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Abstract

This thesis presents a new methodology for optimal integrated planning of medium and low

voltage distribution systems with distributed generation (DG) in the low voltage network,

and integration of energy storage systems (ESSs). This problem is formulated as a mixed

integer non-linear problem and is solved using a simulated annealing algorithm (SA) with a

novel neighborhood search method based on the Zbus matrix (NSZM). The NSZM method

uses sensitivity factors based on the Zbus matrix for reducing the neighborhood size in order

to find attractive solutions based on the electrical information of the Zbus matrix. Hence,

the solution space is explored more efficiently in order to find a joint global solution that

establishes a balanced benefit for the planning of both networks.

This methodology is compared to a bilevel approach used in the literature to verify its

efficiency. The bilevel approach solved the optimal integrated planning of medium and low

voltage distribution systems with a penetration of DG in the low voltage network using a real

distribution system. The obtained results show the importance of considering both networks

simultaneously in the planning of the electric distribution system, as well as the use of the

Zbus matrix for sensitivity analysis, which allows finding answers with lower global costs.

Subsequent to the validation of the methodology, the ESSs are integrated in the distribution

system planning problem (DSP) of the both networks considering DG. The obtained results

show the importance of integrating ESSs in the DSP problem due to the maximization of

the profit from the energy purchase and sale. Furthermore, the results show the impact of

considering ESSs in the MV network instead of LV network.
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Nomenclature

Chapter 3

Parameters
CEP
ij,p Fixed cost to expand the capacity of an existing primary feeder between nodes

i− j, type p [$].
CES
ij,c Fixed cost to expand the capacity of an existing secondary circuit between

nodes i− j, type c [$].
CESS
s Fixed cost to expand the capacity of an existing substation type s [$].

CNP
ij,p Fixed cost of a new primary feeder between nodes i− j, type p [$].

CNS
ij,c Fixed cost of a new secondary circuit between nodes i− j, type c [$].

CNSS
s Fixed cost of a new substation type s [$].

CNDT
d Fixed cost of a new DT type d [$].

CNDG
g Fixed cost of a new DG type g [$].

CNESS
b Fixed cost of a new ESS type b [$].

O&M
fx
b Fixed operation and maintenance cost of a new ESS type b [$/year].

k1 Factor which converts to present value.
k2l Energy purchase cost [$/kWh] for each load level l.
k3 Energy sale cost [$/kWh].
∆Tl Time duration of each load level l [h].
Imaxp Maximum current limit of a primary wire type p [A].
Imaxc Maximum current limit of a secondary wire type c [A].
NL Number of load levels.
Dyear Number of days of the year.
φb Charge/discharge slope of a ESS type b [%/kWh].
ηb Power injection/extraction efficiency of a ESS type b [%].
SoC0

i Initial state of charge of a ESS at node i [%].
SoCF

i Final state of charge of a ESS at node i [%].
V P
nom Nominal voltage of the primary network.
V S
nom Nominal voltage of the secondary network.
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a0 Coefficient corresponding to constant power.
a1 Coefficient corresponding to constant current.
a2 Coefficient corresponding to constant impedance.
ZP
ij,p Impedance of the primary feeder between nodes i− j, type p [Ω].

ZS
ij,c Impedance of the secondary circuit between nodes i− j, type c [Ω].

GP
ij Conductance of the primary feeder between nodes i− j [S].

BP
ij Susceptance of the primary feeder between nodes i− j [S].

Smaxd Maximum power limit of a DT type d [kVA].
Smaxg Maximum power limit of a DG type g [kVA].
Smaxs Maximum power limit of a substation type s [kVA].
Smaxcb Maximum extraction power limit of a ESS type b [kVA].
Smaxdb Maximum injection power limit of a ESS type b [kVA].
SPDi,l Primary demand at node i, for a load level l [kVA].
SSDi,l Secondary demand at node i, for a load level l [kVA].
V max
i Maximum voltage limit at node i [kV].
V min
i Minimum voltage limit at node i [kV].
SoCmax

i Maximum state of charge of a ESS at node i [%].
SoCmin

i Minimum state of charge of a ESS at node i [%].
Variables
γEPij,p Binary decision variable to expand the capacity of an existing primary feeder

between nodes i− j, type p.
γESij,c Binary decision variable to expand the capacity of an existing secondary circuit

between nodes i− j, type c.
γESSi,s Binary decision variable to expand the capacity of an existing substation at

node i, type s.
γNDTi,d Binary decision variable to install a new DT at node i, type d.
γNDGi,g Binary decision variable to install a new DG at node i, type g.
γNPij,p Binary decision variable to install a new primary feeder between nodes i − j,

type p.
γNSij,c Binary decision variable to install a new secondary circuit between nodes i−j,

type c.
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γNSSi,s Binary decision variable to install a new substation at node i, type s.
γNESSi,b Binary decision variable to install a new ESS at node i, type b.
ϕNESSi,l Binary decision variable for the operation state of the ESS at node i, for a load

level l.
IPij,l Current flow in primary branch i− j, for a load level l [A].
ISij,l Current flow in secondary branch i− j for a load level l [A].
SDTi,l Power injected to a DT at node i, for a load level l [kVA].
SDGi,l Power injected by a DG at node i, for a load level l [kVA].
SSi,l Power injected by a substation at node i, for a load level l [kVA].
SESSi,l Power injected or extracted by a ESS at node i, for a load level l [kVA].
SESSDi,l Power injected by a ESS at node i, for a load level l [kVA].
SESSCi,l Power extracted by a ESS at node i, for a load level l [kVA].
SoCi,l State of charge of the ESS at node i, for a load level l [%].
V BUS
i,l Bus voltage at node i, for a load level l [kV].
IBUSi,l Bus current at node i, for a load level l [A].
ZIP P

i,l ZIP load model at primary node i, for a load level l.
ZIP S

i,l ZIP load model at secondary node i, for a load level l.
ZBUS
ij Zbus matrix [Ω].

Sets
ΩEP Set formed by existing primary feeders.
ΩES Set formed by existing secondary circuits.
ΩESS Set formed by existing substations.
ΩNDT Set formed by new DTs.
ΩNDG Set formed by new DGs.
ΩNESS Set formed by new ESSs.
ΩNL Set formed by the load levels.
ΩNP Set formed by new primary feeders.
ΩNS Set formed by new secondary circuits.
ΩNSS Set formed by new substations.
ΩPF Set formed by new and existing primary feeders.
ΩPN Set formed by nodes of primary network.
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ΩSC Set formed by new and existing secondary circuits.
ΩSN Set formed by nodes of secondary circuits.
ΩN Set formed by nodes of primary and secondary networks.
ΩSS Set formed by new and existing substations.
ΩTDT Set formed by types of DTs.
ΩTDG Set formed by types of DGs.
ΩTESS Set formed by types of ESSs.
ΩTP Set formed by types of primary feeders.
ΩTS Set formed by types of secondary circuits.
ΩTSS Set formed by types of substations.

Chapter 4

Parameters
k1 Factor which converts to present value.
k2l Energy purchase cost [$/kWh] for each load level l.
k3 Energy sale cost [$/kWh].
∆Tl Time duration of each load level l [h].
Sbase Base apparent power of the system [kVA].
NL Number of load levels.
Dyear Number of days of the year.
φi,b Charge/discharge slope of a ESS type b [%/kWh] at node i.
ηi,b Power injection/extraction efficiency of a ESS type b at node i [pu].
SoC0

i Initial state of charge of a ESS at node i [%].
SoCF

i Final state of charge of a ESS at node i [%].
V pu
ref Magnitude of the voltage at node slack [pu].
θradref Angle of the voltage at node slack [rad].
a0 Coefficient corresponding to constant power.
a1 Coefficient corresponding to constant current.
a2 Coefficient corresponding to constant impedance.
GP
ij Conductance of the primary feeder between nodes i− j [pu].

BP
ij Susceptance of the primary feeder between nodes i− j [pu].

xii



Master’s Thesis: Nomenclature

Pmax
i,g Maximum active power limit of a DG at node i, type g [pu].
Pmaxc
i,b Maximum extraction limit of active power of a ESS at node i, type b [pu].
Pmaxd
i,b Maximum injection limit of active power of a ESS at node i, type b [pu].
PD
i,l Active demand at node i, for a load level l [pu].
QD
i,l Reactive demand at node i, for a load level l [pu].

V max
i Maximum voltage limit at node i [pu].
V min
i Minimum voltage limit at node i [pu].
SoCmax

i Maximum state of charge of a ESS at node i [%].
SoCmin

i Minimum state of charge of a ESS at node i [%].
RBUS
ij Real part of the Zbus matrix [pu].

XBUS
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Variables
PDG
i,l Active power injected by a DG at node i, for a load level l [pu].
P S
i,l Active power injected by a substation at node i, for a load level l [pu].
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i,l Reactive power injected by a substation at node i, for a load level l [pu].

PESS
i,l Active power injected or extracted by a ESS at node i, for a load level l [pu].
PESSD
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PESSC
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SoCi,l State of charge of the ESS at node i, for a load level l [%].
V BUS
i,l Bus voltage magnitude at node i, for a load level l [pu].
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θVi,l Bus voltage angle at node i, for a load level l [rad].
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ZIPi,l ZIP load model in per unit representation at node i, for a load level l.
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ΩN Set formed by nodes of primary and secondary networks.
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ΩB Set formed by ESSs nodes.
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Chapter 1

Introduction

1.1 Motivation

Distribution system planning (DSP) is a set of strategies that allows determining how many,

where, and when elements can be installed in an electric network to satisfy the growing

demand for a specific time horizon [1]. Traditionally, DSP is employed for upgrading existing

elements and installing new electric circuits (medium and low voltage – MV/LV) and sources

(substations and distribution transformers (DTs)) [2, 3]. Due to the combinatorial nature

(NP-complete) of the DSP problem, both voltage levels (MV/LV) have been solved separately,

allowing a reduced searching space but not leading to a joint global solution [4, 5]. In this

context, several methodologies and different mathematical models have been proposed [6].

The number of papers regarding DSP for medium voltage [1, 2, 6–19] is higher than for

low voltage [20–26]. Moreover, only a few of them consider both levels in an integrated

way [3–5,27–29].

Nowadays, the electric power sector has been presented an energetic change due to the emer-

gence of new technologies, such as distributed generators (DGs), energy storage systems
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(ESSs), and electric vehicles (EVs), which have produced technical, economic, and environ-

mental benefits [1,30,31]. For this reason, incorporating DGs and ESSs into the DSP problem

is desired. There are more papers considering DGs and ESSs in the DSP for MV [30,32–37]

than for LV [38–40]. For the integrated DSP of primary and secondary networks, only two

have integrated DGs [5, 29], and only integrates DGs, ESSs, and EVs [41].

1.2 Problem Description

DSP is a complex mixed integer nonlinear optimization problem [29]. Classic optimization,

and heuristic and metaheuristic methods have been used to solve DSP; classic optimization

guarantees an optimal global solution but requires excessive computational effort due to the

combinatorial complexity of DSP [4, 5]. Heuristic and metaheuristic methods can find near-

global solutions, reducing the computational effort [4, 29]. As consequence, a metaheuristic

is used to solve the DSP problem considering DGs and ESSs. This way, simulated anneal-

ing (SA) is applied because it has been employed in problems with similar mathematical

complexity [9, 42, 43].

SA is a stochastic optimization algorithm that can converge asymptotically to the optimal

global solution with probability one [44]. Although this may turn out to be computationally

expensive, it is a valuable feature of the algorithm. Nevertheless, quick answers can be

obtained for the SA algorithm with adequate cooling schemes and reduced neighborhoods

which may yield a bunch of near or even globally optimal solutions. These neighborhoods

can be reduced by using sensitivity factors based on the Zbus matrix in order to reduced

computational efforts and obtained good quality solutions.

The Zbus matrix reflects important electrical characteristics of the network due its relation

between voltages and current injections in a system [45]. This electrical information can be

used through sensitivity factors to reduce the solution space obtained by the neighborhood

2
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structure (branch exchange, upgrading existing elements, and the location of DGs and DTs)

in order to find good quality solutions in quick times.

The integration of DGs and ESSs in the DSP problem increases its mathematical complexity

due to the variability and intermittency of the DGs and the optimal charge and discharge

operation of the ESSs. Therefore, it is needed to develop more robust models in order to

solve the DSP problem considering ESSs. These models need to reduced computational efforts

for the solving of the optimal charge and discharge operation of the ESSs and considering

multiple scenarios due to the variability and intermittency of the DGs.

1.3 State of the Art

Despite the benefits provided by the Zbus matrix due its electrical information of the network,

the Zbus matrix has not been used to solve the DSP problem. On the other hand, the Zbus

has been used for different applications in the literature, such as load flow [46], reconfiguration

of networks [47], and DGs location [48].

1.3.1 DSP for MV networks

In the literature, different papers used several mathematical models, objective functions,

time stages, and solution techniques for the planning of MV networks [6]. Some authors

presented integer linear approximation models to find near optimal solutions, such as the

proposed in [7]. In order to find real optimal solutions, mixed integer nonlinear programming

(MINLP) models were presented and solved using metaheuristic solution techniques for large

scale MV networks, such as the genetic algorithm (GA) proposed in [10]. Other authors used

different metaheuristics to solve the DSP problem, such as simulated annealing (SA), tabu

search (TS), and GA [9,11,13].

3
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Multi planning stages are considered in the DSP of MV networks for a time horizon to con-

sidered growth in the demand. In [8], authors used GAs in the optimal multistage planning of

MV networks. Multiobjective functions allow to consider non-supplied energy under contin-

gencies in the DSP problem to improve reliability. In [15], authors proposed a multiobjective

multistage DSP using TS.

More accurate linear models were proposed to guarantee global optimal solutions, such as

the mixed integer linear programming (MILP) model presented in [12] and solved using

OSL solver in GAMS. Other authors presented different MILP models, such as the proposed

in [16–19].

Nowadays, new technologies such as DGs and ESSs are integrated to distribution systems

due to their benefits. As consequence, some papers considered the location and sizing of DGs

and ESSs in the DSP of MV networks [30,32–37]. Some authors used GAs to solve the DSP

problem considering DGs [32,34]. Other authors used a bilevel approach which combines an

improved GA and a MILP model to solve the DSP problem considering DGs and ESSs [35].

These technologies introduce the need of considering different scenarios due to the variability

and intermittency of the DGs and charge/discharge schemes of the ESSs. As consequence,

some authors considered different scenarios using a probabilistic MILP model, such as in [30].

In [36], the authors proposed a stochastic methodology to consider different scenarios. Other

authors used a mixed-integer second-order cone programming (MISOCP) to consider DGs

and ESSs, such as in [37].

1.3.2 DSP for LV networks

Low voltage networks are three-phase and large size, due to these characteristics, the DSP

problem becomes computationally expensive to solve. As consequence, most of the papers in

the literature regarding DSP for low voltage are solved using metaheuristic techniques and
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one time stage [6]. Some authors used evolutionary algorithms to solve the DSP problem in

a large size LV network, such as in [20], and some others used to solve the DSP problem in

a three-phase LV network, such as in [21].

Other authors used heuristic techniques with a micro optimization approach to solve the DSP

of LV networks separately in small zones [22]. After micro optimization is done, the authors

used TS with Voronoi’s diagram with a macro optimization approach to solve the DSP of the

complete LV network with the results of the micro optimization [23]. In [24], authors also

used TS to solved the DSP of a three-phase LV network.

Electric utilities have different information about their customers due to the socioeconomic

strata. Besides, these companies establish different technical requirements for the LV net-

works. This information and requirements need to be considered in the DSP problem of LV

networks [25,26]. In [25], the authors proposed a statistical methodology that uses a fractal-

based algorithm to solve the DSP of a real UK distribution system. The authors considered

all the information and requirements of the electric company. Other authors used the TS

algorithm using diversified demand from the electric companies to solve the DSP of a LV

network, such as in [26].

Nowadays, new technologies as DGs and ESSs are integrated to distribution systems but only

DGs are considered into the DSP of LV networks. As consequence, some papers considered

the location and sizing of DGs in the DSP for LV networks [38–40]. In [38], the authors used

a GA to solve the DSP for a real three-phase LV network considering DGs and the reliability

of the network. In [39], authors used a TS algorithm to solve the DSP for a three-phase LV

network considering DGs and the reliability of the network. Other authors used clustering

techniques to solve the DSP for a rural LV network, such as in [40].
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1.3.3 Integrated DSP for MV and LV networks

Integrated DSP for both networks leads to a joint global solution but becomes computa-

tionally expensive to solve. As consequence, most of the paper regarding this integrated

DSP used metaheuristic techniques to solve the problem [3–5,28,29,41]. In [27], the authors

used a MILP model to solve the DSP of both networks in an integrated way. Other authors

used continuous constrained nonlinear programming methods to solve the integrated DSP

problem, such as in [28].

In [4], the authors used a discrete particle swarm optimization (DPSO) method to solve

the integrated DSP problem. Other authors used a new metaheuristic technique called

biogeography-based optimization (BBO) and compared its efficiency with GA and PSO,

such as in [3].

Currently, new technologies such as DGs, ESSs and EVs are incorporated to distribution

systems, but only three papers considered them in the integrated DSP for both networks [5,

29,41]. In [29], the authors used an imperialist competitive algorithm to solve the integrated

DSP problem of both networks considering DGs. Other authors used TS and a bilevel

optimization approach to solve the integrated DSP problem considering DGs, such as in [5].

In [41], the authors used a general variable neighborhood search metaheuristic (GVNS),

along with the Chu-Beasley Genetic Algorithm (CBGA) to solve the integrated DSP problem

considering DGs, ESSs and EVs. Nevertheless, it is needed to develop more robust models

in order to solve the integrated DSP problem of both networks considering DGs and ESSs.

1.4 Contributions

The main contributions of this thesis are presented as follows:
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• Proposal of a specialized simulated annealing algorithm which uses a novel neighbor-

hood search method based on the Zbus matrix for solving the integrated DSP problem

of both networks (primary and secondary) as one system. The Zbus matrix establishes

an electrical relation between the primary and secondary nodes, where a change in one

network is reflected in the electrical characteristics of the other one. As consequence,

the results show that a joint global solution is found.

• A novel neighborhood search method based on the Zbus matrix (NSZM) is used to

explore the solution space for the SA algorithm. The NSZM method uses sensitivity

factors based on the Zbus matrix for reducing the neighborhood size in order to find

attractive solutions in quick times. Hence, the solution space is explored more efficiently

in order to find the optimal global solution.

• A new sensitivity analysis based on the Zbus matrix for solving the allocation and

sizing of DGs and ESSs is proposed. The difference in relation to other papers from the

literature is that the impact of DGs and ESSs in the technical losses of both networks

is measured in an easy way. As a consequence, the solution space is explored efficiently

in order to find better solutions.

• A new nonlinear model based on the Zbus matrix is used for the optimal power flow to

evaluate operative conditions of the solutions considering ESSs and DGs. This nonlinear

model finds the optimal operation of charge and discharge of the ESSs considering the

operative conditions of the network and DGs.

• A new decomposition method is used to solve the optimal power flow considering ESSs

and DGs. This method allows to find the optimal operation of charge and discharge

of the ESSs in quick times. Hence, the proposed methodology is robust and accurate

when ESSs and DGs are considered.
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1.4.1 Research results

• Authors: Alejandro Valencia Diaz, Ramón Alfonso Gallego Rendón, Ricardo Alberto

Hincapié Isaza. Title: Use of energy storage systems in the optimal operation of dis-

tribution networks. Accepted in: Ciencia e Ingenieŕıa Neogranadina Vol. 29 Núm. 2

(2019).

• Authors: Alejandro Valencia Diaz, Ricardo Alberto Hincapié Isaza, Ramón Alfonso

Gallego Rendón. Title: Integrated planning of MV/LV distribution systems with DG

using single solution based metaheuristics with a novel neighborhood search method

based on the Zbus matrix. Under revision: International Journal of Electrical Power

& Energy Systems.

1.5 Structure of the Thesis

This thesis is organized as follows. The mathematical formulation of the problem is presented

in Chapter 2. This Chapter describes three mathematical models: 1) the DSP for MV and

LV networks, 2) the DSP for MV and LV networks considering DGs, and 3) the DSP for

MV and LV networks considering DGs and ESSs. The second model is used to validate the

solution methodology with the specialized literature. Chapter 3 describes the application

of the Zbus matrix into the DSP problem. Chapter 4 presents the methodology based on

the Zbus matrix used to solve the DSP problem considering DGs and ESSs. This Chapter

presents the methodology used to solve the mathematical models presented in Chapter 2.

The numerical results are presented in Chapter 5, where a test system is used to validate the

presented methodology with results reported in the specialized literature. Chapter 6 presents

the conclusions and future work.
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Chapter 2

Problem Formulation and Modeling

The mathematical formulation of the DSP is a mixed-integer nonlinear problem. It is non-

linear due to the multiplication of variables in the equations of Kirchhoff’s laws and the

presence of the square of the voltage in the constant impedance term of the ZIP load model.

Additionally, the model is mixed-integer because it has both integer and continuous vari-

ables (decision variables, current magnitudes, voltage levels, etc.). New technologies such as

DGs and ESSs, introduce new constraints and variables to the DSP model. Furthermore,

the objective function and some constraints are modified since these technologies change the

paradigm of the DSP problem.

Three models are formulated in this chapter. The first model considers the DSP for MV and

LV networks. This model considers in the objective function the inversion and operative costs

of both networks; and presents the constraints that models the DSP problem. The second

model considers the DGs in the DSP problem. This model introduces the inversion cost of

new DGs in the objective function. Besides, a few constraints are modified and introduced

from the first model. The third model considers DGs and ESSs in the DSP problem. This

model introduces the inversion cost and the fixed operational and maintenance costs of new

9
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ESSs. The operative cost in the objective function is changed by the profit from the energy

purchase and sale. Furthermore, some constraints are modified and introduced from the

second model.

2.1 DSP for MV and LV networks

The first mathematical model is presented in (2.1)–(2.20). The primary and secondary net-

works are represented by a single-phase model. Eq. (2.1) is the objective function which

minimizes the investment and operative costs of the primary and secondary networks. The

objective function is the present value of eight terms. Terms 1 and 2 are the installation

and upgrading costs of the new and existing primary feeders, respectively. Terms 3 and 4

are the installation and upgrading costs of the new and existing substations, respectively.

Term 5 is the cost of installing new DTs. Terms 6 and 7 are the installation and upgrading

costs of the new and existing secondary circuits, respectively. Term 8 is the operative cost of

the networks (technical energy losses in primary feeders, secondary circuits, and distribution

transformers).

min =
{ ∑
ij∈ΩNP

∑
p∈ΩT P

CNP
ij,p γ

NP
ij,p +

∑
ij∈ΩEP

∑
p∈ΩT P

CEP
ij,pγ

EP
ij,p+

∑
i∈ΩNSS

∑
s∈ΩT SS

CNSS
s γNSSi,s +

∑
i∈ΩESS

∑
s∈ΩT SS

CESS
s γESSi,s +

∑
i∈ΩNDT

∑
d∈ΩT DT

CNDT
d γNDTi,d +

∑
ij∈ΩNS

∑
c∈ΩT S

CNS
ij,c γ

NS
ij,c+

∑
ij∈ΩES

∑
c∈ΩT S

CES
ij,cγ

ES
ij,c + k1

NL∑
l=1

k2lRe
 ∑
i∈ΩSS

SSi,l − ∑
i∈ΩP N

SPDi,l ZIP
P
i,l +

∑
i∈ΩSN

SSDi,l ZIP
S
i,l

∆Tl
}

(2.1)

Subject to:
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SSi,l = SDTi,l + SPDi,l ZIP
P
i,l + V BUS

i,l

(
IBUSi,l

)∗
∀i ∈ ΩPN ; ∀l ∈ ΩNL (2.2)

SDTi,l = SSDi,l ZIP
S
i,l + V BUS

i,l

(
IBUSi,l

)∗
∀i ∈ ΩSN ; ∀l ∈ ΩNL (2.3)

ZIP P
i,l = a0 + a1

(
V BUS
i,l

V P
nom

)
+ a2

(
V BUS
i,l

V P
nom

)2

∀i ∈ ΩPN ; ∀l ∈ ΩNL (2.4)

ZIP S
i,l = a0 + a1

(
V BUS
i,l

V S
nom

)
+ a2

(
V BUS
i,l

V S
nom

)2

∀i ∈ ΩSN ; ∀l ∈ ΩNL (2.5)

V BUS
i,l = V P

nom +
∑
j∈ΩN

ZBUS
ij IBUSj,l ∀i ∈ ΩPN ; ∀l ∈ ΩNL (2.6)

V BUS
i,l = V S

nom +
∑
j∈ΩN

ZBUS
ij IBUSj,l ∀i ∈ ΩSN ; ∀l ∈ ΩNL (2.7)

IBUSi,l =
∑

ij∈ΩP F

IPij,l ∀i ∈ ΩSS; ∀l ∈ ΩNL (2.8)

IPij,l =
(
V BUS
i,l − V BUS

j,l

ZP
ij,p

)(
γNPij,p + γEPij,p

)
∀ij ∈ ΩPF ; ∀l ∈ ΩNL; ∀p ∈ ΩTP

(2.9)

ISij,l =
(
V BUS
i,l − V BUS

j,l

ZS
ij,c

)(
γNSij,c + γESij,c

)
∀ij ∈ ΩSC ; ∀l ∈ ΩNL; ∀c ∈ ΩTS

(2.10)
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0 ≤
∣∣∣IPij,l∣∣∣ ≤ ∑

p∈ΩT P

(
γNPij,p + γEPij,p

)
Imaxp ∀ij ∈ ΩPF ; ∀l ∈ ΩNL (2.11)

0 ≤
∣∣∣ISij,l∣∣∣ ≤ ∑

c∈ΩT S

(
γNSij,c + γESij,c

)
Imaxc ∀ij ∈ ΩSC ; ∀l ∈ ΩNL (2.12)

0 ≤
∣∣∣SSi,l∣∣∣ ≤ ∑

s∈ΩT SS

(
γNSSi,s + γESSi,s

)
Smaxs ∀i ∈ ΩSS; ∀l ∈ ΩNL (2.13)

SDTi,l = V BUS
i,l

 ∑
ki∈ΩP F

IPki,l −
∑

im∈ΩP F

IPim,l

∗ γNDTi,d

∀i ∈ ΩNDT ; ∀l ∈ ΩNL

(2.14)

0 ≤
∣∣∣SDTi,l ∣∣∣ ≤ ∑

d∈ΩT DT

γNDTi,d Smaxd ∀i ∈ ΩNDT ; ∀l ∈ ΩNL (2.15)

V min
i ≤

∣∣∣V BUS
i,l

∣∣∣ ≤ V max
i ∀i ∈ ΩN ; ∀l ∈ ΩNL (2.16)

∑
p∈ΩT P

(
γNPij,p + γEPij,p

)
≤ 1 ∀ij ∈ ΩPF (2.17)

∑
c∈ΩT S

(
γNSij,c + γESij,c

)
≤ 1 ∀ij ∈ ΩSC (2.18)

∑
s∈ΩT SS

(
γNSSi,s + γESSi,s

)
≤ 1 ∀i ∈ ΩSS (2.19)
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∑
d∈ΩT DT

γNDTi,d ≤ 1 ∀i ∈ ΩNDT (2.20)

The set of constraints is presented in (2.2)–(2.20). Eqs. (2.2) and (2.3) represent the nodal

balance given by Kirchhoff’s laws for both networks. Eqs. (2.4) and (2.5) use the ZIP model

for demands in both networks. Eqs. (2.6) and (2.7) use Ohm’s law to calculate the nodal

voltage using the Zbus matrix. Eq. (2.8) uses the Kirchhoff’s first law to calculate the nodal

currents in substations. Eqs. (2.9) and (2.10) calculate the currents in the primary feeders

and secondary circuits, respectively. Eqs. (2.11), (2.12) and (2.13) are the operating limits of

the primary feeders, secondary circuits, and substations, respectively. Eq. (2.14) determines

the injected power in each DT. Eq. (2.15) is the operating limits of the DTs. Eq. (2.16) is

the voltage limit in all nodes of both networks. Eqs. (2.17)–(2.20) ensure that only one type

of wire, substation, and DT can be installed in the same place, respectively.

2.2 DSP for MV and LV networks considering DGs

The mathematical formulation of the DSP considering DGs is similar to the previous one,

only some constraints are modified and some are added due to the DGs. Eqs. (2.1) and (2.3)

are modified and replaced by Eqs. (2.21) and (2.22), and Eqs. (2.23) and (2.24) are added.

Eq. (2.21) is the objective function which minimizes the investment and operative costs of

the primary and secondary networks considering DGs. The objective function is the present

value of nine terms. Terms 1 to 8 are the same of Eq. (2.1), and term 9 is the installation

cost of new DGs.
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min =
{ ∑
ij∈ΩNP

∑
p∈ΩT P

CNP
ij,p γ

NP
ij,p +

∑
ij∈ΩEP

∑
p∈ΩT P

CEP
ij,pγ

EP
ij,p+

∑
i∈ΩNSS

∑
s∈ΩT SS

CNSS
s γNSSi,s +

∑
i∈ΩESS

∑
s∈ΩT SS

CESS
s γESSi,s +

∑
i∈ΩNDT

∑
d∈ΩT DT

CNDT
d γNDTi,d +

∑
ij∈ΩNS

∑
c∈ΩT S

CNS
ij,c γ

NS
ij,c+

∑
ij∈ΩES

∑
c∈ΩT S

CES
ij,cγ

ES
ij,c + k1

NL∑
l=1

k2lRe
 ∑
i∈ΩSS

SSi,l − ∑
i∈ΩP N

SPDi,l ZIP
P
i,l +

∑
i∈ΩSN

SSDi,l ZIP
S
i,l

∆Tl+

∑
i∈ΩNDG

∑
g∈ΩT DG

CNDG
g γNDGi,g

}

(2.21)

SDTi,l + SDGi,l = SSDi,l ZIP
S
i,l + V BUS

i,l

(
IBUSi,l

)∗
∀i ∈ ΩSN ; ∀l ∈ ΩNL (2.22)

0 ≤
∣∣∣SDGi,l ∣∣∣ ≤ Smaxg γNDGi,g ∀i ∈ ΩNDG; ∀l ∈ ΩNL; ∀g ∈ ΩTDG (2.23)

∑
g∈ΩT DG

γNDGi,g ≤ 1 ∀i ∈ ΩNDG (2.24)

Eq. (2.22) represents the nodal balance given by Kirchhoff’s laws for LV network considering

DGs. Eq. (2.23) is the operating limits of the DGs. Eq. (2.24) ensures that only one type

of DG can be installed in the same place. The second mathematical model is presented in

(2.21),(2.2),(2.22),(2.4)–(2.15),(2.23),(2.16)–(2.20),(2.24).

Objective function:

{
FObj = Eq. (2.21)

}

14



Master’s Thesis: DSP for MV and LV networks considering DGs and ESSs

Subject to:

{
Eqs. (2.2), (2.22), (2.4)− (2.15), (2.23), (2.16)− (2.20), (2.24)

}

2.3 DSP for MV and LV networks considering DGs and

ESSs

The mathematical formulation of the DSP considering ESSs has some changes from the

previous models. ESSs are integrated to maximize the profits from the energy purchase and

sale due to the charge and discharge scheme of these. As consequence, the objective function

and some constraints are modified, and some others are added. Eqs. (2.21), (2.2) and (2.22)

are modified and replaced by Eqs. (2.25), (2.26) and (2.27). Eqs. (2.28)–(2.35) are added.

Eq. (2.25) is the objective function which minimizes the investment and operative costs of

the primary and secondary networks considering DGs and ESSs, and maximizes the profits

from the energy purchase and sale. The maximize term can be converted to minimize by

multiplying for minus one.

The objective function is the present value of nine terms. Terms 1 to 7, and 9 are the same

of Eq. (2.21). Term 8 is the profit from the energy purchase and sale. Moreover, this term

also considers the operative cost of the networks (technical energy losses in primary feeders,

secondary circuits, distribution transformers, and energy storage systems). The value of this

term is negative due to the change from maximize to minimize. Term 10 considered the

installation cost and the fixed operational and maintenance costs of new ESSs.
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min =
{ ∑
ij∈ΩNP

∑
p∈ΩT P

CNP
ij,p γ

NP
ij,p +

∑
ij∈ΩEP

∑
p∈ΩT P

CEP
ij,pγ

EP
ij,p+

∑
i∈ΩNSS

∑
s∈ΩT SS

CNSS
s γNSSi,s +

∑
i∈ΩESS

∑
s∈ΩT SS

CESS
s γESSi,s +

∑
i∈ΩNDT

∑
d∈ΩT DT

CNDT
d γNDTi,d +

∑
ij∈ΩNS

∑
c∈ΩT S

CNS
ij,c γ

NS
ij,c+

∑
ij∈ΩES

∑
c∈ΩT S

CES
ij,cγ

ES
ij,c + k1

NL∑
l=1

k2l

 ∑
i∈ΩSS

Re
{
SSi,l
}∆Tl −

k3Re
 ∑
i∈ΩP N

SPDi,l ZIP
P
i,l +

∑
i∈ΩSN

SSDi,l ZIP
S
i,l

∆Tl

Dyear+

∑
i∈ΩNDG

∑
g∈ΩT DG

CNDG
g γNDGi,g +

∑
i∈ΩNESS

∑
b∈ΩT ESS

(
CNESS
b +

k1O&M
fx
b

)
γNESSi,b

}

(2.25)

SSi,l + SESSi,l = SDTi,l + SPDi,l ZIP
P
i,l + V BUS

i,l

(
IBUSi,l

)∗
∀i ∈ ΩPN ; ∀l ∈ ΩNL (2.26)

SDTi,l + SDGi,l + SESSi,l = SSDi,l ZIP
S
i,l + V BUS

i,l

(
IBUSi,l

)∗
∀i ∈ ΩSN ; ∀l ∈ ΩNL (2.27)

SESSi,l = SESSDi,l − SESSCi,l ∀i ∈ ΩNESS; ∀l ∈ ΩNL (2.28)

SoCi,l = SoCi,l−1 − φb
(

1
ηb
SESSDi,l − ηbSESSCi,l

)
∆Tl ∀i ∈ ΩNESS;

∀l ∈ ΩNL; ∀b ∈ ΩTESS

(2.29)

SoCi,l = SoC0
i l = 0; ∀i ∈ ΩNESS (2.30)
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SoCi,l = SoCF
i l = NL; ∀i ∈ ΩNESS (2.31)

0 ≤ SESSCi,l ≤ Smaxcb γNESSi,b ϕNESSi,l ∀i ∈ ΩNESS; ∀l ∈ ΩNL; ∀b ∈ ΩTESS (2.32)

0 ≤ SESSDi,l ≤ Smaxdb γNESSi,b

(
1− ϕNESSi,l

)
∀i ∈ ΩNESS; ∀l ∈ ΩNL; ∀b ∈ ΩTESS (2.33)

SoCmin
i ≤ SoCi,l ≤ SoCmax

i ∀i ∈ ΩNESS; ∀l ∈ ΩNL (2.34)

∑
b∈ΩT ESS

γNESSi,b ≤ 1 ∀i ∈ ΩNESS (2.35)

Eqs. (2.26) and (2.27) represent the nodal balance given by Kirchhoff’s laws for MV and LV

networks considering ESSs. Eqs. (2.28)–(2.35) model the integration of ESSs into the DSP

model, where if ϕNESSi,l = 0 the ESSs are injecting power and if ϕNESSi,l = 1 the ESSs are

extracting power. Eq. (2.28) considers the charge and discharge power of the ESSs as two

different variables. Eq. (2.29) is the state of charge of the ESSs, this constraint considers the

efficiency of charge and discharge of the ESSs. Eqs. (2.30) and (2.31) are the initial and final

state of charge of the ESSs. Eqs. (2.32) and (2.33) are the operating limits of the charge and

discharge power of the ESSs. Eq. (2.34) is the capacity limits of the ESSs. Eq. (2.35) ensures

that only one type of ESS can be installed in the same place. The third mathematical model is

presented in (2.25),(2.26)–(2.31),(2.4)–(2.15),(2.23),(2.32)–(2.34),(2.16)–(2.20),(2.24),(2.35).

Objective function:
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{
FObj = Eq. (2.25)

}

Subject to:

{
Eqs. (2.26)− (2.31), (2.4)− (2.15), (2.23), (2.32)− (2.34), (2.16)− (2.20), (2.24), (2.35)

}

18



Chapter 3

Zbus Matrix

The Zbus matrix represents the relation between current injections and voltages in a system.

This matrix is formed by diagonal and off-diagonal elements that represent the electrical

information of the network. The diagonal elements of Zbus are the equivalent impedances

between each bus and the reference bus, which are the same as the Thevenin impedances of

each bus [45]. The off-diagonal elements are called transfer impedances and define the ratio

of change for the voltage at a certain bus caused by a current injection at another bus (i.e.,

bus k). As consequence, the Zbus matrix reflects important electrical characteristics of the

network, such as information for the neighborhood structure (branch exchange, upgrading

existing elements, and the location of DGs, ESSs and DTs to minimize operative costs).

Besides its electrical information, the Zbus matrix also contains and reflects some topological

characteristics of the network. Thus, the Zbus matrix is used as sensitivity factors for reducing

the neighborhood size of the solution method (SA). Moreover, the Zbus matrix is used for the

analysis of the impact of DGs and ESSs in the technical losses of both network and for the

solution of load flow to evaluate operative conditions of the solutions. Therefore, the Zbus

matrix is used as the main basis of the methodology proposed to solve the DSP problem.
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3.1 Constructive algorithm of the Zbus matrix

The Zbus matrix can be found by inverting the Ybus matrix. The disadvantage of this

method is that inverting the Ybus matrix for large networks is computationally intensive.

Therefore, it is better to build the Zbus by analyzing the relations between the currents and

the voltages.

The constructive algorithm starts by adding branches from the reference node 0 until all the

n nodes of the network are connected. In each step, a m × m partial Zbus matrix of the

partial network of m buses and the reference node 0 is obtained. This procedure to find the

Zbus matrix using a construction algorithm is described in [49]. This algorithm is only for

radial networks and is shown in Fig. 3.1.

When a new element p − q is added to the partial network, a new bus q is incorporated to

the partial network and the new resultant Zbus matrix is of dimension (m + 1) × (m + 1).

To determine the new Zbus matrix requires only the calculation of the elements in the new

row and column.

ZBUS
qi = ZBUS

pi

ZBUS
iq = ZBUS

ip

i = 1, 2, ...,m; i 6= q (3.1)

ZBUS
qq = ZBUS

pq + zprimitivepq
(3.2)

ZBUS
qi = 0

ZBUS
iq = 0

i = 1, 2, ...,m; i 6= q (3.3)

ZBUS
qq = zprimitivepq

(3.4)
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The Eqs. (3.1) and (3.2) represents the adding of the element p − q in the partial bus

impedance matrix. The Eqs. (3.3) and (3.4) represents the adding of the element p − q

in the partial bus impedance matrix when p is the reference node.

Zbus matrix construction algorithm

1: begin
2: while All nodes are not connected in the network do
3: Add new element p− q
4: if Node p is the reference node then
5: Use Eq. (3.3);
6: Use Eq. (3.4);
7: else
8: Use Eq. (3.1);
9: Use Eq. (3.2);

10: end if
11: Partial Zbus matrix
12: end while
13: Final Zbus matrix
14: end

Figure 3.1: Constructive algorithm of the Zbus matrix.

3.2 Modifications of the Zbus matrix to reflect changes

in the network

The Zbus matrix can be modified to reflect changes in the network without the need to build

it again. These changes may be the addition or removal of elements and variation in the

impedances of elements. These modifications are described in [49].

For adding an element, two options can happen: add a branch or a link. When a branch

p − q is added, a new bus q is incorporated to the network adding a new row and column
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in the Zbus matrix. The Eqs. (3.1) and (3.2) are used to calculated the elements of the new

row and column.

When a link p− q is added, no new bus is added to the network. Therefore, the dimensions

of the Zbus matrix are unchanged, but all the elements in the matrix must be recalculated

to incorporate the effect of the added link. To include the link in the Zbus matrix, the Eqs.

(3.5) and (3.6) are used. When these equations are applied, a new row and column is added

to the Zbus matrix, hence, a fictitious node l is added.

ZBUS
li = ZBUS

pi − ZBUS
qi

ZBUS
il = ZBUS

ip − ZBUS
iq

i = 1, 2, ...,m; i 6= l (3.5)

ZBUS
ll = ZBUS

pl − ZBUS
ql + zprimitivepq

(3.6)

For recalculating the elements of the Zbus matrix, Kron’s reduction is used. This procedure

was proposed by Kron [50], and is based on the elimination of a node in a matrix where the

independent variable of this node is equal to zero. Eq. (3.7) represents the elimination of the

row and column of the fictitious bus l by using the reduction of Kron.

ZBUS
modified = ZBUS

n×n −
Z
BUS
n×l Z

BUS
l×n

ZBUS
ll

(3.7)

For removing an element p− q, the next procedure is applied. Between p− q there is added,

in parallel, a link whose impedance is equal to the negative of the impedance of the element

p − q to be removed, then the procedure explained before to recalculate the Zbus matrix is

applied.

The procedure to change the impedance of an element p− q is next. Between p− q there is

added, in parallel, a link whose impedance is such that the equivalent impedance of the two
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elements in p− q is the desired value, then the elements of the Zbus matrix are recalculated.

Eq. (3.8) gives the value of the impedance added in the link p− q to obtain the new value of

impedance from the old value.

zchangepq =
zoldpq z

new
pq

zoldpq − znewpq

(3.8)

3.3 Topological information of the network provided

by the Zbus matrix

The Zbus matrix provides physical information of the network by comparing some elements

of the matrix with each other. The physical information obtained from the Zbus matrix

is the next: Identification of terminal nodes, nodes upstream from a specific node, nodes

downstream from a specific node, and send and receipt nodes. This information is useful for

the neighborhood structure used to solve the DSP problem.

The neighborhood structure is applied to explore the search solution space of the problem in

order to find the optimal global solution. The neighborhood structure modifies the topology

from the current solution in order to explore the solution space. When these changes in the

topologies are applied, it is important to know the physical information of the network to

keep making changes for the neighborhood structure. A mishandling of the neighborhood

structure can lead to expensive computational efforts, forbidden topologies and bad quality

solutions. Therefore, the Zbus matrix is used to know the physical information of the current

solutions in order to optimize the neighborhood structure process. The physical information

that can be obtained from the Zbus matrix is the next.

The procedure to know if a specific node is a terminal node is next. If the Eq. (3.9) is true

for all i = 1, 2, ..., n, the node k is a terminal node.
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ZBUS
kk 6= ZBUS

ki i = 1, 2, ..., n; i 6= k (3.9)

To know which nodes are upstream from a specific node, the next procedure is applied. If

the Eq. (3.10) is true, the node i is a node upstream from the node k.

ZBUS
ii = ZBUS

ki
(3.10)

The procedure to know which nodes are downstream from a specific node is next. If the

Eq. (3.11) is satisfied, the node i is downstream from the node k.

ZBUS
kk = ZBUS

ki
(3.11)

The procedure to identify which nodes are send and receipt nodes is next. If Eq. (3.12) is

true, the node p is the receipt node and the node q is the send node. Otherwise, the node p

is the send node and the node q is the receipt node.

ZBUS
pp > ZBUS

qq
(3.12)

3.4 Electrical information of the network provided by

the Zbus matrix

Due to the matrix form of the Zbus, it is easy to obtain in a quick way some electrical

variables, such as the voltages. These are obtained by using the Eq. (3.13). The voltages
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obtained are used to calculate in approximated way other variables such as the electric current

in the branches and the power in the DTs.

V BUS = V slack + ZBUS

SDZIP
V slack

+ S
DG

V slack

+ S
ESS

V slack

∗ (3.13)

3.4.1 Impact of the DGs and ESSs on the active power losses of

the network

The Zbus matrix provides electrical information of the network in order to reduce the neigh-

borhood size. This electrical information is obtained by using sensitivity factors in order to

lead to the optimal global solution with reduced computational efforts.

DGs and ESSs are power injections introduced in a distributed way in the network affecting

the active power losses. Therefore, it is needed a sensitivity factor that measures the impact

of a change in the bus current injected in a given bus k on the active power losses in the

distribution system (i.e., ∂PLosses/∂IBUSk ).

The sensitivity factor applied in order to reduce the neighborhood structure of DGs and

ESSs is demonstrated as follows. Network losses can be calculated using the Zbus matrix as

shown in Eq. (3.14). From Eq. (3.14) the active network losses can be determined as shown

in Eq. (3.15).

SLosses =
(
IBUS

)T
ZBUS

(
IBUS

)∗ (3.14)

PLosses =
n∑
i=1

n∑
j=1

[
RBUS
ij IBUSi IBUSj cos (Θi −Θj)

]
(3.15)
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Taking the derivative of PLosses, in Eq. (3.15), with respect to IBUSk , yields Eq. (3.16).

∂PLosses
∂IBUSk

= 2
n∑
j=1

[
RBUS
kj IBUSj cos (Θk −Θj)

]
(3.16)

This sensitivity factor calculates the impact in the active network losses due different power

injections of the DGs and ESSs. As consequence, this factor leads the neighborhood structure

in order to find the best alternatives.

3.5 Load flow based on the Zbus matrix

The load flow is essential for knowing the operating conditions of each generated configura-

tion. As a consequence, a load flow based on the Zbus Gauss method described in [49] is

proposed. This load flow is based upon the principle of superposition applied to the system

bus voltages. The bus voltages depend on two different types of sources: the specified incom-

ing bus voltage of the distribution substation, and the current injection which is generated

by the loads. New types of sources like DGs and ESSs can be included such as PQ nodes.

The steps of this load flow algorithm are described as follows.

Step 1: Initialize bus voltage estimates and the Zbus matrix.

Step 2: Calculate the bus injection current using Eq. (3.17) for loads.

Iki =
(
SDi ZIP

k
i

V k
i

)∗
+
(
SDGi
V k
i

)∗
+
(
SESSi

V k
i

)∗
(3.17)

Step 3: Calculate the new bus voltages applying the superposition principle using Eq. (3.18).

V
k+1
BUS = V slack + ZBUSI

k
BUS

(3.18)
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Step 4: Check for convergence using Eq. (3.18). If not converged go to step 2.

max
{
|V k+1
BUS − V k

BUS|
}
≤ Tolerance (3.19)

Step 5: Calculate the rest of electric variables needed.
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Chapter 4

Solution Methodology

As was mentioned in Chapter 2, the optimization problem is a mixed-integer nonlinear pro-

gramming problem, and to solve it, a simulated annealing (SA) algorithm with a new neigh-

borhood search method based on the Zbus matrix (NSZM) is used. The NSZM method

explores the solution space for the SA algorithm using a defined neighborhood structure and

sensitivity factors based on the Zbus matrix. The proposed methodology starts with an ini-

tial configuration for both networks (medium and low voltage) obtained using a constructive

heuristic algorithm. It is essential to highlight that only feasible topologies in the initial

configuration are allowed. Afterward, the Zbus matrix of this solution is obtained using a

constructive algorithm explained in Chapter 3 (Section 3.1).

The NSZM method chooses one criterion of the neighborhood structure in order to explore

the solution space. In the process, the NSZM method uses the current Zbus matrix to obtain

information provided by the sensitivity factors in order to choose a new solution. Afterward,

the current Zbus matrix is modified to reflect the changes made by the neighborhood struc-

ture. Then, the stochastic mechanism of the SA algorithm controls the transition between

the solutions. The acceptance of new configurations obeys the following criteria: topologies
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with decreasing objectives are always accepted, whereas configurations with higher costs can

be accepted or not with a certain probability. The possibility of accepting solutions with an

elevated cost avoids getting trapped in local minima.

The main aspects of the SA algorithm and the new NSZM method used in this thesis will be

discussed below.

4.1 Codification

A codification scheme allows to represent the variables of a mathematical model into a vector.

Therefore two different codification schemes are used in this thesis in order to represent two

models: DSP of primary and secondary networks considering DGs and DSP of primary and

secondary networks considering DGs and ESSs.

The codification employed for the primary and secondary DSP uses integer numbers, where

each number (for all the elements) is associated to a different capacity. A zero indicates that

the element is not installed.

4.1.1 DSP considering DGs

The DSP of primary and secondary networks considering DGs is encoded using the codifi-

cation scheme illustrated in Fig. 4.1. This vector is divided into five parts. The first part

contains the locations and sizes of the existing and new primary feeders (size n1 + n2); the

second part contains the locations and sizes of the existing and new secondary circuits (size

n3 + n4); the third part involves the locations and capacities of the DTs (size n5); the fourth

part contains the locations and sizes of the existing and new substations (size n6 + n7); and

the fifth part contains the locations and capacities of the DGs (size n8).
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Primary feeders Secondary circuits DTs Substations DGs
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1
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n8,1
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Figure 4.1: Codification scheme for primary and secondary DSP considering DGs.

4.1.2 DSP considering DGs and ESSs

The DSP of primary and secondary networks considering DGs and ESSs is encoded using the

codification scheme illustrated in Fig. 4.2. This vector is divided into five parts. The first

part contains the locations and sizes of the existing and new primary feeders (size n1 + n2);

the second part contains the locations and sizes of the existing and new secondary circuits

(size n3 + n4); the third part involves the locations and capacities of the DTs (size n5); the

fourth part contains the locations and sizes of the existing and new substations (size n6 +n7);

the fifth part contains the locations and capacities of the ESSs (size n8); and the six part

contains the locations and capacities of the DGs (size n9).
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Figure 4.2: Codification scheme for primary and secondary DSP considering DGs and ESSs.
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4.2 Initial configuration

The initial configuration for both networks (medium and low voltage) is obtained using a con-

structive heuristic algorithm. This algorithm begins from the existing source (substations),

and in each step, a new branch (primary feeder, DT, or secondary circuit) is connected to the

system. When a branch is added, the operating limits are checked (voltage regulation and

capacities of the elements). This strategy stops when all demand nodes are connected to the

network. It is essential to highlight that only feasible topologies in the initial configuration

are allowed.

4.3 Neighborhood search method based on the Zbus

matrix (NSZM)

This method explores the solution space using a defined neighborhood structure and sensitiv-

ity factors based on the Zbus matrix to find attractive solutions in quick times. The method

uses an initial Zbus matrix to obtain a new Zbus matrix which represents a new solution for

the SA algorithm. The NSZM method chooses one criterion of the neighborhood structure

in order to explore the solution space. The criteria defined for the neighborhood structure

uses the Eq. (3.13) and the sensitivity factor (SF) showed in Eq. (3.16) in order to choose a

new solution. Afterward, the initial Zbus matrix is modified to reflect the changes made by

the neighborhood structure.

The main aspects of the NSZM method are explained next.
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4.3.1 Neighborhood structure

The neighborhood structure of the NSZM method uses the next criteria: the upgrading of

existing substations, primary feeders and secondary circuits, installation of new substations,

DTs and DGs, and branch exchange in both networks. From a current solution, a set of

topologies are generated using one of the criteria explained. These configurations are called

neighbors (or a neighborhood), and because the large amount they are, can be reduced to a

defined number (reduced neighborhood) using sensitivity factors. The Zbus matrix is used

for the sensitivity factors (SFs) for reducing the size of the neighborhood and choosing one

topology from the neighborhood. The neighborhood structure considered is explained below.

• Branch exchange. The branch with max {∆Vij} is selected to connect the link. Then,

the branch with min {Iij} of the loop formed is selected for removal. The currents of

the loop are calculated using the Eq. (3.13).

• DT installation. A DT is chosen randomly from the three DTs with the largest capaci-

ties. If there are DTs disconnected nearby, one is chosen at random to be installed, and

some loads are transferred from the first DT. Otherwise, the DT to be added is chosen

at random from the disconnected DTs. Some loads need to be transferred to the new

DT in order to comply radiality in the secondary circuits. Loads are transferred from

the nearest existing DT to the new one. Loads are transferred by removing the circuit

with min {Iij} of the loop formed. The currents of the loop are calculated using the

Eq. (3.13). In the process, it is checked that the sizes of the DTs respect the operating

limits.

• DT removal. The DT to be removed is chosen randomly from the three DTs with the

smallest capacities. The loads of this DT need to be transferred to another existing DT.

The DT chosen for receiving these loads is the nearest one with less capacity. If there

is more than one such, the DT that is less overloaded is chosen. If there is more than
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one DT that fulfills these conditions, the DT is chosen randomly from these. Loads are

transferred by removing the circuit with min {Iij} of the loop formed. The currents of

the loop are calculated using the Eq. (3.13).

• Upgrading of existing branches and DTs. Two alternatives are considered. In the first

one, an element is chosen randomly from the three most overloaded elements, and the

element is replaced by one with a bigger size. In the second one, an element is chosen

randomly from the three least overloaded elements, and the element is replaced by one

with a smaller size. One of these alternatives is chosen randomly. Primary feeders,

secondary circuits, and DTs are chosen for upgrading capacity. One of these elements

is selected randomly. Applying these criteria should ensure that the sections upstream

do not present a smaller-size wire in the primary feeders and secondary circuits.

• Installation and sizing of DGs and ESSs. Four alternatives are considered: addition

and removal of a DG or ESS and increasing and decreasing the size of a DG or ESS.

One of these alternatives is chosen randomly. For each alternative, the sensitivity factor

of Eq. (3.16) is applied, and the node which produces the minimum value is chosen.

The sensitivity factor measures the impact of a change in the bus current injected in a

given bus k on the active power losses in the distribution system (i.e., ∂PLosses/∂IBUSk ).

For the installation size of the DG or ESS, a random number from the types of DGs or

ESSs is chosen and the sensitivity is applied.

Along the process, the neighborhood structure needs to know the physical information of the

networks in order to make the changes proposed by the criteria. This information is obtained

from the Zbus matrix as was explained in Chapter 3 (Section 3.3). After one of the criteria

of the neighborhood structure is applied, the Zbus matrix is modified to reflect the changes

made by the criterion.
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4.3.2 Modifications of the Zbus matrix to reflect changes by the

neighborhood structure

The Zbus matrix can be modified to reflect changes in the network caused by the neigh-

borhood structure without the need to build it again (see Fig. 4.3). These changes may be

the addition or removal of elements (feeders or circuits) for branch exchange, the addition

or removal of elements (DTs or circuits) for DTs location, and changes in the impedances

of elements (primary feeders, DTs, and secondary circuits) for upgrading or degrading the

capacity. These modifications are described in Chapter 3 (Section 3.2).
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Figure 4.3: Zbus modification due to neighborhood criteria.
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To calculate the new Zbus matrix produced by the neighborhood structure, the procedure is

the following. For a branch exchange, the new element is added as a link between nodes p−q

(see Fig. 4.3a), and when it is added, the procedure explained before to recalculate the Zbus

matrix is applied. After this, the element k −m of the loop formed by the adding element

p− q is removed. Between k−m there is added, in parallel, a link whose impedance is equal

to the negative of the impedance of the element k −m to be removed (see Fig. 4.3a), then

the elements of the Zbus matrix are recalculated.

In per unit representation, the DTs are treated as lines. As consequence, the procedure

described for branch exchange is the same for DTs location (adding a DT or removing a DT).

For DTs installation, the new DT is added as a link between nodes B− e (see Fig. 4.3c), and

when it is added, the procedure explained before to recalculate the Zbus matrix is applied.

After this, the circuit c − d of the loop formed by the adding element B − q is removed.

Between c− d there is added, in parallel, a link whose impedance is equal to the negative of

the impedance of the circuit c − d to be removed (see Fig. 4.3c), then the elements of the

Zbus matrix are recalculated.

For the DTs removal, the procedure is quite the same. The new secondary circuit is added

as a link between nodes c− d (see Fig. 4.3d), and when it is added, the procedure explained

before to recalculate the Zbus matrix is applied. Afterward, the existing DT B−e is removed

in order to comply radiality. Between B−e there is added, in parallel, a link whose impedance

is equal to the negative of the impedance of the circuit B − e to be removed (see Fig. 4.3d),

then the elements of the Zbus matrix are recalculated.

For upgrading or degrading the capacity of an element, the procedure is next. Between k−m

there is added, in parallel, a link whose impedance is such that the equivalent impedance of

the two elements in k−m is the desired value (see Fig. 4.3b), then the elements of the Zbus

matrix are recalculated. Eq. (3.8) gives the value of the impedance added in the link k −m

to obtain the new value of impedance from the old value.
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4.4 Evaluation of the configurations

During the procedure, the proposed configurations are evaluated using a load flow. When

the DGs are considered into the DSP problem, the load flow used is the described in Section

3.5 due the DGs are treat as PQ nodes. Nevertheless, when the ESSs are considered into the

DSP problem, it is needed an optimal power flow to determine the operation of the ESSs in

order to maximize the profit from the energy purchase and sale.

The optimal power flow (OPF) proposed in this thesis is explained next.

4.4.1 Optimal Power Flow considering DGs and ESSs

The mathematical model proposed for the optimal power flow used in this thesis is based

on the Zbus matrix. The constraints used in this OPF to represent the integration of ESSs

were explained in the DSP mathematical model considering ESSs (Section 2.3). From that

model, the Eqs. (2.28)–(2.34) are used and all the binary variables which reflect the inversion

decisions of ESSs are eliminated. In Eqs. (2.32)–(2.33) the only binary variable left is ϕNESSi,l

which represents the optimal operation of the ESSs, where if ϕNESSi,l = 0 the ESSs are

injecting power and if ϕNESSi,l = 1 the ESSs are extracting power. This variable makes

the mathematical formulation of the OPF a mixed-integer nonlinear problem. Hence, the

Eqs. (2.32)–(2.33) are linearized in the Eqs. (4.15)–(4.16) to convert the OPF model into a

nonlinear problem.

The OPF mathematical model is presented in the Eqs. (4.1)–(4.20). Per unit representation

is applied to the optimal power flow model in order to represent the MV and LV networks

as one. The Eq. (4.1) is the objective function which maximizes the utilities from the energy

purchase and sale. The set of constraints is presented in (4.2)–(4.20). Eqs. (4.2) and (4.3)

represent the active and reactive power nodal balance given by Kirchhoff’s laws for both
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networks, respectively. Eq. (4.4) represents the ZIP model in per unit representation for

demands in both networks. Eqs. (4.5) and (4.6) use Ohm’s law to calculate the real and

imaginary part of the nodal voltage using the Zbus matrix. Eqs. (4.7) and (4.8) define

the value of the voltage in the slack node in magnitude and angle. Eqs. (4.9) and (4.10)

use the Kirchhoff’s first law to calculate the real and imaginary part of the nodal currents

in substations. Eq. (4.11) is the state of charge of the ESSs, this constraint considers the

efficiency of charge and discharge of the ESSs. Eqs. (4.12) and (4.13) are the initial and final

state of charge of the ESSs. Eqs. (4.14)–(4.17) ensure that the ESSs are not extracting and

injecting power at the same time. Eq. (4.14) considers the charge and discharge power of the

ESSs as two different variables. Eqs. (4.15) and (4.16) are the operating limits of the charge

and discharge power of the ESSs. Eq. (4.18) is the capacity limits of the ESSs. Eq. (4.19) is

the operating limits of the DGs. Eq. (4.20) is the voltage limit in all nodes of both networks.

max = k1Dyear

NL∑
l=1

k3
∑
i∈ΩN

PD
i,lZIPi,l − k2l

∑
i∈ΩSS

P S
i,l

∆Tl Sbase (4.1)

s.t.

P S
i,l + PDG

i,l + PESS
i,l =PD

i,lZIPi,l + V BUS
i,l IBUSi,l cos

(
θVi,l − θIi,l

)
∀i ∈ ΩN ; ∀l ∈ ΩNL

(4.2)

QS
i,l = QD

i,lZIPi,l + V BUS
i,l IBUSi,l sin

(
θVi,l − θIi,l

)
∀i ∈ ΩN ; ∀l ∈ ΩNL (4.3)

ZIPi,l = a0 + a1V
BUS
i,l + a2

(
V BUS
i,l

)2
∀i ∈ ΩN ; ∀l ∈ ΩNL (4.4)
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V BUS
i,l cos

(
θVi,l
)

=V BUS
slack,l cos

(
θVslack,l

)
+

∑
j∈ΩN

IBUSi,l

[
RBUS
ij cos

(
θIj,l
)
−

XBUS
ij sin

(
θIj,l
)]

∀i ∈ ΩN ; ∀l ∈ ΩNL; i 6= slack

(4.5)

V BUS
i,l sin

(
θVi,l
)

=V BUS
slack,l sin

(
θVslack,l

)
+

∑
j∈ΩN

IBUSi,l

[
RBUS
ij sin

(
θIj,l
)

+

XBUS
ij cos

(
θIj,l
)]

∀i ∈ ΩN ; ∀l ∈ ΩNL; i 6= slack

(4.6)

V BUS
i,l = V p.u

ref i = slack; ∀l ∈ ΩNL (4.7)

θVi,l = θradref i = slack; ∀l ∈ ΩNL (4.8)

IBUSi,l cos
(
θIi,l
)

=
∑

ij∈ΩP F

GP
ij

[
V BUS
i,l cos

(
θVi,l
)
− V BUS

j,l cos
(
θVj,l
)]
−

BP
ij

[
V BUS
i,l sin

(
θVi,l
)
− V BUS

j,l sin
(
θVj,l
)]

∀i ∈ ΩSS; ∀l ∈ ΩNL

(4.9)

IBUSi,l sin
(
θIi,l
)

=
∑

ij∈ΩP F

BP
ij

[
V BUS
i,l cos

(
θVi,l
)
− V BUS

j,l cos
(
θVj,l
)]

+

GP
ij

[
V BUS
i,l sin

(
θVi,l
)
− V BUS

j,l sin
(
θVj,l
)]

∀i ∈ ΩSS; ∀l ∈ ΩNL

(4.10)

SoCi,l = SoCi,l−1 − φi,b
(

1
ηi,b

PESSD
i,l − ηi,bPESSC

i,l

)
∆Tl Sbase

∀i ∈ ΩB; ∀l ∈ ΩNL; ∀b ∈ ΩTESS

(4.11)
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SoCi,l = SoC0
i l = 0; ∀i ∈ ΩB (4.12)

SoCi,l = SoCF
i l = NL; ∀i ∈ ΩB (4.13)

PESS
i,l = PESSD

i,l − PESSC
i,l ∀i ∈ ΩB; ∀l ∈ ΩNL (4.14)

PESSC
i,l − PESSD

i,l ≤ Pmaxc
i,b ∀i ∈ ΩB; ∀l ∈ ΩNL; ∀b ∈ ΩTESS (4.15)

PESSD
i,l − PESSC

i,l ≤ Pmaxd
i,b ∀i ∈ ΩB; ∀l ∈ ΩNL; ∀b ∈ ΩTESS (4.16)

PESSC
i,l ≥ 0; PESSD

i,l ≥ 0 ∀i ∈ ΩB; ∀l ∈ ΩNL (4.17)

SoCmin
i ≤ SoCi,l ≤ SoCmax

i ∀i ∈ ΩB; ∀l ∈ ΩNL (4.18)

0 ≤ PDG
i,l ≤ Pmax

i,g ∀i ∈ ΩDG; ∀l ∈ ΩNL; ∀g ∈ ΩTDG (4.19)

V min
i ≤ V BUS

i,l ≤ V max
i ∀i ∈ ΩN ; ∀l ∈ ΩNL; i 6= slack (4.20)

Nonlinear problems such as the OPF presented are computational expensive in large scale
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networks. Linearization methods can reduce computational efforts but are still computational

expensive due the large amount of new constraints added. As consequence, the OPF model

proposed in Eqs. (4.1)–(4.20) is solved using a new decomposition method.

This decomposition method splits in two steps. The first step considers that the cost of the

energy purchase is bigger than the cost of the technical energy losses. Thus, the network

losses are eliminated from the model presented in Eqs. (4.1)–(4.20). The Eqs. (4.1)–(4.2) are

modified and replaced by Eqs. (4.21) and (4.22). Moreover, Eqs. (4.3)–(4.10) and (4.20) are

eliminated. With these modification the nonlinear model is converted into a linear model.

max = k1
NL∑
l=1

k3
∑
i∈ΩN

PD
i,l − k2l

∑
i∈ΩSS

P S
i,l

∆Tl Sbase (4.21)

∑
i∈ΩN

(
P S
i,l + PDG

i,l + PESS
i,l − PD

i,l

)
= 0 ∀l ∈ ΩNL (4.22)

The linear model is presented in (4.21),(4.22),(4.11)–(4.19). In this linear model, the electrical

variables and the reactive balance are removed. Eq. (4.21) is the objective function which

maximizes the utilities from the energy purchase and sale. Eq. (4.22) represents the active

power global balance given by Kirchhoff’s laws for both networks.

Objective function:

{
FObj = Eq. (4.21)

}

Subject to:

{
Eqs. (4.22), (4.11)− (4.19)

}
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The linear model results are the optimal operation of the ESSs. Afterward, the second step

uses the load flow explained in Section 3.5 to consider the network losses due the operation

of ESSs. The EESs are treated as nodes PQ. The results of this load flow are the objective

function described in Eq. (4.1) and the operative conditions of the network.

This decomposition solution method only works for feasible solutions, but this is not a prob-

lem since unfeasible solutions are not desirable.

4.4.2 Fitness Function

The load flow results are the network losses to be summed in the objective function, and the

operating limits to determine the feasible solutions. When the ESSs are considered, the load

flow result is the profit from the energy purchase and sale instead of the network losses.

The objective function is used by the solution technique in order to compare the solutions

and only feasible solutions need to be accepted. Under this premise, unfeasible solutions are

penalized in their respective objective function. The sum of the objective function plus the

penalty costs of the respective violated constraints is called the fitness function (Ffit), and is

obtained as follows.

Ffit =Eq. (2.1) + VMV fpVMV ΨVMV
+ VLV fpVLV ΨVLV

+ fpIMV ΨIMV
+ fpILV ΨILV

+

fpSMV ΨSMV
+ fpSLV ΨSLV

(4.23)

The factors fpV , fpI and fpS are associated to the penalties for violation of voltage lim-

its, and overloads in elements and sources (branches, DTs or substations). The terms with

the subscripts MV and LV refer to the primary and secondary network, respectively. These

factors are multiplied by a binary decision variable (Ψ). If any constraint is violated, this
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variable is one, otherwise it is zero. The voltages penalties are also multiplied by the magni-

tude of the voltage violated (V ). The units of these factors ensure that each term is expressed

in monetary units.

4.5 Solution technique

SA is a stochastic optimization procedure that can converge asymptotically to the optimal

global solution with probability one. A stochastic mechanism controls the transition be-

tween two successive configurations in the SA algorithm. The acceptance of new configura-

tions obeys the following criteria: topologies with decreasing objectives are always accepted,

whereas configurations with higher costs can be accepted or not with a certain probability.

The possibility of accepting solutions with an elevated cost avoids getting trapped in local

minima.

In this thesis, is proposed a specialized SA algorithm that uses the NSZM method to explore

the solution space in order to provide attractive solutions that are evaluated by the stochastic

mechanism of the SA algorithm. The pseudocode of the SA is shown in Fig. 4.4.
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SA’s pseudocode

1: begin
2: Generate the initial configuration
3: Initialize: Incumbent, T0, N0, k
4: while stop criterion is not reached do
5: for i = 1 to Nk do
6: Obtain a solution from the NSZM method
7: Evaluate objective function
8: if best solution is improved then
9: Accept best solution;

10: else
11: if exp

(
∆Fo
Tk

)
> random [0, 1] then

12: Accept worst solution;
13: else
14: Do not accept worst solution;
15: end if
16: end if
17: if solution accepted is better than the incumbent then
18: Update incumbent;
19: end if
20: end for
21: Tk+1 = αTk
22: Nk+1 = β Nk

23: k = k + 1
24: The initial solution is now the incumbent solution
25: end while
26: Print results
27: end

Figure 4.4: Pseudocode of the specialized SA.

Simulated annealing models the process of annealing in metallurgy. This technique involves

heating and controlled cooling of a material to increase the size of its crystals and reduce

their defects. Heating and cooling the material affects both the temperature and the thermo-

dynamic free energy. At a given temperature, SA sequentially moves from one configuration

to the next until thermal equilibrium is reached.
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The efficiency of the algorithm regarding both the quality of the final solutions as well as the

number of iterations will depend on the choice of the parameters of the cooling scheme.

4.5.1 Cooling scheme

The procedures used in the calculation of the parameters are based on the idea of thermal

equilibrium and are detailed below. The cooling scheme is defined by the following four

parameters.

Initial temperature T0

The initial temperature T0 is determined in such a way that the number of configurations

with higher costs that are accepted does not surpass a certain limit. If too many topologies

with elevated costs are accepted, the search space will be guided to unattractive regions.

Under this premise, the computational time would be increased, trying to return to attractive

regions. The initial temperature is calculated as follows [51]:

T0 = µ

−ln (Φ)F (x0) (4.24)

In Eq. (4.24), Φ (%/100) is the probability of accepting a solution that is worse, by a deter-

mined µ (%/100), than the objective function of the initial solution F (x0), (i.e., solutions that

are µ = 1% worse than the cost of the initial solution would be accepted with a probability

of Φ = 13%).

Number of transitions Nk at temperature Tk

The number of transitions Nk should be such that a state of thermal near-equilibrium will be

reached at a given temperature Tk. The number of transitions and the rate of change of the

44



Master’s Thesis: Solution technique

temperature between two consecutive temperature levels are closely related. This way, if the

temperature steps are too big, thermal equilibrium would be reached only with a high value

of Nk; and if the temperature steps are too small, thermal equilibrium would be reached only

with a low value of Nk. The initial number of transitions N0 can be defined as the number of

variables of the problem. To calculate the value of Nk for each temperature level, Eq. (4.25)

is applied, where β is a constant greater than or equal to one.

Nk+1 = β Nk (4.25)

Rate of change of the temperature

The rate of cooling has a direct effect on the number of iterations required at each temperature

level. Eq. (4.26) calculates the rate of change of the temperature, where α is a constant

varying between 0.8 and 0.99.

Tk+1 = αTk (4.26)

Final temperature Tf

The stopping criterion is determined in such a way that at the optimal point the expected

improvement in the objective function becomes negligible. Two stopping criteria are used:

the first one assumes a fixed number of temperature levels Tk for the cooling process (a

number between 6 and 50); and the second criterion stops when the incumbent solution is

not improved for a predefined number of temperature levels.
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4.6 General methodology

The procedure begins with the initial configuration, which is obtained as was explained in

Section 4.2. After that, the Zbus matrix is obtained for the initial configuration as was

explained in Chapter 3 (see Section 3.1). Then, the cooling scheme and incumbent are

initialized. The cooling scheme is calculated as was explained in subsection 4.5.1 to start

with the SA algorithm. The NSZM method uses the initial Zbus matrix in order to obtain a

new solution for the SA algorithm (see Section 4.3). This new configuration represented by

the Zbus matrix is evaluated using a load flow in order to determine its operative conditions.

If the DSP problem only considers DGs, the load flow explained in Section 3.5 is used, but

if the DSP problem considers DGs and ESSs, the decomposition method for the optimal

power flow explained in Subsection 4.4.1 is used. Afterward, the objective function of this

solution is determined by using the fitness function explained in Subsection 4.4.2. Then,

the stochastic mechanism of the SA algorithm controls the transition between the solutions.

The acceptance of new configurations obeys the following criteria: topologies with decreasing

objectives are always accepted, whereas configurations with higher costs can be accepted or

not with a certain probability. The possibility of accepting solutions with an elevated cost

avoids getting trapped in local minima. Then, if the solution is better than the incumbent,

the incumbent is updated. This procedure is repeated until Nk transitions are completed.

For the next temperature level, Tk and Nk are updated as was explained in subsection 4.5.1.

After a temperature level is completed, the initial Zbus matrix for the next temperature level

is the incumbent Zbus matrix. The procedure ends when the stop criterion is reached (see

subsection 4.5.1). Fig. 4.5 shows the flowchart of the proposed methodology.
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Figure 4.5: Flowchart of the proposed methodology.
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Chapter 5

Application and Results

5.1 Description of the system

To validate the proposed methodology, the real distribution system of Fig. 5.1 is used. In this

figure, existing and proposed branches are represented by solid and dashed lines respectively.

Existing and proposed substations are represented by squares. The black points are the

primary nodes, the white circles are the secondary nodes, and the white circles with a black

point inside are nodes shared by both networks. The data system is different when ESSs are

considered.

48



Master’s Thesis: Description of the system
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Figure 5.1: Integrated distribution system.

The full system database when only DGs are considered can be found in Appendix A.1, and

the full system database when DGs and ESSs are considered can be found in Appendix A.2.

The battery type used for the ESSs is Sodium-Sulfur (NaS). The efficiency and the lifetime

of this battery are ηb = 90% and 20 years, respectively [52]. The deep of discharge (DoD),

the energy capital cost, and the operation and maintenance cost (O&M) are 100%, 320

[USD/kWh], and 80 (USD/kW-year), respectively [53]. Fig. 5.2 shows the behavior of the

load and DGs curves used. The DGs curve used is a typical daily curve from a photovoltaic

generator in the andean zone. Fig. 5.2 is used when DGs and ESSs are considered together.
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Figure 5.2: Daily behavior of the load and DGs curves in pu.

5.2 Integrated DSP of both networks considering DGs

To solve this problem, the methodology explained in Chapter 4 is used. The cooling scheme

factors are 1%, 5%, 1.1, and 0.95 for µ, Φ, β, and α, respectively. The values of the penalty

factors are defined as follows. Factors fpVMV and fpVLV are equal to 1000. Factors fpIMV

and fpILV are dynamic values equivalent to the cost of the next upgraded wire times 100.

Factor fpSMV is a dynamic value equivalent to the difference between the cost of the existing

substation and the next upgraded substation, and factor fpSLV is a dynamic value equivalent

to the cost of the next upgraded DT. The two stopping criteria used are: 60 temperature

levels for the cooling process, and 15 temperature levels if the best solution found is not

improved. The test system used is shown in Fig. 5.1 and the full system database is found

in Appendix A.1.

In order to verify the efficiency of the proposed methodology in this paper, four cases are

studied: (1) integrated planning without DGs (case 2 in [5]), (2) integrated planning with
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DG in the LV network (case 3 in [5]), (3) integrated planning without DGs, considering the

copper losses in DTs, and (4) integrated planning with DG in the LV network, considering

the copper losses in DTs. The two cases analyzed in [5], do not consider the copper losses

of the DTs in the objective function since the DTs are the conflicting variables in the bilevel

approach proposed. Cases (3) and (4) consider the copper losses of the DTs in the objective

function since the methodology proposed in this thesis integrates the two networks into one.

The DGs are modeled as PQ nodes and their possible locations are based on the sensitivity

analysis explained in Subsection 3.4.1.

5.2.1 Validation of the methodology

To validate the proposed methodology, the results are compared with the ones reported in [5],

using the same design aspects than they employed. It is necessary to clarify that in [5] the

primary and secondary networks are modeled as one-single phase and three-phase models,

respectively, and in the model presented in this paper both networks (primary and secondary)

are modeled by an one-single phase representation. Therefore, before applying the proposed

methodology to the test system, an evaluation of the final configuration presented in [5] is

previously performed using the methodology proposed in this paper.

In [5] are proposed three cases of study, where case 2 is the integrated planning without

DGs. The published results for this case are 1.789, 0.337, and 0.184 (millions of dollars), for

the objective function, and costs of the energy technical losses in the MV and LV networks,

respectively. When the final configuration of case 2 in [5] is evaluated with the integrated

mathematical model proposed in this paper, the results are 1.773, 0.335, and 0.169 (millions

of dollars) for the same aspects (objective function, and the costs of the energy technical

losses in the MV and LV networks). From both results, can be seen that the error between

the two objective functions is 0.89%. These values allow to conclude that although the
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representation of both voltage levels proposed in this article is one-single phase, the results

are quite reliable and approximate to those obtained under a three-phase representation.

5.2.2 Results

The algorithm was implemented in Matlab (2017), using an Intel®Core i5-3470 8 GB RAM

PC. The CPU time for Cases 1, 2, 3 and 4 are 10160 s (2.82 h), 11451 s (3.18 h), 7806.3 s

(2.16 h) and 9732.7 s (2.70 h), respectively. The solutions for Cases 2 and 3 reported in [5]

are obtained using a bilevel integrated planning for both networks. Case 2 does not consider

DGs and Case 3 does consider DGs. The incumbent behavior for the objective function of

all cases is shown in Fig. 5.3.

A comparison of these results is shown in Tables 5.1 and 5.2 in terms of present value,

where the term ETL means the costs of the energy technical losses. Figs. B.1–B.8 show the

best solutions found for the four studied cases. To facilitate the visualization of the obtained

topologies, the primary and secondary networks of each case are presented in separate figures.

In these figures, the primary and secondary branches are represented by solid lines.

For all cases of the two networks, the number in parentheses is associated to the type of wire

for each branch; branches without a number have type 1 wire. The DTs are represented by

black triangles and their types are presented by an underlined number.

In all four cases, the existing substation was not upgraded, and a new type 1 substation was

installed. The installation nodes of the DGs and their types for Case 2 are: 23 (type 1), 38

(type 1), 43 (type 1), 88 (type 1), 95 (type 1), 103 (type 1), 110 (type 1), 130 (type 1), 131

(type 1), and 136 (type 2). For Case 4 they are: 23 (type 2), 38 (type 1), 43 (type 1), 88

(type 1), 95 (type 1), 103 (type 1), 110 (type 1), 130 (type 2), 131 (type 1), and 136 (type

2). In all cases the solutions are feasible.
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Table 5.1: Comparison of cost of expansion in millions of USD.

Cost Description
Reported in [5] Reported in this thesis

Case 1 Case 2 Case 1 Case 2

Fixed

Substations 0.336 0.336 0.336 0.336

MV feeders 0.410 0.397 0.393 0.376

LV circuits 0.255 0.254 0.283 0.270

DT 0.265 0.225 0.258 0.215

DG — 0.032 — 0.026

Total 1.267 1.246 1.270 1.223

Variable

ETL in MV 0.337 0.307 0.207 0.194

ETL in LV 0.184 0.183 0.164 0.183

Total 0.521 0.490 0.371 0.377

Total cost 1.789 1.737 1.640 1.599

The consolidated results from Table 5.1 show that the total costs found are better than those

reported in [5]. The results from Table 5.2 show that the lowest costs were obtained in Cases

2 and 4, which have a penetration of DG.
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Table 5.2: Comparison of cost of expansion in millions of USD.

Cost Description Case 1 Case 2 Case 3 Case 4

Fixed

Substations 0.336 0.336 0.336 0.336

MV feeders 0.393 0.376 0.375 0.358

LV circuits 0.283 0.270 0.283 0.271

DT 0.258 0.215 0.254 0.237

DG — 0.026 — 0.029

Total 1.270 1.223 1.248 1.231

Variable

ETL in MV 0.207 0.194 0.208 0.196

ETL in LV 0.164 0.183 0.174 0.178

ETL in DTs — — 0.178 0.129

Total 0.371 0.377 0.560 0.502

Total cost 1.640 1.599 1.808 1.733

Case 1 achieved a lower variable cost (USD 0.490 M) than that reported for Case 1 in [5]

(USD 0.521 M) using almost the same fixed cost. Under this premise, the integrated model

proposed can find a topology with lower global cost. Case 2 has lower fixed and variable

costs (1.223 and 0.377 millions of USD) than Case 2 reported in [5] (1.256 and 0.490 millions

of USD). As a consequence, the sensitivity analysis proposed for the installation of DGs is

highly recommended.

Cases 3 and 4 are more detailed because they consider the energy technical losses in the DTs.

Note that the penetration of DG in the LV network allows installing DTs, LV circuits, and

MV feeders with smaller sizes than Case 3. In addition, the energy technical losses in MV,

LV and DTs are also affected, which is reflected in the lowest operative cost.

The lower costs are obtained because the location and sizing of the DTs enhances the power
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flow circulation between both systems (MV and LV networks), which decreases the technical

losses and the investment costs in the elements of both networks. For all cases, the solutions

found have different topologies.
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Figure 5.3: Incumbent behavior for the four cases in millions of USD.
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5.3 Integrated DSP of both networks considering DGs

and ESSs

To solve this problem, the methodology explained in Chapter 4 is used. The cooling scheme

factors are 0.5%, 2.365%, 1.1, and 0.95 for µ, Φ, β, and α, respectively. The values of the

penalty factors are defined as follows. Factors fpVMV and fpVLV are equal to 660000. Factors

fpIMV and fpILV are equivalent to the cost of the current wire times 10000. Factor fpSMV is

a dynamic value equivalent to the difference between the cost of the existing substation and

the next upgraded substation, and factor fpSLV is a dynamic value equivalent to the cost

of the current DT times 60000. The two stopping criteria used are: 60 temperature levels

for the cooling process, and 15 temperature levels if the best solution found is not improved.

The test system used is shown in Fig. 5.1 and the full system database is found in Appendix

A.2. The sensitivity factor of the Eq. (3.16) is used to reduce the candidate nodes for the

ESSs installation. The reduced candidate nodes obtained by using this sensitivity factor are

shown in Table 5.3.

Table 5.3: Candidate nodes for installing ESSs in the LV and MV networks.
Network Nodes

LV
129, 111, 109, 127, 130, 113, 30, 11,

132, 135, 137, 116, 8, 106, 48

MV
157, 139, 158, 168, 109, 142, 104, 156,

106, 159, 111, 169, 146, 160, 151

In order to analyze the benefits of the integration of the ESSs into the DSP problem, the

following five cases are studied. Case (A) is the integrated planning without DGs and ESSs.

Cases (B) and (C) are: (B) integrated planning with DGs and ESSs in the LV network and

(C) integrated planning with DGs in the LV network and ESSs in the MV network. These
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two cases consider the losses of the ESSs due the efficiency (ηb = 90%). Cases (D) and (E) are

the same as (B) and (C) but these cases do not consider the losses of the ESSs (ηb = 100%).

5.3.1 Validation of the decomposition method

To validate the proposed decomposition method used to solve the OPF considering DGs and

ESSs, the test system of Figs. 5.4 and 5.5 is used. The decomposition method is compared

with the nonlinear model presented in Subsection 4.4.1. The database of the system is

presented in Appendix A.2.
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Figure 5.4: Primary Network of the test system.
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Figure 5.5: Secondary Network of the test system.

The Table 5.4 shows the comparison between both methods. Case (I) do not considered

DGs and ESSs. Five cases are used in order to compared the efficiency of the decomposition

method. Case (II) has the next DGs and ESSs nodes: 6 (type 4), 43 (type 3), 54 (type 2),

103 (type 4), 110 (type 4), and 131 (type 3) are nodes with DGs; and 111 (type 4), 127 (type

3), 113 (type 4), 11 (type 4), 116 (type 1), and 48 (type 4) are nodes with ESSs. Case (III)

has the next DGs and ESSs nodes: 23 (type 1), 38 (type 2), 62 (type 3), 71 (type 3), 95 (type

4), 103 (type 4), 130 (type 3), and 131 (type 2) are nodes with DGs; and 139 (type 4), 109

(type 4), 104 (type 3), 106 (type 1), 169 (type 1), 146 (type 1), and 151 (type 2) are nodes

with ESSs. Cases (II) and (III) consider the losses of the ESSs due the efficiency (ηb = 90%).

Case (IV) has the next DGs and ESSs nodes: 6 (type 3), 43 (type 4), 54 (type 1), 88 (type

2), 117 (type 3), and 136 (type 4) are nodes with DGs; and 111 (type 3), 127 (type 4), 30

(type 2), 11 (type 4), 137 (type 3), and 48 (type 3) are nodes with ESSs. Case (V) has the
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next DGs and ESSs nodes: 6 (type 2), 23 (type 2), 38 (type 4), 62 (type 2), 71 (type 3), 95

(type 1), 103 (type 3), 130 (type 4), and 131 (type 1) are nodes with DGs; and 168 (type

3), 142 (type 2), 104 (type 3), 106 (type 3), 111 (type 2), 146 (type 1), and 160 (type 3) are

nodes with ESSs. Cases (IV) and (V) do not consider the losses of the ESSs (ηb = 100%).

Table 5.4: Comparison of the objective functions for the five cases in millions of USD.
Case I Case II Case III Case IV Case V

decomposition OF 13.6169 16.1772 16.0903 16.3539 16.5507

method CPU time [s] 0.1092 1.0393 0.8212 0.3296 0.3388

nonlinear OF 13.6175 16.1773 16.0898 16.3543 16.5507

model CPU time [s] 59.5858 1014.9358 375.7602 2513.6399 541.5253

Error between
0.0043 0.0003 0.0032 0.0025 0.0003

the OFs [%]

The two methods were implemented using an interface between Matlab (2017b) and GAMS

(24.5.4) and an Intel®Core i5-4460S 12 GB RAM PC. The solvers CPLEX and KNITRO

were used for the linear and nonlinear model, respectively. The results from Table 5.4 verify

the efficiency of the proposed decomposition method. Table 5.4 shows that the computational

effort is reduced with the decomposition method and the objective function results are the

same. Thus, the results obtained show that the decomposition method achieves the optimal

solution in less time.

5.3.2 Results

The algorithm was implemented using an interface between Matlab (2017b) and GAMS

(24.5.4) and an Intel®Core i5-4460S 12 GB RAM PC. The solver CPLEX is used to solve the

linear problem of the decomposition method. The CPU time for Cases A, B, C, D and E are
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7999.87 s (2.22 h), 212339.99 s (58.98 h), 210917.60 s (58.59 h), 203203.75 s (56.45 h), and

200664.16 s (55.74 h), respectively. It is to be expected that these times could be reduced if

a production-grade routine such as C++ is applied and a better optimization tool interface

is implemented. In any case, planning studies do not require real-time simulations, thus the

above timings are considered adequate. The incumbent behavior for the objective function

of all cases is shown in Fig. 5.7.

A comparison of these results is shown in Table 5.5 in terms of present value, where the term

ETL means the costs of the energy technical losses. Figs. B.9–B.18 show the best solutions

found for the five studied cases. To facilitate the visualization of the obtained topologies,

the primary and secondary networks of each case are presented in separate figures. In these

figures, the primary and secondary branches are represented by solid lines.

For all cases of the two networks, the number in parentheses is associated to the type of wire

for each branch; branches without a number have type 1 wire. The DTs are represented by

black triangles and their types are presented by an underlined number.

In all five cases, the existing substation was not upgraded, and a new type 1 substation was

installed. For all the cases, new DGs and ESSs type 4 were installed in all the candidate

nodes. In all cases the solutions are feasible. For all cases, the solutions found have different

topologies.
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Table 5.5: Comparison of the cost and profit in millions of USD.
Cost Description Case A Case B Case C Case D Case E

Fixed

Substations 0.336 0.336 0.336 0.336 0.336

MV feeders 0.574 0.571 0.543 0.568 0.539

LV circuits 0.411 0.512 0.512 0.507 0.514

DT 0.341 0.324 0.284 0.325 0.280

DG — 0.094 0.094 0.094 0.094

ESS — 1.920 1.920 1.920 1.920

O&M of the ESS — 1.362 1.362 1.362 1.362

Total cost 1.662 5.119 5.051 5.112 5.044

Variable

ETL in MV, LV
0.730 0.725 0.739 0.746 0.738

and DTs

ETL in ESSs — 1.064 1.064 0.000 0.000

Energy purchase 85.563 78.136 77.998 76.982 76.810

Energy sale 99.167 99.273 99.166 99.285 99.165

Profit 13.604 21.138 21.168 22.303 22.355

Total profit 11.943 16.019 16.117 17.191 17.310

Case A shows that the only way to maximize the profit from the energy purchase and sale

when no DGs and ESSs are considered is minimizing the costs of the energy technical losses

in the network and the inversion costs. Thus, the objective value obtained is (USD 11.943

M). Cases B and C show that incorporating DGs and ESSs into the DSP problem improve

the profit from the energy purchase and sale but increase the inversion costs. Nevertheless,

the objective functions obtained (16.019 and 16.117 millions of USD) show that integrate

these elements is desirable. These Cases also show that is better to include the ESSs into

the MV network rather than the LV network. Cases D and E show the same behavior than

Cases B and C even if the losses of the ESSs are not considered. If the ESSs had not losses,
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the profit would have improved (17.191 and 17.310 millions of USD).

Despite the Case B is the only one who improved the costs of the energy technical losses

from the reference Case A, the objective functions of the rest of cases are better than Case

B. Moreover, the costs of the energy technical losses for Cases C, D and E are just a little

bit bigger than Case A.
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Figure 5.6: Comparison of the generated power by the substations for the five cases.
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Figure 5.7: Incumbent behavior for the five cases in millions of USD.
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Fig. 5.6 shows the behavior of the power generated by the substations and compares the

Cases B, C, D, and E which have DGs and ESSs with Case A which has not. Figs. 5.6a–5.6d

show that for Cases B, C, D, and E the load curve is modified due DGs and ESSs and that

the new peak hour is moved at the hour 22. Figs. 5.6a and 5.6b show that the behavior of the

load curve seems to be the same but is different from Figs. 5.6c and 5.6d. As consequence,

it is shown that the losses of the ESSs impact the load curve behavior in order to maximize

the profit from the energy purchase and sale. Figs. 5.6c and 5.6d show that the behavior of

the load curve seems to be the same. Although the behavior seems to be the same for these

cases the values are a little bit different due the losses of the network.

When no DGs and ESSs are considered in Case A, the peak hour is presented at the hour

20 with a power value of 10.499 MW. When DGs and ESSs are considered in Cases B, C,

D, and E this peak value is reduced to 8.508 MW, 8.488 MW, 8.509 MW, and 8.488 MW,

respectively. Due this value is reduced, a new peak hour is presented at the hour 22 in Cases

B, C, D, and E with a power value of 8.688 MW, 8.682 MW, 8.689 MW, and 8.682 MW,

respectively. In order to measure the efficiency of electrical energy usage due the DGs and

ESSs the load factor for all cases is calculated. For Cases A, B, C, D, and E the load factor

obtained is 0.638, 0.713, 0.712, 0.703, and 0.702, respectively. As consequence, the increase

in this value shows that the integration of ESSs and DGs into the DSP problem is desirable.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

This thesis has presented a new methodology which uses a simulated annealing algorithm

with a novel neighborhood search method based on the Zbus matrix (NSZM) for the optimal

integrated planning of medium and low voltage distribution systems considering distributed

generation (DG) and energy storage systems (ESSs). The NSZM method uses a defined

neighborhood structure combined with sensitivity factors based on the Zbus matrix in or-

der to find attractive solutions in quick times for the simulated annealing algorithm. The

methodology has been validated and tested using a real distribution system of the literature.

The results obtained with the proposed methodology are better than the reported in the lit-

erature. As consequence, it is demonstrated that the use of a defined neighborhood structure

combined with sensitivity factors based on the Zbus matrix for exploring the solution space

for a metaheuristic algorithm leads to good quality solutions in relative quick times.

In this thesis, the distribution system planning (DSP) problem of primary and secondary

networks was studied with and without DGs. When DGs are considered in the DSP problem,
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it has been demonstrated that a reduction in investment and operative costs is achieved.

Furthermore, the results obtained with the proposed sensitivity analysis based on the Zbus

matrix for solving the allocation and sizing of DGs are better than the reported in the

literature. Therefore, it is demonstrated that the use of the Zbus matrix in the analysis of

the impact of DGs in the technical losses of both networks is desirable to solve the DSP

problem considering DGs.

After this, the DSP problem of primary and secondary networks was studied with and without

DGs and ESSs. When DGs and ESSs are considered in the DSP problem, it has been

demonstrated that the efficiency of electrical energy usage is improved and the profits from

the energy purchase and sale are increased. The results obtained show that it is better to

include ESSs into the MV network rather than into the LV network. Moreover, the results

show that the decomposition method used for the optimal operation of the ESSs comes to

the optimal solution. Hence, the robustness and effectiveness of the methodology proposed

to solve the DSP problem considering DGs and ESSs is verified.

The Zbus matrix is a mathematical model which establishes an electrical relation between

the primary and secondary nodes. Therefore, a change in one network is reflected in the

electrical characteristics of the other one. Under this premise, the Zbus matrix is used in

the methodology proposed in this thesis to solve the integrated DSP problem of primary and

secondary networks, and its validity has been demonstrated when the results are compared

with those reported in the literature.

6.2 Future Work

From the attained results and the drawbacks found along the process, the following topics

could be explored.
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• Regarding the proposed methodology based on the Zbus matrix, the employment of a

three-phase model for the primary and secondary networks.

• Regarding the proposed methodology considering DGs, the employment of different

technologies for DGs and the analysis of the conflict when the utility is not the owner

of the DGs.

• Regarding the proposed methodology considering DGs and ESSs, the integration of

electric vehicles into the DSP problem considering different scenarios is desirable.

• A more efficient implementation could be developed. The usage of a different meta-

heuristic combined with the NSZM method to improve the solutions and reduce pro-

cessing time. Furthermore, these times could be reduced if a production-grade routine

such as C++ is applied and a better optimization tool interface is implemented.
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Appendix A

Data Systems

A.1 Data of the distribution system

The real distribution system of Fig. 5.1 is proposed in [5]. This distribution system integrates

the primary and secondary networks. The primary distribution network has 48 existing nodes,

1 existing substation (type 2) and 51 existing feeders (type 1). To supply the new power

demand, 60 new feeders and 1 new substation can be installed. In order to supply the 138

new secondary demand nodes, there are proposed 33 new DTs, 15 new DGs, and 147 new

secondary circuits. Additionally, 5 types of substations, 6 types of wires for primary and

secondary, 8 types of DTs, and 4 types of DGs are considered.

The nominal voltage of this system is 13.2 kV (line to line) for the primary network and

440 V (line to neutral) for the secondary network. The maximum voltage regulation for the

primary and secondary systems is 10%. The planning horizon is 20 years. The load duration

curve is discretized in three load levels: 100%, 60%, and 30% of peak demand, with durations

of 1000, 6760, and 1000 h respectively. The ZIP load model coefficients are a0 = 0.2 and

a2 = 0.8. The discount rate is 10% and the energy cost is 0.15 USD/kWh. The full system

76



Master’s Thesis: Data of the distribution system

database can be also find in [?].

The candidate nodes for the installation of DTs and DGs are presented in Table A.1.

Table A.1: Candidate nodes for installing DTs and DGs.
Element Nodes

DT

2, 8, 11, 16, 30, 33, 37, 45, 48, 51, 56, 59, 64,

80, 83, 87, 91, 94, 97, 104, 106, 109, 111, 113,

116, 118, 122, 124, 127, 129, 132, 135, 137

DG 6, 23, 38, 43, 54, 62, 71, 88, 95, 103, 110, 117, 130, 131, 136

Table A.2: Information of the wires used in the distribution system.
MV Network LV Network

Type
R X

Amp USD/m
R X

Amp USD/m
[ohm/km] [ohm/km] [ohm/km] [ohm/km]

1 0.52 0.22 205 26 1.04 0.45 150 14

2 0.32 0.14 275 40 0.65 0.28 180 20

3 0.26 0.12 305 47 0.52 0.22 205 26

4 0.18 0.1 390 57 0.32 0.14 275 40

5 0.14 0.08 460 64 0.26 0.12 305 47

6 0.12 0.07 600 72 0.18 0.1 390 57

77



Master’s Thesis: Data of the distribution system

Table A.3: Upgrading costs of the wires in [USD/m].
MV Network LV Network

Type 1 2 3 4 5 6 1 2 3 4 5 6

1 0 10 19 26 36 43 0 4 10 22 31 38

2 — 0 5 12 22 29 — 0 4 16 25 32

3 — — 0 5 15 22 — — 0 10 19 26

4 — — — 0 5 12 — — — 0 5 12

5 — — — — 0 5 — — — — 0 5

6 — — — — — 0 — — — — — 0

Table A.4: Elements information.
Substations DTs DGs

Type kVA USD
R HV X HV

kVA USD kW USD
[ohm] [ohm]

1 7000 336000 99.704 142.894 30 3177.57 50 2500

2 10000 672000 61.0916 98.7976 45 3953.07 75 3750

3 20000 1344000 33.7638 73.9706 75 5502.69 100 5000

4 30000 2016000 21.2014 49.89 112.5 7439.72 125 6250

5 40000 2688000 15.1782 43.915 150 9376.74 — —

6 — — 9.9467 29.3356 225 11053.72 — —

7 — — 7.1148 25.149 300 16806 — —

8 — — 5.151 18.9131 400 22408 — —

Table A.5: Information of the circuits of the LV network.
From To km Existing From To km Existing

1 2 0.1440 0 27 28 0.1824 0

2 3 0.1440 0 28 18 0.1800 0
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Table A.5 continued from previous page.

From To km Existing From To km Existing

2 4 0.1344 0 18 39 0.1440 0

2 5 0.1440 0 3 29 0.1440 0

5 6 0.1056 0 29 30 0.1560 0

5 7 0.1632 0 30 31 0.1920 0

7 8 0.1440 0 31 32 0.1248 0

8 9 0.1560 0 32 33 0.1632 0

9 10 0.1440 0 33 24 0.1800 0

10 11 0.1800 0 33 34 0.1378 0

11 12 0.1800 0 34 35 0.1800 0

12 13 0.1800 0 35 36 0.1195 0

13 14 0.1800 0 36 37 0.1800 0

14 15 0.1800 0 37 38 0.1920 0

15 16 0.1800 0 38 39 0.1800 0

16 17 0.1440 0 38 40 0.1440 0

18 17 0.1008 0 3 41 0.1440 0

4 19 0.1056 0 41 42 0.1584 0

19 20 0.0864 0 42 43 0.1560 0

20 21 0.0173 0 42 44 0.1560 0

21 22 0.1344 0 44 45 0.1008 0

22 23 0.1800 0 45 46 0.1522 0

23 24 0.1800 0 46 47 0.1848 0

23 25 0.1800 0 47 48 0.1800 0

25 26 0.1608 0 48 49 0.1440 0

26 27 0.1800 0 49 50 0.1800 0

50 51 0.1728 0 73 74 0.1800 0

79



Master’s Thesis: Data of the distribution system

Table A.5 continued from previous page.

From To km Existing From To km Existing

51 52 0.1440 0 74 75 0.1824 0

52 53 0.1440 0 75 76 0.1800 0

54 53 0.1800 0 76 78 0.1440 0

40 54 0.1440 0 38 79 0.1440 0

18 66 0.1344 0 79 80 0.1560 0

16 55 0.1632 0 80 81 0.1920 0

55 56 0.1440 0 81 82 0.1248 0

56 57 0.1560 0 82 83 0.1632 0

57 58 0.1440 0 83 77 0.1800 0

58 59 0.1800 0 83 84 0.1378 0

59 60 0.1800 0 84 85 0.1800 0

60 61 0.1800 0 85 86 0.1195 0

61 62 0.1800 0 86 87 0.1800 0

62 63 0.1800 0 87 88 0.1920 0

63 64 0.1800 0 88 78 0.1800 0

64 65 0.1440 0 88 89 0.1440 0

76 65 0.1008 0 54 90 0.1560 0

66 67 0.1056 0 90 91 0.1008 0

67 68 0.0864 0 91 92 0.1522 0

68 69 0.0173 0 92 93 0.1848 0

69 70 0.1344 0 93 94 0.1800 0

70 71 0.1800 0 94 95 0.1440 0

71 77 0.1800 0 95 96 0.1800 0

71 72 0.1800 0 96 97 0.1728 0

72 73 0.1608 0 97 98 0.1440 0
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Table A.5 continued from previous page.

From To km Existing From To km Existing

98 99 0.1440 0 119 120 0.1080 0

100 99 0.1800 0 120 121 0.1080 0

89 100 0.1440 0 121 122 0.1080 0

101 102 0.1080 0 122 123 0.1620 0

102 103 0.1080 0 123 124 0.1620 0

103 104 0.1080 0 124 125 0.1620 0

104 105 0.1620 0 125 126 0.1620 0

105 106 0.1620 0 126 127 0.1620 0

106 107 0.1620 0 127 128 0.1080 0

107 108 0.1620 0 128 129 0.1080 0

108 109 0.1620 0 129 130 0.1080 0

109 110 0.1080 0 130 113 0.1080 0

110 111 0.1080 0 127 131 0.1080 0

111 112 0.1080 0 131 132 0.1080 0

112 113 0.1080 0 132 133 0.1620 0

113 114 0.1620 0 133 134 0.1620 0

114 115 0.1620 0 134 135 0.1620 0

115 116 0.1620 0 135 136 0.1620 0

116 117 0.1620 0 136 137 0.1620 0

117 118 0.1620 0 137 138 0.1080 0

118 101 0.1080 0 138 122 0.1080 0

118 119 0.1080 0 — — — —
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Table A.6: Information of the feeders of the MV network.
From To km Existing From To km Existing

SS1 139 0.226404 1 16 18 0.2448000 0

139 140 0.226404 1 64 76 0.2448000 0

140 141 0.153672 1 2 23 0.6580800 0

141 142 0.288000 1 23 18 0.8832000 0

142 143 0.153672 1 18 71 0.6580800 0

140 144 0.258480 1 71 76 0.8832000 0

144 145 0.153672 1 2 3 0.1440000 0

145 146 0.096000 1 23 33 0.3600000 0

146 147 0.360000 1 18 38 0.3240000 0

146 148 0.153672 1 71 83 0.3600000 0

148 149 0.307344 1 76 88 0.3240000 0

149 150 0.153672 1 3 30 0.3000000 0

150 151 0.312000 1 30 33 0.4800000 0

150 152 0.192000 1 33 37 0.6172800 0

152 153 0.307344 1 37 38 0.1920000 0

153 154 0.288000 1 38 80 0.3000000 0

154 155 0.153672 1 80 83 0.4800000 0

155 156 0.192000 1 83 87 0.6172800 0

SS1 157 0.258480 1 87 88 0.1920000 0

157 158 0.258480 1 3 42 0.3024000 0

158 159 0.258480 1 38 54 0.2880000 0

159 160 0.258480 1 88 100 0.2880000 0

160 161 0.153672 1 42 45 0.2568000 0

161 162 0.153672 1 45 48 0.5169600 0

162 163 0.240000 1 48 51 0.4968000 0
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Table A.6 continued from previous page.

From To km Existing From To km Existing

163 164 0.226404 1 51 54 0.4680000 0

163 165 0.120000 1 54 91 0.2568000 0

165 166 0.360000 1 91 94 0.5169600 0

166 167 0.360000 1 94 97 0.4968000 0

SS1 168 0.240000 1 97 100 0.4680000 0

168 169 0.240000 1 94 183 0.2300000 0

169 170 0.374880 1 100 176 0.2100000 0

170 171 0.258480 1 88 167 0.4699636 0

171 172 0.096000 1 76 164 0.4516364 0

172 173 0.153672 1 64 147 0.4254545 0

172 174 0.258480 1 104 106 0.3236763 0

174 175 0.120000 1 106 109 0.4855145 0

175 176 0.192000 1 109 111 0.2157842 0

176 177 0.153672 1 111 113 0.2157842 0

177 178 0.192000 1 113 116 0.4855145 0

178 179 0.096000 1 116 118 0.3236763 0

179 180 0.120000 1 118 104 0.4315684 0

180 181 0.153672 1 118 122 0.4315684 0

181 182 0.153672 1 122 124 0.3236763 0

182 183 0.096000 1 124 127 0.4855145 0

183 184 0.120000 1 127 129 0.2157842 0

184 185 0.120000 1 129 113 0.2157842 0

185 186 0.153672 1 127 132 0.2157842 0

SS2 8 0.340000 0 132 135 0.4855145 0

5 8 0.307200 0 135 137 0.3236763 0
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Table A.6 continued from previous page.

From To km Existing From To km Existing

5 2 0.144000 0 137 122 0.2157842 0

8 11 0.480000 0 156 132 0.1000000 0

11 16 0.900000 0 153 135 0.3400000 0

16 56 0.307200 0 152 137 0.3490909 0

56 59 0.480000 0 SS2 109 0.2500000 0

59 64 0.900000 0 — — — —

Table A.7: Nodal information of the LV network.
Node kVA Existing Node kVA Existing

1 0.8550 0 70 3.5900 0

2 8.7300 0 71 5.4400 0

3 17.1675 0 72 8.2900 0

4 8.7300 0 73 9.9100 0

5 23.4675 0 74 9.9100 0

6 7.9650 0 75 6.6700 0

7 29.2950 0 76 0.1900 0

8 43.5150 0 77 0.1900 0

9 43.5150 0 78 6.6700 0

10 43.5150 0 79 5.4400 0

11 57.7350 0 80 35.7750 0

12 43.5150 0 81 5.4400 0

13 43.5150 0 82 5.4400 0

14 32.4225 0 83 5.4400 0

15 43.0875 0 84 9.9100 0

16 29.2950 0 85 9.9100 0

17 0.8550 0 86 9.9100 0
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Table A.7 continued from previous page.

Node kVA Existing Node kVA Existing

18 0.8550 0 87 9.2900 0

19 24.4800 0 88 8.8900 0

20 24.4800 0 89 1.8100 0

21 24.4800 0 90 1.7700 0

22 16.1550 0 91 8.0900 0

23 24.4800 0 92 9.6700 0

24 0.8550 0 93 9.6700 0

25 37.3050 0 94 12.8300 0

26 44.5950 0 95 9.6700 0

27 44.5950 0 96 9.6700 0

28 30.0150 0 97 9.6700 0

29 24.4800 0 98 5.2150 0

30 160.9875 0 99 4.9300 0

31 24.4800 0 100 0.1900 0

32 24.4800 0 101 15.4700 0

33 24.4800 0 102 17.2800 0

34 44.5950 0 103 22.6600 0

35 44.5950 0 104 17.2800 0

36 44.5950 0 105 30.9700 0

37 41.8050 0 106 15.4700 0

38 40.0050 0 107 38.6700 0

39 30.0150 0 108 57.4300 0

40 8.1450 0 109 57.4300 0

41 36.4050 0 110 57.4300 0

42 22.1850 0 111 76.2100 0
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Table A.7 continued from previous page.

Node kVA Existing Node kVA Existing

43 7.9650 0 112 57.4300 0

44 7.9650 0 113 57.4300 0

45 36.4050 0 114 42.8000 0

46 43.5150 0 115 56.8700 0

47 43.5150 0 116 38.6700 0

48 57.7350 0 117 15.4700 0

49 43.5150 0 118 15.4700 0

50 43.5150 0 119 32.3200 0

51 43.5150 0 120 32.3200 0

52 23.4675 0 121 32.3200 0

53 22.1850 0 122 21.3300 0

54 0.8550 0 123 32.3200 0

55 6.5100 0 124 15.4700 0

56 9.6700 0 125 49.2500 0

57 9.6700 0 126 58.8700 0

58 9.6700 0 127 58.8700 0

59 12.8300 0 128 39.6200 0

60 9.6700 0 129 32.3200 0

61 9.6700 0 130 212.5000 0

62 7.2050 0 131 32.3200 0

63 9.5750 0 132 32.3200 0

64 6.5100 0 133 32.3200 0

65 0.1900 0 134 58.8700 0

66 1.9400 0 135 58.8700 0

67 5.4400 0 136 58.8700 0
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Table A.7 continued from previous page.

Node kVA Existing Node kVA Existing

68 5.4400 0 137 55.1900 0

69 5.4400 0 138 52.8100 0

Table A.8: Nodal information of the MV network.
Node kVA Existing Node kVA Existing

139 387.197 1 186 121.994 1

140 121.994 1 5 0 0

141 73.479 1 23 0 0

142 387.197 1 18 0 0

143 121.994 1 71 0 0

144 18.370 1 76 0 0

145 73.479 1 3 0 0

146 387.197 1 38 0 0

147 293.911 1 88 0 0

148 18.370 1 42 0 0

149 121.994 1 54 0 0

150 73.479 1 100 0 0

151 387.197 1 2 0 0

152 293.911 1 8 0 0

153 121.994 1 11 0 0

154 18.370 1 16 0 0

155 73.479 1 30 0 0

156 387.197 1 33 0 0

157 121.994 1 37 0 0

158 387.197 1 45 0 0

159 73.479 1 48 0 0
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Table A.8 continued from previous page.

Node kVA Existing Node kVA Existing

160 18.370 1 51 0 0

161 121.994 1 56 0 0

162 18.370 1 59 0 0

163 121.994 1 64 0 0

164 293.911 1 80 0 0

165 18.370 1 83 0 0

166 293.911 1 87 0 0

167 387.197 1 91 0 0

168 121.994 1 94 0 0

169 293.911 1 97 0 0

170 18.370 1 104 0 0

171 73.479 1 106 0 0

172 387.197 1 109 0 0

173 121.994 1 111 0 0

174 387.197 1 113 0 0

175 18.370 1 116 0 0

176 73.479 1 118 0 0

177 387.197 1 122 0 0

178 121.994 1 124 0 0

179 73.479 1 127 0 0

180 18.370 1 129 0 0

181 73.479 1 132 0 0

182 73.479 1 135 0 0

183 18.370 1 137 0 0

184 73.479 1 SS1 0 1
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Table A.8 continued from previous page.

Node kVA Existing Node kVA Existing

185 387.197 1 SS2 0 0

A.2 Data of the modified distribution system

Some data of the real distribution system of Fig. 5.1 proposed in Appendix A.1 is modified

and added in order to incorporated the ESSs.

The nominal voltage of this system is 13.2 kV (line to line) for the primary network and

440 V (line to line) for the secondary network. The maximum voltage regulation for the

primary and secondary systems is 10%. The planning horizon is 20 years. The ZIP load

model coefficients are a0 = 0.2 and a2 = 0.8. The discount rate is 10%. The energy sale cost

is 0.2 USD/kWh. The Tables A.1–A.8 show the rest of the database system.

Table A.9: Load and DG curves information.

Load level [l] Load curve [pu]
Energy purchase

DG curve [pu]
cost [USD/kWh]

1 0.489130 0.084 0.0002

2 0.423913 0.080 0.0002

3 0.423913 0.080 0.0002

4 0.402174 0.075 0.0002

5 0.402174 0.075 0.0002

6 0.402174 0.075 0.0400

7 0.500000 0.085 0.0800

8 0.521739 0.090 0.0800

9 0.608696 0.105 0.1600
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Table A.9 continued from previous page

Load level [l] Load curve [pu]
Energy purchase

DG curve [pu]
cost [USD/kWh]

10 0.652174 0.135 0.4000

11 0.673913 0.145 0.7200

12 0.717391 0.185 1.0000

13 0.717391 0.185 0.6000

14 0.652174 0.135 0.2400

15 0.630435 0.125 0.1200

16 0.608696 0.105 0.0800

17 0.586957 0.098 0.0800

18 0.695652 0.175 0.0800

19 0.978261 0.305 0.0003

20 1.000000 0.325 0.0003

21 0.934783 0.285 0.0003

22 0.869565 0.275 0.0003

23 0.826087 0.265 0.0003

24 0.543478 0.100 0.0003

Table A.10: ESS information.

Type
Capacity

kW USD
O&M

fx
b φb

[kWh] [USD/year] [%/kWh]

1 100 33.333 32000 2666.667 1.000

2 200 66.667 64000 5333.333 0.500

3 300 100 96000 8000.000 0.333

4 400 133.333 128000 10666.667 0.250

90



Appendix B

Final configurations of primary and

secondary networks

B.1 Integrated DSP considering DGs
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Figure B.1: Case 1 - Primary Network.
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Figure B.2: Case 1 - Secondary Networks.
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Figure B.3: Case 2 - Primary Network.
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Figure B.4: Case 2 - Secondary Networks.
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Figure B.5: Case 3 - Primary Network.
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Figure B.6: Case 3 - Secondary Networks.
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Figure B.7: Case 4 - Primary Network.
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Figure B.8: Case 4 - Secondary Networks.
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B.2 Integrated DSP considering DGs and ESSs
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Figure B.9: Case A - Primary Network.
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Figure B.10: Case A - Secondary Networks.
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Figure B.11: Case B - Primary Network.
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Figure B.12: Case B - Secondary Networks.
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Figure B.13: Case C - Primary Network.
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Figure B.14: Case C - Secondary Networks.
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Figure B.15: Case D - Primary Network.
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Figure B.16: Case D - Secondary Networks.
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Figure B.17: Case E - Primary Network.
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Figure B.18: Case E - Secondary Networks.
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