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INTEGRABILITY OF STOCHASTIC BIRTH-DEATH PROCESSES

VIA DIFFERENTIAL GALOIS THEORY

Primitivo B. Acosta-Humánez1,2, José A. Capitán3,*

and Juan J. Morales-Ruiz4

Abstract. Stochastic birth-death processes are described as continuous-time Markov processes in
models of population dynamics. A system of infinite, coupled ordinary differential equations (the so-
called master equation) describes the time-dependence of the probability of each system state. Using
a generating function, the master equation can be transformed into a partial differential equation. In
this contribution we analyze the integrability of two types of stochastic birth-death processes (with
polynomial birth and death rates) using standard differential Galois theory. We discuss the integrability
of the PDE via a Laplace transform acting over the temporal variable. We show that the PDE is not
integrable except for the case in which rates are linear functions of the number of individuals.
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1. Introduction

Stochastic birth-death processes [10, 15, 23] are widely used in the mathematical modeling of interacting
populations. They are a special case of continuous-time Markov processes [14] for which transitions between
states are either births (which increase the state variable in one unity) and deaths (which decrease the state
variable by one). Birth-death processes have been used in different fields of applied science, with many applica-
tions in ecology [5, 12, 20], queueing theory [25], epidemiology [6] and population genetics [21], to mention just a
few. In contrast to deterministic models, these kinds of processes make the assumption that population changes
take place in discrete numbers, and this fact introduces variability and noise when compared to deterministic
dynamics [7, 8]. In the limit of infinite system size, these models are the counterpart of deterministic dynamics
that usually appear in demography and population dynamics [18, 26].

Only few instances of birth-death processes are analytically tractable in mathematical terms. Most of the
results are related to the probability distributions observed at stationarity [11, 14]. Little is known, however,
about how these probability distributions change over time before reaching the equilibrium state. The existence
of closed-form, analytical solutions for certain families of birth-death processes, even when certain restrictions
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on the parameters are forced to ensure the existence of analytical solutions, would be a powerful way to get
valuable insights on how probability distributions behave over time and reach the steady state in such processes.
In this contribution we focus on the existence of closed-form analytical solutions for two widely-used stochastic
birth-death models with non-constant birth and death rates.

In order to properly contextualize the problem, we start by describing the mathematical framework used in the
theory of stochastic birth-death processes. The central quantity used to characterize quantitatively a population
formed by a number of individuals is precisely N , the number of individuals observed, where N ∈ N ∪ {0}. Let
PN (t) be the probability that there are N individuals at time t – the latter variable is regarded as a continuous
time – in the system. Given a particular way of how new individuals enter the system (births events) or leave the
population (death events), the goal of the theory is to describe mathematically this probability. The stochastic
process is fully described once the probability rates BN (births) and DN (deaths) are defined. For simplicity we
assume here that rates are time-independent.

As such, birth and death rates, BN and DN , are regarded as probabilities per unit time that a birth occurs
(hence the populations moves from N to N + 1 individuals) or, correspondingly, that a death event occurs (and
then the system changes from having N to N − 1 individuals). Consider an infinitesimal time interval ∆t. Then
birth and death rates satisfy

Pr{N + 1, t+ ∆t |N, t} = BN∆t,

Pr{N − 1, t+ ∆t |N, t} = DN∆t,
(1.1)

where Pr{N + 1, t + ∆t |N, t} is the conditional probability that the system undergoes a birth event at time
t+ ∆t given that there were N individuals at time t. Multiple births and deaths are usually ignored in the limit
∆t→ 0 because their probability would be proportional to (∆t)2.

If the population is formed by N individuals at time t, at time t+ ∆t the population can be composed by: (a)
N + 1 individuals with probability BN∆t; (b) N − 1 individuals with probability DN∆t; (c) N individuals with
probability 1− {BN +DN}∆t. Therefore, the conditional probabilities that end up with a population formed
exactly by N individuals are:

Pr{N, t+ ∆t |N − 1, t} = BN−1∆t,

Pr{N, t+ ∆t |N + 1, t} = DN+1∆t,

Pr{N, t+ ∆t |N, t} = 1− (BN +DN )∆t.

(1.2)

Thus, using the theorem of total probability we can write an expression for the probability of observing N
individuals at time t+ ∆t in terms of the probabilities at time t:

PN (t+ ∆t) = PN−1(t)BN−1∆t+ PN+1(t)DN+1∆t+ PN (t)[1− (BN +DN )∆t]. (1.3)

Here we are assuming a Markovian hypothesis, according to which the state of the system at a given time
is determined only by the potential states at previous times but infinitely close to the current time. Now we
subtract PN (t) from both sides of (1.3) and take the limit ∆t→ 0 to get the so-called master equation:

P ′N (t) = BN−1PN−1(t) +DN+1PN+1(t)− (BN +DN )PN (t). (1.4)

The system is therefore fully described by a coupled system of infinitely many ordinary differential equations,
given by equation (1.4) for N ≥ 1. For N = 0, since the number of individuals has to remain non-negative, we
have to impose that D0 = 0 and B−1 = 0. In this case, the corresponding equation reduces to

P ′0(t) = D1P1(t)−B0P0(t). (1.5)
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Therefore, the central problem in the theory of stochastic birth-death processes for a population of individuals is
to solve the master equations (1.4)–(1.5) as a problem of initial value. To be precise, if we know the probability
distribution PN (t0) at some initial time t0, then the system of differential equations allows to obtain the
probability distribution at any time t, PN (t). In what follows we will assume that there are N0 individuals at
time t = 0, N0 ∈ N ∪ {0}. Then the initial probability distribution is precisely equal to PN (0) = δN0N , where
δij stands for the usual Kronecker delta symbol.

To make the master equation tractable, in some cases it can be transformed into a partial differential equation
by using a generating function defined as

g(z, t) =

∞∑
N=0

PN (t)zN , (1.6)

i.e., the discrete variable N is transformed into a continuous variable z, 0 ≤ z ≤ 1. In this contribution we
are interested in the conditions under which we can find a closed-form, analytical solution for the generating
function g(z, t). Knowledge of the generating function allows the calculation of important properties of the
stochastic processes – for example, the average number of individuals, the variance of the population, or even
the probability of extinction of the system at time t, P0(t) = g(0, t). We will follow a Laplace transform strategy
to solve the corresponding partial differential equation, and we will analyze ecologically meaningful examples
for the birth and death rates, which yield useful insights about the integrability of these kind of systems
by considering one fully integrable case and a fully non-integrable case (the sense in which we use the term
‘integrable’ will be precisely defined in Sect. 2). Roughly speaking, integrability here means solvability in closed
form.

To be more specific, from now on we focus on the birth-death process defined by the rates (as mentioned, the
term ‘rate’ stands for probability per unit time) BN = βN b and DN = δNd, where b, d are natural exponents
and β, δ are positive real numbers. Usually death rates are taken as a quadratic function (d = 2) since it is
commonly assumed that two individuals compete with each other in death events, whereas birth processes
(asexual reproduction) are described as linear functions of N (b = 1, i.e., the probability of a birth event
is proportional to the number of individuals in the population). In this contribution we will consider two
combinations of exponents: (b, d) ∈ {(1, 1), (1, 2)}. For the combination (b, d) = (1, 1), the master equation is
equivalent to the following PDE (see Sect. 3):

∂g(z, t)

∂t
= (1− z)(δ − βz)∂g(z, t)

∂z
(1.7)

with boundary conditions

g(z, 0) = zN0 , g(1, t) = 1. (1.8)

This equation turns out to be integrable (in a sense specified below) via a Laplace transform technique.
If death rates are quadratic functions of N , in Section 4 we show that the generating function satisfies the

following PDE,

∂g(z, t)

∂t
= (1− z)

[
(δ − βz)∂g(z, t)

∂z
+ δz

∂2g(z, t)

∂z2

]
. (1.9)

We will refer to this PDE as the (b, d) = (1, 2) case. As before, the generating function has to satisfy the
conditions (1.8). This case of quadratic death rates, which is the more relevant one in biological terms, remains
as non-integrable, as we will show in Section 4 using results from Differential Galois Theory.
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Proposition 1.1. The PDE given by equation (1.7) with boundary conditions (1.8) is integrable and the solution
is given by:

– For β 6= δ,

g(z, t) =

[
δ − βz − (1− z)δe(β−δ)t

δ − βz − (1− z)βe(β−δ)t

]N0

. (1.10)

– For β = δ,

g(z, t) =

[
δ(1− z)t+ z

δ(1− z)t+ 1

]N0

. (1.11)

Proposition 1.2. The PDE given by equation (1.9) is non-integrable.

Proposition 1.2 is a non-integrability result and tell us that any search for a closed-form, analytical solution
for equation (1.9) is doomed to failure.

2. Differential Galois theory

Differential Galois theory, also known as Picard-Vessiot theory, is the Galois theory of linear differential
equations. In classical Galois theory, the main object is a group of permutations of the polynomial’s roots,
whereas in the Picard-Vessiot theory it is a linear algebraic group. For polynomial equations we look for solutions
in terms of radicals. According to classical Galois theory, this form of the solution will exist whenever the Galois
group is a solvable group. An analogous situation holds for linear homogeneous differential equations.

As a notational convention we will use ∂x := ∂
∂x (also ′ := ∂

∂x ) throughout this section.

2.1. Definitions and known results

The following theoretical background can be found in the references [9, 19, 24]. We recall that although
differential Galois theory is more general, here we just summarize results from theory for second order differential
equations.

Definition 2.1 (Differential Fields). Let K (depending on x) be a commutative field of characteristic zero, and
∂x a derivation, that is, a map ∂x : K → K satisfying ∂x(a+ b) = ∂xa+ ∂xb and ∂x(ab) = ∂xa · b+ a · ∂xb for
all a, b ∈ K. By C we denote the field of constants of K,

C = {c ∈ K | c′ = 0},

which is also of characteristic zero and will be assumed algebraically closed. In this terms, we say that K is a
differential field with the derivation ∂x = ′.

Up to special considerations, we analyze second order linear homogeneous differential equations, that is,
equations in the form

L := y′′ + ay′ + by = 0, a, b ∈ K. (2.1)

Definition 2.2 (Picard-Vessiot extension). Suppose that y1, y2 is a basis of solutions of L given in
equation (2.1), i.e., y1, y2 are linearly independent over K and every solution is a linear combination over
C of these two. Let L = K〈y1, y2〉 = K(y1, y2, y

′
1, y
′
2) the differential extension of K such that C is the field of

constants for K and L. In this terms, we say that L, the smallest differential field containing K and {y1, y2}, is
the Picard-Vessiot extension of K for L.
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Definition 2.3 (Differential Galois groups). Assume K, L and L as in the previous definition. The group of all
differential automorphisms (automorphisms that commute with derivation) of L over K is called the differential
Galois group of L over K and is denoted by Gal(L/K). This means that for σ ∈ Gal(L/K), σ(a) = (σ(a))′ for
all a ∈ L and for all a ∈ K, σ(a) = a.

Assume that {y1, y2} is a fundamental system (basis) of solutions of L. If σ ∈ Gal(L/K) then {σy1, σy2} is
another fundamental system of L. Hence there exists a matrix

Aσ =

(
a b
c d

)
∈ GL(2,C),

such that

σ

(
y1

y2

)
=

(
σ(y1)
σ(y2)

)
=
(
y1 y2

)
Aσ.

In a natural way, we can extend this to systems:

σ

(
y1 y2

y′1 y′2

)
=

(
σ(y1) σ(y2)
σ(y′1) σ(y′2)

)
=

(
y1 y2

y′1 y′2

)
Aσ.

This defines a faithful representation Gal(L/K) → GL(2,C) and it is possible to consider Gal(L/K) as a
subgroup of GL(2,C). It depends on the choice of the fundamental system {y1, y2}, but only up to conjugacy.

One of the fundamental results of the Picard-Vessiot theory is the following theorem (see [13, 16]).

Theorem 2.4. The differential Galois group Gal(L/K) is an algebraic subgroup of GL(2,C).

Definition 2.5 (Integrability). Consider the linear differential equation L such as in equation (2.1). We say
that L is integrable if the Picard-Vessiot extension L ⊃ K is obtained as a tower of differential fields K = L0 ⊂
L1 ⊂ · · · ⊂ Lm = L such that Li = Li−1(η) for i = 1, . . . ,m, where either

– η is algebraic over Li−1, that is η satisfies a polynomial equation with coefficients in Li−1.
– η is primitive over Li−1, that is η′ ∈ Li−1.
– η is exponential over Li−1, that is η′/η ∈ Li−1.

We remark that the usual terminology in differential algebra for integrable equations is that the corresponding
Picard-Vessiot extensions are called Liouvillian.

Theorem 2.6 (Kolchin). The equation L given in (2.1) is integrable if and only if (Gal(L/K))0 is solvable.

Here G0 stands for the connected component of group G that contains the identity. Consider the differential
equation

L := ζ ′′ = rζ, r ∈ K. (2.2)

We recall that equation (2.2) can be obtained from equation (2.1) through the change of variable

y = ζe−
1
2

∫
a, r =

a2

4
+
a′

2
− b (2.3)

and equation (2.2) is called the reduced form (also known as invariant normal form) of equation (2.1).
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On the other hand, introducing the change of variable v = ζ ′/ζ we get the associated Riccati equation to
equation (2.2),

v′ = r − v2, (2.4)

where r is given by equation (2.3). Moreover, the Riccatti equation (2.4) has one algebraic solution over the
differential field K if and only if the differential equation (2.2) is integrable.

For L given by equation (2.2), it is very well known that GalK(L) is an algebraic subgroup of SL(2,C). The
well known classification of subgroups of SL(2,C) is the following.

Theorem 2.7. Let G be an algebraic subgroup of SL(2,C). Then, up to conjugation, one of the following cases
occurs.

– G ⊆ B and then G is reducible and triangularizable.
– G * B, G ⊆ D∞ and then G is imprimitive.

– G ∈ {ASL2
4 , SSL2

4 , ASL2
5 } and then G is primitive (finite).

– G = SL(2,C) and then G is primitive (infinite).

2.2. Kovacic’s Algorithm

In 1986, Kovacic [17] introduced an algorithm to solve the differential equation (2.2), where K = C(x),
showing that (2.2) is integrable if and only if the solution of the Riccati equation (2.4) is a rational function
(case 1), is a root of polynomial of degree two (case 2) or is a root of polynomial of degree 4, 6, or 12 (case 3).
We leave the details of the algorithm to Appendix A. We summarize here the main result by Kovacic as the
following theorem.

Theorem 2.8 (Kovacic). There are precisely four cases that can occur for equation (2.2):

Case 1: It has a solution of the form e
∫
ω where ω ∈ C(x).

Case 2: It has a solution of the form e
∫
ω where ω is algebraic over C(x) of degree 2, and case 1 does not hold.

Case 3: All solutions of (2.2) are algebraic over C(x) of degree 4, 6 or 12 and cases 1 and 2 do not hold.
Case 4: The differential equation (2.2) has no Liouvillian solution.

In the following sections we will apply the algorithm to equations (1.7) and (1.9) using a Laplace transform
acting over the time variable.

3. Linear rates: (b, d) = (1, 1)

As mentioned in Section 1, we introduce the generating function g(z, t) =
∑∞
N=0 PN (t)zN to transform the

discrete variable N into the continuous variable z, 0 ≤ z ≤ 1. This converts the master equation into a PDE: if
we multiply both sides of the master equation (1.4) by zN and sum over N , we get

∂g(z, t)

∂t
=

∞∑
N=0

{
β(N − 1)PN−1(t)zN + δ(N + 1)PN+1(t)zN − (β + δ)NPN (t)zN

}
. (3.1)

Recall that PN (t) := 0 for N < 0. We now use the following straightforward identities:

(i) ∂g
∂z =

∑∞
N=0(N + 1)PN+1(t)zN =

∑∞
N=1NPN (t)zN−1,

(ii) z ∂g∂z =
∑∞
N=1NPN (t)zN ,

(iii) z2 ∂g
∂z =

∑∞
N=1(N − 1)PN−1(t)zN ,

(iv)
∑∞
N=0 PN−1(t)zN =

∑∞
N=1 PN−1(t)zN =

∑∞
N=0 PN (t)zN+1 = zg(z, t),
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to get the first-order PDE (1.7),

∂g(z, t)

∂t
=
{
βz2 − (β + δ)z + δ

} ∂g(z, t)

∂z
. (3.2)

The initial condition PN (0) = δN0N reduces to g(z, 0) = zN0 . Normalization of the probability distribution at
any time,

∑∞
N=0 PN (t) = 1, implies that g(1, t) = 1. Then we have to solve (3.2) with the boundary conditions

g(z, 0) = zN0 and g(1, t) = 1.

3.1. Solution via a Laplace transform

Although this case leads to a first-order PDE, which can be solved via the method of characteristics (see
Ref. [15] for the application of this method to the (1, 1) case in a more general setting in which the coefficients
β and δ are functions of time), we calculate here the solution explicitly via the Laplace transform method to
illustrate our methodology. Previously, however, it is convenient to clarify what kind of integrability we are
considering in this work.

Let

∂g

∂t
= Mg (3.3)

be a partial differential equation, M being a linear differential operator in the one-dimensional spatial variable
z. Then we can state the following

Problem. Solve the PDE (3.3) subject to suitable boundary conditions, including the initial value Cauchy
problem g(z, 0) = g0(z).

Applying the Laplace transform with respect to time to (3.3), we obtain a family of linear ODE equations,

MG = sG+ g0(z), (3.4)

parameterized by the complex parameter s. We will say that equation (3.4) is integrable if the homogeneous
equation

MG = sG,

is integrable in the sense of Picard-Vessiot theory. This is natural, because from the general solution of the
homogeneous equation we obtain the general solution of (3.4) by quadratures. Another approach to the inte-
grability of (3.4) is by transforming it to an homogeneous equation: later we will point out an explicit example
of this point of view. Of course, we are assuming here that the coefficients of M and the function g0(z) belong
to a suitable differential field K, for instance, the set of complex rational functions. Then

Definition 3.1. We say that the equation (3.3) is integrable if the family of linear ODE equations (3.4) is
integrable in the sense of the Picard-Vessiot theory for almost any complex s.

We remark that despite it is usually assumed that the Laplace transformed function of the variable s is
defined in some half plane of the complex variable s, we are assuming here that this function can be prolongated
analytically to other values of s.

Now focus on the PDE (1.7). It is clearly integrable, according to definition 3.1, because the associated linear
ODE (3.4) is a first order ODE, being the coefficient field K = C(x) – indeed, along the rest of the paper we will
assume that the coefficient field is the set of rational functions C(x). Hence, we introduce the Laplace transform
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acting over the time dependence of the generating function as

G(z, s) =

∫ ∞
0

g(z, t)e−stdt, (3.5)

which transforms (1.7) into the following first-order ODE,

(1− z)(δ − βz)G′(z, s) = sG(z, s)− zN0 , (3.6)

where we regard s as a parameter and primes denote derivatives with respect to z. We now focus on solving
equation (3.6) for arbitrary values of s. Note also that equation (3.6) can be expressed as

G′(z, s) = f(z, s)G(z, s) + h(z) (3.7)

with

f(z, s) =
s

(1− z)(δ − βz)
,

h(z) = − zN0

(1− z)(δ − βz)
.

(3.8)

This form of the ODE will be convenient later in our computations. We observe that, in the homogeneous part
of equation (3.7), the point z =∞ is an ordinary point. Moreover, when β 6= δ the points z = 1 and z = δ

β are

regular singular points, while when β = δ the point z = 1 is a singularity of irregular type, see [3] for a detailed
explanation about differential Galois theory of non-homogeneous equations.

From now on we shall consider these two cases (β 6= δ and β = δ) separately. For β 6= δ, the homogeneous
equation can be solved immediately,

G′

G
=

s

(1− z)(δ − βz)
, lnG = lnC + s

∫
dz

(1− z)(δ − βz)
. (3.9)

Assume that δ > β (the calculations for the δ < β case are simple extensions of those provided here and are
therefore left to Appendix B). Then equation (3.9) yields

lnG = lnC +
s

δ − β

∫ (
1

1− z
− β

δ − βz

)
dz, (3.10)

i.e.,

G(z, s) = C

(
δ − βz
1− z

) s
δ−β

, (3.11)

where C is an integration constant for which we impose C(1) = 0 to avoid possible divergences in the generating
function g(z, t) at z = 1 – recall that g(z, t) has to be an analytic function of z because the probability distribution
PN (t) is to be determined through a series expansion of g(z, t) about z = 0, see equation (1.6). Variation of the
constant in equation (3.6) yields a first-order ODE for the unknown function C(z),

(1− z)(δ − βz)C ′(z)
(
δ − βz
1− z

) s
δ−β

= −zN0 . (3.12)
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Therefore,

C(z) =

∫ 1

z

(1− u)
s

δ−β−1

(δ − βu)
s

δ−β+1
uN0du. (3.13)

Using (3.11) and (3.13) together, the Laplace transform of the generating function is expressed as

G(z, s) =

∫ 1

z

(
δ − βz
1− z

)[(
δ − βz
1− z

)(
1− u
δ − βu

)] s
δ−β−1

uN0

(δ − βu)2
du. (3.14)

In terms of the new variable w(u) := α
(

1−u
δ−βu

)
with α := δ−βz

1−z , the integral above can be written as

G(z, s) =
1

δ − β

∫ 1

0

w
s

δ−β−1

(
α− wδ
α− wβ

)N0

dw. (3.15)

After a second change of variable, w(t) := e(β−δ)t, we finally get

G(z, s) =

∫ ∞
0

(
α− w(t)δ

α− w(t)β

)N0

e−stdt, (3.16)

which allows us to identify the generating function

g(z, t) =

(
α− w(t)δ

α− w(t)β

)N0

=

[
δ − βz − (1− z)δe(β−δ)t

δ − βz − (1− z)βe(β−δ)t

]N0

. (3.17)

Integration of (1.7) for β < δ yields exactly the same expression (see Appendix B).
Now, considering β = δ, equation (3.9) yields

lnG = lnC +
s

δ

∫
dz

1

(1− z)2
, (3.18)

i.e.,

G(z, s) = Ce
s
δ

1
1−z , (3.19)

where C is again an integration constant. Variation of the constant gives again a first-order ODE for C(z),

δ(1− z)2C ′(z)e
s
δ

1
1−z = −zN0 , (3.20)

for which we impose C(1) = 0 to avoid divergences, as above. Therefore, the general solution of equation (3.6)
is

G(z, s) =

∫ 1

z

uN0

δ(1− u)2
e−

s
δ (

1
1−u−

1
1−z )du. (3.21)

The previous function can be obtained through iterated partial integration and, for N0 ∈ Z+, the result
belongs to the family of exponential integrals, denoted by Ei, which is valid for R(z) > 0 – as in our case
because 0 ≤ z ≤ 1. Ei functions are not elementary functions, see [1] for further details. But in fact, we are
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interested here in the inverse-Laplace transformed function, g(z, t), that becomes an elementary function. So,
by means of the change t(u) = 1

δ

(
1

1−u −
1

1−z
)
, we obtain

G(z, s) =

∫ ∞
0

[
δ(1− z)t+ z

δ(1− z)t+ 1

]N0

e−stdt. (3.22)

Then

g(z, t) =

[
δ(1− z)t+ z

δ(1− z)t+ 1

]N0

, (3.23)

is the sought solution of (1.7) for β = δ, satisfying the boundary conditions g(z, 0) = zN0 and g(1, t) = 1.
In summary, proposition 1.1 has been proved. We consider the (b, d) = (1, 1) case as completely solved since

the probability distribution PN (t) could eventually be obtained through a series expansion of the generating
function. In particular, useful expressions for the mean and the variance of the distribution (or even any moment)
can be computed for arbitrary values of N and t. In addition, the probability of extinction at time t is given by

g(0, t) = P (0, t) =

[
δ
(
e(β−δ)t − 1

)
βe(β−δ)t − δ

]N0

(3.24)

for β 6= δ, and

g(0, t) = P (0, t) =

(
δt

δt+ 1

)N0

(3.25)

for β = δ.

4. Mixed rates: (b, d) = (1, 2)

In biological terms, a relevant birth-death stochastic dynamics arises when mortality processes involve pairs
of individuals, i.e., when the death rate is not a linear but a quadratic function of the number of individuals.
In this section we will apply Kovacic’s algorithm, which will be a powerful tool to analyze the integrability of
the PDE associated to this situation.

As in the case of linear birth and death rates, we start by finding the PDE satisfied by the generating function
when the birth rate is linear, BN = βN , and the mortality rate is a quadratic function of N , DN = δN2. The
generating function satisfies

∂g

∂t
=

∞∑
N=0

{
β(N − 1)PN−1(t)zN + δ(N + 1)2PN+1(t)zN − (βN + δN2)PN (t)zN

}
,

where g = g(z, t) and we have used that PN (t) := 0 for N < 0. Moreover, under these assumptions, we have

∂g(z, t)

∂t
= β

∞∑
N=1

[
(N − 1)PN−1(t)zN −NPN (t)zN

]
+ δ

∞∑
N=0

[
(N + 1)2PN+1(t)zN −N2PN (t)zN

]
(4.1)

The following identities hold:

(i) ∂g
∂z + z ∂

2g
∂z2 =

∑∞
N=1N

2PN (t)zN−1 =
∑∞
N=0(N + 1)2PN+1(t)zN ,
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(ii) z ∂g∂z =
∑∞
N=1NPN (t)zN ,

(iii) z2 ∂g
∂z =

∑∞
N=1(N − 1)PN−1(t)zN .

Therefore, we can express

∞∑
N=0

[
(N + 1)2PN+1(t)zN −N2PN (t)zN

]
= (1− z)

(
∂g(z, t)

∂z
+ z

∂2g(z, t)

∂z2

)
(4.2)

and

∞∑
N=1

[
(N − 1)PN−1(t)zN −NPN (t)zN

]
= −z(1− z)∂g(z, t)

∂z
. (4.3)

Putting all the pieces together, we obtain a second-order PDE to be satisfied by the generating function, see
equation (1.9). Similarly, we impose here the initial condition g(z, 0) = zN0 and the normalization condition
g(1, t) = 1. In order to find solutions of equation (1.9), we follow the same procedure as for the (1, 1) case:
we introduce the Laplace transform G(z, s) of the generating function and try to solve the parametric ODE
satisfied by G(z, s) for arbitrary values of s. In terms of G(z, s), the ODE reads

(1− z) [δzG′′(z, s) + (δ − βz)G′(z, s)]− sG(z, s) = −zN0 , (4.4)

where, again, primes denote derivatives with respect to z. Here we denote

a(z) :=
δ − βz
δz

,

b(z, s) := − s

δz(1− z)
,

(4.5)

hence (4.4) can be expressed as

G′′(z, s) + a(z)G′(z, s) + b(z, s)G(z, s) = − zN0

δz(1− z)
. (4.6)

In order to find the invariant normal form of (4.6), we write G(z, s) = H(z, s)ψ(z) and impose that ψ(z) satisfies
the first-order ODE

2ψ′(z) + a(z)ψ(z) = 0. (4.7)

Note that, in this case, ψ is independent of s. Integration yields ψ(z) = z−1/2eβz/2δ. Denote by X(z, s) :=

− zN0

δz(1−z) and by Y (z, s) = − z
N0−

1
2

δ(1−z) e
−βz/2δ. Hence (4.6) reduces to the following second-order, non-homogeneous

ODE for function H(z, s):

H ′′(z, s)ψ(z)−
(

1

2
a′(z, s) +

1

4
a2(z, s)− b(z, s)

)
H(z, s)ψ(z) = X(z, s) (4.8)

Equivalently, H(z, s) satisfies

H ′′(z, s)−

[(
− 1

2z
+
β

2δ

)2

− 1

2z2
+

s

δz(1− z)

]
H(z, s) = Y (z, s). (4.9)
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This is the second-order normal invariant form of the original ODE. We want to see whether we can find
closed-form solutions for this ODE for any value of the parameter s.
Remark: this equation has 3 singular points (as shown below) at z = 0, z = 1 (regular ones), and z = ∞
(irregular). Therefore, it belongs to the family of Heun’s confluent equations [22]. As explained in Appendix C,
the (b, d) = (1, 1) case also belongs to Heun’s families.

4.1. Solution via Kovacic’s algorithm

In line with our definition of integrability (Def. 3.1), we look for closed-form solutions of the homogeneous
part of equation (4.9). For that purpose we define

r(z, s) =

(
− 1

2z
+
β

2δ

)2

− 1

2z2
+

s

δz(1− z)
=
β2z3 − β(β + 2δ)z2 − δ(4s− 2β + δ)z + δ2

4δ2z2(z − 1)
(4.10)

and apply Kovacic’s algorithm to search for closed-form solutions. The algorithm is based on the orders of the
poles of r(z, s) in the complex plane, considering the singularity z =∞ as well. Let Γ′ be the set of finite poles
of r(z, s) in the complex plane, and define Γ := Γ′ ∪ {∞}. The method uses the Laurent series expansions of
r(z, s) about the singularities in Γ.

Let ◦(c) denote the order of the pole c in the Laurent series expansion. In our case, Γ′ = {0, 1} with orders
◦(0) = 2 and ◦(1) = 1. The following series expansions for r(z, s) about the three elements in Γ hold:

(i) r(z, s) = − 1
4z2 + . . . about z = 0.

(ii) r(z, s) = − s
δ(z−1) + . . . about z = 1.

(iii) r(z, s) = β2

4δ2 −
β

2δz + . . . about z =∞.

We observe in equation (4.10) that the order of r at ∞ is ◦(∞) = 0. We analyze the different cases in the
algorithm by Kovacic (see Appendix A for details on how the algorithm proceeds in a general setup):

(i) Case 1: the computations involved in this case are based on rational functions, denoted by [
√
r]c, related

to each singularity (the general notation used in case 1 is fully described in Appendix A). According to
the algorithm, since ◦(0) = 2, we can write [

√
r]0 = 0. Then we compute

α±c =
1

2
± 1

2

√
1 + 4b, (4.11)

where b is the residue of r at the singularity c. This yields α±0 = 1
2 ±

1
2

√
1 + 4b = 1

2 because the residue
at z = 0 is b = − 1

4 .

For z = 1, because ◦(1) = 1, we set [
√
r]1 = 0 and α±1 = 1 (Appendix A).

For z =∞, since ◦(∞) = 0 = −2ν and we can expand r(z, s) = q2 + b/z + . . . , with q = β
2δ and b = − β

2δ .

Therefore we set [
√
r]∞ = q = β

2δ and α±∞ =
(
± b
q − ν

)
/2 = ∓ 1

2 (see Appendix A).

We now form the 23 possible permutations of signs for the three singularities and compute the quantity

m = α
ε(∞)
∞ −

∑
c∈Γ′ α

ε(c)
c :

ε(∞) ε(0) ε(1) m = α
ε(∞)
∞ − αε(0)

0 − αε(1)
1

+ ± ± − 1
2 −

1
2 − 1 = −2

− ± ± 1
2 −

1
2 − 1 = −1

+ ∓ ∓ − 1
2 −

1
2 − 1 = −2

− ∓ ∓ 1
2 −

1
2 − 1 = −1
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According to the algorithm, to ensure integrability we have to consider only those permutations that
yield a non-negative integer m (Appendix A). Since all the values of m are negative integers, Kovacic’s
algorithm does not find solutions of the form Pme

∫
ω with Pm a polynomial.

(ii) Case 2. Given the orders of the singularities of r(z, s), we define the following subsets of Z (see a full
description on how the algorithm proceeds in this case in Appendix A):
For z = 0, since ◦(0) = 2 and the residue at z = 0 is b = − 1

4 , we have E0 := {2 + k
√

1 + 4b, k = 0,±2} =
{2}.
For z = 1, since ◦(1) = 1, we define E1 := {4}.
For z =∞, since ◦(∞) = 0 < 2, then E∞ := {0}.
We now find the positive combinations of the sum m = 1

2

(
e∞ −

∑
c∈Γ′ ec

)
for ep ∈ Ep, p ∈ Γ. The only

possible combination is (e0, e1, e∞) = (2, 4, 0), hence m = 1
2 (0− 2− 4) < 0. Therefore the set of positive

m is empty and there are no solutions in this case.
(iii) Case 3. A necessary condition for this case to work is that ◦(∞) ≥ 2, see [17]. There are no solutions of

this type since ◦(∞) = 0.

Therefore, we conclude that equation (4.9) is not solvable in closed form for any value of s. Hence, the
homogeneous part of equation (4.4) is also non-integrable and, as a consequence, the PDE (1.9) becomes
non-integrable as well. This proves proposition 1.2.

In this contribution we have considered two PDE derived for generating functions associated to stochastic
birth-death processes and proved that the one associated to linear birth and death rates is solvable in closed
form via a Laplace transform, but the non-linear case is not integrable in any case. Besides of the importance of
our main result, regarding the existence of explicit solutions for the probability distributions of the associated
stochastic birth-death processes, our analysis also sheds light on the conditions that ensure integrability in this
kind of PDEs via a Laplace transform on the temporal variable. In order to unveil the conditions that make
the (b, d) = (1, 1) case integrable, in Appendix C we fully analyze the integrability of the associated PDE via
Kovacic’s algorithm. As a result, and related to the search of solutions for arbitrary values of the frequency
parameter s of the Laplace transform, we conjecture a necessary condition to ensure integrability of an arbitrary
PDE using the Laplace transform methodology (see details in Appendix C).

Appendix A

This Appendix describes Kovacic’s algorithm in detail. In our presentation here, we follow the original version
given by Kovacic in reference [17] with an adapted version presented in [2, 4].

Each case in Kovacic’s algorithm is related with each one of the algebraic subgroups of SL(2,C) and the
associated Riccatti equation

v′ = r − v2 =
(√
r − v

) (√
r + v

)
, v =

ζ ′

ζ
.

According to Theorem 2.7, there are four cases in Kovacic’s algorithm. Only for cases 1, 2 and 3 we can solve
the differential equation, but for the case 4 the differential equation is not integrable. It is possible that Kovacic’s
algorithm can provide us only one solution (ζ1), so that we can obtain the second solution (ζ2) through

ζ2 = ζ1

∫
dx

ζ2
1

. (A.1)

Notations. For the differential equation given by

ζ ′′ = rζ, r =
s

t
, s, t ∈ C[x],
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we use the following notations.

– Denote by Γ′ be the set of (finite) poles of r, Γ′ = {c ∈ C : t(c) = 0}.
– Denote by Γ = Γ′ ∪ {∞}.
– By the order of r at c ∈ Γ′, ◦(rc), we mean the multiplicity of c as a pole of r.
– By the order of r at ∞, ◦ (r∞) , we mean the order of ∞ as a zero of r. That is ◦ (r∞) = deg(t)− deg(s).

The four cases:

Case 1 In this case [
√
r]c stands for a rational function, defined below, depending on whether the singularity

c ∈ Γ′ or c = ∞. Furthermore, we define ε(p) as follows: if p ∈ Γ, then ε (p) ∈ {+,−}. Finally, the complex
numbers α+

c , α
−
c , α

+
∞, α

−
∞ will be defined in the first step. If the differential equation has no poles it only can

fall in this case.

Step 1. For each c ∈ Γ′ and for ∞ consider the following possibilities:

(c0) If ◦ (rc) = 0, then [√
r
]
c

= 0, α±c = 0.

(c1) If ◦ (rc) = 1, then [√
r
]
c

= 0, α±c = 1.

(c2) If ◦ (rc) = 2, and

r = · · ·+ b(x− c)−2 + · · · , then

[√
r
]
c

= 0, α±c =
1±
√

1 + 4b

2
.

(c3) If ◦ (rc) = 2v ≥ 4, and

r = (a (x− c)−v + ...+ d (x− c)−2
)2 + b(x− c)−(v+1) + · · · , then

[√
r
]
c

= a (x− c)−v + ...+ d (x− c)−2
, α±c =

1

2

(
± b
a

+ v

)
.

(∞1) If ◦ (r∞) > 2, then [√
r
]
∞ = 0, α+

∞ = 0, α−∞ = 1.

(∞2) If ◦ (r∞) = 2, and r = · · ·+ bx2 + · · · , then

[√
r
]
∞ = 0, α±∞ =

1±
√

1 + 4b

2
.

(∞3) If ◦ (r∞) = −2v ≤ 0, and

r = (axv + ...+ d)
2

+ bxv−1 + · · · , then
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[√
r
]
∞ = axv + ...+ d, and α±∞ =

1

2

(
± b
a
− v
)
.

Step 2. Find D 6= ∅ defined by

D =

{
n ∈ Z+ : n = αε(∞)

∞ −
∑
c∈Γ′

αε(c)c ,∀ (ε (p))p∈Γ

}
.

If D = ∅, then we should start with the case 2. Now, if Card(D) > 0, then for each n ∈ D we search ω ∈ C(x)
such that

ω = ε (∞)
[√
r
]
∞ +

∑
c∈Γ′

(
ε (c)

[√
r
]
c

+ αε(c)c (x− c)−1
)
.

Step 3. For each n ∈ D, search for a monic polynomial Pn of degree n with

P ′′n + 2ωP ′n + (ω′ + ω2 − r)Pn = 0. (A.2)

If success is achieved then ζ1 = Pne
∫
ω is a solution of the differential equation. Otherwise, case 1 cannot hold.

Case 2

Step 1. For each c ∈ Γ′ and ∞ compute non-empty sets Ec ⊂ Z and E∞ ⊂ Z defined as follows:

(c1) If ◦ (rc) = 1, then Ec = {4}.
(c2) If ◦ (rc) = 2, and r = · · ·+ b(x− c)−2 + · · · , then

Ec =
{

2 + k
√

1 + 4b : k = 0,±2
}
.

(c3) If ◦ (rc) = v > 2, then Ec = {v}.
(∞1) If ◦ (r∞) > 2, then E∞ = {0, 2, 4}.
(∞2) If ◦ (r∞) = 2, and r = · · ·+ bx2 + · · · , then

E∞ =
{

2 + k
√

1 + 4b : k = 0,±2
}
.

(∞3) If ◦ (r∞) = v < 2, then E∞ = {v}.

Step 2. Find D 6= ∅ defined by

D =

{
n ∈ Z+ : n =

1

2

(
e∞ −

∑
c∈Γ′

ec

)
,∀ep ∈ Ep, p ∈ Γ

}
.

If D = ∅, then we should start the case 3. Now, if Card(D) > 0, then for each n ∈ D we search a rational
function θ defined by

θ =
1

2

∑
c∈Γ′

ec
x− c

.
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Step 3. For each n ∈ D, search for a monic polynomial Pn of degree n, such that

P ′′′n + 3θP ′′n + (3θ′ + 3θ2 − 4r)P ′n +
(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
Pn = 0. (A.3)

If Pn does not exist, then case 2 cannot hold. If such a polynomial is found, set φ = θ + P ′n/Pn and let ω be a
solution of

ω2 + φω +
1

2

(
φ′ + φ2 − 2r

)
= 0.

Then ζ1 = e
∫
ω is a solution of the differential equation.

Case 3

Step 1. For each c ∈ Γ′ and ∞ compute non-empty sets Ec ⊂ Z and E∞ ⊂ Z defined as follows:

(c1) If ◦ (rc) = 1, then Ec = {12}.
(c2) If ◦ (rc) = 2, and r = · · ·+ b(x− c)−2 + · · · , then

Ec =
{

6 + k
√

1 + 4b : k = 0,±1,±2,±3,±4,±5,±6
}
.

(∞) If ◦ (r∞) = v ≥ 2, and r = · · ·+ bx2 + · · · , then

E∞ =

{
6 +

12k

m

√
1 + 4b : k = 0,±1,±2,±3,±4,±5,±6

}
, m ∈ {4, 6, 12}.

Step 2. Find D 6= ∅ defined by

D =

{
n ∈ Z+ : n =

m

12

(
e∞ −

∑
c∈Γ′

ec

)
,∀ep ∈ Ep, p ∈ Γ

}
.

In this case we start with m = 4 to obtain the solution, afterwards m = 6 and finally m = 12. If D = ∅, then
the differential equation is not integrable because it falls in case 4. Now, if Card(D) > 0, then for each n ∈ D
with its respective m, search for a rational function

θ =
m

12

∑
c∈Γ′

ec
x− c

and a polynomial S defined as

S =
∏
c∈Γ′

(x− c).

Step 3. For each n ∈ D, with its respective m, search for a monic polynomial Pn = P of degree n, such that P
can be determined by the following polynomial recursion:

Pm = −P,
Pi−1 = −SP ′i + ((m− i)S′ − Sθ)Pi − (m− i) (i+ 1)S2rPi+1, for i ∈ {m,m− 1, . . . , 1, 0},
P−1 = 0.
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This can be done by using undetermined coefficients for P . If P does not exist, then the differential equation is
not integrable because it falls in case 4. Now, if P exists search ω such that

m∑
i=0

SiP

(m− i)!
ωi = 0,

then a solution of the differential equation is given by ζ = e
∫
ω, where ω is solution of the previous polynomial

equation of degree m.

Appendix B

In this appendix we show that the generating function for the case of linear death rates is given also by
equation (1.10) if we assume δ < β. Here we consider two separate cases:

(i) 0 ≤ z ≤ δ
β : here (3.9) reduces to

lnG = lnC +
s

β − δ

∫ (
β

δ − βz
− 1

1− z

)
dz, (B.1)

hence

G(z, s) = C(z)

(
1− z
δ − βz

) s
β−δ

, (B.2)

C(z) being the constant obtained after integration. Variation of the constant in equation (3.6) yields the
first-order ODE for C(z),

(1− z)(δ − βz)C ′(z)
(

1− z
δ − βz

) s
β−δ

= −zN0 . (B.3)

We impose the condition C(δ/β) = 0 for G(z, s) to be non-singular at z = δ
β < 1. Hence

C(z) =

∫ δ/β

z

(δ − βu)
s

β−δ−1

(1− u)
s

β−δ+1
uN0du. (B.4)

Then the Laplace transform of the generating function can be written as

G(z, s) =

∫ δ/β

z

(
1− z
δ − βz

)[(
1− z
δ − βz

)(
δ − βu
1− u

)] s
β−δ−1

uN0

(1− u)2
du. (B.5)

We change variable u to w(u) := α
(
δ−βu
1−u

)
with α := 1−z

δ−βz and obtain

G(z, s) =
1

β − δ

∫ 1

0

w
s

β−δ−1

(
w − αδ
w − αβ

)N0

dw. (B.6)
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Finally we introduce a second change of variable, w(t) := e−(β−δ)t, which yields

G(z, s) =

∫ ∞
0

(
w(t)− αδ
w(t)− αβ

)N0

e−stdt, (B.7)

and the generating function is expressed as

g(z, t) =

(
w(t)− αδ
w(t)− αβ

)N0

=

[
δ − βz − (1− z)δe(β−δ)t

δ − βz − (1− z)βe(β−δ)t

]N0

, (B.8)

which exactly coincides with the expression obtained in Section 3.1.
(ii) δ

β ≤ z ≤ 1: in this case we can write

lnG = lnC − s

β − δ

∫ (
β

βz − δ
+

1

1− z

)
dz, (B.9)

i.e.,

G(z, s) = C(z)

(
1− z
βz − δ

) s
β−δ

. (B.10)

Variation of the constants implies

(1− z)(βz − δ)C ′(z)
(

1− z
βz − δ

) s
β−δ

= zN0 , (B.11)

which can be integrated as

C(z) =

∫ z

δ/β

(βu− δ)
s

β−δ−1

(1− u)
s

β−δ+1
uN0du. (B.12)

(notice the condition C(δ/β) = 0 for G(z, s) to be finite at z = δ
β < 1). We can write

G(z, s) =

∫ z

δ/β

(
1− z
βz − δ

)[(
1− z
βz − δ

)(
βu− δ
1− u

)] s
β−δ−1

uN0

(1− u)2
du. (B.13)

We change variables to w(u) := α
(
βu−δ
1−u

)
with α := 1−z

βz−δ ,

G(z, s) =
1

β − δ

∫ 1

0

w
s

β−δ−1

(
w + αδ

w + αβ

)N0

dw, (B.14)

and after a second change of variable, w(t) := e−(β−δ)t, we finally obtain

G(z, s) =

∫ ∞
0

(
w(t) + αδ

w(t) + αβ

)N0

e−stdt. (B.15)
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The generating function, in this case, is

g(z, t) =

(
w(t) + αδ

w(t) + αβ

)N0

=

[
βz − δ + (1− z)δe(β−δ)t

βz − δ + (1− z)βe(β−δ)t

]N0

, (B.16)

which coincides with (1.10).

Appendix C

We have proved that PDE (1.7) can be solved in closed form in Section 3 using the Laplace transform. In
addition, in Section 4 we have shown that, for quadratic death rates, the second-order PDE (1.9) satisfied by the
generating function transforms (via the Laplace transform) into a second-order, linear ODE in the frequency
domain whose coefficients are rational functions. This ODE has been analyzed using Kovacic’s algorithm [17],
and we have shown (Prop. 1.2) that the (b, d) = (1, 2) PDE is not integrable according to our definition. It is
natural to ask what are the conditions that make the difference between the two cases, both of which have been
approached via a Laplace transform in the temporal variable. Kovacic’s algorithm usually restricts the values of
the parameters in the differential equation in order to ensure integrability. In both cases, the Laplace transform
method introduces a new parameter in the equations – the parameter s associated to the time dependence. In
this appendix we apply the algorithm by Kovacic to the (b, d) = (1, 1) case in order to gain some insight about
integrability of the PDE via the Laplace transform: obviously, we have to recover the solution (3.11) with no
restrictions imposed by the algorithm on the Laplace transform parameter s, in agreement with our definition
of integrability. As a result of our detailed analysis, we conjecture a plausible necessary condition to ensure
integrability of an arbitrary PDE via the Laplace transform.

We can apply Kovacic’s algorithm to any second-order, linear ODE whose coefficients are rational functions.
In order to apply Kovacic’s algorithm to the inhomogeneous, first-order ODE (3.6), we transform the equation
as follows: first rearrange terms in equation (3.7) to obtain

G′(z, s) =
s

(1− z)(δ − βz)
G(z, s)− zN0

(1− z)(δ − βz)
, (C.1)

and then divide the equation by the term zN0

(1−z)(δ−βz) to get

(1− z)(δ − βz)
zN0

G′(z, s) =
s

zN0
G(z, s)− 1. (C.2)

Differentiating both sides of the equation above yields a second-order, linear, homogeneous equation whose
coefficients are rational functions of z:

G′′(z, s)− (N0 − 2)βz2 + [s− (N0 − 1)(δ + β)]z + δN0

z(1− z)(δ − βz)
G′(z, s) +

sN0

z(1− z)(δ − βz)
G(z, s) = 0. (C.3)

Now it is convenient to clarify the relation between the solutions of the linear equation (C.1) and of the
second order equation (C.3), that we write as a lemma for future reference.

Lemma C.1. Consider a first order linear ODE,

G′ = fG+ h, (C.4)
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with general solution

G1 = C1e
∫
fdz + e

∫
fdz

∫
e−

∫
fhdz. (C.5)

Then the general solution of the associated second order, linear ODE obtained by derivation over equation (C.4)
divided by h,

G′′ −
(
f +

h′

h

)
G′ +

(
f
h′

h
− f ′

)
G = 0, (C.6)

is given by

G2 = C1e
∫
fdz + C2e

∫
fdz

∫
e−

∫
fhdz, (C.7)

Proof. A first integral of equation (C.6) is given by the linear first order equation

G′ − fG
h

=: C2 ⇔ G′ = fG+ C2h, (C.8)

which coincides with (C.4) for C2 = 1. Then solving equation (C.8) we obtain (C.7).

In other words, a fundamental system of solutions of (C.6) is given by a non-trivial solution of the homo-
geneous part of (C.4) and by any of the particular solutions of (C.4) (like the one obtained by variation of
constants). In particular, (C.6) has always a solution given by the exponential of an integral: e

∫
fdz.

Now we look for solutions of the second-order ODE (C.3) yielded by Kovacic’s algorithm. For that purpose
we normalize (C.3) to write it in the form H ′′ − r(z, s)H = 0 for a new function H(z, s). If we define

a(z, s) := − (N0 − 2)βz2 + [s− (N0 − 1)(δ + β)]z + δN0

z(1− z)(δ − βz)
,

b(z, s) :=
sN0

z(1− z)(δ − βz)
,

(C.9)

then the invariant normal form of (C.3) is obtained using equation (2.3):

H ′′(z, s)−
(

1

2
a′(z, s) +

1

4
a2(z, s)− b(z, s)

)
H(z, s) = 0, (C.10)

where G(z, s) = H(z, s)ψ(z, s) and ψ(z, s) satisfies the first-order ODE

2ψ′(z, s) + a(z, s)ψ(z, s) = 0. (C.11)

Note also that, for β 6= δ,

a(z, s) = −N0

z
−
(

1 +
s

δ − β

)
1

1− z
−
(

1− s

δ − β

)
β

δ − βz
, (C.12)
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while for β = δ,

a(z, s) = −N0

z
− 2

1− z
+
s

δ

1

(1− z)2
. (C.13)

Integration of (C.11) yields

ψ(z, s) = zN0/2(1− z)−
1
2 (1+ s

δ−β )(δ − βz)−
1
2 (1− s

δ−β ), β 6= δ, (C.14)

and

ψ(z, s) = zN0/2(1− z)−1e−
s
2δ

1
(1−z) , β = δ. (C.15)

Now we apply Kovacic’s algorithm to (C.3) to check the integrability of this equation. Together with (C.14),
we will construct solutions for the Laplace transform of the generating function as G(z, s) = H(z, s)ψ(z, s). We
recall that, by Lemma C.1, the equation (C.3) has always a solution given by the exponential of an integral of
a rational function,

G = e
∫
fdz.

Then equation (C.3) has a solution given by the exponential of an integral in K,

H = Gψ−1 = e
∫
(f+ a

2 )dz.

This implies that case 1 of Kovacic’s algorithm always holds for equation (C.10).
The computations that lead to the closed-form solution of equation (C.10) go as follows. As can be easily

checked, the rational function

r(z, s) =
1

2
a′(z, s) +

1

4
a2(z, s)− b(z, s) (C.16)

has three finite singularities at z = 0, z = 1 and z = δ/β if β 6= δ. In this example, the following series expansions
hold:

(i) r(z, s) = N0(N0+2)
4z2 + . . . about z = 0.

(ii) r(z, s) = 1
4

(
−1 + s2

(δ−β)2

)
1

(z−1)2 + . . . about z = 1.

(iii) r(z, s) = 1
4

(
−1 + s2

(δ−β)2

)
1

(z−δ/β)2 + . . . about z = δ
β .

(iv) r(z, s) = N0(N0−2)
4z2 + . . . about z =∞.

We study the existence of case 1 solutions in Kovacic’s algorithm: all the poles have order 2, hence ◦(c) = 2 for
all c ∈ Γ. For z = 0 we can compute

α+
0 = 1 +

N0

2
and α−0 = −N0

2

according to equation (4.11). For z = 1, we get α±1 = 1
2

(
1± s

δ−β

)
. For z = δ/β we obtain α±δ/β = α±1 because

the residues associated to both singularities coincide. Finally, for z =∞ we obtain α+
∞ = N0

2 and α−0 = 1− N0

2 .



22 P.B. ACOSTA-HUMÁNEZ ET AL.

Let ŝ := s
δ−β . Then the 24 possible sign permutations are summarized in the following table:

ε(∞) ε(δ/β) ε(1) ε(0) m = α
ε(∞)
∞ −

∑
c∈Γ′ α

ε(c)
c

+ ± ± + −2∓ ŝ
+ ± ± − N0 − 1∓ ŝ
− ± ± + −N0 − 1∓ ŝ
− ± ± − ∓ŝ
+ ± ∓ + −2
+ ± ∓ − N0 − 1
− ± ∓ + −N0 − 1
− ± ∓ − 0

According to the algorithm, we have to consider only those permutations that yield a non-negative integer
m. This discards, for example, the cases (ε(∞), ε(δ/β), ε(1), ε(0)) = (+,±,∓,+) and (−,±,∓,+) – recall that
N0 is a non-negative integer number. It is possible to find integrability for the (+,±,∓,−) and (−,±,∓,−)
cases. The remaining 8 cases depend explicitly on s, hence imposing that m is a non-negative integer would
restrict the possible values of s yielding closed-form solutions. We are actually interested in finding a solution
valid for any value of s, so we do not enter in the discussion of these cases in this contribution.

Here we will discuss only one of the potential 4 cases that can yield a solution: consider the permutation
(−,+,−,−), which corresponds to m = 0. Then the algorithm proceeds by considering the rational function

ω(z, s) =
∑
c∈Γ′

(
ε(c)[
√
r]c +

α
ε(c)
c

z − c

)
+ s(∞)[

√
z]∞. (C.17)

In our example this function reduces to

ω(z, s) =
α−0
z

+
α−1
z − 1

+
α+
δ/β

z − δ/β
. (C.18)

Given that α−0 = −N0

2 , α−1 = 1
2

(
1− s

δ−β

)
and α+

δ/β = 1
2

(
1 + s

δ−β

)
we get, according to equation (C.12),

ω(z, s) = −N0

2z
− 1

2

(
1− s

δ − β

)
1

1− z
− 1

2

(
1 +

s

δ − β

)
β

δ − βz
. (C.19)

The algorithm now searches for a monic polynomial Pm(z) of degree m that satisfies the differential equation

P ′′m + 2ωP ′m + (ω′ + ω2 − r)Pm = 0. (C.20)

If such polynomial exists, then a solution of the form Pme
∫
ω exists. In our case m = 0 and, as it can be

easily checked using (C.16), the function ω(z, s) defined in equation (C.19) satisfies identically the condition
ω′ + ω2 − r = 0. Therefore equation (C.20) is satisfied by the constant monic polynomial P0 = 1 and we find
the following closed-form solution for (C.10):

H(z, s) = exp

{∫ z

ω(u, s) du

}
= z−N0/2(1− z)

1
2 (1− s

δ−β )(δ − βz)
1
2 (1+ s

δ−β ). (C.21)
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Therefore, using (C.14), we get

G(z, s) = H(z, s)ψ(z, s) =

(
δ − βz
1− z

) s
δ−β

(C.22)

and we recover the solution (3.11) obtained from the first-order homogeneous ODE. Note that G(z, s) =(
δ−βz
1−z

) s
δ−β

= e
∫
f(z,s)dz, with f(z, s) given by (3.8). But this solution is not the Laplace transform G(z, s)

– equation (3.14) – of the generating function g(z, t) we are looking for. However, we can use (C.22) and
Lemma C.1 with f and h given by (3.8) to construct the relevant solution as

G(z, s) = e
∫
fdz

∫
e−

∫
fhdz,

that is,

G(z, s) = −
(
δ − βz
1− z

) s
δ−β

∫ z ( 1− u
δ − βu

) s
δ−β uN0

(1− u)(δ − βu)
du, (C.23)

which is the exact same solution obtained in the main text (Eq. (3.14)). Alternatively, it would be also possible
to obtain this solution by applying toequation (C.3) the D’Alambert order reduction of a linear equation when
a particular solution is known – we, however, skip the details here.

In a similar way we apply Kovacic’s algorithm for β = δ. Now, equation (C.16) becomes

r(z, s) =
N0(N0 + 2)

4z2
+
N0(2δ + s)

2δ(1− z)
+

N0s

2δ(1− z)2
+
N0(2δ + s)

2δz
+

s2

4δ2(1− z)4
.

Applying the case 1 of Kovacic’s algorithm we obtain that the solution of H ′′ = r(z, s)H is

H(z, s) = z−
N0
2 (1− z)e−

s
2δ(1−z) .

Now, using equation (C.15), we conclude that

G(z, s) = H(z, s)ψ(z, s) = e
s

δ(1−z) ,

as in (3.19). We can recover the sought Laplace transform (3.21) using Lemma C.1 as presented above.
An important insight that we infer thanks to the analysis of the first-order equation via Kovacic’s algorithm

is the following conjecture: if we were to obtain integrability of the corresponding PDE via a Laplace transform,
we conjecture that a necessary condition to obtain solutions of the form of Kovacic’s first case is that the
combination

m = αε(∞)
∞ −

∑
c∈Γ′

αε(c)c (C.24)

remains independent of s for all sign permutations, as our definition of integrability for equation (3.3) requires
integrability of the linear ODE (3.4) for any value of the parameter s.
Remark: we observe that for β 6= δ equation (C.3) has 4 singular regular points at z = 0, z = 1, z = β/δ and
z =∞. Therefore, it corresponds exactly to the general Heun’s differential equation in the independent variable
z with parameters δ/β, sN0/β, 0, 1 − N0, −N0, and (β − δ + s)/(β − δ). On the other hand, when β = δ,
we can observe that this equation has two regular singularities at z = 0 and z =∞, while it has one irregular
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singularity at z = 1. We conclude that, with the changes of variables G 7→ Gz−N0−1/(1− z)2 and z 7→ (z− 1)/z,
the equation corresponds to the confluent Heun’s differential equation with parameters s/δ, N0 − 1, N0 + 1, 0,
(N2

0 δ− sN0 + δ)/(2δ). Moreover, we observe that in the non-homogeneous first order linear differential equation
the points z =∞ and z = 0 are ordinary points, but with the procedure to transform it into an homogeneous
second order linear differential equation the points z = ∞ and z = 0 are regular singular points. The type of
singularity of z = 1 and z = β/δ is preserved under such procedure for the cases β = δ and β 6= δ, though.
For further details about Heun’s differential equations, we refer the reader to reference [22]. We remark that a
complete characterization of the integrability of Heun’s equations is today an open problem. Here it was possible
to solve the integrability problem because the equations correspond to very special subfamilies of Heun’s general
families.
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