PIECEWISE DETERMINISTIC PROCESSES FOLLOWING TWO ALTERNATING PATTERNS

NIKITA RATANOV,*** Universidad del Rosario
ANTONIO DI CRESCENZO,******* AND
BARBARA MARTINUCCI, ${ }^{* * * * * * * *}$ Università di Salerno

Abstract

We propose a wide generalization of known results related to the telegraph process. Functionals of the simple telegraph process on a straight line and their generalizations on an arbitrary state space are studied.

Keywords: Telegraph process; rectifying diffeomorphism
2010 Mathematics Subject Classification: Primary 60J25
Secondary 60K15; 60K99

1. Motivation and problem settings

The aim of this paper is to study some examples of a continuous-time stochastic process with deterministic behaviour between random switching times, the so-called piecewise deterministic process with continuous paths.

Let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be a filtration and let $\varepsilon=(\varepsilon(t))_{t \geq 0}$ be an arbitrary measurable and adapted process defined on ($\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathrm{P}$) with values in a finite space $\{1, \ldots, N\}$. Let $\phi_{1}, \ldots, \phi_{N}$ be N deterministic flows in a phase space (G, \mathcal{G}), where we assume that G is a topological space and \mathcal{G} is the Borel σ-algebra. Let $\left\{\tau_{n}\right\}_{n \geq 1}$ be the sequence of switching times of ε. The piecewise deterministic process \mathbb{X} is defined as

$$
\mathbb{X}(t)=\phi_{\varepsilon\left(\tau_{n}\right)}(t), \quad \tau_{n} \leq t<\tau_{n+1} .
$$

The family of piecewise deterministic processes was introduced in [4], and a subclass of piecewise linear processes was first studied in [10]. This important class of random processes was then thoroughly studied in [5]; see [11] for a modern presentation. Piecewise deterministic processes are intensively exploited in biology [18], insurance [8], storage models [3], financial market modelling [16], and in many other fields.

To simplify our presentation we restrict ourselves to switchings driven by a Markov process with only two values (states). The simplest example of such a process is a piecewise linear (telegraph) process based on the two-state Markov process $\varepsilon=\varepsilon(t) \in\{0,1\}$:

$$
\begin{equation*}
T(t)=V(0) \int_{0}^{t}(-1)^{N(\tau)} \mathrm{d} \tau, \quad t>0, \tag{1.1}
\end{equation*}
$$

[^0]driven by a homogeneous Poisson process $N=N(t)$. The value $T(t)$ corresponds to the position of a particle moving on the line with velocities -1 and +1 alternating at Poisson times. The random starting velocity $V(0) \in\{-1,+1\}$ is independent of N.

The theory of telegraph processes is well developed, beginning from [12]. Over the past few decades, many generalizations of the telegraph process have been proposed in the literature including motions characterized by arbitrary numbers of possible velocities [13], by random velocities [24,6], with velocity changes governed by an alternating renewal process (for instance [7] or perturbed by jumps [23, 19]). See also the monograph [16] and the references therein for full details on the telegraph process.

The classic telegraph model (1.1) can be easily generalized to the process $T(t)$ of inhomogeneous structure with velocities c_{0} and $c_{1}, c_{0}>c_{1}$, alternating with intensities λ_{0} and λ_{1} respectively. The distribution of the random variable $T(t)$ is given hereafter.

Let

$$
f_{i}(x, t ; n)=\mathrm{P}\{T(t) \in \mathrm{d} x, N(t)=n \mid \varepsilon(0)=i\} / \mathrm{d} x, \quad n \geq 1, i \in\{0,1\},
$$

be the density function of $T(t) \mathbf{1}_{\{N(t)=n\}}$. Note that

$$
\mathrm{P}\{T(t) \in \mathrm{d} x, N(t)=0 \mid \varepsilon(0)=i\}=\mathrm{e}^{-\lambda_{i} t} \delta_{c_{i} t}(\mathrm{~d} x), \quad i \in\{0,1\}
$$

where $\delta_{z}(\cdot)$ denotes Dirac's delta-measure on a line throughout the paper.
Proposition 1.1. The distribution of $T(t), t>0$, is described by

$$
\begin{gather*}
f_{i}(x, t ; n)=q_{i}(\xi, t-\xi ; n) \theta(\xi, t-\xi), \\
\xi=\xi(x)=\frac{x-c_{1} t}{c_{0}-c_{1}}, \quad t-\xi=\frac{c_{0} t-x}{c_{0}-c_{1}} . \tag{1.2}
\end{gather*}
$$

Here, $q_{i}(\xi, \eta ; n), i \in\{0,1\}, n \geq 1$, are separately defined for even and odd n by the equalities

$$
\begin{array}{ll}
q_{0}(\xi, \eta ; 2 k)=\frac{\lambda_{0}^{k} \lambda_{1}^{k}}{(k-1)!k!} \xi^{k} \eta^{k-1}, & q_{1}(\xi, \eta ; 2 k)=\frac{\lambda_{0}^{k} \lambda_{1}^{k}}{(k-1)!k!} \xi^{k-1} \eta^{k}, \\
q_{0}(\xi, \eta ; 2 k+1)=\frac{\lambda_{0}^{k+1} \lambda_{1}^{k}}{k!^{2}} \xi^{k} \eta^{k}, & q_{1}(\xi, \eta ; 2 k+1)=\frac{\lambda_{0}^{k} \lambda_{1}^{k+1}}{k!^{2}} \xi^{k} \eta^{k},
\end{array}
$$

$$
\xi, \eta>0
$$

and

$$
\begin{equation*}
\theta(\xi, \eta):=\frac{\exp \left(-\lambda_{0} \xi-\lambda_{1} \eta\right)}{c_{0}-c_{1}} \mathbf{1}_{\{\xi>0, \eta>0\}} \tag{1.4}
\end{equation*}
$$

For the proof, see, e.g., [16, Proposition 4.1]. In the following, Proposition 1.1 will be generalized to the case of a piecewise linear process in an arbitrary linear normed space; see Section 2.1.

The paper is structured as follows. In Section 2 piecewise deterministic flows are studied. After recalling some elementary properties of basic deterministic flows, Section 2 is divided into two main parts: Section 2.1 regarding the distribution of the telegraph process $\mathbb{T}(t), t \geq 0$, in a normed vector space, and Section 2.2 where we study the time-homogeneous process \mathbb{X} defined as $\mathbb{X}(t)=\Phi^{-1}(\Phi(x)+\mathbb{T}(t)), t \geq 0$ (with Φ a continuous injection defined on the state space of the process \mathbb{X}). In Section 3 we present two examples: a one-dimensional (1D) squared telegraph process and a two-dimensional process with alternating radial and circular movements. In Section 4 some observations concerning self-similarity are presented.

2. Piecewise deterministic flows

Consider the phase space (G, \mathcal{G}) where G is a topological space with the Borel σ-algebra \mathcal{G}. For any fixed $x \in G$ consider a continuous flow on G,

$$
t \rightarrow \phi(t \mid x, s) \in G, \quad t, s \in(-\infty, \infty), t>s
$$

starting at time s from position $x \in G:\left.\phi(t \mid x, s)\right|_{t \downarrow s}=x=\left.\phi(t \mid x, s)\right|_{s \uparrow t}$. Assume that for any $s, t, s<t$, the mapping $x \rightarrow \phi^{t s}(x)=\phi(t \mid x, s), t>s$, is a homeomorphism.

Assume that $\phi^{t s}$ as well as the inverse mapping (the reverse flow) form a two-parameter semigroup under composition; see, e.g., [11].

In the following we will study piecewise deterministic flows consistently switching between two alternating patterns $\phi_{0}(t \mid \cdot)$ and $\phi_{1}(t \mid \cdot)$ at random times.

Let x denote the state of the process at initial time s, and let $t>s$. Consider two continuous functions $\tau \rightarrow g_{0}(\tau), \tau \rightarrow g_{1}(\tau), \tau \in[s, t]$, which are defined by iterated superposition of these two flows:

$$
\begin{equation*}
g_{0}(\tau)=\phi_{1}\left(t \mid \phi_{0}(\tau \mid x, s), \tau\right), \quad g_{1}(\tau)=\phi_{0}\left(t \mid \phi_{1}(\tau \mid x, s), \tau\right), \quad s \leq \tau \leq t . \tag{2.1}
\end{equation*}
$$

These functions determine the pieces of continuous curves $\ell_{0}=\ell_{0}(x)$ and $\ell_{1}=\ell_{1}(x)$ on the space G,

$$
\begin{equation*}
\ell_{0}=\left\{y \in G \mid y=g_{0}(\tau), \tau \in[s, t]\right\}, \quad \ell_{1}=\left\{y \in G \mid y=g_{1}(\tau), \tau \in[s, t]\right\} \tag{2.2}
\end{equation*}
$$

For any target point $y \in \ell_{0}(x)$, the time $\tau_{0}^{*}(y ; x)$ when the flow is switched from ϕ_{0} to ϕ_{1} exists and is unique. Indeed, the equation $g_{0}(\tau)=y$ has the unique solution $\tau=\tau_{0}^{*}(y ; x) \in[s, t]$. Similarly, $\tau_{1}^{*}(y ; x) \in[s, t], y \in \ell_{1}(x)$, is defined as the root of the equation $y=g_{1}(\tau)$.

Further, the stochastic switching mechanism between two deterministic flows ϕ_{0} and ϕ_{1} is defined by a two-state random process $\varepsilon=\varepsilon(t) \in\{0,1\}, t \in(-\infty, \infty)$, with independent inter-switching times.

Let $s \in(-\infty, \infty)$ be the (fixed) starting time, and let τ^{s} be the first switching time after $s, \tau^{s}>s$. Denote by $F_{i}^{s}(t)=\mathrm{P}_{i}\left\{\tau^{s}<t\right\}=\mathrm{P}\left\{\tau^{s}<t \mid \varepsilon(s)=i\right\}$ the (conditional) distribution function of τ^{s} under the given initial state $\varepsilon(s)=i, i \in\{0,1\}$. That is,

$$
\mathrm{P}\left\{\varepsilon\left(t^{\prime}\right)=i \text { for all } t^{\prime} \in(s, t) \mid \varepsilon(s)=i\right\}=1-F_{i}^{S}(t), \quad t>s
$$

We study the marginal distributions of the piecewise deterministic continuous random walk $\mathbb{X}=\mathbb{X}(t)$ on the topological space G which follows two patterns ϕ_{0} and ϕ_{1} alternating at switching times of ε. Let $N=N(s, t)$ count the number of switches of $\varepsilon(\cdot)$ during the time interval [s, t).

By conditioning on the first pattern's switching, one can observe that the transition probabilities $P_{i}(A, t ; n \mid x, s):=\mathrm{P}\{\mathbb{X}(t) \in A, N(s, t)=n \mid \mathbb{X}(s)=x, \varepsilon(s)=i\}, n \geq 0, i \in\{0,1\}$, of $\mathbb{X}(t), t>s$, satisfy the following coupled integral Chapman-Kolmogorov equations for $t>s$:

$$
\begin{cases}P_{0}(\cdot, t ; n \mid x, s)=\int_{s}^{t} P_{1}\left(\cdot, t ; n-1 \mid \phi_{0}(\tau \mid x, s), \tau\right) \mathrm{d} F_{0}^{s}(\tau), \tag{2.3}\\ P_{1}(\cdot, t ; n \mid x, s)=\int_{s}^{t} P_{0}\left(\cdot, t ; n-1 \mid \phi_{1}(\tau \mid x, s), \tau\right) \mathrm{d} F_{1}^{s}(\tau), & n \geq 1\end{cases}
$$

The distribution of $\mathbb{X}(t)$ with no switchings till time t is given by

$$
\begin{align*}
& P_{0}(A, t ; 0 \mid x, s)=\left(1-F_{0}^{s}(t)\right) \delta_{\phi_{0}(t \mid x, s)}(A), \\
& P_{1}(A, t ; 0 \mid x, s)=\left(1-F_{1}^{s}(t)\right) \delta_{\phi_{1}(t \mid x, s)}(A) . \tag{2.4}
\end{align*}
$$

In the following we consider in detail the Markovian case, that is,

$$
F_{i}^{s}(t)=\mathrm{P}_{i}\left\{\tau^{s}<t\right\}=1-\mathrm{e}^{-\lambda_{i}(t-s)}, \quad t \geq s, i \in\{0,1\},
$$

with $\lambda_{0}, \lambda_{1}>0$.
We begin with the example of a random walk $\mathbb{T}(t)$ that follows a linear flow in a linear normed space.

2.1. Piecewise linear processes in a linear normed space

Let V be a linear normed vector space and $c_{0}, c_{1} \in V, c_{0} \neq c_{1}$. We consider the linear time-homogeneous case, where $\mathbb{T}=\mathbb{T}(t), t \geq 0$, is the piecewise linear process (the integrated telegraph process) on the space V, switching between two linear flows

$$
\phi_{0}(t \mid x, s)=x+t c_{0}, \quad \phi_{1}(t \mid x, s)=x+t c_{1}
$$

The current position $\mathbb{T}(t)$ is given by

$$
\begin{equation*}
\mathbb{T}(t):=\int_{0}^{t} c_{\varepsilon(\tau)} \mathrm{d} \tau=\sum_{n=0}^{N(t)-1} c_{\varepsilon_{n}}\left(\tau_{n+1}-\tau_{n}\right)+c_{\varepsilon_{N(t)}}\left(t-\tau_{N(t)}\right), \quad t \geq 0 \tag{2.5}
\end{equation*}
$$

where $\tau_{n}, n \geq 0$, are the switching times, $\tau_{0}=0, \varepsilon_{n}=\varepsilon\left(\tau_{n}\right), n \geq 0$, and $N(t)$ is the number of switchings occurring till time $t, t>0, N(0)=0$.

The distribution of $\mathbb{T}(t), t>0$, is supported on the straight segment $I_{t} \subset V$,

$$
\begin{equation*}
I_{t}=\left\{z \in V \mid z=\tau c_{0}+(t-\tau) c_{1}, \quad 0 \leq \tau \leq t\right\} \tag{2.6}
\end{equation*}
$$

Indeed, for any $z \in I_{t}$, we have $\mathbb{T}(t)=z=\tau c_{0}+(t-\tau) c_{1}$, where $\tau \in[0, t]$ is the time spent by the underlying Markov process $\varepsilon(u), 0 \leq u \leq t$, in state 0 .

Due to (2.3), the distribution densities

$$
\begin{aligned}
& p_{0}^{\mathbb{T}}(z, t ; n):=\mathrm{P}\{\mathbb{T}(t) \in \mathrm{d} z, N(t)=n \mid \varepsilon(0)=0\} / \mathrm{d} z, \\
& p_{1}^{\mathbb{T}}(z, t ; n):=\mathrm{P}\{\mathbb{T}(t) \in \mathrm{d} z, N(t)=n \mid \varepsilon(0)=1\} / \mathrm{d} z
\end{aligned}
$$

follow the coupled integral equations

$$
\left\{\begin{array}{l}
p_{0}^{\mathbb{T}}(z, t ; n)=\int_{0}^{t} \lambda_{0} \mathrm{e}^{-\lambda_{0} \tau} p_{1}^{\mathbb{T}}\left(z-\tau c_{0}, t-\tau ; n-1\right) \mathrm{d} \tau, \tag{2.7}\\
p_{1}^{\mathbb{T}}(z, t ; n)=\int_{0}^{t} \lambda_{1} \mathrm{e}^{-\lambda_{1} \tau} p_{0}^{\mathbb{T}}\left(z-\tau c_{1}, t-\tau ; n-1\right) \mathrm{d} \tau,
\end{array} \quad n \geq 1 .\right.
$$

The case of no switchings, corresponding to $\mathbb{T}(t) \mathbf{1}_{N(t)=0}$, is given by

$$
\begin{align*}
\mathrm{P}\{\mathbb{T}(t) \in \mathrm{d} z, N(t)=0 \mid \varepsilon(0)=0\} & =\exp \left(-\lambda_{0} t\right) \delta_{t c_{0}}(\mathrm{~d} z) \\
& =\exp \left(-\lambda_{0} t\right) \delta\left(z-t c_{0}\right) \mathrm{d} z \tag{2.8}\\
\mathrm{P}\{\mathbb{T}(t) \in \mathrm{d} z, N(t)=0 \mid \varepsilon(0)=1\} & =\exp \left(-\lambda_{1} t\right) \delta_{t c_{1}}(\mathrm{~d} z) \\
& =\exp \left(-\lambda_{1} t\right) \delta\left(z-t c_{1}\right) \mathrm{d} z .
\end{align*}
$$

In the particular case of linearly dependent vectors $c_{0}, c_{1} \in V, c_{0}, c_{1} \neq 0$, the random process $\mathbb{T}=\mathbb{T}(t)$ is one-dimensional and the distribution of $\mathbb{T}(t)$ is supported on the segment
I_{t} of the straight line L with direction vector c_{0} (or c_{1}), $I_{t} \subset L \subset V$. Moreover, the density functions $p_{0}^{\mathbb{T}}(\cdot, t ; n)$ and $p_{1}^{\mathbb{T}}(\cdot, t ; n), n \geq 1$, coincide with functions $f_{0}(\cdot, t ; n)$ and $f_{1}(\cdot, t ; n)$; see the formulae in (1.2) with $\xi, 0 \leq \xi \leq t$, defined by the equation $z-t c_{1}=\xi\left(c_{0}-c_{1}\right), z \in L$.

In general, the segment I_{t} given in (2.6) floats in V (with constant velocity $\frac{1}{2}\left(c_{0}+c_{1}\right)$). By solving the equations in (2.7), the density functions $p_{0}^{\mathbb{T}}(z, t ; n)$ and $p_{1}^{\mathbb{T}}(z, t ; n), n \geq 1$, can be shown to satisfy formulae similar to (1.2) with $\xi \in[0, t]$, which is defined as the (unique) solution $\xi=\varphi(z, t)$ of the equation

$$
\begin{equation*}
z-t c_{1}=\xi\left(c_{0}-c_{1}\right), \quad z \in I_{t} . \tag{2.9}
\end{equation*}
$$

Proposition 2.1. The density functions $p_{0}^{\mathbb{T}}(z, t ; n)$ and $p_{1}^{\mathbb{T}}(z, t ; n), n \geq 1$, are given by $p_{i}^{\mathbb{T}}(z, t ; n)=q_{i}(\xi, t-\xi ; n) \theta(\xi, t-\xi)$, where $q_{i}(\xi, \eta ; n)$ are defined by (1.3), and the function θ is

$$
\begin{equation*}
\theta(\xi, \eta):=\frac{1}{\left\|c_{0}-c_{1}\right\|} \exp \left(-\lambda_{0} \xi-\lambda_{1} \eta\right) \mathbf{1}_{\{\xi>0, \eta>0\}} \tag{2.10}
\end{equation*}
$$

Here, $\xi=\varphi(z, t) \in[0, t], z \in I_{t}$ is the solution of (2.9) and $\eta=t-\xi$.
See the proof in Appendix B.

2.2. Time-homogeneous piecewise deterministic process \mathbb{X}

Consider the time-homogeneous case, so that the deterministic pattern $\phi(t \mid x, s)$ depends on s, t through $t-s$ only. Assume that the flow ϕ is defined by

$$
\begin{equation*}
t \rightarrow \phi(t \mid x, s)=\Phi^{-1}(\Phi(x)+c(t-s)), \quad t \geq s \tag{2.11}
\end{equation*}
$$

where $\Phi: G \rightarrow V$ is a continuous injective map from G to a topological vector space V and $c \in V$ is a constant. The reverse flow is defined by $s \rightarrow \Phi^{-1}(\Phi(y)-c(t-s)), s \leq t$.

In the following we will use the shortened notation

$$
\phi(t ; x):=\phi(t \mid x, 0)
$$

Remark 2.1. Let $G=\mathbb{R}^{d}, V=\mathbb{R}^{d}$, and $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a diffeomorphism. Therefore, the trajectory of ϕ defined by (2.11) is differentiable, $\Phi(\phi(t ; x))=\Phi(x)+c t$, and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[\Phi(\phi(t ; x))] \equiv c, \quad t>0 .
$$

This means that ϕ follows the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} \phi(t ; x)}{\mathrm{d} t}=a(\phi(t ; x)), \quad t>0 \tag{2.12}
\end{equation*}
$$

with the initial condition $\left.\phi(t ; x)\right|_{t \downarrow 0}=x$, where $a(y)=\left[\Phi^{\prime}(y)\right]^{-1} c$.
The mapping Φ acts as a rectifying diffeomorphism for equation (2.12); see [1].
In the case when the time-homogeneous flows ϕ_{0} and ϕ_{1} are defined by (2.11) with $c_{0}, c_{1} \in V, c_{0} \neq c_{1}$, and are characterized by a common rectifying mapping $\Phi: G \rightarrow V$, that is,

$$
\phi_{0}(t \mid x, s)=\Phi^{-1}\left(\Phi(x)+c_{0}(t-s)\right), \quad \phi_{1}(t \mid x, s)=\Phi^{-1}\left(\Phi(x)+c_{1}(t-s)\right), \quad t \geq s
$$

Figure 1: Flows $\phi_{0}(\cdot ; x)$ and $\phi_{1}(\cdot ; x)$ with common mapping $\Phi: G \rightarrow V$; a sample path of $\mathbb{X}^{x}(t)$.
the mappings g_{0} and g_{1} defined by (2.1) become

$$
\begin{array}{ll}
g_{0}(\tau)=\Phi^{-1}\left(\Phi(x)+c_{0} \tau+c_{1}(t-\tau)\right), & \tau \in[0, t], \\
g_{1}(\tau)=\Phi^{-1}\left(\Phi(x)+c_{1} \tau+c_{0}(t-\tau)\right), & \tau \in[0, t] .
\end{array}
$$

Hence, the curves ℓ_{0} and ℓ_{1} defined in (2.2) identify

$$
\ell:=\ell_{0}=\ell_{1}=\Phi^{-1}\left(\Phi(x)+I_{t}\right),
$$

where I_{t} is the straight segment (2.6).
Let the time-homogeneous flows $\phi_{0}=\phi_{0}(t ; x)$ and $\phi_{1}=\phi_{1}(t ; x), 0 \leq t<\infty$, be defined by (2.11) with a common diffeomorphism $\Phi: G \rightarrow V$ from the open subset G of a linear normed space into a linear normed space V, and with constant 'velocities' $c_{0}, c_{1} \in V, c_{0} \neq c_{1}$. Therefore, the corresponding piecewise deterministic time-homogeneous continuous process $\mathbb{X}^{x}=\mathbb{X}^{x}(t) \in G$ starting from point x is defined by

$$
\begin{equation*}
\mathbb{X}^{x}(t)=\Phi^{-1}(\Phi(x)+\mathbb{T}(t)), \quad 0 \leq t<\infty ; \quad \mathbb{X}^{x}(0)=x \tag{2.13}
\end{equation*}
$$

Here, $\mathbb{T}=\mathbb{T}(t), t \geq 0$, is the telegraph process defined by (2.5) with the two velocities $c_{0}, c_{1} \in V$ alternating with switching intensities $\lambda_{0}, \lambda_{1}>0$.

For any fixed $t>0$, the distribution of $\mathbb{T}(t)$ is supported on the straight segment $I_{t} \subset V$; see Proposition 2.1. Hence, the distribution of $\mathbb{X}^{x}(t)$ is supported on the segment of the continuous curve $\ell=\ell_{t, x}, \ell \subset G, \ell=\Phi^{-1}\left(\Phi(x)+I_{t}\right)$; see Figure 1 .

Let $p_{0}^{\mathbb{X}}(y, t ; n \mid x)$ and $p_{1}^{\mathbb{X}}(y, t ; n \mid x)$ be the transition densities of $\mathbb{X}(t), t>s$:

$$
p_{i}^{\mathbb{X}}(y, t ; n \mid x) \mathrm{d} y:=\mathrm{P}\left\{\mathbb{X}^{x}(t) \in \mathrm{d} y, N(t)=n \mid \varepsilon(0)=i\right\}, \quad i \in\{0,1\}, n=0,1,2, \ldots
$$

In the case of no switchings, $n=0$, by (2.4) we have

$$
p_{0}^{\mathbb{X}}(y, t ; 0 \mid x)=\mathrm{e}^{-\lambda_{0} t} \delta\left(y-\phi_{0}(t ; x)\right), \quad p_{1}^{\mathbb{X}}(y, t ; 0 \mid x)=\mathrm{e}^{-\lambda_{1} t} \delta\left(y-\phi_{1}(t ; x)\right) .
$$

Theorem 2.1. The transition densities $p_{i}^{\mathbb{X}}(y, t ; n \mid x), n \geq 1$, for each positive t are given by Proposition 2.1 with $\xi=\varphi(\Phi(y)-\Phi(x), t)$, see (2.9), and with θ given by

$$
\begin{aligned}
\theta & =k(y) \exp \left\{-\lambda_{0} \xi-\lambda_{1}(t-\xi)\right\} \\
& =k(y) \exp \left\{-\lambda_{0} \varphi(\Phi(y)-\Phi(x), t)-\lambda_{1}(t-\varphi(\Phi(y)-\Phi(x), t))\right\},
\end{aligned}
$$

where $k(y)=\frac{\left\|\Phi^{\prime}(y)\right\|}{\left\|c_{0}-c_{1}\right\|} \mathbf{1}_{\{y \in \ell\}}$.

Further,

$$
\begin{align*}
& p_{0}^{\mathbb{X}}(y, t \mid x)=\mathrm{e}^{-\lambda_{0} t} \delta\left(y-\phi_{0}(t ; x)\right)+\theta \mathcal{P}_{0}(\xi, t-\xi ; t), \\
& p_{1}^{\mathbb{X}}(y, t \mid x)=\mathrm{e}^{-\lambda_{1} t} \delta\left(y-\phi_{1}(t ; x)\right)+\theta \mathcal{P}_{1}(\xi, t-\xi ; t), \tag{2.14}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{P}_{0}(\xi, \eta ; t)=\lambda_{0} I_{0}\left(2 \sqrt{\lambda_{0} \lambda_{1} \xi \cdot \eta}\right)+\sqrt{\lambda_{0} \lambda_{1} \xi / \eta} I_{1}\left(2 \sqrt{\lambda_{0} \lambda_{1} \xi \cdot \eta}\right), \\
& \mathcal{P}_{1}(\xi, \eta ; t)=\lambda_{1} I_{0}\left(2 \sqrt{\lambda_{0} \lambda_{1} \xi \cdot \eta}\right)+\sqrt{\lambda_{0} \lambda_{1} \eta / \xi} I_{1}\left(2 \sqrt{\lambda_{0} \lambda_{1} \xi \cdot \eta}\right) . \tag{2.15}
\end{align*}
$$

Proof. By (2.13),

$$
\mathrm{P}_{i}\{\mathbb{X}(t) \in \mathrm{d} y \mid \mathbb{X}(0)=x\}=\mathrm{P}_{i}\{\Phi(x)+\mathbb{T}(t) \in \Phi(\mathrm{d} y)\}, \quad i \in\{0,1\}
$$

The proof follows from the result of Proposition 2.1. Summing over n one can obtain (2.14).

The next section is related to other examples.

3. Examples

3.1. Squared telegraph process

First, we present the important example of the squared telegraph process,

$$
\mathbb{X}(t)=\mathbb{X}^{x}(t)=(\sqrt{x}+T(t))^{2}, \quad t>0,
$$

$\mathbb{X}^{x}(0)=x$, where the underlying telegraph process $T=T(t)$ is determined by velocities c_{0}, c_{1}, $c_{0}>c_{1}$, and switching intensities λ_{0}, λ_{1} (see (1.1)). Such a process can be obtained by (2.13), with $\Phi(x)=\sqrt{x}, x \geq 0$.

Although $x \rightarrow \Phi^{-1}(x)=x^{2}, x \in(-\infty, \infty)$, is not a diffeomorphism, Theorem 2.1 can be applied.

The density functions $p_{i}(\cdot, t ; n \mid x), n \geq 1$, of $\mathbb{X}^{x}(t)$ can be expressed using $f_{0}(x, t ; n)$ and $f_{1}(x, t ; n)$ defined in (1.2)-(1.4). The explicit expressions for $p_{i}(\cdot, t ; n \mid x), n \geq 1$, are different for the following four cases, defined by the four possible relationships between the parameters and the time value $t, t>0$.
(A) $0 \leq \sqrt{x}+c_{1} t<\sqrt{x}+c_{0} t$:

The distribution of $\mathbb{X}^{x}(t)$ is supported on the segment

$$
\Delta_{\mathrm{A}}:=\left[\left(\sqrt{x}+c_{1} t\right)^{2},\left(\sqrt{x}+c_{0} t\right)^{2}\right] \subset \mathbb{R}_{+}^{1}
$$

the equation $(\sqrt{x}+z)^{2}=y, y \in \Delta_{\mathrm{A}}$, has the unique solution $z=\sqrt{y}-\sqrt{x}$, and

$$
\begin{equation*}
p_{i}(y, t ; n \mid x)=\frac{1}{2 \sqrt{y}} f_{i}(\sqrt{y}-\sqrt{x}, t ; n), \quad n \geq 1, i \in\{0,1\}, y \in \Delta_{\mathrm{A}} \tag{3.1}
\end{equation*}
$$

(B) $\sqrt{x}+c_{1} t<0<-\sqrt{x}-c_{1} t \leq \sqrt{x}+c_{0} t$:

The distribution of $\mathbb{X}^{x}(t)$ is supported on

$$
\Delta_{\mathrm{B}}:=\left[0,\left(\sqrt{x}+c_{0} t\right)^{2}\right] \subset \mathbb{R}_{+}^{1}
$$

For all $y, 0<y \leq\left(\sqrt{x}+c_{1} t\right)^{2}$, the equation $(\sqrt{x}+z)^{2}=y$ has two roots $z= \pm \sqrt{y}-\sqrt{x}$; if $\left(\sqrt{x}+c_{1} t\right)^{2}<y \leq\left(\sqrt{x}+c_{0} t\right)^{2}$ this equation has the unique solution $z=\sqrt{y}-\sqrt{x}$ between $c_{1} t$ and $c_{0} t$. Hence, for $n \geq 1, i \in\{0,1\}$, the density function $p_{i}(y, t ; n \mid x)$ is given by

$$
\frac{1}{2 \sqrt{y}} \begin{cases}f_{i}(-\sqrt{y}-\sqrt{x}, t ; n)+f_{i}(\sqrt{y}-\sqrt{x}, t ; n), & 0<y<\left(\sqrt{x}+c_{1} t\right)^{2} \tag{3.2}\\ f_{i}(\sqrt{y}-\sqrt{x}, t ; n), & \left(\sqrt{x}+c_{1} t\right)^{2}<y \leq\left(\sqrt{x}+c_{0} t\right)^{2}\end{cases}
$$

(C) $\sqrt{x}+c_{1} t \leq-\sqrt{x}-c_{0} t<0<\sqrt{x}+c_{0} t$:

The distribution of $\mathbb{X}^{x}(t)$ is supported on

$$
\Delta_{\mathrm{C}}:=\left[0,\left(\sqrt{x}+c_{1} t\right)^{2}\right] \subset \mathbb{R}_{+}^{1}
$$

For all $y, 0<y \leq\left(\sqrt{x}+c_{0} t\right)^{2}$, the equation $(\sqrt{x}+z)^{2}=y$ has two roots $z= \pm \sqrt{y}-\sqrt{x}$; if $\left(\sqrt{x}+c_{0} t\right)^{2}<y \leq\left(\sqrt{x}+c_{1} t\right)^{2}$, this equation has the unique solution $z=-\sqrt{y}-\sqrt{x}$ between $c_{1} t$ and $c_{0} t$. Hence, for $n \geq 1, i \in\{0,1\}$, the density function $p_{i}(y, t ; n \mid x)$ is given by

$$
\frac{1}{2 \sqrt{y}} \begin{cases}f_{i}(-\sqrt{y}-\sqrt{x}, t ; n)+f_{i}(\sqrt{y}-\sqrt{x}, t ; n), & y<\left(\sqrt{x}+c_{0} t\right)^{2} \tag{3.3}\\ f_{i}(-\sqrt{y}-\sqrt{x}, t ; n), & \left(\sqrt{x}+c_{0} t\right)^{2}<y \leq\left(\sqrt{x}+c_{1} t\right)^{2}\end{cases}
$$

$$
n \geq 1, \quad i \in\{0,1\}
$$

(D) $\sqrt{x}+c_{1} t<\sqrt{x}+c_{0} t \leq 0$:

The distribution of $\mathbb{X}^{x}(t)$ is supported on the segment

$$
\Delta_{\mathrm{D}}:=\left[\left(\sqrt{x}+c_{0} t\right)^{2},\left(\sqrt{x}+c_{1} t\right)^{2}\right] \subset \mathbb{R}_{+}^{1}
$$

the equation $(\sqrt{x}+z)^{2}=y, y \in \Delta_{\mathrm{D}}$, has the unique root $z=-\sqrt{y}-\sqrt{x}$. Thus

$$
\begin{equation*}
p_{i}(y, t ; n \mid x)=\frac{1}{2 \sqrt{y}} f_{i}(-\sqrt{y}-\sqrt{x}, t ; n), \quad n \geq 1, i \in\{0,1\}, y \in \Delta_{\mathrm{D}} \tag{3.4}
\end{equation*}
$$

As a result, the distribution of $\mathbb{X}(t)$ depends on the signs of velocities.
First, if both velocities are positive, $c_{0}>c_{1} \geq 0$, then $T(t)$ is a subordinator and the distribution of $\mathbb{X}^{x}(t)=(\sqrt{x}+T(t))^{2}$ fits case (A).

Second, let $c_{0} \geq 0>c_{1}$. For sufficiently small times, $0<t \leq \sqrt{x} /\left(-c_{1}\right)$, the value $\sqrt{x}+$ $T(t)$ remains positive. Hence the density functions $p_{i}(y, t ; n \mid x), i \in\{0,1\}$, are again given by (3.1) (case (A)).

For large t the solution depends on the relation between c_{0} and $\left|c_{1}\right|$.
If $c_{0}+c_{1}<0$ and $\sqrt{x} /\left(-c_{1}\right)<t \leq 2 \sqrt{x} /\left(-c_{0}-c_{1}\right)$ or $c_{0}+c_{1} \geq 0$ and $t>\sqrt{x} /\left(-c_{1}\right)$, then $\sqrt{x}+c_{1} t<0<-\sqrt{x}-c_{1} t<\sqrt{x}+c_{0} t$, which corresponds to case (B). Hence, the formula (3.2) holds.

If $c_{0}+c_{1}<0$ and $t \geq 2 \sqrt{x} /\left(-c_{0}-c_{1}\right)$, then $\sqrt{x}+c_{1} t<-\sqrt{x}-c_{0} t<0<\sqrt{x}+c_{0} t$, which is case (C), and (3.3) holds.

Third, let both velocities be negative, $0>c_{0}>c_{1}$. The distribution of $\mathbb{X}^{x}(t)$ is given separately for the different time intervals:

$$
\begin{aligned}
0<t \leq \sqrt{x} /\left(-c_{1}\right) & \Longrightarrow \text { case (A) and formula (3.1); } \\
\sqrt{x} /\left(-c_{1}\right)<t \leq 2 \sqrt{x} /\left(-c_{0}-c_{1}\right) & \Longrightarrow \text { case (B) and formula (3.2); } \\
2 \sqrt{x} /\left(-c_{0}-c_{1}\right) \leq t<\sqrt{x} /\left(-c_{0}\right) & \Longrightarrow \text { case (C) and formula (3.3); } \\
t>\sqrt{x} /\left(-c_{0}\right) & \Longrightarrow \text { case (D) and formula (3.4) }
\end{aligned}
$$

If $t=2 \sqrt{x} /\left(-c_{0}-c_{1}\right)$ (with $c_{0}+c_{1}<0$), case (B) coincides with case (C) and $p_{i}(y, t ; n \mid x)=\frac{1}{2 \sqrt{y}}\left[f_{i}(-\sqrt{y}-\sqrt{x}, t ; n)+f_{i}(\sqrt{y}-\sqrt{x}, t ; n)\right], 0<y<\left(\sqrt{x}+c_{1} t\right)^{2}$.

A slightly different approach is given in [20].

3.2. Process in the plane and polar coordinates

The piecewise deterministic process in the plane has been studied in the past in various contexts $[9,14,15,21,22]$. Here we present an example of planar motion in the spirit of our construction (2.13).

Let $\Phi(\boldsymbol{x})=(r(\boldsymbol{x}), \alpha(\boldsymbol{x})), \boldsymbol{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \boldsymbol{x} \neq \mathbf{0}$, be the operator setting the polar coordinates $r(\boldsymbol{x})=|\boldsymbol{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}}>0$ and $\alpha(\boldsymbol{x}) \in S^{1}$ for any $\boldsymbol{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \boldsymbol{x} \neq \mathbf{0}$. The mapping Φ is the (local) diffeomorphism from $\mathbb{R}^{2} \backslash\{\boldsymbol{0}\}$ to the semi-cylinder $(0,+\infty) \times S^{1}$.

Let $\mathcal{J}: \mathbb{C} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\mathcal{J}(z)=(r \cos (\alpha), r \sin (\alpha))^{\top}, \quad z=r \mathrm{e}^{\mathrm{i} \alpha} \in \mathbb{C}
$$

Consider the two basic deterministic flows $\phi_{0}(t ; \boldsymbol{x})$ and $\phi_{1}(t ; \boldsymbol{x})$ defined by (2.13) with $\boldsymbol{c}=$ $\boldsymbol{c}_{0}=\left(c_{0}, 0\right)^{\top}$ and $\boldsymbol{c}=\boldsymbol{c}_{1}=\left(0, c_{1}\right)^{\top}$ respectively. Here, $c_{0}>0$ is the velocity of a radial flight and $c_{1}>0$ is the constant angular velocity.

The flow

$$
\left.\phi_{0}(t ; \boldsymbol{x})=\widehat{r}_{c_{0} t} t \boldsymbol{x}\right)=\boldsymbol{x}+c_{0} t \boldsymbol{x} /|\boldsymbol{x}|=\left(1+c_{0} t /|\boldsymbol{x}|\right) \boldsymbol{x}
$$

is the radial movement starting from point $\boldsymbol{x} \in \mathbb{R}^{2}, \boldsymbol{x} \neq \mathbf{0}$, and the flow $\phi_{1}(t ; \boldsymbol{x})$ is the circular motion defined by rotation of \boldsymbol{x} :

$$
\phi_{1}(t ; \boldsymbol{x})=\widehat{\omega}_{c_{1} t}(\boldsymbol{x})=\mathcal{J}\left(r(\boldsymbol{x}) \mathrm{e}^{\mathrm{i}\left(\alpha+c_{1} t\right)}\right), \quad t \geq 0 .
$$

The process \mathbb{X}^{x} is defined by the radial-circular motion, switching from radial to circular motion with intensity λ_{0} and vice versa with intensity λ_{1}.

The distribution of $\mathbb{X}^{x}(t)$ is supported on the segment $\ell=\ell(t, \boldsymbol{x})$ of the Archimedean spiral, $\boldsymbol{y} \in \ell(t, \boldsymbol{x})$ (Figure 2),

$$
\left\{\begin{array}{l}
y_{1}=\left(r(\boldsymbol{x})+c_{0} \tau\right) \cos \left(\alpha(\boldsymbol{x})+c_{1}(t-\tau)\right), \tag{3.5}\\
y_{2}=\left(r(\boldsymbol{x})+c_{0} \tau\right) \sin \left(\alpha(\boldsymbol{x})+c_{1}(t-\tau)\right),
\end{array} \quad \tau \in[0, t]\right.
$$

Let $\xi=\xi(\boldsymbol{x}, \boldsymbol{y})=\frac{|\boldsymbol{y}|-|\boldsymbol{x}|}{c_{0}}, \boldsymbol{y} \in \ell(t, \boldsymbol{x})$, be the total time of radial motion, $0 \leq \xi \leq t$, such that the remaining time, $t-\xi$, is the total time of circular motion.

From Theorem 2.1, the density functions $p_{i}(\boldsymbol{y}, t ; n \mid \boldsymbol{x})$ of $\mathbb{X}^{\boldsymbol{x}}(t)$ are given by

$$
\begin{equation*}
p_{i}(\boldsymbol{y}, t ; n \mid \boldsymbol{x}) \mathrm{d} \boldsymbol{y}=q_{i}(\xi, t-\xi ; n) \theta(\boldsymbol{x}, \boldsymbol{y}) \delta_{\ell}(\mathrm{d} \boldsymbol{y}), \quad i \in\{0,1\}, n \geq 1 \tag{3.6}
\end{equation*}
$$

Figure 2: The support of the distribution of $\mathbb{X}(t)$: the Archimedean spiral $\ell(\boldsymbol{x}, t)$ defined by (3.5) with

$$
\boldsymbol{x}=(10,0), c_{0}=2, c_{1}=3, \text { and time } t=10
$$

where

$$
\theta(\boldsymbol{x}, \boldsymbol{y})=\frac{|\boldsymbol{y}|}{\sqrt{c_{0}^{2}+c_{1}^{2}}} \exp \left(-\lambda_{0} \xi-\lambda_{1}(t-\xi)\right)
$$

and $q_{i}(\xi, \eta ; n)$ are defined by (1.3). If there are no switchings, we have

$$
\begin{aligned}
& p_{0}(\boldsymbol{y}, t ; 0 \mid \boldsymbol{x})=\mathrm{e}^{-\lambda_{0} t} \delta\left(\boldsymbol{y}-\widehat{r}_{c_{0} t}(\boldsymbol{x})\right), \\
& p_{1}(\boldsymbol{y}, t ; 0 \mid \boldsymbol{x})=\mathrm{e}^{-\lambda_{1} t} \delta\left(\boldsymbol{y}-\widehat{\omega}_{c_{1} t}(\boldsymbol{x})\right) .
\end{aligned}
$$

Here,

$$
\widehat{r}_{c_{0} t}(x)=x\left(1+c_{0} t \frac{x}{|x|}\right)
$$

is the radial displacement and $\widehat{\omega}_{\alpha}(\boldsymbol{x})$ denotes the rotation of \boldsymbol{x}.
The density functions $p_{i}(\boldsymbol{y}, t \mid \boldsymbol{x}), i \in\{0,1\}, \boldsymbol{y} \in \ell(\boldsymbol{x}, t)$, can be obtained by summing up in (3.6) similarly to (2.14) and (2.15); see Figure 3.

4. Self-similarity

The process $\mathbb{X}^{x}=\mathbb{X}^{x}(t) \in \mathbb{R}_{+}^{1}$ is called positive self-similar if there exists a constant $\gamma>0$ such that, for any $x>0$ and $R>0$,

$$
\begin{equation*}
R \cdot \mathbb{X}^{x}\left(R^{-\gamma} t\right) \text { is equal in law to } \mathbb{X}^{R x}(t), \quad t \geq 0 \tag{4.1}
\end{equation*}
$$

see the definition in [17, Chapter 13].
The following theorem characterizes piecewise deterministic positive (1D) self-similar processes.
Theorem 4.1. Let $\mathbb{X}^{x}=\mathbb{X}^{x}(t) \in \mathbb{R}_{+}^{1}, x>0$, be the positive piecewise deterministic timehomogeneous process with two alternating patterns ϕ_{0}, ϕ_{1} based on a common rectifying diffeomorphism Φ, (2.13), such that $\phi_{0}=\Phi^{-1}\left(\Phi(x)+c_{0} t\right)$ and $\phi_{1}=\Phi^{-1}\left(\Phi(x)+c_{1} t\right)$ with $c_{0}, c_{1}>0$.

The process \mathbb{X}^{x} is positive self-similar with index $\gamma>0$ if and only if the underlying patterns are given by $\Phi(x)=x^{\gamma}, x \in \mathbb{R}_{+}^{1}$.

Figure 3: The regular part of the density function $p_{0}(\cdot, 10 \mid \boldsymbol{x})$ with $c_{0}=c_{1}=1, \lambda_{0}=\lambda_{1}=2$, and the initial point $\boldsymbol{x}=(1,1)$.

Proof. Let \mathbb{X}^{x} be the piecewise deterministic time-homogeneous process based on the two patterns

$$
\begin{equation*}
\phi_{i}(t ; x)=\left(x^{\gamma}+c_{i} t\right)^{1 / \gamma}, \quad t \geq 0, x>0, i \in\{0,1\} \tag{4.2}
\end{equation*}
$$

with $c_{0}, c_{1}>0$.
Note that the flows $\phi_{i}(t ; x), i \in\{0,1\}$, defined by (4.2) satisfy the scaling relation

$$
\begin{equation*}
\phi_{i}\left(R^{-\gamma} t ; R^{-1} x\right)=R^{-1} \phi_{i}(t ; x), \quad x>0, t \geq 0, i \in\{0,1\} \tag{4.3}
\end{equation*}
$$

Moreover, under the time scaling $t \rightarrow R^{-\gamma} t$ the switching intensities are transformed as

$$
\begin{equation*}
\lambda_{0} \rightarrow R^{\gamma} \lambda_{0}, \quad \lambda_{1} \rightarrow R^{\gamma} \lambda_{1} \tag{4.4}
\end{equation*}
$$

Therefore, the piecewise deterministic process $\mathbb{X}^{x}(t), t \geq 0$, which follows the patterns (4.2), switching from one to another with alternating intensities λ_{0}, λ_{1}, is the positive self-similar continuous process with index γ, (4.1).

Note that this can also be verified by using explicit formulae for the distribution. Let $\Phi(x)=x^{\gamma}, x>0$. Under the space-time scaling $x \rightarrow R^{-1} x, t \rightarrow R^{-\gamma} t$ the variable $\xi=\varphi(\Phi(y)-\Phi(x), t)$, (2.9), used in Theorem 2.1, is transformed as $\xi \rightarrow R^{-\gamma} \xi$. Hence, by Theorem 2.1 and Equations (4.4) and (4.3), the transition densities $p_{i}^{\mathbb{X}}(\cdot, t ; n \mid x)$ satisfy the relation

$$
\left.R^{-1} p_{i}^{\mathbb{X}}\left(R^{-1} y, R^{-\gamma} t, n \mid R^{-1} x\right)\right|_{\lambda_{0} \rightarrow R^{\gamma} \lambda_{0}, \lambda_{1} \rightarrow R^{\gamma} \lambda_{1}} \equiv p_{i}^{\mathbb{X}}(y, t, n \mid x), \quad n \geq 0, t>0
$$

The same is fulfilled for $p_{i}^{\mathbb{X}}(y, t \mid x)$:

$$
\left.R^{-1} p_{i}^{\mathbb{X}}\left(R^{-1} y, R^{-\gamma} t \mid R^{-1} x\right)\right|_{\lambda_{0} \rightarrow R^{\gamma} \lambda_{0}, \lambda_{1} \rightarrow R^{\gamma} \lambda_{1}} \equiv p_{i}^{\mathbb{X}}(y, t \mid x),
$$

$i \in\{0,1\}$, which corresponds to (4.1).

To prove the inverse assertion note that by definition (4.1) (with $x \downarrow 0$) one can see that the underlying patterns satisfy

$$
\phi_{i}(t ; 0)=\left(c_{i} t\right)^{1 / \gamma}
$$

where $c_{i}=\phi_{i}(1 ; 0)^{\gamma}>0$.
Due to the semi-group property $\phi_{i}\left(t-s ; \phi_{i}(0 ; s)\right)=\phi_{i}(t ; 0)$, we have

$$
\phi_{i}\left(t-s ;\left(c_{i} s\right)^{1 / \gamma}\right)=\left(c_{i} t\right)^{1 / \gamma}, \quad 0<s<t
$$

Hence,

$$
\phi_{i}\left(t-x^{\gamma} / c_{i} ; x\right)=\left(c_{i} t\right)^{1 / \gamma}
$$

Therefore (under the shift $t \rightarrow t+x^{\gamma} / c_{i}$) we have

$$
\phi_{i}(t ; x)=\left(x^{\gamma}+c_{i} t\right)^{1 / \gamma}
$$

Remark 4.1. If the 'velocities' c_{0}, c_{1} are positive, the process \mathbb{X}^{x} is a subordinator (defined for all $t \geq 0$).

In the case of a negative velocity the process \mathbb{X}^{x} is defined until hitting zero at time $\zeta^{x}=$ $\inf \left\{t>0 \mid X^{x}(t)=0\right\}=\inf \left\{t>0 \mid T(t)=-x^{\gamma}\right\}$. The distribution of ζ^{x} is known explicitly; see, e.g., [2].

Remark 4.2. Consider the time-homogeneous process \mathbb{X}^{x} determined by the alternating patterns ϕ_{0}, ϕ_{1} with common diffeomorphism $\Phi(x)=\mathrm{e}^{x}, x \in \mathbb{R}^{1}$:

$$
\phi_{i}(t ; x)=\log \left(\mathrm{e}^{x}+c_{i} t\right), \quad t \geq 0, \mathrm{e}^{x}+c_{i} t>0, i \in\{0,1\} .
$$

If $c_{0}, c_{1} \geq 0$, the process $\mathbb{X}^{x}(t)$ is defined for all $t \geq 0$. In the case of negative c_{i} the process is killed and sent to the cemetery state $-\infty$ at time $t_{*}=\inf \left\{t>0 \mid \mathbb{T}(t)=-\mathrm{e}^{x}\right\}$, where $\mathbb{T}(t)$ is the respective telegraph process.

The process $\mathbb{X}^{x}(t)$ possesses the property of additive self-similarity: under time scaling the process takes a spatial shift,

$$
\mathbb{X}^{x-R}\left(\mathrm{e}^{-R} t\right) \text { is equal in law to } \mathbb{X}^{x}(t)-R
$$

Indeed, under transformations $t \rightarrow \mathrm{e}^{-R} t$ and $x \rightarrow x-R$ the switching intensities are transformed as $\lambda_{0} \rightarrow \mathrm{e}^{R} \lambda_{0}, \lambda_{1} \rightarrow \mathrm{e}^{R} \lambda_{1}$, and $\xi \rightarrow \mathrm{e}^{-R \xi}$. By Theorem 2.1, the distributions of $\mathbb{X}^{x-R}\left(\mathrm{e}^{-R} t\right)$ and $\mathbb{X}^{x}(t)-R$ coincide.

Appendix A. The auxiliary result

Lemma A.1. Let $z \in I_{t}$ be fixed, and $\xi=\varphi(z, t), \quad 0 \leq \xi \leq t$, be the (unique) solution of the equation $z-t c_{1}=\xi\left(c_{0}-c_{1}\right)$, (2.9). Then $z-c_{0} \tau \in I_{t-\tau}$ and $z-c_{1} \tau \in I_{t-\tau}$ for sufficiently small $\tau, \tau>0$.

Further, for all $z \in I_{t}$ the solution $\xi=\varphi(z, t)$ of (2.9) satisfies the following identities:

$$
\begin{array}{ll}
\varphi\left(z-c_{0} \tau, t-\tau\right) \equiv \xi-\tau & \text { if } \tau \in[0, \xi], \tag{A.1}\\
\varphi\left(z-c_{1} \tau, t-\tau\right) \equiv \xi & \text { if } \tau \in[0, t-\xi] .
\end{array}
$$

Proof. By substitution of $z-c_{0} \tau$ and $z-c_{1} \tau$ with z and $t-\tau$ with t into (2.9) one can obtain

$$
\begin{equation*}
z-c_{0} \tau=\widetilde{\xi} c_{0}+(t-\tau-\widetilde{\xi}) c_{1}, \quad \widetilde{\xi}=\varphi\left(z-c_{0} \tau, t-\tau\right) \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
z-c_{1} \tau=\tilde{\xi} c_{0}+(t-\tau-\tilde{\xi}) c_{1}, \quad \tilde{\xi}=\varphi\left(z-c_{1} \tau, t-\tau\right) \tag{A.3}
\end{equation*}
$$

Equation (A.2) is satisfied by $\widetilde{\xi}=\xi-\tau$ if $\tau \leq \xi$, and (A.3) is satisfied by $\widetilde{\xi}=\xi$ if $\tau \leq t-\xi$.
Further, note that, by definition, $z-c_{0} \tau \notin I_{t-\tau}$ if $\tau>\xi$ and $z-c_{1} \tau \notin I_{t-\tau}$ if $\tau>t-\xi$. Hence, the lemma is proved.

Appendix B. Proof of Proposition 2.1

System (2.7), $n=1$, and (2.8) give the density functions $p_{0}^{\mathbb{T}}(z, t ; 1)$ and $p_{1}^{\mathbb{T}}(z, t ; 1)$. Indeed,

$$
\begin{aligned}
p_{0}^{\mathbb{T}}(z, t ; 1) & =\int_{0}^{t} \lambda_{0} \mathrm{e}^{-\lambda_{0} \tau} \mathrm{e}^{-\lambda_{1}(t-\tau)} \delta\left(z-\tau c_{0}-(t-\tau) c_{1}\right) \mathrm{d} \tau \\
& =\frac{\lambda_{0}}{\left\|c_{0}-c_{1}\right\|} \exp \left(-\lambda_{0} \xi-\lambda_{1}(t-\xi)\right) \mathbf{1}_{\{0<\xi<t\}} \\
& =\lambda_{0} \theta(\xi, t-\xi),
\end{aligned}
$$

where $\xi=\varphi(z, t), \xi \in(0, t)$, is the solution of (2.9). Similarly, $p_{1}^{\mathbb{T}}(z, t ; 1)=\lambda_{1} \theta(\xi, t-\xi)$. This corresponds to (1.2), $n=1$, with $q_{i}(\xi, \eta ; 1)$ defined by $(1.3)(k=0)$ and θ defined by (2.10).

By recalling Lemma A. 1 in Appendix A and (2.10),

$$
\begin{align*}
\mathrm{e}^{-\lambda_{0} \tau} \theta\left(\varphi\left(z-c_{0} \tau, t-\tau\right), t-\tau-\varphi\left(z-c_{0} \tau, t-\tau\right)\right) & =\left.\mathrm{e}^{-\lambda_{0} \tau} \theta(\widetilde{\xi}, t-\tau-\widetilde{\xi})\right|_{\widetilde{\xi}=\xi-\tau} \\
& \equiv \theta(\xi, t-\xi) \mathbf{1}_{\{\tau<\xi\}}, \\
\mathrm{e}^{-\lambda_{1} \tau} \theta\left(\varphi\left(z-c_{1} \tau, t-\tau\right), t-\tau-\varphi\left(z-c_{1} \tau, t-\tau\right)\right) & =\left.\mathrm{e}^{-\lambda_{1} \tau} \theta(\widetilde{\xi}, t-\tau-\widetilde{\xi})\right|_{\widetilde{\xi}=\xi} \tag{B.1}\\
& \equiv \theta(\xi, t-\xi) \mathbf{1}_{\{\tau<t-\xi\}} .
\end{align*}
$$

Moreover, by applying (A.1) and (B.1) one can obtain the following identities, which are sufficient to finish the proof:

$$
\begin{aligned}
& \int_{0}^{t} \mathrm{e}^{-\lambda_{0} \tau} \varphi(z-\left.c_{0} \tau, t-\tau\right)^{m}\left(t-\tau-\varphi\left(z-c_{0} \tau, t-\tau\right)\right)^{k} \\
& \times \theta\left(\varphi\left(z-c_{0} \tau, t-\tau\right), t-\tau-\varphi\left(z-c_{0} \tau, t-\tau\right)\right) \mathrm{d} \tau \\
&= \theta(\xi, t-\xi) \int_{0}^{\xi}(\varphi(z, t)-\tau)^{m}(t-\varphi(z, t))^{k} \mathrm{~d} \tau=\theta(\xi, t-\xi) \frac{\xi^{m+1}}{m+1}(t-\xi)^{k}, \\
& \int_{0}^{t} \mathrm{e}^{-\lambda_{1} \tau} \varphi\left(z-c_{1} \tau, t-\tau\right)^{m}\left(t-\tau-\varphi\left(z-c_{1} \tau, t-\tau\right)\right)^{k} \\
& \times \theta\left(\varphi\left(z-c_{1} \tau, t-\tau\right), t-\tau-\varphi\left(z-c_{1} \tau, t-\tau\right)\right) \mathrm{d} \tau \\
&= \theta(\xi, t-\xi) \int_{0}^{t-\xi} \varphi(z, t)^{m}(t-\tau-\varphi(z, t))^{k} \mathrm{~d} \tau=\theta(\xi, t-\xi) \xi^{m} \frac{(t-\xi)^{k+1}}{k+1}
\end{aligned}
$$

$\xi=\varphi(z, t) ;$ cf. [16, Chapter 4].

Acknowledgements

We express our thanks to the referees for useful comments that helped to improve the paper. A.D.C. and B.M. are members of the research group GNCS of INdAM.

References

[1] Arnold, V. I. (1992). Ordinary Differential Equations. Springer, Berlin.
[2] Bogachev, L. and Ratanov, N. (2011). Occupation time distributions for the telegraph process. Stoch. Process. Appl. 121, 1816-1844.
[3] Boxma, O., Kaspi, H., Kella, O. and Perry, D. (2005). On/off storage systems with state-dependent input, output and switching rates. Probab. Engrg. Inform. Sci. 19, 1-14.
[4] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Statist. Soc. B, 46, 353-388.
[5] Davis, M. H. A. (1993). Markov Models and Optimization. Chapman \& Hall, London.
[6] De Gregorio, A. (2010). Stochastic velocity motions and processes with random time. Adv. Appl. Prob. 42, 1028-1056.
[7] Di Crescenzo, A. and Martinucci B. (2010). A damped telegraph random process with logistic stationary distribution. J. Appl. Prob. 47, 84-96.
[8] Embrechts, P. and Schmidli, H (1994). Ruin estimation for a general insurance risk model. Adv. Appl. Prob. 26, 404-422.
[9] Garra, R., Orsingher, E. and Ratanov, N. (2017). Planar piecewise linear random motions with jumps. Math. Meth. Appl. Sci. 40, 7673-7685.
[10] Gnedenko, B. V. and Kovalenko, I. N. (1989). Introduction to Queueing Theory, 2nd edn. Birkhaüser, Boston.
[11] Jacobsen, M. (2006). Point Process Theory and Applications. Marked Point and Piecewise Deterministic Processes. Birkhäuser, Boston.
[12] KAC, M. (1974). A stochastic model related to the telegrapher's equation. Rocky Mountain J. Math. 4, 497-509.
[13] Kolesnik, A. D. (1998). The equations of Markovian random evolution on the line. J. Appl. Prob. 35, 27-35.
[14] Kolesnik, A. D. (2007). A note on planar random motion at finite speed. J. Appl. Prob. 44, 838-842.
[15] Kolesnik, A. D. and Orsingher, E. (2005) A planar random motion with an infinite number of directions controlled by the damped wave equation. J. Appl. Prob. 42, b1168-1182.
[16] Kolesnik, A. D. and Ratanov, N. (2013). Telegraph Processes and Option Pricing. Springer, Heidelberg.
[17] Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications. Introductory lectures, 2nd edn. Springer, Heidelberg.
[18] Lasota, A., Mackey, M. C. and Tyrcha, J. (1992). The statistical dynamics of recurrent biological events. J. Math. Biol. 30, 775-800.
[19] López, O. and Ratanov, N. (2012). Option pricing driven by a telegraph process with random jumps. J. Appl. Prob. 49, 838-849.
[20] Martinucci, B. and Meoli, A. (2019). On certain functionals of squared telegraph processes. Stoch. Dynam. Available at https://doi.org/10.1142/S0219493720500057.
[21] OrSINGHER, E. (2000). Exact joint distribution in a model of planar random motion. Stoch. Stoch. Rep. 69, $1-10$.
[22] Orsingher, E. and Ratanov, N. (2002) Planar random motions with drift. J. Appl. Math. Stoch. Anal. 15, 189-205.
[23] Ratanov, N. (2007). Jump telegraph processes and financial markets with memory. J. Appl. Math. Stoch. Anal. 2007, 72326.
[24] Stadje, W. and Zacks, S. (2004). Telegraph processes with random velocities. J. Appl. Prob. 41, 665-678.

[^0]: Received 5 November 2018; revision received 23 June 2019.

 * Postal address: Facultad de Economía, Universidad del Rosario, Calle 12c, No. 4-69, Bogotá, D. C. Cundinamarca, Colombia.
 ** Email address: nratanov@urosario.edu.co
 *** Postal address: Dipartimento di Matematica, Università di Salerno, 84084 Fisciano (SA), Italia.
 **** Email address: adicrescenzo@unisa.it
 ***** Email address: bmartinucci@unisa.it

