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Studies of soft tissue, cells and original biomolecular constituents preserved in fossil
vertebrates have increased notoriously in recent years. Here we report preservation of
‘skin’ with chemical and molecular characterization from a three-dimensionally preserved
caudal portion of an aspidorhynchid Cretaceous fish from the equatorial Barremian of
Colombia increasing the number of localities for which exceptional preservation is known.
We applied several analytical techniques including SEM-EDS, FTIR and ToF-SIMS to
characterize the micromorphology and molecular and elemental composition of this fossil.
Here, we show that the fossilized ‘skin’ exhibits similarities with those from extant fish
including the wrinkles after suffering compression stress and flexibility, as well as
architectural and tissue aspects of the two main layers (epidermis and dermis). This
similarity extends also to molecular level, with the demonstrated preservation of potential
residues of original proteins not consistent with bacterial source. Our results show a
potential preservation mechanism where scales may have acted as an external barrier and
together with an internal phosphate layer resulting from the degradation of the dermis
itself creating an encapsulated environment for the integument.
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15 Abstract

16

17 Studies of soft tissue, cells and original biomolecular constituents preserved in fossil vertebrates have 

18 increased notoriously in recent years. Here we report preservation of ‘skin’ with chemical and molecular 

19 characterization from a three-dimensionally preserved caudal portion of an aspidorhynchid Cretaceous 

20 fish from the equatorial Barremian of Colombia increasing the number of localities for which 

21 exceptional preservation is known. We applied several analytical techniques including SEM-EDS, FTIR 

22 and ToF-SIMS to characterize the micromorphology and molecular and elemental composition of this 

23 fossil. Here, we show that the fossilized ‘skin’ exhibits similarities with those from extant fish including 

24 the wrinkles after suffering compression stress and flexibility, as well as architectural and tissue aspects 

25 of the two main layers (epidermis and dermis). This similarity extends also to molecular level, with the 

26 demonstrated preservation of potential residues of original proteins not consistent with bacterial source. 

27 Our results show a potential preservation mechanism where scales may have acted as an external barrier 

28 and together with an internal phosphate layer resulting from the degradation of the dermis itself creating 

29 an encapsulated environment for the integument.

30

31 Introduction

32

33 Exceptional preservation in the fossil record is expressed in a wide range of structures including hair, 

34 cells, blood vessels, claw sheaths, feathers, pycnofibers, muscle remains, skin and even the potential 

35 remains of original biomolecular constituents (DNA, proteins, lipids) (Lingham-Soliar & Plodowski 

36 2010; Cadena 2016; Cadena & Schweitzer 2012; Cleland et al. 2015; McNamara et al. 2018a; 

37 Schweitzer 2011; Wiemann et al. 2018; Bailleul et al., 2020) associated with these structures. The skin 

38 is the largest organ of a vertebrate body, which encloses or covers their entire body. Numerous 

39 integumentary derivatives are located within the epithelial sheet itself (glands) or extend above its 
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40 surface (teeth, scales, feathers, hairs, etc.) (Chernova 2009). The skin of vertebrates and its derivate 

41 structures has been shown to have high preservation potential in the fossil record, and has been reported 

42 in dinosaurs, pterosaurs, snakes, frogs and birds (McNamara et al. 2018a; McNamara et al. 2016; 

43 McNamara et al. 2009; McNamara et al. 2018b; Varejão et al. 2019). Similarly, fishes are also covered 

44 by a relatively flexible skin, which in almost all extant and extinct groups is associated with hard scales 

45 comprised of collagen I, calcium salts (Sionkowska & Kozlowska 2014), ganoine and cosmine. 

46 Preservation of skin in fossil fish has been documented in many Konservat Lagerstätte sites, including 

47 the Messel Formation, Germany (Micklich 2002),  Huajiying and Yixian formations (Xu et al. 2020);  

48 and Romualdo Formation (previously Santana Formation) of northeastern Brazil (Kellner et al. 2013; 

49 Maisey 1991; Martill 2007) (Fig. 1D).

50

51 Despite the abundant recent discoveries of fossil vertebrates from the Cretaceous of Colombia (Cadena 

52 2015; Cadena & Parham 2015; Cadena et al. 2019; Carballido et al. 2015; Maxwell et al. 2019; Páramo-

53 Fonseca et al. 2016; Vernygora et al. 2018), the exceptional preservation of soft tissue or their potential 

54 original components is still rarely reported for most of them, with the exception of the recently described 

55 gravid marine turtle from the Early Cretaceous of Villa de Leyva (Cadena et al. 2019). Here we report a 

56 caudal fragment of an aspidorhynchid fossil fish recovered from the lower segment of the Paja 

57 Formation from Zapatoca, Santander, Colombia (Fig. 1A–C) which constitutes the first specimen of the 

58 paleontological collection at Universidad del Rosario in Bogotá. We have applied multiple analytical 

59 techniques to interrogate the degree of preservation of its skin, including some of their potentially 

60 original biomolecular constituents. Our finding not only expands the worldwide record of skin preserved 

61 in Cretaceous vertebrates, but also constitutes the most equatorial example of it (Fig. 1D) considering 

62 that Colombia has barely changed its latitude since the Early Cretaceous (Fig. S1).

63

64 Materials & Methods

65

66 Fossil material Collection and Geological framework. UR-CP-0001 specimen was collected by E-A. 

67 Cadena in 2016, during a short expedition to Zapatoca. The fossil was found approximately 100 m 

68 north-west from the Radio Lenguerke station antenna region, Zapalonga locality (6º48’28.94’’N, 

69 73º16’08.23’’W, 1703 m) (Fig. 1A), inside a gray-purple sequence dominated by mudstones with 

70 abundant occurrence of large concretions and interbedded layers of fossiliferous limestones (Fig. 1B). 

71 This sequence represents the most basal member of the Paja Formation in this zone, a few meters above 

72 the last limestone bank of the underlying Rosablanca Formation. Approximately 35 meters of 

73 stratigraphic column were measured and described (Fig. 1C). 

74

75 The fossil was collected using sterile nitrile gloves and wrapped in aluminum foil, and placed in a 

76 plastic bag with silica gel small packets to controlled humidity. To avoid any contamination, the fossil 

77 has not been treated mechanically or chemically and always has been manipulated using sterile nitrile 

78 gloves for measurements, photographing or sampling for analytical studies. Fieldwork and laboratory 
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79 experiments permit granted by the Comité de ética and the Dirección de Investigaciones of the 

80 Universidad del Rosario (IV-FCS018).

81

82 Institutional abbreviation. UR-CP; paleontological collection, Facultad de Ciencias Naturales y 

83 Matemáticas, Universidad del Rosario, Bogotá, Colombia. 

84

85 Specimen photography, internal observation and measurements. General views of UR-CP-0001 

86 specimen were obtained using a Leica-EZ4-HD and Nikon SMZ1270 stereomicroscopes coupled with 

87 cameras. Measurements of the specimen were obtained using a caliper, always wearing nitrile gloves 

88 during its manipulation. The specimen was scanned using computer tomography (CT-scan), Toshiba 

89 Aquilion at the Radiology unit of Hospital Méderi, Bogotá, with the following setup parameters: voltage 

90 120 kV, exposure 225 mAs, and voxel size 350 μm.

91

92 Transmitted and polarized light microscopy. In order to observe and obtain microscopic details of the 

93 preserved ‘skin’, small pieces of approximately 5 mm3 each were sampled and treated separated with 

94 HCl 25% for 24 hours and EDTA 0.5 M pH 8.0 for 4 days changing daily to dissolve carbonate matrix 

95 and full demineralization. The isolated remains of ‘skin’ were rinsed 3 times with E-Pure water to 

96 remove HCl and EDTA, then were mounted in glass slides, observed and photographed using a Nikon 

97 ECLIPSE-80i transmitted-light microscope and an Olympus CX-31 polarized microscope. Samples 

98 were finally transferred to sterilized containers for Fourier-transform infrared spectroscopy (FTIR) 

99 analyses.

100

101 FTIR spectroscopy. Samples from an extant Orechromis sp. (Mojarra fish), and four samples from the 

102 UR-CP-0001 fossil fish (‘skin’ from HCl, EDTA treatments, ‘skin’ untreated and infilling matrix) were 

103 analyzed. The FTIR spectra were collected in the mid-infrared range of 4000-600 cm-1 wavelength using 

104 a Bruker Optics - ALPHA ZnSe FTIR spectrometer at the Biomedical Engineering Lab of Universidad 

105 de los Andes, Bogotá, Colombia. Between each analysis, the crystal and sample holder of the 

106 spectrometer were cleaned up with isopropanol and standardized with an “air” measurement in order to 

107 reduce rovibration absorptions of carbon dioxide present in the ambient air. Measurements were 

108 repeated twice for each of the samples. For the ‘skin’ untreated spectrum a deconvolution was 

109 performed for the 1450-1800 cm-1 range in order to find out the specific peaks associated to the 

110 vibrational band frequencies of Amide I and II, similar as described in Kong & Yu (2007). 

111

112 Scanning electron microscopy and elemental analysis (SEM-EDS). Four different regions of the 

113 fossil fish were sampled for Scanning Electron Microscope (SEM)-coupled with Energy Dispersive X-

114 Ray Spectroscopy (EDS) observation and characterization, taking ~5 mm3 of each (scale ‘skin’, and two 

115 different regions of the infilling matrix exhibiting different coloration). Samples were mounted in sterile 

116 carbon stubs and storage in sterile boxes prior to the SEM-EDS analyses, which were performed at the 

117 Microscopy Core Facility of Universidad de los Andes, Bogotá, Colombia. Samples were analyzed 

118 without adding any coating. Imaging and map elemental composition were obtained at 10 kV using a 
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119 JEOL-JSM-6490 LV SEM, while the point elemental composition was performed at 10 kV using a 

120 TESCAN-Lyra3 SEM. 

121

122 Time of Flight Secondary Ions Mass Spectrometry (ToF-SIMS). Two samples from the UR-CP-

123 0001, an untreated (fresh) and an HCl treated were mounted in sterilized glass and sent to the Analytical 

124 Instrumentation Facility (AIF) of North Carolina State University, Raleigh, North Carolina. ToF-SIMS 

125 analyses were conducted using a TOF SIMS V (ION TOF, Inc. Chestnut Ridge, NY) instrument 

126 equipped with a Bin
m+ (n =1-5, m =1, 2) liquid metal ion gun, Cs+ sputtering gun and electron flood gun 

127 for charge compensation. Both the Bi and Cs ion columns are oriented at 45° with respect to the sample 

128 surface normal, with at least two different regions of the sample being analyzed. The instrument vacuum 

129 system consists of a load lock for rapid sample loading and an analysis chamber, separated by the gate 

130 valve. The analysis chamber pressure is maintained below 5.0 x 10-9 mbar to avoid contamination of the 

131 surfaces to be analyzed. 

132

133 For high mass resolution spectra acquired in this study, a pulsed Bi3
+ primary ion beam at 25 keV 

134 impact energy with less than 1 ns pulse width was used. An electron gun was used to prevent charge 

135 buildup on the insulting sample surfaces. The total accumulated primary ion dose for data acquisition 

136 was less than 1 x 1013 ions/cm2, an amount of ions which is within the static SIMS regime. The mass 

137 resolution on Si wafer is about ~8000m/∆m at 29AMU. For high lateral resolution mass spectral images 

138 acquired in this study, a Burst Alignment setting of 25 keV Bi3
+ ion beam was used to raster a 500 µm 

139 by 500 µm area. The negative secondary ion mass spectra obtained were calibrated using C-, O-, OH-, 

140 Cn
-, respectively. The positive secondary ion mass spectra were calibrated using H+, C+, C2H3

+, C3H5
+, 

141 C4H7
+. 

142

143 Results

144

145 Systematic Paleontology

146

147 Order ASPIDORHYNCHIFORMES Bleeker, 1859

148 Family ASPIDORHYNCHIDAE Nicholson and Lydekker, 1889

149 Genus and Species Indet. (Fig. 2)

150

151 Referred material.—UR-CP-0001, caudal portion of a fish, missing the fins.

152 Locality and Age.—Radio Lenguerke station antenna region, Zapalonga locality (6º48’28.94’’N, 

153 73º16’08.23’’W, 1703 m), southeast of Zapatoca, Santander Department, Colombia. The occurrence of 

154 the ammonoid Nicklesia pulchella (Fig. 1C) found in the same layer and concretions outcropping at this 

155 locality, indicates an early Barremian age for this locality following (Patarroyo 2009).

156 Remarks.—UR-CP-0001 is attributed to the Aspidorhynchidae family by the presence of rectangular 

157 high hypertrophied flank and nearly subquadrate covering the lateral and ventral sides of the trunk (Brito 

158 1997; Cantalice et al. 2018) (Fig. 2G–J). Although further taxonomic resolution is not possible owing to 
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159 its fragmentary preservation, the smooth surface of the flank scales resemble those of Vinctifer comptoni 

160 see (Cantalice et al. 2018), suggesting the possibility that this organism represents a member of this 

161 taxon. Aspidorhynchids constitute an extinct basal teleostean group from the Middle Jurassic to Late 

162 Cretaceous fishes that were highly specialized and lived in shallow epicontinental marine environments 

163 throughout America, Europe, Australia, Africa, Antarctica, and Middle East (Cantalice et al. 2018). The 

164 anterior portion the aspidorhynchid Vinctifer was previously reported from exposures of the Paja 

165 Formation cropping out near Villa de Leyva, in the Department of Boyacá (Schultze & Stöhr 1996).

166

167 Description. UR-CP-0001 represents a caudal portion of a fish preserved three-dimensionally (Figs. 

168 2A–D). The specimen is shaped like a truncated cone, which fits with the shape of caudal portions of 

169 others aspidorhynchids previously reported (Figure 2C). Also the orientation of the scales impressions 

170 left on the skin exhibit a pattern typical of the caudal region (Figure 2B).

171

172 It has a length of 128.5 mm, an anterior height of 84 mm, and a posterior height of 40 mm. On the 

173 ventral surface there is a region that shows a scar that resembles the potential insertion of the anal fin. 

174 The edges of the specimen are completely eroded and no sign of bones are visible, which suggest that 

175 most of the anterior part of the specimen was probably lost prior the fossilization

176

177 Most of the laterals surfaces of the specimen bear a brown, wrinkled layer preserving ‘skin’ and covered 

178 in some places by rectangular black scales (Fig. 2B). These are, particularly visible on the right side 

179 (Fig. 2G), whereas on the ventral side there are small, square marks similar to the ventral scales (Fig. 

180 2H, I). There are no vertebrae or spines visible on the naturally broken anterior or posterior surfaces 

181 (Fig. 2E, F) nor are any visible internally in Computed Tomography (CT) of the specimen, which is 

182 infilled by a heterogeneous black-gray and yellow carbonate matrix (hereinafter infilling matrix) that is 

183 high-porosity in some regions and reacts to HCl (Video S1).

184

185 After demineralization with either HCl or EDTA (Fig. 3A, B) isolated pieces of ‘skin’ from fragments 

186 of fossil material (handled following aseptic techniques (see methods) and no glues or preservatives 

187 were applied) were observed under transmitted light microscope, and were shown to be formed by two 

188 distinct layers. Similar layers were observed in the dry skin of the extant Orechromis sp. (Mojarra fish) 

189 (Fig. 3C) together to some parallel lines similar to fibers observed in the extant and the fossil (Fig. 3D, 

190 F, G). The most basal layer is a thin semitransparent film-like sheet; this layer is covered by a brown to 

191 black organic patchy layer, in some degraded regions form irregular reticular pattern (Fig 3I–K). The 

192 basal semitransparent layer is quite flexible when wet, but becomes rigid and fragile when dried (Video 

193 S2). Under polarized light, the basal layer of the HCl-treated samples exhibits small granules having a 

194 first order of birefringence, indicating a potential phosphatic composition. The external organic brown 

195 layer covering this basal layer remains of the same color when the polarizer is rotated (Fig. 3L–M). 

196 Pieces treated with EDTA showed higher degradation characterized by less and smaller fragments of 

197 both layers in contrast to those treated with HCl (Fig. S1). We consider the external organic brown layer 

198 is consistent with the most exterior morphological feature of the skin which is the epidermis (Elliott 
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199 2011); also soft-tissue that are morphologically consistent with portions of the dermis were recovered 

200 after EDTA treatment, exhibiting collagen fibers (Fig. 3H).

201

202 SEM-EDS results. The untreated, uncoated skin is very smooth and uniform under SEM, which 

203 contrasts with the highly granular topography of the surrounding infilling matrix (Fig 4A–D). Point 

204 elemental analyses show predominant occurrence of carbon and nitrogen, with minor representation of 

205 calcium and phosphorus in the ‘skin’ layer (Fig. 4C). The infilling matrix contains predominantly 

206 calcium and carbon; no nitrogen was observed (Fig. 4D). Similar results were obtained using elemental 

207 mapping of the ‘skin’ and matrix (Fig 4G–L) however, nitrogen was not clearly observed.

208

209 FTIR results. FTIR spectrum of the untreated ‘skin’ sample showed distinct peaks at 2931 cm-1, 1740 

210 cm-1, 1591 cm-1 and around 1120 cm-1. EDTA-treated sample showed high infrared absorption peaks at 

211 1703, 1540 and 3744 cm-1 respectively (Fig. 5A). The HCl-treated sample showed absorption peaks at 

212 1724, 1142, and 1027 cm-1 (Fig. 5A). The commercial extant fish skin sample (Orechromis sp. mojarra 

213 fish), exhibited two well defined regions of peaks at 1746, 1647, 1559, and 1117 cm-1 and second one 

214 with peaks at 3319 and 2931 cm-1. In contrast, the infilling matrix from UR-CP-0001 showed clear 

215 peaks at 1428 cm-1, 1030 cm-1 876 cm-1 and 711 cm-1 (Fig. 5A).

216

217 ToF-SIMS results. ToF-SIMS analyses of both the untreated fossil ‘skin’ and the HCl-treated ‘skin’ 

218 show almost the same as each other negative and positive ions spectra (Fig. 6, Fig. S2); in particular, in 

219 abundance of CN– (Fig. 6C) and CNO– (Fig. 6F) negative ions; CH4N+ (Fig. 6D), C4H8N+ (Fig. 6E), 

220 C2H6N+ (Fig. 6G), and C3H6N+ (Fig. 6H) positive ions were detected. All ions potentially derived from 

221 proteins are presented in Table 1, as well as all-raw data obtained from ToF-SIMS analyses can be 

222 found in the Data S1.

223

224 Integrated compositional characterization of the ‘skin’ and comparisons. As we showed using 

225 transmitted light, polarized light, and SEM-EDS microscopy (Figs. 3, 4); the preservation of the ‘skin’ 

226 in UR-CP-0001 resulted from an organic and inorganic interaction forming two well defined layers (Fig. 

227 3J, K) each of them exhibiting distinct physical and chemical characteristics. The basal layer is 

228 translucent, granular to film-like in appearance. This layer is interpreted as inorganic in composition, 

229 potentially phosphates, based on its birefringence pattern (Fig. 3M), the abundance of phosphorus 

230 showed by the EDS analysis (Fig. 4G, K-Phosphorus) together with the high absorbance peaks at 1177 

231 and 998 cm-1 observed in the FTIR spectra. These peaks are particularly intense in the UR-CP-0001 

232 sample (Fig. 5A), and were reported in an FTIR analysis of Vinctifer comptoni from the Cretaceous of 

233 Brazil (Sousa Filho et al. 2016). Similar peaks at this region have been interpreted as four infrared 

234 absorption bands of phosphate (vPO4 3– 1120 cm-1, v3a PO4 3–1112 cm-1, v3c PO4 3– 1007 cm-1 and v1 PO4 

235 3– 966 cm-1) (Lee et al. 2017). Occurrence of phosphates and carbonates could be inferred from both 

236 SEM-EDS and FTIR analyses (Figs. 4K, L; 5A) in the infilling matrix similar to the typical calcium 

237 carbonate FTIR spectrum (Bosch-Reig et al. 2002). The more external layer of the ‘skin’ in UR-CP-

238 0001 is brown to black, and is consistent with organic material when analyzed under polarized light 
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239 (Fig. 3M). Its organic composition supported by the SEM-EDS point and map analyses, which showed 

240 particularly high levels of carbon and nitrogen (Fig. 4C, H). Another remarkable finding that supports 

241 the organic composition of this layer is its morphological change after being exposed to 10 kV for 

242 mapping EDS analysis becoming highly corrugated (Fig. 4E,F), which typically happens to uncoated 

243 organic tissue or structures under high voltage in SEM similar as degradation of non-conductive 

244 materials (Kersten 2009).

245

246 FTIR analysis confirmed that the carbon rich layer we found with the EDS is composed by organic 

247 residues particularly the C-H stretch and v(C=O) peaks around 2931 and 1737 respectively (Fig. 5A), 

248 which are commonly found in collagen I (Belbachir et al. 2009; Jeevithan et al. 2014; Valenzuela-Rojo 

249 et al. 2018) and keratin (Chandini et al. 2017; Estévez-Martínez et al. 2013); highly abundant proteins 

250 found in the scales and skin of fishes (Bhagwat & Dandge 2016; Elliott 2011). Amide A, I, II, and III, 

251 C-H stretch and v(C=O) peaks were clearly observed in the FTIR of the extant Orechromis sp. (mojarra 

252 fish) skin used as standard for comparison (Fig. 5A). Peaks potentially corresponding to Amide I and II 

253 were also found in the deconvoluted spectrum of the ‘skin’ untreated sample (Fig. 5D), falling inside the 

254 range of vibrational bands as product of possible diagenetic alterations of the original organic 

255 compounds, similar as occurs in FTRI analyses of modern proteins (Kong & Yu, 2007). We exclude a 

256 potential bacterial origin of the organic component of the ‘skin’ in UR-CP-0001 because FTIR spectra 

257 lack of the characteristic broad infrared absorption band of hydroxyl group (-OH) of polysaccharides at 

258 3700–3100 cm-1 (Lee et al. 2017; Lindgren et al. 2011). ToF-SIMS results of the two samples of UR-

259 CP-0001 analyzed also show the occurrence of molecular organic fragments, including the positive 

260 CH4N+ (Fig. 6D), C4H8N+ (Fig. 6E), C2H6N+ (Fig. 6G), C3H6N+ (Fig. 6H) and C7H7O+ which are typical 

261 residues of glycine, alanine, proline and tyrosine constituents of collagen and fibronectin (Brüning et al. 

262 2006; Henss et al. 2013). Two other ions that support potential organic preservation in the ‘skin’ of UR-

263 CP-0001 are CN– (Fig. 6C) and CNO– (Fig. 6F) negative ions particularly abundant in melanosomes and 

264 melanin (Lindgren et al. 2018; Lindgren et al. 2012), and although we can not reject at this point that 

265 they could be from another source, our hypothesis seems to be plausible. A complete tentative 

266 assignment of ions derived from proteins based on m/z values in UR-CP-0001 samples and theoretical 

267 mass is presented in Table 1. We exclude a potential mineralized biofilm source of protein residues 

268 based on the FITR spectra (Fig. 5A) and the absence of any morphological features associated to 

269 bacteria origin (filaments or spheres) (Kaye et al. 2008; Schweitzer et al. 2016).

270

271 The preservation of the ‘skin’ in UR-CP-001 is also supported by its morphological corrugated 

272 macroscopic appearance (Fig. 2G, 3E) resembling a phenomenon that occurs to the skin from extant 

273 fishes where in absence of scales that leaves the skin without an external support structure, make it more 

274 susceptible to wrinkling under a compression stress (Vernerey & Barthelat 2014), due to dehydration or 

275 in a post mortem deformation (Lindgren et al. 2018) (Fig. 3C, E). Additionally, collagen fibers were 

276 observed in both UR-CP-0001 ‘skin’ and the dehydrated skin from extant Orechromis sp. (mojarra fish) 

277 also to microscopic level after EDTA demineralization of ‘skin’ (Fig. 3D, G, H) supporting the 

278 interpretation of UR-CP-0001 as an exceptional preserved fossilized skin.
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279

280 Discussion

281

282 Aspidorhynchid fishes had widespread geographic and temporal distribution with fossils reported in all 

283 continents from the Middle Jurassic to Late Cretaceous (BRITO 1997). Specimen UR-CP-0001 

284 represents the earliest known record for an aspidorynchid in Colombia, extending the temporal range 

285 from Aptian (Schultze & Stöhr 1996) to Barremian. Once again, a peri-Gondwanan distribution of 

286 Vinctifer (Fig. S3) is confirmed here, as UR-CP-0001 potentially belongs to this genus (see Remarks).

287

288 Vibrational spectroscopic techniques such FTIR demonstrates its reliability to understand fossil 

289 preservation mechanisms, due to its sensitiveness to organic functional groups and phosphates thought 

290 high peak bands (Diaz et al. 2020; Olcott Marshall & Marshall 2015). However due the noise signals a 

291 deconvolution was needed to unveil masked absorbance peaks from the raw data. ToF-SIMS also give 

292 more resolution to identify the nature of preserved components. These kind of analysis has demonstrate 

293 to be trustful for inferences about preservation mechanisms and track the origin of the preserved 

294 molecules (Bezerra et al. 2020; Diaz et al. 2020). 

295

296 Although it is hard to reconstruct the complete chain of taphonomical events that occurred to UR-CP-

297 0001, we hypothesize that besides fragmentation and fins disarticulation without losing the conical 

298 shape of its caudal region, the nature of its scales and skin played a key role in its preservation. The 

299 presence of scales and the thickness of the fossilized ‘skin’ suggest a possible mechanism of 

300 preservation that we call a “microsandwich effect”, which could apply to many other fragmentary fossil 

301 fishes that have not been studied for molecular paleontology. Scales may have acted as an external 

302 barrier against bacteria and other environmental decay accelerators, which could decompose the 

303 integument. Simultaneously, the basal layer became enriched in phosphate, possibly resulting from the 

304 degradation of phosphate containing organic compounds from the dermis itself, as has been reported in 

305 other fossilized skin from vertebrates (McNamara et al. 2009), at the same time this layer may have 

306 acted as an internal barrier, creating an encapsulating environment for the integument. These local 

307 biogeochemical interactions would favor not only preservation of the general morphology of the skin, 

308 but also some of their soft-tissue structures and residues of the original biomolecules by 

309 geopolymerization (Lindgren et al. 2018). Another factor that potentially played a key role in the 

310 preservation of the ‘skin’ in UR-CP-0001 was the burial environment conditions, dominated by organic-

311 rich shale interval showing characteristics of oxygen depleted conditions at the lower segment of Paja 

312 Formation in this region (Gaona-Narvaez et al. 2013). Microcrystalline minerals like clays and shales 

313 have extremely large surface area to volume ratios, and are usually charged, both of which favor 

314 adsorption and inactivation of degrading enzymes, similar been proposed for the exceptional 

315 preservation of Burgess Shale fossils (Butterfield 1990).

316

317 Our results imply that the Paja Formation could be potentially considered as the third locality in South 

318 America were exceptional preservation in fishes have been reported, alongside with the Brazilian 
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319 Romualdo and Crato Formations, where the preservation mechanisms is well known (Osés et al. 2017). 

320 The mechanism of preservation proposed here, as well as other recent work (Lindgren et al. 2018) 

321 increases the number of potential scenarios for preservation of cellular-to-subcellular soft tissue 

322 morphology in fossils additional to oxidative depositional environments (Wiemann et al. 2018), where 

323 iron play a key role (Schweitzer et al. 2014). As we showed in here, iron was not detected in UR-CP-

324 0001, suggesting that in molecular paleontology studies there will be always exceptions to those 

325 formulated general trends and factors favoring preservation in deep time, and that each case and fossil 

326 site needs to be considered with its own particularities. 

327

328 Conclusions

329

330 Exceptional preserved ‘skin’ from an aspidorhynchid fish represents the first report of soft tissue 

331 preservation in vertebrates from the Early Cretaceous in north South America. Morphological 

332 comparisons and molecular analyses present several similar features between the extant fish skin and the 

333 fossilized specimen. Molecular analyses also provide evidence of possible proteinaceous residues 

334 preserved in the fossilized skin which is supported by vibrational peaks associated with Amide I and II 

335 in the FTIR spectra and signals that can be associated to aminoacids like Glycine and Lysine. Because 

336 of the limitation in the project funding, future analyses should be focused on immunohistochemistry, 

337 testing specific fish skin antibodies and other mass spectrometry techniques including LC-MS/MS to 

338 confirm the preservation of original proteinaceous components. 

339
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Figure 1
Locality and other reported exceptionally preserved skin fossils from the Cretaceous

Figure 1. Locality and others reported exceptionally preserved skin fossils from the
Cretaceous. (A) map of Colombia showing in orange the Santander department, and the fish
fossil site (Zapalonga locality) very near Zapatoca. (B) outcrop view at the fish fossil site,
showing the presence of mudstones and large concretions. (C) stratigraphic column along
with Zapalonga locality, indicating the horizon where UR-CP-0001 was found. (D) world map
with remarkable findings of exceptional preserved skin fossils through the Cretaceous: (1)
Barremian, Paja Fm, Colombia (this study); (2) Barremian, Calizas de la Huérgina Fm, Spain
(Martin et al. 2015); (3) Barremian-Aptian, Huajiying and Yixian formations (Xu et al. 2020)
Yixian Fm, China (Lingham-Soliar & Plodowski 2010); (4) Aptian, Clearwater Fm, Canada
(Brown et al. 2017); (5) Aptian-Albian, Romulado Fm, Brazil (Martill 1988); (6) Aptian-Albian,
Haman Fm, South Korea (Paik et al. 2010); (7) Albian, Pietraroja, Italy (Signore et al. 2005);
(8) Cenomanian, Hadjula, Lebanon (Caldwell & Sasso 2004); (9) Cenomanian, Nobrara Fm,
Kansas, United States (Lindgren et al. 2011a); (10) Campanian, Auca Mahuevo, Argentina
(Coria & Chiappe 2007); (11) Campanian-Maastrichtian, Fruitland Fm, New Mexico, United
States (Hall et al. 1988); (12) Maastrichtian, Hell Creek Fm, North Dakota, United States
(Manning et al. 2009); (13) Maastrichtian Harrana, Jordan (Lindgren et al. 2013); (14)
Maastrichtian, Sânpetru Fm, Romania (Grellet-Tinner et al. 2012).
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Figure 2
UR-CP-0001, aspidorhynchid fossil fish specimen

Figure 2. UR-CP-0001, aspidorhynchid fossil fish specimen. (A-B) right lateral view. (C)
interpreted position of UR-CP-0001 in the body of an aspidorhynchid fish. (D) left lateral view.
(E) ventral view. (F) posterior view, showing the naturally preserved original 3-D volume. (G)
detail of the originally preserved ‘skin’ with wrinkles and marks. (H) View of some of the
ventral scales (vs) preserved. (I-J) elongated ventral flank scales (vfs). 5 cm scale applies for
A, D, E and F; 2 cm for G; 1.5cm for H and 1 cm for I and J.
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Figure 3
Some ‘skin’ fragments after HCl treatment

Figure 3. Some ‘skin’ fragments after HCl treatment. (A) light micrograph of preserved
‘skin’ after treated with 15% HCl, without any infilling matrix left. (B) enlargement of the
organic patchy layer. (C-D) fragment of the dry skin of the extant Orechromis sp. (Mojarra
fish) exhibiting two layers, wrinkles and collagen fibers indicated by black arrows in d. (E)
wrinkled ‘skin’ of UR-CP-0001. (F-G) an UR-CP-0001 close-up of the two organic exterior
layers and collagen fibers indicated by black arrows in g. (H) isolated tissue fragment after
EDTA treatment under transmitted-light microscopy showing collagen fibers. (I-K) an UR-
CP-0001 ‘skin’ fragment under transmitted-light microscope, exhibiting the two distinct
inorganic (base) and organic (exterior) layers. (L-M) an UR-CP-0001 ‘skin’ fragment under
transmitted-light (L) and polarized-light (M), showing low birefringence of the granular basal
layer. 1 mm horizontal scale applies for A, C, L and M; 1 mm vertical scale for E and F.
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Figure 4
SEM-EDS micrographs and elemental composition analyses of an untreated and
uncoated fragment of UR-CP-0001 ‘skin’

Figure 4. SEM-EDS micrographs and elemental composition analyses of an untreated and
uncoated fragment of UR-CP-0001 ‘skin’. (A) Sample from UR-CP-0001 that contains ‘skin’
and infilling matrix. (B) detail of samples mounted over the stub. (C) SEM micrograph with
point EDS analysis in the ‘skin’ region, showing the abundant content of carbon and nitrogen,
with less occurrence of calcium and phosphorous. (D) SEM micrograph with point EDS
analysis in the infilling matrix, showing absence of nitrogene, dominance of carbon and
calcium instead. (E) SEM micrograph of the ‘skin’-infilling matrix contact before apply the
EDS analysis. (F) same micrograph as in (E) after EDS analysis, showing the extremely
wrinkled organic surface of the ‘skin’, remaining intact the infilling matrix region. (G) Outline
of the ‘skin’ organic and phosphatic layer, as well as the infilling matrix showed in e, which is
the base of the elemental mapping. (H-L) Elemental mapping at 10kV of the ‘skin’ infilling
matrix region showing dominance of carbon (H) and oxygen (I) at the organic region, and
phosphorus (K) at the boundary between the ‘skin’ and the infilling matrix; silicon (J) is very
scarce in both regions, and of calcium (L) is highly abundant in the infilling-matrix.
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Figure 5
FTIR analyses of UR-CP-0001 and the extant Orechromis sp.

Figure 5. FTIR analyses of UR-CP-0001 and the extant Orechromis sp. (A) Composite FTIR
spectra (absorbance vertical axis, wavenumber horizontal axis) of different samples:
Orechromis sp. (Mojarra fish) (dark blue line) with interpretation of typical proteinaceous
compounds (Amide A, I, II, III, v(C=O), C-H stretch and a phosphate) with gray bands showing
potential ranges based on Boatman et al. (2019); Kong & Yu (2007); and Lee et al. (2017); an
extant bacteria biofilms (black, yellow and purple lines) taken and redraw from Lee (et al.
2017) and Lindgren et al. (2011b); Vinctifer comptoni (orange line) from the Cretaceous of
Brazil, taken and redraw from Sousa-Filho et al. (2016); UR-CP-0001 aspidorhynchid fossil fish
‘skin’ treated with EDTA (red line); treated with HCl (green line); untreated (light blue line);
and UR-CP-0001 infilling matrix (brown line). (B) Skin sample from Orechromis sp. (Mojarra
fish) used for the FTIR analysis and close-up of the skin sample analyzed from this specimen
(C). (D) The region from which the ‘skin’ sample of UR-CP-0001 was taken, and a close-up of
the ‘skin’ fragment after EDTA treatment under a transmitted light microscope (E). (F) UR-
CP-0001 sample used for the untreated analysis and a close-up of the FTIR vibrational bands
(red rectangle) in (A) after deconvolution (G). (H) UR-CP-0001 infilling matrix sample and how
it was grinded using a sterilized mortar and pestle (I) and placed in the FTIR machine (J).
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Figure 6
ToF-SIMS analyses of UR-CP-0001 ‘skin’.

ToF-SIMS analyses of UR-CP-0001 ‘skin’. (A-B) Negative and Positive ion ToF-SIMS spectrum
of UR-CP-0001 untreated sample (see circular photo of the sample), typical organic
compounds occur in high intensities in both ions (raw data presented in Supplementary Data
S1). (C-H) ToF-SIMS images showing the distribution of ions CN– (C), CH4N+ (D), C4H8N+
(E), CNO– (F), C2H6N+ (G) and C3H6N+ (H).
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Table 1(on next page)

Species tentative assignments and m/z values

Table 1. Species tentative assignments and m/z values for peaks in both positive and
negative ToF-SIMS spectra from UR-CP-0001 and its possible organic source based on Samuel
et al. (2001); Brüning et al. (2006); Lindgren et al. (2018); and Lindgren et al. (2012).
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Tentative assignments and m/z values for peaks in ToF-SIMS spectrum

Tentative 

assignment Theoretical Mass

Fossil sample 

(UR-CP-0001)

Associated organic 

compound

CN- 26.00 25.997 Melanin

CH4N 30.036 29.998 Glycine

CNO- 42.00 42.001 Melanin

C3H7 43.03 42.998 Leucine

C2H6N 44.053 43.999 Alanine

C3N- 50.00 50.000 Melanin

C3H6N 56.05 55.996 Lysine

CN3H5 59.05 59.001 Arginine

C2H6NO 60.045 59.999 Serine

C2H5S 61.01 60.998 Methionine

C3NO- 66.00 65.996 Melanin

C4H6N 68.05 67.996 Proline

C4H5O 69.03 68.998 Threonine

C4H8N/C3H4NO 70.068 70.000 Proline

C4H10N 72.084 71.997 Valine

C3H8NO 74.063 73.998 Threonine

C5N-/C2H2O3 74.00 74.000 Melanin

C4H5N2 81.04 80.996 Histidine

C4H6N2 82.05 81.998 Histidine

C5H7O 83.09 83.000 Valine

C5H10N 84.085 84.003 Lysine

C5H12N/C4H8NO 86,064/86,101 86.002 Hydroxyproline/Leucine

C3H7N2O 87.05 86.999 Aspargine

C7H7 91.05 90.998 Phenylalanine

C4H4NO2 98.02 97.999 Aspargine

C4H10N3 100.088 99.999 Arginine

C4H10NS 104.05 104.002 Methionine

C7H7O 107.048 106.999 Tyrosine

C8N/C9H2 110.075 109.999 Histidine

C8H10N 120.084 120.000 Phenylalanine

C5H11N4 127.1 126.997 Arginine

C9H8N 130.068 130.003 Tryptophan

C8H10NO 136.082 136.005 Tyrosine

C10H11N2 159.04 159.00 Tryptophan

1

2
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