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Abstract: The dynamic features of microgrid operation, such as on-grid/off-grid operation mode, the
intermittency of distributed generators, and its dynamic topology due to its ability to reconfigure
itself, cause misfiring of conventional protection schemes. To solve this issue, adaptive protection
schemes that use robust communication systems have been proposed for the protection of microgrids.
However, the cost of this solution is significantly high. This paper presented an intelligent fault
detection (FD) system for microgrids on the basis of local measurements and machine learning
(ML) techniques. This proposed FD system provided a smart level to intelligent electronic devices
(IED) installed on the microgrid through the integration of ML models. This allowed each IED to
autonomously determine if a fault occurred on the microgrid, eliminating the requirement of robust
communication infrastructure between IEDs for microgrid protection. Additionally, the proposed
system presented a methodology composed of four stages, which allowed its implementation in
any microgrid. In addition, each stage provided important recommendations for the proper use of
ML techniques on the protection problem. The proposed FD system was validated on the modified
IEEE 13-nodes test feeder. This took into consideration typical features of microgrids such as the
load imbalance, reconfiguration, and off-grid/on-grid operation modes. The results demonstrated
the flexibility and simplicity of the FD system in determining the best accuracy performance among
several ML models. The ease of design’s implementation, formulation of parameters, and promising
test results indicated the potential for real-life applications.

Keywords: fault detector; microgrid; machine learning-based techniques

1. Introduction

Distribution systems have presented several changes in the last years. Among the most significant
ones, there is the integration of distributed energy resources (DER), which has been motivated by
advances in power electronics and increased environmental awareness [1]. High integration of DER
makes distribution network operation more complex, requiring the introduction of advanced control
functionalities [2,3]. The presence of high-level penetration DER and control resources on distribution
networks has given rise to a new concept known as microgrid [4,5]. A microgrid is defined as a
group of interconnected loads and DER, with clearly defined electrical boundaries, acting as a single
controllable entity from the grid’s point of view, and operating in both grid-connected or islanded
mode [6]. The use of these systems brings operational, environmental, and economic benefits, such
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as improved reliability, integration of renewable energies, reduction of network losses, and better
voltage profile [7]. Nevertheless, microgrids present new challenges such as bidirectional power flow,
considerable variations on fault currents levels, as well as power intermittency and quality issues,
and additionally possible network reconfiguration, due to the presence of renewable energy sources [8].
Protection systems inside the distribution grid are particularly affected because they are based on the
principle of overcurrent and unidirectional power flow [9]. Thus, traditional overcurrent protection
schemes do not adequately protect microgrids [10].

Several approaches have been proposed in the literature to deal with microgrid protection [11].
These protection schemes can be classified into three classes: external protection, adaptive protection,
and fault detection. The external protection (EP) approach uses additional equipment such as
reactances, super-capacitors, or fault current limiters (FCL) for preventing misfiring of the protection
devices [12–14]. However, these solutions lack flexibility and, therefore, are not suitable for microgrids,
where topology changes and DER connection/disconnection is possible [15]. The adaptive protection
(AP) approach works online to dynamically modify protection settings in order to address changes
in the microgrid operating conditions [16]. Some works have been proposed in this area [17–21].
However, these methods depend strongly on wide-area measurements and require a significant
investment in communication infrastructure. On the other hand, fault detection (FD) approaches allow
smart operation under diverse fault and normal operating conditions. The FD systems proposed
in [22,23] use intelligent micro-grid protection schemes based on data mining. However, typical
network characteristics such as imbalance, topology changes, and upstream impedance changes are not
considered [24]. In [25,26], a combined Hilbert/S-transform and decision tree-based intelligent scheme
for fault detection and classification in microgrids is presented. The proposed method preprocesses
the faulted current signals by using the S-transform to extract differential statistical features at the ends
of the respective feeder, which are then used to build a decision tree model for final relaying decision.
This method requires synchronized measurements at both ends of the line because it uses the principle
of differential protection. Such a requirement represents a disadvantage for rural microgrids due to the
added complexity of installing and operating a robust communication network in those areas [27].
Additionally, typical characteristics of the microgrids such as imbalance and topology changes are not
considered by this approach. In [28–30], the previous FD techniques are improved by considering to
topology changes. The authors in [31,32] present a fault detector based on morphological techniques,
transient content, and zero sequence current for adaptive overcurrent protection in distribution
networks with increasing photovoltaic penetration as well as changing load conditions. The algorithm
has built-in DC-offset suppression capability as well as recursive least square error filter for current
phasor estimation to provide input to the overcurrent fault detector. Nevertheless, this method does
not consider alternative operating modes, such as grid-connected versus islanded mode [6]. Table 1
highlights the main aspects considered by FD state-of-the-art techniques and the proposed FD system
and challenges that have not been faced.

From Table 1, it is possible to remark that the main challenges that have not yet been fully
addressed in terms of microgrid protection are the imbalance, dynamic topology, consideration of
non-robust communication systems, adaptive coordination, and high-impedance faults occurrence.

This paper proposed a fault detection system for microgrids based on machine learning (ML)
techniques. The proposed system formulated a set of organized procedures for database generation
and processing, in terms of parameterization, training, and validation of ML techniques for fault
detection. With the proposed FD approach, we addressed some weaknesses previously presented
in state-of-the-art FD methods, such as network imbalance, synchronization of the measurements,
changes in topology, non-robust communication systems, and on-grid/off-grid modes of operation.
Aiming to show the main contributions of the proposed system, Table 1 compares the FD state-of-the-art
techniques with the proposed FD system and highlights the main aspects considered.



Energies 2020, 13, 1223 3 of 21

Table 1. Summary of the main aspects of the analyzed protection techniques.

Analyzed Aspect

Protection Techniques

EP AP FD-ML
Proposed FD System

[12–14] [17–21] [22] [23] [25,26] [31,32] [28–30]

Microgrid operation

All fault types Yes No No No Yes Yes Yes Yes
Imbalance system Yes No No No No No No Yes

Load variation effect Yes Yes Yes Yes Yes Yes Yes Yes
Dynamic topology No Yes No No No No Yes Yes
Operation mode
on-grid/off-grid No Yes Yes Yes Yes No Yes Yes

DER connection/disconnection No Yes Yes Yes Yes No Yes Yes
DER variation effect Yes Yes Yes Yes Yes Yes No Yes

Protection system
One terminal approach Yes No No Yes No Yes No Yes

Non-robust communication
systems Yes No No No No Yes No Yes

Adaptive coordination No Yes No No No No No No
High-impedance faults No No No No Yes No No No

The following considerations were made for the development of this research:

• Only low impedance faults were detected. High impedance faults were beyond the scope of
this work.

• The device coordination process was not addressed.
• It was assumed that the microgrids had robust control functionalities to guarantee their stability

after to clean the fault.

The remainder of the paper is structured as follows: Section 2 presents the proposed fault detection
system. Section 3 describes the case study. Section 4 contains the validation results and discussion.
Finally, the conclusions of this work are presented in Section 5.

2. The Proposed Fault Detection System

The proposed fault detection system was based on ML techniques. This method considers
intelligent electronic devices (IED) installed at each end point of the line section without a
communication link between them, as illustrated in Figure 1.
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Figure 1. Intelligent electronic devices (IEDs) installed at each end point of the line section without a
communication link. DER: Distributed energy resources.

Each IED records the current and voltage signals of the three-phases at the node where it is
located. Using these signals as inputs to ML models at each IED, they must discriminate between
normal (no-faulted) and abnormal (fault) operating conditions. Thus, the FD can be formulated
as a binary classification task, using the measurement signals as input features (attributes). The
proposed FD system is divided into four stages, as illustrated in Figure 2. Each stage is explained in
the following subsections.
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2.1. Stage I: Database from Simulations

The performance of ML algorithms depends strongly on the quality of the training database.
Because microgrids are designed to minimize the occurrence of faults, the number of faults recorded
during actual operation is very low. Therefore, creating a training database using measures exclusively
from an actual microgrid is not practical. Instead, actual measures should be complemented with
simulations representing all normal and faulted conditions of the microgrid. It is then critical
to determine the main factors involved in the operation of microgrids for both normal and fault
operating conditions. The database building is then divided into two steps, which are described in
Sections 2.1.1 and 2.1.2.

2.1.1. Step 1: Determining Factors and Levels for Normal and Faulted Microgrid Operating Conditions

In order to properly set up the simulations for data gathering, it is necessary to determine what
are the main factors that affect microgrid operation and the intervals in which they perform. Table 2
lists operating factors, with their respective levels, as proposed in the literature. This list does not
exclude the existence of other factors [13,22,23,33].

Table 2. Factors and levels commonly used.

Group Factor Levels Reference

No-fault operation

Load change 30–150% [21,22,25,34–36]

Generation change 50–150% [28]

Topology change Reconfiguration—section cut off—off grid [29]

Cut off generation At least one DG to time [30]

Capacitor switching At least one to time [37]

Operation mode microgrid On-grid/off-grid [21,22,25,34–36]

Fault operation

Type of fault
Single line to ground fault—double line

fault—double line to ground fault
three-phase fault

[19,21,22,25,26,29,30,34–38]Fault location Overall distribution lines

Fault resistance 0 Ω to 50 Ω

Fault location over line section from 0% to 50%

The non-faulted operation factors were chosen to cover as much as possible of the range of
normal operating scenarios of the microgrid. On the other hand, for fault operation scenarios, these
factors affect the fault magnitude (for low impedance faults) in a directly proportional manner [9].
Therefore, the normal operation scenarios and fault conditions for data gathering through simulation
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were defined by the factors and levels listed in Table 2. These scenarios are automatically simulated by
using electromagnetic transient simulation software, as described in step 2.

2.1.2. Step 2: Database Generation from Simulations

When only synthetic databases are used, aspects such as accurately studied system modeled, the
effect of the instrumentation on quality of electrical signals, and balance and randomization of the
database should be considered in order to guarantee a performance satisfactory of the ML models
in their implementation on the real network. The simulation data generation was carried out on
three stages: baseline operation condition, generation of non-faulted and faulted events, and database
labeling, as shown in Figure 3. For this step, the factors and levels of variation for microgrid operation
defined in step 1 as well as a model of the microgrid, built-in software for EMT simulation, were used
to set the simulation parameters.
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• Stage 1: Definition of the microgrid baseline operation condition

In this stage, the initial operating condition of the microgrid is set. Different baseline conditions
were used to add variety to the training data. Modifications are carried out by load variations:
low–medium load condition (30–70%), medium–nominal load condition: (70–100%), and nominal–high
load condition (100–150%). Load variation in microgrid operation requires the estimation of injected
powers by DER. For this purpose, optimal power flow is applied, minimizing losses and determining
the active and reactive power contributions of each DER. The location of each IED is also defined in
this stage. The voltage and current measurements are stored for all three-phases at each node of the
microgrid. Additionally, the simulation time and its sampling rate are defined.

• Stage 2: Generation of non-fault and faulted events

The EMT simulation is divided into three intervals: the first interval is given by the baseline
operation condition, which is the initial condition of the microgrid and is defined in stage 1. The second
interval is generated by a change in the normal operating condition of the microgrid, corresponding to
an increase/reduction on the demand.

This change is carried out by creating a random load variation event in the EMT simulation of
no more than 50% of the baseline operation condition. The third interval corresponds to the fault
condition. The fault occurs at 0% and 50% of the line sections of the microgrid. The levels in Table 2
establish the fault resistance values. For this research, a simulation time of 150 ms was considered,
where the random load variation event and fault event occurred at 50 ms and 100 ms, respectively.
These intervals were selected as being long enough to avoid any transitory effects but short enough to
allow for fast response of the protection devices. Figure 4 illustrates the current signal recorded by an
IED under the above conditions, and the sampling frequency was set to 10 kHz.
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• Stage 3: Database labeling

During the previous stage, for each simulated operation scenario, the V and I signals are obtained
at the installation points of each IED. In this new stage, the resulting V and I signals are labeled
as follows:

3 Non-faulted: this class includes all normal operation condition scenarios of the microgrid. This
scenario is labeled as class 1 in this work.

3 Fault condition without relay activation: this class includes all fault events that can be detected
by the IED but did not occur in its protection zone. This scenario is labeled as class 2 in this work.

3 Fault condition with relay activation: this class includes all fault events that occur in the protection
zone of each IED.
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2.2. Stage II: Input Data Adjustment

The definition and selection of attributes is a critical process in the application of ML techniques.
The features should be selected, seeking to maximize the amount of information that they capture
from the database [13]. Additionally, if a lower number of attributes is employed, the dimensionality
of the problem space is also reduced, which can improve the performance of ML techniques on a given
dataset [39]. Several attributes for FD approaches have been proposed in [13,21–23,26,40]. In this work,
the 49 attributes listed in Table 3 were used. These attributes were computed for each signal cycle,
taking approximately 160 samples to describe a 60 Hz cycle.

Table 3. Definition and estimation of attributes.

Attribute Estimation Number of Features References

Root mean square (RMS) voltage and current signal
(Va, Vb, Vc, Ia, Ib, Ic)

xrms =

√
N−1∑
k=0

X2
k

2 6

[13,22,36,40,41]Phase angle (θva,θvb,θvc,θia,θib,θic) ϕX = max(angle(Xk)) k = 0, . . . , N − 1 6
Frequency ( f ) f = fk

∣∣∣ Xk = max(Xk) k = 0, . . . , N − 1 1
Active and reactive power

(Pa, Pb, Pc, Qa, Qb, Qc)
S = P + jQ =

VrmsIrms(cos (ϕV −ϕI) + j sin (ϕV −ϕI))
6

Mean of the fundamental frequency contours
(mVa, mVb, mVc, mIa, mIb, mIc)

x =
N∑

m=0

X(m,ωo)
N 6 [25,30,35,36]

Standard deviation of the fundamental frequency contours
(stdVa, stdVb, stdVc, stdIa, stdIb, stdIc)

S =

√
1
N

N∑
m=0

(
X(m,ωo) − x

)2 6 [23,32,33,35]

Entropy of the fundamental frequency contours
(SVa, SVb, SVc, SIa, SIb, SIc)

H
(
X(m,ωo)

)
=

N∑
m=0

p(X(m,ωo)) log2 p(X(m,ωo)) 6
[32,33,35]

Kurtosis of the fundamental frequency contours
(ktVa, ktVb, ktVc, ktIa, ktIb, ktIc) Kt

(
X(m,ωo)

)
=

∑N
m=0(X(m,ωo)−x)

4

NS4 − 3 6

Obliquity of the fundamental frequency contours
(skVa, skVb, skVc, skIa, skIb, skIc) Kt

(
X(m,ωo)

)
= 1

N

∑N
m=0(X(m,ωo)−x)

3

S3
6

It is possible that two or more of these attributes are highly correlated. Therefore, a selection
method must be used to determine the most representative attributes.

2.3. Stage III: Parametrization and Training of ML Techniques

This stage is composed of three steps: the selection of the ML technique, selection of representative
attributes, and parametrization and training. The processing steps are explained in Sections 2.3.1–2.3.3.

2.3.1. Step 4: Selection of the ML Technique

Three ML algorithms are considered, choosing among them by finding the best overall performance
when each algorithm is tuned using a heuristic adjustment of its hyper-parameters. For this approach,
the value of each hyper-parameter is varied between a range until the performance of the corresponding
technique reaches its peak. This process was carried out considering the 49 attributes from stage 2.
The ML techniques considered for this work were random forest (RF), support vector machine based
on radial basis function kernel (SVM), and K-nearest neighbors (K-NN), which are commonly used
in the literature to solve fault detection problems. Table 4 shows the hyper-parameters for each ML
technique and the intervals considered for tuning [42].

Table 4. Machine learning (ML) techniques and hyper-parameters.

ML Technique Hyper-Parameter Interval

Random forest classifier (RF) Threshold selection Gini, entropy.
Number of trees (0− 20)

K-nearest neighbors (K-NN) Number of neighbors (0− 20)

Support vector machine (SVM) C factor (0− 20)
Gamma factor (0− 20)
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2.3.2. Step 5: Determination of Representative Attributes.

In this step, the number of features that represent the largest amount of database information are
selected, reducing problem space dimensionality and computational requirements. For this research,
two feature selection techniques were used [43]:

• Principal component analysis (PCA)

PCA is a complexity reduction technique used for the analysis of intrinsic database variability [44].
This technique uses a transformation to gain new attributes, called components, on the basis of the
original features, maximizing variance and minimizing the lineal correlation between features. In
order to diminish the loss of information in the transformation process, PCA employs the covariance
matrix for transforming a database Xn x m in a database Yn x l such that l� m. This method is given
by Equation (1).

X =
l∑

a=1

tapT
a + E | X ∈ Rmxn Λ l ≤ n (1)

where X is the set of data to be analyzed by principal components, l is the number of components, pa is
an orthonormal vector that contains the relationship between the features, and ta is the projections of X
over pa. Finally, E is the error of the model. Therefore, given Equation (1), the PCA is placed on the
decomposition in eigenvalues of the covariance matrix cov(X) = XTX/(n− 1).

The new features are selected on the consideration that their contribution is more than 1% of the
database variation and that their combination with other features represents at least 98% of the total
data variation.

• Singular value decomposition (SVD)

Algebraically, any matrix X can be divided into a linear combination of matrixes with rank 1,
which is described by Equation (2) [45].

X =
m∑

i=1

uiσivT
i | X ∈ Rmxn, u ∈ Rmxm , σ ∈ Rmxn, v ∈ Rnxn (2)

where u and v are orthonormal matrices, and σ is a diagonal matrix with non-negative values, which
are called singular values. A way to obtain these from a matrix is through the eigenvalues λi of the
square matrix A = XXT, such that the singular value σi meets the condition σi =

√
λi.

As is the case with the PCA method, the SVD saves the relevant information for each dimension of
a database. With this information, it is possible to determine the number of attributes that can describe
the original database efficiently. As a disadvantage, both Principal component analysis (PCA) and
SVD result in new abstract feature spaces generated by combining features in the original space.

2.3.3. Step 6: Parametrization and Training of ML Techniques

The parametrization and training processes are performed simultaneously in this step. As in step
5, the ML technique is selected and its hyper-parameters are estimated, and the parametrization process
is addressed in order to determine the combination of the features that maximize the performance of
the ML technique computed using cross-validation. Cross-validation is a procedure for determining
the ML performance through the training database being divided into N subsets (folds), and N models
are trained and tested using a leave-one-out scheme [46]. The overall performance is computed as
the average of the accuracy of the N resulting models. For the case presented here, the number of
feature combinations was 249. Therefore, to determine the feature combination that maximizes the
performance of the ML technique is not a trivial task. That is why a Chu–Beasley genetic algorithm
(CBGA) was implemented to achieve this goal. Figure 5 presents each stage of the CBGA, and the next
sections explain in detail each stage [47].
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• Stage 1: Generation of the initial population

The CBGA is a computer simulation in which a population of abstract representations (genotype
of the genome) of solution candidates (individuals or chromosomes) to an optimization problem is
modified through an evolutionary mechanism that results in a trend towards better solutions [48]. For
the fault detection problem, an initial population of 20 individuals is used, where each individual is
composed by 49 chromosomes that represent each electrical attribute. Each chromosome can take the
value of zero (0) or one (1): zero indicates that the electrical feature obtained in step 3 is not considered,
and 1 that this is considered in the combination of attributes defined by the individual. Additionally,
an infeasibility function is implemented to limit the number of features for each chromosome. The
maximum number of features is determined by the techniques presented in step 5. Additionally, each
chromosome is qualified through a fitness function, which is computed as the performance of the ML
model when trained on the features defined in the chromosome.

• Stage 2: Making of next generation

In this process, new generations of individuals are obtained from the crossing of the individuals
that compose the current population. This is achieved through three evolution mechanisms as shown
in Figure 5. The selection of parents is carried out by tournament, where two groups composed of five
individuals of the current population are randomly selected, such as the individual with the highest
performance being selected from each group. With the definition of the two parents, the crossing
between them is generated using a selected crossover. For this, two random numbers between 0 and
the length of the individual are obtained, exchanging the part of the chromosome that is between
these two values. From this process, two new individuals called children are obtained, but only one is
chosen randomly for the next generation [49]. The third evolution mechanism is the mutation. For this
process, a random number from 0 to 1 is found. If the number is greater than 0.85, the genome of a
random chromosome is changed so that if the genome is 1, this is changed to 0.

• Stage 3: Decision criterion

Considering the coding strategy used in the approach, the new descendent could substitute the
individual who has the worst objective function if, and only if, the descendent has a better objective
function and meets the diversity criterion. This is achieved through three decision criteria. The first
corresponds to the feasibility criterion, which determines if the number of features defined by the
current chromosome is less than the number of representative features selected in step 5. The second
criterion corresponds to the aspiration criterion, where if the performance of the current descendent is
lower than the fitness of any chromosome of the current population, and then a number of mutations are
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applied in order to improve their fitness. Finally, the third criterion corresponds to the selection criteria.
This determines whether the new descendent replaces an individual in the current population. The
replacement is carried out if, and only if, there is an unfeasible chromosome in the current population,
or if the child chromosome has better performance than the worst individual in the population and is
less infeasible than the individual being replaced. In cases of gaining better performance and major
infeasibility, it replaces the most infeasible.

Stages 2 and 3 are performed until a defined number of iterations is reached, or the accuracy
change rate between the parents is less than 1%. As a result of step 7, the ML model for each IED
with the best performance reported in the training process is obtained, obtaining a combination of 16
features in the worst-case scenario, thus reducing the ML model complexity.

2.4. Stage IV: Validation of ML Techniques

Step 7: Performance of the ML Techniques

In order to validate the ML models determined in step 2.3, their performance was studied
using a test database, which corresponded to 15% of the database that was not considered in the
training process.

3. Case Study

The proposed method was validated on the modified IEEE 13-node test feeder [50]. This feeder
operates at a voltage of 24.9 kV and is characterized by being short and relatively highly loaded, and
having overhead and underground lines, shunt capacitors, an in-line transformer, and unbalanced
loading. This system was modeled in the DIgSilent Power Factory simulation software and modified
by inserting one photovoltaics source (PV) system of 1.5 MW, a conventional synchronous generator of
2 MW, and one wind generator of 1MW. Figure 6 presents the IEEE 13-node test feeder.
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4. Validation and Discussion

The validation of the proposed FD system was carried out by its implementation on the case study
and the sensitivity analysis. Sections 4.1 and 4.2 present the obtained results and discussion for the
application of each stage of FD system and sensitivity analysis.

4.1. FD System Implementation

Sections 4.1.1–4.1.4 present the implementation of each stage of FD system.
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4.1.1. Stage I: Database from Simulations

The database from simulations was obtained by simulating the possible operating scenarios
of the microgrid. These scenarios were obtained from its operation modes (on-grid/off-grid) and
three reference load conditions defined as low-load condition, half-load condition, and nominal-load
condition, as presented in Table 5. Tables A1–A3 of the Appendix A show the load values used in the
generation of the database.

Table 5. Operational condition of microgrid.

Scenario Operation Mode Reference Load Condition

1

On-grid

Low load: 30% of nominal load.

2 Medium load: 70% of nominal load.

3 High load: nominal values.

4

Off-grid

Low load: 30% of nominal load.

5 Medium load: 70% of nominal load.

6 High load: nominal values.

Several factors for generation of the normal operation conditions and faulted conditions were used.
Table 6 presents the factors used in this stage. For each group (normal condition and faulted-condition),
23,606 scenarios were obtained, because the theory of the ML recommends that each class has the
same number of scenarios so as not to bias the technique performance [51]. For each scenario, voltage
and current signals at the installation points of the IEDs were obtained. The location of the IED is
illustrated in Figure 6. Additionally, the labeling process mentioned in Section 2.1.2 was also carried
out. As a result of this stage, a database from simulations composed of the voltage and current signals
at the installation points of the IED were obtained.

Table 6. Factors and level for case study.

Group Factors for Case Study Levels for Case Study Number of Operation Conditions

No-fault operation

Random load variation (0–50%)

23,606
Topology change Scenario 1 to 6

Cut off generation
• Without cut off generation
• Cut off PV generator
• Cut off wind generator

Fault operation

Fault type A-g, AB, and ABC

23,606

Fault location All the lines of the system
Fault resistance (0–50 Ω)

Fault position 0–50%

Random load variation (0–50%)

Topology change Scenario 1 to 6

4.1.2. Stage II: Input Data Adjustment

In this stage, the 49 attributes defined in Section 2.2 were estimated for each scenario obtained
in stage 1. In addition, the randomization of the database was generated by using a random Python
function that returns uniformly distributed pseudorandom numbers [52]. The number of cases selected
for the validation process was 7080.

4.1.3. Stage III: Parametrization and Training of ML Techniques

The parameterization process was carried out in the three steps mentioned in Section 2.3.
The following sections present their application to the case study.

• Selection of the ML technique
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Three classic ML techniques were used in the proposed methodology for the case study: random
forest (RF), support vector machine (SVM), and K-nearest neighbors (K-NN). The selection of the ML
technique was carried out by heuristic adjustment of its hyper-parameters to gain an improvement
in its performance, as presented in Section 2.3.1. The performance of the techniques was given by
accuracy, as defined by Equation (3).

Ac =
TF + TFW + TNF

TF + TFW + TNF + FF + FFW + FNF
(3)

where TF is the number of operation conditions that are true under fault; TFW is the number of
operation conditions that are true in fault with activation; TNF is the number of operation conditions
that are true under no-fault; FF is the number of operation conditions that wrongly predicted a fault;
FFW is the number of operation conditions that wrongly predicted a fault with activation, and FNF is
the number of operation conditions that wrongly predicted a no-fault.

For this process, the 49 attributes for each database scenario were considered. In the next section,
the performances for each ML technique in function of adjustment of their hyper-parameters are
presented. These processes are executed for each IED, taking into account the validation dataset.

# Support vector machine (SVM)

This SVM used a radial basis function kernel, which had two hyper-parameters, C and γ. To assess
the effect of each hyper-parameter individually, one of them was set to 1 and the other hyper-parameter
was varied according to the interval of Table 4. Figure 7 shows the behavior of the accuracy of the SVM
technique when the hyper-parameters were varied independently.
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Figure 7. Support vector machine (SVM) performance in function of adjustment of its hyper-parameters:
(a) SVM performance when it was varied with Gamma factor with C = 1; (b) SVM performance when it
was varied with C factor with γ = 1.

From Figure 7a,b, it can be observed that ML technique performance improved for all IED as the
hyper-parameters increased. However, there was a zone where the increase of the hyper-parameter
did not produce an improvement in performance. Hyper-parameters must be adjusted near this zone
to avoid overfitting.

# Random forest (RF)

For random forest, the Gini criterion was selected to minimize the probability of misclassification.
Therefore, the hyper-parameter to be adjusted was the number of trees. Figure 8 shows the behavior of
the accuracy of the RF technique when the number of trees was modified.
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Figure 8. Random forest (RF) performance in function of adjustment of its hyper-parameters.

Similar to the previous case, Figure 8 shows that if the number of trees was increased, a slight
increase in accuracy was obtained. However, as the number of trees increased, this improvement
tended to be negligible. The above occurred for a number of trees greater than eight, where the accuracy
for relays was greater than 90% for RF technique evaluated. The best performance was achieved for
relays 1 and 10. The good performance of relay 1 was probably related to the fact that it acted for all
faults in on-grid connected mode, whereas in the off-grid mode, it should not detect faults. On the
other hand, relay 10 only discriminated the faults that occurred in its line segment.

# K-nearest neighbors (K-NN)

The performance of the K-NN technique in function of adjustment of its hyper-parameters was
obtained. In this case, the hyper-parameter was the K neighbors. Figure 9 presents the behavior of the
accuracy of this technique when the number of K neighbors was modified.
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Figure 9. K-nearest neighbors (K-NN) performance in function of adjustment of its hyper-parameters.

For the K-NN technique, the performance decreased for all IED as the hyper-parameters increased.
To avoid overfitting problems, the hyper-parameter should be adjusted to a small number of neighbors.
For this technique, the number of neighbors’ K was set to 3. Note that it is possible to achieve accuracies
greater than 87% for all relays regardless of K value. The accuracy for relays 1 and 10 was similar to
that presented in Figure 8. This supports the assumption that the allocation of these relays influences
their performance.

# Hyper-parameter setting for each ML technique

From the results obtained in Figures 7–9, the adjustment values of the hyper-parameters were
selected by applying an exponential smoothing technique to each curve and taking their inflection
point. These values were approximated to the nearest integer value, and the value that was repeated
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more often was taken as the hyper-parameter setting. The hyper-parameter setting for each ML
technique is presented in Table 7.

Table 7. Hyper-parameter setting and accuracy for each ML technique.

ML Technique Hyper-Parameter Value Accuracy

RF Number of trees 8 >90%

SVM [γ,C] [5,6] >80%

K-NN Number of neighbors 3 >85%

# Comparison and selection of the ML technique

Table 7 shows that the best performing technique for the cases evaluated was RF. Additionally,
the ML models obtained with this technique are easy to implement. For these reasons, RF was selected
in this work.

• Selection of representative attributes

The selection of representative attributes was carried out by means of PCA clustering and SVD
clustering techniques, as presented in Section 2.3.2. Table 8 presents the number of representative
attributes determined by each technique for each system relay. Additionally, it shows the percentage
of information that represents the number of attributes.

Table 8. Number of representative attributes.

Device Number of Representative Attributes Information PCA (%) Number of Representative Attributes Information SVD (%)

R1 18 99.25 16 99.76

R2 16 99.12 17 99.67

R3 17 98.74 18 99.52

R4 16 99.32 16 98.43

R5 16 99.85 16 99.22

R6 19 99.38 18 99.55

R7 17 99.8 16 98.97

R8 19 99.1 18 99.12

R9 16 99.27 16 99.55

R10 16 98.82 19 99.9

Table 8 shows that the combination of 16 features can represent more than 98% of the information
of the database. Therefore, 16 was selected as the maximum number of representative features. The
above represents a significant reduction of attributes (from 49 to 16), which reduces the computational
effort and the presenting of data scarcity [53].

• Parametrization and training of ML techniques

Once the maximum number of representative attributes was determined, a Chu–Beasly genetic
algorithm was used in order to determine the combination of attributes that maximize the performance
of the ML technique. Section 2.3.3 presents the formulation of the algorithm used. The results obtained
for each relay with its combination features and accuracy are shown in Table 9.

These results showed high accuracy of the model obtained in the training process. However, it
was necessary to determine the accuracy for events that were not used in the parameterization and
training process, which is presented in Section 4.1.4.
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Table 9. Training and validation results.

Relay Attributes Combination
Accuracy (%)

Training Validation

R1 stdVb, Ia,θia, skIa, Ib, mIb, stdIb, ktIb,θic, Qc 96.6553 96.4548

R2 mVa, stdVa, mVb, ktVc, Ia,θia, skIa,θib, Ic,θic, mIc 96.8207 96.4548

R3 Va,θva, stdVa, Vb, skVb, Vc, SVc, mIa, SIa, ktIb, Pb, Pc 97.1745 96.7796

R4 mVa, Vb, skVb, Vc, Ia, mIa, ktIa, Ic,θic, Pa 98.7218 98.5593

R5 stdVa, skVa, ktVa, mVb, θvc, stdVc, Ia, Ib, mIb, skIb, Ic, Pa 99.1528 99.8587

R6 stdVa, Vb, stdVb, skVb, ktVb, Vc, Ia, ktIa,θia, Ib, ktIb, Ic, Pb, Qc 95.8789 95.7062

R7 stdVa, Vb, stdVc, skVc, ktVc, Ia, Ib,θib, Pc 97.7650 97.9519

R8 Vb, stdVc, Ia, mIa, Ib,θib,θic, stdIc, ktIc, Qa, Pc, Qc 99.8754 99.8446

R9 skVa, Va, ktVa, mVb, stdVc, skVc, skIa, Ic, Pc 100 100

R10 skVa, mVb, stdVc, Ia, stdIa, SIa, ktIa, Ib, Ic,θic, skIc, Pa, Qc 99.9177 99.8870

4.1.4. Stage IV: Validation

• Step 7: Performance of the ML techniques

To validate the performance of the training models obtained in stage III, the 15% of the database
generated in stage I, and that which was not used in the training process was considered. This
validation considered all factors presented in Table 6. Additionally, in order to guarantee the statistical
validity of the experiment, the proposed FD system was executed 30 times for the tests evaluated.
Table 9 shows the accuracy of the ML models for each relay validated.

The results obtained showed satisfactory performance of the proposed FD system, presenting
an accuracy greater than 95% for all cases evaluated. Although similar performances were reported
in [22,23,25–30], in this work, a strategy to select the ML technique, the representative features, and
their combination in order to optimize the performance of proposed FD technique were formulated.
Additionally, all the stages were presented with enough detail for their understanding and replication,
which is not usually observed in the FD state-of-the-art techniques.

However, these tests do not allow for the determination of the factors that affect most the
performance of the FD system. In consequence, a sensitivity analysis was performed, as presented in
the following section.

4.2. Sensitivity Analysis

In order to know the factors that directly affect the performance of the proposed FD system, a
sensitivity analysis by an experimental design was executed. This was composed of a set of five factors,
which are presented in Table 10. For each level, 600 repetitions were executed in order to guarantee the
statistical validity of the experiment.

Table 10. Factors for the sensitivity analysis.

Factors Levels Scenarios

Ft: Fault type Single line to ground fault—double line fault—double line to
ground fault three-phase fault 4

Fp: Fault position 0%, 50% 2
Ld: Load condition (30–45%), (70–105%), (100–150%) 3
Gc: Grid connection Ongrid/offgrid 2
RL: Relay location R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 10

According to the factors, levels, and the number of repetitions, the total number of experiments
was 28,800, obtained by TNE = r

∏n
i=1 ni where r is the number of repetitions and ni is the number of

levels of the factor i. Each experiment was represented with the accuracy obtained after each trained
model was tested with the validating signals that described the experiment.
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The homogeneity between all the populations that were described by the level combinations was
validated by the sensitivity analysis. The above was achieved through the following hypothesis test:

Ho : µi = µ j ∀ i , j H1 : µi , µ j at least one i (4)

where i represents the level combination that has a different mean in case the null hypothesis was
rejected [54].

An analysis of variance ANOVA was selected as a way to refuse the null hypothesis.
ANOVA residues were employed to verify accomplishment with the normality, independence,
and homoscedasticity criteria. The above is shown in Figure 10. In addition, statistical testds
such as Jarque–Bera, Durbin–Watson, and Levene were executed as another way to confirm
ANOVA assumptions.
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Figure 10. ANOVA assumption tests for distribution test: (a) distribution test; (b) independence test.

The p-values of the statistical tests Jarque–Bera, Durbin–Watson, and Levene were 0.0945, 0.3395,
and 0.2642, respectively. For all the tests, the p-values were higher than 0.05. Therefore, the
assumptions of normality, homoscedasticity, and independence were validated, and the ANOVA
results were truthful.

The results of the ANOVA are presented in Table 11. Factors with p-values greater than 0.05 were
considered not statistically significant for the model studied.

Table 11. ANOVA for each factor.

Source
Principal Effects SS df F-Ratio p-Value

A: Fault type 0.005494 1 1.21504 0.2704
B: Fault position 0.105922 1 234.248 7.96 × 10−51

C: Load behavior 5.312 × 10−5 1 0.11749 0.731796
D: Grid connection 0.029042 1 64.2281 1.6166 × 10−15

E: IED location 0.089770 1 198.529 1.3463 × 10−43

The above occurred for factors A and C: fault type and load behavior, respectively. Therefore, it
is possible to reject that these factors had an influential factor in the sensitivity of the proposed FD
system. The above follows the shown behaviors, where each IED was composed of different feature
combinations and presented different behavior with respect to the hyper-parameters of the techniques.
On the other hand, it was expected that a grid connection such as the fault position had a statistical
dependence because this incident affected the protection configuration directly.

5. Conclusions

This paper presented an intelligent fault detection system for microgrids. The obtained results
showed a satisfactory performance, with an accuracy greater than 95.7% for the cases evaluated,
although only voltage and current measurements registered locally by IED were used and the need for
communication systems for the protection process was eliminated.
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Additionally, the intelligent FD system presented a methodology composed of four steps that
allowed for its implementation on any microgrid. From these steps, the database from simulations
generating the process of micro-network operation and parameterization was highlighted.

The database-generating process presented recommendations for the generation of a high-quality
database, which would guarantee the success of the use of ML models. The parameterization process
showed how to determine the number of representative attributes that represent the largest amount
of information in the database, which is valuable in order to reduce computational effort and avoid
the presence of data scarcity. In addition, in the same parameterization process, a Chu–Beasley
genetic algorithm was used to determine the best combination of attributes that would maximize the
performance of ML techniques. Finally, the technique presented performances greater than 95% in
both the training and validation process, and the sensitivity analysis showed that factors such as the
fault type and load condition did not affect the performance of the proposed fault detection system,
whereas other factors such as IED location were significant for the model. This implies that the training
process must be executed on all available devices because, depending on this, the performance of the
methodology might change.

Finally, we can summarize the main practical and economic benefits of employing the proposed
FD system as being

• reduction of implementation cost because it does not need a communication system to FD process;
• diminishment of computational effort by the implementation of PCA, SVD, and Chu–Beasley

techniques to reduce of number of features;
• consideration of the main operation condition scenarios in the microgrid, such as

connected/islanded mode of the grid, cut-off/cut-on generation, network imbalance, and changes
in topology, which reduce the probability of mis-operation in the protection scheme.
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Abbreviations

ANOVA Analysis of variance K-NN K-nearest neighbors
AP Adaptive protection IED Intelligent electronic devices
CBGA Chu–Beasley genetic algorithm PCA Principal component analysis
Cov Covariance PV Photovoltaics source
DER Distributed energy resources RF Random forest
EP External protection RMS Root mean square
EMT Electromagnetic transient SVD Singular value decomposition
FCL Fault current limiter SVM Support vector machine
FD Fault detection TF True fault
FF False fault TFW True fault without activation
FFW False fault without activation TNE Total number experiments
FNF False no-fault TNF True no-fault
IED Intelligent electronic devices
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Nomenclature

f Frequency
ktVi Kurtosis of the fundamental frequency contours of voltage of phase i
ktIi Kurtosis of the fundamental frequency contours of current of phase i
λa Eigenvalues
mVi Mean of the fundamental frequency contours of voltage of phase i
mIi Mean of the fundamental frequency contours of current of phase i
Pi Active power of phase i
Qi Reactive power of phase i
σi Singular value
SVi Entropy of the fundamental frequency contours of voltage of phase
SIi Entropy of the fundamental frequency contours of current of phase i
skVi Skewness of the fundamental frequency contours of voltage of phase i
skIi Skewness of the fundamental frequency contours of current of phase i
stdVi Standard deviation of the fundamental frequency contours of voltage of phase i
stdIi Standard deviation of the fundamental frequency contours of current of phase i
θvi Phase angle voltage of phase i
θii Phase angle current of phase i
Vi Voltage RMS of phase i

Appendix A

Table A1. Spot Load Data.

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3

Model kW kVAr kW kVAr kW kVAr

634 Y-PQ 160 110 120 90 120 90

645 Y-PQ 0 0 170 125 0 0

646 D-Z 0 0 230 132 0 0

652 Y-Z 128 86 0 0 0 0

671 D-PQ 385 220 385 220 385 220

675 Y-PQ 485 190 68 60 290 212

692 D-I 0 0 0 0 170 151

611 Y-I 0 0 0 0 170 80

TOTAL 1158 606 973 627 1135 753

Table A2. Distributed Load Data.

Node A Node B Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3

Model kW kVAr kW kVAr kW kVAr

632 671 Y-PQ 17 10 66 38 117 68

Table A3. Random variation load.

Load Condition Values

Low–medium load condition 30–48%

Medium–nominal load condition 70–102%

Nominal–high load condition 100–147%
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