC-link) Input voltage 380V
Nominal resistance (RL3) 7Ω

Table 5.8: DC/DC load interfaces nominal parameters.

Table 5.7 refers the parameters of the grid supporting nodes that have integrated
the current controllers developed in the section 4.1.2 and which results are presented
in section 5.1.2. The nominal inductor current parameter is used as current refer-
ences in order to simulate the MPPT operation.

The parameters of the load-side converters are depicted in table 5.8. L1 converter
isolates a 48V DC-link, and L2 isolates a 36V DC-link.These devises imitate a
microgrid with different voltage levels. In order of simplify the simulation, the
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considered AC loads were changed for L3, note that this node is directly connected
to the DC Voltage line, and has a relative low resistance value.

The constants of the EFL have to be adjusted in each new application of the
buck converters. The new gains are depicted in table 5.9. Each case required an
experimental adjustment.

Converter Node Constant Value

PV, ESS K 6060
Ki −3.6e5

SHP K1 1.36e5
K2 820
Ki −2.4e6

Loads 1, 2 K1 12.474e6
K2 15.83e3
Ki −36e7

Table 5.9: EFL control constants.

The PI constants of the voltage and current regulator are shown in table 5.10.
The tuning of this gains was made through experimental analysis.

PI controller Constant Value

Current regulator Ki 1600
Kp 800

Voltage regulator Ki 200
Kp 0.5

Table 5.10: PI control regulators constants.

Simulation Settings

The simulation was made in Matlab-Simulink® with a duration of 800ms. All control
references begin with their nominal values. Grid forming/supporting node’s output
voltage, is controlled by the voltage and current regulator as depicted in Fig. 4.12
and Fig. 5.11, whose references are the DC-link nominal voltage (380V ) and the
estimated average current (Iavg).

In order to test the controllers’ robustness, two different disturbances were pro-
grammed in the switch’s S1 and S2. The first one at t = 250ms, S2 normally open,
is closed, inducing a parallel connection of a resistive load equal to 5RL1, simulating
a sudden load increase in L1 node. The second one, the disconnection of the utility
grid at 310ms, when normally closed S1 is opened, simulating a forced isolating
of the microgrid, testing the capacity of the SHP node of maintaining the DC-link
voltage, and all interfaces sturdiness.
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5.2.2 Results and discussions

Below are presented the results of the microgrid simulation.
Fig. 5.12, show the current behaviour of all the DG units. (a) Is the response

through all the simulation. (b) Is a zoom of the transient response in which is
evident a high overshoot of the grid current of 16.223A around 100% of the steady
state value, is evident that all the DG units have a better behaviour. The overall
settling time is approximately 20ms. (c) Is a zoom of the response against the
first perturbation, a medium overshot of 6.761A is visible among all the DGs. The
settling time is around 15ms, is visible too, how the dispatchable units work together
in order to supply the extra load current requirement. (d) Is the zoom of the isolation
behaviour, at t = 310ms the utility grid is disconnected through the opening of S1,
the new grid forming node is now the SHP generator, is easy to see how the current
injection of this node grows in proportion to the supply loss of the utility grid. The
overshoot for SHP is 2.8633A, around 9.87% of the steady state value and, the grid
feeding sources experiment a perturbation of 6A for PV node and 7A for ESS node.
The whole isolation process has a settling time of 328ms.

Fig. 5.13 show the behaviour of the DGs output voltage. (a) Is the whole simula-
tion graphic. (b) Is the transient state response zoom, showing a smooth transition
whit a negligible overshoot of 6.19V around 1.63% of the steady state value and a
estimated settling time of 50ms. (b) Shows the response against the first distur-
bance, with an average voltage loss of 13.07V around the 3.5% of the steady state
value, and a settling time of 26.9ms. Finally, a considerable oscillation is triggered
by the utility grid disconnection, the voltage loss reach 85.06V a 23% of the steady
state value, but the disturbances is controlled in approximately 190ms.

Fig. 5.14 compares the performance of the DC-link voltage against its reference.
Note that the signal follows the behaviour of the voltages in Fig. 5.13, but tracking
the nominal voltage reference.

Plot. 5.15 shows the performance of the internal current of the DG’s converters.
The grid feeding nodes response are compared whit the respective reference value,
is clear that this nodes exceeds in the current control performance. The case of the
SHP source is not less important, a fast response against perturbations ensures the
stability of the microgrid, even without the utility grid support.

Other information about the controllers response is available on Fig. 5.16. The
performance of the internal control signal (duty cycle) shows smooth changes against
the disturbances and no saturation even in the isolation process.

The analysis of the responses at the loads-side of the microgrid must be done.
A interesting behaviour is depicted in Fig. 5.17, that shows the current consumption
at the load converters input. When this graph is compared with Fig. 5.12 (a),
is possible to check that the addition of all the DG’s current injection is equal
to the addition of all the load input current consumption. Is important to note
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Figure 5.12: (a) DGs current injection response. (b) Transient state response. (c)
Load connection response. (d) Grid islanded operation mode.
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Figure 5.13: (a) DGs voltage output. (b) Transient state response. (c) Load con-
nection response. (d) Grid islanded operation mode.

Figure 5.14: DC-Link voltage behaviour.

the disturbances effects among the graphs. The addition of extra load in L1 at
t = 250ms causes a sudden current increase in IL1, but this doesn’t affect drastically
the behaviour of the rest of load nodes. Instead, the disconnection of the microgrid
at t = 310ms visibly affects L3, since this load is directly connected to the DC-link,
the current is dependent of its variations. Remarkable conclusions can be drawn
from this result.

Finally, in order to check the controllers sturdiness, Fig. 5.18 (a) shows the
response of the currents at the output of the DC/DC interfaces, is clear that the
firs disturbance increases the current consumption in a 20% of the original value
for L1 node; out of that, any disturbance is visible through all the simulation time.
Plot (b) shows the output voltage of the load DC/DC interfaces compared with the
references values, the first disturbance triggers a small voltage loss that is quickly
corrected.

Fig. 5.19 present the behaviour of the duty cycle of the load interfaces. The
ability of read the input voltage changes, clearly improve the performance of the
EFL inner controllers.
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Figure 5.15: Distributed generators inductor currents response.
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Figure 5.16: Duty cycle of the distributed generators response. (a) PV node. (b)
ESS node. (c) SHP power node.
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Figure 5.18: (a) Current consumption of isolated loads. (b) DC/DC interfaces
output voltages.
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Figure 5.19: Duty Cycle of the load DC/DC interfaces. (a) Load 1. (b) Load 2.



CHAPTER 6

Conclusions

The first chapters of this project highlight the importance of the investigation in the
field of renewable energy’s and the open issues that have to deal with. Summarized
research about the microgrids history, characteristics, and architectures was done.
The relevance of appropriating these topics as a society, motivates the design of a
low scale microgrid, thought for the countryside, with the purpose of take advantage
of the almost, inexhaustible distributed energy resources that Colombia has.

In the theoretical frame, to validate the feedback linearization control theory,
two different internal EFL controllers for current and voltage regulation of a Buck
converter were designed, tested, and compared to a well-known PID control method.
Despite being based in a reduced order model, the current controller shows better
performance and sturdiness than the usual PID. Another feature of this controller
is its simplicity and relative easy adjustment. The non-linear voltage controller has
shown a slight advantage compared to the PID, but, just like the PID, the diffi-
culty to tune the controller parameters adequately adds complexity to the tuning.
However, these controllers have proved sturdiness and reliability under complex
simulation arrangements. The microgrid operation shows a stable behaviour and
smooth transitions against the tested disturbances, especially in the forced isolation
event, that is considered a basis of the microgrid operation.

More research is needed to reach a better understanding of microgrids control
architecture and design. The comparison between different schemes (centralized, de-
centralized, distributed) to reach the ideal one, the implementation of disconnection
and connection protocols, the addition of the third control layer that search for reg-
ulating the economic dispatch, the research about better management of the energy
storage systems, and the junction of AC and DC technologies in hybrid microgrids,
are relevant investigation axes in this topic.
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