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Abstract
To a given numerical semigroup S we associate a family of subsemigroups {�nS} , 
n ∈ ℕ , that permits us to understand some of the structure of S. We characterize this 
family in case S is a supersymmetric numerical semigroup or S has maximal embed-
ding dimension. We also prove some properties related to embedding dimension and 
certain symmetry of the minimal generating set of the members of this family.

Keywords  Numerical semigroup · Supersymmetric · Maximal embedding 
dimension · Minimal generating set

1  Introduction

A numerical semigroup is a subset S of the set of natural numbers ℕ such that S is closed 
under the sum, 0 ∈ S , and ℕ∖S is a finite set. If S is a numerical semigroup, then S is 
finitely generated, that is, there are a1, a2,… , ar ∈ S such that every element in S can 
be written in the form 

∑r

i=1
ciai where ci ∈ ℕ , i = 1, 2,… , r . The subset S∗�(S∗ + S∗) 

of S has the properties that it is finite, generates S and every generating set of S contains 
it. We call the set S∗�(S∗ + S∗) the minimal generating set of S, and we will denote 
it by �(S) . The cardinality of �(S) is called the embedding dimension of S and it is 
denoted by e(S); the least positive integer belonging to S is called the multiplicity of 
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S, and it is denoted by m(S). It is known that m(S) = min �(S) and e(S) ≤ m(S) . When 
e(S) = m(S) , we say that S has maximal embedding dimension. If S ≠ ℕ , the maximum 
element in ℕ∖S is called the Frobenius number of S, and it is denoted by F(S); and the 
cardinality of ℕ∖S is the genus of S, which is denoted by g(S). If n ∈ S�{0} , the Apéry  
set of n in S, denoted by A(S; n), is defined as follows

The Apéry set of n in S has the following properties (see [1, 3]): 

1.	 |A(S;n)| = n.
2.	 Every element in S can be written uniquely in the form an + w , where a ∈ ℕ and 

w ∈ A(S;n) . Thus, the set 
[
A(S;n)�{0}

]
∪ {n} generates S.

Now we introduce some terminology in order to understand the main results of this 
paper. For a numerical semigroup S, the elements of �(S) are not expressible as a sum 
of two nonzero elements of S, but any other nonzero element of S can be represented 
as a sum of at least two elements in �(S) . Note that the set S��(S) is a numerical semi-
group contained in S. We denote this numerical semigroup by �S . We observe that the 
elements in �(�S) are precisely the nonzero elements in S that are expressible as a sum 
of at least two nonzero elements of S, but that are not a sum of two elements in �S . 
Note that the elements in �(�S) cannot be written as a sum of 4 nonzero elements of 
S, but they can be written as a sum of 2 or 3 nonzero elements of S. We can consider 
the numerical semigroup �2S ∶= �S��(�S) , its minimal generating set �(�2S) and note 
that elements in �(�2S) cannot be expressed as a sum of 8 nonzero elements of S nor as 
a sum of less than 4 nonzero elements of S. Actually, we define recursively a family of 
numerical semigroups {�nS}n∈ℕ , as follows: 

1.	 �0S = S , and
2.	 �n+1S = �(�nS) , for n ∈ ℕ.

This family of numerical semigroups {�nS}n∈ℕ and the family of minimal generating 
sets {�(�nS)}n∈ℕ can help us to understand some of the structure of the numerical semi-
group S. We see that the set �(�nS) is formed by those nonzero elements of S that are 
not expressible as a sum of fewer than 2n nonzero elements of S nor as a sum of at least 
2n+1 nonzero elements of S. However, the semigroup �nS acquires properties that S may 
not have, as n increases. We explain precisely what this means. Let P be a property of 
numerical semigroups. We will say that the property P eventually appears in S if there 
exists n0 ∈ ℕ such that �nS has the property P , for all n ≥ n0 . In general, one would 
like to prove that for a given property P of numerical semigroups and any numerical 
semigroup S, the property P eventually appears in S, but this depends on the property 
P and the numerical semigroup S, as we will see later.

In many examples, the set �(�nS) presents a nice symmetry property as n increases. 
For instance, consider the numerical semigroup S = ⟨5, 8⟩ ; then we have

A(S;n) = {s ∈ S ∶ s − n ∉ S}.

�(�S) = {10, 13, 15, 16, 18, 21, 24}.
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We plot this numbers in the line as follows:

Next, we compute �(�2S) = {20, 23,  25,  26,  28,  29,  30,  31,  32,  33,  34,   
35,  36,  37,  38,  39,  41,  42,  44,  47} and we plot these numbers in the line:

We observe that the elements of �(�2S) are placed symmetrically with 
respect to (47 + 20)∕2 = 33.5 . This symmetry property of the set �(�2S) 
can be formulated as follows: for any pair of positive integers a and b, if 
a + b = min �(�2S) +max �(�2S) , then a ∈ �(�2S) if and only if b ∈ �(�2S).

We call a numerical semigroup S �-symmetric if it satisfies that for any pair of 
positive integers a and b, if a + b = min �(S) +max �(S) , then a ∈ �(S) if and only 
if b ∈ �(S) . This condition means precisely that when we put the elements of �(S) 
in the line, they are placed symmetrically with respect to (min �(S) +max �(S))∕2.

A numerical semigroup S minimally generated by a1, a2,… , ar is supersymmet-
ric (see [2]) if and only if there are pairwise relatively prime numbers u1,… , ur 
such that

for i = 1, 2,… , r . For instance, all numerical semigroups with embedding dimen-
sion 2 are supersymmetric.

Now we establish the main results of this paper. We prove that if S, minimally 
generated by a1, a2,… , ar , is supersymmetric (assuming u1 > uj for j = 2,… , r ), 
then

and

for all n ≥ 0 . We also prove that if S is supersymmetric, then the properties of hav-
ing maximal embedding dimension and �-symmetry, eventually appear in S.

We prove that if S has maximal embedding dimension, then �S also has this 
property. We have conjectured that the property of having maximal embedding 

ai =

r∏
k=1,k≠i

uk

�nS =

{
r∑

i=1

aixi ∶ xi ∈ ℕ,

r∑
i=1

xi ≥ 2n

}
∪ {0}

𝛽(𝜕nS) =

{
r∑

i=1

aixi ∶ 2n ≤

r∑
i=1

xi < 2n+1, 0 ≤ xi < ui, i = 2,… , r

}
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dimension eventually appears in S. Evidence in examples suggests that if S has 
not maximal embedding dimension, then

We prove that (1) is true if S is supersymmetric or S has embedding dimension 3.

2 � General properties of the family {@n
S}

n

We can give a description of the sets �(�nS) in terms of the length of representations of 
elements as sums of nonzero elements of S. For s ∈ S�{0} , let l(s) and L(s) be the least 
and greatest number of summands among all representations of s as a sum of nonzero 
elements of S, respectively. Then, we have

But this description of �(�nS) is not useful when we work with a specific semigroup 
S.

We prove now that the family of subsets of S, {�(�nS)}n∈ℕ , is a partition of S�{0} . 
We need the following lemma.

Lemma 1  If S is a numerical semigroup and n ≥ 1 , then

Proof  By induction on n. By definition, �S = S��(S) = S��(�0S) . Assuming that 
�nS = S�

⋃n−1

i=0
�(�iS) , where n ≥ 1 , we have

	�  ◻

If S is a numerical semigroup and m(S) is its multiplicity, then m(�S) = 2m(S) , since 
the minimal nonzero element in S that does not belong to �(S) is 2m(S). So, by induc-
tion on n, we have

for all n ∈ ℕ.

(1)e(�S) ≥ 2e(S) + 1.

𝛽(𝜕nS) = {s ∈ S�{0} ∶ 2n ≤ l(s),L(s) < 2n+1}.

(2)�nS = S�

n−1⋃
i=0

�(�iS).

�n+1S = �(�nS)

= �nS��(�nS)

=

[
S�

n−1⋃
i=0

�(�iS)

]
��(�nS)

= S�

n⋃
i=0

�(�iS).

(3)m(�nS) = 2nm(S)
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Proposition 1  Let S be a numerical semigroup. Then the sets �(�nS) , for n ≥ 0 , 
form a partition of S�{0}.

Proof  If m < n , where n,m ≥ 0 , then n ≥ 1 and by (2), we have �nS = S�
⋃n−1

i=0
�(�iS) , 

so that �(�nS) ∩ �(�mS) = ∅ . Now, in order to prove that S�{0} =
⋃

n∈ℕ �(�
nS) , 

note that by (3) there is an increasing sequence

If s ∈ S�{0} , then there exists n0 ≥ 1 such that s < m(𝜕n0S) , and this implies that 
s ∉ �n0S . So, by (2), s ∈ �(�iS) for some i < n0 . This ends the proof. 	�  ◻

Proposition 2  Let S be a numerical semigroup. Then

(1)	 F(�nS) = max{F(S), max �(�n−1S)} , for all n ≥ 1.
(2)	 g(�nS) = g(S) + e(S) + e(�S) +⋯ + e(�n−1S) , for all n ≥ 1.

Proof 

(1)	 If max �(�n−1S) ≤ F(S) , the Frobenius number of �nS  is F(S). If 
max 𝛽(𝜕n−1S) > F(S) , then the Frobenius number of �nS is max �(�n−1S) . In any 
case, we have F(�nS) = max{F(S), max �(�n−1S)}.

(2)	 Using (2) we have 

	�  ◻

By part (1) of Proposition  2, for any numerical semigroup S, there is some 
n0 ≥ 1 such that F(�nS) = max �(�n−1S) , for all n ≥ n0 . Thus, the property that 
F(�S) = max �(S) eventually appears in S.

Theorem 1  Let S be a numerical semigroup with maximal embedding dimension. 
Then, �S also has maximal embedding dimension.

m(S) < m(𝜕S) < ⋯ < m(𝜕nS) < ⋯

g(�nS) = |ℕ��nS|

=

||||||
ℕ�

(
S�

n−1⋃
i=0

�(�iS)

)||||||
=

||||||
(ℕ�S) ∪

n−1⋃
i=0

�(�iS)

||||||
= |ℕ�S| +

n−1∑
i=0

|�(�iS)|

= g(S) +

n−1∑
i=0

e(�iS)
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Proof  We must prove that e(�S) = 2m(S) . Let n = e(S) . Since S has maximal embed-
ding dimension, we also have n = m(S) . As �(S) is a subset of [A(S;n)�{0}] ∪ {n} 
and |�(S)| = n = ||[A(S;n)�{0}] ∪ {n}|| , we have �(S) = [A(S;n)�{0}] ∪ {n}.

Now, every element of S can be written uniquely as an + w , where a ∈ ℕ and 
w ∈ A(S;n) . Nonzero elements in �S can be written in the form an + w where a ≥ 2 
or, a = 1 and w ≠ 0 . Thus, the set of elements of the form an + w , where a ∈ {1, 2} 
and w ∈ �(S) , generates �S.

We claim that �(�S) = {an + w ∶ a ∈ {1, 2},w ∈ �(S)} . It suffices to show 
that the sum of two elements in {an + w ∶ a ∈ {1, 2},w ∈ �(S)} does not lie in 
{an + w ∶ a ∈ {1, 2},w ∈ �(S)} . Now, if a1n + w1 = (a2n + w2) + (a3n + w3) , 
where ai ∈ {1, 2} and wi ∈ �(S) , i = 1, 2, 3 ; then w1 = (a2 + a3 − a1)n + w2 + w3 
(note that a2 + a3 − a1 ≥ 0 ); but this means that w1 ∉ �(S) , a contradiction. This 
proves our claim.

Finally, there are 2n elements of the form an + w , where a ∈ {1, 2} and w ∈ �(S) . 
This ends the proof. 	�  ◻

As we can see in the proof of Theorem 1, if S has maximal embedding dimen-
sion, then

By induction, we get the following result.

Proposition 3  Let S be a numerical semigroup with maximal embedding dimen-
sion. If n ≥ 0,then

Hence, �nS = {am(S) + w ∶ 2n − 1 ≤ a,w ∈ �(S)} ∪ {0}.

Given a numerical semigroup S, we wish to prove that the property of having 
maximal embedding dimension eventually appears in S. In fact, all evidence sug-
gests that this is true. We have the following conjecture.

Conjecture 1  For any numerical semigroup S, the property of having maximal 
embedding dimension eventually appears in S.

Of course, if we are able to prove that there is some n0 ∈ ℕ such that �n0S has 
maximal embedding dimension, then, by Theorem 1, the property of having max-
imal embedding dimension eventually appears in S. Evidence shows that e(�nS) 
strictly increases with n, and that if S has not maximal embedding dimension, 
then e(�S) ≥ 2e(S) + 1.

Conjecture 2  If S has not maximal embedding dimension, then

�(�S) = {am(S) + w ∶ 1 ≤ a ≤ 2,w ∈ �(S)}.

�(�nS) = {am(S) + w ∶ 2n − 1 ≤ a ≤ 2n+1 − 2,w ∈ �(S)}.

e(�S) ≥ 2e(S) + 1.
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We will prove later that this conjecture is true in the cases of S supersymmetric or 
e(S) = 3.

Proposition 4  Let us assume that S has maximal embedding dimension. If S is �
-symmetric, then �S is �-symmetric.

Proof  Let S be maximally generated by n = a1 < a2 < ⋯ < an . Being �-symmet-
ric is equivalent to say that for any j ∈ {1, 2,… , n} , a1 + an − aj = ak for some 
k ∈ {1, 2,… , n} . Now, by Proposition  3, �(S) = {ra1 + aj ∶ r ∈ {1, 2}, 1 ≤ j ≤ n} . 
Note that max �(�S) = 2a1 + an and min �(�S) = 2a1 . Thus, to prove that 
�S is �-symmetric, we have to prove that (4a1 + an) − (ra1 + aj) ∈ �(�S) , 
where r ∈ {1, 2} and 1 ≤ j ≤ n . If fact, if r ∈ {1, 2} and 1 ≤ j ≤ n , then 
(4a1 + an) − (ra1 + aj) = (3 − r)a1 + (a1 + an − aj) ∈ �(�S) , since 3 − r ∈ {1, 2} 
and a1 + an − aj = ak for some 1 ≤ k ≤ n . This ends the proof. 	� ◻

If 0 < r ≤ k , let Sk,r = {0, k, k + r,→} . Then, �nSk,r = S2nk,r for all n ≥ 0 . We have

so we see that Sk,r is not �-symmetric for any k > 1 (also, Sk,r has maximal embed-
ding dimension). Thus, the property of being �-symmetric does not appear eventu-
ally in Sk,r.

3 � Supersymmetric numerical semigroups

In this section, u1, u2,… , ur are integers greater than 1 that are pairwise relatively 
prime and u1 > uj for j = 2,… , r . For i = 1, 2,… , r , let

Lemma 2  The integer solutions of the linear equation

are of the form xi = ui�i , where �i is an integer for i = 1, 2,… , r , and 
∑r

i=1
�i = 0.

Proof  If x1, x2,… , xr satisfy (4), then ui = gcd(a1,… , ai−1, ai+1,… , ar) divides xi ; 
so xi = ui�i for some integer �i . Therefore, by replacing xi into (4) we get

�(Sk,r) = {k} ∪ ({k + r, k + r + 1,… , 2k + r − 1}�{2k}),

ai =

r∏
k=1,k≠i

uk.

(4)
r∑

i=1

aixi = 0
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Thus, 
∑r

i=1
�i = 0 . The converse is easy to verify. 	�  ◻

Lemma 3  If 
∑r

i=1
aixi =

∑r

i=1
aix

�
i
 , where xi, x�i ∈ {0, 1,… , ui − 1} for i = 2,… , r , 

then xi = x�
i
 for all i ∈ {1, 2,… , r}.

Proof  Assume that 
∑r

i=1
aixi =

∑r

i=1
aix

�
i
 , where 0 ≤ xi < ui and 0 ≤ x′

i
< ui 

for i = 2,… , r . By Lemma  2, for i = 2,… , r , we have ui ∣ (xi − x�
i
) , and 

since 0 ≤ xi < ui and 0 ≤ x′
i
< ui , it follows that xi = x�

i
 , i = 2,… , r . Then 

a1x1 +
∑r

i=2
aixi = a1x

�
1
+
∑r

i=1
aixi , which implies that a1x1 = a1x

�
1
 , and therefore 

x1 = x�
1
 . This ends the proof. 	�  ◻

Let S be the numerical semigroup generated by a1, a2,… , ar . Of course, we 
have �(S) = {a1, a2,… , ar}.

Lemma 4  Every element in S can be represented in a unique way in the form

where 0 ≤ xi < ui , for i = 2, 3,… , r.

Proof  Every element in S is of the form 
∑r

i=1
aiyi where yi ≥ 0 , i = 1, 2,… , r . For 

i = 2,… , r , there are non-negative integers qi and xi such that yi = uiqi + xi and 
0 ≤ xi < ui . Then

r∑
i=1

aixi =

r∑
i=1

ai(ui�i)

=

r∑
i=1

(u1u2 ⋯ ur)�i.

r∑
i=1

aixi,

r∑
i=1

aiyi = a1y1 +

r∑
i=2

ai(uiqi + xi)

= a1y1 +

r∑
i=2

aiuiqi +

r∑
i=2

aixi

= a1y1 +

r∑
i=2

(u1u2 ⋯ ur)qi +

r∑
i=2

aixi

= a1

[
y1 +

r∑
i=2

u1qi

]
+

r∑
i=2

aixi

=

r∑
i=1

aixi,
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where x1 = y1 +
∑r

i=2
u1qi . This shows that every element in S can be expressed in 

the desired way. The uniqueness follows from Lemma 3. 	�  ◻

Theorem 2  Let S = ⟨a1,… , ar⟩ . Then

and

for all n ≥ 0.

Proof  For each n ≥ 0 , we define

and

It is clear that Sn is a numerical semigroup. We show, by induction on n, that 
�nS = Sn and �(�nS) = Tn , for all n ≥ 0.

First, we have S = �0S = S0 . Besides, the condition 20 = 1 ≤
∑r

i=1
xi < 2 means 

that 
∑r

i=1
xi = 1 , which is equivalent to say that one of the xi is 1 and the other are 0. 

Thus, T0 = {a1, a2,… , ar} = �(S) = �(�0S).
We assume that �kS = Sk and �(�kS) = Tk for k = 0,… , n . Now,

and observe that

To show that Sn+1 ⊆ 𝜕n+1S , we take x ∈ Sn+1 and write x =
∑r

i=1
aixi where ∑r

i=1
xi = 0 or

∑r

i=1
xi ≥ 2n+1 . If 

∑r

i=1
xi = 0 , then x = 0 ∈ �n+1S . Now, we assume 

that 
∑r

i=1
xi ≥ 2n+1 . We have to show that x ∉

⋃n

k=0
Tk ; so, by contradiction, sup-

pose that x ∈
⋃n

k=0
Tk . Then x =

∑r

i=1
aix

�
i
 where 0 ≤ x′

i
< ui for i = 2,… , r and 

1 ≤
∑r

i=1
x�
i
< 2n+1 . By Lemma  4, there are integers �i , i = 1, 2,… , r such that 

�nS =

{
r∑

i=1

aixi ∶ xi ≥ 0,

r∑
i=1

xi ≥ 2n

}
∪ {0}

𝛽(𝜕nS) =

{
r∑

i=1

aixi ∶ 2n ≤

r∑
i=1

xi < 2n+1, 0 ≤ xi < ui, i = 2,… , r

}

Sn ∶=

{
r∑

i=1

aixi ∶ xi ≥ 0,

r∑
i=1

xi ≥ 2n

}
∪ {0}

Tn ∶=

{
r∑

i=1

aixi ∶ 2n ≤

r∑
i=1

xi < 2n+1, 0 ≤ xi < ui, i = 2,… , r

}
.

�n+1S = S�

n⋃
k=0

�(�kS) = S�

n⋃
k=0

Tk

n⋃
k=0

Tk =

{
r∑

i=1

aixi ∶ 0 ≤ xi < ui, i = 2,… , r, and 1 ≤

r∑
i=1

xi < 2n+1

}
.
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xi = ui�i + x�
i
 and 

∑r

i=1
�i = 0 . For i = 2,… , r , we have �i ≥ 0 because on the con-

trary it would be xi = ui𝛼i + x�
i
< 0 . Then, we have

that is, 
∑r

i=1
ui𝛼i > 0 . Now, �1 = −

∑r

i=2
�i , so 

∑r

i=1
ui�i =

∑r

i=2
(ui − u1)�i ≤ 0 , 

which is a contradiction.
To show that 𝜕n+1S ⊆ Sn+1 , let x ∈ �n+1S = S�

⋃n

k=0
Tk . By Lemma  4, x 

can be represented in the form x =
∑r

i=1
aixi where 0 ≤ xi < ui , i = 2,… , r . If ∑r

i=1
xi < 2n+1 , then x ∈

⋃n

k=0
Tk , which is absurd. Therefore 

∑r

i=1
xi ≥ 2n+1 , and this 

shows that x ∈ Sn+1 . Thus, we have shown that

Now we prove that �(Sn+1) = Tn+1 . First, if x, y ∈ Tn+1 , then x =
∑r

i=1
aixi and 

y =
∑r

i=1
aiyi where 0 ≤ xi < ui, 0 ≤ yi < ui for i = 2,… , r , 2n+1 ≤

∑r

i=1
xi < 2n+2 

and 2n+1 ≤
∑r

i=1
yi < 2n+2 . So, x + y =

∑r

i=1
ai(xi + yi) and 

∑r

i=1
(xi + yi) ≥ 2n+2 . 

If x + y ∈ Tn+1 , then x + y =
∑r

i=1
aix

�
i
 where 0 ≤ x′

i
< ui for i = 2,… , r and ∑r

i=1
x�
i
< 2n+2 . By Lemma  2, there are integers �i , i = 1, 2,… , r such that 

xi + yi = ui�i + x�
i
 and 

∑r

i=1
�i = 0 , where �i ≥ 0 for i = 2,… , r , and this yields to

that is, 
∑r

i=1
ui𝛼i > 0 . Now, since �1 = −

∑r

i=2
�i , we have ∑r

i=1
ui�i =

∑r

i=2
(ui − u1)�i ≤ 0 , which is a contradiction. Thus, x + y ∉ Tn+1 . This 

shows that �(⟨Tn+1⟩) = Tn+1.
It remains to show that Tn+1 generates Sn+1 . Since Tn+1 ⊆ Sn+1 , ⟨Tn+1⟩ ⊆ Sn+1 . To 

show that Sn+1 ⊆ ⟨Tn+1⟩ , let us take x ∈ Sn+1 . By Lemma 4, x can be represented as 
x =

∑r

i=1
aixi , where 0 ≤ xi < ui for i = 2,… , r . It cannot occur that 

∑r

i=1
xi < 2n+1 

because x ∈ Sn+1 . Thus, we have 
∑r

i=1
xi ≥ 2n+1.

Write 
∑r

i=1
xi = q2n+1 + s , where 0 ≤ s < 2n+1 and q ≥ 1 . For j = 1, 2,… , q + 1 

and i = 1, 2,… , r we can find non-negative integers yij such that

Thus, we have yj ∶=
∑r

i=1
aiyij ∈ Tn+1 , for j = 1,… , q − 1 and 

yq ∶=
∑r

i=1
ai(yiq + yi(q+1)) ∈ Tn+1 . We see that x =

∑q

j=1
yj , which shows that 

x ∈ ⟨Tn+1⟩ . This ends the proof. 	�  ◻

For each (r − 1)-tuple of the form (x2, x3,… , xr) , where 0 ≤ xi < ui , 
i = 2, 3,… , r , let s = x2 +⋯ + xr and let us define the following set

2n+1 ≤

r∑
i=1

xi =

r∑
i=1

(ui𝛼i + x�
i
) =

r∑
i=1

ui𝛼i +

r∑
i=1

x�
i
< 2n+1 +

r∑
i=1

ui𝛼i,

�n+1S =

{
r∑

i=1

aixi ∶ xi ≥ 0,

r∑
i=1

xi ≥ 2n

}
∪ {0}.

2n+2 ≤

r∑
i=1

(xi + yi) =

r∑
i=1

ui𝛼i +

r∑
i=1

x�
i
< 2n+2 +

r∑
i=1

ui𝛼i,

r∑
i=1

yij = 2n+1, j = 1,… , q;

r∑
i=1

yi(q+1) = s and

q+1∑
j=1

yij = xi, i = 1, 2,… , r.
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If s > k , then (k − s)a1 + x2a2 +⋯ + xrar ∉ S . In fact, if

where y1 ≥ 0 and 0 ≤ yi < ui , i = 2,… , r ; then, by Lemma  3, it follows that 
y1 = k − s < 0 , a contradiction.

The sets A(x2, x3,… , xr) are pairwise disjoint (by Lemma 3) and each of them 
has 2n elements. Therefore, 

⋃
A(x2, x3,… , xr) (this union runs over all tuples of 

the form (x2, x3,… , xr) , where 0 ≤ xi < ui , i = 2,… , r ) has 2nu2 ⋯ ur = 2na1 ele-
ments. Note that �(�nS) is the set of elements in 

⋃
A(x2, x3,… , xr) of the form 

(k − s)a1 + x2a2 +⋯ + xrar for which k ≥ s , where s = x2 +⋯ + xr.
For each tuple (x2, x3,… , xr) , where 0 ≤ xi < ui , i = 2,… , r , and n ≥ 0 , 

we define �(x2, x3,… , xr, n) to be the number of elements of the form 
(k − s)a1 + x2a2 +⋯ + xrar , where s = x2 +⋯ + xr , such that 2n ≤ k < 2n+1 and 
k ≥ s . Note that 0 ≤ �(x2, x3,… , xr, n) ≤ 2n . Thus,

The last sum is taken over all tuples (x2, x3,… , xr) , where 0 ≤ xi < ui , i = 2,… , r . 
For instance, when r = 2 , we have

and

Proposition 5  Let S = ⟨a1, a2,… , ar⟩ . For n ≥ 0 , �nS has maximal embedding 
dimension if and only if u2 +⋯ + ur ≤ 2n + r − 1.

Proof  The condition that �nS has maximal embedding dimension is equivalent to 
the equality �(x2, x3,… , xr, n) = 2n for all tuples (x2, x3,… , xr) , where 0 ≤ xi < ui , 
i = 2,… , r . This means that k ≥ x2 + x3 +⋯ + xr for all 2n ≤ k < 2n+1 and 
all tuples (x2, x3,… , xr) , where 0 ≤ xi < ui , i = 2,… , r . By taking xi = ui − 1 , 
i = 2,… , r , and k = 2n , we obtain u2 +⋯ + ur − r + 1 ≤ 2n . It is clear that if 

A(x2, x3,… , xr) ∶= {(k − s)a1 + x2a2 +⋯ + xrar ∶ 2n ≤ k < 2n+1}.

(k − s)a1 + x2a2 +⋯ + xrar = y1a1 + y2a2 +⋯ + yrar,

e(�nS) =
∑

�(x2, x3,… , xr, n).

𝛼(x2, n) =

⎧⎪⎨⎪⎩

2n, if x2 ≤ 2n;

2n+1 − x2, if 2
n < x2 < 2n+1;

0, if 2n+1 ≤ x2,

e(𝜕nS) =

u2−1�
x2=0

𝛼(x2, n)

=

⎧
⎪⎨⎪⎩

2nu2, if u2 − 1 ≤ 2n;

2n+1u2 − 22n−1 − 2n−1 −
(u2−1)u2

2
, if 2n < u2 − 1 < 2n+1;

3 ⋅ 22n−1 + 2n−1, if 2n+1 ≤ u2 − 1.
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u2 +⋯ + ur − r + 1 ≤ 2n , then k ≥ x2 + x3 +⋯ + xr for all 2n ≤ k < 2n+1 and all 
tuples (x2, x3,… , xr) , where 0 ≤ xi < ui , i = 2,… , r . This ends the proof. 	�  ◻

Proposition 6  Let S = ⟨a1, a2,… , ar⟩ . If u2 +⋯ + ur ≤ 2n + r − 1 , then �nS is �
-symmetric.

Proof  Note that max �(�nS) = (2n+1 − 1)a1 and

Note that the condition u2 +⋯ + ur ≤ 2n + r − 1 implies that the coefficient of 
a1 in the right hand side of (5) is a non-negative integer. Now, every element in 
�(�nS) has the form (k − s)a1 + a2x2 +⋯ + arxr , where 0 ≤ xi < ui , i = 2,… , r , 
s = x2 +⋯ + xr , 2n ≤ k < 2n+1 and k ≥ s . We must show that the element

belongs to �(�nS) . In fact, we see that

Let s� =
∑r

i=2
(ui − 1 − xi) and k� = 3 ⋅ 2n − 1 − k . Observe that 0 ≤ ui − 1 − xi < ui 

for i = 2,… , r and 2n ≤ 3 ⋅ 2n − 1 − k < 2n+1 , that is 2n ≤ k� < 2n+1 . Now,

Therefore, t = (k� − s�)a1 +
∑r

i=2
(ui − 1 − xi)ai . We also have 

k� = 3 ⋅ 2n − 1 − k ≥
∑r

i=2
(ui − 1 − xi) = s� , by hypothesis. This proves that 

t ∈ �(�nS) . 	�  ◻

4 � The conjecture e(@S) ≥ 2e(S) + 1

Conjecture 2 says that for all numerical semigroup S without maximal embedding 
dimension, the inequality e(�S) ≥ 2e(S) + 1 holds. Equality holds for some numerical 
semigroups. For instance, let a, b > 1 be relatively prime, T = ⟨a, b⟩ and assume that 
F(T) = (a − 1)(b − 1) − 1 > a, b . This implies that if S = ⟨a, b,F(T)⟩ = T ∪ {F(T)} , 
then �(S) = {a, b,F(T)} . Thus, e(S) = 3 , �S = �T  and e(�S) = e(�T) = 7.

(5)min �(�nS) =

(
2n −

r∑
i=2

(ui − 1)

)
a1 +

r∑
i=2

(ui − 1)ai.

t ∶= max �(�nS) +min �(�nS) − [(k − s)a1 + a2x2 +⋯ + arxr]

t =

(
2n+1 − 1 + 2n −

r∑
i=2

(ui − 1) − k + s

)
a1 +

r∑
i=2

(ui − 1 − xi)ai

=

(
3 ⋅ 2n − 1 −

r∑
i=2

(ui − 1) − k + s

)
a1 +

r∑
i=2

(ui − 1 − xi)ai.

k� − s� = (3 ⋅ 2n − 1 − k) −

r∑
i=2

(ui − 1 − xi) = 3 ⋅ 2n − 1 −

r∑
i=2

(ui − 1) − k + s.
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In this section we prove that Conjecture 2 is true if S is supersymmetric or e(S) = 3 . 
In fact, in the case S is supersymmetric, we have the following result.

Theorem 3  If S is a supersymmetric numerical semigroup that does not have maxi-
mal embedding dimension, then e(�S) ≥ 2e(S) + 3 . Equality holds if and only if 
e(S) = 2.

Proof  If S = ⟨a1, a2,… , ar⟩ is supersymmetric as in Theorem 2, then �(�S) is the set 
of all elements of the form (k − s)a1 + x2a2 +⋯ + xrar , where 0 ≤ xi < ui , 
i = 2,… , r , s = x2 +⋯ + xr , k ∈ {2, 3} and k ≥ s . By counting the number of ele-

ments in �(�S) , we find that e(�S) = 1 − r + 2r2 +

(
r − 1

2

)
 . Now, if we assume 

that S has not maximal embedding dimension, then r ≥ 2 . Thus, we have

(in the second inequality we use that r ≥ 2 ). It is easy to see that equality 
e(�S) = 2e(S) + 3 holds if and only if e(S) = 2 . 	�  ◻

Before we start proving Conjecture 2 for the case of dimension 3, we prove the fol-
lowing lemma, that gives us a generating set of �S in general.

Lemma 5  Let S be minimally generated by a1, a2,… , ar , where r = e(S) . Then, the 
elements of the form a1x1 + a2x2 +⋯ + arxr , where x1 + x2 +⋯ + xr ∈ {2, 3} , gen-
erate �S.

Proof  Every nonzero element in �S can be represented as a sum 
s1 + s2 +⋯ + st , where si ∈ �(S) = {a1, a2,… , ar} , i = 1, 2,… , t , with 
t ≥ 2 . We have two cases depending on the parity of t. If t = 2q for some 
q ≥ 1 , then s1 + s2 +⋯ + st = (s1 + s2) + (s3 + s4) +⋯ + (st−1 + st) . 
If t = 2q + 3 for some q ≥ 0 , then 
s1 + s2 +⋯ + st = (s1 + s2) + (s3 + s4) +⋯ + (st−4 + st−3) + (st−2 + st−1 + st) . In 
any case, the element s1 + s2 +⋯ + st can be represented a sum of elements of the 
form a1x1 + a2x2 +⋯ + arxr , where x1 + x2 +⋯ + xr ∈ {2, 3} . 	�  ◻

For the rest of this section, let S = ⟨a1, a2, a3⟩ , with �(S) = {a1, a2, a3} and 
3 < a1 < a2 < a3 . Our purpose is to prove that �S has at least 7 minimal generators. 
By Lemma  5, the minimal generators of �S have the form xa1 + ya2 + za3 , where 
x + y + z ∈ {2, 3} . We set

In general, G(S) has at most 16 elements, which implies that e(�S) ≤ 16 . The equal-
ity is achieved, for instance with S = ⟨14, 16, 19⟩ , where �(�S) = {28, 30,  32,  33,  
35,  38,  42,  44,  46,  47,  48,  49,  51,  52,  54,  57} has 16 elements.

e(�S) = 1 − r + 2r2 +

(
r − 1

2

)
≥ 1 − r + 2r2 ≥ 2r + 3 = 2e(S) + 3

G(S) = {xa1 + ya2 + za3 ∶ x + y + z ∈ {2, 3}}.
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Let a ∈ G(S) and assume that a ∉ �(�S) . Then a can be expressed as a linear 
combination of the elements in G(S)�{a} . This implies that a can be written in the 
form

where ci ≥ 0 . We will call any representation of a as in (6) an L- repre-
sentation of a. For instance, let us say that a ∈ G(S) can be represented as 
a = r(a1 + a2) + s(a1 + a3) + t(3a2) , then a = (r + s)a1 + (r + 3t)a2 + sa3 is an 
L-representation of a. For simplicity, when we have an L-representation of a, 
say a = c1a1 + c2a2 + c3a3 , we will simply say that we have an L-representation 
a = c1a1 + c2a2 + c3a3.

Lemma 6  Suppose that {i, j, k} = {1, 2, 3} . Let a ∈ G(S) . Assume that a ∉ �(�S) 
and that a can be expressed as a linear combination of ai and aj . Then, in every 
L-representation of a, the coefficient of ak is positive.

Proof  The submonoid ⟨ai, aj⟩ of ℕ is isomorphic to the numerical semigroup 
⟨ai∕d, aj∕d⟩ , where d = gcd(ai, aj) . The numerical semigroup ⟨ai∕d, aj∕d⟩ is super-
symmetric, so

Therefore, the monoid ⟨ai, aj⟩�{ai, aj} is minimally generated by 
{2ai, 2aj, ai + aj, 3ai, 3aj, 2ai + aj, ai + 2aj}.

Now, if a = c1a1 + c2a2 + c3a3 is an L-representation of a and ck = 0 , then we 
have a ∈ {2ai, 2aj, ai + aj, 3ai, 3aj, 2ai + aj, ai + 2aj} and a can be represented as a 
linear combination of elements in {2ai, 2aj, ai + aj, 3ai, 3aj, 2ai + aj, ai + 2aj}�{a} , 
which is absurd. 	�  ◻

Lemma 7  2a1, a1 + a2 ∈ �(�S).

Proof  Since 2a1 = min(�S�{0}) , we have 2a1 ∈ �(�S) . Now, 
a1 + a2 = min(�S�{0, 2a1}) , so it is impossible to write a1 + a2 as a sum of nonzero 
elements of �S , unless a1 + a2 is a multiple of 2a1 , which is not possible either. 	�  ◻

Note that the proof of Lemma 7 does not use the hypothesis that S has dimension 
3. Therefore, in general, if S is minimally generated by a1 < a2 < ⋯ < ar , where 
r ≥ 2 , then 2a1, a1 + a2 ∈ �(�S).

Lemma 8  3a1 ∈ �(�S).

Proof  If 3a1 ∉ �(�S) , then there is an L-representation 3a1 = c1a1 + c2a2 + c3a3 . 
By Lemma  6, c2 > 0 and c3 > 0 . It follows that c1 = 0, c2 = 1 and c3 = 1 , so 
3a1 = a2 + a3 . Taking an L-representation 3a1 = a2 + a3 = d1a1 + d2a2 + d3a3 , 
by Lemma  6, d1 > 0, d2 > 0, d3 > 0 , which implies that 
d1a1 + d2a2 + d3a3 ≥ a1 + a2 + a3 > 3a1 . This is a contradiction. 	�  ◻

(6)a = c1a1 + c2a2 + c3a3,

�(�⟨ai∕d, aj∕d⟩) = {2ai∕d, 2aj∕d, ai∕d + aj∕d, 3ai∕d, 3aj∕d, 2ai∕d + aj∕d, ai∕d + 2aj∕d}.
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Lemma 9  2a1 + a2 ∈ �(�S).

Proof  If 2a1 + a2 ∉ �(�S) , there is an L-representation 2a1 + a2 = c1a1 + c2a2 + c3a3 . 
By Lemma  6, c3 > 0 . We note that c1 < 2 . If c1 = 1 , then c2 = 0 (on the con-
trary, c1a1 + c2a2 + c3a3 ≥ a1 + a2 + a3 > 2a1 + a2 ). Thus, 2a1 + a2 = a1 + c3a3 
and a1 + a2 = c3a3 , which is impossible. Then, we have c1 = 0 . That is, 
2a1 + a2 = c2a2 + c3a3 . If c2 ≥ 2 , then c2a2 + c3a3 ≥ 2a2 + a3 > 2a1 + a2 , absurd. 
If c2 = 1 , then c3 = 1 ; so, 2a1 + a2 = a2 + a3 , absurd. If c2 = 0 , then 2a1 + a2 = c3a3 
and c3 = 2 . Thus, we have 2a1 + a2 = 2a3 . Now, there is an L-representation 
2a1 + a2 = 2a3 = d1a1 + d2a2 + d3a3 , where d1 > 0, d2 > 0 and d3 > 0 . So, we have 
d1a1 + d2a2 + d3a3 ≥ a1 + a2 + a3 > 2a1 + a2 , which is absurd. 	�  ◻

Lemma 10  2a2 ∈ �(�S) or a1 + a3 ∈ �(�S).

Proof  Assume that 2a2, a1 + a3 ∉ �(�S) . Then there is an L-representation 
2a2 = c1a1 + c2a2 + c3a3 , where c1 > 0 and c3 > 0 . Besides, c3 < 2 , so c3 = 1 and 
2a2 = c1a1 + c2a2 + a3 . Note that c2 cannot be positive, so that 2a2 = c1a1 + a3 . On 
the other hand, there is an L-representation a1 + a3 = d1a1 + d2a2 + d3a3 , where 
d2 > 0 . It must be d1 = d3 = 0 , so a1 + a3 = d2a2 , where d2 ≥ 2 . This is incompat-
ible with 2a2 = c1a1 + a3 unless c1 = 1 and d2 = 2 . Thus, we have 2a2 = a1 + a3.

Finally, if 2a2 = a1 + a3 does not belong to �(�S) , then in all L-representations 
2a2 = a1 + a3 = e1a1 + e2a2 + e3a3 , we must have e1 > 0, e2 > 0 and e3 > 0 , but 
this is impossible. This ends the proof. 	�  ◻

By straightforward calculations, as in the last three lemmas, we obtain the fol-
lowing result.

Lemma 11  a1 + 2a2 ∈ �(�S) or 2a1 + a3 ∈ �(�S).

By combining Lemmas 10 and 11, we obtain the following.

Proposition 7  At least one of the following holds:

1.	 2a2 ∈ �(�S) , a1 + a3 ∈ �(�S) and 2a2 ≠ a1 + a3.
2.	 2a2 ∈ �(�S) and a1 + 2a2 ∈ �(�S).
3.	 a1 + a3 ∈ �(�S) and a1 + 2a2 ∈ �(�S).

Proof  If a1 + 2a2 ∉ �(�S) , then 2a2 = 2a1 + a3 ∈ �(�S) by Lemma  11. If 
a1 + a3 ∉ �(�S) , then, as in the proof of Lemma  10, a1 + a3 = d2a2 where 
d2 ≥ 2 , so 2a2 = a1 + d2a2 , which is absurd. So, if a1 + 2a2 ∉ �(�S) , then 
2a2 = 2a1 + a3, a1 + a3 ∈ �(�S) and 2a2 ≠ a1 + a3 . Finally, if a1 + 2a2 ∈ �(�S) , 
then Lemma 10 gives us the last two options. 	�  ◻
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By Lemmas 7, 8 and 9, there are at least 4 minimal generators in �S , namely, 
2a1, a1 + a2, 3a1 and a1 + 2a2 . Each case in Proposition  7 gives us two different 
minimal generators of �S , but it is possible that 3a1 = 2a2.

Proposition 8  If 3a1 = 2a2 , then �S has at least 7 minimal generators.

Proof  The condition 3a1 = 2a2 implies that there exists m > 1 such that 
a1 = 2m , a2 = 3m and gcd(a3,m) = 1 . Now, we have already 4 mini-
mal generators in �S : 2a1 = 4m, a1 + a2 = 5m, 3a1 = 6m, 2a1 + a2 = 7m . 
Note that 3a2 = 9m and a1 + 2a2 = 8m are not minimal generators. The 
other possible minimal generators of �S have a3 as a summand. They are 
a1 + a3, a2 + a3, 2a1 + a3, 2a3, 2a2 + a3, a1 + 2a3, a2 + 2a3, a1 + a2 + a3 . By the 
division algorithm, a3 = sm + t where 0 ≤ t < m and gcd(m, t) = 1 . It must be 
s ≥ 3 . We note that a1 + a3 < a2 + a3 and the other 6 possible minimal genera-
tors are greater than a2 + a3 . Now, a1 + a3 cannot be written as a linear combina-
tion of 2a1, a1 + a2, 3a1 and 2a1 + a2 because that would imply that a3 is multi-
ple of m. Thus, a1 + a3 ∈ �(�S) . Now, a2 + a3 cannot be a linear combination of 
2a1, a1 + a2, 3a1 and 2a1 + a2 for similar reasons. So, if a2 + a3 ∉ �(�S) , then a2 + a3 
can be represented as a linear combination of 2a1, a1 + a2, 3a1, 2a1 + a2 and a1 + a3 , 
where the coefficient of a1 + a3 is positive; but this would imply that a2 can be writ-
ten as linear combination of a1, a2, a3 with positive coefficient in a1 and non-negative 
coefficients in a2 and a3 , which is absurd. This shows that a2 + a3 ∈ �(�S) . Now, 
2a2 + a3 = 3a1 + a3 = 2a1 + (a1 + a3) does not belong to �(�S) . We prove now that 
2a1 + a3 belongs to �(�S) . If 2a1 + a3 ∉ �(�S) , then there is an L-representation 
2a1 + a3 = c1a1 + c2a2 + c3a3 , where c2 > 0 . If c3 > 0 , then c2 + c3 ≤ 2 , which 
implies that c2 = c3 = 1 . Thus, 2a1 + a3 = c1a1 + a2 + a3 and 2a1 = c1a1 + a2 , but 
this is impossible. Therefore, c3 = 0 , which means that 2a1 + a3 is representable as 
a linear combination of 2a1, a1 + a2, 3a1, 2a1 + a2 , but this implies that a3 is a mul-
tiple of m, a contradiction. Thus, we have shown that there are at least 7 minimal 
generators in �S . 	� ◻

By Proposition 8, if 3a1 = 2a2 , then �S has at least 7 minimal generators. Now, 
we can assume that 3a1 ≠ 2a2 . In this case, by Proposition 7, we have at least 6 
generators in �S . It only remains to show that there is at least one more minimal 
generator in �S . It is important to note that we have not used the condition of not 
having maximal embedding dimension yet. In order to finish, we need the follow-
ing result.

Lemma 12  If a1 = 4, a2 = k + c and a3 = 3k − c , where k ≥ 3 and c > 0 , then �S 
has at least 7 minimal generators.

Proof  Note that k and c must have different parities. We claim that 
2a2, a1 + a3, a1 + 2a2 ∈ �(�S) . In fact, if 2a2 ∉ �(�S) , then 2a2 = d1a1 + a3 for 
some d1 > 0 . That is, 2k + 2c = 4d1 + 3k − c , so 3c − k = 4d1 . Therefore, k and c 
have the same parity, which is absurd.
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Now, if a1 + a3 ∉ �(�S) , then a1 + a3 = d2a2 for some d2 ≥ 2 ; so, 
4 + 3k − c = d2k + d2c . Thus, 4 + (3 − d2)k = (d2 + 1)c ≥ 3 , from which 
(3 − d2)k ≥ −1 . But, (3 − d2)k = −1 is impossible, so we must have d2 ≤ 3 . Thus, 
we have two cases: 

1.	 If d2 = 2 , then 4 + 3k − c = 2k + 2c . So, 4 + k = 3c , which implies that k and c 
have the same parity, absurd.

2.	 If d2 = 3 , then a1 + a3 = 3a2 . This implies that a1 + a3 ∈ �(�S) (see the last para-
graph of the proof of Lemma 10), which is absurd.

If a1 + 2a2 ∉ �(�S) , then a1 + 2a2 = d1a1 + d2a2 + d3a3 where d3 > 0 . Note that 
d2 < 2 . We have two cases: 

1.	 If d2 = 0 , then a1 + 2a2 = d1a1 + d3a3 . If d1 > 0 , then 2a2 = (d1 − 1)a1 + d3a3 . It 
follows that d3 = 1 . That is, 2a2 = (d1 − 1)a1 + a3 . In terms of k and c, we obtain 
3c = 4(d1 − 1) + k . The last equation implies that k and c have the same parity, 
which is absurd. This shows that d1 = 0 . Therefore, a1 + 2a2 = d3a3 . It must be 
d3 = 2 , so a1 + 2a2 = 2a3 , which implies that a1 + 2a2 = 2a3 ∈ �(�S) , a contra-
diction.

2.	 If d2 = 1 , then a1 + 2a2 = d1a1 + a2 + d3a3 , a1 + a2 = d1a1 + d3a3 ; it must be 
d1 = 0 . Then, a1 + a2 = d3a3 , and this is impossible.

Finally, we have at least 7 minimal generators in �S , namely, 2a1, a1 + a2, 3a1, 
2a1 + a2, 2a2, a1 + a3, a1 + 2a2 , unless 2a2 = a1 + a3 . This condition implies that 
3c = 4 + k , which implies that k and c have the same parity, a contradiction. 	�  ◻
Theorem 4  If S is a numerical semigroup with e(S) = 3 and S does not have maxi-
mal embedding dimension, then e(�S) ≥ 7.

Proof  By Lemmas 7, 8 and 9 and Proposition 7 along with the condition 3a1 ≠ 2a2 , 
we have at least 6 different minimal generators in �S . Our seventh candidate is 3a2.

If 3a2 ∉ �(�S) , then there is an L-representation 3a2 = c1a1 + c2a2 + c3a3 , where 
c1 > 0 and c3 > 0 . It must be c2 < 2 . We have the following cases. 

1.	 If c2 = 1 , then 3a2 = c1a1 + a2 + c3a3 . It follows that c3 = 1 , that is, 
3a2 = c1a1 + a2 + a3 . Now, suppose that a1 + a2 + a3 ∉ �(�S) . Then, there is 
an L-representation a1 + a2 + a3 = d1a1 + d2a2 + d3a3 , and we deduce that 
two of the di ’s are zero and the other one is positive. This gives rise to three 
cases depending on which di is positive; but it is easy reach a contradiction in 
any case. For instance, in the case d1 > 0 we have a1 + a2 + a3 = d1a1 . It fol-
lows that 3a2 = (c1 + d1 − 1)a1 . As a1 and a2 are relatively prime (for the rela-
tion 3a2 = c1a1 + a2 + a3 ), it must be a1 = 3 , a contradiction because e(S) = 3 
and S has not maximal embedding dimension. This proves that 3a2 ∈ �(�S) or 
a1 + a2 + a3 ∈ �(�S).

	   Now, in the three cases of Proposition 7 we have 6 different minimal gen-
erators for �S . Those cases combined with the two cases depending whether 
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3a2 ∈ �(�S) or a1 + a2 + a3 ∈ �(�S) give rise to 6 cases. In any of these 6 cases 
we obtain 7 minimal generators for �S , unless 3a2 = a1 + a3 . Now, we have to 
prove that in case 3a2 = a1 + a3 , we can find at least 7 minimal generators in �S . 
In fact, consider a2 + a3 . If we show that a2 + a3 ∈ �(�S) , we are done. Suppose 
a2 + a3 ∉ �(�S) . Then, there is an L-representation a2 + a3 = d1a1 + d2a2 + d3a3 , 
where d1 > 0 . We see that it must be d2 = d3 = 0 ; so a2 + a3 = d1a1 , and it is clear 
that d1 ≥ 3 . By using that 3a2 = a1 + a3 , we obtain 4a2 = (d1 + 1)a1 . Now, the 
relation 3a2 = a1 + a3 implies that a1 and a2 are relatively prime. Since a1 > 3 , 
we have a1 = 4 , a2 = d1 + 1 and a3 = 3a2 − a1 = 3d1 − 1 . Thus, by Lemma 12, 
�S has at least 7 minimal generators.

2.	 If c2 = 0 , then 3a2 = c1a1 + c3a3 . Note that it must be c3 < 3 , so 1 ≤ c3 < 3.
	   Now, if a2 + a3 ∉ �(�S) , then a2 + a3 = ka1 for some k ≥ 3 . Then 

3ka1 = 3a2 + 3a3 = c1a1 + (c3 + 3)a3 , which reduces to (3k − c1)a1 = (c3 + 3)a3 . 
Since a1 and a3 are relatively prime, a1 divides c3 + 3 . But, 4 ≤ c3 + 3 < 6 and 
a1 > 3 , so a1 = c3 + 3 . Thus, a3 = 3k − c1 . We have two cases.

(a)	 If c3 = 1 , then a1 = 4 , a3 = 3k − c1 and a2 = ka1 − a3 = k + c1 . By Lemma 12, 
�S has at least 7 minimal generators.

(b)	 I f  c3 = 2  ,  t h e n  3a2 = c1a1 + 2a3  .  I f  a1 + 2a3 ∉ �(�S)  ,  t h e n 
a1 + 2a3 = d1a1 + d2a2 + d3a3 , where d2 > 0 . It must be d2 + d3 ≤ 2 . This gives 
us three cases; but it is easy to see that in each case we reach a contradiction. 
This shows that 3a2 ∈ �(�S) or a1 + 2a3 ∈ �(�S) . These two cases combined 
with the three cases of Proposition 7 give rise to 6 cases. In all these cases, we 
obtain at least 7 minimal generators for �S , unless 3a2 = a1 + a3 . But, we showed 
that under this condition, �S has at least 7 minimal generators.

	�  ◻
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