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Abstract
In this paper we extend the definitions of mean dimension and metric mean dimension
for non-autonomous dynamical systems. We show some properties of this extension and
furthermore some applications to the mean dimension and metric mean dimension of single
continuous maps.
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1 Introduction

In the late 1990s, M. Gromov in [2] introduced the notion of mean dimension for a topolog-
ical dynamical system (X, φ) (X is a compact topological space and φ is a continuous map
on X), which is, as well as the topological entropy, an invariant under conjugacy. In [11],
Lindenstrauss and Weiss showed that the mean dimension is zero if the topological dimen-
sion of X is finite. They gave some examples where the mean dimension is positive. For
instance, they proved that the mean dimension of

(
([0, 1]m)Z, σ

)
, where σ is the two-sided

full shift map on ([0, 1]m)Z, which has infinite topological entropy, is equals to m and that
any non-trivial factor of

(
([0, 1]m)Z, σ

)
has positive mean dimension.

Given a dynamical system (X, φ), an interesting question related to such a system is
the following: under what conditions is it possible to imbed such a system in the shift
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space
(([0, 1]N)Z

, σ
)

? That is, what properties the system must have to guarantee the exis-

tence of a continuous map i : X → ([0, 1]N)Z
satisfying σ ◦ i = i ◦ ϕ? In [11] the

authors proved that a necessary condition for an invertible system (X, φ) to be embedded
in

(
([0, 1]m)Z, σ

)
is that mdim(X, φ) ≤ m, where mdim(X, φ) denotes the mean dimen-

sion of the system (X, φ). In [12] it was proved that if (X, φ) is an invertible system which
is an extension of a minimal system, and K is a convex set with non-empty interior such
that mdim(X, φ) < dim K/36, then (X, φ) can be embedded in the shift space

(
KZ, σ

)
. In

particular, if mdim(X, φ) < m/36, then (X, φ) can be embedded in
(
([0, 1]m)Z, σ

)
. More

recently, Gutman and Tsukamoto [4] showed that, that if (X, φ) is a minimal system with
mdim(X, φ) < N/2 then we can embed it in

(
([0, 1]N)Z, σ

)
. In [13, Theorem 1.3], Linden-

strauss and Tsukamoto constructed a minimal system with mean dimension equal to N/2
which cannot be embedded into

(
([0, 1]N)Z, σ

)
, showing that the constant N/2 obtained in

[4] is optimal.
The notion of metric mean dimension for a dynamical system φ : (X, d) → (X, d) was

introduced in [11], where (X, d) is a compact metric space with metric d and φ is a con-
tinuous map. It refines the topological entropy for systems with infinite entropy, which, in
the case of a manifold of dimension greater than one, form a residual subset of the set con-
sisting of homeomorphisms defined on the manifold (see [18]). In fact, every system with
finite topological entropy has metric mean dimension equals to zero and for any metric d ′
equivalent to d on X one has mdim(X, φ) ≤ mdimM(X, φ, d ′), where mdimM(X, φ, d ′)
denotes the metric mean dimension of (X, φ) with respect to d ′ (see [10, 11]). The met-
ric mean dimension depends on the metric d , therefore it is not a topological invariant.
However, for a metrizable topological space X, mdimM(X, φ) = infd ′ mdimM(X, φ, d ′) is
invariant under topological conjugacy, where the infimum is taken over all the metrics on X

which induce the topology on X. In [10], Theorem 4.3, the author proved that if (X, φ) is
an extension of a minimal system, then there exists a metric d ′ on X, equivalent to d , such
that mdim(X, φ) = mdimM(X, φ, d ′).

B. Kloeckner [7] studied the dynamical system
(
P

(
S

1
)
, �d�

)
, where P

(
S

1
)

is the space
of probability measures on the circle S

1 and �d� is the push-forward map induced by a d-
expanding map �d : S1 → S

1. The author shows if we take the Wasserstein metric with cost
function | · |p (p ∈ [1,∞)) on P

(
S

1
)
, denoted by Wp , then mdimM

(
P

(
S

1
)
,�d�,Wp

) ≥
p(d−1). H. Lee (in [9]) introduced the mean dimension for continuous actions of countable
sofic groups on compact metrizable spaces and proved that, in this setting, the mean dimen-
sion is an important tool for distinguishing continuous actions of countable sofic groups
with infinite entropy.

A non-autonomous dynamical system (or a sequential dynamical system) is a sequence
f = (fn)

∞
n=1 of continuous maps fn : Xn → Xn+1, where Xn is a compact topological space

for every n ∈ N. In the last two decades, several authors have tried to extend some results
that are valid for autonomous systems for the non-autonomous case. Kolyada and Snoda
in [8] introduced the notion of topological entropy for this setting and proved that, just as
in the case of autonomous systems, it is an invariant under equiconjugacy and furthermore
that it is concentrated in the non-wandering set of the dynamics (see [8] and [15]). In a
more recent work, Freitas et al. [1] have analyzed the existence of Extreme Value Laws in
this setting. In [16] Stadlbauer guarantees, under appropriate conditions, the existence of a
spectral gap for transference operators associated with sequential systems.

As we said above, the set consisting of continuous maps with infinite topological entropy
is residual. On the other hand, it is easy to build non-autonomous dynamical systems with
infinite topological entropy (take φ a continuous map with positive topological entropy, then



Mean Dimension and Metric Mean Dimension for Non-autonomous...

(
φ, φ2, φ22

, φ23
, . . .

)
is a non-autonomous dynamical systems with infinite topological

entropy). This is the main reason to extend the concepts of mean dimension and metric
mean dimension to non-autonomous systems, since these become a tool to classify non-
autonomous dynamical systems with infinite topological entropy (see Theorem 6.1).

In the next two sections we will extend the mean dimension and the metric mean dimen-
sion for a non-autonomous dynamical system f = (fn)

∞
n=1, which will be denoted by

mdim(X, f ). Furthermore, we will prove some properties which are valid for the entropy of
non-autonomous dynamical systems (see [8] and [15]). An application of these properties
is that, for any continuous maps φ and ψ on X, the compositions φ ◦ ψ and ψ ◦ φ have the
same mean dimension (see Corollary 2.7). Furthermore, Remark 4.2 proves the inequality
mdimM(X, φp, d) ≤ p mdimM(X, φ, d) can be strict. Proposition 3.5 proves if X = [0, 1]
or S1, then for each a ∈ [0, 1], there exists a continuous map φa on X with metric mean
dimension equals to a. In Theorem 4.6 we show that, as the topological entropy, the metric
mean dimension is concentrated in the non-wandering set of the dynamics.

In Section 5 we will discuss some upper bounds for the metric mean dimension of both
autonomous and non-autonomous dynamical systems.

As we said above, the metric mean dimension for single continuous maps, and conse-
quently for non-autonomous dynamical systems, depends on the metric d . In Section 6 we
will discuss some properties related to the invariance of the metric mean dimension under
topological equiconjugacy.

In the last section we will present some results related to the continuity of the metric
mean dimension.

Some ideas given to proof the results that are well-known for the autonomous case work
or can be adapted for the non-autonomous case. We will present these proofs for the sake of
comprehensiveness.

2 Mean Dimension for Non-autonomous Dynamical Systems

Let X be a compact metric space. In this section we will suppose that f = (fn)
∞
n=1 is a

non-autonomous dynamical system, where fn : X → X is a continuous map for all n ≥ 1.
We write (X, f, d) to denote a non-autonomous dynamical system f on X endowed with the
metric d . For n, k ∈ N define

f (0)
n := IX := the identity on X and f (k)

n (x) := fn+k−1 ◦ · · · ◦ fn(x) for k ≥ 1.

Set

C(X) = {
(fn)

∞
n=1 : fn : X → X is a continuous map

}
.

Given α an open cover of X define

αn−1
0 = α ∨ f −1

1 (α) ∨
(
f

(2)
1

)−1
(α) ∨ · · · ∨

(
f

(n−1)
1

)−1
(α)

and set

ord(α) = sup
x∈X

∑

U∈α

1U(x) − 1 and D(α) = min
β
α

ord (β),

where 1U is the indicator function and β 
 α means that β is an open cover of X finner
than α.
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Definition 2.1 The mean dimension of f ∈ C(X) is defined to be

mdim(X, f ) = sup
α

lim
n→∞

D
(
αn−1

0

)

n
.

By Corollary 2.5 of [11] we have that D(α ∨ β) ≤ D(α) +D(β), for any open covers α

and β. It follows that the limit that defines the mean dimension is well defined.

Remark 2.2 We present a list of some important properties about the mean dimension for
both autonomous and non-autonomous dynamical systems:

(1) For a non-autonomous dynamical system given by the iterates of a single continuous
map f : X → X, i.e., f = (f )∞n=1, the definition of mean dimension coincides with
the one presented in [11], that is, mdim

(
X, (f )∞n=1

) = mdim(X, f ).
(2) Recall that for a topological space X, the topological dimension is defined as

dim(X) = sup
α

D(α)

where α runs the open covers of X. If dim(X) < ∞, then D
(
αn−1

0

)
≤ dim(X) for all

n ∈ N and therefore mdim(X, f ) = 0 for any f ∈ C(X).
(3) In [11], Proposition 3.1, is proved that mdim

(
XZ, σ

) ≤ dim(X), where σ is the shift
on XZ. Analogously we can prove mdim

(
XN, σ

) ≤ dim(X).
(4) If X = [0, 1]m, then mdim

(
XZ, σ

) = m (see [11], Proposition 3.3).
(5) It is clear that if Y ⊆ X is an invariant subset by a continuous map φ : X → X, then

mdim(Y, φ) ≤ mdim(X, φ). We can define the mean dimension for any Y ⊆ X as
follows: let α be an open cover of X and consider α|Y = {U ∩ Y : U ∈ α}, the open
cover of Y given by the restriction of α to Y . Then define

mdim(Y, f |Y ) = sup
α

lim
n→∞

D
(
(α|Y )n−1

0

)

n
.

It is clear that mdim(Y, f |Y ) ≤ mdim(X, f ).
(6) A necessary condition for an invertible dynamical system φ : X → X to be

imbeddable in
(
([0, 1]m)Z, σ

)
is that mdim(X, φ) ≤ m (see [11], Corollary 3.4).

(7) Any non-trivial factor of
([0, 1]Z, σ

)
has positive mean dimension (see [11], Theorem

3.6).

We will show some properties of the mean dimension which are valid for the topological
entropy. Denote by htop(f ) the topological entropy of f (see [8, 15]).

Definition 2.3 For any p ≥ 1, set

f (p) =
{
f

(p)

1 , f
(p)

p+1, f
(p)

2p+1, . . .
}

= {
fp ◦ · · · ◦ f1, f2p ◦ · · · ◦ fp+1, f3p ◦ · · · ◦ f2p+1, . . .

}
.

It is well-known that htop (φp) = p htop(φ) for any p ≥ 1, where φ is any continuous
map. For non-autonomous dynamical systems we have

htop

(
f (p)

)
≤ p htop(f ) for any p ≥ 1
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(see [8], Lemma 4.2). In general, the equality htop

(
f (p)

)
= p htop(f ) is not valid, as we

can see in the next example, which was given by Kolyada and Snoha in [8].

Example 2.4 Take ψ : [0, 1] → [0, 1] defined by ψ(x) = 1 − |2x − 1| for any x ∈ [0, 1].
Consider f = (fn)

∞
n=1, where

fn(x) =
{

ψ(n+1)/2(x), if n is odd,

x/2n/2, if n is even,

for any n ∈ N. Then htop

(
f (2)

)
= 0 and htop(f ) ≥ log 2

2 .

The equality htop

(
f (p)

)
= p htop(f ) is valid if the sequence f = (fn)

∞
n=1 is equicon-

tinuous (see [8], Lemma 4.4). On the other hand, the equality always holds for the mean
dimension.

Proposition 2.5 For any f = (fn)
∞
n=1 ∈ C(X) and p ∈ N we have

mdim
(
X, f (p)

)
= p mdim(X, f ).

Proof Let α be an open cover of X. Note that, for k ∈ N,

lim
k→∞

D
(

α ∨
(
f

(p)

1

)−1
(α) ∨ · · · ∨

(
f

((k−1)p)

1

)−1
(α)

)

k
≤ lim

k→∞
D

(
α

(k−1)p

0

)

k
≤ p lim

k→∞
D

(
α

(kp−1)

0

)

kp
,

which implies that mdim
(
X, f (p)

)
≤ p mdim(X, f ). For the converse, note that

α
kp−1
0 = α

p−1
0 ∨

(
f

(p)

1

)−1 (
α

p−1
0

)
∨

(
f

(2p)

1

)−1 (
α

p−1
0

)
∨ · · · ∨

(
f

((k−1)p)

1

)−1 (
α

p−1
0

)
,

and therefore

mdim(X, f ) = sup
α

lim
k→∞

D
(
α

(k−1)p

0

)

kp
≤

mdim
(
X, f (p)

)

p
,

which proves the proposition.

In [8], Lemma 4.5, Kolyada and Snoha proved that

htop

(
σ i(f )

)
≤ htop

(
σ j (f )

)
for any i ≤ j,

where σ is the left shift σ((fn)
∞
n=1) = (fn+1)

∞
n=1. Furthermore, in [15], Corollary 5.6,

the author showed that if each fn is an homeomorphism then the equality holds, that is,
the topological entropy for non-autonomous dynamical systems is independent on the first
maps on a sequence of homeomorphisms f = (fn)n∈Z. Next proposition shows that these
properties also hold for the mean dimension.

Proposition 2.6 Let i, j be two positive integers with i ≤ j . Then

mdim
(
X, σ i(f )

)
≤ mdim

(
X, σj (f )

)
.

If each fn is a homeomorphism then the equality holds.
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Proof It is enough to prove the proposition for i = 0 and j = 1. For any open cover α of X

we have

D
(
αn−1

0

)
≤ D(α) + D

(
f −1

1 (α ∨ (f2)
−1(α) ∨

(
f

(2)
2

)−1
(α) ∨ · · · ∨

(
f

(n−2)
2

)−1
(α))

)

= D(α) + D
(

α ∨ (f2)
−1(α) ∨

(
f

(2)
2

)−1
(α) ∨ · · · ∨

(
f

(n−2)
2

)−1
(α)

)
.

Thus

lim
n→∞

D
(
αn−1

0

)

n
≤ lim

n→∞
D(α)

n
+ lim

n→∞

D
(

α ∨ f −1
2 (α) ∨

(
f

(2)
2

)−1
(α) ∨ · · · ∨

(
f

(n−2)
2

)−1
(α)

)

n

= lim
n→∞

n − 1

n

D
(

α ∨ f −1
2 (α) ∨

(
f

(2)
2

)−1
(α) ∨ · · · ∨

(
f

(n−2)
2

)−1
(α)

)

n − 1
≤ mdim(X, σ (f )),

and therefore mdim(X, f ) ≤ mdim(X, σ (f )).
Next, suppose that each fn is a homeomorphism. Note that if β refines α then D(β) ≥

D(α). Therefore, we have

D
(

α ∨ (f2)
−1(α) ∨

(
f

(2)
2

)−1
(α) ∨ . . .

)
= D

(
f −1

1

(
α ∨ (f2)

−1(α) ∨
(
f

(2)
2

)−1
(α) ∨ . . .

))

= D
(

(f1)
−1(α) ∨

(
f

(2)
1

)−1
(α) ∨

(
f

(3)
1

)−1
(α) ∨ . . .

)

≤ D
(

α ∨ (f1)
−1(α) ∨

(
f

(2)
1

)−1
(α) ∨

(
f

(3)
1

)−1
(α) ∨ . . .

)
.

Hence mdim(X, σ (f )) ≤ mdim(X, f ).

If some fn is not a homeomorphism, then the inequality above can be strict. In fact, take
fn = f : X → X for any n ≥ 2, where f is any continuous map with positive mean
dimension and f1 : X → X a constant map. Then mdim(X, f ) = 0 and mdim(X, σ (f )) =
mdim(X, f ).

Next corollary follows from Propositions 2.5 and 2.6:

Corollary 2.7 Let f = (f, g, f, g, . . . ) and g = (g, f, g, f, . . . ), where f, g : X → X are
continuous maps. Then

mdim(X, f ) = mdim(X, g).

Therefore,
mdim(X, f ◦ g) = mdim(X, g ◦ f ).

Proof It follows directly from Proposition 2.6 that mdim(X, f ) = mdim(X, g). Now, by
Proposition 2.5 we have

mdim(X, f ◦ g) = mdim
(
X, f (2)

)
= 2 mdim(X, f ) = 2 mdim(X, g)

= mdim
(
X, g (2)

)
= mdim(X, g ◦ f ),

which proves the corollary.
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It follows directly from Corollary 2.7 that if f and g are topologically conjugate
continuous maps, then

mdim(X, f ) = mdim(X, g),

since if φ is a topological conjugacy between f and g, that is, φ is a homeomorphism and
φ ◦ f = g ◦ φ, then

mdim(X, f ) = mdim
(
X,φ−1 ◦ φ ◦ f

)
= mdim

(
X,φ ◦ f ◦ φ−1

)
= mdim(X, g).

For any f = (fn)
∞
n=1 ∈ C(X), the asymptotic mean dimension is defined by the limit

mdim(X, f )∗ = lim
n→∞ mdim(X, σn(f )).

It follows from Proposition 2.6 that the asymptotic mean dimension always exists.

Theorem 2.8 Let f = (fn)
∞
n=1 ∈ C(X). If f converges uniformly to a continuous map

f : X → X, then
mdim(X, f )∗ ≤ mdim(X, f ).

In particular, mdim(X, f ) ≤ mdim(X, f ).

Proof Let (xn)n∈N be a sequence of mutually different point converging to a point x0.
Define the map F : {xn : n = 0, 1, . . . } × X → {xn : n = 0, 1, . . . } × X by
F : (x, y) �→ (φ(x), ψ(x, y)), where

φ(xn) =
{

x0, if n = 0
xn+1, if n > 0

and ψ(xn, y) =
{

f (y), if n = 0
fn(y), if n > 0.

Note that the non-wandering set of F , 
(F), is a subset of the fix fiber x0 × X. Since

mdim({xn : n = 0, 1, . . . } × X, F) = mdim(
(F ), F )

(by [3, Lemma 7.2]), we have that

mdim({xn : n = 0, 1, . . . } × X,F) = mdim({x0} × X,F).

Therefore,

mdim({xm : m ≥ k} × X,F) ≤ mdim({x0} × X,F) = mdim({xn : n = 0, 1, . . . } × X, F),

for all k > 0 (see Remark 2.2, item (3)). Next, note that by the definition of F we have that

mdim({xm : m ≥ k} × X,F) = mdim
(
X, σk(f )

)
, for k > 0,

and mdim({x0} × X,F) = mdim(X, f ). Hence, mdim(X, σ k(f )) ≤ mdim(X, f ), for all
k.

Next example proves that the inequality above can be strict.

Example 2.9 Let φ : IN → IN be a continuous map with positive mean dimension. For
each n ≥ 1, set fn : IN × IN → IN × IN defined by

fn ((xi)i∈N, (yi)i∈N) = ((λnxi)i∈N, (xi(φ(y))i)i∈N),

where λn → 1 and λn · · · λ1 → 0 as n → ∞. Note that fn converges uniformly on IN×IN

to f ((xi)i∈N, (yi)i∈N) = ((xi)i∈N, (xi(φ(y))i)i∈N) as n → ∞ and

mdim
(
IN × IN, f

)
≥ mdim

(
{(. . . , 1, 1, 1, . . . )} × IN, f

)
= mdim

(
IN, φ

)
> 0.
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On the other hand, note that f n
k (x̄, ȳ) → (

0̄, 0̄
)

as n → ∞ for any (x̄, ȳ) ∈ IN× IN and
k ≥ 1. Hence mdim

(
IN × IN, σ k(f )

) = 0 for any k ≥ 1, where f = (fn)
∞
n=1 and therefore

mdim
(
IN × IN, f

)∗ = 0.

3 Metric Mean Dimension for Non-autonomous Dynamical Systems

Throughout this section, we will fix f = (fn)
∞
n=1 ∈ C(X) where X is a compact metric

space with metric d . For any n ∈ N let dn : X × X → [0,∞) defined by

dn(x, y) = max
{
d(x, y), d(f1(x), f1(y)), . . . , d

(
f

(n−1)
1 (x), f

(n−1)
1 (y)

)}
.

Thus dn is a metric on X for all n and generates the same topology induced by d . Fix
ε > 0. We say that A ⊂ X is an (n, f, ε)-separated set if dn(x, y) > ε, for any two distinct
points x, y ∈ A. We denote by sep(n, f, ε) the maximal cardinality of an (n, f, ε)-separated
subset of X. Given an open cover α of X, we say that α is an (n, f, ε)-cover if the dn-
diameter of any element of α is less than ε. Let cov(n, f, ε) be the minimum number of
elements in an (n, f, ε)-cover of X. We say that E ⊂ X is an (n, f, ε)-spanning set for X if
for any x ∈ X there exists y ∈ E such that dn(x, y) < ε. Let span(n, f, ε) be the minimum
cardinality of any (n, f, ε)-spanning subset of X. By the compactness of X, sep(n, f, ε),
span(n, f, ε) and cov(n, f, ε) are finite real numbers.

Definition 3.1 We define the lower metric mean dimension of (X, f, d) and the upper
metric mean dimension of (X, f, d) by

mdimM(X, f, d) = lim inf
ε→0

sep(f, ε)
| log ε| and mdimM(X, f, d) = lim sup

ε→0

sep(f, ε)
| log ε| ,

respectively, where sep(f, ε) = lim sup
n→∞

1
n

log sep(n, f, ε).

It is not difficult to see that

mdimM(X, f, d) = lim inf
ε→0

span(f, ε)
| log ε| = lim inf

ε→0

cov(X, ε)

| log ε| ,

where span(f, ε) = lim sup
n→∞

1
n

log span(n, f, ε) and cov(f, ε) = lim sup
n→∞

1
n

log cov(n, f, ε).

This fact holds for the upper metric mean dimension. We will write mdimM(X, f, d) to refer
to both mdimM(X, f, d) and mdimM(X, f, d).

Topological entropy for non-autonomous dynamical systems is invariant under uniform
equiconjugacy (see [8] and [15]). Metric mean dimension for single dynamical systems
depends on the metric d on X. Consequently, it is not an invariant under conjugacy and
therefore it is not an invariant under uniformly equiconjugacy between non-autonomous
dynamical systems. Set

B = {ρ : ρ is a metric on X equivalent to d}
and take

mdimM(X, f ) = inf
ρ∈B mdimM(X, f, ρ). (3.1)

For single maps, mdimM(X, φ) is an invariant under topological conjugacy. In Proposi-
tion 6.1 we will prove an analogous result for non-autonomous dynamical systems.
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Remark 3.2 It follows from the definition of the topological entropy for non-autonomous
dynamical systems introduced in [8] that if the topological entropy of the non-autonomous
system (X, f, d) is finite then its metric mean dimension is zero.

Next, we will present some examples of the metric mean dimension for both autonomous
and non-autonomous dynamical systems. In Section 5 we will show more examples.

Take K = N or Z. Consider the metric d̃ on XK defined by

d̃(x̄, ȳ) =
∑

i∈K

1

2|i| d(xi, yi) for x̄ = (xi)i∈K, ȳ = (yi)i∈K ∈ XK. (3.2)

Take X = [0, 1], endowed with the metric d(x, y) = |x − y| for x, y ∈ X. In

[12], Example E, is proved that mdim
(
XZ, σ, d̃

)
= 1. Analogously, we can prove that

mdim
(
XN, σ, d̃

)
= 1 :

Lemma 3.3 Take X = [0, 1] endowed with the metric d(x, y) = |x −y| for x, y ∈ X. Thus

mdim
(
XN, σ, d̃

)
= 1.

Proof Fix ε > 0 and take l = �log(4/ε)�, where �x� = min{k ∈ Z : x ≤ k}. Note that∑
n>l2

−n ≤ ε/2. Consider the open cover of X given by

Ik =
(

(k − 1)ε

12
,
(k + 1)ε

12

)
, for 0 ≤ k ≤ �12/ε�.

Note that Ik has length ε/6. Let n ≥ 1. Next, consider the following open cover of XN:

Ik1 × Ik2 × · · · × Ikn+l
× X × X × · · · , where 0 ≤ k1, k2, . . . , kn+l ≤ �12/ε�.

Each open set has diameter less than ε with respect to the distance d̃n (see (3.2)).
Therefore

cov(n, σ, ε) ≤ (1 + �12/ε�)n+l ≤ (2 + 12/ε)n+1+12/ε.

Hence

cov(σ, ε) = lim
n→∞

log cov(n, σ, ε)

n
≤ lim

n→∞
(n + 1 + 12/ε) log(2 + 12/ε)

n
= log(2+12/ε).

Thus

mdim
(
XN, σ, d̃

)
= lim

ε→∞
cov(σ, ε)

| log ε| ≤ 1.

On the other hand, any two distinct points in the sets
{
(xi)i∈N ∈ XN : xi ∈ {0, ε, 2ε, . . . , �1/ε�ε} for all 0 ≤ i < n

}

have distance ≥ ε with respect to dn. It follows that

cov(n, σ, ε) ≥ (1 + �1/ε�)n ≥ (1/ε)n.

Therefore

cov(σ, ε) ≥ lim
n→∞

log cov(n, σ, ε)

n
= | log ε|.

Hence mdimM

(
XN, σ, d

) = 1.

Next example proves that there exist dynamical systems on the interval with positive
metric mean dimension (see also [17]).
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Example 3.4 Take g : [0, 1] → [0, 1], defined by x �→ |1 − |3x − 1||, and 0 = a0 < a1 <

· · · < an < · · · , where an = ∑n
k=16/π2k2 for n ≥ 1. For each n ≥ 1, let Tn : Jn :=

[an−1, an] → [0, 1] be the unique increasing affine map from Jn (which has length 6/π2n2)
onto [0, 1] and take any strictly increasing sequence of natural numbers mn. Consider the
continuous map φ : [0, 1] → [0, 1] such that, for each n ≥ 1, φ|Jn = T −1

n ◦ gmn ◦ Tn.
Fix n ≥ 1. Note that Jn can be divided into 3mn intervals with the same length Jn(1), . . . ,

Jn(3mn), such that

φ(Jn(i)) = Jn for each i ∈ {
1, . . . , 3mn

}
.

Next, Jn(i) can be divided into 3n intervals with the same length Jn(i, 1), . . . , Jn (i, 3n)

such that
φ2(Jn(i, s)) = Jn for i = 1, . . . , 3n and s = 1, . . . , 3n.

Inductively, we can prove that for all k ≥ 1 and (i1, . . . , ik), where ij ∈ {1, . . . , 3n},
we can divide Jn(i1, . . . , ik) into 3n intervals with the same length Jn(i1, . . . , ik, 1), . . . ,

Jn (i1, . . . , ik, 3n) such that

φk+1(Jn(i1, . . . , ik, i)) = Jn for i = 1, . . . , 3n.

Each Jn(i1, . . . , ik) has length |Jn|/3kn for each k ≥ 1. Furthermore, each Jn(i1, . . . , ik)

has length |Jn|/3kmn for each k ≥ 1.
Take εn = |Jn|/3mn = 3/π2n23mn for each n ≥ 1. If x ∈ Jn(i1, . . . , ik) and y ∈

Jn(j1, . . . , jk) where (i1, . . . , ik) �= (j1, . . . , jk) and each i1, . . . , ik, j1, . . . , jk is odd, then

dn+k(x, y) ≥ εn.

For each k ≥ 1, there are more than (3mn/2)k intervals Jn(i1, . . . , ik) with is odd, s =
1, . . . , k. Hence sep(n + k, φ, εn) ≥ (3mn/2)k and then

sep(φ, εn) ≥ lim
k→∞

log sep(n + k, φ, εn)

k
≥ log(3mn/2).

Therefore

mdimM([0, 1], φ, | · |) ≥ lim
n→∞

log(3mn/2)

− log εn

= lim
n→∞

log(3mn/2)

− log(3/π2n23mn)

= lim
n→∞

log(3mn) + log 2

log(π2n2/3) + log(3mn)
= 1,

hence mdimM([0, 1], φ, | · |) ≥ 1. We will obtain from Proposition 5.4 that
mdimM([0, 1], φ, | · |) ≤ 1. Therefore mdimM([0, 1], φ, | · |) = 1.

Since φ(0) = 0 and φ(1) = 1, the map φ induces a continuous map on S
1 with metric

mean dimension equal to 1. More generally, we have:

Proposition 3.5 Take X = [0, 1] or S1. For each a ∈ [0, 1], there exists φa ∈ C0(X) with
mdimM(φa) = a.

Proof Any constant map has metric mean dimension equal to 0. On the other hand, Example
3.4 proves that there exist continuous maps on X with metric mean dimension equal to 1.
Fix a ∈ (0, 1) and take r = 1

a
. Set a0 = 0 and an = ∑n

i=1C
(
3−ir

)
for n ≥ 1, where C =

1/
∑∞

i=13−ri = 1/(3r − 1). For each n ≥ 1, take Jn, Tn and g as in Example 3.4. Consider
the continuous map φa : [0, 1] → [0, 1] such that, for each n ≥ 1, φa |Jn = T −1

n ◦ gn ◦ Tn

(note that φa(0) = 0 and φa(1) = 1, consequently φa induces a continuous map on S
1). Fix
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n ≥ 1. Each Jn can be divided into 3n intervals with the same length Jn(1), . . . , Jn(3n),
such that

φa(Jn(i)) = Jn for each i ∈ {1, . . . , 3n}.
Next, Jn(i) can be divided into 3n intervals with the same length Jn(i, 1), . . . , Jn (i, 3n)

such that
φ2

a(Jn(i, s)) = Jn for i = 1, . . . , 3n and s = 1, . . . , 3n.

Inductively, we can prove that for all k ≥ 1 and (i1, . . . , ik), where ij ∈ {1, . . . , 3n},
we can divide Jn(i1, . . . , ik) into 3n intervals with the same length Jn(i1, . . . , ik, 1), . . . ,

Jn(i1, . . . , ik, 3n) such that

φk+1
a (Jn(i1, . . . , ik, i)) = Jn for i = 1, . . . , 3n.

Each Jn(i1, . . . , ik) has length |Jn|/3kn for each k ≥ 1.
Take εn = |Jn| = C/3rn for each n ≥ 1. Each Jn(i1, . . . , ik) has dk+1-diameter equal to

εn. Consequently, cov(k + 1, φa, εn) ≥ 3nk and then

cov(φa, εn) ≥ lim
k→∞

log cov(k + 1, φa, εn)

k + 1
≥ log 3n.

Therefore

mdimM([0, 1], φa, | · |) ≥ lim
n→∞

log 3n

− log εn

= lim
n→∞

log 3n

− log(C/3nr )
= lim

n→∞
log 3n

log 3nr

= lim
n→∞

n log 3

nr log 3
= 1

r
= a.

On the other hand, fix n ≥ 1. Let m ≥ n be such that
∑∞

i=m C
(
3−ir

)
< εn. Therefore

cov
(∪∞

i=mJi, k, φa, εn

) = 1 for any k ≥ 1. (3.3)

Note that for each k ≥ 1 and (i1, . . . , ik), where ij ∈ {1, . . . , 3n}, the subintervals
Jn(i1, . . . , ik) have diameter less than εn with the metric dk for any k ≥ 1. Consequently,
we have

cov(Jn, k, φa, εn) ≤ (
3n

)k for any k ≥ 1. (3.4)

For each i ∈ {1, . . . , n − 1}, divide each interval Ji into (3n)k+1�|Ji |/|Jn|� subintervals
with the same length, where �x� = min{j ∈ Z : x ≤ j}. Each subinterval has dk-diameter
less than εn, thus

cov
(
∪n−1

i=1 Ji, k, φa, εn

)
≤

n−1∑

i=1

(
3n

)k+1 �|Ji |/|Jn|�. (3.5)

For i ∈ {n + 1, . . . , m − 1}, each Ji has dk-diameter less than εn, thus

cov
(
∪m−1

i=n+1Ji, k, φa, εn

)
≤ m − n − 1 for any k ≥ 1. (3.6)

By (3.3)–(3.6), we have

cov(φa, εn) ≤ lim
k→∞

log
[
1 + (3n)k + ∑n−1

i=1 (3n)k+1 �|Ji |/|Jn|� + m − n − 1
]

k − 1

≤ lim
k→∞

log
[(∑n−1

i=1 �|Ji |/|Jn|� + m − n + 1
)

(3n)k+1
]

k − 1
= lim

k→∞
log(3n)k+1

k − 1
= log

(
3n

)
.
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Hence

mdimM([0, 1], φa, | · |) ≤ lim
n→∞

log(3n)
− log εn

= lim
n→∞

log(3n)
log(3rn)

= lim
n→∞

n log(3)
(rn) log(3)

= a.

Therefore mdimM([0, 1], φa, | · |) = a.

Example 3.6 Let X = {0, 1}N with its usual metric and consider f = (fn)
∞
n=1, where

fn : {0, 1}N → {0, 1}N is given by fn(ω) = σ 2n
(ω), for any n ∈ N. Note that f

(n)
1 (ω) =

σ 2n+1−2(ω). We claim that mdimM(X, f, d) = ∞. Fix ε > 0. Take a positive integer k

so that 2−(k+1) ≤ ε < 2−k . Now consider A ⊂ {0, 1}N a (2n+1 − 2, ε)-separated set for
the shift map σ of maximum cardinality and note that A is an (n, ε)-separated set for f.
Therefore, sep(n, f, ε) ≥ 22n+1−2+k and then

log sep(n, f, ε)
n log ε

≥ (2n+1−2+k) log 2
nk

.

Hence, by the definition of the upper metric mean dimension, we have

mdimM(X, f, d) = lim sup
ε→0

lim sup
n→∞

log sep(n, f, ε)
n| log ε| = ∞.

In [19], Zhu, Liu, Xu, and Zhang showed that if X is a k-dimensional Riemannian mani-
fold and f = (fn)

∞
n=1 is a sequence of C1-maps on X such that an = sup

x∈M

‖Dxfn‖ < ∞ for

all n ∈ N, then

htop(f ) ≤ max

{

0, lim sup
n→∞

k

n

n−1∑

i=1

log ai

}

.

Hence, by Remark 3.2, we have:

Proposition 3.7 If lim supn→∞ k
n

∑n−1
i=1 log ai < ∞, we have mdimM(M, f, d) = 0.

Any sequence of homeomorphisms on both the interval or the circle has zero topological
entropy (see [8], Theorem D). Therefore, the metric mean dimension of any f on both the
interval or the circle is equal to zero. In the next example we will see that there exist non-
autonomous dynamical systems consisting of diffeomorphisms on a surface with infinite
metric mean dimension.

Example 3.8 Let φ : T2 → T
2 be the diffeomorphism induced by a hyperbolic matrix A

with eigenvalue λ > 1, where T
2 is the torus endowed with the metric d inherited from

the plane. Consider f = (fn)
∞
n=1 where fn = φ2n

for each i ≥ 1. We have |Fix(φn)| =
λn +λ−n −2, where Fix(ψ) is the set consisting of fixed points of a continuous map ψ (see
[5], Proposition 1.8.1). Furthermore,

sep(n, f, 1/4) ≥ sep
(
2n, φ, 1/4

) ≥ Fix
(
φ2n

)
= λ2n + λ−2n − 2

(see [5], Chapter 3, Section 2.e). Therefore,

lim
n→∞

sep(n, f, 1/4)

n
≥ lim

n→∞
log λ2n

n
= ∞,

and hence mdimM

(
T

2, f, d
) = ∞.
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Suppose the Hausdorff dimension of X is finite. Let f = (fn)
∞
n=1 be a non-autonomous

dynamical system where each fn is a Cr -map on X. We have that if htop(f ) < ∞ then
mdimM(X, f, d) = 0. Therefore, if supn∈N L(fn) < ∞, where L(fn) is the Lipschitz
constant of fn, we have that htop(f ) < ∞ and hence mdimM(X, f, d) = 0. Thus if
supn∈N L(fn) < ∞, then mdimM(X, f, d) = 0. In particular, if X is a compact Riemannian
manifold and f = (fn)

∞
n=1 is a sequence of differentiable maps that supn∈N ‖Dfn‖ < ∞,

where Dfn is the derivative of fn, we have that htop(f ) < ∞ and hence mdimM(X, f, d) =
0.

4 Some Fundamental Properties of the Metric Mean Dimension

In this section we show some properties which are well-known for topological entropy and
metric mean dimension for dynamical systems. In the next proposition we will consider
f (p), which was defined in Definition 2.3.

It is well-known that htop(f (p)) ≤ p htop(f ) and if the sequence (fn)
∞
n=1 is equicon-

tinuous, then the equality holds (see [8], Lemma 4.2). For the case of the metric mean

dimension, we always have that mdimM

(
X, f (p), d

)
≤ p mdimM(X, f, d). However we

will present an example where the inequality can be strict even for single continuous maps
(see Remark 4.2).

Proposition 4.1 For any f = (fn)
∞
n=1 and p ∈ N, we have

mdimM

(
X, f (p), d

)
≤ p mdimM(X, f, d).

Consequently (see (3.1)),

mdimM

(
X, f (p)

)
≤ p mdimM(X, f ).

Proof Note that, for any positive integer m, we have

max
0≤j<m

d
(
f

(jp)

1 (x), f
(jp)

1 (y)
)

≤ max
0≤j<mp

d
(
f

(j)

1 (x), f
(j)

1 (y)
)

.

Thus span
(
m, f (p), ε

)
≤ span(mp, f, ε) and therefore

span
(

f(p), ε
)

= lim sup
m→∞

1

m
log span

(
m, f(p), ε

)
≤ p lim sup

m→∞
1

mp
log span(m, f, ε) = p span(f, ε).

Hence mdimM

(
X, f (p), d

)
≤ p mdimM(X, f, d).

Remark 4.2 In Example 3.4 we prove that there exists a continuous map φ : [0, 1] → [0, 1]
such that mdimM([0, 1], φ, d) = 1, where d(x, y) = |x − y| for x, y ∈ [0, 1]. It follows

from Proposition 5.4 that for any f : [0, 1] → [0, 1] we have mdimM([0, 1], f, d) ≤ 1.
Consequently, mdimM([0, 1], φn, d) ≤ 1 for any n ≥ 1, which proves that the inequality
in Proposition 4.1 can be strict for autonomous systems and therefore for non-autonomous
systems.

If A,B ⊆ X are invariant subsets under a continuous map φ, then

htop(φ) = max{htop(φ|A), htop(φ|B)}.
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It is clear this property is also valid for the metric mean dimension.

Proposition 4.3 If A,B ⊆ X are invariant subsets under φ, then

mdimM(X, φ, d) = max{mdimM(X, φ|A, d), mdimM(X, φ|B, d)}.

If A1, A2, . . . is a sequence of invariant subsets under φ, then

max
n∈N

{mdimM(X, φ|An, d)} ≤ mdimM(X, φ, d).

Example 3.4 proves that the inequality can be strict (the sets J1, J2, . . . are invariant
under φ, however mdimM(X, φ|Jn , d) = 0 for each n).

Metric mean dimension can be defined on any subset A of X. Kolyada and Snoha in [8],
Lemma 4.1, proved that if X = ∪n

i Ai , then

htop(f ) = max
i=1,...,n

htop

(
f |Ai

)
.

Analogously we can prove that:

Proposition 4.4 If X = ∪n
i Ai , then

mdimM(X, f , d) = max
i=1,...,n

mdimM(X, f |Ai
, d).

Definition 4.5 We say that x ∈ X is a nonwandering point for f if for every neighborhood
U of x there exist positive integers k and n with f

(k)
n (U) ∩ U �= ∅. We denote by 
(f ) the

set consisting of the nonwandering points of f.

It is well-known that for any continuous map φ : X → X we have htop(φ) =
htop(φ|
(φ)). This fact was proved for non-autonomous dynamical systems by Kolyada
and Snoha in [8]. For mean dimension of single continuous maps this fact was proved by
Gutman in [3], Lemma 7.2. For the metric mean dimension of non-autonomous dynamical
systems we also have:

Theorem 4.6 We have

mdimM(X, f, d) = mdimM(
(f ), f, d).

Proof It is clear that mdimM(X, f, d) ≥ mdimM(
(f ), f, d). Fix ε > 0 and n ∈ N. Let
α be an open (n, f, ε)-cover of X with minimum cardinality. Take β a minimal finite open
subcover of 
(f ), chosen from α (note that β is an (n, f, ε)-cover of 
(f )). By the mini-
mality of α we have that β is an (n, f, ε)-cover of 
(f ) with minimum cardinality, which
we denote by cov(
(f ), n, f, ε), i.e., Card(β) = cov(
(f ), n, f, ε).

The set K = X\ ⋃
U∈β U is compact and consists of wandering points. We can cover K

by a finite number of wandering subsets, each of them contained in some element of α. The
sets defined before together with β form a finite open cover γ (n) = γ of X, finer than α.

Consider, for each k, the open cover γ
(
k, f(n)

)
associated with the sequence f(n). Note that

each element of γ
(
k, f(n)

)
is of the form

A0∩
(
f

(n)
1

)−1
(A1)∩

(
f

(n)
1

)
◦
(
f

(n)
n+1

)−1
(A2)∩· · ·∩

(
f

(n)
1

)−1◦· · ·◦
(
f

(n)
(k−2)n+1

)−1
(Ak−1),
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where Ai ∈ γ , for i = 0 . . . , k − 1. It implies that γ
(
k, f(n)

)
is a

(
k, f(n), ε

)
-cover of X.

Let Ai and Aj be non-empty open sets of γ
(
k, f(n)

)
for some i < j . If Ai = Aj , then

(
f

(n)
(j−1)n+1 ◦ · · · ◦ f

(n)
in+1

)
(Ai) = f

(j−i)n

in+1 (Ai)

intersects Ai = Aj . In that case Ai does not contain non-wandering points for f (and hence

Ai ∈ β). Now we estimate the number of elements of γ
(
k, f(n)

)
. Setting

j := Card{Ai : i = 0, 1, . . . k − 1} and m := Card(γ
(
k, f(n)

)
\β),

we have 0 ≤ j ≤ m. In this case we have

(
m

j

)
possibilities of the choice of a j -element

subset of γ
(
k, f(n)

)
\β and then these sets can appear as various A′

is in k · (k − 1) · · · (k −
j + 1) = k!/(k − j)! ways. For the rest of A′

is we can choice any element of β. So, the

number of elements of γ
(
k, f(n)

)
is bounded by

m∑

j=0

(
m

j

)
k!

(k − j)! · (Card(β))k−j .

Since k!/(k − j)! ≤ km and

(
m

j

)
≤ m!, this number is not larger than (m + 1) · m! ·

km · (Card(β))k . Thus, using the fact that cov
(
k, f(n), ε

)
≤ Card

(
γ

(
k, f(n)

))
, we have

lim sup
k→∞

1

k
log cov

(
k, f(n), ε

)
≤ lim sup

k→∞
1

k
log(m + 1) · m! · km · (Card(β))k = log(Card(β)).

As

lim sup
k→∞

1

k
log cov

(
k, f(n), ε

)
= n lim sup

k→∞
1

k
log cov(k, f, ε),

it follows that

lim sup
k→∞

1

k
log cov(k, f, ε) ≤ 1

n
log cov(
(f ), n, f, ε).

Taking the limsup as n → ∞ we obtain

cov(f, ε) ≤ lim sup
n→∞

1

n
log cov(
(f ), n, f, ε) := cov(
(f ), f, ε).

So,

mdimM(X, f, d) = lim inf
ε→0

cov(f,ε)
| log ε| ≤ lim inf

ε→0

cov(
(f ),f,ε)
| log ε| = mdimM(
(f ), f, d),

which proves the theorem.

Definition 4.7 A continuous map ψ : X → Y will be called α-compatible if it is possible
to find a finite open cover β of ψ(X) such that ψ−1(β) 
 α.
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Lindenstrauss and Weiss in [11], Theorem 4.2, proved that for any metric d compatible
with the topology of X, we have

mdim(X, φ) ≤ mdimM(X, φ, d)

for any continuous map φ : X → X. These ideas work in order to show the non-autonomous
case: metric mean dimension is an upper bound for the mean dimension of non-autonomous
dynamical systems. We will need the next proposition, whose proof can be found in [11],
Proposition 2.4.

Proposition 4.8 If α is an open cover of X, then D(α) ≤ k if and only if there exists an
α-compatible continuous map ψ : X → K , where K has topological dimension k.

Theorem 4.9 For any metric d on X compatible with the topology of X we have that

mdim(X, f ) ≤ mdimM(X, f, d).

Proof Let α be an open cover of X. We can assume that α is of the form

α = {U1, V1} ∨ · · · ∨ {U�, V�},
where each {Ui, Vi} is an open cover of X with two elements. For each 1 ≤ i ≤ � define
ωi : X → [0, 1] by

ωi(x) = d(x,X\Vi)

d(x,X\Ui) + d(x,X\Vi)
.

It is not difficult to see that ωi is Lipschitz, Ui = ω−1
i ([0, 1)) and Vi = ω−1

i ((0, 1]).
Let C be a common bound for the Lipschitz constants of all ωi . For each positive integer

N define F(N, ·) : X → [0, 1]�N by

F(N, x) = (ω1(x), . . . , ω�(x), ω1(f1(x)), . . . , ω�(f1(x)), . . . , ω1

(
f

(N)
1 (x)

)
, . . . , ω�

(
f

(N)
1 (x))

)
.

As Ui = ω−1
i ([0, 1)) and Vi = ω−1

i ((0, 1]) we have that F(N, ·) 
 αN−1
0 .

Now for each S ⊂ {1, . . . , �N}, for x ∈ X, denote by F(N, x)S the projection of
F(N, x) to the coordinates of the index set S.

Claim Let ε > 0 and D = mdimM(X, f, d). There exists N(ε) > 0 so that, for all N >

N(ε) there exists ξ ∈ (0, 1)�N which satisfies

ξS /∈ F(N,X)S,

for any subset S ⊂ {1, . . . , �N} that satisfies |S| > (D + ε)N .

Proof Let δ > 0 such that

δ <
(

2�(2C)2D
)−2ε

and
sep(f, δ)

log δ
= mdimM(X, f, d) + ε

4
.

We notice that for N sufficiently large we can cover X by δ−(D+ε/2)N dynamical balls
B(x, N, δ) = {y ∈ X : dN(x, y) < δ}. Since C is the common Lipschitz constant for all
ωi , we conclude that

F(N,B(x, N, δ)) ⊂ {a ∈ [0, 1]�N : ‖F(N, x) − a‖∞ < Cδ},
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where ‖(a1, . . . , a�N ) − (b1, . . . , b�N )‖∞ = supi |ai − bi |. This fact implies that F(N,X)

can be covered by δ−(D+ε/2)N balls in the ‖ · ‖∞ norm of radius Cδ. Let B(1), . . . , B(K)

be these balls, with K = δ−(D+ε/2)N .
Choose ξ ∈ [0, 1]�N with uniform probability and notice that

P(ξ ∈ F(N,X)S) ≤
K∑

j=1
P(ξ ∈ B(j)S) ≤ δ−(D+ε/2)N (2Cδ)|S|,

and so

P(∃S : |S| > (D + ε)N and ξS ∈ F(N,X)S) ≤
∑

|S|>(D+ε)N

P(ξS ∈ F(N,X)S)

≤ (� of such S)δ−(D+ε/2)N (2Cδ)D+εN

≤ 2�N
(
(2C)2Dδε/2

)N � 1.

Hence, with high probability, a random ξ will satisfy the requirements.

Claim If π : F(N,X) → [0, 1]�N satisfies for both a = 0 and a = 1, and all ξ ∈ [0, 1]�N ,

{1 ≤ k ≤ �N : ξk = a} ⊂ {1 ≤ k ≤ �N : π(ξ)S = a},
then π ◦ F(N,X) is compatible with αN−1

0 .

Proof Given ξ ∈ [0, 1]�N , define for 0 ≤ j < N and 1 ≤ i < �

Wi,j =

⎧
⎪⎨

⎪⎩

(
f

(j)

1

)−1
(Ui), if ξj�+i = 0,

(
f

(j)

1

)−1
(Vi), otherwise.

By the definition of Wi,j we have that (π ◦ F(N, ·))−1(ξ) ⊂ ⋂

1≤i≤�,0≤j<N

Wi,j ∈ αN−1
0 .

It follows that π ◦ F(N,X) is compatible with αN−1
0 .

For a fixed ε > 0, consider ξ̄ and N as in the first Claim. Set

� =
{
ξ ∈ [0, 1]�N : ξk = ξ̄k for more than (D + ε)N indexes k

}
.

Then, F(N,X) ⊂ �C = [0, 1]�N\�.
Now, for each m = 1, 2, . . . , denote by Jm the set

Jm =
{
ξ ∈ [0, 1]�N : ξi ∈ {0, 1} for at least m indexes 1 ≤ i ≤ �N

}
.

Since ξ̄ is in the interior of [0, 1]�N , one can define π1 : [0, 1]�N\{ξ̄} → J1 by mapping
each ξ to the intersection of the ray starting at ξ̄ and passing through ξ and J1. For each of
the (�N − 1)-dimensional cubes I t that comprises J1 we can define a retraction on I t in
a similar fashion using as a center the projection of ξ̄ on I t . This will define a continuous
retraction π2 of �C onto J2. As long as there is some intersection of � with the cubes in
Jm this process can be continued, thus we finally get a continuous projection π of �C onto
Jm0 , a space of topological dimension equals to m0, with

m0 ≤ �D + ε�N + 1,
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where �x� = max{k ∈ Z : k ≤ x}. By construction, π satisfies the hypotheses of the second
claim. Thus π ◦F(N, ·) 
 αN−1

0 . Moreover, since F(N,X) ⊂ �C , we have π(F (N,X)) ⊂
Jm0 .

Putting all together, we have constructed a αN−1
0 compatible function from X to a space

of topological dimension less or equal to �D + ε�N + 1, and so

D
(
αN−1

0

)

N
≤ �D + ε�N + 1

N
.

As ε goes to zero we get that mdim(X, f ) ≤ D.

The inequality in the theorem above can be strict for single maps and therefore for non-
autonomous dynamical systems. In [10], Theorem 4.3, is proved that if a continuous map
φ : X → X is an extension of a minimal system, then there is a metric d ′ on X, equivalent
to d , such that

mdim(X, φ) = mdimM(X, φ, d ′).

5 Upper Bound for the Metric Mean Dimension

As we saw in Remark 2.2, we have mdim
(
XK, σ

) ≤ dim(X), where K = Z or N. Fur-
thermore, if X = I k , then mdim

(
XZ, σ

) = k. In this section we will prove that the metric
mean dimension of the shift on XK is equal to the box dimension of X with respect to the
metric d , which will be defined below. This fact implies that the metric mean dimension of
any continuous map φ : X → X is less or equal to the box dimension of X with respect to
the metric d (see Proposition 5.4).

Definition 5.1 For ε > 0, let N(ε) be the minimum number of closed balls of radious ε

needed to cover X. The numbers

dimB(X, d) = lim sup
ε→∞

log N(ε)

| log ε| and dimB(X, d) = lim inf
ε→∞

log N(ε)

| log ε|
are called, respectively, the upper Minkowski dimension (or upper box dimension) of X and
the lower Minkowski dimension (or lower box dimension) of X, with respect to d .

For any metric space (X, d) we have

dim(X) ≤ dimH (X, d) ≤ dimB(X, d),

where dimH (X, d) is the Hausdorff dimension of X with respect to d (see [6], Section II,
A). If X = [0, 1], then dim(X) = dimH (X, d) = dimB(X, d) = 1. However, there exist
sets such that the inequalities above can be strict, as we will see in the next example, which

also proves that neither dim(X) nor dimH (X, d) are upper bounds for mdimM

(
XZ, σ, d̃

)
.

Example 5.2 Let A = {0} ∪ {1/n : n ≥ 1} endowed with the metric d(x, y) = |x − y|
for x, y ∈ A. In [6], Lemma 3.1, is proved that dimH (A) = 0 while dimB(A) = 1/2.
Furthermore, we have

mdimM

(
AZ, σ, d̃

)
= dimB(A) = 1/2

(see [12], Section VII).
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Using the Classical Variational Principle, in [17], Theorem 5, the authors claim to have
proven that for any (X, d)

mdimM

(
XZ, σ, d̃

)
= dimB(X, d).

This fact can be proved generalizing the ideas given in [12], Example E:

Theorem 5.3 For K = Z or N we have

mdimM

(
XK, σ, d̃

)
= dimB(X, d) and mdimM

(
XK, σ, d̃

)
= dimB(X, d).

Proof We will prove the case K = Z (the case K = N can be proved analogously as in
Lemma 3.3). Fix ε > 0 and take l big enough such that

∑
n>l2

−ndiam(X) ≤ ε/2. Let
m = N(ε) be the minimum number of closed ε-balls X1, . . . , Xm needed to cover X.
Consider the open cover of XZ given by the open sets

· · ·×X×Xk−l
×Xk−l+1 ×· · ·×Xkn+l

×X×· · · , where 1 ≤ k−l , k−l+1, . . . , kn+l ≤ m.

Note that each one of these open sets has diameter less than 4ε with respect to the distance
d̃n on XZ. Therefore cov(n, σ, 4ε) ≤ mn+2l+1 and hence

cov(σ, 4ε) = lim
n→∞

log cov(n, σ, 4ε)

n
≤ lim

n→∞
(n + 2l + 1) log(m)

n
= log N(ε),

which implies that

mdimM

(
XZ, σ, d̃

)
= lim sup

ε→∞
cov(σ, 4ε)

| log 4ε| ≤ lim sup
ε→∞

log N(ε)

| log 4ε| = lim sup
ε→∞

log N(ε)

| log 4 + log ε| = dimB(X, d)

and

mdimM

(
XZ, σ, d̃

)
= lim inf

ε→∞
cov(σ, 4ε)

| log 4ε| ≤ dimB(X, d),

To prove the converse inequality, for ε > 0 let {x1, x2, . . . , xN(ε)} be a maximal set of
points in X which are ε-separated. For n ≥ 1, consider the set

{
(yi)i∈Z ∈ XZ : yi ∈ {

x1, x2, . . . , xN(ε)

}
for all − l ≤ i ≤ n + l

}

and notice that it is (σ, n, ε)-separated and its cardinality is bounded from below by
N(ε)n+2l+1. So

sep(σ, ε) ≥ lim
n→∞

log N(ε)n+2l+1

n
= log N(ε),

and it implies that

mdimM

(
XZ, σ, d̃

)
≥ dimB(X, d),

which proves the theorem.

Next proposition proves the metric mean dimension of any dynamical system is bounded
by the box dimension of the space (see [17], Remark 4).

Proposition 5.4 For any continuous map φ : X → X we have

mdimM(X, φ, d) ≤ dimB(X, d) and mdimM(X, φ, d) ≤ dimB(X, d).

In particular, if X = [0, 1], then

mdimM(X, φ, d) ≤ mdimM(X, φ, d) ≤ 1.
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Proof Consider the embedding ψ : X → XN, defined by x �→ ψ(x) =(
x, φ(x), φ2(x), . . .

)
. We have σ ◦ ψ = ψ ◦ φ. Therefore, Y = ψ(X) is a closed subset of

XN invariant by σ . Take the metric dψ on X defined by dψ(x, y) = d̃(ψ(x), ψ(y)), for any
x, y ∈ X. Clearly d(x, y) ≤ dψ(x, y) for any x, y ∈ X, therefore any (n, φ, ε)-separated
subset of X with respect to d is a (n, φ, ε)-separated subset of X with respect to dψ . Hence

mdimM(X, φ, d) ≤ mdimM(X, φ, dψ) = mdimM

(
Y, σ |Y , d̃

)
≤ mdimM

(
XN, σ, d̃

)
≤ dimB(X, d)

and, analogously, mdimM(X, φ, d) ≤ dimB(X, d).

Example 3.4 proves that there exist dynamical systems φ : X → X such that

mdimM(X, φ, d) = dimB(X, d) and mdimM(X, φ, d) = dimB(X, d).

We can consider the asymptotic metric mean dimension as the limit

mdimM(X, f, d)∗ = lim sup
i→∞

mdimM

(
X, σ i(f ), d

)
.

Theorem 5.5 If f = (fn)
∞
n=1 converges uniformly to a continuous map f : X → X, then,

for any k ≥ 1,

mdimM

(
X, σk(f ), d

)
≤ mdimM(X, f, d). (5.1)

Consequently,
mdimM(X, f, d)∗ ≤ mdimM(X, f, d).

Proof See the proof of Theorems 2.8 and use 4.6.

We can prove, as in Example 2.9, that the inequality above can be strict.
Theorem 5.5 and Proposition 5.4 imply that:

Corollary 5.6 If f = (fn)
∞
n=1 converges uniformly to a continuous map on X, then

mdimM(X, f, d) ≤ dimB(X, d) and mdimM(X, f, d) ≤ dimB(X, d).

and therefore

mdimM(X, f, d)∗ ≤ dimB(X, d) and mdimM(X, f, d)∗ ≤ dimB(X, d).

In particular, if X = [0, 1], then mdimM(X, f, d)∗ ≤ 1.

Example 3.6 proves that the box dimension is not an upper bound for the metric mean
dimension of sequences that are not convergent. Next example shows the inequality in
Corollary 5.6 can be strict.

Example 5.7 For each n ≥ 1, take mn = n and

fn(x) =
{

φ(x), if x ∈ [0, an+1],
an+1, if x ∈ [an+1, 1],

where φ is the map in Example 3.4. Thus fn converges uniformly to φ as n → ∞. In [8],
Figure 3, is proved that the topological entropy htop

(
(fn+k)

∞
n=1

) = k log 3 for each k ≥ 1.
Hence, mdimM([0, 1], (fn+k)

∞
n=1, | · |) = 0 and therefore

mdimM([0, 1], (fn)
∞
n=1, | · |)∗ = 0 < mdimM([0, 1], φ, | · |) = 1.
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Example 5.8 The sequence

gn(x) =
{

φ(x), if x ∈ [0, an+1],
x, if x ∈ [an+1, 1].

converges uniformly to φ as n → ∞, where φ is the map in Example 3.4. Note that
g

(n+k)
1 |Jn = φk|Jn , for n ≥ 1, k ≥ 1 (see Example 3.4). Hence

sep
(
2n + k, (gi)

∞
i=1, εn

) ≥ (3mn/2)k, and then sep
(
(gi)

∞
i=1, εn

) ≥ log(3mn/2).

Therefore mdimM([0, 1], (gi)
∞
i=1, | · |) ≥ 1. By (5.1) we obtain that mdimM([0, 1],

(gi)
∞
i=1, | · |) = 1. Note that mdimM([0, 1], gi, | · |) = 0 for any i ≥ 1.

6 Uniform Equiconjugacy and Metric Mean Dimension

We say that the systems f = (fn)
∞
n=1 on (X, d) and g = (gn)

∞
n=1 on

(
Y, d ′) are uniformly

equiconjugate if there exists a equicontinuous sequence of homeomorphisms hn : X → Y

so that hn+1 ◦ fn = gn ◦ hn, for all n ∈ N, that is, the following diagram

is commutative for all n ∈ N. In the case where hn = h, for all n ∈ N, we say that f and g
are uniformly conjugate.

Note that the notion of uniform equiconjugacy does not depend on the metric on X and
Y . Indeed, if d∗ and d� are another metrics on X and Y , respectively, then (X, f, d) and
(X, f, d∗) are uniformly equiconjugate by the sequence (IX)∞n=1 and (Y, g, d ′) and (Y, g, d�)

are uniformly equiconjugate by the sequence (IY )∞n=1. Hence, if (X, f, d) and (Y, g, d ′)
are uniformly equiconjugate by the sequence (hn)

∞
n=1, then (X, f, d∗) and (Y, g, d�) are

uniformly equiconjugate by the sequence (IY ◦ hn ◦ IX)∞n=1.

Theorem 6.1 Let f = (fn)
∞
n=1 and g = (gn)

∞
n=1 be two non-autonomous dynamical systems

defined on the metric spaces (X, d) and
(
Y, d ′) respectively.

(i) If f and g are uniformly conjugate then

mdim(X, f ) = mdim(X, g).

(ii) If (X, f ) and (Y, g) are uniformly equiconjugate by a sequence of homeomorphisms
(hn)

∞
n=1 that satisfies infn

{
d

(
h−1

n (y1), h
−1
n (y2)

)}
> 0 for any y1, y2 ∈ Y , then (see

(3.1))

mdimM(X, f ) ≥ mdimM(Y, g).

(iii) If (X, f ) and (Y, g) are uniformly equiconjugate by a sequence of homeomorphisms
(hn)

∞
n=1 that satisfies infn

{
d ′(hn(x1), hn(x2))

}
> 0 for any x1, x2 ∈ X, then

mdimM(X, f ) ≤ mdimM(Y, g).

(iv) If (X, f ) and (Y, g) are uniformly equiconjugate by a sequence of homeomorphisms
(hn)

∞
n=1 that satisfies infn

{
d

(
h−1

n (y1), h
−1
n (y2)

)
, d ′(hn(x1), hn(x2))

}
> 0 for any
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y1, y2 ∈ Y and x1, x2 ∈ X, then

mdimM(X, f ) = mdimM(Y, g).

Proof (i) Let h : X → Y be a homeomorphism which conjugates f and g, i.e., h ◦ f
(n)
1 =

g
(n)
1 ◦ h for all n ∈ N. For an open cover α of X, consider β = h(α), which is an open

cover of Y . Now we notice that

βn−1
0 = h(α) ∨ g−1

1 (h(α)) ∨ · · · ∨
(
g

(n−1)
1

)−1
(h(α))

= h(α) ∨
(
h ◦ f −1

1 ◦ h−1
)

(h(α)) ∨ · · · ∨
(

h ◦
(
f

(n−1)
1

)−1 ◦ h−1
)

(h(α))

= h
(
αn−1

0

)
.

It implies that D
(
h

(
αn−1

0

))
= D

(
αn−1

0

)
. Since, for any open cover β of Y is of the

form h(α), for some open cover α of X,

mdim(X, f ) = sup
α

lim
n→∞

D
(
αn−1

0

)

n
= sup

β

lim
n→∞

D
(
βn−1

0

)

n
= mdim(Y, g).

(ii) Let (hn)
∞
n=1 be the sequence of equicontinuous homeomorphisms that equiconjugates

f and g. So,
fn ◦ · · · ◦ f1 = h−1

n+1 ◦ gn ◦ · · · ◦ g1 ◦ h1.

By assumption we have

inf
n

{
d

(
h−1

n (y1), h
−1
n (y2)

)}
> 0, for any y1 �= y2 ∈ Y .

Hence, we can define on Y the metric

d�(y1, y2) := inf
n

{
d

(
h−1

n (y1), h
−1
n (y2)

)}
.

In particular, if S ⊂ X is a (m, f, ε)-spanning set of X in the metric d and x1, x2 ∈ S,
then

d�
m(h1(x1), h1(x2)) = max

{
d�(h1(x1), h1(x2)), . . . , d

�
(
gm−1

1 (h1(x1)), g
m−1
1 (h1(x2))

)}

≤ max
{
d(x1, x2), d

(
h−1

2 (g1(h1(x1))), h
−1
2 (g1(h1(x2)))

)
,

. . . , d
(
h−1

m+1

(
gm−1

1 (h1(x1))
)

, h−1
m+1

(
gm−1

1 (h1(x2))
))}

= dm(x1, x2) ≤ ε.

It follows that h1(S) is an (m, g, ε)-spanning set of Y in the metric d�. So we obtain that

mdimM(X, f, d) ≥ mdimM

(
Y, g, d�

)
,

and therefore mdimM(X, f ) ≥ mdimM(Y, g).
By an analogous argument we can prove (iii). Item (iv) follows from (ii) and (iii).

Clearly the theorem implies that if φ : X → X and ψ : X → X are topologically
conjugate continuous maps, then

mdimM(X, φ) = mdimM(X,ψ),
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which is a well-known fact.
The next corollaries follow from Theorem 6.1.

Corollary 6.2 If f1, . . . , fi, g1, . . . , gi are homeomorphisms, f = (f1, . . . , fi, fi+1,

fi+2, . . . ) and g = (g1, . . . , gi , fi+1, fi+2, . . . ), then

mdimM(X, f ) = mdimM(Y, g).

Proof Note that the following diagram is commutative

where IX is the identity of X and hi = g−1
i ◦ fi , hi−1 = g−1

i−1 ◦ hi ◦ fi−1, . . . ,

h1 = g−1
1 h2f1. Furthermore, (h1, h2, . . . , hi, IX, IX, . . . ) is an equicontinuous sequence

of homeomorphisms. Therefore, f and g are uniformly equiconjugate. The corollary follows
from Theorem 6.1, since the infimum infn

{
d

(
h−1

n (y1), h
−1
n (y2)

)
, d(hn(x1), hn(x2))

}
> 0

is taken over a finite set.

Next corollary means that if f is a sequence of homeomorphisms then the metric mean
dimension is independent on the firsts elements in the sequence f.

Corollary 6.3 Let f = (fn)
∞
n=1 be a non-autonomous dynamical system consisting of

homeomorphisms. For any i, j ∈ N we have

mdimM

(
X, σ i(f )

)
= mdimM

(
X, σ j (f )

)
.

Proof It is sufficient to prove that mdimM

(
X, σ i(f )

) = mdimM(X, f ) for all i ∈ N. Fix
i ∈ N. Take g = (gn)n∈N, where, for each n ≤ i, gn = I is the identity on X and gn = fn

for n > i. It follows from Corollary 6.2 that

mdimM(X, f ) = mdimM(X, g).

For each x, y ∈ X and n > i we have

max
{
d(x, y), . . . , d

(
g

(i−1)
1 (x), g

(i−1)
1 (y)

)
, . . . , d

(
g

(n−1)
1 (x), g

(n−1)
1 (y)

)}

= max
{
d(x, y), d(gi(x), gi(y)), . . . , d

(
g

(n−i)
i (x), g

(n−i)
i (y)

)}

= max
{
d(x, y), d(fi(x), fi(y)), . . . , d

(
f

(n−i)
i (x), f

(n−i)
i (y)

)}
.

Hence
mdimM(X, f ) = mdimM(X, g) = mdimM

(
X, σ i(f )

)
,

which proves the corollary.

Next corollary follows from Corollary 6.3 and Proposition 4.1 (see the proof of Corollary
2.7).

Corollary 6.4 For any homeomorphisms f and g defined on X, we have

mdimM(X, f ◦ g) = mdimM(X, g ◦ f ).
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7 On the Continuity of the Metric Mean Dimension

In this section we will show some results related to the continuity of the metric mean
dimension of sequences of diffeomorphisms defined on a manifold. For any r ≥ 0, set

Cr (X) = {
(fn)

∞
n=1 : fn : X → X is a Cr -map

} =
+∞∏

i=1

Cr (X),

where Cr (X) = {φ : X → X : φ is a Cr -map}.1 Hence Cr (X) can be endowed with the
product topology, which is generated by the sets

U =
j∏

i=1

Cr (X) ×
j+m∏

i=j+1

Ui ×
+∞∏

i>j+m

Cr (X),

where Ui is an open subset of Cr (X), for j +1 ≤ i ≤ j +m, for some j,m ∈ N. The space
Cr (X) with the product topology will be denoted by

(
Cr (X), τprod

)
. We can consider the

map

mdimM : (Cr (X), τprod) → R ∪ {+∞}
f → mdimM(f, X).

Clearly, if mdimM is a constant map, then is continuous.

Proposition 7.1 If mdimM : (Cr (X), τprod) → R ∪ {+∞} is not constant then is
discontinuous at any f ∈ Cr (X).

Proof Fix f = (fn)
∞
n=1 ∈ Cr (X). Since mdimM is not constant, there exists g = (gn)

∞
n=1 ∈

Cr (X) such that mdimM(X, g) �= mdimM(X, f ). Let V ∈ τprod be any open neighborhood
of f. For some k ∈ N, the sequence j = (jn)

∞
n=1, defined by

jn =
{

fn if n = 1, . . . , k

gn if n > k,

belongs to V , by definition of τprod . It is follow from Corollary 6.2 that mdimM(X, j) =
mdimM(X, g). which proves the proposition.

Let d1(·, ·) be a C1-metric on C1(X). Suppose that supn∈N ‖Dfn‖ < ∞. For any K > 0,
if d1(gn, fn) < K , then supn∈N ‖Dgn‖ < ∞ and therefore mdimM(X, g, d) = 0. On the
other hand, if supn∈N ‖Dfn‖ = ∞, then mdimM(X, f, d) is not necessarily zero.

In [15], Section 6, is proved that:

Proposition 7.2 If f = (fn)
∞
n=1 is a sequence of C1-diffeomorphisms, there exists a

sequence of positive numbers (δn)
∞
n=1 such that every sequence of diffeomorphisms g =

(gn)
∞
n=1 with d1(fn, gn) < δn for each n ≥ 1, is uniformly equiconjugate to f by a sequence

(hn)
∞
n=1 such that hn → IX as n → ∞.

Note that, if hn → IX as n → ∞, then for any x1 �= x2 ∈ X and y1 �= y2 ∈ Y we have
infn

{
d

(
h−1

n (y1), h
−1
n (y2)

)
, d(hn(x1), hn(x2))

}
> 0. Hence, it follows from Theorems 6.1

and Proposition 7.2 that

1If r ≥ 1 we assume that X is a Riemannian manifold
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Corollary 7.3 Given a sequence of diffeomorphisms f = (fn)
∞
n=1, there exists a sequence

of positive numbers (δn)
∞
n=1 such that if g = (gn)

∞
n=1 is a sequence of diffeomorphisms such

that d1(fn, gn) < δn for each n ≥ 1, then

mdimM(X, g) = mdimM(X, f ).

Roughly, Corollary 7.3 means that if d1(fn, gn) converges very quickly to zero as n →
∞, then

mdimM(X, f ) = mdimM(X, g).

For each sequence of diffeomorphisms f = (fn)
∞
n=1 and a sequence of positive numbers

ε = (εn)
∞
n=1, a strong basic neighborhood of f is the set

Br(f, ε) = {
g = (gn)

∞
n=1 : gn is a Cr -diffeomorphism and d(fn, gn) < εn, for all n ∈ N

}
.

The strong topology (or Whitney topology) on Cr (X) is generated by the strong basic
neighborhoods of each f ∈ Cr (X). The space Cr (X) with the strong topology will be
denoted by (Cr (X), τstr ).

Corollary 7.4 For r ≥ 1, let Dr (X) ⊆ Cr (X) be the set consisting of diffeomorphisms.
Then

mdimM : (Dr (X), τstr ) → R ∪ {+∞}
is a continuous map.

Proof Let f ∈ Dr (X). If follows from Theorem 7.2 that there exists a strong basic
neighborhood Br(f, (δn)

∞
n=1) such that every g ∈ Br(f, (δn)

∞
n=1) is uniformly equicon-

jugate to f. Thus, from Proposition 6.1 we have mdimM(X, g) = mdimM(X, f ) for all
g ∈ Br(f, (δn)

∞
n=1), which proves the corollary.

A real valued function ϕ : X → R ∪ {∞} is called lower (respectively upper) semi-
continuous on a point x ∈ X if

lim inf
y→x

ϕ(y) ≥ ϕ(x)

(
respectively lim sup

y→x
ϕ(y) ≤ ϕ(x)

)
.

ϕ is called lower (respectively upper) semi-continuous if is lower (respectively upper) semi-
continuous on any point of X.

Remark 7.5 From now on, we will consider X̃ = [0, 1] or S1.

Misiurewicz in [14], Corollary 1, proved that htop : C0([0, 1]) → R ∪ {∞} is lower
semi-continuous. For the case of the metric mean dimension we have:

Proposition 7.6 mdimM : C0
(
X̃

)
→ R is nor lower neither upper semi-continuous on

maps with metric mean dimension in (0, 1). Furthermore, mdimM : C0
(
X̃

)
→ R is not

lower semi-continuous on maps with metric mean dimension in (0, 1] and is not upper
semi-continuous on maps with metric mean dimension in [0, 1).

Proof Let ϕ be a continuous map on X̃. If mdimM(ϕ) = 1, we can approximate ϕ by a
continuous map with zero metric mean dimension (take a sequence of C1-maps converging
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to ϕ). Next, suppose that mdimM(ϕ) = 0. Firstly, take X̃ = [0, 1]. Fix ε > 0. Let p∗
be a fixed point of ϕ. Choose δ > 0 such that d(ϕ(x), ϕ(p∗)) < ε/2 for any x with
d(x, p∗) < δ. Let φ and T2 be as in Example 3.4, with J1 = [0, p∗], J2 = [p∗, p∗ + δ/2],
J3 = [p∗ + δ/2, p∗ + δ] and J4 = [p∗ + δ, 1]. Take the continuous map ψ on [0, 1] defined
as

ψ(x) =

⎧
⎪⎨

⎪⎩

ϕ(x), if x ∈ J1 ∪ J4,

T −1
2 φT2(x), if x ∈ J2,

ψ1(x), if x ∈ J3,

where ψ1 is the affine map on J3 such that ψ1(p
∗ + δ/2) = (p∗ + δ/2) and ψ1(p

∗ + δ) =
ϕ(p∗ + δ). Note that d(ψ, ϕ) < ε. It follows from Proposition 4.3 that

mdimM

(
X̃, ψ, | · |

)
= max

{
mdimM

(
X̃, ψ |J1∪J3∪J4 , | · |

)
, mdimM

(
X̃, ψ |J2 , | · |

)}
= 1,

since mdimM

(
X̃, ψ |J1∪J3∪J4 , | · |

)
≤ mdimM

(
X̃, ϕ, | · |

)
= 0. Analogously we can prove

that any ϕ ∈ C0([0, 1]) with metric mean dimension in (0, 1) can be approximated by
both a continuous map with metric mean dimension equal to 1 and a continuous map with
metric mean dimension equal to 0. These facts prove the proposition for X̃ = [0, 1]. For
X̃ = S

1, we can approximate any ϕ ∈ C0
(
S

1
)

by a map ϕ∗ with periodic points. We can
prove analogously that ϕ∗ can be approximate by a continuous map on S

1 with metric mean
dimension equal to 0 or equal to 1, which proves the proposition for X̃ = S

1.

Next, Kolyada and Snoha in [8], Theorem F, showed that htop : C([0, 1]) → R ∪ {∞} is
not lower semi-continuous, endowing C([0, 1]) with the metric

D
(
(fn)

∞
n=1, (gn)

∞
n=1

) = sup
n∈N

max
x∈[0,1] |fn(x) − gn(x)|.

Furthermore, they proved in Theorem G that htop : C([0, 1]) → R ∪ {∞} is lower

semi-continuous on any constant sequence (φ, φ, . . . ) ∈ C
(
X̃

)
. However, It follows from

Proposition 7.6 that:

Corollary 7.7 mdimM : C
(
X̃

)
→ R is nor lower neither upper semi-continuous on any

constant sequence (φ, φ, . . . ) ∈ C
(
X̃

)
. Consequently, mdimM : C

(
X̃

)
→ R∪ {∞} is nor

lower neither upper semi-continuous.

Take f = (fn)
∞
n=1 on X̃ defined by fn = ψ2n

for each n ∈ N, where ψ is the map from
Example 3.4. We have mdimM(X̃, f , | · |) = ∞ (see Example 3.8). Thus there exist non-
autonomous dynamical systems on X̃ with infinite metric mean dimension. Consequently

mdimM : C
(
X̃

)
→ R ∪ {∞} is unbounded.

We finish this work with the next result:

Theorem 7.8 mdimM : C
(
X̃

)
→ R ∪ {∞} is not lower semi-continuous on any non-

autonomous dynamical system with non-zero metric mean dimension.

Proof Let f = (fn)
∞
n=1 be a non-autonomous dynamical system with positive metric mean

dimension. Let λm be a sequence in [0, 1] such that λm → 1 and λm · · · λ1 → 0 as m →
∞. Take gm = (λm+nfn)

∞
n=1. Thus gm → f as m → ∞. However, for any x ∈ X̃,
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(gm)(k)(x) → 0 as k → ∞. Consequently, the metric mean dimension of gm is zero for
each m ∈ N.
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