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Abstract

We propose a wide generalization of known results related to the telegraph process.
Functionals of the simple telegraph process on a straight line and their generalizations
on an arbitrary state space are studied.
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1. Motivation and problem settings

The aim of this paper is to study some examples of a continuous-time stochastic process
with deterministic behaviour between random switching times, the so-called piecewise
deterministic process with continuous paths.

Let (Ft)t≥0 be a filtration and let ε = (ε(t))t≥0 be an arbitrary measurable and adapted
process defined on (�,F ,Ft, P) with values in a finite space {1, . . . , N}. Let φ1, . . . , φN

be N deterministic flows in a phase space (G, G), where we assume that G is a topological
space and G is the Borel σ -algebra. Let {τn}n≥1 be the sequence of switching times of ε. The
piecewise deterministic process X is defined as

X(t) = φε(τn)(t), τn ≤ t < τn+1.

The family of piecewise deterministic processes was introduced in [4], and a subclass of
piecewise linear processes was first studied in [10]. This important class of random processes
was then thoroughly studied in [5]; see [11] for a modern presentation. Piecewise deterministic
processes are intensively exploited in biology [18], insurance [8], storage models [3], financial
market modelling [16], and in many other fields.

To simplify our presentation we restrict ourselves to switchings driven by a Markov process
with only two values (states). The simplest example of such a process is a piecewise linear
(telegraph) process based on the two-state Markov process ε = ε(t) ∈ {0, 1}:

T(t) = V(0)
∫ t

0
(− 1)N(τ ) dτ, t > 0, (1.1)
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Piecewise deterministic processes following two alternating patterns 1007

driven by a homogeneous Poisson process N = N(t). The value T(t) corresponds to the position
of a particle moving on the line with velocities −1 and +1 alternating at Poisson times. The
random starting velocity V(0) ∈ {−1, +1} is independent of N.

The theory of telegraph processes is well developed, beginning from [12]. Over the past few
decades, many generalizations of the telegraph process have been proposed in the literature
including motions characterized by arbitrary numbers of possible velocities [13], by random
velocities [24, 6], with velocity changes governed by an alternating renewal process (for
instance [7] or perturbed by jumps [23, 19]). See also the monograph [16] and the references
therein for full details on the telegraph process.

The classic telegraph model (1.1) can be easily generalized to the process T(t) of
inhomogeneous structure with velocities c0 and c1, c0 > c1, alternating with intensities λ0 and
λ1 respectively. The distribution of the random variable T(t) is given hereafter.

Let
fi(x, t; n) = P{T(t) ∈ dx, N(t) = n | ε(0) = i}/dx, n ≥ 1, i ∈ {0, 1},

be the density function of T(t)1{N(t)=n}. Note that

P{T(t) ∈ dx, N(t) = 0 | ε(0) = i} = e−λitδcit(dx), i ∈ {0, 1},
where δz(·) denotes Dirac’s delta-measure on a line throughout the paper.

Proposition 1.1. The distribution of T(t), t > 0, is described by

fi(x, t; n) = qi(ξ, t − ξ ; n)θ (ξ, t − ξ ),

ξ = ξ (x) = x − c1t

c0 − c1
, t − ξ = c0t − x

c0 − c1
.

(1.2)

Here, qi(ξ, η; n), i ∈ {0, 1}, n ≥ 1, are separately defined for even and odd n by the equalities

q0(ξ, η; 2k) = λk
0λ

k
1

(k − 1)!k!ξ
kηk−1, q1(ξ, η; 2k) = λk

0λ
k
1

(k − 1)!k!ξ
k−1ηk,

q0(ξ, η; 2k + 1) = λk+1
0 λk

1

k!2 ξ kηk, q1(ξ, η; 2k + 1) = λk
0λ

k+1
1

k!2 ξ kηk,

(1.3)

ξ, η > 0,

and

θ (ξ, η) := exp (− λ0ξ − λ1η)

c0 − c1
1{ξ>0, η>0}. (1.4)

For the proof, see, e.g., [16, Proposition 4.1]. In the following, Proposition 1.1 will be
generalized to the case of a piecewise linear process in an arbitrary linear normed space; see
Section 2.1.

The paper is structured as follows. In Section 2 piecewise deterministic flows are studied.
After recalling some elementary properties of basic deterministic flows, Section 2 is divided
into two main parts: Section 2.1 regarding the distribution of the telegraph process T(t), t ≥ 0,
in a normed vector space, and Section 2.2 where we study the time-homogeneous process
X defined as X(t) = �−1(�(x) +T(t)), t ≥ 0 (with � a continuous injection defined on the
state space of the process X). In Section 3 we present two examples: a one-dimensional (1D)
squared telegraph process and a two-dimensional process with alternating radial and circular
movements. In Section 4 some observations concerning self-similarity are presented.
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2. Piecewise deterministic flows

Consider the phase space (G, G) where G is a topological space with the Borel σ -algebra G.
For any fixed x ∈ G consider a continuous flow on G,

t → φ(t | x, s) ∈ G, t, s ∈ (−∞, ∞), t > s,

starting at time s from position x ∈ G: φ(t | x, s)|t↓s = x = φ(t | x, s)|s↑t. Assume that for any
s, t, s < t, the mapping x → φts(x) = φ(t | x, s), t > s, is a homeomorphism.

Assume that φts as well as the inverse mapping (the reverse flow) form a two-parameter
semigroup under composition; see, e.g., [11].

In the following we will study piecewise deterministic flows consistently switching between
two alternating patterns φ0(t | · ) and φ1(t | · ) at random times.

Let x denote the state of the process at initial time s, and let t > s. Consider two continuous
functions τ → g0(τ ), τ → g1(τ ), τ ∈ [s, t], which are defined by iterated superposition of these
two flows:

g0(τ ) = φ1(t | φ0(τ | x, s), τ ), g1(τ ) = φ0(t | φ1(τ | x, s), τ ), s ≤ τ ≤ t. (2.1)

These functions determine the pieces of continuous curves 0 = 0(x) and 1 = 1(x) on the
space G,

0 = {y ∈ G | y = g0(τ ), τ ∈ [s, t]}, 1 = {y ∈ G | y = g1(τ ), τ ∈ [s, t]}. (2.2)

For any target point y ∈ 0(x), the time τ ∗
0 (y; x) when the flow is switched from φ0 to φ1

exists and is unique. Indeed, the equation g0(τ ) = y has the unique solution τ = τ ∗
0 (y; x) ∈ [s, t].

Similarly, τ ∗
1 (y; x) ∈ [s, t], y ∈ 1(x), is defined as the root of the equation y = g1(τ ).

Further, the stochastic switching mechanism between two deterministic flows φ0 and φ1
is defined by a two-state random process ε = ε(t) ∈ {0, 1}, t ∈ (−∞, ∞), with independent
inter-switching times.

Let s ∈ (−∞, ∞) be the (fixed) starting time, and let τ s be the first switching time
after s, τ s > s. Denote by Fs

i (t) = Pi{τ s < t} = P{τ s < t | ε(s) = i} the (conditional) distribution
function of τ s under the given initial state ε(s) = i, i ∈ {0, 1}. That is,

P{ε(t′) = i for all t′ ∈ (s, t) | ε(s) = i} = 1 − Fs
i (t), t > s.

We study the marginal distributions of the piecewise deterministic continuous random walk
X=X(t) on the topological space G which follows two patterns φ0 and φ1 alternating at
switching times of ε. Let N = N(s, t) count the number of switches of ε(·) during the time
interval [s, t).

By conditioning on the first pattern’s switching, one can observe that the transition
probabilities Pi(A, t; n | x, s) := P{X(t) ∈ A, N(s, t) = n |X(s) = x, ε(s) = i}, n ≥ 0, i ∈ {0, 1}, of
X(t), t > s, satisfy the following coupled integral Chapman–Kolmogorov equations for t > s:⎧⎪⎪⎨⎪⎪⎩

P0( · , t; n | x, s) =
∫ t

s
P1( · , t; n − 1 | φ0(τ | x, s), τ ) dFs

0(τ ),

P1( · , t; n | x, s) =
∫ t

s
P0( · , t; n − 1 | φ1(τ | x, s), τ ) dFs

1(τ ),

n ≥ 1. (2.3)

The distribution of X(t) with no switchings till time t is given by

P0(A, t; 0 | x, s) = (1 − Fs
0(t)) δφ0(t|x,s)(A),

P1(A, t; 0 | x, s) = (1 − Fs
1(t)) δφ1(t|x,s)(A).

(2.4)
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In the following we consider in detail the Markovian case, that is,

Fs
i (t) = Pi{τ s < t} = 1 − e−λi(t−s), t ≥ s, i ∈ {0, 1},

with λ0, λ1 > 0.
We begin with the example of a random walk T(t) that follows a linear flow in a linear

normed space.

2.1. Piecewise linear processes in a linear normed space

Let V be a linear normed vector space and c0, c1 ∈ V , c0 �= c1. We consider the linear
time-homogeneous case, where T=T(t), t ≥ 0, is the piecewise linear process (the integrated
telegraph process) on the space V , switching between two linear flows

φ0(t | x, s) = x + tc0, φ1(t | x, s) = x + tc1.

The current position T(t) is given by

T(t) :=
∫ t

0
cε(τ ) dτ =

N(t)−1∑
n=0

cεn (τn+1 − τn) + cεN(t) (t − τN(t)), t ≥ 0, (2.5)

where τn, n ≥ 0, are the switching times, τ0 = 0, εn = ε(τn), n ≥ 0, and N(t) is the number of
switchings occurring till time t, t > 0, N(0) = 0.

The distribution of T(t), t > 0, is supported on the straight segment It ⊂ V ,

It = {z ∈ V | z = τc0 + (t − τ )c1, 0 ≤ τ ≤ t}. (2.6)

Indeed, for any z ∈ It, we have T(t) = z = τc0 + (t − τ )c1, where τ ∈ [0, t] is the time spent by
the underlying Markov process ε(u), 0 ≤ u ≤ t, in state 0.

Due to (2.3), the distribution densities

pT0 (z, t; n) := P{T(t) ∈ dz, N(t) = n | ε(0) = 0}/dz,

pT1 (z, t; n) := P{T(t) ∈ dz, N(t) = n | ε(0) = 1}/dz

follow the coupled integral equations⎧⎪⎪⎨⎪⎪⎩
pT0 (z, t; n) =

∫ t

0
λ0e−λ0τ pT1 (z − τc0, t − τ ; n − 1) dτ,

pT1 (z, t; n) =
∫ t

0
λ1e−λ1τ pT0 (z − τc1, t − τ ; n − 1) dτ,

n ≥ 1. (2.7)

The case of no switchings, corresponding to T(t)1N(t)=0, is given by

P{T(t) ∈ dz, N(t) = 0 | ε(0) = 0} = exp (− λ0t)δtc0 (dz)

= exp (− λ0t)δ(z − tc0)dz,

P{T(t) ∈ dz, N(t) = 0 | ε(0) = 1} = exp (− λ1t)δtc1 (dz)

= exp (− λ1t)δ(z − tc1)dz.

(2.8)

In the particular case of linearly dependent vectors c0, c1 ∈ V , c0, c1 �= 0, the random
process T=T(t) is one-dimensional and the distribution of T(t) is supported on the segment
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It of the straight line L with direction vector c0 (or c1), It ⊂ L ⊂ V . Moreover, the density
functions pT0 ( · , t; n) and pT1 ( · , t; n), n ≥ 1, coincide with functions f0( · , t; n) and f1( · , t;n);
see the formulae in (1.2) with ξ , 0 ≤ ξ ≤ t, defined by the equation z − tc1 = ξ (c0 − c1), z ∈ L.

In general, the segment It given in (2.6) floats in V (with constant velocity 1
2 (c0 + c1)).

By solving the equations in (2.7), the density functions pT0 (z, t; n) and pT1 (z, t; n), n ≥ 1, can
be shown to satisfy formulae similar to (1.2) with ξ ∈ [0, t], which is defined as the (unique)
solution ξ = ϕ(z, t) of the equation

z − tc1 = ξ (c0 − c1), z ∈ It. (2.9)

Proposition 2.1. The density functions pT0 (z, t; n) and pT1 (z, t; n), n ≥ 1, are given by
pTi (z, t; n) = qi(ξ, t − ξ ; n)θ (ξ, t − ξ ), where qi(ξ, η; n) are defined by (1.3), and the function
θ is

θ (ξ, η) := 1

‖c0 − c1‖ exp (− λ0ξ − λ1η)1{ξ>0,η>0}. (2.10)

Here, ξ = ϕ(z, t) ∈ [0, t], z ∈ It is the solution of (2.9) and η = t − ξ .

See the proof in Appendix B.

2.2. Time-homogeneous piecewise deterministic process X

Consider the time-homogeneous case, so that the deterministic pattern φ(t | x, s) depends on
s, t through t − s only. Assume that the flow φ is defined by

t → φ(t | x, s) = �−1(�(x) + c(t − s)), t ≥ s, (2.11)

where � : G → V is a continuous injective map from G to a topological vector space V and
c ∈ V is a constant. The reverse flow is defined by s → �−1(�(y) − c(t − s)), s ≤ t.

In the following we will use the shortened notation

φ(t; x) := φ(t | x, 0).

Remark 2.1. Let G =R
d, V =R

d, and � : Rd →R
d be a diffeomorphism. Therefore, the

trajectory of φ defined by (2.11) is differentiable, �(φ(t; x)) = �(x) + ct, and

d

dt
[�(φ(t; x))] ≡ c, t > 0.

This means that φ follows the differential equation

dφ(t; x)

dt
= a(φ(t; x)), t > 0, (2.12)

with the initial condition φ(t; x)|t↓0 = x, where a(y) = [�′(y)]−1c.
The mapping � acts as a rectifying diffeomorphism for equation (2.12); see [1].

In the case when the time-homogeneous flows φ0 and φ1 are defined by (2.11) with
c0, c1 ∈ V , c0 �= c1, and are characterized by a common rectifying mapping � : G → V , that is,

φ0(t | x, s) = �−1(�(x) + c0(t − s)), φ1(t | x, s) = �−1(�(x) + c1(t − s)), t ≥ s,
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FIGURE 1: Flows φ0( · ; x) and φ1( · ; x) with common mapping � : G → V; a sample path of Xx(t).

the mappings g0 and g1 defined by (2.1) become

g0(τ ) = �−1(�(x) + c0τ + c1(t − τ )), τ ∈ [0, t],

g1(τ ) = �−1(�(x) + c1τ + c0(t − τ )), τ ∈ [0, t].

Hence, the curves 0 and 1 defined in (2.2) identify

 := 0 = 1 = �−1(�(x) + It),

where It is the straight segment (2.6).
Let the time-homogeneous flows φ0 = φ0(t; x) and φ1 = φ1(t; x), 0 ≤ t < ∞, be defined

by (2.11) with a common diffeomorphism � : G → V from the open subset G of a linear
normed space into a linear normed space V , and with constant ‘velocities’ c0, c1 ∈ V , c0 �= c1.
Therefore, the corresponding piecewise deterministic time-homogeneous continuous process
X

x =X
x(t) ∈ G starting from point x is defined by

X
x(t) = �−1(�(x) +T(t)), 0 ≤ t < ∞; X

x(0) = x. (2.13)

Here, T=T(t), t ≥ 0, is the telegraph process defined by (2.5) with the two velocities c0, c1 ∈ V
alternating with switching intensities λ0, λ1 > 0.

For any fixed t > 0, the distribution of T(t) is supported on the straight segment It ⊂ V; see
Proposition 2.1. Hence, the distribution of Xx(t) is supported on the segment of the continuous
curve  = t,x,  ⊂ G,  = �−1(�(x) + It); see Figure 1.

Let pX0 (y, t; n | x) and pX1 (y, t; n | x) be the transition densities of X(t), t > s:

pXi (y, t; n | x) dy := P{Xx(t) ∈ dy, N(t) = n | ε(0) = i}, i ∈ {0, 1}, n = 0, 1, 2, . . .

In the case of no switchings, n = 0, by (2.4) we have

pX0 (y, t; 0 | x) = e−λ0tδ(y − φ0(t; x)), pX1 (y, t; 0 | x) = e−λ1tδ(y − φ1(t; x)).

Theorem 2.1. The transition densities pXi (y, t; n | x), n ≥ 1, for each positive t are given by
Proposition 2.1 with ξ = ϕ(�(y) − �(x), t), see (2.9), and with θ given by

θ = k(y) exp{−λ0ξ − λ1(t − ξ )}
= k(y) exp{−λ0ϕ(�(y) − �(x), t) − λ1(t − ϕ(�(y) − �(x), t))},

where k(y) = ‖�′(y)‖
‖c0 − c1‖1{y∈}.
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Further,
pX0 (y, t | x) = e−λ0tδ(y − φ0(t; x)) + θP0(ξ, t − ξ ; t),

pX1 (y, t | x) = e−λ1tδ(y − φ1(t; x)) + θP1(ξ, t − ξ ; t),
(2.14)

where
P0(ξ, η; t) = λ0I0(2

√
λ0λ1ξ ·η) + √

λ0λ1ξ/ηI1(2
√

λ0λ1ξ ·η),

P1(ξ, η; t) = λ1I0(2
√

λ0λ1ξ ·η) + √
λ0λ1η/ξ I1(2

√
λ0λ1ξ ·η).

(2.15)

Proof. By (2.13),

Pi{X(t) ∈ dy |X(0) = x} = Pi{�(x) +T(t) ∈ �(dy)}, i ∈ {0, 1}.
The proof follows from the result of Proposition 2.1. Summing over n one can
obtain (2.14). �

The next section is related to other examples.

3. Examples

3.1. Squared telegraph process

First, we present the important example of the squared telegraph process,

X(t) =X
x(t) = (

√
x + T(t))2, t > 0,

X
x(0) = x, where the underlying telegraph process T = T(t) is determined by velocities c0, c1,

c0 > c1, and switching intensities λ0, λ1 (see (1.1)). Such a process can be obtained by (2.13),
with �(x) = √

x, x ≥ 0.
Although x → �−1(x) = x2, x ∈ (−∞, ∞), is not a diffeomorphism, Theorem 2.1 can be

applied.
The density functions pi( · , t; n | x), n ≥ 1, of Xx(t) can be expressed using f0(x, t; n) and

f1(x, t; n) defined in (1.2)–(1.4). The explicit expressions for pi( · , t; n | x), n ≥ 1, are different
for the following four cases, defined by the four possible relationships between the parameters
and the time value t, t > 0.

(A) 0 ≤ √
x + c1t <

√
x + c0t:

The distribution of Xx(t) is supported on the segment

�A := [(
√

x + c1t)2, (
√

x + c0t)2] ⊂R
1+,

the equation (
√

x + z)2 = y, y ∈ �A, has the unique solution z = √
y − √

x, and

pi(y, t; n | x) = 1

2
√

y
fi(

√
y − √

x, t; n), n ≥ 1, i ∈ {0, 1}, y ∈ �A. (3.1)

(B)
√

x + c1t < 0 < −√
x − c1t ≤ √

x + c0t:

The distribution of Xx(t) is supported on

�B := [0, (
√

x + c0t)2] ⊂R
1+.
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For all y, 0 < y ≤ (
√

x + c1t)2, the equation (
√

x + z)2 = y has two roots z = ±√
y − √

x;
if (

√
x + c1t)2 < y ≤ (

√
x + c0t)2 this equation has the unique solution z = √

y − √
x

between c1t and c0t. Hence, for n ≥ 1, i ∈ {0, 1}, the density function pi(y, t; n | x) is
given by

1

2
√

y

{
fi(− √

y − √
x, t; n) + fi(

√
y − √

x, t; n), 0 < y < (
√

x + c1t)2,

fi(
√

y − √
x, t; n), (

√
x + c1t)2 < y ≤ (

√
x + c0t)2.

(3.2)

(C)
√

x + c1t ≤ −√
x − c0t < 0 <

√
x + c0t:

The distribution of Xx(t) is supported on

�C := [0, (
√

x + c1t)2] ⊂R
1+.

For all y, 0 < y ≤ (
√

x + c0t)2, the equation (
√

x + z)2 = y has two roots z = ±√
y − √

x;
if (

√
x + c0t)2 < y ≤ (

√
x + c1t)2, this equation has the unique solution z = −√

y − √
x

between c1t and c0t. Hence, for n ≥ 1, i ∈ {0, 1}, the density function pi(y, t; n | x) is
given by

1

2
√

y

{
fi(− √

y − √
x, t; n) + fi(

√
y − √

x, t; n), y < (
√

x + c0t)2,

fi(− √
y − √

x, t; n), (
√

x + c0t)2 < y ≤ (
√

x + c1t)2,

(3.3)
n ≥ 1, i ∈ {0, 1}.

(D)
√

x + c1t <
√

x + c0t ≤ 0:

The distribution of Xx(t) is supported on the segment

�D := [(
√

x + c0t)2, (
√

x + c1t)2] ⊂R
1+,

the equation (
√

x + z)2 = y, y ∈ �D, has the unique root z = −√
y − √

x. Thus

pi(y, t; n | x) = 1

2
√

y
fi(− √

y − √
x, t; n), n ≥ 1, i ∈ {0, 1}, y ∈ �D. (3.4)

As a result, the distribution of X(t) depends on the signs of velocities.
First, if both velocities are positive, c0 > c1 ≥ 0, then T(t) is a subordinator and the

distribution of Xx(t) = (
√

x + T(t))2 fits case (A).
Second, let c0 ≥ 0 > c1. For sufficiently small times, 0 < t ≤ √

x/(− c1), the value
√

x +
T(t) remains positive. Hence the density functions pi(y, t; n | x), i ∈ {0, 1}, are again given by
(3.1) (case (A)).

For large t the solution depends on the relation between c0 and |c1|.
If c0 + c1 < 0 and

√
x/(− c1) < t ≤ 2

√
x/(− c0 − c1) or c0 + c1 ≥ 0 and t >

√
x/(− c1),

then
√

x + c1t < 0 < −√
x − c1t <

√
x + c0t, which corresponds to case (B). Hence, the

formula (3.2) holds.
If c0 + c1 < 0 and t ≥ 2

√
x/(− c0 − c1), then

√
x + c1t < −√

x − c0t < 0 <
√

x + c0t,
which is case (C), and (3.3) holds.
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Third, let both velocities be negative, 0 > c0 > c1. The distribution of X
x(t) is given

separately for the different time intervals:

0 < t ≤ √
x/(− c1) �⇒ case (A) and formula (3.1);√

x/(− c1) < t ≤ 2
√

x/(− c0 − c1) �⇒ case (B) and formula (3.2);

2
√

x/(− c0 − c1) ≤ t <
√

x/(− c0) �⇒ case (C) and formula (3.3);

t >
√

x/(− c0) �⇒ case (D) and formula (3.4).

If t = 2
√

x/(− c0 − c1) (with c0 + c1 < 0), case (B) coincides with case (C) and

pi(y, t; n | x) = 1

2
√

y
[ fi(− √

y − √
x, t; n) + fi(

√
y − √

x, t; n)], 0 < y < (
√

x + c1t)2.

A slightly different approach is given in [20].

3.2. Process in the plane and polar coordinates

The piecewise deterministic process in the plane has been studied in the past in various
contexts [9, 14, 15, 21, 22]. Here we present an example of planar motion in the spirit of our
construction (2.13).

Let �(x) = (r(x), α(x)), x = (x1, x2) ∈R
2, x �= 0, be the operator setting the polar coordi-

nates r(x) = |x| =
√

x2
1 + x2

2 > 0 and α(x) ∈ S1 for any x = (x1, x2) ∈R
2, x �= 0. The mapping

� is the (local) diffeomorphism from R
2 \ {0} to the semi-cylinder (0, +∞) × S1.

Let J : C→R
2 be defined by

J (z) = (r cos (α), r sin (α))�, z = reiα ∈C.

Consider the two basic deterministic flows φ0(t; x) and φ1(t; x) defined by (2.13) with c =
c0 = (c0, 0)� and c = c1 = (0, c1)� respectively. Here, c0 > 0 is the velocity of a radial flight
and c1 > 0 is the constant angular velocity.

The flow
φ0(t; x) = r̂c0t(x) = x + c0tx/|x| = (1 + c0t/|x|)x

is the radial movement starting from point x ∈R
2, x �= 0, and the flow φ1(t; x) is the circular

motion defined by rotation of x:

φ1(t; x) = ω̂c1t(x) =J (r(x)ei(α+c1t)), t ≥ 0.

The process X
x is defined by the radial-circular motion, switching from radial to circular

motion with intensity λ0 and vice versa with intensity λ1.
The distribution of Xx(t) is supported on the segment  = (t, x) of the Archimedean spiral,

y ∈ (t, x) (Figure 2),{
y1 = (r(x) + c0τ ) cos (α(x) + c1(t − τ )),

y2 = (r(x) + c0τ ) sin (α(x) + c1(t − τ )),
τ ∈ [0, t]. (3.5)

Let ξ = ξ (x, y) = |y| − |x|
c0

, y ∈ (t, x), be the total time of radial motion, 0 ≤ ξ ≤ t, such

that the remaining time, t − ξ , is the total time of circular motion.
From Theorem 2.1, the density functions pi(y, t; n | x) of Xx(t) are given by

pi(y, t; n | x) dy = qi(ξ, t − ξ ; n)θ (x, y)δ(dy), i ∈ {0, 1}, n ≥ 1, (3.6)
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FIGURE 2: The support of the distribution of X(t): the Archimedean spiral (x, t) defined by (3.5) with
x = (10, 0), c0 = 2, c1 = 3, and time t = 10.

where

θ (x, y) = |y|√
c2

0 + c2
1

exp (− λ0ξ − λ1(t − ξ )),

and qi(ξ, η; n) are defined by (1.3). If there are no switchings, we have

p0(y, t; 0 | x) = e−λ0tδ( y − r̂c0t(x)),

p1(y, t; 0 | x) = e−λ1tδ( y − ω̂c1t(x)).

Here,

r̂c0t(x) = x
(

1 + c0t
x
|x|

)
is the radial displacement and ω̂α(x) denotes the rotation of x.

The density functions pi(y, t | x), i ∈ {0, 1}, y ∈ (x, t), can be obtained by summing up in
(3.6) similarly to (2.14) and (2.15); see Figure 3.

4. Self-similarity

The process Xx =X
x(t) ∈R

1+ is called positive self-similar if there exists a constant γ > 0
such that, for any x > 0 and R > 0,

R ·Xx(R−γ t) is equal in law to X
Rx(t), t ≥ 0; (4.1)

see the definition in [17, Chapter 13].
The following theorem characterizes piecewise deterministic positive (1D) self-similar

processes.

Theorem 4.1. Let X
x =X

x(t) ∈R
1+, x > 0, be the positive piecewise deterministic time-

homogeneous process with two alternating patterns φ0, φ1 based on a common rectifying
diffeomorphism �, (2.13), such that φ0 = �−1(�(x) + c0t) and φ1 = �−1(�(x) + c1t) with
c0, c1 > 0.

The process Xx is positive self-similar with index γ > 0 if and only if the underlying patterns
are given by �(x) = xγ , x ∈R

1+.
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FIGURE 3: The regular part of the density function p0( · , 10 | x) with c0 = c1 = 1, λ0 = λ1 = 2, and the
initial point x = (1, 1).

Proof. Let Xx be the piecewise deterministic time-homogeneous process based on the two
patterns

φi(t; x) = (xγ + cit)
1/γ , t ≥ 0, x > 0, i ∈ {0, 1}, (4.2)

with c0, c1 > 0.
Note that the flows φi(t; x), i ∈ {0, 1}, defined by (4.2) satisfy the scaling relation

φi(R
−γ t; R−1x) = R−1φi(t; x), x > 0, t ≥ 0, i ∈ {0, 1}. (4.3)

Moreover, under the time scaling t → R−γ t the switching intensities are transformed as

λ0 → Rγ λ0, λ1 → Rγ λ1. (4.4)

Therefore, the piecewise deterministic process X
x(t), t ≥ 0, which follows the patterns (4.2),

switching from one to another with alternating intensities λ0, λ1, is the positive self-similar
continuous process with index γ , (4.1).

Note that this can also be verified by using explicit formulae for the distribution. Let
�(x) = xγ , x > 0. Under the space–time scaling x → R−1x, t → R−γ t the variable
ξ = ϕ(�(y) − �(x), t), (2.9), used in Theorem 2.1, is transformed as ξ → R−γ ξ . Hence,
by Theorem 2.1 and Equations (4.4) and (4.3), the transition densities pXi ( · , t; n | x) satisfy
the relation

R−1pXi (R−1y, R−γ t, n | R−1x)|λ0→Rγ λ0, λ1→Rγ λ1 ≡ pXi (y, t, n | x), n ≥ 0, t > 0.

The same is fulfilled for pXi (y, t | x):

R−1pXi (R−1y, R−γ t | R−1x)|λ0→Rγ λ0, λ1→Rγ λ1 ≡ pXi (y, t | x),

i ∈ {0, 1}, which corresponds to (4.1).
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To prove the inverse assertion note that by definition (4.1) (with x ↓ 0) one can see that the
underlying patterns satisfy

φi(t; 0) = (cit)
1/γ ,

where ci = φi(1; 0)γ > 0.
Due to the semi-group property φi(t − s; φi(0; s)) = φi(t; 0), we have

φi(t − s; (cis)1/γ ) = (cit)
1/γ , 0 < s < t.

Hence,
φi(t − xγ /ci; x) = (cit)

1/γ .

Therefore (under the shift t → t + xγ /ci) we have

φi(t; x) = (xγ + cit)
1/γ . �

Remark 4.1. If the ‘velocities’ c0, c1 are positive, the process X
x is a subordinator (defined

for all t ≥ 0).
In the case of a negative velocity the process X

x is defined until hitting zero at time ζ x =
inf{t > 0 | Xx(t) = 0} = inf{t > 0 | T(t) = −xγ }. The distribution of ζ x is known explicitly; see,
e.g., [2].

Remark 4.2. Consider the time-homogeneous process X
x determined by the alternating

patterns φ0, φ1 with common diffeomorphism �(x) = ex, x ∈R
1:

φi(t; x) = log (ex + cit), t ≥ 0, ex + cit > 0, i ∈ {0, 1}.
If c0, c1 ≥ 0, the process Xx(t) is defined for all t ≥ 0. In the case of negative ci the process is
killed and sent to the cemetery state −∞ at time t∗ = inf{t > 0 |T(t) = −ex}, where T(t) is the
respective telegraph process.

The process Xx(t) possesses the property of additive self-similarity: under time scaling the
process takes a spatial shift,

X
x−R(e−Rt) is equal in law to X

x(t) − R.

Indeed, under transformations t → e−Rt and x → x − R the switching intensities are
transformed as λ0 → eRλ0, λ1 → eRλ1, and ξ → e−Rξ . By Theorem 2.1, the distributions of
X

x−R(e−Rt) and X
x(t) − R coincide.

Appendix A. The auxiliary result

Lemma A.1. Let z ∈ It be fixed, and ξ = ϕ(z, t), 0 ≤ ξ ≤ t, be the (unique) solution of the
equation z − tc1 = ξ (c0 − c1), (2.9). Then z − c0τ ∈ It−τ and z − c1τ ∈ It−τ for sufficiently
small τ , τ > 0.

Further, for all z ∈ It the solution ξ = ϕ(z, t) of (2.9) satisfies the following identities:

ϕ(z − c0τ, t − τ ) ≡ ξ − τ if τ ∈ [0, ξ ],

ϕ(z − c1τ, t − τ ) ≡ ξ if τ ∈ [0, t − ξ ].
(A.1)

Proof. By substitution of z − c0τ and z − c1τ with z and t − τ with t into (2.9) one can
obtain

z − c0τ = ξ̃c0 + (t − τ − ξ̃ )c1, ξ̃ = ϕ(z − c0τ, t − τ ), (A.2)
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and
z − c1τ = ξ̃c0 + (t − τ − ξ̃ )c1, ξ̃ = ϕ(z − c1τ, t − τ ). (A.3)

Equation (A.2) is satisfied by ξ̃ = ξ − τ if τ ≤ ξ , and (A.3) is satisfied by ξ̃ = ξ if τ ≤ t − ξ .
Further, note that, by definition, z − c0τ /∈ It−τ if τ > ξ and z − c1τ /∈ It−τ if τ > t − ξ .

Hence, the lemma is proved. �

Appendix B. Proof of Proposition 2.1

System (2.7), n = 1, and (2.8) give the density functions pT0 (z, t; 1) and pT1 (z, t; 1). Indeed,

pT0 (z, t; 1) =
∫ t

0
λ0e−λ0τ e−λ1(t−τ )δ(z − τc0 − (t − τ )c1) dτ

= λ0

‖c0 − c1‖ exp (− λ0ξ − λ1(t − ξ ))1{0<ξ<t}

= λ0θ (ξ, t − ξ ),

where ξ = ϕ(z, t), ξ ∈ (0, t), is the solution of (2.9). Similarly, pT1 (z, t; 1) = λ1θ (ξ, t − ξ ). This
corresponds to (1.2), n = 1, with qi(ξ, η; 1) defined by (1.3) (k = 0) and θ defined by (2.10).

By recalling Lemma A.1 in Appendix A and (2.10),

e−λ0τ θ (ϕ(z − c0τ, t − τ ), t − τ − ϕ(z − c0τ, t − τ )) = e−λ0τ θ (̃ξ, t − τ − ξ̃ )
∣∣̃
ξ=ξ−τ

≡ θ (ξ, t − ξ )1{τ<ξ},
e−λ1τ θ (ϕ(z − c1τ, t − τ ), t − τ − ϕ(z − c1τ, t − τ )) = e−λ1τ θ (̃ξ, t − τ − ξ̃ )

∣∣̃
ξ=ξ

≡ θ (ξ, t − ξ )1{τ<t−ξ}.

(B.1)

Moreover, by applying (A.1) and (B.1) one can obtain the following identities, which are
sufficient to finish the proof:∫ t

0
e−λ0τ ϕ(z − c0τ, t − τ )m(t − τ − ϕ(z − c0τ, t − τ ))k

× θ (ϕ(z − c0τ, t − τ ), t − τ − ϕ(z − c0τ, t − τ )) dτ

= θ (ξ, t − ξ )
∫ ξ

0
(ϕ(z, t) − τ )m(t − ϕ(z, t))k dτ = θ (ξ, t − ξ )

ξm+1

m + 1
(t − ξ )k,

∫ t

0
e−λ1τ ϕ(z − c1τ, t − τ )m(t − τ − ϕ(z − c1τ, t − τ ))k

× θ (ϕ(z − c1τ, t − τ ), t − τ − ϕ(z − c1τ, t − τ )) dτ

= θ (ξ, t − ξ )
∫ t−ξ

0
ϕ(z, t)m(t − τ − ϕ(z, t))k dτ = θ (ξ, t − ξ )ξm (t − ξ )k+1

k + 1
,

ξ = ϕ(z, t); cf. [16, Chapter 4].

Acknowledgements

We express our thanks to the referees for useful comments that helped to improve the paper.
A.D.C. and B.M. are members of the research group GNCS of INdAM.

https://doi.org/10.1017/jpr.2019.58 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.58


Piecewise deterministic processes following two alternating patterns 1019

References

[1] ARNOLD, V. I. (1992). Ordinary Differential Equations. Springer, Berlin.
[2] BOGACHEV, L. AND RATANOV, N. (2011). Occupation time distributions for the telegraph process. Stoch.

Process. Appl. 121, 1816–1844.
[3] BOXMA, O., KASPI, H., KELLA, O. AND PERRY, D. (2005). On/off storage systems with state-dependent

input, output and switching rates. Probab. Engrg. Inform. Sci. 19, 1–14.
[4] DAVIS, M. H. A. (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion

stochastic models. J. R. Statist. Soc. B, 46, 353–388.
[5] DAVIS, M. H. A. (1993). Markov Models and Optimization. Chapman & Hall, London.
[6] DE GREGORIO, A. (2010). Stochastic velocity motions and processes with random time. Adv. Appl. Prob. 42,

1028–1056.
[7] DI CRESCENZO, A. AND MARTINUCCI B. (2010). A damped telegraph random process with logistic stationary

distribution. J. Appl. Prob. 47, 84–96.
[8] EMBRECHTS, P. AND SCHMIDLI, H (1994). Ruin estimation for a general insurance risk model. Adv. Appl.

Prob. 26, 404–422.
[9] GARRA, R., ORSINGHER, E. AND RATANOV, N. (2017). Planar piecewise linear random motions with jumps.

Math. Meth. Appl. Sci. 40, 7673–7685.
[10] GNEDENKO, B. V. AND KOVALENKO, I. N. (1989). Introduction to Queueing Theory, 2nd edn. Birkhaüser,

Boston.
[11] JACOBSEN, M. (2006). Point Process Theory and Applications. Marked Point and Piecewise Deterministic

Processes. Birkhäuser, Boston.
[12] KAC, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4, 497–509.
[13] KOLESNIK, A. D. (1998). The equations of Markovian random evolution on the line. J. Appl. Prob. 35, 27–35.
[14] KOLESNIK, A. D. (2007). A note on planar random motion at finite speed. J. Appl. Prob. 44, 838–842.
[15] KOLESNIK, A. D. AND ORSINGHER, E. (2005) A planar random motion with an infinite number of directions

controlled by the damped wave equation. J. Appl. Prob. 42, b1168–1182.
[16] KOLESNIK, A. D. AND RATANOV, N. (2013). Telegraph Processes and Option Pricing. Springer, Heidelberg.
[17] KYPRIANOU, A. E. (2014). Fluctuations of Lévy Processes with Applications. Introductory lectures, 2nd edn.

Springer, Heidelberg.
[18] LASOTA, A., MACKEY, M. C. AND TYRCHA, J. (1992). The statistical dynamics of recurrent biological

events. J. Math. Biol. 30, 775–800.
[19] LÓPEZ, O. AND RATANOV, N. (2012). Option pricing driven by a telegraph process with random jumps.

J. Appl. Prob. 49, 838–849.
[20] MARTINUCCI, B. AND MEOLI, A. (2019). On certain functionals of squared telegraph processes. Stoch.

Dynam. Available at https://doi.org/10.1142/S0219493720500057.
[21] ORSINGHER, E. (2000). Exact joint distribution in a model of planar random motion. Stoch. Stoch. Rep. 69,

1–10.
[22] ORSINGHER, E. AND RATANOV, N. (2002) Planar random motions with drift. J. Appl. Math. Stoch. Anal. 15,

189–205.
[23] RATANOV, N. (2007). Jump telegraph processes and financial markets with memory. J. Appl. Math. Stoch. Anal.

2007, 72326.
[24] STADJE, W. AND ZACKS, S. (2004). Telegraph processes with random velocities. J. Appl. Prob. 41, 665–678.

https://doi.org/10.1017/jpr.2019.58 Published online by Cambridge University Press

https://doi.org/10.1142/S0219493720500057
https://doi.org/10.1017/jpr.2019.58

	Motivation and problem settings
	Piecewise deterministic flows
	Piecewise linear processes in a linear normed space
	Time-homogeneous piecewise deterministic process X

	Examples
	Squared telegraph process
	Process in the plane and polar coordinates

	Self-similarity
	The auxiliary result
	Proof of Proposition 2.1
	References

