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Abstract: A convex mathematical model based on second-order cone programming (SOCP) for the
optimal operation in direct current microgrids (DCMGs) with high-level penetration of renewable
energies and battery energy storage systems (BESSs) is developed in this paper. The SOCP formulation
allows converting the non-convex model of economic dispatch into a convex approach that guarantees
the global optimum and has an easy implementation in specialized software, i.e., CVX. This
conversion is accomplished by performing a mathematical relaxation to ensure the global optimum in
DCMG. The SOCP model includes changeable energy purchase prices in the DCMG operation, which
makes it in a suitable formulation to be implemented in real-time operation. An energy short-term
forecasting model based on a receding horizon control (RHC) plus an artificial neural network
(ANN) is used to forecast primary sources of renewable energy for periods of 0.5h. The proposed
mathematical approach is compared to the non-convex model and semidefinite programming (SDP)
in three simulation scenarios to validate its accuracy and efficiency.

Keywords: second-order cone programming; economic dispatch problem; artificial neural networks;
battery energy storage system

1. Introduction

In the last decades, the development of power electronics has allowed increasing the levels of
penetration of renewable energy resources in electricity networks and the creation of new kinds of
network concepts as microgrids (MGs) or high-voltage direct current [1,2]. The MGs can be operated
in alternating current (AC) and direct current (DC); However, the DCMGs present several advantages
over AC counterparts, such as: (i) no need of synchronizing generators, (ii) less number of power
converters, (iii) lower losses, (iv) better voltage profiles, and (v) do not require analysis and controls
of reactive power and frequency [3]. Additionally, the DCMGs go hand-in-hand with the global
concerns about the effects of global warming since they reduce greenhouse effects and the cost of
energy generation and transportation [4]. However, the integration of renewable energy resources

Energies 2020, 13, 1703; doi:10.3390/en13071703 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-7609-1197
https://orcid.org/0000-0001-6051-4925
https://orcid.org/0000-0002-1409-9756
https://orcid.org/0000-0002-9804-4137
https://orcid.org/0000-0003-2186-2323
http://dx.doi.org/10.3390/en13071703
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/7/1703?type=check_update&version=2


Energies 2020, 13, 1703 2 of 15

has a great disadvantage that lies in the great variability of their primary energy resources (e.g., solar
radiation or wind speed) [1]. In order to reduce this disadvantage, the MGs include devices that allow
the storage of electrical energy well-known as battery energy storage systems (BESSs) [5]. The BESSs
store energy when there are high generation and low demand and provide power when the MGs
present low generation and high demand [6].

Nowadays, the planning and operation of DCMGs is an important challenge, which is being
developed. If the operation of renewable energy sources and BESSs is incorrectly coordinated, this
may lead to operational and technical problems, such as voltage profile deterioration, transmission
line congestion, increased operating costs, or violations of operational constraints [7]. For this reason,
the optimal operation of devices in DCMGs is an important issue to develop. Here we tackle the
economic dispatch renewable energy source (wind and solar power) and the BESSs in DCMGs using
second-order cone programming (SOCP), which permits finding the global optimum employing
mathematical relaxations [8,9]. Additionally, this study uses short forecasting based on artificial neural
networks to reduce the error the variation of primary sources of renewable energy (wind speed and
solar radiation), as reported in [8].

Several works have been proposed to study this problem. In [10], A nonlinear optimization model
to manage renewable energies and BESSs considering constant power load models were presented.
However, the uncertainties of primary sources were not considered in the wind and solar power
generations. In [11,12], optimal controls for BESSs integrated to ACMGs and renewable energies were
proposed. Even though the authors of [11,12], considered short forecasting predictions in models, these
approaches were solved using a non-convex model which does not guarantee the optimal solution
of the problem since this type model many local minimums [6,8]. Multiple investigations have also
been proposed with the objective of improving the BESSs of MGs, such as multi-agent models based
on market decisions [13], multi-objective particle swarm optimization [14,15], heuristic cost-benefit
analysis [16], intelligent control methods [17], bee colony optimization [18], and genetic algorithm
approaches [19]. Even these works present a good performance, and they cannot guarantee the
optimal global solution to the problem. Due to that, they use the non-linear non-convex model for the
economic dispatch problem [6]. This implies that is possible to find a better configuration by using
convex optimization formulations, which permits arriving at the global optimum of problem [20,21].
In [8], a convex optimization formulation based on semidefinite programming (SDP) to operate BESSs
and renewable power generation in DCMGs was developed. Unlike this previous work, we employ
second-order cone programming (SOCP), which presents some advantages according to the SDP
model as low computational cost and exact optimal solutions for some class problems [21].

After reviewing the state-of-the-art, there is no evidence about using SOCP models for optimal
operation of batteries in DC networks, which is a gap that this research tries to fulfill. In addition, the
main contribution is the possibility of ensuring the convexity of the economic dispatch problem by
relaxing the rank constraint, which guarantees the existence of uniqueness and optimal global solution.
This implies that any gradient descendent or interior point method can solve the equivalent SOCP
model accurately. To verify the effectiveness of our proposed approach, we employ a 21-node test
feeder and compare the results reached by the SOCP with a semidefinite programming model reported
in [8] and an exact non-linear model solved through the general algebraic modeling system presented
in [6].

The remainder of this paper is organized as follows: Section 2 describes the mathematical model
for the economic dispatch in DCMG considering renewable generators and BESSs. Section 3 provides
the SOCP approach and its application for the economic dispatch model. Section 4 formulates the
energy short-term forecasting model to predict the power output of wind and solar power systems.
Section 5 presents the test system, simulation scenarios, and their results using different mathematical
models for the economic dispatch. Lastly, concluding remarks are shown in Section 6.
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2. Economic Dispatch Model

The mathematical non-convex model for the optimal daily operation of renewable energy and
BESSs is composed of an objective function and non-linear constraints [6]. The objective function
is related to the cost operation of DCMGs, while the non-linear constraints are related to technical
and operational aspects in DCMGs [8]. The control variables for economic dispatch are power
delivered/absorbed for devices of system, such as conventional generators, renewable generators,
and BESSs.

Objective function
min z = ∑

t∈T
∑

i∈N
CoEi,t pi,t∆t (1)

where z denotes the function to be minimized, which corresponds to the daily operative costs of
conventional generators, CoEi,t is the purchase costs of energy at node i in period t, pi,t is the power
generation delivered at node i during period t, and ∆t is the length of the time period under analysis,
this study is 30 min (in per unit 0.5). T and N are the sets of periods of time considered and the
number of nodes considered in the DCMG, respectively.

Set of constraints

pi,t + pdg
i,t + pb

i,t − pd
i,t = vi,t ∑

j∈N
gijvj,t, {i ∈ N ∧ t ∈ T } (2)

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t, {i ∈ N ∧ t ∈ T } (3)

SoCb
i,t0

= SoCb,ini
i , {i ∈ N} (4)

SoCb
i,t f

= SoCb, f in
i , {i ∈ N} (5)

pmin
i,t ≤ pi,t ≤ pmax

i,t , {i ∈ N ∧ t ∈ T } (6)

pdg,min
i,t ≤ pdg

i,t ≤ pdg,max
i,t , {i ∈ N ∧ t ∈ T } (7)

pb,min
i ≤ pb

i,t ≤ pb,max
i , {i ∈ N ∧ t ∈ T } (8)

vmin
i ≤ vi,t ≤ vmax

i , {i ∈ N ∧ t ∈ T } (9)

SoCb,min
i ≤ SoCb

i,t ≤ SoCb,max
i , {i ∈ N ∧ t ∈ T } (10)

where p denotes the power delivered/absorbed for devices, the superscripts dg, b, and d denote
renewable energy generations, BESSs, and demand, respectively. i and t represent node and the time
period under analysis. SoC is the state of charge of each BESS. v denotes the voltage profile, and gij
is the conductance value, which represents the physical connections of the nodes in DCMG. SoCb,ini

and SoCb, f in are the initial and final desired states of charge of the BESSs. The superscripts min and
max denote the minimum and maximum admissible bounds in DCMG related to its technical and
operational aspects, and ϕ is the charge coefficient of the BESSs.

Equation (1) shows the objective function in this study, whose goal is to minimize the total
energy purchasing costs in DCMG. Equation (2) represents load-generation balance at each node
of the DCMG, also well-known power balance equation. Equation (3) provides the state-of-charge
of BESSs. Equations (4) and (5) define the initial and final state-of-charge desired for the BESS,
respectively. Equations (6)–(8) limits minimum/maximum power delivered by the conventional
generator, renewable energy and BESSs, respectively. Equation (9) defines the minimum/maximum
limits of voltages in DCMG, and Equation (10) defines the minimum/maximum bounds of the
state-of-charge of BESSs.

It is important to mention that this model is non-linear non-convex due to the power balance
equation (see Equation (2)) since it is a non-affine equality constraint [9]. This constraint generates a
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hyperbolic relation between power and voltage at all nodes of DCMG [6]. Hence, it is not possible to
guarantee global optimum, applying conventional optimization techniques [8].

Note that there are multiple models that can used for optimal operation of batteries in dc networks;
nevertheless, here we present an economic dispatch formulation as well as a convex reformulation,
where the main idea is minimizing the total energy purchase costs in conventional generators, subject to
classical power flow equations and device capacities [10]. In specialized literature, the main difference
between economic dispatch models and optimal power flow ones is only the objective function value
since in the first case are used economical (monetary) functions, while the second case considers
energy loss as the objective function [22]. For a better understanding of both mathematical models
regarding main control variables, sets, parameters and etc., see the Abbreviations presented at the end
of this paper.

3. Second-Order Cone Programming Reformulation

The SOCP formulation is part convex of the optimization models, which is a field that has
recently taken great importance in engineering since it can solve their problems reliably and efficiently
by guaranteeing a unique solution (global optimum) [23]. The SOCP formulation minimizes a
linear function over a convex region, which consists of the intersection of an affine linear space
with second-order cones [24].

The canonical formulation for SOCP problems has the following representation,

min c>x

subject to

‖Akx + bk‖ ≤ αkx + βk

Fl x = gl

(11)

where k and l denote the number of conical and affine constraints, respectively, ‖·‖ refers to the
Euclidean norm and Ak ∈ Rni×n and Fl ∈ Rp×n are real matrices; c, bk, αk ∈ Rn, and gl ∈ Rp are
vectors. βk ∈ R is a scalar and x ∈ Rn is the optimization variable.

Economic Dispatch Model as a SOCP

The economic dispatch model (1)–(10) can be transformed into a SOCP model by defining the
following slack variables,

Vi = v2
i , i ∈ N (12)

Wij = vivj, i ∼ j (13)

and a matrix

Rij =

[
Vi Wij

Wji Vj

]
(14)
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Then, the economic dispatch (1)–(10) is transformed into

min z = ∑
t∈T

CoE>t Pt∆t (15)

Pt + Pdg
t + Pb

t − Pd
t = ∑

j:j∼i

(
Vi −Wij

)
gij, {i ∈ N ∧ t ∈ T } (16)

SoCb
t = SoCb

t−1 − ϕbPb
t ∆t, {t ∈ T } (17)

SoCb
t0
= SoCb,ini (18)

SoCb
t f
= SoCb, f in (19)

Pmin
t ≤ Pt ≤ Pmax

t , {t ∈ T } (20)

Pdg,min
t ≤ Pdg

t ≤ Pdg,max
t , {t ∈ T } (21)

Pb,min ≤ Pb
t ≤ Pb,max, {t ∈ T } (22)

V2,min
i ≤ Vi,t ≤ V2,max

i , {t ∈ T } (23)

Wij,t ≥ 0, {i −→ j ∧ t ∈ T } (24)

Wij,t = Wji,t, {i −→ j ∧ t ∈ T } (25)

Rij,t � 0, {i −→ j ∧ t ∈ T } (26)

rank
(

Rij,t
)
= 1, {i −→ j ∧ t ∈ T } (27)

SoCb,min
i ≤ SoCb

i,t ≤ SoCb,max
i , {t ∈ T } (28)

where Pt, Pdg
t , Pb

t , and Pd
t are column vector that contains [Pt] = Pi,t,

[
Pdg

t

]
= Pdg

i,t ,
[

Pb
t

]
= Pb

i,t, and[
Pd

t

]
= Pd

i,t, respectively. � denotes positive semi-definiteness and rank(·) refers to rank of the matrix.
Note that the economic dispatch model of (1)–(10) and (15)–(28) are equivalent and non-convex.

Now, the non-convexity is represented in the rank constraint (27). When Equation (27) is relaxed
(eliminated or neglected), the SOCP formulation is reached. Even when this constraint is eliminated of
the SOCP optimization, the global optimum of the problem can be achieved if the following conditions
are satisfied [22]:

• The upper bounds for all nodal voltages are the same, which is easily comparable in per unit. This
entail that Vmax

1 = Vmax
2 = · · · = Vmax

n > 0.
• The total network loss of DCMG is positive, which is met by the physical power system. This

entails that ∑i∈N pi > 0.

The conditions above-mentioned have not to be met for the SOPC model to converge. However, if
these conditions are satisfied, that can guarantee what the solution of SOPC relaxed is equal to SOCP
non-convex (non-relaxed), hence, the solution is global optimum (See [22] for details).

The original variables are recovered, as follows

vi =
√

Vi, {i ∈ N} (29)

Note that the SOCP model for power balance expression can be non-unique, and its structure
depends on the form that the product between voltage profiles be analyzed [21]. Nevertheless, the
final convex reformulations are equivalents, and they can be found using transformation variables [25].

4. Energy Short-Term Forecasting Model

The high variability of primary sources of renewable energy, such as solar radiation and
temperature for solar generation systems or wind speed for the wind generation systems, increases
DCMG’s operating costs if they do not have a good prediction of these [6]. Therefore, it is necessary to
implement a strategy, which allows minimizing the forecasting errors. Here we adopted the strategy
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proposed in [8], which combines a receding horizon control (RHC) with an artificial neural network
(ANN). The RHC repeatedly computes the economic dispatch model on a moving time horizon by
employing the predictions of the wind speed or solar radiation in order to reduce the error of the
forecasting. While the ANN tries to predict the values of solar radiation and wind speed, also using a
mobile time window. The methodology adopted has the following steps:

• Implementing the ANN, the wind speed and solar radiation, are estimated by periods m, where
m is the prediction horizon.

• Using the SOCP optimization, the economic dispatch for renewable energy and BESS is found
from period t to period t + m.

• Employing the previous measurement of the wind speed and solar radiation from t−m to t, the
forecast of them are recalculated for t + 1 period.

Artificial Neural Network

The ANNs are mathematical tools that can be applied to a wide range of problems which from
function approximation, clustering, optimization, pattern classification to series forecasting with a
high degree of accuracy [26]. In this study, the ANNs are used to predict the wind speed for wind
power systems and solar radiation for solar power systems. The data of input and output used to train
the ANN has been listed in Table 1.

Table 1. Input and outputs parameters for ANN.

Photovoltaic Wind

Inputs Output Inputs Output

Temperature
Solar Radiation

Temperature

Wind speedHumidity

Time Pressure
Time

The data shown in Table 1 are employed for training the ANN with the following nonlinear
learning rule:

y(t) = f
(
y(t− 1), ..., y(t− ny), x(t− 1), ..., x(t− nx)

)
(30)

where x and y are input and output data, respectively. ny and nx are the last values of the prediction
and the input data, respectively.

We used the configuration to train the ANN presented in [6]. This configuration for the solar
generation system considers two inputs (see Table 1), six delays, and 18 hidden neurons. For the wind
generation system, we employ four inputs (see Table 1), four delays, and 12 neurons. The ANN has
been implemented in MATLAB software using ntstool. In Figure 1 has illustrated the ANN scheme for
the solar generation system implemented in MATLAB.

x(t)

y(t)

1:6

1:6

W

W

b

+

W

b

+ y(t)

Hidden Layer with Delays
Output Layer

2

1
18

1 1

Figure 1. ANN scheme for solar radiation prediction [6].



Energies 2020, 13, 1703 7 of 15

In Figure 1 can be noted that the ANN scheme is composed of a two-layer feed-forward network.
The first layer is known as a hidden layer, which functions as a sigmoid transfer function. While
the second layer is known as the output layer, which is a linear transfer function. The hidden layer
needs stores previous values such as input x(t) data as well as output y(t) data to train the proposed
ANN. From the training process, the ANN gets weights (W) and bias (v) values, which are used for
the output layer to predict the output y(t + 1). Additionally, the output layer also employs a rectified
linear unit (ReLU) layer in order to eliminate negative estimates of solar radiation or wind speed.
ReLU function has the following form,

f (y) =

{
y, y ≥ 0,
0, y < 0.

(31)

The proposed ANN has been trained by using the Levenberg–Marquardt algorithm [8]. Mean
squared normalized error was employed as the performance function. The proposed ANN has
configured with 100 epochs, a reduction of learning rate drop 0.02 every 8 epochs, and the initial
learning rate of 0.3.

All data of Table 1 to train the ANN were taken in [27]. We employed in training, adjusting, and
validating with a 70%, 15%, and 15% of the data, respectively. Lastly, Figure 2 illustrates solar and
wind power information.

0 3 6 9 12 15 18 21 24
0
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w
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[p
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Figure 2. Historical data used for the ANN training process: (a) solar power; and (b) wind power.

It is important to highlight that the precision of the forecasting method based on artificial neural
networks is highly dependent on the data history about renewable energy inputs, i.e., wind speed,
wind direction, sunlight, temperature, pressure, radiance, humidity, etc. Since for countries where there
is the presence of different seasons is required information at least for five years to have an acceptable
prediction of the power output. Nevertheless, for countries located around the equatorial line, with
data historical at least for one year must be enough to have an adequate generation forecasting [6].
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5. Test System and Simulation Scenarios

This presents the test system, scenarios considered, and their results.

5.1. The 21-Node Test System

The test system scheme used to validate the economic dispatch problem using a SOCP formulation
is depicted in Figure 3, which is a modified version of DCMG proposed in [8]. Table 2 lists the
parameters of the DC branches and power demands of DCMG, which has a total power consumption
of 5.54 p.u. with a base value of 100 kW. The test system is composed of 21 nodes, 21 branches, and 16
loads, where their data is presented in Table 3. Additionally, it also has a conventional generator (slack
bus), a wind generation system (2.1152 p.u.maximum power), and a solar generation system (2.8158
p.u.maximum power) located at the nodes 1, 12 and 21, respectively. Moreover, the BESSs are located
at buses 7, 10, and 15, respectively; Their parameters are listed in Table 4. Finally, the minimum and
maximum operating bounds for the voltages are restricted from 0.9 to 1.1 p.u.(i.e., around ±10% of the
nominal voltage (1 p.u.)). These bounds are typical values for medium-voltage grids in Colombia [6].

AC

DC

AC

DC

DC

DC

Wind power

Solar power

DC ideal source

Load

12

345

6

7

8

9

101112

13 14

1516

17

18

19

20

21

Figure 3. Test DCMG of the 21-node

Table 2. Parameters for the 21-nodes DCMG.

From To R [p.u.] Load [p.u.] From To R [p.u.] Load [p.u.] From To R [p.u.] Load [p.u.]

1(slack) 2 0.0053 0.70 7 9 0.0072 0.80 15 16 0.0064 0.23
1 3 0.0054 0.00 3 10 0.0053 0.00 16 17 0.0074 0.43
3 4 0.0054 0.36 10 11 0.0038 0.45 16 18 0.0081 0.34
4 5 0.0063 0.04 11 12 0.0079 0.68 14 19 0.0078 0.09
4 6 0.0051 0.36 11 13 0.0078 0.10 19 20 0.0084 0.21
3 7 0.0037 0.00 10 14 0.0083 0.00 19 21 0.0081 0.21
7 8 0.0079 0.32 14 15 0.0065 0.22 – – – –

All parameters are in per unit. SBase = 1 kW, VBase = 1 kV.
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Table 3. Energy purchasing cost and hourly demand.

Time [h] CoE [p.u.] Demand
Variation

[%]

Time [h] CoE [p.u.] Demand
Variation

[%]

Time [h] CoE [p.u.] Demand
Variation

[%]

0.5 0.8105 34 8.5 0.9263 62 16.5 0.9737 90
1 0.7789 28 9 0.9421 68 17 1 90

1.5 0.7474 22 9.5 0.9579 72 17.5 0.9947 90
2 0.7368 22 10 0.9579 78 18 0.9895 90

2.5 0.7263 22 10.5 0.9579 84 18.5 0.9737 86
3 0.7316 20 11 0.9579 86 19 0.9579 84

3.5 0.7368 18 11.5 0.9579 90 19.5 0.9526 92
4 0.7474 18 12 0.9526 92 20 0.9474 100

4.5 0.7579 18 12.5 0.9474 94 20.5 0.9211 98
5 0.8 20 13 0.9474 94 21 0.8947 94

5.5 0.8421 22 13.5 0.9421 90 21.5 0.8684 90
6 0.8789 26 14 0.9368 84 22 0.8421 84

6.5 0.9158 28 14.5 0.9421 86 22.5 0.7947 76
7 0.9368 34 15 0.9474 90 23 0.7474 68

7.5 0.9579 40 15.5 0.9474 90 23.5 0.7211 58
8 0.9421 50 16 0.9474 90 24 0.6947 50
6 0.8789 26 14 0.9368 84 22 0.8421 84

6.5 0.9158 28 14.5 0.9421 86 22.5 0.7947 76
7 0.9368 34 15 0.9474 90 23 0.7474 68

7.5 0.9579 40 15.5 0.9474 90 23.5 0.7211 58
8 0.9421 50 16 0.9474 90 24 0.6947 50

Base energy cost of 0.208 $/kWh.

Table 4. BESS location and parameters.

Bus ϕb pb,max pb,min Bus ϕb pb,max pb,min Bus ϕb pb,max pb,min

7 0.0625 4 −3.2 10 0.0813 3.2 −2.4616 15 0.0813 3.2 −2.4616

5.2. Simulation Scenarios

We considered three simulation scenarios to evaluate the proposed mathematical model,
which are:

• Scenario 1 (S1): This scenario analyzes the optimal dispatch of DCMG considering that the BESSs
begin and end their daily operation in the fully discharged state.

• Scenario 2 (S2): In this scenario is considered that the BESS must begin and end their daily
operation with a 50% charge. However, during their daily operation, they can discharge or charge
from 0% to 100% of their nominal capacity.

• Scenario 3 (S3): In this scenario is analyzed that the BESS can only vary their nominal capacity
from 50% to 100% during the day.

Scenario S1 allows the BESSs to use the total energy stored during the day to operate. Scenario
S2 also enables that the BESSs to work with the total energy stored during the day; however, they
are forced to end the day with a defined state-of-charge to meet unexpected energy demands at the
beginning of the next day. Lastly, scenario S3 always limits the state-of-charge of BESSs to work at
least 50% of their nominal capacity, as recommended by Standard IEEE 1561-2007 [28].

5.3. Simulation Results

The proposed economic dispatch model is compared to the non-convex model and semidefinite
programming (SDP) proposed in [8] to validate its accuracy and efficiency. The SOCP and SDP models
were solved on CVX programming software [29] on MATLAB environment [30], while the non-convex
model was executed in GAMS commercial optimization package.

All simulations have been carried out on a desk-computer INTEL(R) Core(TM) i7-7700HQ,
2.80 GHz, 16 GB RAM with 64-bits Windows 10 Pro by using MATLAB 2019b.
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5.3.1. Comparison of Simulation Results

This part compares the simulation results obtained with the different economic dispatch models
considered for each of the simulation scenarios presented in Section 5.2. Table 5 shows the results of
economic dispatch for each of the mathematical models analyzed in this paper.

Table 5. Economic Dispatch Results.

Models S1 [$] S2 [$] S3 [$]

non-convex (GAMS) 5035.95 4962.18 5184.30
SDP formulation 5035.90 4962.11 5184.09

SCOP formulation 5035.90 4962.11 5184.09

Table 5 shows that the convex models always present a better objective function than the
non-convex model. Nevertheless, these differences are lower than 4.05 × 10−3% for all the simulation
cases when we compared the SOCP and SDP models with the exact one. These soft variations around
the global optimum can be attributable to the rank relaxation of both convex models; notwithstanding,
for practical applications, the results of the proposed SOCP model (including the SDP model) can
be considered optimum with the main advantage that after each evaluation of the SCOP model it
remains unaltered, while the non-linear model can be stuck in local optima since the solution space is
non-convex and there is no guarantee of reaching the global solution with existing methods.

5.3.2. Scenarios Analysis

In this part, the effect on economic dispatch is analyzed by including BESSs and varying their
operating limits in a DCMG system. Nevertheless, the forecast errors of the solar and wind powers do
not include yet since the aim is to analyze how the operation costs of the DCMG system are affected.

In Table 5 was noted that scenario S2 results presented the lowest operating costs than other
scenarios since, in this scenario, the BESSs start with an initial charge of the 50%. This allows having
stared energy in hours that there are not primary resources for the PV system. In scenarios S1 and S3

the operating costs are increasing in 1.4% and 4.4% in relation to the scenario S2, respectively. The
slight increase of scenario S3 in operating costs is to be expected since the scenario S3 always limits
the BESS to have a minimum load of 50% in any period. This entails that the BESSs cannot deliver all
energy stored, which reduces the power injection in comparison to scenarios S1 and S2. However, the
useful life of the BESSs is increased (IEEE Standard 1561-2007).

On the other hand, in Figures 4 and 5 are depicted the results for the scenario S3. Figure 4 shows
the generated powers for the slack generator, wind, and solar power systems, and loads in each period,
while Figure 5 illustrates the state-of-charge of the BESSs and voltage profiles in all the nodes.
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Figure 4. Generated powers for the slack generator, wind and solar power systems, and loads.
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Figure 5. State-of-charge of the BESSs and voltage profiles during a daily operation: (a) states of charge;
and (b) voltage profiles.

Note in Figure 4 is observed that the slack generator is only required in two situations: The first
situation is when the energy costs are cheap, and it is possible to charge the BESSs (time from 00:00 to
5:00). The second situation is when the available energy of renewable generators is less than the system
demand. This situation also happens when the BESSs are charging, or they do not have sufficient
stored energy (see Figure 5a).

Observe in Figure 5a that the BESSs begin and end their daily operation with a 50% charge and
are never below 50% as required by the scenario S3. In addition, they increase their stored energy
when the energy purchases present, on average, the lowest prices (from 00:00 to 04:00, see Table 3).

As can be seen in Figure 5b, all the voltage profiles in any hour fulfill the operating bounds used
in this paper. Observe that the voltage profiles suffer drop voltages when the slack generator delivers
to the DCMG. This is because the majority of the energy injected into DCMG is concentrated at one
point (bus slack); therefore, the energy must be transferred along larger routes increasing the current
through the branches.

5.3.3. Real and Projected Energy Analysis

In this part, it is analyzed the error forecasting in the economic dispatch model using SOCP
formulation. In Table 6 is presented the objective function values when there is not the error forecasting
(Real) as well as the energy short-term forecasting model presented in Section 4 is implemented.
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Table 6. Comparison of operating costs.

Models S1 [$] S2 [$] S3 [$]

Real 5035.90 4962.11 5184.09
Forecasting proposed 4975.55 4902.95 5118.80

Errors 1.19% 1.19% 1.25%

In Table 6 can be noted that the operating purchase costs in economic dispatch are not affected
when the energy short-term forecasting model is implemented. Since the maximum error obtained is
around 1.25%. This indicates that the RHC plus the ANNs are a suitable combination to predict the
most likely primary resources for renewable energy.

Figure 6 illustrates the real and estimation power for renewable energies and percent error of the
estimates. Note that mean squared errors for the wind and solar power are 0.05 and 0.008, respectively.
While the mean percent errors for the wind and solar power are 0.96% and 6.63%, respectively; These
results support that the predictions made estimate wind speed and solar radiation appropriately
with minimal errors. It is important to mention that the peak errors in the case of the photovoltaic
generation (see Figure 6) higher in the instants where solar radiation starts to increase and ends, i.e.,
8 h and 18 h. This produces that a minimum variation between real and estimated power outputs be
significantly superior in contrast to the rest of the day, due to the definition of the error using to make
this plot.
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Figure 6. Real and estimation power.

6. Conclusions

A convex mathematical model based on second-order cone programming for the economic
dispatch of a DCMG with renewable generators and BESS was proposed. The SOCP formulation
permitted converting the non-convex model of economic dispatch into a convex approach that
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guarantees the global optimum and has an easy implementation in specialized software, such as the
CVX. The proposed convex model considered the variation of the energy purchase price for the efficient
operation of DCMG in each period, which makes it in a suitable formulation to implement in real-time
obtaining better results than the exact model executed in GAMS. The advantage of the SOCP model in
comparison to the SDP model is that it guarantees exact optimal solutions for the economic dispatch
problem in DCMG. Additionally, the SOCP model can be exploited in problems such as planning and
operation of DCMG with a precision-level, reducing local optimum and computational efforts.

The RHC plus the ANN showed to be a great tool to predict the primary resources of renewable
energies and does not affect the dispatch of the BESSs, only increasing the final purchase costs in 1.25%
in the worst scenarios.

It was also demonstrated that the implementation of BESSs in DCMG enhance its operation,
reducing its operating costs. Therefore, it is important to propose efficient operation strategies that
maximize the useful life of BESSs without making it work inadequately or have a fully discharged state.

Future work may include the development of operational strategies for BESSs in order to minimize
the operating costs in DCMG and increase their useful life. Since its strategy also affect the performance
of the DCMG, as observed in this study.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronyms
AC Alternating Current
ANN Artificial Neural Network
BESS Battery Energy Storage System
DC Direct Current
CVX Matlab Software for Disciplined Convex Programming
DCMG Direct Current Microgrid
GAMS General Algebraic Modeling System
PV Photovoltaic
SOCP Second-order Cone Programming
SDP Semidefinite Programming
RHC Receding Horizon Control

Sets and subscripts
T Set of periods of time
N Set of periods of nodes
t periods of time
i node

Parameters
CoE Purchase Costs of Energy
pd Power demanded by loads
ϕ Charge coefficient of BESS
∆t Length of the period of time
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Variables
v Voltage profile
SoC State-of-charge of BESS
Vi voltage profile i squared
Wij cross-product of voltage i with voltage j

Control variables
p Power generated by conventional generator
pdg Power generated by renewable energies
pb Power delivered/absorbed by BESSs

Limits
vmin, vmax Minimum and maximum voltage profile
Vmin, Vmax Minimum and maximum voltage profile squared
pmin, pmax Minimum and maximum by conventional generator
pb,min, pb,max Minimum and maximum by BESSs
pdg,min, pdg,max Minimum and maximum by renewable energy
SoCb,min, SoCb,max Minimum and maximum SoC of BESS
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