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Two new nonlinear difference inequalities are considered, where the inequalities consist of
multiple iterated sums, and composite function of nonlinear function and unknown function may
be involved in each layer. Under several practical assumptions, the inequalities are solved through
rigorous analysis, and explicit bounds for the unknown functions are given clearly. Further, the
derived results are applied to the stability problem of a class of linear control systems with
nonlinear perturbations.

1. Introduction

Being an important tool in the study of existence, uniqueness, boundedness, stability,
invariantmanifolds, and other qualitative properties of solutions of differential equations and
integral equations, various generalizations of Gronwall inequalities [1, 2] and their applica-
tions have attracted great interests of many mathematicians [3–5]. Some recent works can
be found in [6–16] and references therein. Along with the development of the theory of
integral inequalities and the theory of difference equations, more and more attentions are
paid to discrete versions of Gronwall type inequalities [17–24]. For instance, Pachpatte [17]
considered the following discrete inequality:

u(n) ≤ u0 +
n−1∑

s=n0

f(s)[u(s) + h(s)] +
n−1∑

s=n0

f(s)

(
s−1∑

τ=n0

g(τ)u(τ)

)
, ∀n ∈ N0. (1.1)
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In 2006, Cheung and Ren [18] studied

up(m,n) ≤ c +
m−1∑

s=m0

n−1∑

t=n0

a(s, t)uq(s, t) +
m−1∑

s=m0

n−1∑

t=n0

b(s, t)uq(s, t)w(u(s, t)). (1.2)

Later, Zheng et al. [24] discussed the following discrete inequality:

u(n) ≤ a(n) +
k∑

i=1

n−1∑

s=0

fi(n, s)wi(u(s)). (1.3)

However, the above results are not applicable to inequalities that consist of multiple iterated
sums, in particular those in which composite function of nonlinear function and unknown
function is involved in each layer of iterated sums. Hence, it is desirable to consider more
general difference inequalities of these extended types. They can be used in the study of
certain classes of difference equations or applied in many practical engineering problems.

Motivated by the results given in [7, 8, 11, 16–19, 21], in this paper we discuss the
following two types of inequalities:

u(n) ≤ a(n) +
n−1∑

s=n0

f1(n, s)w(u(s)) +
n−1∑

s=n0

f1(n, s)w(u(s))
s−1∑

τ=n0

f2(s, τ)w(u(τ))

+
n−1∑

s=n0

f1(n, s)w(u(s))
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(u(ξ)),

(1.4)

u(n) ≤ a(n) +
n−1∑

s=n0

f1(n, s)w1(u(s)) +
n−1∑

s=n0

f1(n, s)w1(u(s))
s−1∑

τ=n0

f2(s, τ)w2(u(τ))

+
n−1∑

s=n0

f1(n, s)w1(u(s))
s−1∑

τ=n0

f2(s, τ)w2(u(τ))
τ−1∑

ξ=n0

f3(τ, ξ)w3(u(ξ)),

(1.5)

for all n ∈ N0. All the assumptions on (1.4) and (1.5) are given in the next sections. The
inequalities (1.5) consist of multiple iterated sums, and composite function of nonlinear
functions and unknown function may be involved in each layer. Under several practical
assumptions, the inequalities are solved through rigorous analysis, and explicit bounds for
the unknown functions are given clearly. Further, the derived results are applied to the
stability problem of a class of linear control systems with nonlinear perturbations.

2. Main Result

In this section, we proceed to solving the difference inequalities (1.4) and (1.5) and present
explicit bounds on the embedded unknown functions. Throughout this paper, let N denote
the set of all natural numbers, and N0 = [n0, K) ∩ N where n0 and K are two constants,
satisfying K > n0.

The following theorem summarizes the result on the inequality (1.4).
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Theorem 2.1. Let u(n) and a(n) be nonnegative functions defined on N0 with a(n) nondecreasing
on N0. Moreover, let fi(n, s), i = 1, 2, 3 be nonnegative functions for n0 ≤ s ≤ n ≤ K and
nondecreasing in n for fixed s ∈ N0. Suppose that w(u) is a nondecreasing function on [0,∞) with
w(u) > 0 for u > 0. Then, the discrete inequality (1.4) gives

u(n) ≤ W−1
1

[
W−1

2 (U1(n))
]
, ∀n ∈ [n0,M1) ∩N, (2.1)

where

U1(n) = W2

(
W1(a(n)) +

n−1∑

s=n0

f1(n, s)

)

+
n−1∑

s=n0

f1(n, s)

⎛

⎝
s−1∑

τ=n0

f2(s, τ) +
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

⎞

⎠,

(2.2)

W2(u) =
∫u

1

ds

w
(
W−1

1 (s)
) , u > 0, (2.3)

W1(u) =
∫u

1

ds

w(s)
, u > 0, (2.4)

W−1
1 , W−1

2 are the inverse functions of W1, W2, respectively, and M1 is the largest natural number
such that

U1(M1) ∈ Dom
(
W−1

2

)
, W−1

2 (U1(M1)) ∈ Dom
(
W−1

1

)
. (2.5)

Proof. Fix M ∈ NM1 = [n0,M1) ∩ N, where M is chosen arbitrarily and M1 is defined by
(2.5). For n ∈ NM = [n0,M] ∩N, from (1.4), we have

u(n) ≤ a(M) +
n−1∑

s=n0

f1(M,s)w(u(s)) +
n−1∑

s=n0

f1(M,s)w(u(s))
s−1∑

τ=n0

f2(s, τ)w(u(τ))

+
n−1∑

s=n0

f1(M,s)w(u(s))
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(u(ξ)).

(2.6)

Denote the right-hand side of (2.6) by z1(n), which is a positive and nondecreasing function
on NM with z1(n0) = a(M). Then, (2.6) is equivalent to

u(n) ≤ z1(n), ∀n ∈ NM. (2.7)
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From (2.6) and (2.7), we observe that

Δz1(n) := z1(n + 1) − z1(n)

≤ f1(M,n)w(z1(n)) + f1(M,n)w(z1(n))
n−1∑

τ=n0

f2(n, τ)w(z1(τ))

+ f1(M,n)w(z1(n))
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(z1(ξ))

= f1(M,n)w(z1(n))

⎡

⎣1 +
n−1∑

τ=n0

f2(n, τ)w(z1(τ))

+
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(z1(ξ))

⎤

⎦, ∀n ∈ NM.

(2.8)

Furthermore, it follows from (2.8) that

Δz1(n)
w(z1(n))

≤ f1(M,n)

⎡

⎣1 +
n−1∑

τ=n0

f2(n, τ)w(z1(τ))

+
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(z1(ξ))

⎤

⎦, ∀n ∈ NM.

(2.9)

On the other hand, by the mean-value theorem for integrals, for arbitrarily given integers
n, n + 1 ∈ NM, there exists η in the open interval (z1(n), z1(n + 1)) such that

W1(z1(n + 1)) −W1(z1(n)) =
∫z1(n+1)

z1(n)

ds

w(z1(s))
=

Δz1(n)
w
(
z1
(
η
)) ≤ Δz1(n)

w(z1(n))

≤ f1(M,n)

⎡

⎣1 +
n−1∑

τ=n0

f2(n, τ)w(z1(τ))

+
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(z1(ξ))

⎤

⎦, ∀n ∈ NM,

(2.10)



Journal of Applied Mathematics 5

where W1 is defined by (2.4). By setting n = s in (2.10) and substituting s = n0, n0 + 1, n0 +
2, . . . , n − 1 successively, we obtain

W1(z1(n)) ≤ W1(z1(n0)) +
M−1∑

s=n0

f1(M,s) +
n−1∑

s=n0

f1(M,s)

×
⎡

⎣
s−1∑

τ=n0

f2(s, τ)w(z1(τ)) +
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(z1(ξ))

⎤

⎦, ∀n ∈ NM.

(2.11)

Let v1(n) denote the right-hand side of (2.11), which is a positive and nondecreasing function
on NM with v1(n0) = W1(z1(n0)) +

∑M−1
s=n0

f1(M,s). Then, (2.11) is equivalent to

z1(n) ≤ W−1
1 (v1(n)), ∀n ∈ NM. (2.12)

By the definition of v1, we obtain

Δv1(n) := v1(n + 1) − v1(n)

= f1(M,n)

[
n−1∑

τ=n0

f2(n, τ)w(z1(τ))

+
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w(z1(ξ))

⎤

⎦, ∀n ∈ NM.

(2.13)

Considering (2.12), (2.13) and the monotonicity properties of w, W−1
1 , and z1, we get

Δv1(n)
w
(
W−1

1 (v1(n))
) ≤ f1(M,n)

⎡

⎣
n−1∑

τ=n0

f2(n, τ) +
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

⎤

⎦, (2.14)

for all n ∈ NM. Once again, performing the same procedure as in (2.10) and (2.11), (2.14)
gives

W2(v1(n)) ≤ W2(v1(n0)) +
n−1∑

s=n0

f1(M,s)

⎡

⎣
s−1∑

τ=n0

f2(s, τ) +
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

⎤

⎦, (2.15)
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for all n ∈ NM, where W2 is defined in (2.3). In the sequel, (2.7), (2.12), and (2.15) render to

u(n) ≤ z1(n) ≤ W−1
1 (v1(n))

= W−1
1

[
W−1

2

(
W2

(
W1 (a(M)) +

M−1∑

s=n0

f1(M,s)

)
+

n−1∑

s=n0

f1(M,s)

×
⎛

⎝
s−1∑

τ=n0

f2(s, τ) +
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

)⎞

⎠

⎤

⎦, ∀n ∈ NM.

(2.16)

Let n = M in (2.16), then, we have

u(n) ≤ W−1
1

⎡

⎣W−1
2

(
W2

(
W1(a(M)) +

M−1∑

s=n0

f1(M,s)

)
+

M−1∑

s=n0

f1(M,s)

×
⎛

⎝
s−1∑

τ=n0

f2(s, τ) +
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

)⎞

⎠

⎤

⎦.

(2.17)

Noticing that M is chosen arbitrarily, (2.1) is directly induced by (2.17). The proof of
Theorem 2.1 is complete.

Now, we are in the position of solving the inequality (1.5).

Theorem 2.2. Let the functions u(n), a(n), fi(n, s), i = 1, 2, 3, and ϕ(u) be the same as in
Theorem 2.1. Suppose that wi(u), i = 1, 2, 3 are nondecreasing functions on [0,∞) with wi(u) > 0
for u > 0. If u(n) satisfies the discrete inequality (1.5), then

u(n) ≤ Φ−1
1

[
Φ−1

2

(
Φ−1

3 (U2(n))
)]

, ∀n ∈ NM3 = [n0,M3) ∩N, (2.18)

where

U2(n) = Φ3

(
Φ2

(
Φ1(a(n)) +

n−1∑

s=n0

f1(n, s)

)
+

n−1∑

s=n0

f1(n, s)
s−1∑

τ=n0

f2(s, τ)

)

+
n−1∑

s=n0

f1(n, s)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ),

(2.19)

Φ1(u) =
∫u

1

ds

w1(s)
, u > 0, (2.20)

Φ2(u) =
∫u

1

ds

w2
(
Φ−1

1 (s)
) , u > 0, (2.21)

Φ3(u) =
∫u

1

ds

w3
(
Φ−1

1

(
Φ−1

2 (s)
)) , u > 0, (2.22)
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Φ−1
i , i = 1, 2, 3 are the inverse functions of Φi, i = 1, 2, 3, respectively, and M2 is the largest natural

number such that

U2(M2) ∈ Dom
(
Φ−1

3

)
, Φ−1

3 (U2(M2)) ∈ Dom
(
Φ−1

2

)
,

Φ−1
2

(
Φ−1

3 (U2(M2))
)
∈ Dom

(
Φ−1

1

)
.

(2.23)

Proof. Fix M ∈ NM2 = [n0,M2) ∩N, where M is chosen arbitrarily and M2 is given in (2.23).
For n ∈ NM, from (1.5), we have

u(n) ≤ a(M) +
n−1∑

s=n0

f1(M,s)w1(u(s)) +
n−1∑

s=n0

f1(M,s)w1(u(s))
s−1∑

τ=n0

f2(s, τ)w2(u(τ))

+
n−1∑

s=n0

f1(M,s)w1(u(s))
s−1∑

τ=n0

f2(s, τ)w2(u(s))
τ−1∑

ξ=n0

f3(τ, ξ)w3(u(ξ)).

(2.24)

Let z2(n) represent the right-hand side of (2.24), which is a positive and nondecreasing
function on NM2 with z2(n0) = a(M). Then, (2.24) is equivalent to

u(n) ≤ z2(n), ∀n ∈ NM. (2.25)

Using (2.24) and (2.25), Δz2(n) := z2(n + 1) − z2(n) can be estimated as follows:

Δz2(n) ≤ f1(M, n)w1(z2(n)) + f1(M,n)w1(z2(n))
n−1∑

τ=n0

f2(n, τ)w2(z2(τ))

+ f1(M,n)w1(z2(n))
n−1∑

τ=n0

f2(n, τ)w2(z2(n))
τ−1∑

ξ=n0

f3(τ, ξ)w3(z2(ξ))

= f1(M,n)w1(z2(n))

⎡

⎣1 +
n−1∑

τ=n0

f2(n, τ)w2(z2(τ))

+
n−1∑

τ=n0

f2(n, τ)w2(z2(τ))
τ−1∑

ξ=n0

f3(τ, ξ)w3(z2(ξ))

⎤

⎦, ∀n ∈ NM,

(2.26)

Implying

Δz2(n)
w1(z2(n))

≤ f1(M,n)

[
1 +

n−1∑

τ=n0

f2(n, τ)w2(z2(τ))

+
n−1∑

τ=n0

f2(n, τ)w2(z2(τ))
τ−1∑

ξ=n0

f3(τ, ξ)w3(z2(ξ))

⎤

⎦,

(2.27)
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for all n ∈ NM. Performing the same derivation as in (2.10) and (2.11), we obtain from (2.27)
that

Φ1(z2(n)) ≤ Φ1(z2(n0)) +
M−1∑

s=n0

f1(M,s) +
n−1∑

s=n0

f1(M,s)

×
⎡

⎣
s−1∑

τ=n0

f2(s, τ)w2(z2(τ))

+
s−1∑

τ=n0

f2(s, τ)w2(z2(τ))
τ−1∑

ξ=n0

f3(τ, ξ)w3(z2(ξ))

⎤

⎦, ∀n ∈ NM,

(2.28)

whereΦ1 is defined in (2.20). Denote by v2(n) the right-hand side of (2.28), which is a positive
and nondecreasing function onNM2 with v2(n0) = Φ1(z2(n0))+

∑M−1
s=n0

f1(M,s) = Φ1(a(M))+
∑M−1

s=n0
f1(M,s). Then, (2.28) is equivalent to

z2(n) ≤ Φ−1
1 (v2(n)), ∀n ∈ NM. (2.29)

By the definition of v2, we obtain

Δv2(n) := v2(n + 1) − v2(n)

= f1(M,n)

[
n−1∑

τ=n0

f2(n, τ)w2(z2(τ))

+
n−1∑

τ=n0

f2(n, τ)w2(z2(τ))
τ−1∑

ξ=n0

f3(τ, ξ)w3(z2(ξ))

⎤

⎦, ∀n ∈ NM.

(2.30)

From (2.29), (2.30) and the monotonicity of w2,Φ−1
1 , and z2, we get

Δv2(n)
w2
(
Φ−1

1 (v2(n))
) ≤ f1(M,n)

⎡

⎣
n−1∑

τ=n0

f2(n, τ) +
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w3

(
Φ−1

1 (v2(ξ))
)
⎤

⎦, (2.31)

for all n ∈ NM. Similarly to (2.28), it follows from (2.31) that

Φ2(v2(n)) ≤ Φ2(v2(n0)) +
M−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)

+
n−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w3

(
Φ−1

1 (v2(n))
)
,

(2.32)
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for all n ∈ NM, where Φ2 is defined in (2.21). Let v3(n) denote the right-hand side of (2.32),
which is a positive and nondecreasing function onNM2 with

v3(n0) = Φ2(v2(n0)) +
M−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)

= Φ2

(
Φ1(a(M)) +

M−1∑

s=n0

f1(M,s)

)
+

M−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ).

(2.33)

Then, (2.32) is equivalent to

v2(n) ≤ Φ−1
2 (v3(n)), ∀n ∈ NM. (2.34)

By the definition of v3,

Δv3(n) := v3(n + 1) − v3(n)

= f1(M,n)
n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ)w3

(
Φ−1

1 (v2(ξ))
)
, ∀n ∈ NM.

(2.35)

In consequence, (2.34), (2.35) and the monotonicity properties of w3,Φ−1
1 , and v2 lead to

Δv3(n)
w3
(
Φ−1

1

(
Φ−1

2 (v3(n))
)) ≤ f1(M,n)

n−1∑

τ=n0

f2(n, τ)
τ−1∑

ξ=n0

f3(τ, ξ), ∀n ∈ NM. (2.36)

Similarly to (2.28) and (2.32), we obtain from (2.36) that

Φ3(v3(n)) ≤ Φ3(v3(n0)) +
n−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ), ∀n ∈ NM, (2.37)

where Φ3 is defined in (2.22).
Summarizing the results in (2.25), (2.29), (2.34), and (2.37), we can conclude that

u(n) ≤ z2(n) ≤ Φ−1
1 [v2(n)] ≤ Φ−1

1

[
Φ−1

2 (v3(n))
]

≤ Φ−1
1

⎡

⎣Φ−1
2

⎛

⎝Φ−1
3

⎛

⎝Φ3(v3(n0)) +
n−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

⎞

⎠

⎞

⎠

⎤

⎦
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= Φ−1
1

⎡

⎣Φ−1
2

⎛

⎝Φ−1
3

(
Φ3

(
Φ2

(
Φ1(a(M)) +

M−1∑

s=n0

f1(M,s)

)

+
M−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)

)

+
n−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

⎞

⎠

⎞

⎠

⎤

⎦,

(2.38)

for all n ∈ NM. As n = M, (2.38) yields

u(M) ≤ Φ−1
1

[
Φ−1

2

(
Φ−1

3

(
Φ3

(
Φ2

(
Φ1(a(M)) +

M−1∑

s=n0

f1(M,s)

)

+
M−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)

)

+
M−1∑

s=n0

f1(M,s)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ)

⎞

⎠

⎞

⎠

⎤

⎦.

(2.39)

Since M is chosen arbitrarily in (2.39), the inequality (2.18) is derived. This completes the
proof of Theorem 2.2.

3. Applications

In this section, the result of Theorem 2.2 is applied to explore the asymptotic stability behavior
of a class of discrete-time control systems [17]

x(n + 1) = A(n)x(n) + f(n, x(n), σ(n)), x(n0) = x0, (3.1)

where

σ(n) = θ(n) +
n−1∑

s=n0

k(n, s, x(s)). (3.2)

Control system (3.1) can be regarded as the perturbation counterpart of the following closed-
loop system:

y(n + 1) = A(n)y(n), y(n0) = x0. (3.3)
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The functions x, y, θ, σ are defined on N → Rr , the r-dimensional vector space, A(n) is
an r × r matrix with detA(n)/= 0, and the functions f and k are defined on N × Rr × Rr and
N ×N × Rr , respectively. Moreover, f and k are supposed to meet the following constraints:

∣∣f(n, x(n), σ(n))
∣∣ ≤ g1(n)e−αnw1(|x(n)|eαn)(1 + |σ(n)|), (3.4)

|k(n, s, x(s))| ≤ g2(n, s)w2(|x(n)|eαn)
(
1 +

s−1∑

τ=n0

g3(s, τ)w3(|x(τ)|eατ)
)
, (3.5)

where α > 0 is a constant, gi, i = 1, 2, 3 are nonnegative real-valued functions defined on
N0 and N0 × N0, respectively, g2(n, s) and g3(n, s) are nondecreasing in n for fixed s ∈ N0,
andwi(u), i = 1, 2, 3 are positive and continuous functions defined on [0,∞). The symbol | · |
denotes norm on Rr as well as a corresponding consistent matrix norm.

Corollary 3.1. Consider the discrete-time control systems (3.1) and (3.2), where the perturbation-
related functions f and k satisfy the conditions (3.4) and (3.5). Assume that the fundamental solution
matrix Y (n) of the linear system (3.3) satisfies

∣∣∣Y (n)Y−1(s)
∣∣∣ ≤ C exp(−α(n − s)), 0 ≤ s ≤ n ≤ ∞, (3.6)

where C > 0 is a constant. Then, any solutions of the control systems (3.1) and (3.2), denoted by
xσ(n, n0, x0), can be estimated by

|xσ(n, n0, x0)| ≤ exp(−αn)
{
Φ−1

4

[
Φ−1

5

(
Φ−1

6 (U4(n))
)]}

, ∀n ∈ NM4 = [n0,M4) ∩N, (3.7)

where

U4(n) = Φ6

(
Φ5

(
Φ4
(|x0|C exp(αn0)

)
+

n−1∑

s=n0

Ceαg1(s)(1 + |θ(s)|)
)

+
n−1∑

s=n0

Ceαg1(s)(1 + |θ(s)|)
s−1∑

τ=n0

f2(s, τ)

)

+
n−1∑

s=n0

Ceαg1(s)(1 + |θ(s)|)
s−1∑

τ=n0

f2(s, τ)
τ−1∑

ξ=n0

f3(τ, ξ),

Φ4(u) =
∫u

1

ds

w1(s)
, u > 0,

Φ5(u) =
∫u

1

ds

w2
(
Φ−1

1 (s)
) , u > 0,

Φ6(u) =
∫u

1

ds

w3
(
Φ−1

1

(
Φ−1

2 (s)
)) , u > 0,

(3.8)
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Φ−1
i , i = 4, 5, 6 are the inverse functions of Φi, i = 4, 5, 6, respectively, and M4 is the largest natural

number such that

U4(M4) ∈ Dom
(
Φ−1

6

)
, Φ−1

6 (U4(M4)) ∈ Dom
(
Φ−1

5

)
,

Φ−1
5

(
Φ−1

6 (U4(M4))
)
∈ Dom

(
Φ−1

4

)
.

(3.9)

Proof. By using the variation of constants formula, any solution xσ(n, n0, x0) of (3.1) and (3.2)
can be represented by

xσ(n, n0, x0) = Y (n)Y−1(n0)x0 +
n−1∑

s=n0

Y (s)Y−1(s + 1)f(s, xσ(s, n0, x0), σ(s)), (3.10)

for all n ∈ N0. Using the conditions (3.4) and (3.6) in (3.10), we have

|xσ(n, n0, x0)| ≤ |x0|C exp(−α(n − n0)) +
n−1∑

s=n0

C exp(−α(n − s − 1))

× g1(s)e−αsw1(|xσ(s, n0, x0)|eαs)(1 + |σ(s)|), ∀n ∈ N0.

(3.11)

Further, using the relationships (3.2), (3.5), and (3.11), we derive

|xσ(n, n0, x0)| ≤ |x0|C exp(−α(n − n0)) +
n−1∑

s=n0

C exp(−α(n − 1)) × g1(s)w1(|xσ(s, n0, x0)|eαs)

[
1 + |θ(s)| +

s−1∑

τ=n0

g2(s, τ)w2(|xσ(τ, n0, x0)|eατ)

×
(
1 +

τ−1∑

τ=n0

g3(τ, ξ)w3

(
|xσ(ξ, n0, x0)|eαξ

))]
,

(3.12)

for all n ∈ N0. Let u(n) = |xσ(n, n0, x0)| exp(αn), then, (3.12) can be rewritten as

u(n) ≤ |x0|C exp(αn0) +
n−1∑

s=n0

Ceαg1(s)(1 + |θ(s)|)w1(u(s))

+
n−1∑

s=n0

Ceαg1(s)(1 + |θ(s)|)w1(u(s))
s−1∑

τ=n0

g2(s, τ)w2(u(τ))
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+
n−1∑

s=n0

Ceαg1(s)(1 + |θ(s)|)w1(u(s))
s−1∑

τ=n0

g2(s, τ)

×w2(u(τ))
τ−1∑

ξ=n0

g3(τ, ξ)w3(u(ξ)), ∀n ∈ N0.

(3.13)

Let a(n) = |x0|C exp(αn0), f1(n, s) = Cg1(s)eα(1 + |θ(s)|), f2(n, s) = g2(n, s), and f3(n, s) =
g3(n, s), then (3.13) can be further estimated as follows:

u(n) ≤ a(n) +
n−1∑

s=n0

f1(n, s)w1(u(s)) +
n−1∑

s=n0

f1(n, s)w1(u(s))
s−1∑

τ=n0

f2(s, τ)w2(u(τ))

+
n−1∑

s=n0

f1(n, s)w1(u(s))
s−1∑

τ=n0

f2(s, τ)w2(u(τ))
τ−1∑

ξ=n0

f3(τ, ξ)w3(u(ξ)),

(3.14)

for all n ∈ N0. Notice that, by our assumption, all functions in (3.14) satisfy the conditions
of Theorem 2.2. Applying Theorem 2.2 to the inequality (3.14), (3.7) is immediately derived,
where the relationship u(n) = |xσ(n, n0, x0)| exp(αn) is adopted. This completes the proof of
Corollary 3.1.

Based on Corollary 3.1 and one additional assumption, the next corollary gives the
stability result of the control system (3.1) and (3.2).

Corollary 3.2. Under the assumptions of Corollary 3.1, if there exists a positive constant B such that

{
Φ−1

4

[
Φ−1

5

(
Φ−1

6 (U4(n))
)]}

≤ B, ∀n ∈ N, (3.15)

then the perturbed system (3.1) and (3.2) is exponentially asymptotically stable.

Proof. Under condition (3.15), (3.7) can be further estimated as follows:

|xσ(n, n0, x0)| ≤ B exp(−αn), ∀n ∈ [n0,∞) ∩N. (3.16)

The exponentially asymptotic stability of system (3.1) and (3.2) is directly implied.
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