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PROJECTIVE PRIME IDEALS AND LOCALISATION IN

PI-RINGS

A. W. CHATTERS, C. R. HAJARNAVIS  R. M. LISSAMAN

1. Introduction

The results here generalise [2, Proposition 4.3] and [9, Theorem 5.11]. We shall

prove the following.

T A. Let R be a Noetherian PI-ring. Let P be a non-idempotent prime

ideal of R such that P
R

is projecti�e. Then P is left localisable and R
P

is a prime principal

left and right ideal ring.

We also have the following theorem.

T B. Let R be a Noetherian PI-ring. Let M be a non-idempotent maximal

ideal of R such that M
R

is projecti�e. Then M has the left AR-property and M contains

a right regular element of R.

Thus the results show an intriguing relationship between properties on the two

sides of the ring. An easy example (Example 4.1) shows that in Theorem A the right

Ore condition need not hold with respect to #(P). A further example (Example 4.2)

demonstrates that the assumption ‘maximal ideal ’ cannot be weakened to ‘prime

ideal ’ in relation to the left AR-property.

One of the results required along the way is of independent interest. We prove

(Lemma 3.1) that in a Noetherian ring an ideal with zero right annihilator and

satisfying (a weak form of) the right AR-property contains a right regular element.

Our methods require Theorem A to be first proved for a maximal ideal. Extending

the result to a general prime ideal presents a technical challenge. Since it is not yet

known whether the cliques in a Noetherian PI-ring are localisable, a direct

localisation approach is not available to us. We sidestep this difficulty by employing

a trick of Goodearl and Stafford. This device guarantees that the prime ideal being

examined extends to a prime ideal which belongs to a localisable clique in a

polynomial extension of the given Noetherian PI-ring. With the authors’ permission

an account of this method is included here.

2. Preliminaries and notation

All rings have an identity element and all subrings considered are assumed to have

the same identity.

Let R be a ring with an overring T and let I be an ideal of R. Then I is said to be

in�ertible in T if there exists a subset S of T such that SI¯ IS¯R. In this case the
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set ²s `T r IsXR´¯ ²s `T r sIXR´ and we will call this set I−". We simply say I is

in�ertible if the overring is clear from the context. An ideal I is said to have the right

Artin–Rees property if given a right ideal E there exists a natural number n such that

EfIn XEI. The left Artin–Rees property is defined analogously. If I is an ideal in a

Noetherian ring which is invertible in some overring then by [10, Corollary 2.5, page

101], I has the left and right Artin–Rees property.

We denote by #(I ) the set of elements which are regular mod I. If we need to

emphasise the ring we will write #
R
(I ). Thus #(0) denotes the set of regular elements

of R. If R is Noetherian and P is a maximal ideal it is well known that #(P)¯#(Pn)

for all n& 1. We denote by N the nilpotent radical of R.

If U
R

is a right R-module then the set of right R-module homomorphisms from

U
R

to R
R

is denoted by U*. This is in fact a left R-module under the natural action.

If V is any subset of U then U*(V ) consists of finite sums 3n

i="
f
i
(x

i
) where f

i
`U* and

x
i
`V. It can be seen that if K is a right ideal of R then K*(K ) is a two-sided ideal of

R with KXK*(K ).

We denote the reduced rank of a finitely generated right module U over a right

Noetherian ring R by ρ(U ). For the definition of reduced rank and some of its

properties see [4, Chapter 2].

We denote the Krull dimension (in the sense of Gabriel–Rentschler) of a right

R-module M over a ring R by Kdim(M
R
). For more details of this Krull dimension

and some of its properties see [10, Chapter 6].

The dual basis lemma states that a module U
R

is projective if and only if there exist

families ²σλ´λ`Λ, ²uλ´λ`Λ, σλ `U*, uλ `U (sometimes referred to as a dual basis for U
R
)

such that for each u `U, u¯3α uα(σα(u)) and σα(u)¯ 0 for all but finitely many α. It

can be easily deduced from the dual basis lemma that if IXK are ideals of R with K
R

projective and I¯KI then K}I is a projective right R}I module.

Let R be a Noetherian ring. If P and Q are prime ideals of R then we say there

is a link from Q to P written QSTP if there is an ideal A of R such that QfP¤
AYQP and (QfP)}A is torsion-free as a right R}P-module and as a left R}Q-

module. A set X of prime ideals of R is said to be right link closed if whenever P and

Q are prime ideals of R with QSTP and P `X then Q `X. A left and right link

closed set of prime ideals of R is called a clique if no proper subset is both left and

right link closed.

A set Y of prime ideals of R is said to satisfy the intersection condition if given any

one-sided ideal I of R with If#(P)1W for all P `Y then If(4
P`Y

#(P))1W.

Let δ be a multiplicatively closed subset of R. The set δ is called a right Ore set

if given a `R and c ` δ there exist a
"
`R and c

"
` δ such that ac

"
¯ ca

"
. Left Ore sets

are defined analogously. A prime ideal P is said to be right localisable if #(P) is a right

Ore set.

For any unexplained terminology we refer the reader to [4] or [5].

3. The main theorem

We shall start by looking at the special case of right projective non-idempotent

maximal ideals.

It is well known that in a commutative Noetherian ring an ideal I contains a

regular element if and only if I has zero annihilator. The next result may be viewed

as a generalisation of this fact.
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L 3.1. Let R be a Noetherian ring. Let X be an ideal with the right AR-

property such that r(X )¯ 0. Then X contains a right regular element.

Proof. The AR-property gives the following ‘commutativity ’ property for X. If

Y is any ideal of R then there is a positive integer t such that X tYXYfX t XYX.

Since R is Noetherian we can find a chain of ideals

0¯B
!
£B

"
£B

#
£…£B

n−"
£B

n
¯R

and prime ideals P
"
,…P

n
such that P

i
is a maximal left annihilator prime of

R
(R}B

i−"
), B

i
¯²r `R rP

i
rXB

i−"
´ for i¯ 1,… , n and P

n
¯B

n−"
. For full details of

this see [4, Chapter 13].

By [4, Lemmas 13.3, 13.4], we need to show that X is not contained in any P
i
.

Suppose that XXP
i
for some i. Then XB

i
XB

i−"
, so that P

"
P
#
…P

i−"
XB

i
¯ 0. The

‘commutativity ’ property for X gives that there is a positive integer k with

XkP
"
P
#
…P

i−"
B

i
¯ 0. Because r(X )¯ 0 we get P

"
P
#
…P

i−"
B

i
¯ 0. Hence P

#
…P

i−"
B

i
X

B
"
, so that P

$
…P

i−"
B

i
XB

#
, and so on. Thus P

i−"
B

i
XB

i−#
, and hence B

i
XB

i−"
,

which is a contradiction.

R 3.2. Note that in the above proof we only require X to have the

property that for any prime ideal P of R there exists a positive integer t such that

PfX t XPX. It is in fact the case that this property is equivalent to the right AR-

property in the PI case.

C 3.3. An in�ertible ideal of a Noetherian ring contains a regular

element.

Proof. As noted in Section 2 such an ideal has the left and right AR-property

and clearly has zero left and right annihilators so this can be proved by an easy

modification of the proof of Lemma 3.1.

The next result is standard to all practitioners of Jategaonkars’s localisation

theory. We include its proof for completeness.

L 3.4. Let R be a Noetherian ring satisfying the strong second layer

condition. Let M be a right localisable maximal ideal. Then M has the right AR-

property.

Proof. Let X be a finitely generated right R-module with an essential submodule

Y such that YM¯ 0. Since M is maximal we have M¯ r(Y ). Since Y is essential we

have ass(X )¯²M ´. By [5, Theorem 11.4], X is annihilated by a product of primes in

the right link closure of ²M ´. However, since M is right localisable, by [5, Theorem

12.21], ²M ´ is right link closed and so XMn ¯ 0 for some integer n& 1. It follows by

[4, Lemma 11.2] that M has the right AR-property.

L 3.5. Let R be a Noetherian ring. Suppose that M is a maximal ideal of R

which is also a minimal prime ideal of R and which is right R-projecti�e. Then M is

idempotent.

Proof. First note that in any Noetherian semi-prime ring an ideal which is both

a maximal ideal and a minimal prime must be a direct summand of the ring and hence

idempotent.
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Let N be the nilpotent radical of R. We prove the result by induction on K, the

index of nilpotency of N. The case k¯ 1 is trivial by the above. Now assume that

k& 2. Suppose that M is not idempotent. Because M
R

is projective we know that

M*(M ) is an idempotent ideal of R which contains M. However M is a non-

idempotent maximal ideal of R. Therefore M*(M )¯R. Because M}N is both a

maximal ideal and a minimal prime ideal of the semi-prime Noetherian ring R}N, it

follows that M}N is a direct summand of R}N. In particular M}N is idempotent, so

that M¯M #­N. Thus MNk−"¯M #Nk−". Since M*(M )¯R, multiplying this on

the left by M* gives Nk−"¯MNk−" so that M}Nk−" is a projective right R}Nk−"-

module. By the induction hypothesis M¯M #­Nk−"¯M#­MNk−"¯M #. This

contradiction completes the induction.

R 3.6. Lemma 3.17 will show that the above result also holds with ‘prime’

replacing ‘maximal ’.

L 3.7. Let R be a semi-prime Noetherian PI-ring. Let M be a maximal ideal.

Suppose that M
R

is projecti�e. Then M is either idempotent or in�ertible.

Proof. Suppose that M is not idempotent. Then M is not a direct summand of

R, and because R is semi-prime it follows that M is not a minimal prime of R. Thus

Mf#(0)1W. Let Q be the (semi-simple Artinian) quotient ring of R. It is standard

that we can identify M* with the set M l ¯²q `Q r qMXR´. Because M
R

is projective

it follows from the dual basis lemma that 1 `MM l and that M lM is an idempotent

ideal of R which contains M. However M is a non-idempotent maximal ideal of R,

so we have M lM¯R. Thus M is left invertible and, by [6, Theorem 3.5], M is also

right invertible.

T 3.8. Let R be a Noetherian PI-ring. Let M be a non-idempotent maximal

ideal such that M
R

is projecti�e. Let P be a minimal prime of R with PXM. Then

P¯MP.

Proof. Note that since M is not idempotent by Lemma 3.5 we have P£M. Also

P}MP is a left R}M-module and hence is Artinian. Thus by Lenagan’s theorem

[8, Proposition], (P}MP)
R

is Artinian. Consider P}MP as a right R}P-module. By

taking a composition series we see that P}MP is annihilated by a product of maximal

ideals of R}P, all of which contain a regular element of R}P since R}P is not Artinian.

Thus there exists c `#(P) such that PcXMP. This gives

M*(P) cXM*(MP)XM*(M )PXRP¯P.

Thus M*(P)XP and so P¯MP using the projectivity of M and the dual basis

lemma.

C 3.9. Let R be a Noetherian PI-ring. Suppose that M is a non-

idempotent maximal ideal and M
R

is projecti�e. Suppose that P is a minimal prime of

R with PXM. Then P¯4¢

n="
Mn. In particular P is unique. Also M}P is an in�ertible

ideal of R}P.

Proof. Let I¯4¢

n="
Mn. By Theorem 3.8 we have P¯MP and so PX I. Also,

since P¯MP, M}P is a non-idempotent maximal ideal of R}P which is projective
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as a right R}P-module so that, by Lemma 3.7, M}P is invertible. Thus, by

[7, Corollary 3.2], 4¢

n="
(M}P)n ¯ 0 from which it follows that IXP in R. Thus

4¢

n="
Mn ¯ I¯P.

T 3.10. Let R be a Noetherian PI-ring. Let M be a non-idempotent

maximal ideal such that M
R

is projecti�e. Let N be the nilpotent radical of R. Then

N¯MN.

Proof. Let A be the ideal of R such that NXA and A}N is the Artin radical of

R}N. Because A}N is a direct summand in R}N there is an ideal B of R such that

AfB¯N and A­B¯R. Let P be a minimal prime of R with PXM. Because R}P

has zero Artin radical we must have AXP. Hence AXM and M*(A)XR. We will

now show that M*(A)¯A. It is enough to show that M*(AB)XN since A¯
A#­AB so that M*(A)¯M*(A)A­M*(A)BXA­N¯A. We have A¯A#­N so

that M*(AB)¯M*(A#B)­M*(NB) where M*(A#B)¯M*(A)ABXRN¯N. Thus

it is enough to show that M*(NB)XN.

Set S¯R}MN and W¯N}MN. Then W is an ideal of S which is left Artinian

(because MW¯ 0) and so W
S

is Artinian by [8, Proposition]. However WN¯ 0 so

that we can consider W to be a right R}N-module. Let U be a simple right R}N-

module. Then either U is torsion or U embeds in R}N and hence U embeds in A}N

and so U(B}N )¯ 0. We have B}N¯ g(R}N ) for some central idempotent g `R}N.

Let c be a regular (indeed, arbitrary) element of R}N. Then wcg¯wgc for all w `W.

Because W has a composition series as a right R}N-module and because every simple

right R}N-module is annihilated either by g or by some regular element of R}N, there

is a regular element c of R}N such that 0¯Wgc¯W(B}N ) c¯WBc. Working back

in R this gives NBcXMN for some c `#(N ). Therefore M*(NB) c¯M*(NBc)X
M*(MN )XM*(M )NXN and so M*(NB)XN as required.

Therefore M*(A)¯A and so A¯MA. We have A­B¯R and AfB¯N so

that N¯AB­BA. In order to show that MN¯N it is now enough to show that

N¯AB­MBA. We shall therefore work in the ring R}AB. Note that M}AB is

projective as a right R}AB-module because AB¯MAB.

From now on we shall suppose without loss of generality that AB¯ 0. Thus A­
B¯R and AfB¯N, so that B¯ eR and A¯R(1®e) for some idempotent element

e of R. We can identify R with the 2¬2 upper triangular matrix ring

0S0
W

T 1
where S¯ eRe, W¯ eR(1®e), T¯ (1®e)R(1®e). We have N¯BA¯ eR(1®e), so

that

N¯ 000
W

0 1
in the matrix representation of R. Therefore R}NFSGT, so that S and T are semi-

prime. Note that

B¯ 0S0
W

0 1 and A¯ 000
W

T 1 .
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Because AXM we must have

M¯ 0V0
W

T 1
for some maximal ideal V of S.

We shall now show that V is right projective, equivalently that eMe is right eRe-

projective. Note first that Re¯ eRe and so ReR¯ eR. Thus (ReR)
R

is projective. The

projectivity of eMe now follows, since as right eRe-modules, eMe is a direct summand

of Me and by [2, Corollary 2.12], Me is projective.

Therefore V
S

is projective and not idempotent. By Lemma 3.7, V is an invertible

ideal of S and so has the right AR-property. Thus M has the right AR-property

modulo N. However A¯R(1®e) so that A#¯A. Hence

N¯BA¯BA#XBAM¯NM.

For any prime ideal Q of R there exists an integer s& 1 such that QfM s XQM­N.

Since N¯NMXQM this gives QfM s XQM. It follows by Lemma 3.1 (noting

Remark 3.2 and since M*(M )¯R) that M contains a right regular element d say. We

have NF dN as right R-modules so we have ρ(N}dN )¯ 0. Since dNXMN this gives

ρ(N}MN )¯ 0 and so there exists d
"
`#(N ) such that Nd

"
XMN. Hence M*(N ) d

"
¯

M*(Nd
"
)XM*(MN )¯M*(M )NXN and so M*NXN. This gives MN¯N as

required.

T 3.11. Let R be a Noetherian PI-ring. Suppose that M is a non-

idempotent maximal ideal and that M
R

is projecti�e. Let Q be a prime ideal of R. Then

there exists a positi�e integer t such that QfM t XMQ. It follows that M is left

localisable.

Proof. By Corollary 3.9, M contains a unique minimal prime P
"

say. Suppose

that R contains other minimal primes P
#
,P

$
,… ,P

n
. (We deal with the possibility that

P
"

is the only minimal prime later.) Then we have M­(P
#
fP

$
f…fP

n
)¯R and,

of course, N¯P
"
fP

#
f…fP

n
, where N is the nilpotent radical of R. This gives

QfP
"
¯M(QfP

"
)­(P

#
fP

#
f…fP

n
) (QfP

"
) and so QfP

"
XM(QfP

"
)­N¯

M(QfP
"
)­MN¯M(QfP

"
) (since N¯MN by Theorem 3.10). By Corollary

3.9, M}P
"

is invertible and so has the left AR-property. Thus there exists a positive

integer t such that
QfM t XMQ­P

"
. (1)

This gives QfM t XMQ­(QfP
"
)¯MQ­M(QfP

"
)¯MQ. (Notice that this

follows immediately from (1) using the facts that N¯MN and NXQ when N¯P
"
,

that is, when P
"

is the only minimal prime of R.) It is now easy to deduce that

if MSTQ then M¯Q which implies that M is left localisable by [5,

Theorem 12.21].

T 3.12 (Theorem B in Section 1). Let R be a Noetherian PI-ring. Let M

be a non-idempotent maximal ideal of R such that M
R

is projecti�e. Then M has the left

AR-property and M contains a right regular element of R.

Proof. That M has the left AR-property is immediate from Theorem 3.11 and

Lemma 3.4.

By Corollary 3.9 there is a unique minimal prime ideal P of R with PXM. We

shall suppose that P1 0, for otherwise R is a prime ring and the result follows
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immediately from Goldie’s theorem. By Theorem 3.8 and Theorem 3.11 we know that

P¯MP and that we can left-localise R at M. Let R
M

denote the corresponding local

ring. Then R
M

M is the Jacobson radical of R
M

and R
M

P¯R
M

MP¯R
M

M[R
M

P.

Therefore R
M

P¯ 0, by Nakayama’s lemma. Hence cP¯ 0 for some c `#(M ).

We start to construct a left affiliated series for R by taking P
"
to be a maximal left

annihilator prime in R with c `P
"

(note that cP¯ 0 and that we are supposing that

P1 0, so that RcRX l(P)1R). Set B
"
¯ r(P

"
). Then cB

"
¯ 0 with c `#(M )X#(P),

so that B
"
XP. Also the fact that c `P

"
and the maximality of M give R¯M­P

"
, so

that B
"
¯MB

"
­P

"
B
"
¯MB

"
. Therefore M}B

"
¯M}MB

"
is right R}B

"
-projective.

Hence we can do a similar thing in R}B
"
. Suppose that P}B

"
1 0; let P

#
YB

"
be such

that P
#
}B

"
is a maximal left annihilator prime of R}B

"
which contains some d `

#(M}B
"
) with d(P}B

"
)¯ 0; take B

#
YB

"
with B

#
}B

"
¯ r(P

#
}B

"
) ; then B

#
XP, and so

on. The B
i
are strictly increasing and contained in P. Eventually we get B

n−"
¯P for

some n, and then we take P
n
¯P and B

n
¯R. Each of P

"
,… ,P

n−"
contains an element

of #(M ), and so the maximality of M gives that M is not contained in any of them.

Also M is not contained in P
n
¯P. Therefore M is not contained in any of P

"
,… ,P

n
,

and so M contains a right regular element of R (see [4, Lemmas 13.3 and 13.4]).

Next we shall show how to extend some of the results for maximal ideals to the

case of general right projective non-idempotent prime ideals.

L 3.13. Let R be a Noetherian ring. Let P be a non-idempotent prime ideal

of R with P
R

projecti�e. Let δX#(P) be a two-sided Ore set of regular elements. Then

PRδ is not idempotent.

Proof. Since δ is a two-sided Ore set we have PRδ ¯Rδ P and so if (PRδ)#¯PRδ

we have PRδ ¯P#Rδ which gives PXP#Rδ and so there exists c ` δX#(P) such

that PcXP#. Thus P*(P) c¯P*(Pc)XP*(P#)¯P*(P)PXP, and so we have

P*(P)XP. This gives P¯P#, a contradiction.

The next lemma is standard.

L 3.14. Let P be a prime ideal of a Noetherian ring R. Let δ be a two-sided

Ore set of regular elements such that Pfδ¯W and PRδ is a left localisable prime ideal

of Rδ. Then P is left localisable.

The next result we need was proved around 1985 by Goodearl and Stafford but

has never been published before. Our account of the proof is based on an informal

note produced by Warfield.

T 3.15 (Goodearl–Stafford lemma). Let R be a Noetherian PI-ring,

let P be a prime ideal of R, and let X denote the clique of the prime ideal P[t] in the

polynomial ring R[t]. Set #(X )¯4²#(Q) :Q `X ´. Let K be a right ideal of R[t] such

that Kf#(Q) is non-empty for all Q `X. Then Kf#(X ) is non-empty, and consequently

#(X ) is an Ore set in R[t] and P[t] extends to a maximal ideal in the corresponding

partial quotient ring R[t]#(X)
.

Proof. The first step is to show that all the primes in X are induced from primes

of R (that is, have the form Q
!
[t] for some prime ideal Q

!
of R). Let Q `X. It is enough
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to suppose that there is a link from P[t] to Q and to show that Q is induced from a

prime of R. Thus we suppose that there is an ideal I of R[t] such that P[t]QX I£
P[t]fQ and such that (P[t]fQ)}I is torsion-free as a left R[t]}P[t]-module and as a

right R[t]}Q-module. Set Q
!
¯QfR and I

!
¯ IfR. Then PQ

!
X I

!
XPfQ

!
, and

(PfQ
!
)}I

!
is torsion-free as a left R}P-module and as a right R}Q

!
-module ; but we

may have I
!
¯PfQ

!
.

Firstly suppose that I
!
1PfQ

!
. Then (PfQ

!
)}I

!
gives a link from P to Q

!
.

Hence there is a link from P[t] to Q
!
[t]. However Q

!
[t]XQ and there is a link from

P[t] to Q. Because R[t] is a Noetherian PI-ring it follows, by [5, Corollary 12.6], that

Q¯Q
!
[t].

Now suppose that I
!
¯PfQ

!
. For the remainder of this paragraph we shall

suppose without loss of generality that I
!
¯ 0. Thus R is a semi-prime ring with Pf

Q
!
¯ 0, so that at least one of P or Q

!
is a minimal prime ideal of R. Suppose that P

is a minimal prime of R (the case in which Q
!
is a minimal prime is similar). Because

P is a minimal prime of the semi-prime Noetherian ring R, a standard argument gives

that #
R
(P) is an Ore subset of R and hence also of R[t]. Because #

R
(P)X#

R[t]
(P[t])

and P[t] is linked to Q, it follows, by [5, Lemma 12.17], that #
R
(P)X#

R[t]
(Q). Hence

#
R
(P)X#

R
(Q

!
), so that Q

!
XP. However PfQ

!
¯ 0 and P is a minimal prime of R.

Therefore P¯Q
!
¯ 0. In particular, this shows that the zero ideal of R[t] is linked to

Q, so that Q¯ 0¯Q
!
[t]¯P[t].

At this stage we know that all the prime ideals of R[t] which belong to the clique

X are induced from primes of R. We now consider the right ideal K given in the

statement of the theorem. We wish to show that Kf#(X ) is non-empty. As in the

proof of [11, Lemma 6], there is a positive integer n and elements c
"
,… , c

n
of K such

that for each Q `X there exists i such that c
i
`#(Q). It is now enough to do the

following.

Let X
"

and X
#

be subsets of X ; suppose that Kf#(X
"
) and Kf#(X

#
) are non-

empty; we must show that Kf#(X
"
eX

#
) is non-empty. Let f `R[t]. We shall use

L( f ) (respectively A( f )) to denote the right ideal of R which consists of 0 together with

all the leading (respectively anti-leading) coefficients of elements of fR[t]. Let Q be a

prime ideal of R. It can be shown, using the theory of prime Goldie rings, that the

three following conditions are equivalent.

(1) f `#(Q[t]) ;

(2) L( f )f#(Q) is non-empty;

(3) A( f )f#(Q) is non-empty.

We shall use this in conjunction with the fact that all the elements of X are induced

from primes of R. We fix c
"
`Kf#(X

"
) and c

#
`Kf#(X

#
). For each g `R[t]

with c
#
g1 0, we can choose a positive integer k large enough to ensure that the leading

coefficient of c
#
g is equal to that of (c

"
­c

#
tk) g. Because L(c

#
) is generated by the

leading coefficients of a finite number of such elements c
#
g, there is a positive integer

k such that L(c
#
)XL(c

"
­c

#
tk). For every Q[t] `X

#
we have c

#
`#(Q[t]), that is

L(c
#
)f#(Q) is non-empty, so that L(c

"
­c

#
tk)f#(Q) is non-empty. It follows that

c
"
­c

#
tk `#(X

#
). Similarly, by increasing k if necessary, we can ensure that A(c

"
)X

A(c
"
­c

#
tk) and hence that c

"
­c

#
tk `#(X

"
). Therefore for some k we have c

"
­

c
#
tk `Kf#(X

"
eX

#
).

We have proved that the set X of prime ideals of R[t] satisfies the intersection

condition. The rest of the theorem follows from [10, Theorem 4.3.17 and Theorem

4.3.18].
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T 3.16. Let R be a Noetherian PI-ring. Let P be a non-idempotent prime

ideal of R such that P
R

is projecti�e. Then P is left localisable.

Proof. Let S¯R[t]. Let X denote the clique of the prime ideal P[t] in R[t]. Let

δ¯4
Q`X

#(Q). By Theorem 3.15, δ is a (two-sided) Ore set in S. Let

I¯²s `S r sc¯ 0 for some c ` δ´.

Then I¯²s `S r cs¯ 0 for some c ` δ´ since δ is a two-sided Ore set.

Consider T¯Sδ which is an overring of S}I. By Theorem 3.15 we know that

P[t]T is a maximal ideal of T. If P[t]}I is idempotent then, letting W¯P[t], we have

WcXW # for some c ` δ. Thus W*(Wc)XW with c `#(W ). Then W*(W )XW which

gives that W¯P[t] is idempotent and so P is idempotent, a contradiction. Thus P[t]}I

is not idempotent. By Lemma 3.13, P[t]T is a non-idempotent ideal of T. Also

P[t]T is right projective and thus is left localisable by Theorem 3.11. It follows by

Lemma 3.14 that P[t]}I is a left localisable prime ideal of S}I. Given this, it is straight-

forward to deduce that P[t] is a left localisable prime ideal of S.

Let Q be a prime ideal of R with PSTQ. It can be checked that P[t]STQ[t]

as prime ideals of R[t]. Since P[t] is left localisable by [5, Theorem 12.21], P[t]¯Q[t]

and so P¯Q. Hence if PSTQ then P¯Q and so, again by [5, Theorem 12.21], P

is a left localisable ideal of R.

As we now know that we can left localise at a right projective non-idempotent

prime ideal P we shall proceed to investigate the structure of the corresponding local

ring R
P
.

L 3.17. Let R be a Noetherian PI-ring. Let P be a non-idempotent prime

ideal of R such that P
R

is projecti�e. Then P is not minimal.

Proof. Keeping the notation established in Theorem 3.16, by Lemma 3.13, P[t]T

is a non-idempotent maximal ideal of T which is projective as a right T-module.

Therefore, by Lemma 3.5, P[t]T is not minimal and thus neither is P[t]}I. Hence there

is a prime ideal Q of R[t] with IXQ£P[t]. Then QfR is prime and QfRXP. If

QfR¯P then P[t]¯ (QfR) [t]XQ, a contradiction.

L 3.18. Let R be a Noetherian PI-ring. Let P be a non-idempotent prime

ideal of R such that P
R

is right projecti�e. Let Q be a minimal prime with QXP. Then

Q¯PQ¯4¢

n="
Pn ¯²r `R r cr¯ 0 for some c `#(P)´. In particular Q is unique.

Proof. Let I¯²r `R r cr¯ 0 for some c `#(P)´. It is standard that 4¢

n="
Pn XQ

and that #(P)X#(Q) so that IXQ.

Let W¯Q}PQ so that W is an ideal of R}PQ and let α¯Kdim(R}P). We have

PW¯ 0, so Kdim(
R
W )%α. By [5, Theorem 13.15], Kdim(W

R
)%α. Since WQ¯ 0 we

have Kdim(W
R/Q

)%α. However Q£P by Lemma 3.17 and so Kdim(R}Q)"α. This

means that W is torsion as a right (R}Q)-module, so there exists c `#(Q) such that

QcXPQ. Hence P*(Q) c¯P*(Qc)XP*(PQ)¯P*(P)QXRQ¯Q. It follows that

P*(Q)XQ so that QXPQ. Thus Q¯PQ. Hence IXQX4¢

n="
Pn XQ. Since

Q¯PQ, after left localising at P, we have by Nakayama’s lemma that QX I.

Thus 4¢

n="
Pn ¯Q¯ I.
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T 3.19 (Theorem A in Section 1). Let R be a Noetherian PI-ring. Let P

be a non-idempotent prime ideal of R such that P
R

is projecti�e. Then P is left localisable

and R
P

is a prime principal left and right ideal ring.

Proof. Let I¯²r `R r cr¯ 0 for some c `#(P)´. Thus R
P

is the overring of the

ring R}I obtained by left localising at P}I.

By Lemma 3.18, I is a prime ideal. Clearly P}I is a left localisable prime ideal of

R}I. By [3, Theorem A], P}I is a right localisable prime ideal of R}I. Again by Lemma

3.18, I¯PI. This gives that P}I is a right projective prime ideal of R}I and so

PR
P
¯R

P
P, the Jacobson radical of R

P
, is right R

P
-projective. Also R

P
P is not

idempotent for otherwise, by Nakayama’s lemma, we have R
P
P¯ 0 giving cP¯ 0

for some c `#(P) and thus that P¯ I. This gives, by Lemma 3.18, that P is minimal,

a contradiction to Lemma 3.17. By Lemma 3.7, PR
P

is an invertible ideal of R
P
, in

other words, J(R
P
) is invertible. The result now follows by [7, Theorem 2.6].

4. Examples

E 4.1. Let p be prime. Let R be the ring

0:}p:

0

:}p:

: 1 .
Consider

M¯ 0:}p:

0

:}p:

p: 1 .
Then M¯ cR where

c¯ 010
0

p1
is right regular so M

R
FR

R
and M

R
is projective. Note that

000
1

01 0
1

0

0

p1¯ 0

so that c is not left regular. By Theorem A, #(M ) is a left Ore set. Note that #(M )

is not a right Ore set. We see this by taking

c¯ 000
0

11 `#(M ) and r¯ 000
1

01 .
If d, s `R are such that cs¯ rd it can be checked that d ¡#(M ).

E 4.2. We shall give an example of a Noetherian PI-ring R with a non-

idempotent right projective prime ideal P (so that P is left localisable by Theorem A)

such that P does not satisfy the left AR-property and r(P)1 0 (so that P contains no

right regular elements). In fact we shall have PN¯ 0 where N is the nilpotent radical

of R and N1 0. This shows that the assumption that M is maximal in Theorem B is

necessary.
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Start by taking T¯F [X,Y ] where F is a field. Set M¯XT­YT. Then M is a

maximal ideal of T. Set

S¯ 0TT
M

T 1 ,
and V¯M

#
(XT ). Then V is a prime ideal of S. Identifying V* with the largest subset

of the quotient ring of S which left-multiplies V into S, we have

V*¯ 0X−"M

X−"T

X−"M

X−"T 1 ,
V*V¯ 0MT

M

T 1
and VV*¯M

#
(T ) so that 1 `VV*. Therefore V

S
is projective. Set

W¯ 0MT
M

T 1 ,
so that V*V¯W. Note that VXW and V(S}W )¯ 0.

Set

R¯ 0S0
S}W

S}W1
and

P¯ 0V0
S}W

S}W1 .
Then P is a non-idempotent prime ideal of R. We shall now show that P

R
is

projective. Let e
ij

denote the 2¬2 matrix with 1 in the (i, j )-position and zeros

elsewhere. Set U¯Pe
""

. Then U is a right ideal of R because V(S}W )¯ 0. Also

P¯UG e
"#

RG e
##

R. Thus, in order to show that P
R
is projective, it is enough to show

that U
R

is projective. It is straightforward to use a dual basis for V
S
to construct a dual

basis for U
R

(recall that V*V¯W so that f(V ) (S}W )¯ 0 for all f `V*). Therefore

P
R

is projective.

We have S}WFT}MFF, so that

N¯ 000
S}W

0 1 .
Hence N1 0 and PN¯ 0. Suppose that PnfNXPN for some positive integer n.

Then PnfN¯ 0. It is easy to check that NXPn, so that N¯ 0; this is a

contradiction. Therefore P does not have the left AR-property.

Thus if R is a Noetherian PI-ring and P is a non-idempotent right projective prime

ideal of R, we have shown that P is left localisable but we do not get some of

the stronger results which hold when P is a maximal ideal. Braun conjectures that if

P*(P)¯R then P satisfies the left AR-property. We further believe that such a P

contains a right regular element.
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Note added in proof, June 2001. A shorter proof of Theorem 3.10 can be given

using the reduced rank of the modules (MkN)
R
.
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