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A hybrid magnesium alloy nanocomposite containing AlN nanoparticle reinforcement was fabricated using solidification
processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable
AlN and intermetallic nanoparticle distribution, nondominant (0 0 0 2) texture in the longitudinal direction, and 17% higher
hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy, the nanocomposite exhibited higher tensile
yield strength (0.2% TYS) and ultimate tensile strength (UTS) without significant compromise in failure strain and energy
absorbed until fracture (EA) (+5%, +5%, −14% and −10%, resp.). Compared to the monolithic hybrid alloy, the nanocomposite
exhibited unchanged compressive yield strength (0.2% CYS) and higher ultimate compressive strength (UCS), failure strain, and
EA (+1%, +6%, +24%, and +6%, resp.). The overall effects of AlN nanoparticle addition on the tensile and compressive properties
of the hybrid magnesium alloy is investigated in this paper.

1. Introduction

Compared to aluminium, magnesium is the lightest struc-
tural metal (35% lighter) used in many engineering applica-
tions today [1, 2]. Commercially available magnesium alloys
are suitable for actual or potential use regarding weight-
critical applications in the automotive, aerospace, civil infras-
tructure, building and construction, defence, biomedical,
and sports/recreational industries [1, 3]. In the World War
2 era, Mg-Zn alloy parts were economically manufactured
and heavily used in aircraft [3]. Soon after the world war,
Mg-Al alloys were also economically developed with specific
metallurgical advantages over Mg-Zn alloys [3]. At present,
Mg-Y and Mg-RE (Rare Earth) alloys are in development for
even more specific metallurgical advantages but at generally
higher cost compared to Mg-Zn and Mg-Al alloys [1]. Re-
gardless of cast or wrought forms, Mg-Zn and Mg-Al alloys
each still remain as the main classes of Mg alloys commer-
cially in use. In the wrought form, the Mg alloys have good
strength and ductility. However, wrought Mg-Zn and Mg-Al

alloy nanocomposites have often demonstrated simultane-
ously higher strength and ductility compared to the mono-
lithic alloys [4–14]. Additionally, friction stir processed Mg-
Al nanocomposites have also demonstrated higher hardness
and strength than the corresponding monolithic alloys [15–
18]. Based on much of the existing representative research
literature on solidification processed magnesium alloy nano-
composites, good nanoparticle distribution can be achieved
in the magnesium matrix and better mechanical properties
can be achieved due to the addition of nanoparticles [4–
18]. However, it is the addition of oxide- or carbon-based
nanoparticles to magnesium alloys as opposed to nitride-
based nanoparticle addition that most of the research
literature currently discusses. In the context of magnesium
composite processing, the magnesium-oxygen strong affinity
and magnesium-carbon weak affinity (comparative to each
other) are both well known. On the other hand, what is not
known is the affinity between magnesium and nitrogen con-
cerning effects in magnesium nanocomposite processing (let
alone solidification processing).
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Accordingly, one of the primary aims of this study was
to simultaneously increase tensile strength and ductility of
AZ91/ZK60A hybrid magnesium alloy with AlN nanopar-
ticles. Another aim of the present study was to evaluate
the compressive properties of AZ91/ZK60A/AlN hybrid alloy
nanocomposite. Disintegrated melt deposition (DMD) [19,
20] followed by hot extrusion was used to synthesize the
AZ91/ZK60A/AlN hybrid alloy nanocomposite.

2. Experimental Procedures

2.1. Materials. In this study, AZ91 (nominally 8.30–
9.70 wt.% Al, 0.35–1.00 wt.% Zn, 0.15–0.50 wt.% Mn,
0.10 wt.% Si, 0.030 wt.% Cu, 0.005 wt.% Fe, 0.002 wt.%
Ni, 0.02 wt.% others, balance Mg) and ZK60A (nominally
4.80–6.20 wt.% Zn, 0.45 wt.% Zr, balance Mg), both alloys
supplied by Tokyo Magnesium Co. Ltd. (Yokohama, Japan)
were used as matrix material. 3 parts AZ91 were mixed with
1 part ZK60A by mass to metallurgically downgrade AZ91.
The intention of this mixing was to decrease the nominal
aluminium content of AZ91 by 2 wt.%. AZ91 and ZK60A
blocks were sectioned to smaller pieces. All oxide and scale
surfaces were removed using machining. All surfaces were
washed with ethanol after machining. AlN nanoparticles
(99% purity, spherical, 10–20 nm size) supplied by Nanos-
tructured & Amorphous Materials Inc (TX, USA) were used
as the reinforcement phase.

2.2. Processing. Monolithic AZ91/ZK60A hybrid alloy (nom-
inal aluminium content of AZ91 decreased by 2 wt.%.) was
cast using the DMD method [19, 20]. This involved heating
AZ91 and ZK60A blocks to 750◦C in an inert Ar gas atmo-
sphere in a graphite crucible (A12 designated size of top
OD: 171 mm, bottom OD: 121 mm, height: 210 mm) using
a resistance heating furnace. The crucible was equipped with
an arrangement for bottom pouring. Upon reaching the
superheat temperature, the molten slurry was stirred for
2.5 min at 460 rpm using a twin blade (pitch 45◦) mild steel
impeller to facilitate the uniform distribution of heat. The
impeller was coated with Zirtex 25 (86% ZrO2, 8.8% Y2O3,
3.6% SiO2, 1.2% K2O and Na2O, and 0.3% trace inorganics)
to avoid iron contamination of the molten metal. The melt
was then released through a 10 mm diameter orifice at the
base of the crucible. The melt was disintegrated by two jets
of argon gas oriented normal to the melt stream located
265 mm from the melt pouring point. The argon gas flow
rate was maintained at 25 lpm. The disintegrated melt slurry
was subsequently deposited onto a metallic substrate located
500 mm from the disintegration point. An ingot of 40 mm
diameter was obtained following the deposition stage. To
form the AZ91/ZK60A/1.5 vol% AlN hybrid alloy nanocom-
posite, AlN nanoparticle powder was isolated by wrapping in
Al foil of minimal weight (<0.50 wt.% with respect to AZ91
and ZK60A total matrix weight) and arranged on top of the
AZ91 and ZK60A alloy blocks (see Figure 1), with all other
DMD parameters unchanged. All billets were machined to
35 mm diameter and hot-extruded using 20.25 : 1 extrusion
ratio on a 150 ton hydraulic press. The extrusion temperature
was 350◦C. The billets were held at 400◦C for 60 min in a

Al foil packet

AlN nanopowder

Crucible

Exit hole

AZ91/ZK60A pieces

Figure 1: Arrangement of raw materials in crucible before casting
for AZ91/ZK60A/AlN nanocomposite.

furnace prior to extrusion. Colloidal graphite was used as a
lubricant. Rods of 8 mm were obtained.

2.3. Heat Treatment. Heat treatment was carried out on all
extruded sections at 200◦C for 1 hour using a resistance
heating furnace. This selection of temperature and time was
made in order to relax the monolithic AZ91/ZK60A hybrid
alloy (nominal aluminium content of AZ91 decreased by
2 wt.%.) without recrystallization softening. The recrystalli-
zation temperature of AZ61 magnesium alloy (as the nearest
matching alloy in terms of composition) following 20% cold
work after 1 hour is 288◦C [1]. Prior to heat treatment, the
sections were coated with colloidal graphite and wrapped in
aluminum foil to minimize reaction with oxygen present in
the furnace atmosphere.

2.4. Microstructural Characterization. Microstructural char-
acterization studies were conducted on metallographically
polished monolithic and nanocomposite extruded samples
to determine grain characteristics. Hitachi S4300 Field-
Emission SEM (FESEM) was used. Image analysis using
Scion software was carried out to determine the grain char-
acteristics. Thin foils were prepared from the monolithic and
nanocomposite extruded samples for transmission electron
microscopy (TEM) using disc punch-out and ion-milling for
nanoparticle distribution observation (regarding localized
effects). Goniometer XRD studies were conducted using
CuKα radiation (λ = 1.5406 Å) with a scan speed of 2◦/min
in an automated Shimadzu LAB-X XRD-6000 diffractometer
to determine intermetallic phase(s) presence and dominant
textures in the transverse and longitudinal (extrusion) direc-
tions (regarding globalised effects).

2.5. Hardness. Microhardness measurements were made on
polished monolithic and nanocomposite extruded samples.
Vickers microhardness was measured with an automatic
digital Shimadzu HMV Microhardness Tester using 25 gf-
indenting load and 15 s dwell time.

2.6. Tensile Testing. Smooth bar tensile properties of the
monolithic and nanocomposite extruded samples were
determined based on ASTM E8M-05. Round tension test
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Table 1: Results of grain characteristics and microhardness of
AZ91/ZK60A and AZ91/ZK60A/AlN nanocomposite.

Material AlN
(vol.%)

Grain characteristicsa Microhardness
(HV)Size (μm) Aspect ratio

AZ91/ZK60A — 4.5± 0.9 1.4 137± 4

AZ91/ZK60A/
1.5 vol% AlN

1.50 4.2± 0.8 1.4 160± 8 (+17)

a
Based on approximately 100 grains.

() Brackets indicate % change with respect to corresponding result of
AZ91/ZK60A.

samples of 5 mm diameter and 25 mm gauge length were
subjected to tension using an MTS 810 machine equipped
with an axial extensometer with a crosshead speed set at
0.254 mm/min.

2.7. Compressive Testing. Compressive properties of the
monolithic and nanocomposite extruded samples were
determined based on ASTM E9-89a. Samples of 8 mm length
(l) and 8 mm diameter (d) where l/d = 1 were subjected
to compression using a MTS 810 machine with 0.005 min−1

strain rate.

3. Results

3.1. Macrostructural Characteristics. No macropores or
shrinkage cavities were observed in the cast monolithic and
nanocomposite materials. No macrostructural defects were
observed for extruded rods of monolithic and nanocompos-
ite materials.

3.2. Microstructural Characteristics. Microstructural analysis
results revealed that grain size and aspect ratio remained
statistically unchanged in the case of nanocomposite as
shown in Table 1 and Figures 2(a) and 2(b). Grain size refers
to diameter of the grain assuming it is circular in shape. AlN
nanoparticle reinforcement and fine intermetallic particle
distributions in the nanocomposite were reasonably uniform
as shown in Figure 2(c).

Texture results are listed in Table 2 and shown in Figure 3.
In monolithic and nanocomposite materials, the dominant
texture in the transverse and longitudinal directions was
(1 0 − 1 1). Here, extrusion did not result in the
(0 0 0 2) plane being intensely parallel to the extrusion
direction (as we have previously reported) [6–14].

3.3. Hardness. The results of microhardness measurements
are listed in Table 1. The nanocomposite exhibited higher
hardness than the monolithic material.

3.4. Tensile Behavior. The overall results of ambient tem-
perature tensile testing of the extruded materials are shown
in Table 3 and Figure 4(a). The strength of AZ91/ZK60A/
1.5 vol% AlN was higher compared to monolithic AZ91/
ZK60A, without significant compromise in failure strain and
energy absorbed until fracture (EA). EA was determined by

Table 2: Texture results of AZ91/ZK60A and AZ91/ZK60A/AlN
nanocomposite based on goniometer X-ray diffraction.

Material Sectiona Plane
Average
(I/Imax)b

AZ91/ZK60A

1 0 −1 0 prism 0.46

T 0 0 0 2 basal 0.20

1 0 −1 1 pyramidal 1.00

1 0 −1 0 prism 0.33

L 0 0 0 2 basal 0.66

1 0 −1 1 pyramidal 1.00

AZ91/ZK60A/
1.5 vol% AlN

1 0 −1 0 prism 0.32

T 0 0 0 2 basal 0.18

1 0 −1 1 pyramidal 1.00

1 0 −1 0 prism 0.35

L 0 0 0 2 basal 0.72

1 0 −1 1 pyramidal 1.00
a
T: transverse, L: longitudinal.

bImax is XRD maximum intensity from either prism, basal or pyramidal
planes.

Table 3: Results of tensile testing of AZ91/ZK60A and AZ91/
ZK60A/AlN nanocomposite.

Material
0.2% TYS

(MPa)
UTS

(MPa)
Failure

Strain (%)

Energy
absorbed,

EA (MJ/m3)a

AZ91/ZK60A 225± 4 321± 4 16.1± 0.3 49± 1

AZ91/ZK60A/
1.5 vol% AlN

236± 6
(+5)

336± 4
(+5)

13.8± 1.0
(−14)

44± 4
(−10)

a
Energy absorbed until fracture, that is, area under the engineering stress-

strain curve until the point of fracture (obtained using EXCEL software).
() Brackets indicate % change with respect to corresponding result of AZ91/
ZK60A.

Table 4: Results of compressive testing of AZ91/ZK60A and AZ91/
ZK60A/AlN nanocomposite.

Material
0.2% CYS

(MPa)
UCS

(MPa)
Failure

Strain (%)

Energy
absorbed,

EA (MJ/m3)a

AZ91/ZK60A 106± 5 508±17 19.5± 1.7 83± 9

AZ91/ZK60A/
1.5 vol% AlN

107± 12
(+1)

541±19
(+6)

24.1± 6.5
(+24) 88± 7 (+6)

a
Energy absorbed until fracture, that is, area under the engineering stress-

strain curve until the point of fracture (obtained using EXCEL software).
() Brackets indicate % change with respect to corresponding result of
AZ91/ZK60A.

computing the area under the stress-strain curve up to the
point of fracture.

3.5. Compressive Behavior. The overall results of ambient
temperature compressive testing of the extruded materials
are shown in Table 4 and Figure 4(b). Comparing AZ91/
ZK60A/1.5 vol% AlN to monolithic AZ91/ZK60A, yield
strength was unchanged and ultimate strength, failure strain,
and EA were each higher.
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Figure 2: Representative FESEM micrographs showing grain size in monolithic AZ91/ZK60A and AZ91/ZK60A/AlN nanocomposite: (a)
lower magnification and (b) higher magnification. (c) Representative TEM micrograph (including SAED pattern) showing the presence of
individual nitride nanoparticles and fine intermetallic particles in AZ91/ZK60A/AlN nanocomposite. (d) Representative TEM micrograph
(including SAED pattern) showing the presence of individual Mg-Zn rod-shaped nanoparticles in AZ91/ZK60A/AlN nanocomposite. Phases
present but not labeled in the SAED patterns include Mg and Mg-Al phases only.

4. Discussion

4.1. Synthesis of Monolithic AZ91/ZK60A and AZ91/ZK60A/
AlN Nanocomposite. Synthesis of monolithic and nanocom-
posite materials, the final form being extruded rods, was
successfully accomplished with no detectable metal oxidation
or reaction between graphite crucible and melts. The inert

atmosphere used during DMD was effective in preventing
oxidation of the Mg melt. No stable carbides of Mg or Al
formed due to reaction with graphite crucible.

4.2. Microstructural Characteristics. Microstructural charac-
terization of extruded samples is discussed in terms of (a)
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Figure 3: Schematic diagram showing textures of monolithic
AZ91/ZK60A and AZ91/ZK60A/AlN nanocomposite based on
goniometer X-ray diffraction. In each case, vertical axis (dotted line)
is parallel to extrusion direction. Each cell is made up of 2 HCP units
having 1 common (0 0 0 2) basal splane.

grain characteristics and (b) AlN and intermetallic nanopar-
ticle reinforcement distribution.

Nearly equiaxed grains were observed in monolithic
material and nanocomposite as shown in Table 1 and Figures
2(a) and 2(b). Grain size was statistically unchanged in the
case of nanocomposite, suggesting the inability of AlN nano-
particles to serve as either nucleation sites or obstacles to
grain growth during solid state cooling. It was observed
that Al12Mg17 and Mg2Zn11 intermetallic particles decorated
the grain boundaries in the monolithic material and nano-
composite. Goniometer X-ray diffraction (XRD) analysis
revealed the presence of Al12Mg17 and Mg2Zn11 phases [4,
11]. This was possibly due to near-homogenous (as opposed
to total homogenous) mixing of AZ91 and ZK60A con-
stituent alloys since the mixing time at 750◦C before spray
deposition was only a few minutes. Al12Mg17 and Mg2Zn11

intermetallic phases are commonly found in the individual
AZ91 and ZK60A alloys, respectively [1].

The reasonably uniform distribution of AlN and inter-
metallic nanoparticles as shown in Figure 2(c) can be
attributed to (a) minimal gravity-associated segregation due
to judicious selection of stirring parameters [21], (b) good
wetting of AlN nanoparticles by the alloy matrix [11, 22–
24], (c) argon gas disintegration of metallic stream [25], and
(d) dynamic deposition of composite slurry on substrate fol-
lowed by hot extrusion. In the nanocomposite, selected area
electron diffraction (SAED) in TEM revealed the (a) partial
reaction of AlN with the Mg alloy matrix to form Mg3N2

(see Figure 2(c)) and (b) the occurrence of Mg-Zn nanorods
(not observed in the monolithic alloy, see Figure 2(d)).
Regarding the occurrence of Mg-Zn nanorods, the Mg-Zn
intermetallic phase(s) precipitation was possibly regulated at
nanoscale due to the presence of well-dispersed AlN nano-
particles. Dissolved Zn possibly segregated at the liquid-AlN
nanoparticle interface enabling Mg-Zn intermetallic phase
manipulation at the nanoscale. This is similar to possible dis-
solved Zn segregation at the liquid-SiC nanoparticle interface
enabling nanoscale MgZn2 precipitation as recently reported
[26]. With a reasonably uniform AlN distribution through-
out the AZ91/ZK60A matrix, the nanoparticle-matrix inter-
face area was ample for effectively regulated segregation of
4.80–6.20 wt.% Zn (or 1.21–1.59 vol. % Zn) as nanoscale
Mg-Zn precipitates. This was similar to that reported recently
for selected ZK60A nanocomposites [12–14].

4.3. Mechanical Behavior

4.3.1. Hardness. A significant increase in microhardness by
17% was observed in the nanocomposite when compared
to monolithic material as listed in Table 1. This was con-
sistent with earlier observations made on Mg/Al2O3, AZ31/
C60 and AZ31/MWCNT nanocomposites [16, 17, 27–29].
The increase in hardness of the nanocomposite in the
present study can be attributed to (a) reasonably uniform
distribution of harder AlN nanoparticles in the matrix and
(b) higher constraint to localized matrix deformation during
indentation due to the presence of nanoparticles [27, 28].

4.3.2. Tensile and Compressive Behavior. The tensile and
compressive strengths of monolithic material and nanocom-
posite are listed in Tables 3 and 4 (and shown in Figures 4(a)
and 4(b)), respectively. 0.2% TYS and UTS were enhanced by
5% each in AZ91/ZK60A/1.5 vol% AlN compared to mono-
lithic material. In comparison of compressive strengths,
0.2% CYS and UCS of AZ91/ZK60A/1.5 vol% AlN were
unchanged and higher by 6%, respectively, compared to
monolithic material. However, the compressive stress de-
tected at any given strain was lower for AZ91/ZK60A/
1.5 vol% AlN compared to monolithic AZ91/ZK60A as
shown in Figure 4(b). The tensile strength increase in AZ91/
ZK60A/1.5 vol% AlN compared to monolithic AZ91/ ZK60A
can be attributed to the following well-known factors (per-
taining to reinforcement): (a) dislocation generation due to
elastic modulus mismatch and coefficient of thermal expan-
sion mismatch between the matrix and reinforcement [28–
31], (b) Orowan strengthening mechanism [30–32], and (c)
load transfer from matrix to reinforcement [28, 30]. The
lower compressive strength of AZ91/ZK60A/1.5 vol% AlN
compared to monolithic AZ91/ZK60A can be attributed
possibly to compressive shear buckling of brittle Mg-Zn
nanorods in AZ91/ZK60A/1.5 vol% AlN as illustrated in
Figure 5. The compressive shear buckling of Mg-Zn nano-
rods induces a slightly lower limit on the factors pertaining
to reinforcement (as just described).

In both AZ91/ZK60A/1.5 vol% AlN and monolithic
AZ91/ZK60A, 0.2% TYS was about 2.21 and 2.12 times the
0.2% CYS, respectively. Here, the tensile/compressive yield
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Figure 4: Representative: (a) tensile and (b) compressive stress-strain curves of monolithic AZ91/ZK60A and AZ91/ZK60A/AlN nano-
composite.
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Figure 5: Schematic diagram illustrating compressive shear buckling of brittle Mg-Zn nanorod (circled in TEM micrograph) in AZ91/
ZK60A/AlN nanocomposite. τa and τb represent planar shear stresses where τa < τb. χ (exaggerated) represents very low angular deflection
of the brittle Mg-Zn nanorod during buckling.

stress anisotropy (0.2% TYS/0.2% CYS) was present despite
the crystallographic texture exhibited where {1 0 1 − 2}
〈1 0 1 − 1〉-type twinning was activated along the c-axis
of the HCP unit cell in Figure 3 with comparatively similar
ease in both tension and compression along the c-axis,
based on the 45◦ angle between the c-axis and the vertical
axis [33, 34]. The tensile/compressive yield stress anisotropy
(0.2% TYS/0.2% CYS) can be attributed generally to half the

strain rate used (less strain hardening) in compressive testing
compared to tensile testing. The tensile/compressive yield
stress anisotropy was slightly higher for AZ91/ZK60A/
1.5 vol% AlN compared to monolithic AZ91/ZK60A (2.21
compared to 2.12, resp.). This was similar to that observed
in the case of selected ZK60A nanocomposites compared to
monolithic ZK60A [12–14]. This can be attributed possibly
to compressive shear buckling of brittle Mg-Zn nanorods as
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illustrated in Figure 5. The brittle Mg-Zn nanorod is prone
to buckling followed by fracture within the AZ91/ZK60A
matrix during compressive deformation unlike during tensile
deformation.

The tensile and compressive failure strains of monolithic
material and nanocomposite are listed in Tables 3 and 4 (and
based on stress-strain curves shown in Figures 4(a) and
4(b)), respectively. Compared to monolithic material, ten-
sile failure strain was slightly compromised (−14%) in
AZ91/ZK60A/1.5 vol% AlN. Compared to monolithic ma-
terial, compressive failure strain was higher (+24%) in AZ91/
ZK60A/1.5 vol% AlN. Both trends in failure strain of AZ91/
ZK60A/1.5 vol% AlN compared to monolithic AZ91/ZK60A
can be attributed to the presence of Mg-Zn nanorods
(not observed in monolithic AZ91/ZK60A) in AZ91/ZK60A/
1.5 vol% AlN (see Figure 2(d)). Regarding the trend in tensile
failure strain, it has been shown in previous studies that the
nanoparticles provide sites where cleavage cracks are opened
ahead of the advancing crack front. This cleavage crack open-
ing dissipates the stress concentration that would otherwise
exist at the crack front and alters the local effective stress state
from plane strain to plane stress in the neighbourhood of the
crack tip [27, 35]. However, stress concentrations around the
sharp ends of the Mg-Zn nanorods could not be effectively
diffused by the surrounding near-spherical AlN or Mg-Al
intermetallic nanoparticles. The trend in tensile failure strain
can also be attributed to the partial reactivity between AlN
nanoparticles and the Mg alloy matrix where Mg3N2 was
formed (see Figure 2(c)). Regarding the trend in compressive
failure strain, compressive shear buckling of Mg-Zn nano-
rods within the AZ91/ZK60A matrix (see Figure 5) aided in
dispersing localized stored energy during compressive defor-
mation. This allowed AZ91/ZK60A/1.5 vol% AlN to globally
absorb relatively large amounts of strain energy during com-
pressive deformation [12, 36]. Here, Mg-Zn nanorod buck-
ling within the AZ91/ZK60A matrix is a compressive tough-
ening mechanism.

5. Conclusions

(i) Monolithic AZ91/ZK60A and AZ91/ZK60A/1.5 vol%
AlN nanocomposite can be successfully synthesized
using the DMD technique followed by hot extrusion.

(ii) Compared to monolithic AZ91/ZK60A, tensile
strength of AZ91/ZK60A/1.5 vol% AlN was en-
hanced. This can be attributed to well-known fac-
tors pertaining to reinforcement. Compared to mo-
nolithic AZ91/ZK60A, compressive strength of AZ91/
ZK60A/1.5 vol% AlN was decreased. This can be
attributed possibly to compressive shear buckling of
Mg-Zn nanorods in the nanocomposite.

(iii) Compared to monolithic AZ91/ZK60A, tensile and
compressive failure strains of AZ91/ZK60A/1.5 vol%
AlN were slightly compromised and enhanced, res-
pectively. The slight compromise in tensile failure
strain can be attributed to (a) stress concentrations
around the sharp ends of the Mg-Zn nanorods not

being effectively diffused by the surrounding near-
spherical AlN or Mg-Al intermetallic nanoparticles
and (b) partial reactivity between AlN nanoparticles
and the Mg alloy matrix where Mg3N2 was formed.
The enhancement in compressive failure strain can
be attributed to compressive shear buckling of Mg-Zn
nanorods in the AZ91/ZK60A matrix.

Acknowledgments

The authors wish to acknowledge National University of
Singapore (NUS) and Temasek Defence Systems Institute
(TDSI) for funding this research (TDSI/09-011/1A and WBS
no. R265000349).

References

[1] M. M. Avedesian and H. Baker, ASM Specialty Handbook:
Magnesium and Magnesium Alloys, ASM International, Nov-
elty, Ohio, USA, 1999.

[2] J. G. Kaufman, Introduction to Aluminium Alloys and Tempers,
ASM International, Materials Park, Ohio, USA, 2000.

[3] E. F. Emley, Principles of Magnesium Technology, Pergamon
Press, Oxford, UK, 1966.

[4] M. Paramsothy, S. F. Hassan, N. Srikanth, and M. Gupta,
“Enhancing tensile/compressive response of magnesium alloy
AZ31 by integrating with Al2O3 nanoparticles,” Materials
Science and Engineering A, vol. 527, no. 1-2, pp. 162–168, 2009.

[5] M. Paramsothy, S. F. Hassan, N. Q. Bau, N. Srikanth, and
M. Gupta, “Selective enhancement of tensile/compressive
strength and ductility of AZ31 magnesium alloy via nano-
Al2O3 reinforcement integration method alteration,” Materials
Science Forum, vol. 618, pp. 423–427, 2009.

[6] M. Paramsothy, S. F. Hassan, N. Srikanth, and M. Gupta,
“Simultaneous enhancement of tensile/compressive strength
and ductility of magnesium alloy az31 using carbon nan-
otubes,” Journal of Nanoscience and Nanotechnology, vol. 10,
no. 2, pp. 956–964, 2010.

[7] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Carbon
nanotube addition to simultaneously enhance strength and
ductility of hybrid AZ31/AA5083 alloy,” Materials Sciences &
Applications, vol. 2, pp. 20–29, 2011.

[8] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “The syn-
ergistic ability of Al2O3 nanoparticles to enhance mechanical
response of hybrid alloy AZ31/AZ91,” Journal of Alloys and
Compounds, vol. 509, no. 28, pp. 7572–7578, 2011.

[9] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Enhanced
mechanical response of hybrid alloy AZ31/AZ91 based on
the addition of Si3N4 nanoparticles,” Materials Science and
Engineering A, vol. 528, no. 21, pp. 6545–6551, 2011.

[10] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “TiC nano-
particle addition to enhance the mechanical response of
hybrid magnesium alloy,” Journal of Nanotechnology, vol. 2012,
Article ID 401574, 2012.

[11] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “The
effective reinforcement of magnesium alloy ZK60A using
Al2O3 nanoparticles,” Journal of Nanoparticle Research, vol. 13,
no. 10, pp. 4855–4866, 2011.

[12] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Addition of
CNTs to enhance tensile/compressive response of magnesium
alloy ZK60A,” Composites Part A, vol. 42, no. 2, pp. 180–188,
2011.



8 Journal of Nanotechnology

[13] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Enhanced
mechanical response of magnesium alloy ZK60A containing
Si3N4 nanoparticles,” Composites Part A, vol. 42, no. 12, pp.
2093–2100, 2011.

[14] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Adding
TiC nanoparticles to magnesium alloy ZK60A for strength/
ductility enhancement,” Journal of Nanomaterials, vol. 2011,
Article ID 642980, 2011.

[15] Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Effect
of friction stir processing with SiC particles on microstructure
and hardness of AZ31,” Materials Science and Engineering A,
vol. 433, no. 1-2, pp. 50–54, 2006.

[16] Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Nano-
crystallized magnesium alloy—uniform dispersion of C60

molecules,” Scripta Materialia, vol. 55, no. 11, pp. 1067–1070,
2006.

[17] Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi,
“MWCNTs/AZ31 surface composites fabricated by friction stir
processing,” Materials Science and Engineering A, vol. 419, no.
1-2, pp. 344–348, 2006.

[18] C. J. Lee, J. C. Huang, and P. J. Hsieh, “Mg based nano-com-
posites fabricated by friction stir processing,” Scripta Materi-
alia, vol. 54, no. 7, pp. 1415–1420, 2006.

[19] L. M. Tham, M. Gupta, and L. Cheng, “Influence of processing
parameters during disintegrated melt deposition processing
on near net shape synthesis of aluminium based metal matrix
composites,” Materials Science and Technology, vol. 15, no. 10,
pp. 1139–1146, 1999.

[20] M. Gupta, M. O. Lai, and S. C. Lim, “Regarding the processing
associated microstructure and mechanical properties im-
provement of an Al-4.5 Cu alloy,” Journal of Alloys and Com-
pounds, vol. 260, no. 1-2, pp. 250–255, 1997.

[21] L. M. Tham, M. Gupta, and L. Cheng, “Influence of processing
parameters during disintegrated melt deposition processing
on near net shape synthesis of aluminium based metal matrix
composites,” Materials Science and Technology, vol. 15, no. 10,
pp. 1139–1146, 1999.

[22] B. Q. Han and D. C. Dunand, “Microstructure and mechanical
properties of magnesium containing high volume fractions of
yttria dispersoids,” Materials Science and Engineering A, vol.
277, no. 1-2, pp. 297–304, 2000.

[23] N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability
at High Temperatures, Vol. 3, Pergamon Materials Series,
Pergamon, New York, NY, USA, 1999.

[24] J. D. Gilchrist, Extraction Metallurgy, Pergamon Press, New
York, NY, USA, 3rd edition, 1989.

[25] M. Gupta, M. O. Lai, and C. Y. Soo, “Effect of type of pro-
cessing on the micro structural features and mechanical
properties of Al-Cu/SiC metal matrix composites,” Materials
Science and Engineering A, vol. 210, no. 1-2, pp. 114–122, 1996.

[26] M. De Cicco, H. Konishi, G. Cao et al., “Strong, ductile
magnesium-zinc nanocomposites,” Metallurgical and Materi-
als Transactions A, vol. 40, no. 12, pp. 3038–3045, 2009.

[27] S. F. Hassan and M. Gupta, “Effect of particulate size of Al2O3

reinforcement on microstructure and mechanical behavior of
solidification processed elemental Mg,” Journal of Alloys and
Compounds, vol. 419, no. 1-2, pp. 84–90, 2006.

[28] S. F. Hassan and M. Gupta, “Effect of different types of nano-
size oxide participates on microstructural and mechanical
properties of elemental Mg,” Journal of Materials Science, vol.
41, no. 8, pp. 2229–2236, 2006.

[29] S. F. Hassan and M. Gupta, “Enhancing physical and mechan-
ical properties of Mg using nanosized Al2O3 particulates as

reinforcement,” Metallurgical and Materials Transactions A,
vol. 36, no. 8, pp. 2253–2258, 2005.
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