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Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system

malignancy with a median survival of 15 months. The average incidence rate of GBM is 3.19/100,000

population, and the median age of diagnosis is 64 years. Incidence is higher in men and individuals of white

race and non-Hispanic ethnicity. Many genetic and environmental factors have been studied in GBM, but the

majority are sporadic, and no risk factor accounting for a large proportion of GBMs has been identified.

However, several favorable clinical prognostic factors are identified, including younger age at diagnosis,

cerebellar location, high performance status, and maximal tumor resection. GBMs comprise of primary and

secondary subtypes, which evolve through different genetic pathways, affect patients at different ages, and

have differences in outcomes. We report the current epidemiology of GBM with new data from the Central

Brain Tumor Registry of the United States 2006 to 2010 as well as demonstrate and discuss trends in incidence

and survival. We also provide a concise review on molecular markers in GBM that have helped distinguish

biologically similar subtypes of GBM and have prognostic and predictive value. Cancer Epidemiol Biomarkers

Prev; 23(10); 1985–96. �2014 AACR.

Introduction
Glioblastomamultiforme (GBM) is the most aggressive

diffuse glioma of astrocytic lineage and corresponds to
grade 4 based onWHO classification (1). GBM is the most
common brain and central nervous system (CNS) malig-
nancy, accounting for 45.2% of malignant primary brain
and CNS tumors, 54% of all gliomas, and 16% of all
primary brain and CNS tumors (2). GBM remains an
incurable disease, with a median survival of 15 months
(3, 4). Treatment is complex and initially consists of
maximal safe surgical resection followed by radiotherapy
(RT) with concurrent temozolomide (TMZ) chemothera-
py followed by 6 cycles of maintenance TMZ (5).
GBMs comprise of primary and secondary subtypes,

which evolve through different genetic pathways, affect
patients at different ages, and have differences in out-
comes (6). Primary (de novo) GBMs account for 80% of

GBMs and occur in older patients (mean age, 62 years).
Secondary GBMs develop from lower-grade astrocytoma
or oligodendrogliomas and occur in younger patients
(mean age, 45 years; refs. 6–9). The WHO recently added
a rare subtype of GBM termed "with oligodendroglioma
component" (GBM-O), defined as GBM having areas that
resemble anaplastic oligodendroglioma with hallmark
features of GBM, necrosis with or without microvascular
proliferation (1).

Epidemiology
Incidence and risk factors

Based on the 2013 Central Brain Tumor Registry of the
United States (CBTRUS) report, the average annual age-
adjusted incidence rate (IR) of GBM is 3.19/100,000 pop-
ulation (2). This is the highest IR among brain and CNS
tumors with malignant behavior followed by diffuse
astrocytoma grade 2 (0.56/100,000), and malignant glio-
ma not otherwise specified (0.46/100,000; ref. 2). Inci-
dence is highest in the northeast and lowest in the
south-central region of theUnited States (Fig. 1); however,
thesedifferences could reflect differences in cancer report-
ing by region (2).Many genetic and environmental factors
have been studied in GBMbut no risk factor that accounts
for a large proportion of GBMhas been identified and like
many cancers are sporadic (10).

Age. GBMisprimarilydiagnosedat older ageswith the
median age of diagnosis of 64 years (2, 11). It is uncommon
in children accounting only approximately 3% of all brain
and CNS tumors reported among 0 to 19 year olds (2). The
incidence continues to rise with increasing age, peaks at
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75 to 84 years of age and drops after 85 years (Fig. 2; ref. 2).
With a growing and aging U.S. population, the number of
cases is expected to increase (12).

Gender. Differences in incidence and death rates for
specific cancers based on race and ethnic groups aswell as
gender, suggest potential identifiable biologic and envi-
ronment based variables (13, 14). A higher incidence of
GBMhas been reported inmen as compared withwomen
(Fig. 2; refs. 2, 11, and 15–17). The IR of GBM is 1.6 times
higher in males as compared with females (3.97 vs. 2.53;

ref. 2) with a higher frequency of primary GBMs men
(male-to-female ratio, 1:33) and secondary GBMs inwom-
en (male-to-female ratio, 0:65; 7).

Race/ethnicity. Whites have the highest incidence
rates for GBM, followed by blacks, Asian/Pacific Islan-
ders (API), and American Indian/Alaska Native (AI/
AN; Fig. 3A; ref. 2). From 2006 to 2010, whites had 2 times
higher IR as compared with blacks (3.45 vs. 1.67; Fig. 3A)
and non-Hispanics had higher IR as compared with His-
panics (3.26 vs. 2.45; Fig. 3B; refs. 2 and 11).

0

2

4

6

8

10

12

14

16

18

20

In
ci

d
en

ce
 r

at
e

Incidence rates by gender and age groups, 2006–2010 

Combined

Male

Female

0–
4

5–
9

10
–1

4
15

–1
9

20
–2

4
25

–2
9

30
–3

4
35

–3
9

40
–4

4
45

–4
9

50
–5

4
55

–5
9

60
–6

4
65

–6
9

70
–7

4
75

–7
9

80
–8

4

85
+

Figure 2. Age-adjusted and age-
specific incidence rates for
glioblastoma by age at diagnosis
and gender, CBTRUS statistical
report: NPCR and SEER, 2006–
2010. X-axis, age groups; Y-axis,
incidence rates. Rates are per
100,000 and age-adjusted to the
2000 U.S. standard population.
Abbreviations: NPCR, CDC's
National Program of Cancer
Registries; SEER, NCI's
Surveillance, Epidemiology, and
End Results program (2).
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Data not available

Figure 1. Age-adjusted incidence
rates of glioblastoma by region in
the United States, CBTRUS
Statistical Report, SEER 2006–
2010. Rates are per 100,000 (2).
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Site. GBMs are more commonly located in the supra-
tentorial region (frontal, temporal, parietal, and occipital
lobes), are rarely seen in the cerebellum, and are very rare
in the spinal cord (18, 19). A Surveillance Epidemiology
and End Results (SEER) population-based study (1973–
2009) did find a difference in the behavior of GBMat these
2 locations (19). When compared with supratentorial
location, cerebellar GBMs occurred in younger patients,
occurred less commonly in whites and were smaller in
size (19–21). Cerebellar GBM occurs rarely in adults,
accounting for 0.4% to 3.4% of all GBMs (21). Patients
with cerebellar GBM are significantly younger than those
with supratentorial tumors (median age of 50–56 years in
contrast to 62–64 years for patients with supratentorial
GBM; ref. 21). A population based study of the Los
Angeles County reported that, GBM had the highest
incidence for frontal lobe tumors and for tumors that
involved 2 or more lobes (overlapping tumors), followed
by tumors in the temporal and parietal lobes (11). The
male-to-female ratio was elevated for each brain subsite
except the posterior fossa; occipital lobe amongst these
sites had the greatest ratio (11).
Summary of risk. Factors associated with GBM risk

are prior therapeutic radiation, decreased susceptibility to
allergy, immune factors and immune genes, as well as
some single nucleotide polymorphisms (SNP) detected by
genome wide association studies (GWAS; refs. 22–25). A
lower risk of gliomas has been associatedwith allergies or
atopic diseases (e.g., asthma, eczema, psoriasis) and the
protective effect does not vary by major histologic sub-
types of glioma or by histologic grade (26–28). In addition,
short term (<10 years) use of anti-inflammatory medica-
tions is associated with a protective effect against GBM,
especially among individualswith nohistory of asthma or
allergies (29). GWAShave detected increased risk of high-
grade gliomawith inherited variation in a region contain-
ing cyclin-dependent kinase inhibitor 2B (CDKN2B) on

Chromosome 9p21 and in 2 SNPs in regulator of telomere
elongation helicase 1(RTEL1; ref. 25). Other factors asso-
ciated with GBM risk are high socioeconomic status (SES)
and taller height (11, 30). The higher SES groups were up
to 70% more likely to be diagnosed with GBM in the
frontal lobes and they had higher IR for all tumor sites,
except for posterior fossa tumors (11).

There is no substantial evidence of GBM association
with life-style characteristics such as cigarette smoking,
alcohol consumption, use of drugs of any kind, or dietary
exposure toN-nitroso compounds (cured or smokedmeat
or fish; ref. 31). Inconsistent andnondefinitive results have
been published regarding the risk of glioma with use of
mobile phones (32–37).

Survival and prognostic factors
GBM has a poor prognosis with quite low relative

survival estimates, only a fewpatients reaching long-term
survival status of 2.5 years and less than 5% of patients
survive 5 years postdiagnosis (Fig. 4A; refs. 2 and 38). The
relative survival for the first year after diagnosis is 35%
and it falls in the second year postdiagnosis (13.7%) and
thereafter (ref. 2; Fig. 4A). A population-based study
found that the first quarter of the second year (5th quarter)
postdiagnosis is considered to be the peak incidence of
mortality and the risk of death decreases to half of its rate
at 2.5 years (38). Despite these unfavorable survival and
mortality estimates, there exist reassuring data for con-
ditional probability of survival in GBM (likelihood of
surviving into the future based on previous survival;
ref. 39). Patients surviving past 2 years from diagnosis
have a relatively favorable conditional probability of
survival into the future compared with newly diagnosed
patients (39, 40).

GBM is an aggressive neoplasm, which has a median
survival of 3 months if untreated (41, 42). Combined
modality therapy with surgery, RT, and chemotherapy
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Figure 3. A, average annual
age-adjusted incidence rates of
glioblastoma by race, CBTRUS
statistical report: NPCR and
SEER, 2006 to 2010. X-axis, race;
Y-axis, incidence rates. B, average
annual age-adjusted incidence
rates of glioblastoma by ethnicity,
CBTRUS statistical report: NPCR
and SEER, 2006 to 2010. X-axis,
ethnicity; Y-axis, incidence rates.
Rates are per 100,000.
Abbreviation: AIAN, Asian
Indian Alaskan Native (2).
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has significantly improved survival of patientswithGBM.
Surgical intervention has decompressive and cytoreduc-
tive effects and there is increasing evidence of a significant
survival advantage with complete resection (43, 44).
Tumor fluorescence derived from 5-aminolevulinic acid
enables more complete resections of contrast-enhancing
tumor, leading to improved progression-free survival
(PFS) in patients with malignant gliomas (45).

In 2004, the European Organization for Research and
Treatment ofCancer (EORTC) group andNationalCancer
Institute of Canada Clinical Trials Group (NCIC) pre-
sented a phase III study demonstrating a significant imp-
rovement in 2-year overall survival (OS) from 10.4%
with postoperative radiotherapy alone to 26.5% with
postoperative combined radiotherapy plus TMZ and an
improvement in median OS from 12.1 to 14.6 months (5).
These results also translated into a survival benefit in a
population-based cohort after introduction of TMZ in
2005 (3). In addition, a survival benefit was seen in each
recursive partitioning analysis (RPA) classwith combined
modality therapy as compared with RT alone (46). The
RPA classification is based on pretherapeutic prognostic
factors that have amore powerful impact on survival than

any adjuvant treatment (47). It helps determine a partic-
ular category ofpatientswhowill benefitmost fromnewer
therapeutic approaches. The RTOG RPA classification is
based on age, Karnofsky Performance Status (KPS), and
neurologic function; classes III and IV include anaplastic
astrocytomas (AA) as well as GBM. The EORTC RPA
classification is based on age, WHO performance status,
and neurologic function determined by mini mental sta-
tus exam; classes III and IV include only patients with
GBM (46). The overall median survival and 2-year sur-
vival was highly statistically different after combined
modality treatment (RT þ TMZ) among the 3 prognostic
EORTC RPA classes (classes III–V; ref. 46). The survival
benefit of combined treatment as comparedwith RT alone
was highest in RPA class III, advantage in class IV
remained highly significant, and small difference of bor-
derline significance was found in class V (46).

Several variables affect the prognosis of patients with
GBM, including age, preoperative performance status,
tumor location, preoperative imaging characteristics of
the tumor, and extent of resection (7, 44, 47).

Site. The prognosis of cerebellar GBMs with respect
to their supratentorial counterparts has been unclear
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Figure 4. A, relative survival
rates for glioblastoma, SEER 18
registries, 1995 to 2010. B, relative
survival rates for glioblastoma by
gender, SEER 18 registries, 1995
to 2010. Number of cases in each
gender: male, 16,221; female:
11,993.C, relative survival rates for
glioblastoma by race, SEER 18
registries, 1995 to 2010. Number
of cases in each race: whites,
25,360; blacks, 1,547; API, 1,151.
Note: relative survival rates for
American Indian/Alaskan native
are excluded because of low
numbers. X-axis, time in years;
Y-axis, survival in percentage.
Rates are an estimate of the
percentage of patients alive at 1, 2,
3, 4, 5, and 10 years, respectively.
Estimated by CBTRUS using
SEER Program (www.seer.cancer.
gov) SEER�Stat Database:
Incidence—SEER 18 Regs
Research Data þ Hurricane
Katrina Impacted Louisiana
Cases, Nov 2011 Sub (1973–2009
varying)—Linked To County
Attributes—Total U.S., 1969–2010
Counties, National Cancer
Institute, DCCPS, Surveillance
Research Program, Cancer
Statistics Branch, released April
2012, based on the November
2011 submission (2).
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(19–21, 48–50). However, age-associated differences in
survival are apparent at a younger age in cerebellar as
compared with supratentorial GBMs (40 years vs. 60
years; refs. 19–21). Among supratentorial GBMs, frontal
lobe tumors have better survival as compared with other
sites (51, 52).
Gender. The relative survival in bothmen andwomen

is the highest at 1 year (36.7% and 32.8%, respectively), it
declines steeply in the secondyear (13.7% inbothgenders)
and gradually thereafter, with a very low 5-year survival
rate (4.7%and 4.6%, respectively; Fig. 4B; ref. 2).Menhave
a significant survival advantage than women in the first-
year postdiagnosis but the difference is not significant
thereafter (2).
Race. Population-based studies do not demonstrate a

race-based disparity in GBM survival (53–57). No signif-
icant differences in GBM survival have been observed
among whites and blacks; however, Asian Pacific Islan-
ders have a significantly better survival rates than both
whites and blacks at all time points (Fig. 4C; ref. 2). In our
recent population-based study, we studied interrelations
between race, surgery received, and survival of patients
with GBM who were not treated with initial RT (57). We
did not find race-based differences in outcomes among
these patients with GBM receiving different surgical
interventions (57). The limited influence of therapy on
GBMmay be responsible in part for this result (55). There
is also a possibility that biologic factors influencing GBM
outcomes could be similar across races (57).
Age. Age of 50 years has been identified as an appro-

priate cutoff age for the clinical subdivision of patients
with GBM into prognostically relevant subsets (7). In
multivariate analysis of OS risk factors increasing age is
associated with shortened survival (Fig. 5; ref. 2). Patients
ages 70 to 74 years and those >75 have a significantly

higher risk of death than those 65–69 years (58). Poorer
survival in the older age group has been attributed to
comorbidities as well as decreased ability to withstand
neurological insults caused by the tumor itself, surgery,
and/or adjuvant therapy (47, 59, 60). In addition, aggres-
sive tumors in older patients have been attributed to
resistance genes and tumors with different molecular
profiles (61–63).

Miscellaneous factors. Various other factors, includ-
ing SES andmarital status, could be associated with GBM
survival differences. Marital status had a beneficial effect
on survival in a SEER-based population study, where
unmarried patients with supratentorial GBM presented
with larger tumors, were less likely to undergo both
surgical resection andpostoperative RT, andhad a shorter
survival after diagnosis when compared with married
patients (64).

Effects of SES on survival have been examined by
studying the primary payer for care (Medicare, Medicaid,
self-pay, or private insurance) as predictor of in-hospital
mortality (65). Compared with Medicare patients, Med-
icaid patients had higher mortality (58). For patients with
GBMwith dual eligibility inMedicare andMedicaidwere
much less likely to report radiation claims than thosewith
Medicare alone (58). Higher chemotherapy claims were
reported in patientswith amedian annual income >35,000
than those with <25,000 (58). Those who reported radia-
tion or chemotherapy claims had a significantly lower risk
for death than those who did not (58).

Disparities in Healthcare
In our recent SEER population-based study, we did

not find an obvious racial difference in receipt of RT
for patients with GBM (57). However, another SEER
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Figure 5. Five- and 10-year relative
survival rates for glioblastoma by
age, SEER 18 registries, 1995 to
2010. X-axis, age groups; Y-axis,
survival in percentage. Rates are in
percentage (%). Estimated by
CBTRUS using SEER Program
(www.seer.cancer.gov) SEER�Stat
Database: Incidence—SEER 18
Regs Research Data þ Hurricane
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DCCPS, Surveillance Research
Program, Cancer Statistics Branch,
released April 2012, based on the
November 2011 submission (2).
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population-based study investigating the influence of
regional health system resources on the surgical manage-
ment of GBM and receipt of postoperative RT found that
younger, married patients in health service areas (HSA)
with higher median incomes were significantly more
likely to receive both gross total resection and postoper-
ative RT (66). For every $10,000 increase in the median
income of a HSA, a patient’s likelihood of receiving gross
resection increased by 7%andpostoperative RT receipt by
6.3% (66). Their findings indicated that it may not be the
density of individual radiation oncologists, but rather the
prevalence of radiation oncology centers that influences
postoperative RT receipt, suggesting a dominant role of
hospital-level infrastructure over individual providers for
addressing disparities in GBM management (66). It is
possible that the large variations in treatment of GBM
may be related less to access to neuro-oncology services,
but a larger apprehension of physicians to attempt aggres-
sive surgery and RT for patients with less favorable
prognosis (66).

A significant percentage of patients with GBM (27.3%)
do not receive RT in the initial round of therapy and
majority of these are elderly patients (65 years and older;
refs. 57 and 67). Similar trends are seen in other SEER-
basedpopulation studies for breast and lung cancerwhere
lower rates of RT with increased age were observed
(68, 69). Underuse of RT in a large number of elderly
patients with GBM could be attributed increased risk of
cognitive side-effects associated with RT (67, 70). How-
ever, recent data do show benefit of RT in the elderly
population (71).

Prognostic molecular markers in GBM
Variousmolecular markers are associatedwith varying

grades of glioma (Fig. 6). All GBMs are WHO grade 4 but
exhibit significant genetic heterogeneity and tumor sub-
types with genetic alterations exist within this larger
homogeneous histologic category that carry prognostic

significance (6, 72). Various prognosticmarkers have been
identified in GBM, including methylation status of the
gene promoter for O6-methylguanine-DNA methyltrans-
ferase (MGMT), isocitrate dehydrogenase enzyme 1/2
(IDH1/2) mutation, epidermal growth factor receptor
(EGFR) overexpression and amplification, glioma-CpG
island methylator phenotype (G-CIMP), tumor protein
(TP53) mutation, and genetic losses of chromosomes.

Primary GBMs show EGFR overexpression, phospha-
tase and tensin homolog gene (PTEN) mutations, loss of
heterozygosity (LOH) 10q, p16 deletions, less frequently
mouse double-minute 2 (MDM2) amplification, high fre-
quency of telomerase reverse transcriptase (hTERT) pro-
moter mutations, and absence of IDH1 mutation (9, 73).
The hallmark of secondary GBMs is TP53, a thalassemia/
mental retardation syndrome X-linked (ATRX) and IDH1
mutations. In addition, they showLOH10q (7–9). GBM-O
occurs in younger patients and often contains TP53muta-
tions, IDH1 mutation, and lack of EGFR amplification
(6, 74). They have been reported to have longer survival
as compared with other GBMs, have a lower frequency of
PTEN deletions, and genetic heterogeneity (75–79).

There is a complex interaction between age and genetic
alterations that result in variation of clinical outcomes in
different age groups (72, 80, 81). Patients with GBM age
<50 years have molecularly and clinically distinct disease
and age 40 years seems to be a more appropriate cutoff
point for their further prognostic subdivision (82). Patient
age <40 years is strongly associated with a favorable
prognosis whereas �40 years shows markers associated
with shorter survival (wild-type IDH1/2, EGFR amplifi-
cation, loss of 9p, loss of 10q, and gain of chromosome 19;
ref. 82).

MGMT status
TMZ is an alkylating agent that functions by transfer-

ring alkyl groups to guanine bases causing DNA damage
and cellular death. Failure to repair alkylation results in
apoptosis. MGMT is a DNA repair protein that removes
alkyl groups from the O6 position of guanine in DNA,
making cells resistant to the alkylating agent TMZ (83, 84).
Methylation causes MGMT silencing that interferes with
DNA repair and increases TMZ sensitivity whereas an
unmethylated promoter forMGMT results in active gene
expression and high levels of the repair enzyme that
results in chemotherapy resistance (85, 86).

The MGMT promoter is methylated in approximately
50% of newly diagnosed GBMs (87–89). MGMT methyl-
ation is associatedwith IDH1/2mutant tumors because of
which it is more common in secondary as compared with
primary GBM (75% vs. 36% respectively; refs. 86, 90, 91).
MGMT promoter methylation has prognostic and predic-
tive significance in patients with GBM with better OS
irrespective of treatment choices (84, 92, 93). In addition,
it is associated with better response to TMZ as well as RT
and improves PFS and OS with combined treatment
approach (TMZ þ RT) than either treatment modality
alone (77, 84, 92, 94, 95).

IDH1/2

hTERT

ATRX

1p/19q

EGFR

Grade II / III 
oligodendroglioma

Primary
GBM

Grade II astrocytoma

Grade III anaplastic 
astrocytoma

Grade IV secondary 
GBM

Figure 6. Relationship between molecular markers and the different
grades of glioma. Red, primary glioblastoma; blue, grades 2 and 3
astrocytomas and secondary glioblastoma; purple, grades 2 and 3
oligodendrogliomas.
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IDH mutation
IDH1/2mutations are farmore common in grades 2 and

3 astrocytomas and oligodendrogliomas compared with
GBMsand over 90%of themutations involve IDH1 (74, 96–
99). The effects of IDH1/2 mutations on gliomagenesis are
greater than inhibition of their wild-type counterparts, and
more likely represent a true gain-of-function genetic
change (100). IDH1-R132H point mutated enzyme (muta-
tion in IDH1 at R132) prefers binding to a-ketoglutarate
and reduces it to D-2-hydroxyglutarate (100). The levels of
this oncometabolite are 10- to 100-fold higher in mutant
gliomas than their wild-type counterparts (100).
IDHmutations tend to occur in younger adults (20- to 60-

year range; refs. 101–104). The relative frequency of IDH1
tumors risessharply in the thirddecadeof lifeanddecreases
in the fifth decade (105). IDH1-mutated high-grade gliomas
arise by transformation from lower-grade gliomas and
havedistinguishing radiographic, histologic, and transcrip-
tional features (frontal location and lesser extent of contrast
enhancement and necrosis) that are consistent with a less
aggressive clinical course (105). They are a selective molec-
ularmarker of secondaryGBMs anddistinguish them from
primary GBMs (86, 97, 101). IDH1-mutated high-grade
gliomas have a more favorable prognosis than the ones
without IDH1mutation and the sequence frommore favor-
able to poorer outcome is: AA with IDH1 mutation, GBM
with IDH1 mutation, AA without IDH1 mutation, and
GBM without IDH1 mutation (97, 106).

G-CIMP
Analysis of the GBM DNA methylation array data gen-

erated by The Cancer Genome Atlas Research Network
(TCGA) identifiedG-CIMP,aDNAmethylationphenotype
present in �10% of GBM (107). This phenotype is strongly
associated with IDH1mutation and proneural tumor sub-
type, and is rare in primary GBM (�5%–8%). There is a
significant OS advantage of patients with G-CIMP, pro-
neural tumor subtype and IDH1 mutation (107–109).

EGFR
EGFR is a transmembrane tyrosine kinase on chromo-

some 7p12 whose downstream signaling pathways mod-
ulate a wide range of cellular activities, including growth,
migration, and survival (110). In GBMs, EGFR signaling
promotes cell division, tumor invasiveness, and resistance
to RT and chemotherapy (111–113). EGFR activity is
enhanced by upregulation of EGFR protein expression,
inhibition/deletion of downstream pathway inhibitors,
constitutively active EGFR (EGFRvIII), and EGFR ampli-
fication (114, 115). EGFR amplification results in over-
expression of EGFR (116–118). Alteration of the EGFR
gene, results in overexpression of varied mutations,
including the most common mutation, EGFRvIII (variant
III), as well as wild-type EGFR (EGFRwt; refs. 119–121).
EGFRvIII (variant III) is the most common mutation
among EGFR amplified GBMs and has been described in
approximately 60% to 70% of these tumors (120, 122).
EGFRvIII overexpression was found to be a strong pre-

dictor of poor prognosis in presence of EGFR amplifica-
tion (123).

About 40% of all GBMs have EGFR amplification, and it
is more common in primary as compared with secondary
GBMs (7–9, 124, 125). There is experimental evidence that
EGFR amplification may result in a less favorable prog-
nosis; however, clinical studies are inconclusive (72, 117,
118). Some have shown the degree of EGFR amplification
to impact survival with higher levels associated with
longer median survival whereas others have found it to
be differentially prognostic with age (115, 126). EGFR
overexpression was associated with worse prognosis in
younger patients and better prognosis in older patients
(41, 72, 127). Data also suggest the existence of a complex
relationship of survival in GBM with the patient’s age,
p53, and EGFR amplification. Poorer survival was noted
in younger patients whose tumors overexpressed EFGR
but had normal p53 immunohistochemistry (72). In addi-
tion, lower levels of amplification correlated with worse
response to TMZ-containing adjuvant therapeutic regi-
mens compared with GBMs with high amplification or
none at all (126).

TP53 mutation
Mutationof theTP53genehasbeen found in 60% to 70%

of secondary GBMs, 25% to 30% of primary GBMs, and
occurs more frequently in younger patients (9). Studies of
TP53 mutations as a prognostic marker have not been
definitive (72, 128, 129).

ATRX mutation
Mutations in ATRX have been identified in multiple

tumor types and seem to cause alternative lengthening of
telomeres (ALT), a presumed precursor to genomic insta-
bility (130, 131). ATRX alterations are present mainly in
tumors of an astrocytic lineage and are specific to astro-
cytic tumors carrying IDH1/2 and TP53 mutations (132).
They are more common in secondary as compared with
primary GBMs (132, 133).

ATRX is frequently mutated in grade 2 and 3 astrocy-
tomas (71%), oligoastrocytomas (68%), and secondary
GBMs (57%), but is infrequent in primary (4%) and pedi-
atric GBMs (20%) aswell as pure oligodendroglial tumors
(14%; ref. 133). ATRXmutations are associatedwith ALTs
phenotype among GBMs (133, 134). They cluster with
IDH1 and TP53 mutations in secondary GBMs (133).

In a prospective cohort of patients with astrocytic
tumors, those harboring ATRX loss had a significantly
better prognosis than the ones that expressed ATRX and
had IDHmutation (135). Jiao and colleagues described the
prognostic molecular classification of gliomas and based
on 3 gene signatures (133). The I-A signature was defined
by alterations in ATRX and IDH; with ALT and TP53
mutations. These tumorswere grade 2 and 3 astrocytomas
and secondary GBMs, were often diagnosed in the fourth
decade of life, and had a median survival of 51 months
(133). I-CF signature was defined by IDH mutations and
by alterations in either capicua transcriptional repressor
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(CIC), far upstream element (FUSE) binding protein 1
(FUBP1) and/or 1p/19q, rarely displayed ALT. These
tumors typically had an oligodendroglial component and
were often diagnosed in the fifth decade of life with a
median survival of 96 months (133). I-X signature was
defined by lack of IDHorATRXmutations. I-X tumors are
a genetically heterogeneous group, associated with poor
patient survival 13months, advanced patient age, and are
similar to primary GBMs (133, 134).

TERT
TERT is involved in telomere maintenance, which is

essential for actively growing cells. TERTmutation is one
of the most frequent genetic alterations in primary adult
GBMs and is significantly higher in these tumors as
compared with secondary adult or any pediatric GBMs
(73, 136). In GBMs, TERT mutations are significantly
correlated with EGFR amplification but have an inverse
correlation with IDH and TP53 mutations (73, 136).
Although TERT mutations have yet to be directly com-
pared with ATRXmutations, it is highly probable that the
2 aremutually exclusive. GBMswith TERTmutation have
a shorter survival than those without TERT mutations
(136). However, when adjusted for GBM subtype (prima-
ry and secondary), they do not have a significant impact
on survival (136).

Genetic losses of chromosomes
Losses on chromosome 10. Some of the most frequent

genetic alterations in GBMs are genetic losses on chromo-
some 10 (80%–90%), occurring either as loss of the entire
chromosome or as loss of only the long or short arms (9).
Phosphatase and tensin (PTEN), located at 10q23.3, was
the first tumor suppressor gene identifiedon chromosome
10 and is mutated in 20% to 40% of GBMs and almost
exclusively in primary GBM (7, 137). Prognostic role of
10q deletion in GBM are controversial, with some studies
suggesting 10q loss as an indicator of poor outcome
whereas others did not report a significant role as prog-
nostic factor (127, 129, 138, 139).

1p/19q status. 1p/19q deletions (loss of the short arm
of chromosome 1 and the long arm of chromosome 19)
predict response to chemotherapy and better prognosis in
anaplastic oligodendrogliomas (140). However, it has no
utility in histologically unequivocal GBMs (141).

Conclusion
Although many studies have investigated the basis of

incidence differences by gender, age, race, and risk factors
forGBM,manyof these studies had inconclusive findings.

Although ionizing RT increases risk and allergies
decrease risk, these factors do not account for a large
proportion ofGBMs.Hence, further studies arewarranted
to untangle the complexities of GBM etiology.

Advances have beenmade in development of prognos-
tic tools and identifying molecular markers that help
predict prognosis and response to therapy. Progress in
investigating the molecular biology has led to identifica-
tion of GBM subsets that are biologically similar, aremore
susceptible to standard therapy, and have a better prog-
nosis. Efforts to establish the role of IDH1 and MGMT in
predicting therapeutic response is ongoing. Understand-
ing the role of IDH1/2 mutations in promoting glioma-
genesis, its effect on prognosis, and targeting IDH1/2
mutations in novel therapies holds promise to make
advances in preventive and treatment strategies (86).

In summary, GBM represents a molecularly heteroge-
neous diseasewith numerous subclassifications. The field
has invested significant resources on this characterization
and is now poised to advance therapies specific to the
genetic abnormalities of each subtype. The success of
mTOR pathway inhibition for subependymal giant-cell
astrocytomas and the possibility of identifying a subtype
of GBM sensitive to upfront treatment with bevacizumab
are examples, but we need much more (142, 143). The
complex molecular changes associated with GBM will
likely make personalized therapy challenging and
although clinical advances in GBM are rare, we are in a
new era in cancer biology. Whether an immune-based
therapy or treating multiple targets will provide the
breakthroughs is yet unknown, butwe expectmeaningful
clinical advances to occur—and soon.
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