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Abstract: This paper presents a general formulation of the classical iterative-sweep power flow,
which is widely known as the backward—forward method. This formulation is performed by a
branch-to-node incidence matrix with the main advantage that this approach can be used with radial
and meshed configurations. The convergence test is performed using the Banach fixed-point theorem
while considering the dominant diagonal structure of the demand-to-demand admittance matrix.
A numerical example is presented in tutorial form using the MATLAB interface, which aids beginners
in understanding the basic concepts of power-flow programming in distribution system analysis.
Two classical test feeders comprising 33 and 69 nodes are used to validate the proposed formulation in
comparison with conventional methods such as the Gauss-Seidel and Newton—-Raphson power-flow
formulations.

Keywords: backward—forward power flow; branch-to-node incidence matrix; Banach fixed-point
theorem; convergence test; numerical methods; radial distribution networks; mesh distribution networks

1. Introduction

1.1. General Context

Electrical distribution networks represent the most significant portion of the power system and
are entrusted with providing electricity to end-users at medium- and low-voltage levels by connecting
the transmission/sub-transmission system with consumers [1,2]. Typical voltages in these electrical
networks oscillate between 4.16 kV and 33 kV [3], and these networks are typically operated with
a radial structure to minimize installation, operation, and maintenance costs, including protective
devices coordination simplifications [4—6]. To determine the behavior of electrical networks under
well-defined voltage conditions, power flow methodologies are used, which facilitate the calculation
of the voltage profiles at all the nodes of the network for a particular load condition [7,8]. The main
challenge in the power-flow analysis of distribution networks is the constant power loads that produce
nonlinear relationships between the voltages and powers [9,10], which makes the use of numerical
methods for solving the power-flow problem necessary [11]. A typical tendency in the power-flow
analysis of electrical distribution networks is the use of graph-based methods to address the power-flow
problem based on the radial structure of the grid [12,13]. However, these methodologies are not useful
in the case of weakly or strongly meshed distribution networks [14], which can cause major issues in
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modern power systems where meshed structures can help with grid performance in terms of realizing
lower power losses and improvement voltage profiles [15]. In the case of commercial solutions for
a distribution system analysis such as the DigSILENT and ETAP software, the Newton-Raphson
(NR) method is the most-used approach [16] as it can be used with radial and meshed structures as
well as multiple slack and voltage-controlled nodes [17]. In this research, we tackle the power-flow
problem in electrical distribution networks while considering a unique slack node and radial and
meshed configurations by reformulating the conventional backward—forward power flow using the
branch-to-nodal admittance matrix [18].

1.2. Motivation

The power-flow analysis in electrical distribution networks is one of the most classical and
largely studied problems in power-system analysis [14] as the power-flow is a necessary calculation
in the determination of grid performance [10]. A power-flow method is a tool that is used to
determine, via an iterative procedure, the final values of all the voltages in an electrical network
with a certain tolerance acceptance in order to determine the complete operative state [14], i.e.,
currents through lines, voltage regulation in all the nodes, active and reactive power losses, and
voltage stability. To solve the power-flow problem, the most classical methods used are the NR and
Gauss—Seidel (GS) approaches, which guarantee convergence based on the Kantarovich and Banach
fixed-point theorems [19]. In addition, some graph-based methods such as triangular formulation
and quasi-symmetric matrices have also been reported for handling radial grid configurations [12,20].
However, this research is motivated by the fact that the classical backward—forward power-flow
method is commonly formulated via sequential steps that require that the grid is ordered in layers [21].
It has a radial structure as, all the currents are calculated in the backward stage, while all the voltages
are defined in the forward stage [13]. As this operation can be efficient, these stages exclude meshed
configurations, which implies that it is not applicable to weakly or strongly meshed distribution
networks. Therefore, herein, a reformulation of the backward—forward power flow in distribution
networks is presented based on the branch-to-nodal incidence matrix [13], which permits the handling
of radial and meshed distribution networks that include voltage-controlled nodes. Furthermore, the
convergence of the proposed method is demonstrated by applying the Banach fixed-point theorem [22].

1.3. Literature Review

Power-flow solutions in the literature present a vast universe of possibilities based on iterative
procedures, linearization methods, and convex reformulations. Some of these approaches are
presented below.

The most classical power-flow methods in power-systems analysis correspond to the Gauss-Seidel
(GS) and NR approaches [14]. The GS approach can be easily implemented using any programming
language with its main advantage being that it can be used with complex numbers. However, it exhibits
the worse performance in terms of processing time and number of iterations. With the purpose of
improving the efficiency of the GS method, an accelerating factor a that reduces the total number
of iterations and the required overall processing time is used [17]. In the case of the NR approach,
it is a methodology that is more commonly used in commercial software and is widely adopted by
utilities [23]. The main advantage of the NR approach is that it converges in a few iterations, has low
processing times, and can possibly be used with radial and meshed networks comprising multiple
voltage-controlled nodes. The main problem with using the NR approach in distribution networks
is the high dispersion of the Jacobian matrix, which may cause convergence problems when the
matrix is inverted for updating the voltage magnitude and angle variables [19]. The authors of [24]
proposed the use of the Levenberg-Marquardt (LM) algorithm for solving power-flow problems in
electrical networks; this approach essentially comprises an alternative manner of presenting the NR
formulation with the main advantage that a factor is added to the Jacobian in order to reduce the
possible singularities in this matrix.
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For distribution networks, some of the most recognized approaches for addressing the power-flow
problem are graph-based methodologies known as backward-forward and triangular methods [12,20].
The backward—forward method is typically designed with an algorithmic structure using an iterative
sweep based on currents in the backward stage to update the voltages in the forward stage [21].
An important improvement in the backward—forward approach was presented by [13], wherein radial
and meshed structures were included in a matricial formulation. The triangular approach works
for radial and meshed structures [12]; however, the related convergence analysis is not provided.
It should be noted that in these methods, the authors do not present an analysis of the inclusion
of voltage-controlled nodes, which we proposed in our matricial reformulation. A new approach
based on successive approximations was recently reported in [25]. This approach demonstrates the
convergence of the recursive formulation for radial and meshed networks using the Banach fixed-point
theorem. However, voltage-controlled sources were not considered in this formulation, and the
behavior of the #-coefficient was not determined to confirm the convergence at well-defined voltage
conditions. Two additional important power flow contributions have been reported in specialized
literature by [26,27] regarding secondary distribution networks to study the problem of the harmonic
penetration caused by higher penetration of photovoltaic sources. The authors in these approaches
have proposed a harmonic power flow analysis using affine arithmetic which allows reaching better
results regarding harmonic distortion estimations with low-computational effort when compared
with classical Monte-Carlo simulations; in addition, these methods were validate in real secondary
distribution networks with promissory results for utilities.

Other approaches have also been presented in specialized literature in relation to linear and convex
approximations for power-flow solutions in distribution networks. In [11], a convex approximation for
a power-flow analysis of radial and meshed distribution networks was presented while considering a
semidefinite programming approximation by using a rectangular representation of the power-balance
equations. In [8], a second-order cone programming approximation was described while considering
branch variables related to currents and powers in all the lines. It is essential to mention that the
main disadvantage of these approaches is the low rate of convergence when the number of nodes (1)
increases as these formulations create n? variables related to voltages, which increase the required
processing times to reach the optimal solution in the iterative procedure [28]. In the case of linear
methodologies, the authors of [7] proposed a Taylor’s series expansion of the hyperbolic relation
between the voltage and powers to reach a linear formulation that can be used to solve directly
without the use of iterative procedures. In [10], an improvement of this linear approximation was
presented using the straight equation to include the minimum expected voltage in the approximation
and improve the final result of the power-loss calculation. The authors of [29] described a linear
approximation based on a logarithmic transformation of the voltage magnitudes added to the Taylor’s
series expansion for applications in power systems. It should be noted that these linear approximations
have speed responses; however, the final result of the power-loss estimation varies in the range of 1%
and 10%.

1.4. Contributions and Scope
The main contributions of this research can be summarized as follows:

o  The reformulation of the classical backward—forward power-flow method for application to
distribution networks with the ability to handle radial and meshed configurations by rewriting
the branch variables into nodal variables using the branch-to-node incidence matrix.

e  The parametric independence of the power-flow formulation, as no assumptions about relations
reactance/resistance, are required in the proposed matricial formulation.

o  The possibility of guaranteeing convergence under well-defined voltage conditions by applying
the Banach fixed-point theorem to the recursive solution, which only requires that the short-circuit
current be more significant to the load current in all the nodes to ensure the convergence of
the algorithm.
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e  The presentation of the proposed matricial formulation in an intuitive manner to introduce
students of electrical engineering to power-flow analysis by providing the MATLAB/OCTAVE
algorithm for solving a small test feeder as a numerical example comprising radial and
meshed structures.

It is important to mention that a similar approach was previously proposed in [13] that combined
branch-to-nodal matrices with triangular matrices; moreover, its convergences were also proved.
However, the authors of [13] did not present the behavior of the 6 —coefficient as a function of the load
current and the short-circuit current relations per node. In addition, a simulation case is presented
herein, where the power system contains a voltage-controlled node (VC node) in a small transmission
network, which demonstrates that the proposed matricial approach is extensible to power system
applications with multiple meshes and VC nodes.

1.5. Organization of the Document

The remainder of this paper is arranged as follows. Section 2 presents the matricial formulation of
the classical backward—forward power flow method using a small distribution test feeder with multiple
meshes. In Section 3, the convergence analysis is presented based on the Banach fixed-point theorem,
which results in the maximum load current divided by the minimum short-circuit current per node.
Section 4 presents a small numerical example comprising a 13-node test feeder with mesh and radial
topologies and presents the MATLAB/OCTAVE implementation that can be used as a power-flow
analysis tutorial for beginners. In Section 4, the configurations of two classical distribution test feeders
comprising 33 and 69 nodes are presented. Section 6 presents the numerical results obtained for these
test feeders on comparing the proposed matricial formulation with the classical power- flow methods
such as the GS, NR, and LM methods; in addition, a small transmission network comprising four
nodes that comprise a meshed structure with a voltage-controlled node is presented, which aids in
understanding the extension of the proposed formulation to power-system analyses. Section 7 presents
the main conclusions derived from this work as well as its possible future improvements.

2. Matricial Power-Flow Formulation

The classical backward—forward power-flow method was developed using the concept of iterative
sweeps, which achieves the following [30]:

e Calculates the total current demands at all the loads with assumed known voltages.

e  Determines all the currents that flow in all the branches of the network by applying the first
Kirchhoff’s law at each node.

e (alculates the voltage drops by starting from the source and using an ordering stage that defines
the layers at which nodes are located.

e  Updates the voltage profile in all the demand nodes and repeats all the stages until the convergence
tolerance is reached.

This structure of the backward-forward method has two main disadvantages: (i) It can only
handle radial grid configurations, and (ii) it requires nodal ordering in layers [20]. However, to address
these problems, it is possible to reformulate a power-flow problem using branch-to-nodal incidence
matrices [18].

Definition 1 (Branch-to-node incidence matrix A). An electrical network that is represented by a connected
graph with b links and n vertices can be represented by a rectangular matrix A € RV*™ by assuming arbitrary
directions in the current flow through the lines as follows:

e A;;j =1ifthelineiis connected to the node j and its current leaves from this node.
o A;; = —1ifthelineiis connected to the node j and its current arrives at this node.
o A;;j = 0iftheline i is not connected to the node j.
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To exemplify the structure of the branch-to-node incidence matrix .4, let us consider the electrical
network depicted in Figure 1. This grid comprises six links (branches) and five nodes. The names of
the lines are listed in Table 1.

slack

1 2 4
5

Figure 1. Example of a connected electrical grid.

Table 1. Node connections.

Branch Numberi Send Nodej Receiving Node k

1 1 2
2 1 3
3 2 4
4 3 4
5 3 5
6 4 5

On considering the branch information reported in Table 1 and the electrical-grid configuration
depicted in Figure 1, the branch-to-node matrix A can take the following form:

1 -1 0 0 0
1 0 -1 0 0
01 0 -1 0
. 1
A=1lo 0 1 -1 o0 @)
00 1 0 -1
o 0o o0 1 -1

It should be noted that this matrix can be split into two sub-matrices that are related to the slack
source and the rest of the nodes as follows (This is made possible by assuming the slack node is located
atnode 1.):

A= [-AS Ad] ’ (2)

where A; is the first column of A (slack node), and .A; corresponds to the rest of the columns in 4,
i.e., the demand nodes.

Now, let us define the voltage drop at line i as E; and the voltages at its terminals as V;. Then,
from Figure 1, we know that

Ei =V, -V,
E; =V; —V;3,
E3 =V, V3,
Ey =V, —Vy,
Es = V3 —Vy,
Eq = V4 — V5,

which can be rewritten using (1) and (2) as presented below:

E= A;Vs+ A;V,, 3)
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where V; = Vi, E is a vector that comprises all the voltage drops, and V; is a vector that comprises all
the voltages in the demand nodes.

To relate the currents J in all the branches with the voltage drops, it is possible to apply Ohm’'s
law as presented below:

E=17J, (4)

where Z = diag(Zy, 2y, ..., Zp).
To determine the relation between the currents injected at the nodes (i.e., I) and all the branch

currents, let us apply Kirchhoff’s second law at each node while considering the current directions
defined in Table 1. We thus obtain

L=J+],
L=-Ji+J3
I3=-J,+Js+]Js
Li=—J3=Js+Je
Is = —J5 — Je-

It should be noted that I can also be split as
1= (L1, (5)

where I and I are the current of generators and demands, respectively.
Using the relation between the branch and nodal currents presented above, it is possible to
find that

I =Aly, (6)
I = AjJ. @)

Now if expressions (3), (4), and (7) are combined based on Y = Z~!, then the following result
is obtained:

I; = AIY AV, + ATY AV, (8)

To find the relation between the injected currents and powers, it is possible to apply the Tellegen’s
theorem, which defines apparent power as follows:

I, = diag~' (V) S}, ©)
I, = —diag ™' (V%) S5 (10)
where the superscript x represents the conjugate operator, S} is the apparent power generation in the

slack node, and S} are the apparent power consumption in the demand nodes.
Now, if expressions (8) and (10) are combined to obtain V, the following result is obtained:

V= —Zgdiag ! (V5) S5 — b, (11)

where Z,,; is defined as [.AgY.Ad] 71, andb = —I—de.AgYASVS.
It should be noted that to solve expression (11), an iterative procedure is required, as this
expression has a recursive structure. For this purpose, let us to add an iterative counter ¢ that
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starts from the initial point ¢t = 0 (i.e., Vg is perfectly known), which allows the rewriting of (11) as
presented below:

Vit = —7,,diag ™! (V;'*) S5 —b. (12)

Remark 1. The iterative procedure in (12) is performed until the convergence error € is reached, i.e.,
max {Vfiﬂ - Vfi} < € or the total number of iterations tmax is completed.

3. Convergence Analysis

To prove that the recursive formula (12) guarantees the convergence of the power-flow problem
in the case of distribution networks comprising radial and mesh structures formulated using
branch-to-nodal incidence matrices, let us consider the following.

Assumption 1. The amount of power consumed by the loads does produce voltage instabilities in the distribution
network, i.e., the system operates under well-defined voltage conditions.

Assumption 2. There exists a positive lower bound for all the voltage profiles, i.e., V™ > 0, which is typically
defined by the utility and regqulatory policies.

Assumption 3. The demand-to-demand impedance matrix, i.e., Z,, is diagonal dominant, which implies that,

always, dej/" > ‘dejk ’ V] 7& k.

To demonstrate the convergence properties of the recursive power flow approach defined by (12),
let us present the general definition of the Banach fixed-point theorem as follows.

Theorem 1 (Banach fixed-point theorem). The iterative formula presented in (12) is stable and corresponds
to a contraction map with the form

Vit =g(Va), (13)
for some V that fulfills Assumption 1 irrespective of the starting point, i.e., V, such that
s (4) —s 0w <[y —wi] a4
where W is the solution of the power-flow problem, and 0 is a real number between 0 and 1.

Proof. The recursive formula for the iterative backward—forward power-flow method presented in (12)
can be rewritten as follows:

SN
Vil =g(Va) = -b-Zy lvtll (15)

di Jieqq

where ()¢ is the set that contains all the demand nodes.
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In addition, based on the structure of the Banach fixed-point theorem, it is possible to affirm that
the solution of the power-flow problem, i.e., W, satisfies W = ¢ (W), and it is unique if and only if
g (W) is a contraction mapping on V.

Virt =wl] = s (V") ~z

T
1 1
Z44S3 [W* - Vt,*]
1

di iEQS 16
be we 4T (16)
d; '
1Z4aS3| lw—]
1 di iGQS
<0||Vi-wW||,
where
Z44S%
o - IZasSill -
(me)

Now, on considering Assumption 2, which is regarding the positive definiteness of the impedance
matrix, the expression (17) can be reduced to

(18)

It should be noted that, considering the mathematical structure presented in (18) and that Z,, is
the equivalent impedance at node i, the following relation can be obtained.

55
0 = max { Lo 19
ieQ | vmin 7 (19)
Zaa;;

where we can ensure that 0 < 6 < 1, as the denominator in (19) corresponds to the minimum
short-circuit current, and the numerator represents the maximum load current, which is always lower
than any short-circuit current during normal operative conditions. This implies that the recursive
matricial sweep power flow (12) converges to the power-flow solution, which completes the proof. [

4. Numerical Example

This section presents a small test feeder comprising 13 nodes that can handle radial or mesh
configurations. This facilitates the demonstration of the convergence of the proposed matricial
reformulation of the classical backward—forward power flow approach. Figure 2 presents the electrical
configuration of the 13-node test feeder.
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Figure 2. Electrical configuration of a radial/mesh distribution network (adapted from [31]).

Table 2 lists the branch and load information for the 13-node test feeder that has a total demand of
active and reactive power of 24,200 kW and 7700 kVAr, respectively, and it operates on a line-to-neutral
voltage of 23 kV.

Table 2. Branch and load parameters of the 13-node test feeder.

Nodei Nodej R;;i[Q] X;[Q] P;j[kW]l Q;jlkvar]

1 2 0.3968 0.5290 2000 1600
2 3 0.4232 0.5819 3000 400
2 4 0.4761 0.9522 2000 -400
4 5 0.2116 0.2116 1500 1200
1 6 0.5819 0.5819 4000 2700
6 7 0.4232 0.5819 5000 1800
6 8 0.5819 0.5819 1000 900
7 9 0.5819 0.5819 600 -400
1 10 0.5819 0.5819 1000 900
10 11 0.4761 0.6348 1000 -1100
10 12 0.4232 0.5819 1000 900
12 13 0.2116 0.2116 2100 -800
Tie-lines
3 9 0.2116 0.2116 — —
8 11 0.2116 0.2116 — —
5 13 0.4761 0.6348 — —

To solve the power-flow problem in the 13-node test feeder, we consider the following: (i) a radial
configuration is reached when all the dashed lines in Figure 2 are open, and a meshed configuration is
obtained when one or more dashed lines are connected; (ii) the recursive formula (12) was implemented
in MATLAB using scripts in a tutorial style.

Figure 3 reports the MATLAB implementation of the proposed matricial backward—forward
(MBF) power flow while considering the meshed configuration for the 13-node test feeder depicted
in Figure 2.

In the MATLAB implementation presented in Figure 3, we can observe the following:

v' From lines 1 to 36, all the numerical information in the test system is presented and transformed
into a per-unit representation.

v' Lines 37 to 48 comprise the branch-to-node incidence matrix, impedance matrix, and all the
constant components for evaluating the recursive power-flow formula.

v' From lines 49 to 59, the iterative procedure for solving the power-flow problem while considering a
matricial formulation is implemented while considering a convergence tolerance of approximately
€ = 1 x 10719 Tt should be noted that lines 53 and 54 present the required calculations for
determining the total grid power losses using branch variables, i.e., J and E, and the line
impedance matrix Z.
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v Lines 60 to 65 comprise the 6 coefficients for all the loads for proving that each of them fulfills the
Banach fixed-point theorem condition.

clc;clear

Sbase = 1; Vbase = 23;

9% Line Info. [i j Rl[ohm] X[ohm]]

Lineas=[1 2 0.39675 0.5290; 2 3 0.4232 0.5819; 2 4 0.4761 0.9522; 4 5 0.2116 0.2116;
16 0.5819 0.5819; 6 7 0.4232 0.5819; 6 8 0.5819 0.5819; 7 9 0.5819 0.5819;

1 10 0.5819 0.5819; 10 11 0.4761 0.6348; 10 12 0.4232 0.5819; 12 13 0.2116 0.2116;

3 9 0.2116 0.2116; 8 11 0.2116 0.2116; 5 13 0.4761 0.6348];

9% Node type [i Typo VO P[kW] Q[kVAr]]

Nodos = [1 0 1 0.00 0.00; 2 11 2000 1600; 3 1 1 3000 400; 4 1 1 2000 —400;
5 11 1500 1200; 6 1 1 4000 2700, 7 1 1 5000 1800; 8 1 1 1000 900;

9 11 600 —400;, 10 1 1 1000 900; 11 1 1 1000 —1100; 12 1 1 1000 900;

13 1 1 2100 —800];

%% Per unit transformation

Zbase = ((Vbase)”2)/Sbase; Lineas(:,3:4) = Lineas(:,3:4)/Zbase;

Nodos (: ,4:5) = Nodos(:,4:5) /(Sbasex1000);

9% Branch—to—node and Impedance matrices

NN = size(Nodos,1); NL = size(Lineas,1); A = zeros(NN,NL); ZL = zeros (NL,NL);

for i = 1:NL

Ni = Lineas(i,1); Nj = Lineas(i,2); A(Ni,i) = 1; A(Nj,i) = —-1;
ZL(i,i) = Lineas(i,3) + ljxLineas(i,4);
end

Vo = Nodos(1,3); Ao = A(1,:); Ad = A(2:end,:); Ydd = Ad*(ZL\Ad.’); Zdd = inv(Ydd)
Vdo = Nodos(2:end,3); Sd = Nodos(2:end,4) + 1j*Nodos(2:end,5); Ydo = Adx(ZL\Ao.’
e = 1le—10; tmax = 100; Vdg0 = —Zdd*Ydox*Vo;

for t = 1:tmax

Vd = —Zddxdiag(conj(1./Vdo))*conj(Sd)+Vdg0;

if max(abs(abs(Vd) — abs(Vdo))) <= e

V = [Vo;Vd]; VL = Ao.’xVo + Ad.’«Vd; IL = ZL\VL; Sloss = (ZLx(abs(IL))."2);
break;

else

Vdo = Vd;

end

end

%% Convergence test

Th = zeros(NN—1,2); Vmin = min(abs(V));

for i = 1:NN-1

Th(i,:) = [i+1 abs(Zdd(i,i)*Sd(i))/Vmin];

end

plot(Proof(:,1) ,Proof(:,2), —x");

)3

Figure 3. MATLAB implementation of the matricial iterative sweep power flow.

It is important to mention that if the last three lines related to the branches are removed in the
matrix (see Figure 3), then the radial test system can be evaluated. However, Figure 4 presents the
0 —coefficient for the radial and mesh 13-node configurations.

From Figure 4, it can be concluded that expression (19) is fulfilled for all the demand nodes as the
0 values are between 0 and 1. For both the simulation cases, the maximum value of 6 is reached at node
7 and is 0.016 and 0.009 in the case of the radial and meshed configurations, respectively. It should be
noted that, in the case of the meshed configuration, the minimum voltage is 0.983 p.u at node 7, and in
the radial configuration, this value is 0.976 p.u at node 9.
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102
1.8 T T T T T T T T T
1.6 | —e— Meshed
14| —e— Radial

0 —coefficient

0 | | | | | | | | | |

2 3 4 5 6 7 8 9 10 11 12 13
Node

Figure 4. Behavior of the §—coefficient in the 13-node test feeder in the case of radial and
mesh configurations.

5. Test Systems

This section presents two classical distribution test feeders with radial configurations that are
typically used in the optimal location of distributed generators [5], the optimal location of capacitor
banks [32-34], and optimal battery scheduling approaches [35]. The first system corresponds to the
33-node test feeder, and the second system comprises the 69-node test feeder, which is widely known
as the Baran & Wu distribution network.

5.1. 33-Three-Node Test Feeder

This test system comprises 33 nodes and 32 branches with an operating voltage of 12.66 kV.
The slack node is located at node 1, and its configuration is illustrated in Figure 5. This feeder has
3715 kW and 2300 kVAr of total active and reactive power demand, respectively. The initial active
power losses of this system are equal to 210.988 kW. Here we considered the voltage and power base
values of 12.66 kV and 1000 kW, respectively.

The information of all the branches as well as the load consumption of the 33-node test feeder are
listed in Table 3.

Figure 5. Electrical configuration of the 33-node test system.
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Table 3. Electrical parameters of the 33-node test feeder.

Nodei Nodej R;[Q] X;[Q] Pj[kWl Q;[kWl Nodei Nodej R;[Q] X;[Q] Pj[kWl Q;j[kw]

1 2 0.0922  0.0477 100 60 17 18 0.7320  0.5740 90 40
2 3 0.4930  0.2511 90 40 2 19 0.1640  0.1565 90 40
3 4 0.3660  0.1864 120 80 19 20 1.5042  1.3554 90 40
4 5 0.3811  0.1941 60 30 20 21 0.4095  0.4784 90 40
5 6 0.8190  0.7070 60 20 21 22 0.7089  0.9373 90 40
6 7 0.1872  0.6188 200 100 3 23 0.4512  0.3083 90 50
7 8 1.7114  1.2351 200 100 23 24 0.8980  0.7091 420 200
8 9 1.0300  0.7400 60 20 24 25 0.8960  0.7011 420 200
9 10 1.0400  0.7400 60 20 6 26 0.2030  0.1034 60 25
10 11 0.1966  0.0650 45 30 26 27 0.2842  0.1447 60 25
11 12 0.3744  0.1238 60 35 27 28 1.0590  0.9337 60 20
12 13 1.4680  1.1550 60 35 28 29 0.8042  0.7006 120 70
13 14 0.5416  0.7129 120 80 29 30 0.5075  0.2585 200 600
14 15 0.5910  0.5260 60 10 30 31 09744  0.9630 150 70
15 16 0.7463  0.5450 60 20 31 32 0.3105  0.3619 210 100
16 17 12890  1.7210 60 20 32 33 0.3410  0.5302 60 40

5.2. 69-Node Test Feeder

This test system comprises 69 nodes and 68 branches with an operating voltage of 12.66 kV.
The slack node is located at node 1, and its configuration is depicted in Figure 6. This feeder has a
total active and reactive power demand of 3890.7 kW and 2693.6 kVAr, respectively. The initial active
power losses of this system are equal to 225.072 kW. Here, we assumed that the voltage and power
base values were 12.66 kV and 1000 kW , respectively.

28 29 30 31 32 33 34 35

Figure 6. Electrical configuration of the 69-node test system.

The information of all the branches as well as the load consumption of the 69-node test feeder are
listed in Table 4.
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Table 4. Electrical parameters of the 69-node test feeder.

Node i Nodej Ri]' [Q] X,']' [Q] Pj [kW] Q] [kW] Node i Nodej R,‘j [Q] X,']' [Q] P]‘ [kW] Q] [kW]

1 2 0.0005  0.0012 0 0 3 36 0.0044  0.0108 26 18.55
2 3 0.0005  0.0012 0 0 36 37 0.0640  0.1565 26 18.55
3 4 0.0015  0.0036 0 0 37 38 0.1053  0.1230 0 0
4 5 0.0251 0.0294 0 0 38 39 0.0304  0.0355 24 17
5 6 0.3660  0.1864 2.6 2.2 39 40 0.0018  0.0021 24 17
6 7 0.3810  0.1941 40.4 30 40 41 0.7283  0.8509 1.2 1

7 8 0.0922  0.0470 75 54 41 42 0.3100  0.3623 0 0

8 9 0.0493  0.0251 30 22 42 43 0.0410  0.0475 6 4.3
9 10 0.8190  0.2707 28 19 43 44 0.0092  0.0116 0 0
10 11 0.1872  0.0619 145 104 44 45 0.1089  0.1373 39.22 26.3
11 12 0.7114  0.2351 145 104 45 46 0.0009  0.0012 39.22 26.3
12 13 1.0300  0.3400 8 5 4 47 0.0034  0.0084 0 0
13 14 1.0440  0.3450 8 55 47 48 0.0851 0.2083 79 56.4
14 15 1.0580  0.3496 0 0 48 49 0.2898  0.7091 384.7 274.5
15 16 0.1966  0.0650 45.5 30 49 50 0.0822  0.2011 384.7 274.5
16 17 0.3744  0.1238 60 35 8 51 0.0928  0.0473 40.5 28.3
17 18 0.0047  0.0016 60 35 51 52 0.3319  0.1114 3.6 2.7
18 19 03276 0.1083 0 0 9 53 0.1740  0.0886 4.35 3.5
19 20 0.2106  0.0690 1 0.6 53 54 0.2030  0.1034 26.4 19
20 21 0.3416  0.1129 114 81 54 55 0.2842  0.1447 24 17.2
21 22 0.0140  0.0046 5 3.5 55 56 02813  0.1433 0 0
22 23 0.1591  0.0526 0 0 56 57 1.5900  0.5337 0 0
23 24 0.3460  0.1145 28 20 57 58 0.7837  0.2630 0 0
24 25 0.7488  0.2475 0 0 58 59 0.3042  0.1006 100 72
25 26 0.3089  0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732  0.0572 14 10 60 61 0.5075  0.2585 1244 888
23 28 0.0044  0.0108 26 18.6 61 62 0.0974  0.049 32 23
28 29 0.0640  0.1565 26 18.6 62 63 0.1450  0.0738 0 0
29 30 03978  0.1315 0 0 63 64 0.7105  0.3619 227 162
30 31 0.0702  0.0232 0 0 64 65 1.0410  0.5302 59 42
31 32 0.3510  0.1160 0 0 11 66 0.2012  0.0611 18 13
32 33 0.8390  0.2816 14 10 66 67 0.0047  0.0014 18 13
33 34 1.7080  0.5646 19.5 14 12 68 0.7394  0.2444 28 20
34 35 14740  0.4873 6 4 68 69 0.0047  0.0016 28 20

6. Computational Validation

To validate the proposed MBF power-flow reformulation, we consider four classical iterative
power-flow approaches reported in the specialized literature as comparative methodologies: (i) classical
GS [14], (ii) accelerated version of GS (AGS) [14], (iii) NR [17], and iv) LM [24]. To perform a fair
comparison, all these methods are evaluated 1000 consecutive times to determine their computational
costs (processing times) by considering a maximum of 100 iterations and a tolerance error of 1 x 10~10.

6.1. Results for the 33- and 69-Node Test Feeders

Table 5 lists the computational efficiency of the proposed MBF method as compared to the classical
approaches reported in the literature. These results were reached after performing 1000 consecutive
evaluations, which confirms the following:

v" The proposed approach is the most efficient in terms of processing times as compared with the
classical approaches as it only takes 1.32 ms for completion in the case of the 33-node test feeder
and 5.37 ms for completion in the case of the 69-node test feeder, which implies that it is at
least seven times faster than the NR method, which is the most used approach in research and
the industry.

v' The classical GS method presents the worse performance in terms of processing times and
number of iterations. However, its accelerated version with the a—coefficient presents a
significant improvement in its performance. In the case of the 33-node test feeder, this method is
approximately ten times faster, and in the case of the 69-node test feeder, it is at least 18 times
faster, in terms of the total processing time required to solve the power-flow problem.
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v" The NR and LM methods belong to the same class as both comprise the use of Jacobian matrices.
Therefore, their performance with respect to the number of iterations and the processing times is
very similar. Even if the proposed approach requires double the number of iterations, in terms
of processing times, we can confirm that the MBF is the best numerical method for distribution
power-flow analysis as compared with the NR and LM approaches.

v In terms of the power losses calculation, it is important to mention that all the numerical
methods listed in Table 1 arrive at the same solution with negligible errors of estimation (lower
than 1 x 10’10). This implies that each of them is suitable for implementation; nevertheless,
our proposed method, i.e., the MBF reformulation, is the most desirable approach due to its
speediest performance.

Table 5. Numerical results for the 33- and 69-node test systems.

33-node Test Feeder

Method Proc. time [ms] Iterations Losses [p.u]
GS 441.974 2313 2.110
AG (a« = 1.82) 38.555 227 2.110
NR 10.751 5 2.110
LM 10.882 5 2.110
MBF 1.323 10 2.110
69-node Test Feeder
GS 31107.756 49031 2.422
AG (a =1.92) 1662.691 2455 2.422
NR 38.303 5 2422
LM 42.719 5 2422
MBF 5.369 10 2.422

Figure 7 presents the voltage profiles for the 33- and 69-node test feeders for the proposed MBF
and NR power-flow methods. We can observe that these plots confirm that, numerically speaking,
both these methods demonstrate the same performance in terms of voltage determination. However,
the main advantage of the MBF when compared to the NR approach (see Table 1) is its faster calculation
times as it guarantees convergence on well-defined voltage conditions.

To demonstrate that the proposed MBF approach guarantees convergence in the 33- and 69-node
test feeders, Figure 8 presents the behavior of the -coefficient. From the results in Figure 8, it is
possible to confirm that hypothesis (19) is fulfilled, and the proposed BFM guarantees the convergence
of the power-flow problem. In the case of the 33-node test feeder, the maximum coefficient occurs at
node 30 with a value of 0.027, while in the case of the 69-node test feeder, this occurs at node 61 with a
value of 0.062. These values facilitate the verification that 0 is comprehended between 0 and 1 in the
case of both the test feeders.
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(a) Voltages [p.u]

(b) Voltages [p.u]
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Node
Figure 7. Voltage profiles: (a) 33-node test system, and (b) 69-node test feeder.

1072
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(a) 6—coefficient

(b) —coefficient

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Figure 8. Behavior of the 6-coefficient: (a) 33-node test system, and (b) 69-node test feeder.
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6.2. Inclusion of Voltage-Controlled Nodes

One of the main advantages of the proposed MBF power-flow reformulation is the possibility
of working with voltage-controlled nodes, i.e., nodes that control active power injection and the
magnitude of the voltage profile. These nodes are common in power-system analyses [14], wherein
multiple synchronous machines are interconnected via the transmission network. To realize the VC
inclusion in the proposed model, we can apply the classical GS method, where the reactive power
generation at the VC source nodes is calculated as follows:

VC,t _ pVC : \VC,t
Sge " = Poy +7Qg " (20a)
n
VC,t __ *,t *,t R VAl
Qg = —Imag {Sdk - Vik 21 Yk]Vd,]} (20b)
]:

where S;’kc't is the apparent power injected at node k by the VC source, which can be split into its real
and imaginary powers, i.e., P;ic and Q;,/kc’t, which are the active power constant and reactive power
variable for maintaining a constant magnitude of the voltage output; Yj; is the admittance that relates
nodes k and j, respectively.

The voltage-controlled nodes can be easily included in the proposed MBF method by

modifying (12) as follows.
Y43 1——Z dia: 1 Vt’ S :’t—S —-b 21
d dqd1ag d g d : (21)

Remark 2. Once all the voltages are calculated, in the case of the VC source, the magnitude of the voltage is
fixed as a constant, and from (21), only the angle at each iteration is updated, i.e.,

t+1,VC _ |y VC
ng o ’ng

t+1,VC
Zng .
being qu/kc the specified voltage in the VC source.

To demonstrate the applicability of the proposed MBF power-flow method, we implement a small
four-node test feeder with a slack node at bus 1 and a VC source at node 4. This system was initially
presented in [14] to introduce the GS and NR methods. The comparison in this section is performed
using the widely used power-system software called DigSILENT. Figure 9 presents the configuration
of this test feeder and the DigSILENT results obtained after evaluating the AC power flow via the
NR method.

The information of the branches and loads for this four-node test feeder are obtained from [14]
and are listed in Tables 6 and 7.

Table 6. Line parameters of the four-node test feeder.

Line R[Q] X[Q] Yshunt [4S] Current [A]

1-2 53323 26.6616 193.7618 200
1-3  3.9358 19.6788 146.5028 400
24 39358 19.6788 146.5028 500

3-4 6.7289 33.6444 241.0208 400
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Table 7. Nodal parameters of the four-node test feeder.

Node P, [MW] Q¢ [MVAr] P; IMW] Qg [MVAr]l V[pul

1 (slack) — — 50 30.99 1.00£0
2 (load) 0 0 170 105.35 1.00£0
3 (load) 0 0 200 123.94 1.00£0
4 (VQC) 318 — 80 49.58 1.02£0

17 of 21

Once the power-flow problem is solved using the proposed MBF method, the results reported in
Table 8 are obtained. It should be noted that these are compared to the DigSILENT solution presented

in Figure 9.
Table 8. Voltages in the four-node test feeder.
Node DigSILENT MBF Node DigSILENT MBF
1 1.000£0.00° 1.000£0.00° 3 0.969/—-1.87° 0.969£—1.87°
2 0.982/—0.98° 0.982./—0.98° 4 1.0204-1.52° 1.020£-1.52°
Slack
: - Line 1-2 -
63,3
| |
1868 387 385
1145 22,3 31,2
0,550 0,112 LoazT
B1 230,0 - B 2260 ;
1,00 0,38
0.0 [sea | [ s00 | ' ' ' ' ' L -1.8 1315 170,0
51,2 31,0 74,1 105,3
0,280 0,143 0,386 0,511
o - %7
— 0 ) [avIal
w o Load 1 - Line 34 - @ P - Load 2 -
™ 77.3 £
— E] —1
971 | [ -102% 1333
536 50,4 749
_ _ _ o3 | | o308 0,376
0n.a7
L 1.9 200,0 380 | [ 800 |
1233 1814 436
ué; u.9|01 : u.é;z
-~ Load 3 - PV - Load4 -

Figure 9. Electrical configuration of the four-node test feeder.

The results presented in Table 8 confirm the possibility of using our proposal approach to solve
power-flow problems in power systems by using the MBF reformulation with the main advantage that
it is comparable with sophisticate software such as DigSILENT. In Appendix A has been illustrated the
codification of the proposed MBF method for power systems that comprise voltage-controlled nodes.
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Remark 3. It should be noted that, if the voltage profiles are the same while comparing the NR and MBF
methods, as presented in Table 8, then all the active and reactive power flows reported in Figure 9 will demonstrate
exactly the same performance, which confirms the possibility of using the proposed approach in radial and meshed
networks comprising voltage controlled nodes.

7. Conclusions and Future Works

A matricial version of the classical backward—forward power-flow method has been presented
in this paper with the main advantage that it guarantees convergence under well-defined voltage
conditions. In addition, numerical validations were performed using 33- and 69-node test feeders to
demonstrate that the MBF proposal requires the minimum processing times as compared with those of
classical methods such as GS, NR, and LM.

The proof of convergence was performed by applying the Banach fixed-point theorem. This has
permitted the conclusion that the proposed MBF method always converges under well-defined load
conditions as the 6-coefficient was defined as the relation between the maximum load current and
minimum short-circuit current. This implies that 6 is always be comprehended between 0 and 1,
thus guaranteeing the numerical convergence of the power-flow problem.

The inclusion of voltage-controlled nodes was also considered by implementing a small four-node
test feeder and comparing the numerical results reported using well-known software used for solving
power-flow problems called DigSILENT and those of our proposed approach . The voltage profiles
obtained using both these methods allowed use to conclude that the proposed MBF method can handle
radial and meshed networks comprising VC nodes and will be suitable for multiple power-system
applications shortly.

Some additional works that can be derived from this work are listed below: (i) the application
of this power-flow method to electrical networks comprising renewable energy sources and battery
energy-storage systems in an embedded strategy that facilitates the optimal dispatch of these devices
with metaheuristics; (ii) the application of our proposed approach for conducting optimal power-flow
analyses in distribution networks via sequential programming approaches based on combinatorial
optimization; (iii) the extension of the MBF formulation to electrical systems comprising hybrid
structures that contain AC and DC feeders interfaced with power electronic converters.

Author Contributions: Conceptualization, O.D.M., and W.G.-G.; methodology, O.D.M., and W.G.-G.; formal
analysis, O.D.M., and W.G.-G.; investigation, O.D.M., and W.G.-G.; resources, O.D.M., W.G.-G., and D.A.G.;
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version of the manuscript.
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Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS), by calling
contest 727-2015.

Conflicts of Interest: The authors wish to confirm that there are no known conflicts of interest associated with
this publication.

Appendix A. MATLAB/OCTAVE Code for VC Nodes

This appendix provides the codification of the proposed MBF method for power systems that
comprise voltage-controlled nodes. This implementation is reported in Figure A1l and works in
MATLAB and OCTAVE environments.
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clc; clear

Sbase = 100;%MVA Vbase = 230;%kV

%% Line Info. [i j Rlpul Xlpull Y[pu]

Lineas = [1 2 0.01008 0.05040 0.05125;

13 0.00744 0.03720 0.03875;

2 4 0.00744 0.03720 0.03875;

34 0.01272 0.06360 0.06375];

%% Node type [i Typo VO P[kWI] Q[kVAr]]

% T: 0——>SLACK, 1-—>VC, 2——>PQ]

% [k T Pgk Qgk Pdk Qdk Vo]

Nodos = [1 0 O 0 50 30.990 1 ;

220 0 170 105.35 1 ;

320 0 200 123.94 1 ;

41318 0 80 49.580 1.02 ];

%% Per unit transformation

Zbase = ((Vbase)”2)/Sbase; Lineas(:,3:4) = Lineas(:,3:4);

Nodos (:,3:6) = Nodos(:,3:6) /Sbase;

9% Branch—to—node and Impedance matrices

NN = size(Nodos,1); NL = size(Lineas,1);

A = zeros(NN,NL); ZL = zeros(NL,NL); Yb = zeros (NN,A\N) ;

for i = 1:NL

Ni = Lineas(i,1); Nj = Lineas(i,2); A(Ni,i) = 1; A(Nj,i) = -1,
ZL(i,i) = Lineas(i,3) + 1ljxLineas(i,4); Ys = lixLineas(i,5);
Yb(Ni,Ni) = Yb(Ni,Ni) + Ys; Yb(Nj,Nj) = Yb(Nj,Nj)+ Ys;

end

Ao = A(1,:); Ad = A(2:end,:); Ydd = Ad*(ZL\Ad.’) + Yb(2:end,2:end); Zdd = inv(Ydd);
Ydo = Ad*(ZL\Ao.’); Vdo = Nodos(2:end,7); Vo = Nodos(1,7);

Yb = Ax(ZL\A.’) + Yb; Sd = Nodos(2:end,5) + 1jxNodos(2:end,6); e = 1e—10; % Tolerance
tmax = 1000;

PV = Nodos(Nodos(:,2)== 1,:); Sdpv = zeros(size(Sd,1) ,1);

for pv = 1l:size(PV,1)

pvn = PV(pv,1) — 1; Vdo(pvn,1) = PV(pv,7);

Qpv = —imag(conj(Sd(pvn,1)) + conj(Vdo(pvn,1))*Yb(pvn+1,:)*[Vo;Vdo]);
Sdpv(pvn,1) = PV(pv,3) + 1j*Qpv;end

for t = 1:tmax

Sdx = Sdpv — Sd; Vd = Zddx(diag(conj(1./Vdo))*conj(Sdx) — YdoxVo);
for pv = 1:size(PV,1)

pvn = PV(pv,1) — 1;

Vd(pvn,1) = PV(pv,7)x+exp(lj+angle(Vd(pvn,1l)));

Qpv = —imag(conj(Sd(pvn,1)) + conj(Vdo(pvn,1))*Yb(pvn+1,:)=*[Vo;Vd]);
Sdpv(pvn,1) = PV(pv,3) + 1j*Qpv;end

if max(abs(abs(Vd) — abs(Vdo))) <= e

V = [Vo;Vd]; VL = Ao.’*Vo + Ad.’«Vd; IL = ZL\VL; Sloss = (ZLx(abs(IL))."2);
break; else

Vdo = Vd;

end end

[Vmin,No] = min(V); Sslack = sum(Sd) + sum(Sloss);

%0 Convergence test

Proof = zeros(NN-1,2);

for i = 1:NN-1

Proof(i,:) = [i+1 abs(Zdd(i,i))=*abs(Sd(i))/min(abs(V))] ;
plot(Proof(:,1) ,Proof(:,2),’—=x*"); end

Figure A1. MATLAB implementation of the matricial iterative sweep power flow while considering
VC nodes.
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