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Abstract

In this research a convex optimization methodology is proposed for the Short-
term hydrothermal scheduling (STHS). In addition, wind and solar generation
are also considered under a robust approach by modeling the equilibrium of
power flow constraint as chance box constraints, which allows determining the
amount of renewable source available with a specific probability value. The pro-
posed methodology guarantees global optimum of the convexified model and
fast convergences. The methodology is evaluated under three circumstances:
First, the conventional hydrothermal coordination is compared with the existing
results in the scientific literature, most of the previous results are metaheuris-
tics. The presented methodology demonstrated to be highly accurate and fast.
Second, the deterministic model that considers the grid, wind and solar genera-
tion is evaluated under two cases: high capability of the lines and low capability
of the lines. Simulations demonstrates how the capability of the grid affects the
scheduling of generation units. Finally, a convex-robust model is evaluated con-
sidering the stochasticity of the load, wind and solar sources. The test results
reveal how the scheduling, with renewable resources, depends considerably on
the level of desired robustness.
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Nomenclature

F k,n,tL Power flow through the line connected between node k and node n at
moment t

[θ] Vector of angular differences

[B] Nodal admitance matrix

[F−1
PD

(ζ)]t Vector of quantile values of demand at moment t

[P ] Vector of active injected powers

[PD] Vector of powers consumed

[PG] Vector of powers generated

αi Coefficients of fuel cost function of ith thermal unit

βi Coefficients of fuel cost function of ith thermal unit

βp pitch angle

∆ Set of all thermal units

∅ Empty set

η Efficient of turbine

γi Coefficients of fuel cost function of ith thermal unit

κw Shape coefficient Weibull distribution of wind

Λ Swept area by wind generator blade

λtip Tip-speed ratio

M Uncertainty set

B σ−algebra

B Subset of 2H

P Probability measure function
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U Auxiliary variable

X, Y , Z Points of a convex function

PD Load forecast

π Index of upper reservoir

ψ Solar irradiation

ρ Density of water

ρair Air density

τ Time delay to immediate downstream plant

θk,n,t Angular differences between node k and n at moment t

θkn Angular difference between nodes k and n

% Constants of an affine constraint

ζt Probability to hold a constraint at moment t

a> Coefficient vector of the constraint of a robust problem

A>A Constant of a quadratic constraint

A0 Constant of the quadratic objective function

Ai Coefficient matrix of a second order cone constraint

ai Bounds of a box constraint

B Subset of P

b Constant of a constraint of a robust problem

bi Coefficient vector of a second order cone constraint

c> Coefficient vector of the objective function or a robust problem

Cj1 , C
j
2 , C

j
3 Hydropower generation coefficients of jth hydro unit

Cj4 , C
j
5 , C

j
6 Hydropower generation coefficients of jth hydro unit

ci Coefficient vector of a second order cone constraint

Cp Power coefficient of wind unit

cw Scale coefficient Weibull distribution of wind

CFs Capacity factor of solar power plant

Cu,tFs Capacity factor of unit u at moment t
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d Constant of a quadratic constraint

d0 Constant of the quadratic objective function

di Constant of a second order cone constraint

Dt Deterministic variable at moment t

e Index of wind unit

Ep Gravitational potential energy

ES Energy produced by solar unit

ESrated Rated energy produced by solar unit

F (x) Cumulative distribution function

f(x) Probability density function

f> Coefficient vectors of the objective function

f0 Objective function

F k,tF t Flow through the primary of the transformer located at node k at mo-
ment t

F k,nLTmax P.U
Minimum thermal limit of the line between nodes k and n

F k,nLTmin P.U
Maximum thermal limit of the line between nodes k and n

F k,n,tL Flow through the line between nodes k and n at moment t

FPk,tD
Cumulative distribution function of the demand of node k at time t

F−1

Pk,tD

Quantile function of the power demanded by the node k at moment t

FPk,tG
Cumulative distribution function of the power generated at node k at
moment t

F−1

Pk,tG

Quantile function of the power generated at node k at moment t

F k,tSt Flow through the secondary of the transformer located at node k at
moment t

FXt Cumulative distrbution function of random variable R at moment t

F−1
Xt

Quantile function of random variable R at moment t

g Acceleration due to gravity

g(x) Objective function
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H Sample space

h Height of the reservoir with respect to powerhouse

hH Headwater level

hL Altitude reduction due to the losses produced by the civil structures

i Index of thermal units

Ij,t Water inflows of reservoir j at moment t

j Index of hydro units

k Node

li Bounds of a box constraint

m Mass of water

n Node connected to the node k

Nk Group that consists of nodes connected to the k node

o Parameter of an uniform distribution

P kHL Hydropower of unit k using the linearized equation

P kHQ Hydropower of unit k using the quadratic equation

P0 Coefficient matrix

P k,tD Power consumed by the load located at node k at moment t

P tD Total power demanded by the system at moment t

Pe Wind power

P k,tG Power produced by the generator located at node k at moment t

Pi Coefficient matrix

P
−1/2
i Cholesky decomposition

P
1/2
i Cholesky decomposition

PS Power produced by solar unit

P k,ts Power produced by solar generator located at node k at moment t

Pu,tS Power produced by uth solar unit at moment t

Pw Power produced by a wind unit

P e,tw Power produced by eth wind unit at moment t
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P k,tw Power produced by wind unit located at node k at moment t

P j.tH Power produced by jth hydro unit at moment t

Pkn Power flow between nodes k and n

PSurated Rated power of uth solar unit

P i,tTh Power produced by ith thermal unit at moment t

Pwrated Rated power of wind turbine

Q Water flow

Q(p) Quantile function

Qj,t Discharged water by hydro unit j at moment t

q0 Vector of coefficients

qi Vector of coefficients

r Constant of a quadratic constraint

r0 Constant of the quadratic objective function

s Parameter of an uniform distribution

Sj,t Spillage of reservoir j at moment t

ST Studied time interval

SΩj Set of upper reservoirs of reservoir j

SH Set of all hydro units

t, T Index of time intervals, with T being the last

TPHL Total hydropower by using the linearized equations

TPHQ Total hydropower by using the quadratic equations

U Coefficient vector of an affine constraint

u Index of solar unit

V j,t Water volume of reservoir j at moment t

vw Wind speed.

ve,tw Wind speed data for eth unit at moment t

vcut−in Cut-in speed of the wind turbine

vcut−out Cut-out speed of the wind turbine
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vrated data Rated value of wind data

vrated Rated wind speed of a wind turbine

Xt Random variable at moment t

Xkn Series reactance between nodes k and n

Y Set of variables of an optimization problem

z Auxiliary variable of an optimization problem

APSO Adaptive particle swarm optimization

BCGA Binary coded genetic algorithm

CDE Chaotic differential evolution

CDEA Adaptive chaotic differential evolution algorithm

CEP Evolutionary programs with Gaussian mutation

CPSO Couple based particle swarm optimization

DE Differential evolution technique

DRQEA Differential real-coded quantum-inspired evolutionary algorithm

EGA Enhanced genetic algorithm

EPSO Enhanced particle swarm optimization

ERWCA Evaporation rate–based water cycle algorithm

FEP Evolutionary programs with Cauchy mutation

GA Genetic algorithms

IFEP Evolutionary programs with Gaussian and Cauchy mutation

INF Infimum

IPSO Improved particle swarm optimization

LCSO Local vision of particle swarm optimization with constriction factor

LP Linear programming

LWPSO Local vision of particle swarm optimization with inertia weight

MAPSO Modified adaptive particle swarm optimization

MDE Modified differential evolution algorithm

MDNLPSO Modified dynamic neighborhood learning based particle swarm
optimization
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MHDE Modified hybrid differential evolution algorithm

PDF Probability density function

HPDLQ Hydropower difference between linear equations and quadratic
equations

Prob Probabilitiy of ocurrence of an event

PSO Particle swarm optimization

QCQP Quadratically constrainted quadratic programming

QRSOS Quasi-reflected symbiotic organisms search algorithm

RCGA Real coded genetic algorithm

RO Robust optimization

SDP Semidefinite programming

SIN Sine

SO Stochastic optimization

SOC Second-order cone

SOS symbiotic organisms search algorithm

SPPSO Small population based particle swarm optimization

SPPSO Small population based particle swarm optimization

STHS Short-term hydrothermal scheduling

SUP Supremum

TLBO Teaching learning based optimization algorithm
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Chapter 1

Introduction

1.1 Motivation

Economical growing of modern societies depends highly on their capacity to
produce goods and services by using electrical power. Unfortunately, this mas-
sive use of electric power has produced strong environmental impacts which
can put at risk the continuity of the humankind in the earth. One of the most
harmful effects that the human beings have had on nature is the accumulation
of greenhouse gasses in the atmosphere, where the electricity production sector
is responsible for nearly 25% of global green house gasses emissions (Span-
dan Thaker and Kumar, 2019). A transition from fossil fuels based sources to
renewable alternatives is necessary to keep the economical growing and meet
the green house gasses emission reduction targets. In addition, the advent of
renewable technologies reduces the operation cost of these units, since the fuel
cost is zero.

In order to carry out this transition, modern power systems seek to introduce
more renewable resources into the energy mix, however, there is a renewable
resource already available massively in conventional power systems namely, the
hydroelectric generation. This type of generation is abundant in countries like
Norway, Colombia and Brazil, and are called to be the main energy storage
for the interconnected system (Isabela Alves de Oliveira and Szklo, 2017) (del
Mar Rubio and Tafunell, 2014) (Ruud Egging, 2016). Notice that using renew-
able energy resources does not mean that the conventional generators are go-
ing to disappear completely. Actually, the completely replacement of traditional
generation sources (e.g thermal and hydro power) seems to be an Utopian sce-
nario, at least in the short and medium term. Instead, a scenario with a partial
penetration of renewable sources is more plausible (UPME, 2019).

Integrating these new technologies in the traditional system requires oper-
ation strategies that consider the peculiarities of these power units in order to
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guarantee the stable and reliable operation of the system under variations in the
load/generation in the short, medium and long time. This implies that more ef-
ficient short-term hydrothermal coordination model that considers the presence
of these new technologies (mainly wind and solar) need to be proposed.

The short-term hydrothermal coordination is complicated by itself since it is
usually a deterministic non-linear problem (Kothari and Dhillon, 2007). There-
fore, the problem is related with the high non-linearity and non-convexity of
the model. Even though this problem has been widely studied, most of re-
search have used linearizations and heuristic algorithm in order to deal with
the non-linear and non-convex structure of the problem. These methods face
two main problems: On one hand, heuristics are characterized by the lack of
understanding of the mathematical structure of the problem, the randomness
of their results and their high computational burden, which is not suitable for
real time operation. On the other hand, linearizations produce loss of informa-
tion in the model that can result in nonfeasible operation points (See appendix
D). Moreover, when other renewable resources are considered, the problem is
not only non-linear/non-convex but also stochastic, since wind speed and solar
radiation cannot be predicted accurately. That is a why a methodology that con-
siders the original structure of the problem and the stochasticity of renewable
resources is required in order to operate the power systems optimally.

This research presents a short-term hydro-wind-solar-thermal coordination
model where the non-convexity of the problem is dealt by proposing a second-
order cone (SOC) approximation. The stochasticity of the renewable sources
is considered by proposing a robust model where the equilibrium power flow
constraints are modeled as chance box constraints. This makes sense if it is sup-
posed that there is no a correlation between solar irradiation, wind speed and
water inflows.

There are several advantages formulating a problem as a convex optimiza-
tion problem. For instance, it is possible to guarantee global optimum of the
convexified model. In addition, convex optimization guarantees convergence
by using interior point-methods or other special methods. These solution meth-
ods are reliable enough to be embedded in a real-time reactive or automatic
control system. There are also conceptual advantages of formulating a problem
as a convex optimization problem. The dual problem, often has an interesting
interpretation in terms of the original problem, and sometimes leads to an effi-
cient or distributed method for solving it.

Among convex optimization models, stand out second-order cone program-
ming, which is a branch of convex optimization which has proved to be useful
for dealing with linear programs, convex quadratic programs, quadratically con-
strained quadratic programs (QCQP) and many other problems that do not fall
into these three categories. Its name arises from the constraints, which are
equivalent to requiring the affine functions to lie in the second-order cone in
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Rk+1. The main advantage of modeling a problem as a second order cone prob-
lem stems from its faster convergence compared to other convex optimization
techniques (Boyd and Vndenberghe, 2009) (Alizadeh and Goldfarb, 2003) (see
Chapter 3).

On the other hand, optimization problems that contain uncertain data can
be faced under two approaches, namely stochastic and robust optimization.
Stochastic optimization requires that the true probability distribution of ran-
dom data has to be known in order obtain a computationally treatable problem.
On the other hand, robust optimization does not require to know the probabil-
ity distributions of data, but instead it assumes that the uncertain data resides
in the so-called uncertainty set. In addition, constraint violation cannot be al-
lowed for any realization of data in the uncertainty set (Bram L. Gorissen and
den Hertog, 2015). Therefore, for unknown probability distributions such as
wind power data, robust optimization is the most suitable option between these
approaches.

1.2 Problem statement

Renewable power capacity is set to expand worldwide by 50% between 2019
and 2024, led by solar photovoltaic. This increase of 1200 GW is equivalent
to the total installed power capacity of the United States today (IEA, 2019).
This implies that the conventional models for the operation of power systems
have to be modified in order to include these new technologies; one of these
classical models is the dispatch of hydrothermal systems, which is defined in
(Christensen and El-Hawary, 1979) and in (Kothari and Dhillon, 2007) as the
distribution of total generation requirements among all energy sources in the
most optimal manner, taking into account the limitations of the system, so that
an uninterrupted supply can be made available to the consumers.

This problem has different approaches which can be classified on the ba-
sis of the time horizon. In doing so, the economic dispatch is divided in long
(2 months to several years), medium (1 week to 2 months) and short-term (1
day to 1 week)(J.Wood and F.Wollenberg, 1996)(Fuentes-Loyola and Quintana,
2003). These models are hierarchical since the long and medium term models
give the final constraints for the short-term dispatch. Each of these models has a
different source of complexity since the long and medium term are represented
as a stochastic-linear model while the short-term hydrothermal coordination is
usually a deterministic non-linear/non-convex problem (Kothari and Dhillon,
2007). Therefore, in the first and second cases, the problem is how to deal with
the uncertainty taking into account a large number of scenarios, whereas in the
last case, the problem is related with the high non-linearity/non-convexity of
the model. Nevertheless, solar and wind energy introduce stochasticity to the
short-term model making it even more complex. The main problem is therefore,
how to deal with the non-linear/non-convex and stochastic nature of the short
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term hydrothermal coordination.

In order to improve the accuracy and the convergence time of the algorithms
used to solve this problem, methodologies that considers the non-convexity of
the problem are required. In addition, it is necessary to develop tools that allow
system operators make decisions, with an specific exactitude level, when they
are dispatching wind and solar generators.

1.3 State of the Art

The short-term hydrothermal scheduling (STHS) is a classic problem in power
system operation. That is why a large amount of research have been carried out
in order to advance on the understanding and modeling of this problem. How-
ever, the typical configuration of the power system is changing due to the advent
of new technologies such as renewable energy which requires new methodolo-
gies that consider thereof. Furthermore, its non-convex nature requires an ac-
curate solving techniques that deals with its geometry.

In the very early years, deterministic optimization methods were widely
used to solve the problem. Accordingly, several studies based on Lagrangian
methodologies for solving the hydrothermal coordination problem were pre-
sented in (Slodoban Ruzic and Rajakovic, 1996), (Ruzic and Rajakovic, 1998),
(Rodrigues and Edson L. da Silva, 2011) and (Fabricio Y.K. Takigawa and Ro-
drigues, 2012). The problem was also studied with Lagrangian relaxation and
dynamic programming in (Md. Sayeed Salam and Hamdan, 1998) and (Md.
Sayeed Salam and Hamdan, 1997). In (Houzhong Yan and Guan, 1993) the
hydro sub-problem was formulated as a linear programming problem without
accounting for the non-linear characteristics, while the thermal sub-problem
was solved by applying a dynamic programming approach(Z. Yu and Smardo,
2000). In addition, a four-dimensional piecewise linear model was proposed
in (Andre Luiz Diniz, 2008) where the water head was taken into account as a
function of forebay and tailrace levels and spillage effects were considered. Oth-
erwise, a parallel processing strategy was developed in (Tiago Norbiato Santos
and Borges, 2017) to solve a multi-period problem in the context of multi-stage
Benders decomposition.

Several mixed-integer linear programming formulations were presented in
(Jinbao Jian and Yang, 2019), (Gil and Araya, 2016) and (Parrilla and Garcıa-
Gonzalez, 2006). On the other hand, mixed-integer non-linear approach has
also been used to face this problem. In (J.P.S. Catalao and Mendesb, 2010) hy-
droelectric power generation was considered as a non-linear function of water
discharge and of the head, where the on-off behavior of the hydro plants were
modeled by using integer variables, in order to avoid water discharges at for-
bidden areas. In (J.P.S. Catalao and c, 2011), Catalao proposes a mixed-integer
non-linear approach to solve the short-term hydro scheduling problem in the
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day-ahead electricity market, considering not only head-dependency, but also
start/stop of units, discontinuous operating regions and discharge ramping con-
straints.

However, these methods did not deal with non-linearities of the problem
in an accurate way. Therefore, several authors focused their research on cod-
ing the problem in such a way that heuristic techniques could be used. Thus,
genetic algorithms (GA) have been widely used; the main idea of this kind of
algorithms was to represent candidate solutions as individuals submitted to an
evolutionary process. In (Amirarslan Haghrah and Seyedmonir, 2015), (Yong-
Gang Wu and Wang, 2000),(Jarnail S. Dhillon and Kothary, 2011), (Sasikala
and Ramaswamy, 2010), (Amjady and Nasiri-Rad, 2009),(Kumar and Naresh,
2007),(Chen and Chang, 1996), (E. Gil and Rudnick, 1264) and (Orero and
Irving, 1998) GA were used, while (Nidul Sinha and Chattopadhyay, 2003),
(Yongqiang Wang and Zhang, 2012) and (P. K. Hota and Chattopadhyay, 1999)
developed optimization methodologies based on evolutionary process to find
a good quality solution. Moreover, (Lakshminarasimman and Subramanian,
2006), (Manda and Chakraborty, 2008), (Sivasubramani and Swarup, 2011),
(Basu, 2014) and (Youlin Lu and Zhang, 2010) introduced several differential
algorithm which combine simple arithmetic operator with classic evolutionary
operators, such as, mutation, crossover and selection in order to avoid prematu-
ure convergence. Likewise, particle swarm optimization has also been used
to solve this problem in (J. Zhang and Yue, 2012), (B. Yu and Wang, 2007),
(Yuqiang Wua and Liu, 2019),(A.Rasoulzadeh-akhijahani and Mohammadi-ivatloo,
2015) and (P.K. Hota and Chakrabarti, 2009). This methodology simulates for-
aging process of birds in order to optimize process. Some others authors were
inspired by the Newtonian laws of gravity and motion to carry out the short-
term hydrothermal dispatch. Thus, Gravitational algorithms were proposed in
(Chunlong Li and Peng Lu, 2015), (N. Gouthamkumar and Naresh, 2015), (Xi-
aotao Wu and Yuan, 2014) and (Gouthamkumar Nadakuditi and Naresh, 2016).

Quasi-opposition based learning was applied in (Basu, 2016) to enhance the
capability of obtaining an optimal solution for STHS with consideration of valve
point loading effect of thermal units, ramp rates of generation units, and power
transmission losses. On the other hand, authors in (Nguyen and Vo, 2017)
presented a modified cuckoo search algorithm for solving short-term hydrother-
mal scheduling. Other heuristic and metaheuristic techniques such as teaching
learning based optimization, neural networks, clonal selection algorithm and
Ant lion optimization have also been used in (Roy, 2013),(Yalcinoz and Short,
1998) (R. K. Swain and Chakrabarti, 2011) and (Hari Mohan Dubey and Pani-
grahi, 2016).

In the most recent years these techniques are still in use. Thereby, a quasi-
reflected symbiotic organisms search was implemented for optimal scheduling
of hydrothermal problems in (Sujoy Das and Chakraborty, 2018b). Shaikh S.
Haroon investigated in (Haroon and Malik, 2017) a modified version of a new
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nature inspired algorithm, called as evaporation rate–based water cycle algo-
rithm, for the solution of STHS.

Due to the spreading of new technologies such as renewable energy, the
classic STHS problem has had to be modified in order to consider the espe-
cial characteristics of these units. In doing so, several researchers have focused
their studies on considering wind generation in the STHS. Thus, a genetic al-
gorithm was proposed in (Yuan et al., 2015) where the model provided the
reserve and compensation for the unplanned wind power output. This research
utilized a metric based on the difference between the actual and planned out-
put of wind power to calculate the additional system operation cost for wind
uncertainty. Jianzhong Zhou proposed in (Jianzhong Zhou and Mo, 2016) an
enhanced multi-objective bee colony optimization algorithm to solve the STHS
including wind generation where the impact of wind power was considered
by deriving a closed-form in terms of the incomplete gamma function. Simi-
larly, in (Fang Chen and Lu, 2017), a gravitational algorithm is presented with
a linearization of the relation between wind speed and wind power. In this
way, the probability density function of wind power was obtained, which was
used to calculate the coefficients cost of overestimating and underestimating
wind generation. Said coefficient were used to calculate the optimal amount
of power produced by wind units. In (Damodaran and Kumar, 2018) the same
methodology was used to estimate the wind generation but, in this case, a mod-
ified particle swarm approach was utilized. Additionally, renewable units have
high intermittency and volatility, which has restricted its penetration into power
grid, that is why coordination scheduling of flexible resources and wind energy
can be a interesting technique for promoting wind power utilization. In doing
so, an improved multi-objective particle swarm optimization was proposed in
(Yachao Zhang and An, 2018) in the interest of integrating large-scale electric
vehicles with hydrothermal-wind multi objective scheduling. This algorithm
also considered wind power cost by underestimating and overestimating cost
functions in order to schedule wind generation.

When it comes to the integration of renewable technologies not only the
technical aspects are important but also the economic ones. That is why (Beat-
riz P. Cotiaa and Dinizb, 2019) assessed some important economic issues that
arise with increased wind power penetration in hydrothermal systems by using
a mixed-Integer programming approach and where the results showed that re-
stricting the injection of mandatory wind generation into the grid can reduce
the total operation cost.

In addition, integration of both, solar and wind generation, to the traditional
STHS problem has also been studied. In (Chaoshun Li and Chen, 2019) a hybrid
grey wolf-multi-objective optimization algorithm was proposed by considering
uncertainty of wind and solar generation under a scenarios approach, and cre-
ating clusters of unit status associated with a probability of occurrence. Ruey-
Hsun Liang, went further in (Chen, 2016) by proposing a virus-evolutionary
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differentiated-particle swarm optimization approach for short-term generation
scheduling considering the change of atmospheric flow during the day and
night, the uncertainties in the load demand, available water in the reservoir,
wind speed, and radiation. Said uncertainties were faced by building a model
with their density distribution functions. (Xuebin Wang and Wang, 2019) ex-
plored the relationship between the outflow of hydropower plants and coordi-
nated effectiveness by setting different water availability scenario and propos-
ing a coordinated operation model of power systems with hydrothermal-wind-
photovoltaic power that considers the comprehensive utilization of reservoirs.
Moreover, a complementary coordinated operation model of interconnected
power systems, with hydrothermal-wind-photovoltaic plants, was proposed in
(Xuebin Wang and Wang, 2018) to mitigate the curtailment problem of renew-
able energy by maximizing the new energy power generation and minimizing
the thermal output fluctuation. This methodology considers the intersection
of the maximum consumption capacity and the expected output of new en-
ergy power as the decision space to schedule wind and solar units. On the
other hand, Sujoy Das proposed a probabilistic short-term hydrothermal-wind-
photovoltaic scheduling based on the point estimate method in (Sujoy Das and
Chakraborty, 2018a). Larger reviews about the optimization methods used to
solve the STHS can be found in (Jiehong Kong and Fosso, 2020), (Farhat and
El-Hawary, 2009) and (M. Nazari-Heris and Gharehpetian, 2017).

These heuristics and linearizations managed the non-linearity and noncov-
exity of the problem at the expense of a high computational cost and losing
information. In addition, despite of its common use in power system applica-
tions, metaheuristic techniques have faced a lot of criticism such as lack of use
on practical situations and lack of innovation. Moreover, its approach based
on getting "a better solution" at expense of understanding the real optimiza-
tion problem, has produced its rejection in the scientific community (Sorensen,
2015). That is why they are not suitable in the new context of the power sys-
tems operation where a high flexibility, better understanding of the problem,
real time operation and high accuracy are required.

Convex approximation of the hydrothermal coordination problem is a rela-
tively new subject. Some authors have tried to deal with the non-convexity of
the problem by using different techniques. In (Fuentes-Loyola and Quintana,
2003) a semi-definite relaxation was proposed to face with the combinatorial
characteristic of the medium term hydrothermal dispatch. Under other condi-
tions, a semi-definite relaxation was presented in (Yunan Zhu and Yang, 2013)
in order to deal with the non-convexity of the hydro power equation in a rigor-
ous mathematical way. However, semidefinite programming has to deal with a
large amount of spare matrix that implies a large computational burden.

On the other hand, Second-order cone optimization is a convex program-
ming alternative which has been widely used in several electrical engineer prob-
lems such as designing even-order finite-impulse-response variable fractional-
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delay digital filters (Deng, 2011), developing new control strategies (Jing Liu
and Wong, 2003) and AC–DC power flow (Ye Zhou and Ghandhari, 2017) since
SOC requires less computational effort. Nevertheless, to the best of the author
knowledge, SOC programming has not been used to solve the STHS problem.

1.4 Contributions

The traditional STHS is a highly non-linear and complex problem which can be
faced under two different approaches: on one hand, the exact model is consid-
ered and it is solved by an approximate method which does not guarantee a
global optimum. On the other hand, an approximation of the model is carried
out and then, an exact solution technique is used.

Using an exact solution technique implies several advantage such as high
accuracy and fast convergence. Thus, an efficient methodology was established
to solve a convex approximation of the original non-convex STHS model which
always guarantees a global optimum of the approximated model and fast con-
vergence. In addition, renewable generators were also considered modelling its
stochastic behavior under a robust approach. Said approach was also used to
model the stochastic behavior of the load. Furthermore, delays of flows through
hydraulic chains and constraints that the grid imposes to generators were also
evaluated.

As result of this research, a conference paper was presented in the 13th IEEE
PowerTech 2019 in Milan, Italy.

1.5 Document organization

The rest of the document is organized as follows : Chapter 2 presents the math-
ematical models of generator units, as well as the DC powerflow and how to
consider the grid and the renewable sources into the STHS. Next, in Chapter
3, some basic aspects of SOC programming are explained and a convex model
for the STHS is proposed. In Chapter 4, the robust model that considers the
stochasticity of load, wind units and solar power plants is developed. Chapters
5 and 6 present the results and the conclusions of the research. The test system
used and all its parameters are presented in Appendix A; Appendix B explains
some basic concepts of convex optimization. Finally, Appendix C presents the
basic concepts of a probabilistic space.
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Chapter 2

Deterministic Mathematical
Model

This chapter presents the basic model of the system, starting from the model of
each component. Then a non-linear programming problem is formulated and
the convex and non-convex constrains are identified.

2.1 Modeling components

2.1.1 Thermal units

A large amount of generators in extant systems are of the fossil type (coal, oil or
gas). This kind of technology takes advantages of the chemical energy stored in
some fossil fuels by burning them in a boiler. In doing so, the chemical energy
is converted into thermal energy which is transmitted to a fluid, usually water.
The high pressure steam passes by a steam turbine which converts the kinetic
and pressure energy of the steam into rotational kinetic energy. Since the elec-
trical generator and the steam turbine are connected by a shaft, the rotational
kinetic energy is turned into electrical energy which can be delivered to the grid
as Figure 2.1 depicts. The electrical output of this set is connected, not only to

B    TBoiler fuel input
(Chemical energy)

Steam turbine

Kinetic energy Rotational kinetic energy GGross Net

Electrical energy

Generator

A/P

Auxiliar power system

Figure 2.1: Boiler-turbine-generator unit (J.Wood and F.Wollenberg, 1996).
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the electric network but also to the auxiliary power system in order to supply
the electrical necessities of the power plant (J.Wood and F.Wollenberg, 1996).

In the STHS problem, the output power of these units is modeled as a vari-
able which varies between a maximum value and a minimum value, as follows:

PThmin ≤ PTh ≤ PThmax (2.1)

On one hand, PThmin is the minimum loading limit which depends on either
uneconomical operation points or technically infeasible values. On the other
hand, PThmax is the maximum output limit given by the capacity of the group
turbine-generator of by stability constraints (Kothari and Dhillon, 2007).

This technology has high operation costs since a large amount of fossil fuel
is required to keep the plant operating. The curve that models the cost is ap-
proximated as a quadratic function of the active power generated ( Figure 2.2).

PTh

Costs (cu)

α+ βPTh + γP 2
Th

Figure 2.2: Cost function for thermal units. The function is convex if γ ≥ 0

This curve can be obtained on the basis of the unit input-output character-
istics or from the plant design engineers. It is normally function of unit de-
sign parameters such as initial steam conditions, stages of reheat and the re-
heat temperatures, condenser pressure and the complexity of the regenerative
feed-water cycle (J.Wood and F.Wollenberg, 1996)(Christensen and El-Hawary,
1979). Therefore, the cost function for a single thermal power plant is:

Cost = α+ βPTh + γP 2
Th, with γ ≥ 0 (2.2)

It is not difficult to see that the operation cost of an electrical system purely
composed of thermal units is given by (2.3):∑

i∈∆

(αi + βiP iTh + γi(P iTh)2), with γi ≥ 0 (2.3)

where ∆ is the set of all thermal units. In order to know the operating costs
of the thermal generator set ∆, during the interval of time ST = (0, T ) Equation
(2.2) takes the form presented below:
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∑
t∈Ω

∑
i∈∆

(αi + βiP i,tTh + γi(P i,tTh)2) (2.4)

Equation (2.4) will be the objective function to minimize in this research.
However, apart from the fuel cost, other objectives may be used, for example:
minimum loss dispatch, best efficiency dispatch, replacement cost dispatch and
emission dispatch. All of these objective functions are usually quadratic. Hence,
the proposed model can be easily extended to these cases.

2.1.2 Hydro units

Conventional hydro plants are classified into run-of-river plants and storage
plants. This type of plants consists of reservoirs which have large storage ca-
pacity. The volume of the reservoir depends on the water inflows, the spillage
and the amount of water released to produce electricity during periods of high
power requirements. During periods with low load requirements, potential en-
ergy is stored by filling the reservoir until its maximum limit, then water must
be realized through the spillway, without producing electricity, in order to avoid
that the water passes over the dam and produces damage in the civil structure.
Figure 2.3 shows a basic configuration of a conventional hydro power plant.

Water disarche

SpillageInflows

Volume

High

Volume

Dam

Turbine

Figure 2.3: Basic configuration of a dam

The reason why electricity can be produced by using hydro power plants
stems from the basic expression for potential energy:

Ep = mgh (2.5)

.
It is not difficult to see that, if a mass of water m can be elevated to an

altitude h, the mass of water is going to get a potential energy Ep. By deriving
Equation (2.5) with respect to time, the hydro power takes the form of:
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dEp
dt

= gh
dm

dt
= ghρ

dv

dt
= ghρQ (2.6)

The aforementioned equation represents the theoretical power produced by
a hydro unit. However, real systems has intrinsic losses produced by the civil
structures which are represented as a reduction of altitude hL. In addition,
electromechanical devices produce losses too which are considered by taking
into account their efficiencies. In this way, and considering hH as the headwater
level, the power produced by a hydro unit is given as:

PH = ηρg(hH − hL)Q (2.7)

Where Q is the water flow that passes by turbine, ρ represents the water
density, g is the gravitational constant and η is the efficiency of the hydraulic
machine.

However, Equation (2.7) does not represent the real behavior of the turbine,
since it does not consider the changes that hydraulic head variation produces on
the efficiency of the turbine. Therefore, a more accurate formulation is proposed
in (Yunan Zhu and Yang, 2013). The power produced can be written as:

Ph(t) = C1V (t)2 + C2Q(t)2 + C3V (t)Q(t) + C4V (t) + C5Q(t) + C6 (2.8)

Where coefficients C are the hydropower generation coefficients that de-
pends on each unit, V (t) is the volume of the reservoir and Q(t) is the water
discharges. Notices that this relation is non-linear in both, Q and V . It is im-
portant to mention that in this research, run-of-river plants were not considered
since we are more interested on studying the non-convexity of the power pro-
duced by storage plants.

2.1.3 Wind units

Wind turbines are machines that convert the kinetic power of the air into elec-
tricity. The air passes through the blades which turns a shaft inside the na-
celle. The shaft is connected to a gearbox with the purpose of increasing the
rotational speed to reach the suitable speed for the electrical generator, which
transforms the angular kinetic energy into electrical energy (Olimpo Anaya-Lara
and Hughes, 2009).

The theoretical power produced by the air on an area Λ is given by (2.9),
where ρair is the air density and vw is the wind speed.

Pe =
1

2
ρairΛv

3
w (2.9)
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However, wind turbines are only capable to take a fraction of the power
of the wind. The fraction of wind power that can be converted into electrical
power is determined by the power coefficient Cp and is given by:

Pw =
1

2
CP ρairΛv

3
w (2.10)

The value of Cp depends on the inclination angle of the blades (βp), called
also pitch angle, and the ratio between the tangential speed of the tip of a blade
and the actual speed of the wind (tip speed ratio λtip). So as to control the
power produced, both, λtip and βp must be modified.

Figure 2.4 depicts the wind turbine power behavior. From 0 to Vcut−in wind
does not have enough energy to move the blades of the turbine. The interval
between Vcut−in and Vrated represents how as the wind increases, the power
increases in a cubical way until it reaches the rated power of the electrical gen-
erator. In this interval λtip is modified to obtain the maximum possible power.
After that, wind gets Vrated and the pitch angle is changed to keep the power
in its rated value in order to avoid damaging the electrical machine. The wind
turbine can keep producing rated power until the wind speed is lower or equal
to Vcut−out. At this moment mechanical devices have to stop the rotation of the
blades and then the power produced is zero. Equation (2.11) represents the
output power in per unit values (Basu, 2019).

PwP.U (vw) =


0 vw ≤ vcut−in
( vw−vcut−in
vrated−vcut−in )3 vcut−in ≤ vw ≤ vrated

1 vcut−in ≤ vw ≤ vcut−out
0 vw ≥ vcut−out

(2.11)

.

v

Ppu

Vcut−in Vrated Vcut−out

Prated

Figure 2.4: Wind power
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Notice that wind is stochastic and hence, the outpout power is also stochas-
tic.

2.1.4 Solar photovoltaic units

Photovoltaic units are power plants that works based on the capability of silicon
materials to convert the energy contained in photons of light into an electrical
current. A photon with wavelength and high energy can produce an electron
in a photovoltaic material to escape from the atom that carries it. If an electric
field is present, those electrons can be moved toward a metallic contact and an
electric current appears(Masters, 2004).

The output power of this kind of unit is given by Equation (2.12) and de-
pends on the solar irradiation ψ and the rated power of the photovoltaic system
PSrated .

Ps =
ψ · PSrated

1000
(2.12)

The value 1000 comes from the nominal conditions that correspond to the
panel tests and the units of ψ are W/m2.

On the other hand, Equation (2.13) represents the capacity factor of a power
plant which is defined as the ratio of the net electricity generated to the energy
that could have been generated at continuous full-power operation during a
considered interval of time.

CFs =
Es

Erated
=

PS · t
PSrated · t

(2.13)

If the capacity factor of the power plant CFs for a specific period t is known,
the power produced by the unit can be calculated as:

PS = CFs · PSrated (2.14)

In this research, the aforementioned equation was used to calculated the
output power of the solar units since the available data corresponded to capacity
factor data.

2.1.5 Classic short-therm hydrothermal dispatch model (Model
I)

Short-term hydrothermal dispatch is an optimization problem which consists of
minimizing the overall operation cost of thermal units by increasing the power
that hydroelectrics produce in order to supply the load demand over a day or
week, taking into account the physical and electrical constraints of the system
(Kothari and Dhillon, 2007). The objective function and the constraints that
model the problem are defined as follows:
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Figure 2.5: Flows through a node

• Cost function of the thermal plants

Minimize
∑
t∈Ω

∑
i∈∆

(αi + βi · P i,tTh + γi · (P i,tTh)2) (2.15)

The cost of power produced by the thermal units is a cuadratic function
of the power produced, where the coefficients α, β and γ depend on the
characteristics of each thermal power plant. The double sum in (2.15)
stems from the cost of all thermal units operating during the interval of
time studied. It is not difficult to see that the value α is related to the fixed
operation costs.

• Active power balance

The law of conservation of energy states that the total energy of an iso-
lated system remains constant. For a power system this principle means
that the generated power, for all units of the system, must be iqual to the
consumed power by the loads connected to said system at an interval of
time t. For the sake of simplicity the losses were not considered and the
balance equation can be written as:∑

i∈∆

P i,tTh +
∑
j∈SH

P j,tH = P tD (2.16)

From Figure 2.5 Equation (2.16) can be expressed, for the generator
nodes as:

P k,tG = F k,tF t (2.17)

F k,tF t = F k,tSt (2.18)
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Figure 2.6: Quadratic function of Produced hydro power

F k,tSt =
∑
n∈Nk

F k,n,tL + P k,tD (2.19)

Where P k,tG is the power produced by generation units; F k,tF t and F k,tSt are
the power flow through the primary and secondary of the transformer;
F k,n,tL are the flows through lines connected between the node k and the
n node; finally P k,tD represents the load.

• Hydroelectric generation

The power produced by the hydro units is represented by a quadratic func-
tion of discharge and storage volume (see Figure 2.6). It is important to
emphasize that this constraint is non-convex, since it is a not affine equal-
ity constraint, and it is going to determinate how difficult the problem
is.

P j,tH = Cj1 · V j,t
2

+ Cj2 ·Qj,t
2

+ Cj3 · V j,t ·Qj,t

+Cj4 · V j,t + Cj5 ·Qj,t + Cj6
(2.20)

• Continuity equation for the hydro reservoir network

The volume of reservoir j at moment t is determined by: the volume
that used to be at the moment t − 1, the natural inflows of the reservoir,
the water and the spillage released, and the water and the spillage that
come from upper reservoirs. From figure 2.7, it is not difficult to see that
the water that comes from an upper reservoir to a lower reservoir does
not arrive immediately to the lower reservoir. The time that said mass
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of water takes to move between reservoirs is called delay, and must be
considered in order to accurately operate the hydro chains. This delay is
represented by τ and it is different for each connection between reservoirs.
On the other hand, it is important to highlight that the evaporation was
not considered in this research.

V j,t = V j,t−1 + Ij,t −Qj,t − Sj,t

+
∑
π∈SΩj

(Qπ,t−τ + Sπ,t−τ ) (2.21)

I1

Reservoir 1

I2

Reservoir 2

I3

Reservoir 3

I4

Reservoir 4

Q2 Q1

Q3

Q4

Figure 2.7: Hydraulic system test network. Data for this test system is available
in (Orero and Irving, 1998)

• Initial and final reservoir storage volumes

V j,0 = V jini (2.22)

V j,T = V jend (2.23)

• Physical limitations on reservoir storage volumes, discharge rates and
power generation.

V jmin ≤ V
j,t ≤ V jmax (2.24)

Qjmin ≤ Q
j,t ≤ Qjmax (2.25)

P iThmin ≤ P
i,t
Th ≤ P

i
Thmax (2.26)
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PHjmin
≤ P j,tH ≤ PHjmax (2.27)

Sjmin ≤ S
j,t ≤ Sjmax (2.28)

It is important to emphasize that the aforementioned constraints must be
satisfied at any moment t.

2.1.6 DC powerflow

Notice that Equations (2.17), (2.18) and (2.19) imply that the power flows
through lines must be known. Different types of methodologies has been used
to solve the power flow problem, must of them require to know the electrical
characteristics of the grid, angles and voltages of each node. However, those
methodologies have large computational burden. That is why DC power flow
is commonly used to solve and simplify this problem when it is working with
high voltage levels. Said method assumes that the voltages are sustained at 1
per unit, which is a valid assumption in electrical power systems, where control
methodologies try to keep the voltages close to this value. In addition, each
line is represented by its series reactance (Grainger and Jr., 1994). In this way,
the per unit power flow from node k to node n in a line with series reactance
XknP.U with angular difference θk,n is given by:

PknP.U =
sin(θkn)

XknP.U

(2.29)

By considering sin(θkn) ' θkn, the aforementioned Equation takes the form
of Grainger and Jr. (1994):

PknP.U =
θkn

XknP.U

(2.30)

On the other hand, the injected power at each node can be calculated as:

[PP.U ] = [BP.U ][θ] (2.31)

Where [PP.U ] is the vector of active injected powers; [BP.U ] is the nodal ad-
mitance matrix and [θ] is the vector of angles between adjacent nodes.

By considering that the injected power at node k is given by the difference
between the generated power and load connected to the aforementioned node,
Equation (2.31) takes the following form:

[PGP.U ]− [PDP.U ] = [BP.U ][θ] (2.32)
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From Figure 2.5 it is easy to see that the power injected at node k at moment
t must be equal to the flows through the lines connected to this node. Said
relation is given as follows:

P k,tGP.U
− P k,tDP.U

=
∑
n∈Nk

F k,n,tLP.U
(2.33)

Where Nk is the set of nodes connected to the node k.

The data of the grid used in this research can be found in Appendix A.

2.1.7 STHS with wind and solar resources

In order to include wind and solar generators in the traditional model the equa-
tions of flow balance, for the nodes where these types of generators exist, are
modeled as:

P k,tGP.U
= P k,twP.U for k = e (2.34)

P k,tGP.U
= P k,tsP.U for k = u (2.35)

Where Pw and Ps are given by (2.11) and (2.14). However, these equations
do not consider the stochasticity of the renewable resources.

2.2 Convex qualification and challenge of the model

Notice that the objective function (2.15) is a quadratic convex function; Equa-
tions (2.16)-(2.19), (2.21)-(2.23) and (2.30)-(2.33) shape affine spaces; Equa-
tions (2.24)-(2.28) and (2.34)-(2.35) are box constraints. Finally, Equation
(2.20) is not affine which makes the model non-convex.

The main challenges of this model lie on the stochastic nature of wind and
solar generation and its non-linear and non-convex characteristics. Therefore,
convex relaxations, to mention second-order cone relaxation, is a tool that helps
to deal with the non-convexity of quadratic non-convex constraints. This will
be presented in the next chapter.

In order to deal with the inherent stochasticity of renewable sources, a ro-
bust optimization approach which allows to satisfy the probabilistic constraints,
is considered in this research as presented in Chapter 4.
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Chapter 3

Second-order cone
programming for the STHS

This chapter shows the convexification of the short-term hydrothermal schedul-
ing problem, using second order cone programming. The main characteristics
of these type of optimization models are also presented.

3.1 The second order cone

A cone is a subset of a set ξ over a linear space such as, for each Y ∈ ξ and
a positive scalar number ℘, we have ℘Y ∈ ξ. There are several kind of cones,
however we are interested in the second order cone, more especefically in the
programming problems associated with this geometry.

Second-order cone programming problems are convex optimization problem
of the form minimizing a linear function subject to affine linear constraints and
cartesian product of second-order cone constrains. Moreover, convex quadratic
problems and quadratically constrained convex quadratic problems (QCQP) can
be formulated as SOC problems. The general structure of a second-order cone
problems is presented below:

minimize f>Y (3.1)

subject to ‖AiY + bi‖2 ≤ ciY + di, i = 1, ...,m (3.2)

UY = % (3.3)

Notice that constraints such as Equation (3.2) define a cone of the form de-
picted in Figure 3.1. It is not difficult to see thereof cone holds the convexity
criteria explained in subsection B.2 of Appendix B. Moreover, primal or dual
interior point methods developed for linear programming can be extended in
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Figure 3.1: Second-order cone

a word-for-word fashion to SOC. In this way, there are several software pack-
age available to handle SOC programming problems, namely: Gurobi, Sedumi,
Mosek, etc. (Alizadeh and Goldfarb, 2003).

3.2 Quadratically constrainted quadratic program-
ming problems

A convex optimization problem can be considered as quadratically constrainted
quadratic programming problem (QCQP) if the objective function and the asso-
ciated constraints can be defined as follows:

minimize Y >P0Y + 2q>0 Y + r0 (3.4)

subject to Y >PiY + 2q>i Y + ri ≤ 0 (3.5)

In this case, a convex quadratic function is minimized over a feasible region
that is the intersection of ellipsoids (Boyd and Vndenberghe, 2009).

Problems of the form of QCQP can be rewritten as SOC by using the concept
of epigraph (see (Alizadeh and Goldfarb, 2003)) if and only if the matrix P0 and
Pi admit cholesky decomposition, that is to say Pi = (P

−1/2
i )> · (P 1/2

i ), which
implies that both, P0 and Pi must be positive semidefinite matrix.

The general structure of a QCQP problem rewritten as a SOC problem takes
the form of:
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minimize z (3.6)

subject to
∥∥∥P 1/2

0 Y + P
−1/2
0 q0

∥∥∥ ≤ z (3.7)∥∥∥P 1/2
i Y + P

−1/2
i q0

∥∥∥
2
≤ (q>i P

−1
i qi − ri)1/2 (3.8)

UY = % (3.9)

where, for a given matrix P , it is defined P 1/2 as the matrix that is gener-
ated from the Cholesky decomposition, such as P = (P 1/2)> · (P 1/2). Likewise,
P−1/2 is defined as P−1/2 = ((P 1/2)−1)> such as (P−1/2)> · (P 1/2) = I.

On the other hand, equations of the form of (3.5) and (3.8) can also be
rewritten as: ∥∥∥∥∥

(
1+2q>i Y+ri

2

P
1/2
i Y

)∥∥∥∥∥
2

≤ 1− 2q>i Y − ri
2

(3.10)

Next section explains how Equation (3.10) is deduced.

3.3 Quadratically constraint rewritten as second-
order cone constraint

An equation given as Equation (3.11)

Y > · (P 1/2
i )> · (P 1/2

i ) · Y + 2q>i Y + ri ≤ 0 (3.11)

can be rewritten as SOC constraint of the form of Equation (3.12)∥∥∥∥∥
(

1+2q>i Y+ri
2

(P
1/2
i )Y

)∥∥∥∥∥ ≤ 1− 2q>i Y − ri
2

(3.12)

In order to prove this, let us calculate the Euclidian norm of the vector to the
right side of Equation (3.12), and then expanding the expression as follows:

√
(1 + 2q>i Y + ri)

2
· (1 + 2q>i Y + ri)

2
+ ((P

1/2
i )Y )> · ((P 1/2

i )Y )

≤ 1− 2q>i Y − ri
2

(3.13)

1

4
+

(2q>i Y )2

4
+
r2
i

4
+

2q>i Y

2
+
ri
2

+
ri2q

>
i Y

2
+ ((P

1/2
i )Y )> · ((P 1/2

i )Y )

≤ (1− 2q>i Y − ri)2

4

(3.14)
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4
+

(2q>i Y )2
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+
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i

4
+

2q>i Y

2
+
ri
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+
ri2q

>
i Y

2
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1/2
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i )Y

≤ 1

4
+

(2q>i Y )2

4
+
r2
i

4
− 2q>i Y

2
− ri

2
+
ri2q

>
i Y

2

(3.15)

Y >(P
1/2
i )>(P

1/2
i )Y + 2q>i Y + ri ≤ 0 (3.16)

3.4 Convex approximation for the STHS model

In order to obtain a convex relaxation of the Equation 2.20 let us approximate
this Equation as follows:

P j,tH ≤ C
j
1V

j,t2 + Cj2Q
j,t2 + Cj3V

j,t.Qj,t

+Cj4V
j,t + Cj5Q

j,t + Cj6
(3.17)

The aforementioned approximation can be carried out due to the the fact
that the objective function to minimize is the production cost of thermal gener-
ators and the generation cost of hydro units is zero. Consequently, the optimiza-
tion process tends to use as much hydropower as possible; therefore, setting a
top limit on this variable is an equivalent approximation of the Equation (2.20).
Additionally, Equation (3.17) can be rewritten as presented below:

P j,tTh ≤
(
Qj,t V j,t

)
·

(
Cj1

C3

2

j

C3

2

j
Cj2

)
·
(
Qj,t

V j,t

)
+

(
Cj4
Cj5

)
·
(
Qj,t

V j,t

)
+ Cj6

(3.18)

Where the matrix composed by the elements Cj1 , Cj2 and C3

2

j
in Equation

(3.18) is definite positive for all j, which implies that the non-convex equation
of produced power by hydro unit can be approximated as a quadratic constraint.
Moreover, according to what was explained in Sections 3.2 and 3.3, hydropower
equation can be rewritten as follows:

−
(
Qj,t V j,t

)
·

(
Cj1

C3

2

j

C3

2

j
Cj2

)
·
(
Qj,t

V j,t

)
−
(
Cj4
Cj5

)(
Qj,t

V j,t

)
− Cj6 + P j,tTh ≤ 0

(3.19)
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It is not difficult to see that Equation (3.19) takes the form of a SOC con-
straint as follows:

∥∥∥∥∥∥∥∥∥∥∥


1−

Cj4
Cj5

Qj,t
V j,t

−Cj6+P j,tH

2(
−Cj1 −C3

2

j

−C3

2

j −Cj2

) 1
2 (

Qj,t

V j,t

)


∥∥∥∥∥∥∥∥∥∥∥
2

≤
1 +

(
Cj4
Cj5

)(
Qj,t

V j,t

)
+ Cj6 − P

j,t
H

2
(3.20)

For sake of completeness, let us define an auxiliary variable U such as:

U =

1 +

(
Cj4
Cj5

)(
Qj,t

V j,t

)
+ Cj6 − P

j,t
H

2
(3.21)

Hence, Equation 3.20 can be rewriting as follows:∥∥∥∥∥∥∥∥∥∥∥


1−

Cj4
Cj5

Qj,t
V j,t

−Cj6+P j,tH

2(
−Cj1 −C3

2

j

−C3

2

j −Cj2

) 1
2 (

Qj,t

V j,t

)


∥∥∥∥∥∥∥∥∥∥∥
2

≤ U (3.22)

3.5 Convex model of STHS (Model II)

By considering the relaxation proposed in section 3.4, the following STHS model
is proposed:

Minimize z (3.23)

subject to:

• Cost function of the thermal plants

∑
t∈Ω

∑
i∈∆

∥∥∥∥(γi)1/2P i,tTh + (γi)1/2 β
i

2

∥∥∥∥ ≤ z (3.24)

• Active power balance ∑
i∈∆

P i,tTh +
∑
j∈SH

P j,tH = P tD (3.25)
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• Hydroelectric generation∥∥∥∥∥∥∥∥∥∥∥


1−

Cj4
Cj5

Qj,t
V j,t

−Cj6+P j,tH

2(
−Cj1 −C3

2

j

−C3

2

j −Cj2

) 1
2 (

Qj,t

V j,t

)


∥∥∥∥∥∥∥∥∥∥∥
2

≤ U (3.26)

Where the value of U is given by Equation 3.21.

• Continuity equation for the hydro reservoir network

V j,t = V j,t−1 + Ij,t −Qj,t − Sj,t

+
∑
π∈SΩj

(Qπ,t−τ + Sπ,t−τ ) (3.27)

• Initial and final reservoir storage volumes

V j,0 = V jini (3.28)

V j,T = V jend (3.29)

• Physical limitations on reservoir storage volumes, discharge rates and
power generation.

V jmin ≤ V
j,t ≤ V jmax (3.30)

Qjmin ≤ Q
j,t ≤ Qjmax (3.31)

P iThmin ≤ P
i,t
Th ≤ P

i
Thmax (3.32)

PHjmin
≤ P j,tH ≤ PHjmax (3.33)

Sjmin ≤ S
j,t ≤ Sjmax (3.34)
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3.6 Convex model of STHS considering the grid
(Model III)

As it was said in section 2.1.6, the grid imposes constraints to the generators.
Power flow constraints are considered into the short-term dispatch as:

P k,tGP.U
− P k,tDP.U

=
∑
n∈Nk

F k,n,tLP.U
(3.35)

F k,n,tLP.U
=
θk,t − θn,t

Xk,n
(3.36)

[PGPU ]t − [PDPU ]t = [BPU ][θ]t (3.37)

It is important to consider that angular differences greater than π
2 can re-

sult in stability issues (Padiyar, 2008). Thus, the angle constraint is written as
follows:

− π

2
≤ θk,n,t ≤ π

2
(3.38)

In addition, the transmission lines have a maximum power conduction ca-
pacity which depends on several aspects such as temperature, voltage stability
and angle stability. In doing so, from Equations (2.29) and (3.38), the maxi-
mum capability of the line can be calculated as Equation (3.39) if the power
transfer limit is set by the stability angle (Jan Machowski, 2008).

F k,nLmax P.U
=
sin(θkn)max
XknP.U

=
sin(π2 )

XknP.U

=
1

XknP.U

(3.39)

Similarly, the minimum capability of the line can be considered as:

F k,nLmin P.U
=
sin(θkn)min
XknP.U

=
sin(−π2 )

XknP.U

=
−1

XknP.U

(3.40)

Thus, and by considering a proportion of 1 to 6.5 between the thermal ca-
pacity and the stability capacity of the line, the maximum and minimum power
can be considered as Equation (3.41) (kundur, 1994).

F k,nLTmin P.U
≤ F k,n,tLP.U

≤ F k,nLTmax P.U
(3.41)

Notice that the superscript t in Equation (3.37) implies that the DC power
flow must be run for each interval of time t. In addition, it is important to high-
light that Equations (3.38) and (3.41) are a box constraints which match with
convexity criteria.

By considering Equations (3.35), (3.37),(3.38) and (3.41) the STHS model
that considers the grids is described as follows:

Minimize z (3.42)
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Subject to:

• Cost function of the thermal plants

∑
t∈Ω

∑
i∈∆

∥∥∥∥(γi)1/2PbaseP
i,t
ThP.U

+ (γi)1/2 β
i

2

∥∥∥∥ ≤ z (3.43)

Notice that this model has to be treated in values in per unit (P.U). Other-
wise, DC power flow could not be used.

• Active power balance

P k,tDP.U
= F k,tStP.U

−
∑
n∈Nk

F k,n,tLP.U
(3.44)

P k,tGP.U
= F k,tF tP.U

(3.45)

F k,tF tP.U
= F k,tStP.U

(3.46)

• Power flow constraints

[PGPU ]t − [PDPU ]t = [BPU ][θ]t (3.47)

F k,n,tLP.U
=
θk,t − θn,t

Xk,n
(3.48)

F k,nLTmin P.U
≤ F k,n,tLP.U

≤ F k,nLTmax P.U
(3.49)

− π

2
≤ θk,n,t ≤ π

2
(3.50)

• Hydroelectric generation

∥∥∥∥∥∥∥∥∥∥∥


1−

Cj4P.U
Cj5p.u

Qj,tP.U
V j,tP.U

−Cj6p.u+P j,tHP.U

2(
−Cj1P.U

−C3P.U

2

j

−C3P.U

2

j
−Cj2P.U

) 1
2 (

Qj,tP.U
V j,tP.U

)


∥∥∥∥∥∥∥∥∥∥∥
2

≤ UP.U (3.51)

Where the value of U is given by Equation 3.21.
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• Continuity equation for the hydro reservoir network

V j,tP.U = V j,t−1
P.U + Ij,tP.U −Q

j,t
P.U − S

j,t
P.U

+
∑
π∈SΩj

(Qπ,t−τP.U + Sπ,t−τP.U ) (3.52)

• Initial and final reservoir storage volumes

V j,0P.U = V jiniP.U (3.53)

V j,TP.U = V jendP.U (3.54)

• Physical limitations on reservoir storage volumes, discharge rates, power
generation, line capacities and angles.

V jminP.U ≤ V
j,t
P.U ≤ V

j
maxP.U (3.55)

QjminP.U ≤ Q
j,t
P.U ≤ Q

j
maxP.U (3.56)

P iThminP.U
≤ P i,tThP.U ≤ P

i
ThmaxP.U

(3.57)

P jHminP.U
≤ P j,tHP.U ≤ P

j
HmaxP.U

(3.58)

SjminP.U ≤ S
j,t
P.U ≤ S

j
maxP.U (3.59)

• Generated power

The produced power at a node k depends on the type of the unit connected
to this node. For the traditional STHS there are two types of generation:
hydro and thermal. In this way, the power generations at node k is given
as:

P k,tGP.U
= P i,tThP.U for k = i (3.60)

P k,tGP.U
= P j,tHP.U for k = j (3.61)
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3.7 Deterministic convex model of STHS consider-
ing the grid and renewable sources (Model IV)

This subsection presents a convex model for STHS considering renewable sources
and the grid. It is important to highlight that the stochasticity of renewable
sources is not considered. In this case, values of wind speed and solar irradia-
tion are considered known values. Thus, the model is present as follows:

Minimize z (3.62)

Subject to:

• Cost function of the thermal plants

∑
t∈Ω

∑
i∈∆

∥∥∥∥(γi)1/2PbaseP
i,t
ThP.U

+ (γi)1/2 β
i

2

∥∥∥∥ ≤ z (3.63)

• Active power balance

P k,tDP.U
= F k,tStP.U

−
∑
n∈Nk

F k,n,tLP.U
(3.64)

P k,tGP.U
= F k,tF tP.U

(3.65)

F k,tF tP.U
= F k,tStP.U

(3.66)

• Power flow constraints

[PGPU ]t − [PDPU ]t = [BPU ][θ]t (3.67)

F k,n,tLP.U
=
θk,t − θn,t

Xk,n
(3.68)

F k,nLTmin P.U
≤ F k,n,tLP.U

≤ F k,nLTmax P.U
(3.69)

− π

2
≤ θk,n,t ≤ π

2
(3.70)

• Hydroelectric generation∥∥∥∥∥∥∥∥∥∥∥


1−

Cj4P.U
Cj5p.u

Qj,tP.U
V j,tP.U

−Cj6p.u+P j,tHP.U

2(
−Cj1P.U

−C3P.U

2

j

−C3P.U

2

j
−Cj2P.U

) 1
2 (

Qj,tP.U
V j,tP.U

)


∥∥∥∥∥∥∥∥∥∥∥
2

≤ UP.U (3.71)

Where the value of U is given by Equation 3.21.
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• Continuity equation for the hydro reservoir network

V j,tP.U = V j,t−1
P.U + Ij,tP.U −Q

j,t
P.U − S

j,t
P.U

+
∑
π∈SΩj

(Qπ,t−τP.U + Sπ,t−τP.U ) (3.72)

• Initial and final reservoir storage volumes

V j,0P.U = V jiniP.U (3.73)

V j,TP.U = V jendP.U (3.74)

• Physical limitations on reservoir storage volumes, discharge rates, power
generation, line capacities and angles.

V jminP.U ≤ V
j,t
P.U ≤ V

j
maxP.U (3.75)

QjminP.U ≤ Q
j,t
P.U ≤ Q

j
maxP.U (3.76)

P iThminP.U
≤ P i,tThP.U ≤ P

i
ThmaxP.U

(3.77)

P jHminP.U
≤ P j,tHP.U ≤ P

j
HmaxP.U

(3.78)

SjminP.U ≤ S
j,t
P.U ≤ S

j
maxP.U (3.79)

• Wind generation

P e,twP.U =


0 ve,tw ≤ vcut−in
(
ve,tw −vcut−in
vrated−vcut−in )3 vcut−in ≤ ve,tw ≤ vrated

1 vcut−in ≤ ve,tw ≤ vcut−out
0 ve,tw ≥ vcut−out

(3.80)

.

• Photovoltaic genaration

Pu,tSP.U
= Cu,tFs P

u
Srated P.U

(3.81)
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• Generated power

P k,tGP.U
= P i,tThP.U for k = i (3.82)

P k,tGP.U
= P j,tHP.U for k = j (3.83)

P k,tGP.U
= P e,twP.U for k = e (3.84)

P k,tGP.U
= Pu,tSP.U

for k = u (3.85)

Notice that the components on the vector [PGPU ]t depends of the kind of
generator that is connected to the node, that is why it is necessary to specify
what kind of generator we have in each node. Additionally, Equations 3.84 and
3.85 are used to calculate the power produced by these units when specific data
are given.
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Chapter 4

Robust model

Wind speed and solar irradiation are variables that cannot be predicted with ex-
actitude. That implies that the optimization problems that deal with these vari-
ables, must consider their stochastic characteristics. Several approaches have
been used when it comes to working with stochastic elements, stochastic opti-
mization and robust optimization are some of them.

Even though both, stochastic optimization (SO) and robust optimization
(RO), face optimization problems with random variables, they do it in differ-
ent ways that differ considerably. Thus, in SO, these random data obey a known
in advance probability distribution and therefore a way to calculate said prob-
ability distribution is required. On the other hand, in RO, it is not necessary
to know the probability distribution of random data. This stems from the ap-
proach used in RO, where a solution is accepted if it is in a previous defined
robustness space. Notice that under RO paradigm, it is not necessary to know
the distribution of the data, instead, it is necessary to ensure that the solution
is going to be inside the defined robustness space. The main advantages of this
methodology lies on it is tailored to the information at hand, and allows com-
putationally tractable formulations.

In this research a robust optimization approach was considered in order
to deal with the randomness of the renewable sources. By doing so, power
balance constrains were modeled as chance box constraints. With the purpose
of understanding the aforementioned approach, several concepts are explained
next.
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4.1 Probability concepts

4.1.1 Deterministic and random variables

The set of variables that belong to a deterministic model are called deterministic
variables. In this type of processes, the same inputs will produce invariably
the same outputs. In other words, a deterministic variable can be known with
complete exactitude. On the other hand, when an experiment is carried out,
it is frequent that we are more interested in some function of the outcome as
opposed to the actual outcome itself. These real-valued functions defined on
the sample space, are known as random variables (Ross, 1998). Additionally, a
random variable can be understood as a variable whose value cannot be known
with complete exactitude.

4.1.2 Probability space

A probability space is a triple (H, B,P), where H is a nonempty space known
as sample space, B is a σ−algebra on H and P is a function from H that repre-
sents the assignment of probabilities to the events (Schweizer and Sklar, 2005).
All these definitions are explained in appendix C.

On the other hand, it is worth mentioning that the probability spaces that
are used in this research correspond to those conformed by the sample space
wind and solar power.

4.1.3 Probability density function

The probability density function (PDF) provides the probability to find the vari-
able X in a infinitisimal interval dx. It is formally defined as:

f(x)dx = Prob (x ≤ X ≤ x+ dx) (4.1)

Where the area under f(x) represents the total probability of having any
observed value and must be equal to one (Gilchrist, 2000). An example of a
PDF is shown in Figure 4.1. It is important to highlight that not all PDF are
symmetric or unimodal as the one shown in this Figure.

4.1.4 Cumulative distribution function.

The cumulative distribution function, also called the distribution function F of
a random variable X, for all real numbers x,−∞ < x <∞ is defined as:

F (x) = Prob(X ≤ x) (4.2)

Summed up, F (x) represents the probability that the random variable X
takes on a value that is less than or equal to x, and its main characteristic is
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Figure 4.1: A probability density function
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Figure 4.2: A cumulative distribution function
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Figure 4.3: A quantile function

that it is always monotonically increasing (Ross, 1998). Notice that the relation
between f(x) and F (x) is given by:∫

f(x)dx = F (x) (4.3)

4.1.5 Quantile function

The quantile function is another way to represent a distribution (Gilchrist, 2000).For-
mally, it is defined as :

Q(p) = inf{x ∈ R : p ≤ F (xp)} (4.4)

Where xp is the P-quantile of the population. The function Q(p) = xp is
called the quantile function and represents the P-quantile as a function of p
(Gilchrist, 2000). Notice that, the value xp represents the value of x which
Prob (X ≤ xp) = p. The relation between the quantile function and the cumu-
lative distribution function is given as (Gilchrist, 2000):

Q(p) = F−1(p) (4.5)

F (x) = Q−1(x) (4.6)

4.2 Robust optimization

Let us consider a linear programming problem (LP) of the following form:

minimize c>X (4.7)

subject to a>X ≤ b (4.8)

a>, b, c> ∈M (4.9)
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Where the data is comprised of the numerical values of the entries in (c>, a>,
b) and varies in a given uncertain setM. Robust optimization solves uncertain
LP problems based on three assumptions on the underlying decision-marking
environment:

A. All entries in the decision vector X represent "here and now" decisions:
they should get specific numerical values as a result of solving the problem
before the actual data “reveals itself.”

B. The decision maker is completely responsible for consequences of the de-
cisions to be made when, and only when, the actual data is within the
specified uncertainty setM.

C. The constraints of the problem are hard. That is to say, violations of con-
straints, when the data is inM, are not tolerated.

The aforementioned suppositions lead to the definition of an "immunized
against uncertainty" solution on a uncertain problem. Notice that, assumption
A imply that the vectorX should be a fixed vector that, considering assumptions
B and C, should remain feasible for the constraints regardless the realization of
the data withingM; such solutions is called "robust feasible". Consequently, in
a decision-making environment, meaningfull solutions to a problem with uncer-
tainties are its robust feasible solutions. It remains to interpret the value of the
objective solutions. Thus, by considering the "worst-case-oriented" approach of
robust optimization, it makes to quantify the quality of a robust feasible solution
X by the "guaranteed" value of the original objective, this means, by its largest
value sup{c>x ≤ b : (c, a>, b) ∈ M}. In consequence, the best possible robust
feasible solution is given by the solution of the following optimization problem:

minimize
X

{ sup
(c,a>,b)∈M

c>X} (4.10)

subject to a>X ≤ b ∀ (a>, b, c) ∈M (4.11)

This optimization problem can be rewritten as:

minimize
X,z

z (4.12)

subject to c>X ≤ z (4.13)

a>X ≤ b ∀ (a>, b, c) ∈M (4.14)

The latter formulation is called the robust counterpart of the original uncer-
tainty problem. This methodology, in its simplest version, proposes to associate
with an uncertain problem its robust counterpart and using the associated ro-
bust optimal solutions as our “real life” decisions. Subsequently, Figure 4.4 de-
picts a sample space H with a robutness spaceM. Notice that the optimization
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M

H

Figure 4.4: Sample space H and robustness spaceM

problem is carried out inside the area surrounded by the dashed perimeter. For
the studied problem H represents the set of values that the renewable power
can take and M represents the subset of power values that we are willing to
accept.

To summarize, robust optimization methodology optimizes over a "robust-
ness space" (which is defined by the decision maker) of the original sample
space, under the “worst-case-oriented” philosophy (Aharon Ben-Tal and Ne-
mirovski, 2009). In adittion, the aforementioned formulation can be carried
out by only considering the stochasticity of b, in this case the parameters a>

and c are known while b ∈M. This will be the approach that we will we use to
model the equations with random variables of our problem.

It is important to highlight that the previous formulation can be extended to
QCQP problems by considering the explanation given in Chapter 3.

4.3 Chance box constraint

let us consider the following structure for an optimization problem:

minimize f0(Y ) (4.15)

subject to at ≤ Yt ≤ lt t = 1, ..., T (4.16)

where Y is the variable. The constrains can be called variable bounds (since
they give lower and upper bounds for each Yi) or box constraints (since the
feasible set is a box). This problem can be also expressed as (Boyd and Vnden-
berghe, 2009):
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minimize f0(Y ) (4.17)

subject to at ≤ Yt (4.18)

lt ≥ Yt t = 1, ..., T (4.19)

When Yt is an aleatory variable, the aforementioned constraints are called
chance box constraints. The way to deal with these kind of restrictions is ex-
plained next.

4.3.1 Chance box constraint definition

A constraint of the form:

Xt ≥ Dt, t = 1, ..., T. (4.20)

Requires a probabilistic approach when Xt is random and Dt is determinis-
tic. Thus, Constraint (4.20) is expressed as a chance constraint of the form of
Equation (4.21), which states that the probability of Xt equaling or exceeding
Dt is at least equal to a given parameter ζ, this means that at least ζ percent of
the time Xt must be greater than or equal to Dt.

Prob (Xt ≥ Dt) ≥ ζt, t = 1, ..., T. (4.21)

Notice that (4.21) can be rewritten as (4.22) if we consider that Prob[Dt ≤
a] + Prob[Dt ≥ a] = 1.

Prob (Xt ≤ Dt) ≤ 1− ζt, t = 1, ..., T. (4.22)

Considering the definition given in section 4.1.4, Equation (4.22) can be
written:

FXt(Dt) ≤ 1− ζt (4.23)

Where FXt(Dt) is the cumulative distribution function ofXt evaluated inDt.

The aforementioned formulation allows us to obtain a deterministic equiv-
alent for the probabilistic constraint represented by Equation (4.21)(S Vedula,
2007). Said deterministic equivalent is given as:

F−1
Xt

(1− ζt) ≥ Dt (4.24)

Where F−1
Xt

is the quantile function explained in section 4.1.5. It is important
to emphasize that constraints of the form (4.24) fit with the convexity criteria.
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4.3.2 Considering stochasticity of renewable sources into the
STHS

Equations (3.80), (3.81), (3.84) and (3.85) used in the deterministic model IV
do not consider the random nature of renewable sources. Therefore, a model
which considers the stochastic behavior of the sources is needed. In this way,
constraint (3.65) can be written as:

Prob (P k,tGP.U
≥ F k,tF tP.U

) ≥ ζt for k = u, e (4.25)

Similarly, the stochasticity of the demand can be considered by considering
nodes with loads, such as the ones represented by Equation (3.64), as follows:

Prob (F k,tStP.U
−
∑
n∈Nk

F k,n,tLP.U
≥ P k,tDP.U

) ≥ ζt (4.26)

It is important to emphasize that the equality constraints with random vari-
ables were changed for inequality constraints that should hold with a probability
exceeding ζt( Equations (4.25) and (4.26)). In doing so, these equation can be
modeled as chance box constraints.

4.3.3 Flow balance as a chance box constraint

Let us consider Equation (4.25). First, where P k,tG is the random variable. In
this case equations (4.21), (4.22), (4.23) and (4.24) take the form of:

Prob (P k,tGP.U
≥ F k,tF tP.U

) ≥ ζt (4.27)

Prob (P k,tGP.U
≤ F k,tF tP.U

) ≤ 1− ζt (4.28)

FPk,tGP.U

(F k,tF tP.U
) ≤ 1− ζt (4.29)

F−1

Pk,tGP.U

(1− ζt) ≥ F k,tF tP.U
(4.30)

Similarly, an expression for Equation (4.26) can be deduced, where the ran-
dom variable is P k,tD . Notice that this equation is equivalent to:

Prob (P k,tDP.U
≤ F k,tStP.U

−
∑
n∈Nk

F k,n,tLP.U
) ≥ ζt (4.31)

It is important to say that the left term of Equation (4.31) already has the
form of Equation (4.2), so changing the inequality in the left term of the equa-
tion is not necessary. Thus, this equation can be rewritten as:
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FPk,tDP.U

(F k,tStP.U
−
∑
n∈Nk

F k,n,tLP.U
) ≥ ζt (4.32)

F k,tStP.U
−
∑
n∈Nk

F k,n,tLP.U
≥ F−1

Pk,tDP.U

(ζt) (4.33)

F k,tStP.U
≥ F−1

Pk,tDP.U

(ζt) +
∑
n∈Nk

F k,n,tLP.U
(4.34)

On one hand Equation (4.30) allows us to consider the stochasticity of re-
newable resources when the node k is a node connected to a wind or a solar
unit. On the other hand, (4.34) considers the stochastic behavior of load. Both,
(4.30) and (4.34) are deterministic equivalents for the original equations.

4.4 Stochasticity of the radom variables

4.4.1 Stochastic behavior of wind and wind power data

One of the main challenges of wind generation is the stochasticity of wind since
said stochasticity makes impossible predicting the amount of power that can be
generated with this units with exactitude. This produces that the equilibrium
between power production and power consumed cannot be guaranteed. In or-
der to try modeling the behavior of this aleatory variable, wind speed data are
fitted to a Weibull distribution (see Figure 4.5) which is defined as follows:

f(vw) =
κw
cw

(
vw
cw

)κw−1

e−( vwcw )
κw

(4.35)

Where cw and κw are the scale and shape factor. It is important to empha-
size that the aforementioned equation corresponds with the probability density
function of wind, however the variable that concern us in the STHS problem is
wind power (Equation (2.11)) which is also a stochastic variable. An example
of a wind probability density function is shown in Figure 4.6. Notice that the
great peak that corresponds to Pw = 0 makes sense if we consider that wind
turbines do not produce power in the interval [Vw = 0, Vw = VCut−in]. Next,
there is a great concentration of data around the power that corresponds to the
rated value of wind data. Finally, there is a small peak in Pw = Pw−rated, the
reason for this is that the wind speed data used to create this curve reach Vrated
occasionally. This graphic can change depending on the wind speed behavior.

The aforementioned said implies that the probability density, cummulative
density and quantile functions are going to be influenced by the piecewise lin-
ear properties of Equation (2.11). For sake of simplicity, these functions are
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vw

f(vw)

0

Figure 4.5: Probability density function of wind speed

Pw

f(Pw)

Pw(Vrated data) Pw−rated
0

Figure 4.6: Probability density function of wind power
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calculated in a numeric way.

It is important to emphasize that the latter behavior corresponds for data
per hour.

4.4.2 Stochasctic behavior of solar power data

Capacity factor of a solar power plant is strongly influenced by the solar radia-
tion levels of the place where these were measured. The probability distribution
function of this capacity factors fits with a Weibull distribution as Figure 4.7 de-
picts. The probability density function of the output power will be the same as
the probability density function of the capacity factor times PSrated .

CF

f(CF )

Figure 4.7: Probability density function of solar capacity factor

4.4.3 Stochasctic behavior of load

The power consumed of an electrical power system is a variable that cannot be
forecast with exactitud. The reason for this is that the load depends on the will
of the consumer to turn on and turn off their electrical devices. However, the
behavior of the demand is strongly attached to some humans behavior patterns,
which allows load demand forecasts be accurate with a deviation around 5%.
This makes possible modeling the electrical energy consume for a period t as an
uniform distribution, which is formulated as follows:

f(x) =


x−o
s−o o ≤ x ≤ s

0 otherwise

(4.36)

.
From definitions 4.1.4 and 4.1.5 it is easy to see that the quantile function

for the uniform distribution can be written as:

Q(p) = (1− p)o+ ps (4.37)
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Notice that the values o and s correspond to the values between the load
forecast varies. This means o = PD + 0.05PD and s = PD − 0.05PD, Figure 4.8
depicts this behavior.

PD

f(PD)

PD + 0.05PDPD − 0.05PD PD

Figure 4.8: Uniform probability distribution function

4.5 Robust hydrothermal-wind-solar coordination
model (Model V)

The short-term hydrothermal-wind-solar coordination model that consider the
stochasticity of wind and solar generation is presented as follows:

Minimize z (4.38)

Subject to: ∑
t∈Ω

∑
i∈∆

∥∥∥∥(γi)1/2PbaseP
i,t
ThP.U

+ (γi)1/2 β
i

2

∥∥∥∥ ≤ z (4.39)

• Active Power balance

P k,tGP.U
= F k,tF tP.U

k = i, j (4.40)

F k,tF tP.U
= F k,tStP.U

(4.41)

F−1

Pk,tGP.U

(1− ζt) ≥ F k,tF tP.U
k = e, u (4.42)
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F k,tStP.U
≥ F−1

Pk,tDP.U

(ζt) +
∑
n∈Nk

F k,n,tLP.U
(4.43)

F k,tStP.U
=
∑
n∈Nk

F k,n,tLP.U
(4.44)

• Power flow constraints

[PGP.U ]t − [F−1
PDP.U

(ζ)]t = [BP.U ][θ]t (4.45)

F k,n,tLP.U
=
θk,t − θn,t

Xk,n
(4.46)

F k,nLTmin P.U
≤ F k,n,tLP.U

≤ F k,nLTmax P.U
(4.47)

− π

2
≤ θk,n,t ≤ π

2
(4.48)

• Generated power

P i,tGP.U = P i,tThP.U (4.49)

P j,tGP.U = P j,tHP.U (4.50)

P e,tGP.U = F−1

P e,twP.U
(1− ζt) (4.51)

Pu,tGP.U
= F−1

Pu,tSP.U

(1− ζt) (4.52)

• Hydroelectric generation (SOC)∥∥∥∥∥∥∥∥∥∥∥∥


1−

Cj4P.U
Cj5p.u

>Qj,tP.U
V j,tP.U

−Cj6p.u+P j,tHP.U

2(
−Cj1P.U

−C3P.U

2

j

−C3P.U

2

j
−Cj2P.U

) 1
2 (

Qj,tP.U
V j,tP.U

)


∥∥∥∥∥∥∥∥∥∥∥∥
≤ UP.U (4.53)

Where the value of U is given by Equation 3.21.
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• Continuity equation for the hydro reservoir network

V j,tP.U = V j,t−1
P.U + Ij,tP.U −Q

j,t
P.U − S

j,t
P.U

+
∑
π∈SΩj

(Qπ,t−τP.U + Sπ,t−τP.U ) (4.54)

V j,0P.U = V jiniP.U (4.55)

V j,TP.U = V jendP.U (4.56)

• Physical limitations on reservoir storage volumes, discharge rates and
power generation

V jminP.U ≤ V
j,t
P.U ≤ V

j
maxP.U (4.57)

QjminP.U ≤ Q
j,t
P.U ≤ Q

j
maxP.U (4.58)

P iThminP.U
≤ P i,tThP.U ≤ P

i
ThmaxP.U

(4.59)

P jHminP.U
≤ P j,tHP.U ≤ P

j
HmaxP.U

(4.60)

SjminP.U ≤ S
j,t
P.U ≤ S

j
maxP.U (4.61)

Notice that the values of load demand and power produced by renew-
able sources were replaced by their quantile functions evaluated in ζ and
(ζ−1) respectively. In addition, Equations (4.43) corresponds to the nodes
where there is load, while Equation (4.44) corresponds to the secondary
of transformers where load does not exist.

It is important highlight that quantile functions of wind power and solar
power were built with data from data bases. Furthermore, quantile func-
tion of demanded power was built as it is explained in subsection 4.4.3.
Otherwise, the chance box constraints (4.42) and (4.43) are convex too.
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Chapter 5

Results

Three sets of simulations were carried out in order to test the proposed models
and compare them. First, it was only consider a hydrothermal system (Model II)
in order to compare the obtained results with previous research that had used
the same test system. In this model, the spillage was considered equal to zero
as previous research did before. It is important to highlight that the proposed
convex model is an approximation of the real model. Therefore, the compar-
ison must be performed in terms of both time calculation and accuracy of the
solution.

Then, a convex-deterministic short-term hydrothermal-wind solar model was
tested without considering the stochastic nature of the renewable resources and
load (Model IV, case I). Additionally, constrains related to the grid were consid-
ered with the DC power flow approximation (Model IV, case II).

Next, a stochastic model was implemented by considering a robust set of
80% to hold the chance constraint of this model (Model V, case I). Finally, the
same model was tested but, in this case, the probability to hold the chance con-
straints was considered 60% (Model V, case II).

It is important to highlight that for Models IV and V the upper limits of
spillage was considered equal to 2 × 104m3

h in order to have a more realistic
model and study how these variables affect the optimization problem. All data
of the test systems used are presented in Appendix A. All cases were imple-
mented in command line of Matlab R2017b by using CVX and Sedumi solver in
a 3.2 GHz, Intel Core i8-8700, with 8 GB RAM PC.

For sake of completeness the models used are summarized in Table 5.1.

57



Model Description
Model I STHS-non-convex
Model II STHS-SOC aproximation, S=0
Model III STHS-convex with grid

Model IV Case I STHS-deterministic, convex, with grid, renewable energy y without grid constraint
Model IV, Case II STHS-deterministic,convex,with grid, renewable energy and without grid constraint
Model V Case I STHS-robusto,convex,with grid, renewable energy and without grid constraint
Model V Case II STHS-robusto,convex,with grid, renewable energy and without grid constraint

Table 5.1: Models resume

5.1 Results Model II

In order to have a framework to compare time convergence and accuracy of the
proposed methodology, the short-term scheduling was carried out without con-
sidering renewable resources nor the grid. In doing so, Model II was tested. For
sake of simplicity, only time convergence and the value of the objective function
are compared. Table 5.2 shows a comparison of results obtained for several
methodologies implemented in the test system presented in (Orero and Irving,
1998).

It is not difficult to see that SOC presents a superior performance regarding
time convergence compared with other methauristic techniques and lineariza-
tions proposed in the past. In addition, SOC and semidefinite programming find
the same optimum which is one of the main characteristics of convex optimiza-
tion.

It is worth mentioning that the results of metaheuristic techniques presented
in Table 5.2 give us just an idea about the possible solution of the problem;
these techniques do not guarantee global optimum since their operation de-
pends more on luck than on a mathematical model. The exact solution of non-
convex optimization problems is still an open problem. therefore, there is no
way to carry out an exact comparison regarding to the value of the objective
function.

5.2 Results Model IV

For the model that considers the grid, wind and solar generation, with the nom-
inal values of power capacity of the lines (Model IV Case I), the values of wind
speed and solar capacity were considered as the mean value of the data per hour.

From Figures 5.1, 5.2 and 5.5 it can be observed that the amount of energy
produced by unit 3 tends to be low in some intervals, even though the volume
and the water discharge are not low, which seems to contradict Equation (2.20),
where the hydro power is proportional to the water discharges and the volume
of the reservoirs. Nevertheless, this behavior makes sense if we consider that
the coefficients Cji of unit 3 are the smallest value compared with the others,
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Methodology
Objective function

value (CU)
CPU time

(s)
SOC Model II 925866.00 4.7

SDP I (Yunan Zhu and Yang, 2013) 925866.00 ———-
APSO(Amjady and Soleymanpour, 2010) 926151.54 ———-

LCPSO (B. Yu and Wang, 2007) 926651.4 103.5
LWPSO (B. Yu and Wang, 2007) 926352.8 82.9

IPSO (P.K. Hota and Chakrabarti, 2009) 922553.49 ———-
CPSO (Yuqiang Wua and Liu, 2019) 922328.64 18.6

PSO (Xiaohui Yuan, 2008) 928878.00 ———-
EPSO (Xiaohui Yuan, 2008) 922904.00 ———-

SPPSO (J. Zhang and Yue, 2012) 922336.31 16.3
DE (Manda and Chakraborty, 2008) 923991.08 14.50

DE (Yongqiang Wang and Zhang, 2012) 923234.56 8.69
DRQEA (Yongqiang Wang and Zhang, 2012) 922526.73 7.98

ACDE (Youlin Lu and Zhang, 2010) 924661.53 7
GA (Orero and Irving, 1998) 938370.00 3720

BCGA (Kumar and Naresh, 2007) 927815.35 64.51
RCGA (Kumar and Naresh, 2007) 926120.26 57.52
CDE (Youlin Lu and Zhang, 2010) 926833.98 7

CEP (Nidul Sinha and Chattopadhyay, 2003) 930373.23 2292.1
MHDE (Lakshminarasimman and Subramanian, 2008) 921 893.94 8

FEP (Nidul Sinha and Chattopadhyay, 2003) 930897.44 1911.2
IFEP (Nidul Sinha and Chattopadhyay, 2003) 930290.13 1033.2

EGA (Xiaohui Yuan, 2008) 934727.00 ———-
SOS (Sujoy Das and Chakraborty, 2018b) 922338.20 6.21

QRSOS (Sujoy Das and Chakraborty, 2018b) 922329.94 5.16

Table 5.2: Optimal cost and CPU time of SOC and other methodologies

this means that unit 3 is the unit with less rated power of the hydrochain.

In addition, Figures 5.1, 5.2, 5.3 and 5.5 show that the optimization model
tends to reduce the volume of reservoir 3 (without violating the final values
of the volume) while the volume of reservoir 4 increases. The reason for this
is that unit 4 is more capable to produce power than unit 3 (Interested reader
can evaluate Equation (2.20) with the coefficients of unit 3 and unit 4 and will
notice that, for the same values of volume and water discharges, the produced
power by unit 4 will be larger than the produced power of unit 3). That is why
the model tends to produce power by using unit 4 rather than unit 3. Thus, the
spillage of the reservoir 3 tends to be as large as possible until the volume of
the reservoir 4 needs to decrease to reach the final value. Besides, analyzing the
dual variables of the upper bound of spillage can be useful to understand this
behavior better. Figure 5.9 depicts the rate of change of the objective function
with respect to the upper bound of spillage. Notice that this dual variable for
reservoir 3 impacts considerably the objective function, while dual variables of
reservoir 1, 2 and 4 do not do it. This implies that allowing spillage be different
to zero can decrease the operation cost of the power system.It is important to
highlight that this kind of analysis cannot be carried out when heuristic and
metaheuristic techniques are used.

On the other hand, Figure 5.6 shows wind power behavior which reaches
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its peaks of power production in the intervals of time between 10-12 hours and
between 22-24 hours. This behavior is due the particular characteristics of the
wind resource in the place where the data were measured. Under other condi-
tions, Figure 5.7 shows that the peak of solar generation is between 10 and 13
hours, this shaves the peak of thermal power produced between this interval of
time. Moreover, the solar production continue until 18 hours, this makes that
the production of thermal power has to increase quickly in order to supply the
maximum power consumption at 20 hours (see Figures 5.4 and 5.8).
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Figure 5.1: water discharge of hydro units (Model IV, case I)
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Figure 5.2: volumes of reservoirs (Model IV, case I)

In order to analyze how the grid can affect the generation scheduling, the ca-
pability of the line that connects generator 4 with the grid (line between nodes
39 and 36) was reduced. From Figures 5.6, 5.7, 5.15 and 5.16 it can be seen
that modifying the line 39-36 does not affect the production of wind and solar
power since the system is highly meshed and the power that comes from these
generators can flow without any problems. The situation is similar for hydro
units 1,2 and 3. However, it changes for hydro unit 4, in this case the unit
produces power to supply the load located at node 39 which represents 10% of
the total load of the system. Once the unit generates enough power to supply
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Figure 5.3: spillage (Model IV, case I)
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Figure 5.4: Power consumed (Model IV, case I)

0 5 10 15 20 25

0

100

200

300

Time (h)

Po
w

er
(M

W
)

Unit 1 Unit 2 Unit 3 Unit 4

Figure 5.5: Power produced by hydro units (Model IV, case I)

the load, the surplus power is delivered to the interconnected system as long as
line 39-36 is able to transport said power. However, if the amount of generated
power is larger than the load requirements and the capability of the line, the
generation of power has to be modified, compared with the produced power in
Model IV case I, in order not to exceed the limit of power of the line. This be-
havior modifies the production of power of hydro unit 4 and thermal unit (see
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Figure 5.6: Power produced by wind unit (Model IV, case I)
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Figure 5.7: Power produced by solar unit (Model IV, case I)
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Figure 5.8: Power produced by thermal unit (Model IV, case I)

Figures 5.14 and 5.17), since the power that is not generated by hydroelectric
4 has to be supplied by thermal unit in order to supply the requirements of the
load, which increases the operation cost of the system compared to Model IV
case I (see Table 5.4). Moreover, this modifies the water discharges, the oper-
ation of reservoirs, the spillage and the impact of said spillage on the objective
function as Figures 5.10, 5.11, 5.12 and 5.18 depict.
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Figure 5.9: Dual variable of spillage (Model IV, case I)

By comparing the behavior of dual variables in both case of the Model IV
(See figures 5.9 and 5.18), it is not difficult to see that the impact of the upper
limit of the spillage of reservoir 3, on the objective function, decreases consid-
erably in case II. The reason for this is that spilling water on the reservoir 4 is
not that convenient as it used to be since the the low capacity of the line 39-36
which, in case II, constraints the capability of unit 4 to produce power.
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Figure 5.10: water discharge of hydro units (Model IV, case II)

5.3 Results Model V

This model was used to evaluate two cases: First the ζ values were set in 80%
(Model V, case I). Then, they were set in 60% (Model V, case II) in order to
see how the results change when these parameters change. It is important to
higlight that the values of the quantile function can be calculated by using Equa-
tion (4.4). However, for sake of simplicity the function quantile of matlab was
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Figure 5.11: volumes of reservoirs (Model IV, case II)
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Figure 5.12: spillage (Model IV, case II)
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Figure 5.13: Power consumed (Model IV, case II)

used.

In both cases the behavior of hydro generation are the same compared to
Model IV, case I. The reason why it does not change is that considering the
stochasticity of the load, wind and solar generation, in the optimization model,
is going to affect the thermal power production, which is the only variable that
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Figure 5.14: Power produced by hydro units (Model IV, case II)
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Figure 5.15: Power produced by wind unit (Model IV, case II)
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Figure 5.16: Power produced by solar unit (Model IV, case II)

affects directly the value of the objective function since the water cost are con-
sidered zero. Thus, water discharges (Figures 5.19 and 5.28) volume of reser-
voirs (Figures 5.20 and 5.29), spillage (Figures 5.21 and 5.30) and dual variable
of upper limit of spillage (Figures 5.27 and 5.36) remain the same.

On the other hand, load demand (Figures 5.22 and 5.31), wind genera-
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Figure 5.17: Power produced by thermal unit (Model IV, case II)
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Figure 5.18: Dual variable of spillage (Model IV, case II)

tion (Figures 5.24 and 5.33) and solar generation (Figures 5.25 and 5.34) are
modified when the stochasticity of these random variable is considered. This
modify the generation of thermal power (Figures 5.26 and 5.35) which changes
the value of the objective function, that is directly linked with the value of this
variable. An analysis with more details is carried out in the next section.

5.4 Other results

It is important to mention that several simulations (for each model) were carried
out in order to verify the uniqueness of the proposed methodology, all simula-
tions gave the same optimal value, these values are presented in Table 5.4.

Figures 5.37 and 5.38 present a comparison between Model II and Model
IV case I, where the production of thermal and hydro power are compared for
both cases. Notice that the production of hydro power is the same in both cases,
while the production of thermal power does change. This behavior is a result
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Figure 5.19: water discharge of hydro units (Model V, case I)
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Figure 5.20: volumes of reservoirs (Model V, case I)

0 5 10 15 20 25

0

1

2

Time (h)

Vo
lu

m
e

(1
0
4
m

3
)

Load

Figure 5.21: spillage (Model V, case I)

of the optimization process, which tends to reduce the power produced by ther-
mal units instead of the production of hydro units, when renewable sources are
considered. The reason for this is that the thermal production has an associated
cost while the associated costs for hydro power plants are zero. Thus, the larger
the renewable power is, the lower the thermal power is, until the lower limit of
thermal unit and line capacities allow it.
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Figure 5.22: Power consumed (Model V, case I)
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Figure 5.23: Power produced by hydro units (Model V, case I)
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Figure 5.24: Power produced by wind unit (Model V, case I)

On the other hand, Figures 5.43, 5.44 and 5.45 depicts the quantile func-
tion for wind power, solar power and power consumed. For sake of simplicity
these figures were drawn just for an hour since the quantile functions keep the
same shape for all hours, except for the function of solar power at hours when
there is no solar radiation. In this case, said function is a straight line located in
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Figure 5.25: Power produced by solar unit (Model V, case I)
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Figure 5.26: Power produced by thermal unit (Model V, case I)
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Figure 5.27: Dual variable of spillage (Model V, case I)

Q(p) = 0. It is easy to see that the reason for this is that the power produced in
this period is equal to zero.

Both, the quantile functions of solar and wind power (see Figures 5.43 and
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Figure 5.28: water discharge of hydro units (Model V, case II)
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Figure 5.29: volumes of reservoirs (Model V, case II)
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Figure 5.30: spillage (Model V, case II)

5.44) show that, if it is required to hold constraints (4.51) and (4.52) with a
higher probability, the value of Q(p) is going to be lower. The reasons for this
is that, as ζ increases, the value 1 − ζ decreases which produces a movement
to the left in both figures. This implies that, in the quantile function which is
always growing, the value of Q(p) decreases when a movement to the left is
carried out. Consequently, when ζ = 80% both, wind and solar generation, are
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Figure 5.31: Power consumed (Model V, case II)
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Figure 5.32: Power produced by hydro units (Model V, case II)
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Figure 5.33: Power produced by wind unit (Model V, case II)

less than when ζ = 60% (See Figures 5.41 and 5.42).

The behavior of quantile function of load demand is a bit different (see Fig-
ure 5.45). In this case, if it is required to increase the probability of holding
constraint (4.42), the value of Q(p) increases which makes the value of load
demand be larger when ζ = 80% compared to when ζ = 60%. Figure 5.39
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Figure 5.34: Power produced by solar unit (Model V, case II)
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Figure 5.35: Power produced by thermal unit (Model V, case II)
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Figure 5.36: Dual variable of spillage (Model V, case II)

depicts this behavior.

Consequently, it is not difficult to see that, under this approach, the gen-
eration of renewable sources is underestimated and the load is overestimated
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Figure 5.37: Comparison hydro power Model II and Model IV case I
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Figure 5.38: Comparison thermal power Model II and Model IV case I

Model Objective function value (CU) CPU Time (s)
Model IV case I 772725 22.7813
Model IV case II 776038 26.4063

Model V case I ζ = 80% 842719 25.6563
Model V case II ζ = 60% 777291 24.1563

Table 5.3: Minimum operation costs.

in order to ensure that the generated power is going to supply the consumed
power. This behavior impacts the objective function as Table 5.4 shows. The
reason for this is that, when the renewable source production decreases and the
load increases, the thermal unit has to produce more in order to keep the power
balance as Figure 5.40 depicts. Thereby, the operation cost are higher.

It addition, it can be seen that, for the Model IV, case I and the case with
ζ = 60%, the values of solar power and power consumed are similar, likewise
wind power for both cases are comparable, with a gap between 0 and 11 hours.
This implies that using mean values of data to carry out the scheduling is an
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Figure 5.39: Power consumed in all 3 cases
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Figure 5.40: Power produced by thermal unit in all 3 cases

assumption that only allows values around 60% of robustness.

5.5 Summary of results

• The proposed SOC approximation for the STHS gives an optimum of
925866.00 CU with a convergence time of 4.7 S. This value of the ob-
jective function is between the range of results of other algorithms that
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Figure 5.41: Power produced by twind unit in all 3 cases
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Figure 5.42: Power produced by solar unit in all 3 cases
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Figure 5.43: Quantile function of solar power at 12 pm

do not consider rigorous mathematics. Comparing these results gives us a
good idea regarding how close the proposed methodology is to the opti-
mum.

• The impact of renewable energy integration in a traditional hydrothermal
system is analyzed. Thus, the generation costs reduce 16.5 % (Model IV
case I), 16.1 % (Model IV case II), 8.9 % (Model V case I) and 16 % (Model
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Figure 5.44: Quantile function of wind power at 12 pm
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Figure 5.45: Quantile function of load demand at 12 pm

V case II), in comparison to results obtained by Model II.

• The spillage of reservoir 3 tends to be 2 × 104m3

s as much as possible.
These can be explained under two approaches: First, the higher efficiency
of unit 4 compared to unit 3 makes the optimization model produce more
power with unit 4 instead of unit 3, which promotes spilling water from
reservoir 3 to reservoir 4. Second, by analyzing the dual variable of upper
spillage, it is observed that these constraints impact the objective function
considerably (see Figures 5.9, 5.18, 5.27 and 5.36).

• The lines capability can affect the operation of the system. Thus, the
operation costs increase from 772725 CU (Model IV case I) to 776038
CU (Model IV case II). Furthermore, the operation of its reservoirs was
also affected.

• Since the main values of wind speed and solar irradiation only ensure a
robustness close 60% (Figures 5.41 and 5.42), these measures are an inac-
curate methodology to predict the power produced by renewable energy.

• As higher robustness is considered, lower renewable generation and higher
demand values are obtained, which implies higher production costs.
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Chapter 6

Conclusions and future works

6.1 Conclusions

• A SOC relaxation was carried out which showed a superior performance
(faster CPU time) compared to several heuristic techniques studied before.
Besides, it is much simpler than the SDP relaxation presented in previous
studies.

• It was confirmed that convex relaxation gives a global optimum for the ap-
proximated short-term hydrothermal coordination model, something that
is not possible to find when heuristics algorithms are used.

• The dual variable of upper limit of spillage was analyzed. It was found
that the spillage should not be ignored in this problem, since the study of
its dual variable shows that it affects the objective function considerably
when hydro-chains are considered. It is important to highlight that this
kind of analysis cannot be carried out with heuristic and metaheuristic
tecniques.

• A robust model which considers the stochasticity of the renewable sources
and load demand was developed by modeling the power produced at gen-
erator nodes as chance constraints. This methodology turns out to be con-
servative for wind generation due to the shape of its quantile function,
which increases slowly as probability increases. In doing so, a scenarios
approach can be more suitable when it comes to wind power. Contrari-
wise, the quantile function of solar power increases faster, which results
in a not-so-conservative deterministic equivalent for the constraint related
to power produced by solar units. Futhermore, the robustness of load de-
mand, under this approach, vary in a linear way in a small interval, this
makes sense if the high accuracy of load prediction and its normal distri-
bution are considered.
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• It was observed that using the mean value of data of the stochastic vari-
ables does not represent the real behavior of said variables. Since, by
using this, just a robustness around of 60% can be guaranteed.

• The impact of the transmission grid on the scheduling problem was stud-
ied. Results show that a contingency of key transmission lines can affect
not only the generation scheduling but also the operation of reservoirs.

6.2 Future works

• To include energy storage devices in the problem.

• To consider the unit commitment.

• To study the correlation between solar radiation, wind speed and inflows
can be proposed in order to have a more accurate model.

• To consider market prices in the problem.

• To analysis the valve effect of the thermal units.
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Appendix A

Test system

The system used to evaluate the performance of the proposed methodology
consists of a multi-chain cascade of 4 hydro units,a number of thermal units
represented by an equivalent thermal plant, a photovoltaic solar farm and a
wind farm. Additionally, the new England IEEE-39 bus system was considered
in order to study the performance of the algorithm when the grid is taken into
account. The characteristics of the test system are presented bellow.

A.1 Characteristics of load, hydro and thermal units

Plant Vmin Vmax Vini Vend Qmin Qmax PHmin PHmax Smin Smax
1 80 150 100 120 5 15 0 500 0 2
2 60 120 80 80 6 15 0 500 0 2
3 100 240 170 170 10 30 0 500 0 2
4 70 160 120 120 13 25 0 500 0 2

Table A.1: Reservoir storage capacity limits, plant discharge limits, reservoir
end conditions, spillage bounds (104m3) and plant generation limits (MW )

Plant C1 C2 C3 C4 C5 C6

1 -0.0042 -0.42 0.030 0.90 10 -50
2 -0.0040 -0.30 0.015 1.14 9.5 -70
3 -0.0016 -0.30 0.014 0.55 5.5 -40
4 -0.0030 -0.31 0.027 1.44 14 -90

Table A.2: Hydropower coefficients
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Plant 1 2 3 4
Ru 0 0 2 1
τd 2 3 4 0

Table A.3: Number of up stream plants Ru and time delay to immediate down-
stream plant τd

.

Hour IR1
IR2

IR3
IR14

Load
1 10 8 8.1 2.8 1370
2 9 8 8.2 2.4 1390
3 8 9 4 1.6 1360
4 7 9 2 0 1290
5 6 8 3 0 1290
6 7 7 4 0 1410
7 8 6 3 0 1650
8 9 7 2 0 2000
9 10 8 1 0 2240
10 11 9 1 0 2320
11 12 9 1 0 2230
12 10 8 2 0 2310
13 11 8 4 0 2230
14 12 9 3 0 2200
15 11 9 3 0 2130
16 10 8 2 0 2070
17 9 7 2 0 2130
18 8 6 2 0 2140
19 7 7 1 0 2240
20 6 8 1 0 2280
21 7 9 2 0 2240
22 8 9 2 0 2120
23 9 8 1 0 1850
24 10 8 0 0 1590

Table A.4: Reservoir Inflows (104m3) and Load demand (MW )
.

PThmin(MW ) PThmax(MW ) α β γ
20 2500 5000 19.2 0.002

Table A.5: parameters of thermal unit.

A.2 Characteristic of wind and solar farms

The wind farm considered in this test systems consists of 340 wind turbines.
Their characteristics are presented in Table A.6. On the other hand, the so-
lar farm consists of 2500000 photovoltaic panels, each one with rated power
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Figure A.1: Hydraulic system test network. Data for this test system is available
in (Orero and Irving, 1998)

equal to 240 watts which adds a nominal power for the solar farm equal to 600
megawatts.

Pwrated(MW ) vcut−in (m/s) vrated vcut−out (m/s)
2 4 12 25

Table A.6: Characteristics of wind farm

Quantile function of solar power was built with capacity factor data taken
from (Victoria and Andresen, 2019). These data belong to the recorded hourly
data for every month of june between the years 1979 and 2017 in Spain. Said
data correspond to units with solar tracker.

Wind speed data used to build the quantile function of wind power were
taken from the wind prospector of The National Renewable Energy Laboratory
of The United States. These data belong to the recorded hourly data for June in
Hawai.

A.3 Characteristics of grid

The grid considered was taken from (Padiyar, 2008), Table A.3 shows the reac-
tance values in per unit. In addition, the total load for each interval of time was
distributed at all nodes in the proportion presented in Table A.3.

It is important to recall that generators 1,8,3 and 4 correspond to the hydro
units 1,2,3 and 4, respectively; generator 10 corresponds to the thermal unit;

81



2

1

3

2

19

18
17

15 16

1

31

32

33

20
3

14

13

34

35

11

10
10

12

37

38 27

8
8

25
26

28

29

9
9

5

5

39

4

4

30

36
6

7
7

23

2221

6

24

0 %

0 %

0 %

0 % 0 %

0 %

0 %

0 %

0 %0 %

0 %

0 %

0 %

0 %

0 %

0 %

0 %

18.02 %

5.26 %

8.16 %

0.15 %

3.82 %

8.52 %

4.47 %

4.48 %

5.03 %

0 %

3.65 %
2.26 %

4.58 %

3.36 %

4.62 %

10.25 %

0 %

0.12 %

5.2 %

5.37 %

2.57 %

H1

H2

H3

H4

2

W

S

T

Figure A.2: New England, IEEE 39 Bus-system

generator 6 corresponds to the wind farm and generator 9 corresponds to the
solar farm, the other generators are not considered.
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Initial node Final node XknP.U

37 27 0.0173
37 38 0.0082
36 24 0.0059
36 21 0.0135
36 39 0.0195
36 37 0.0089
35 36 0.0094
34 35 0.0217
33 34 0.0101
28 29 0.0151
26 29 0.0625
26 28 0.0474
26 27 0.0147
25 26 0.0323
23 24 0.0350
22 23 0.0096
21 22 0.0135
20 33 0.0043
20 31 0.0043
19 2 0.0250
18 19 0.0363
17 18 0.0046
16 31 0.0082
16 17 0.0092
15 18 0.0112
15 16 0.0026
14 34 0.0129
14 15 0.0128
13 38 0.0133
13 14 0.0213
12 25 0.0086
12 13 0.0151
11 12 0.0411
11 2 0.0250

Table A.7: Reactance of lines in P.U
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Initial node Final node XknP.U

39 30 0.0138
39 5 0.0142
32 33 0.0435
32 31 0.0435
30 4 0.018
29 9 0.0156
25 8 0.0232
23 7 0.0272
22 6 0.0143
20 3 0.02
16 1 0.025
12 10 0.0181

Table A.8: Reactance of transformers
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Node
Percentage of
total load [%]

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0.1802
13 0.0526
14 0.0816
15 0
16 0.0015
17 0.0382
18 0.0852
19 0
20 0
21 0.0447
22 0
23 0.0448
24 0.0504
25 0.0366
26 0.0227
27 0.0458
28 0.0336
29 0.0462
30 0.1025
31 0
32 0.0012
33 0
34 0
35 0.0522
36 0.0537
37 0
38 0.0257
39 0

Table A.9: Distribution of load
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Appendix B

Brief review of convex
optimization

B.1 Convex set

A set Ω in Rn is convex if for any points X,Y ∈ Ω there is a point Z given by:

Z = (1− λ)X + λY (B.1)

Such as Z ∈ Ω with λ ∈ Rn, 0 ≤ λ ≤ 1.

This definition can be extended to several points. If the convex set Ω ∈ Rn
with Xk ∈ Ω and αk ∈ Rn is convex, then

∑
αkXk ∈ Ω if

∑
αk = 1.

Figure B.1 depicts how the aforementioned condition is true for two points
belonging to Ωa, whereas in Ωb there are points that belong to the line but they
are out of the space; thereby Ωa is convex while Ωb is not convex.

X1

X2

ΩB

X1

X2

ΩA

Figure B.1: Convex and non-convex set

86



a)

A

B

XA XB

f(XA)

f(XB)

b)

A

B

XA XB

f(XB)

f(XA)

convex

non-convex

Figure B.2: Convex and non-convex functions

B.2 Convex function

A function f : Rn → R is convex if the domain of f is a convex set and if for all
X,Y ∈ domf , and λ with 0 ≤ λ ≤ 1, we have (Boyd and Vndenberghe, 2009):

f(λX + (1− λ)Y) ≤ λf(X) + (1− λ)f(Y) (B.2)

Equation (B.2) can be written as:

f(αX + βy) ≤ αf(X) + βf(Y) (B.3)

B.3 Convex problem

A convex optimization problem is of the form:

minimize f0(X) (B.4)

subject to fi(X) ≤ 0 (B.5)

hi(X) = 0 (B.6)

Where f0(X) and fi(X) are convex and hi(X) is an affine function of the struc-
ture aTi X = bi (Boyd and Vndenberghe, 2009)

B.4 Uniqueness and globality

Convex optimization is a field which has been explored intensively recently due
to two main characteristics (Boyd and Vndenberghe, 2009):

A. If a problem is convex, it implies that the same optimum is going to be
achieve regardless the number of times that the optimization process is
carried out (uniqueness characteristic).
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B. In a convex problem it is easy to see that it only has an optimum operation
point (see Figure B.2). Thus, the convex optimization process guarantee
the globality of the found solution (globality characteristic).

Both, uniqueness and globality are always desired in all optimization pro-
cess.
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Appendix C

Probability space definitions

C.1 Sample space H

For the purpose of modeling systems that produce uncertain or random mea-
surements, let us define H as the set of all possible distinct, indecomposable
measurements (outcomes) that could be observed (Gubner, 2006). That is to
say, H is the set of all possible outcomes of a random experiment.

C.2 Outcomes and events

Elements or points in the sample space H are called outcomes. Collections of
outcomes are called events. Therefore, an event is a subset of the sample space
(Gubner, 2006).

C.3 σ−algebra B

Let H be an abstract space, that is with no special structure. Let 2H denote all
subsets of H, including the empty set denoted by ∅. With B being a subset of
2H . If B satisfies the the following properties:

A. ∅ ∈ B and H ∈ B.

B. If B ∈ B then BC ∈ B, where BC represents the complement of B.

C. B is closed under countable unions and intersections: that is to say, if B1,
B2, B3... is a countable sequence of events in B, then ∪∞i=1Bi and ∩∞i=1Bi
are both also in B.

then B is defined as a σ−algebra (Jacod and Protter, 2004). In brief, a set
that contains other subsets, the unions of the subsets and their intersessions, is
what we call a σ−algebra.
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C.4 Probability measure function P

Given a sample space H, and a function P defined on the subsets of H. We
define a probability measure P if the following axioms are satisfied:

A. The empty set ∅ is called the impossible event. The probability of this
event is zero; i.e., P(∅) = 0.

B. Probabilities are nonnegative; i.e., for any event B, P(B) ≥ 0

C. If B1, B2, B3... are events that are mutually exclusive, i.e., Bn ∩ Bm = ∅
for n 6= m then:

P(

∞⋃
n=1

Bn) =

∞∑
n=1

P(Bn) (C.1)

D. The probability of the entire sample space (sure event) is one; i.e P(H) =
1. If an event B 6= H satisfies P(B) = 1, then B is an almost-sure event.

This is to say, a probability distribution function is a measure that assigns
a value to all subsets of the sample space such as that the value 1 is assigned
to the whole sample space and the value zero is assigned to the empty set ∅.
Moreover, the measure of a subset plus the measure of another subset is the
measure of the union of both subsets.
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Appendix D

linearization of the problem

In order to analyze the loss of information when linearizations are carried out
for the STHTS problem, the Matlab curve fitting tool was used to carry out
linear approximations of the hydropower equations. Thus, said equations take
the following structure:

P j,tHL = Cj1LV
i,t + Cj2LQ

i,t + Cj3L (D.1)

Where the coefficients of the linearization are given by the Table:

Plant C1L C2L C3L

1 0.5775 4.55 -21.97
2 0.234 5.05 7.755
3 0.286 -4.12 65.92
4 1.263 5.325 -3.222

Table D.1: Hydropower coefficients linearization

It is worth mentioning that the linearizations were carried out for the inter-
vals between Qmin − Qmax and Vmin − Vmax. Besides, the linearization used
was a polynomial one.

Figures D.1 and D.2 presents the water discharges and the volumes of reser-
voirs obtained when (D.1) is considered. These values were replaced in both,
Equation (D.1) and Equation (2.8) obtaining the power produced for all units
in both cases (Tables D.2 and D.3). In doing so, results show a considerable
difference between the power produced with the non-convex equation and the
linear equation, when the values of Figures D.1 and D.2 are considered (Table
D.4).

It is worth mentioning that the hydropower difference between the linear
equations and the results of the quadratic equation are close of 20‖;MW (Ta-
ble D.4) in most time intervals, which sums a total difference in a day of
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536.87 MW . This gap is considerable if we take into account the size of the
test system, and gives us an idea about how much information can be lost when
linearizations are carried out. In addition, the values of volumes and water dis-
charges for unit 3 in the first 5 hours, provided by the linearized model, gives
negative values when they are replaced in the quadratic equation that models
the real behavior of this unit (see Table D.3). This implies that the linearized
model is giving non-feasible operation points since these negative values would
mean that unit 3 is working as a pump that consumes power.
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Figure D.1: Water discharge of hydro units hydro units (linearized model)
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Figure D.2: Volumes of reservoirs (Linearized model)
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Hour P1
HL

P2
HL

P3
HL

P4
HL

1 105.6932 52.6906 0.0062 204.6809
2 104.2675 53.8450 0.0069 191.2934
3 102.5468 55.5769 0.0078 176.8956
4 61.5994 57.3089 0.0092 160.4768
5 52.6454 58.4635 0.0114 177.5541
6 53.0680 59.0409 0.0162 193.1292
7 53.8579 59.0410 0.0309 208.1842
8 69.4197 59.6189 34.2951 223.0804
9 102.7140 60.7744 42.6685 237.9085

10 101.7906 62.5072 43.2688 252.0888
11 77.3563 64.2397 45.8071 265.4297
12 86.1090 65.3960 48.6439 268.0867
13 55.5356 66.5521 50.6290 268.0880
14 55.2227 68.2870 52.8507 268.0888
15 56.3398 70.0235 53.2542 268.0925
16 57.4286 71.1879 53.2365 268.0941
17 58.3534 71.8122 53.1094 268.1005
18 59.0370 87.4615 16.0472 268.1090
19 59.5018 105.6468 24.7828 268.1303
20 59.7152 101.6503 61.8656 268.1823
21 60.1614 98.2153 63.8951 268.3506
22 60.8363 94.7695 67.3256 313.1363
23 68.6142 90.7320 70.4712 319.6652
24 92.5393 86.6933 73.3307 306.6811

Table D.2: Power produced by hydro units using linearized equations [MW].
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Hour P1
HQ

P2
HQ

P3
HQ

P4
HQ

1 95.8476 50.1732 -2.2545 200.0943
2 92.3943 51.3047 -0.4761 187.7564
3 87.9989 52.9424 -0.1429 173.7349
4 61.3087 54.5082 -0.0684 156.7936
5 48.0690 55.5122 -0.0376 174.3935
6 48.6838 56.0028 0.1007 189.4890
7 49.8031 56.0037 -0.0403 203.2134
8 71.8260 56.4874 37.7835 215.9544
9 89.3310 57.4297 40.4192 227.8087

10 86.7649 58.7822 41.2324 238.3724
11 78.1599 60.0626 44.5423 247.6220
12 83.1812 60.8794 47.9279 249.3908
13 52.6362 61.6647 50.1211 249.3925
14 51.6135 62.7837 52.3878 249.3950
15 52.6128 63.8349 52.7934 249.4008
16 53.4774 64.5114 52.8127 249.4048
17 54.1132 64.9213 52.8022 249.4165
18 54.4862 88.7248 25.4222 249.4330
19 54.7124 103.0983 34.9574 249.4735
20 54.7815 99.1402 47.6731 249.5728
21 54.9221 95.4299 49.5010 249.8970
22 55.0753 91.4254 52.2900 313.9870
23 67.7341 86.3820 54.4429 318.5734
24 97.2746 80.9460 56.0642 303.5320

Table D.3: Power produced by hydro units using quadratic equations [MW].
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Hour TPHL TPHQ HPDLQ
1 363.0708 343.8607 19.2101
2 349.4127 330.9794 18.4334
3 335.0271 314.5332 20.4939
4 279.3943 272.5422 6.8521
5 288.6744 277.9371 10.7373
6 305.2543 294.2763 10.9780
7 321.1140 308.9799 12.1341
8 386.4140 382.0512 4.3628
9 444.0653 414.9886 29.0767

10 459.6554 425.1520 34.5034
11 452.8328 430.3867 22.4461
12 468.2356 441.3793 26.8563
13 440.8046 413.8145 26.9901
14 444.4492 416.1800 28.2691
15 447.7101 418.6420 29.0681
16 449.9471 420.2062 29.7409
17 451.3755 421.2532 30.1223
18 430.6547 418.0661 12.5886
19 458.0617 442.2417 15.8200
20 491.4135 451.1677 40.2458
21 490.6224 449.7501 40.8723
22 536.0677 512.7777 23.2900
23 549.4827 527.1324 22.3503
24 559.2444 537.8169 21.4275

Table D.4: Total hydropower using linearized equations, Total hydropower us-
ing quadratic equation and difference between the total hydropower using lin-
earized equations and the total hydropower using quadratic equations [MW].
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