
Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2011, Article ID 671703, 5 pages
doi:10.1155/2011/671703

Research Article

Relay Feedback Analysis for Double Integral Plants

Zhen Ye,1 Qing-Guo Wang,1 Chong Lin,2 Chang Chieh Hang,1 and Andrey E. Barabanov3

1 Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent,
Singapore 119260

2 Institute of Complexity Science College of Automation Engineering, Qingdao University, Qingdao 266071, China
3 Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetskij pr. 28, Petrodvoretz,
St. Petersburg 198504, Russia

Correspondence should be addressed to Qing-Guo Wang, elewqg@nus.edu.sg

Received 18 October 2010; Revised 10 January 2011; Accepted 21 February 2011

Academic Editor: Bijoy K. Ghosh

Copyright © 2011 Zhen Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Double integral plants under relay feedback are studied. Complete results on the uniqueness of solutions, existence, and stability
of the limit cycles are established using the point transformation method. Analytical expressions are also given for determining the
amplitude and period of a limit cycle from the plant parameters.

1. Introduction

Relay feedback forms one important class of nonlinear sys-
tems and can cause complex nonlinear behaviors. Its early
analysis can be traced to 1950–1960s, and afterwards, two
basic approaches, the time domain approach [1, 2] and the
frequency domain approach [3], emerged. Although they are
almost identical, the frequency approach is more popular
because of its ease of manipulation. However, as a general
method for relay analysis, such a frequency approach also
has some limits in itself. Firstly, only necessary conditions
on the existence and stability of possible limit cycles are
obtained. Secondly, the conditions are usually expressed as
a summation of infinite items. It is certainly desirable to
find both sufficient and necessary conditions of the existence
and stability of limit cycles for relay feedback systems, as
well as to give such conditions explicitly in terms of system
parameters without any requirement on numerical compu-
tation.

In our recently published paper [4], we presented a
complete relay analysis for a class of servo plants, G(s) =
K/[s(s + a)], (a > 0), including the uniqueness of solutions,
existence, and stability of limit cycles, and its amplitude and
period, using a similar analysis to [5]. Naturally, it is desirable
to investigate whether such an analysis can be extended to

double integral plants, that is, the case of a = 0. Most people
believe that double integral plants have no limit cycle under
relay feedback [1, 3], but our analysis shows that this is
not true. Actually, a limit cycle for double integral case is
observable, which completely depends on the system initial
conditions. Moreover, we also find that the analysis for the
case of a > 0 in [4] is not applicable to the case of a = 0.
This is because for a > 0, the derivative of system output is
stable and bounded as G′(s) = K/(s + a). While for a = 0,
G′(s) = K/s and the derivative of system output becomes
unstable and not bounded anymore. Hence, the extension is
not straightforward and the results for double integral plants
are quite different from our previous ones.

This paper is organized as follows. Section 2 gives the
main result followed by the proofs and a few remarks, where
more details and explanations are given. Conclusions are
drawn in Section 3.

2. The Result

Consider a double integral plant

G(s) = K

s2
, (K /= 0), (1)
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Figure 1: Relay function.

whose state-space representation in the controllable canoni-
cal form is given by

ẋ(t) =
⎡
⎣0 1

0 0

⎤
⎦

︸ ︷︷ ︸
A

x(t) +

⎡
⎣0

1

⎤
⎦

︸ ︷︷ ︸
B

u(t), (2)

y(t) =
[
K 0

]
︸ ︷︷ ︸

C

x(t), (3)

where x(t) = [x1(t), x2(t)]T ∈ R2, y(t),u(t) ∈ R are the
state, output, and input of the system, respectively. The plant
is under the relay feedback control:

u(t) =
⎧⎨
⎩
u− if e(t) < ε−, or e(t) ≤ ε+, u(t−) = u−,

u+ if e(t) > ε+, or e(t) ≥ ε−, u(t−) = u+,
(4)

where u+ and u− are the relay amplitudes, e(t) = −y(t),
ε+ and ε− are the relay hysteresis with ε− ≤ ε+. We assume
u+ /=u− since otherwise (4) becomes a constant but no longer
a relay control. The relay control is depicted in Figure 1. The
initial function for t = t0 is

u(t0) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u+ if e(t0) > ε+,

u− if e(t0) < ε−,

u0 ∈U if ε− ≤ e(t0) ≤ ε+,

(5)

where t0 is the initial time and U := {u−,u+}. We call (1)–(5)
a relay feedback system (RFS) which is depicted in Figure 2,
where C(s) represents the controller.

If the RFS generates a limit cycle, let T+ and A+ be
the half period and the extreme value corresponding to
u(t) = u+, respectively, and T− and A− be the half
period and the extreme value corresponding to u(t) = u−,
respectively, as shown in Figure 3. Tr (resp., Td) is the rising
(resp., decreasing) period between the switching time, ti
(resp., ti+1), when the limit cycle trajectory traverses S+

(resp., S−) and the peak (resp., valley) time.

C(s) G(s)
r = 0 e(t)

Relay

u(t) y(t)+

−

Figure 2: Relay feedback system.
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Figure 3: Limit cycles.

We are now in a position to state the sufficient and nec-
essary conditions for the existence of solutions, the existence
and stability of limit cycles, and the amplitudes and periods
of limit cycles.

Theorem 1. Consider the RFS for double integral plant G(s) in
(1).

(i) A unique solution exists for any initial condition.

(ii) A limit cycle exists if and only if Ku+ > 0 > Ku−, ε+ =
ε− = ε and any of the following holds:

(a) x1(t0) /= − ε/K ;

(b) x1(t0) = −ε/K but x′(t0) /= 0.

If this is the case, the limit cycle is formed after the first
switch, which is unique with two switchings per period.

(iii) If a limit cycle exists, it is globally marginally stable.

(iv) If a limit cycle exists, its amplitude and period are
described by

A+ = Kx2
2(t0)− 2u(t0)(Kx1(t0) + ε)

2u+
,

A− = −Kx2
2(t0)− 2u(t0)(Kx1(t0) + ε)

2u−
,

T+ =
2
√
K2x2

2(t0)− 2Ku(t0)(Kx1(t0) + ε)

Ku+
,

T− = −
2
√
K2x2

2(t0)− 2Ku(t0)(Kx1(t0) + ε)

Ku−
.

(6)
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Figure 4: A piecewise constant input.

Proof. For a RFS, the input u(t) is a piecewise constant func-
tion. Without loss of generality, suppose

u(t) = u−1(t − t0) +
∞∑

i=1

(−1)i−1(u+ − u−)1(t − ti),

t ∈ [t0,∞), t0 < t1 < · · · ,

(7)

as shown in Figure 4, where

1(t) =
⎧⎨
⎩

1, t ≥ 0,

0, t < 0.
(8)

Define the switching planes:

S+ := {ξ ∈ R2 : −Cξ = ε+
}

,

S− := {ξ ∈ R2 : −Cξ = ε−
}
.

(9)

If the trajectory of x(t) traverses S+ (resp., S−), that is,
−Cx(ti) = ε+ (resp.,−Cx(ti) = ε−) at some instant t = ti > t0
with −Cx(t−i ) < ε+ (resp., −Cx(t−i ) > ε−) and −Cx(t+

i ) > ε+

(resp., −Cx(t+
i ) < ε−), then the instant t = ti is called a

switching time. In particular, ti denotes the switching time
when the ith switching takes place.

The state response of (2) to u(t) in (7) is given by

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ

=
⎡
⎣1 t − t0

0 1

⎤
⎦x(t0) +

⎡
⎢⎣

(t − t0)2

2
t − t0

⎤
⎥⎦u−1(t − t0)

+
∞∑

i=1

(−1)i−1

⎡
⎢⎣

(t − ti)
2

2
t − ti

⎤
⎥⎦(u+ − u−)1(t − ti),

(10)

where t ∈ [t0,∞), t0 < t1 < · · · . It is easy to show
that both x1(t) and x2(t) are continuous at switching time
ti, i = 1, 2, . . ., as t − ti = 0 for t = ti. However, ẋ2(t−1 ) =
limt→ t−1 ẋ2(t) = u−, while ẋ2(t+

1 ) = limt→ t+
1
ẋ2(t) = ẋ2(t1) =

u− + (u+ − u−) = u+ indicating ẋ2(t) is not continuous at
t = t1 due to u+ /=u− by our assumption. Straightforwardly,
this discontinuity persists for the general case of t = ti.

If considering the time between two consecutive switch-
ings only, that is, t ∈ [ti, ti+1), (10) is simplified as

x1(t) = x1(ti) + (t − ti)x2(ti) +
(t − ti)

2

2
μ,

x2(t) = x2(ti) + (t − ti)μ,

(11)

where i = 0, 1, 2, . . ., and

μ =
⎧⎨
⎩
u+ if i is odd,

u− if i is even.
(12)

Since e(t) = −y(t) = −Kx1(t) and e′(t) = −y′(t) =
−Kx2(t), it yields

e(t) = e(ti) + (t − t1)e′(ti)− (t − ti)
2

2
Kμ, (13)

e′(t) = e′(ti)− (t − ti)Kμ. (14)

It can be seen from (13) that e(ti), e′(ti) and Kμ will
affect behavior of e(t) and thus determine whether or not
e(t) will reach the switching level of ε+ or ε−. Without loss
of generality, suppose the initial condition e(t0) ≤ ε+, thus
u(t0) = u−. To see how e(t) evolves with time, the following
four cases are considered which are mutually exclusive and
cover all possible cases.

Case 1. e′(t0) ≤ 0 and Ku− ≥ 0. For t ∈ [t0, t1), e′(t) =
e′(t0) − (t − t0)Ku− ≤ 0, which implies e(t) ≤ e(t0) ≤ ε+ so
that x(t) never traverses S+ for all t > t0. The trajectory of
x(t) is governed by (11) with ti = t0 and μ = u−.

Case 2. e′(t0) ≤ 0 and Ku− < 0. For t ∈ [t0, t1), it follows
from (14) that e′′(t) = −Ku− > 0, which implies there always
exists some t1 > t0 such that e(t1) = ε+ and e′(t1) > 0, that is,
x(t) traverses S+ at t = t1. For t ∈ [t1, t2), it follows from (14)
that e′(t) = e′(t1)−(t− ti)Ku+ > 0 if Ku+ ≤ 0, which implies
e(t) > e(t1) = ε+ ≥ ε− so that x(t) never traverses S− for all
t > t1. The trajectory of x(t) is governed by (13) and (14)
with ti = t1 and μ = u+. If Ku+ > 0, it follows from (14) that
e′′(t) = −Ku+ < 0, which implies there always exists some
t2 > t1 with e(t2) = ε− and e′(t2) < 0 so that x(t) traverses
S− at t = t2. Afterwards, with the same analysis as above, it
is straightforward to verify that x(t) will traverse S+ and S−
alternatively and consecutively.

Case 3. e′(t0) > 0 and Ku− < 0. For t ∈ [t0, t1), it follows
from (14) that e′(t) = e′(ti)− (t− ti)Ku− > 0, which implies
there always exists t1 > t0 such that e(t1) = ε+ and e′(t1) > 0,
that is, x(t) will traverse S+ at t = t1. From t = t1 onwards,
following the same analysis in Case 2, if Ku+ ≤ 0, x(t) never
traverses S− for all t > t1, the trajectory of x(t) is governed by
(13) and (14) with ti = t1 and μ = u+. Otherwise, if Ku+ > 0,
x(t) will traverse S− and S+ alternatively and consecutively.

Case 4. e′(t0) > 0 and Ku− ≥ 0. For t ∈ [t0, t1), it follows
from (14) that e′′(t) = −Ku− ≤ 0. If e′′(t) < 0, there always
exists t0m such that e(t) ≤ e(t0m) for all t ≥ t0. If e(t0m) ≤ ε+,
then e(t) ≤ e(tm) ≤ ε+ so that x(t) never traverses S+ for
t ≥ t0. The trajectory of x(t) is governed by (13) and (14)
with ti = t0 and μ = u−. On the contrary, if e(tm) > ε+, there
always exists t1 satisfying t0 < t1 < t0m such that e(t1) = ε+

and e′(t1) > 0, that is, x(t) traverses S+ at t = t1. If e′′(t) =
0, then e′(t) = e′(t0) > 0, which also implies x(t) traverses
S+ at some t = t1. For t ∈ [t1, t2), it follows from (14) that
e′(t) = e′(t1) − (t − ti)Ku+ > 0 if Ku+ ≤ 0, which implies
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e(t) > e(t1) = ε+ ≥ ε− so that x(t) never traverses S− for
all t > t1. The trajectory of x(t) is governed by (13) and (14)
with ti = t1 and μ = u+. If Ku+ > 0, it follows from (14)
that e′′(t) = −Ku+ < 0, which implies there always exists
some t2 > t1 such that e(t2) = ε− and e′(t2) < 0, that is, x(t)
traverses S− at t = t2. For t ∈ [t2, t3), it follows from (14) that
e′(t) = e′(t2) − Ku− < 0, which implies x(t) never traverses
S+ again for all t > t2. The trajectory of x(t) is governed by
(14) with ti = t2 and μ = u−.

In view of the above analysis, the solution to (2) always
exists. This completes (i).

We can also see from the analysis in (i) that consecutive
switchings between S+ and S− take place if and only if Ku+ >
0 > Ku−. Under this condition, let ti be the switching instant
of x(t) on the plane S+, that is, e(ti) = ε+ and e(t) < ε+,
u(t) = u− for sufficiently close t < ti. This implies e′(ti) ≥ 0.
The case e′(ti) = 0 can occur only when ε− = ε+ and then
(ε+, 0) is a fixed point of x(t). But a fixed point is unique.
Hence, no limit cycle exists in this case.Assume e′(ti) > 0,
then u(t) switches from u− to u+ at t = ti. In Case 2, we have
shown that e′(t) decreases and becomes negative until x(t)
traverses S− at t = ti+1. Consider the Poincare mapping

χ = e′(ti) −→ φ+

(
χ
)
= e′(ti+1). (15)

The function φ+ is defined on the ray [0, +∞) and takes
values in the ray (−∞, 0]. Let χ = e′(ti) > 0 and τ = ti+1 − ti.
By definition, e(ti) = ε+ and e(ti+1) = ε−. Since both e(t) and
e′(t) are continuous at t = ti+1, it follows from (13) and (14),
respectively, by taking t = ti+1 that

ε− = ε+ + τχ − τ2

2
Ku+, (16)

φ+

(
χ
)
= χ − τKu+. (17)

It follows from (17) that

Ku+ =
χ − φ+

(
χ
)

τ
. (18)

Substituting (18) into (16) yields

φ+

(
χ
)
= −χ + 2

ε− − ε+

τ
≤ −χ < 0, (19)

which implies

∣∣∣∣∣∣
φ+

(
χ
)

χ

∣∣∣∣∣∣ ≥ 1. (20)

If ε+ > ε−, “>” holds in (20) so that the Poincare mapping
(15) is not a contraction and no limit cycles exist. If ε− =
ε+ = ε, “=” holds in (20), which implies a limit cycle is
formed after the first switching. As e′(ti) > 0, x′(t1) /= 0 must
be satisfied so that (a) and (b) can be easily derived with the
help of (11). This completes (ii).

Once a limit cycle is formed, if e′(ti) is changed due to
some disturbance, x(t) cannot remain at the original limit
cycle, but form a new one with different amplitude and

period, which means the limit cycle is marginally stable.
Since the initial condition x(t0) is arbitrarily chosen, the limit
cycle is globally marginally stable. This completes (iii).

It has been shown in (ii) that for Ku+ > 0 > Ku−, a limit
cycle always exists after the first switching. For t ∈ [t1, t2), it
follows from (14) and with the help of (20) that

e′(t2) = e′(t1)− T+Ku+ = −e′(t1). (21)

Thus,

T+ = 2e′(t1)
Ku+

, (e′(t1) > 0). (22)

Let e′(t) = e′(t1)−(t−t1)Ku+ = 0, then t−t1 = e′(t1)/(Ku+).
Substituting it into (13) yields

A+ = e(t)− ε = [e′(t1)]2

2Ku+
. (23)

In the similar way, we have

T− = −2e′(t1)
Ku−

, (24)

A− = − [e′(t1)]2

2Ku−
. (25)

For t ∈ [t0, t1), it follows from (13) that

e(t1) = e(t0) + (t − t0)e′(t0)− (t − t0)2

2
Ku(t0) = ε,

(26)

which gives

t − t0 =
e′(t0)−

√
[e′(t0)]2 − 2Ku(t0)(ε − e(t0))

Ku(t0)
, (27)

where negative root is ignored since e′(t1) > 0. Substituting
(27) into (14) yields

e′(t1) =
√

[e′(t0)]2 − 2Ku(t0)(ε− e(t0))

=
√
K2x2

2(t0)− 2Ku(t0)(Kx1(t0) + ε).

(28)

Substituting (28) into (22)–(24), respectively, yields

A+ = Kx2
2(t0)− 2u(t0)(Kx1(t0) + ε)

2u+
,

A− = −Kx2
2(t0)− 2u(t0)(Kx1(t0) + ε)

2u−
,

T+ =
2
√
K2x2

2(t0)− 2Ku(t0)(Kx1(t0) + ε)

Ku+
,

T− = −
2
√
K2x2

2(t0)− 2Ku(t0)(Kx1(t0) + ε)

Ku−
,

(29)

which completes (iv).
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Figure 5: A piecewise constant input.

Table 1: Limit cycle characteristics of Example 1.

Method A+ A− T+ T−
By Theorem 1 1.7000 2.1250 3.6878 4.6098

By simulation 1.7002 2.1255 3.6879 4.6100

Error −0.0118% −0.0235% −0.0027% −0.0043%

Remark 1. In our previous relay analysis for a class of servo
plant as G(s) = K/(s(s + a)), (a > 0), we proved the existence
of a limit cycle by showing the Poincare map φ+ is a strict
contraction, that is, |φ′+(χ)| < 1 for all χ ∈ (0, +∞). Here for
the case of a = 0, differentiating both sides of (16) yields

τ′
(
χ
)
= τ

τKu+ − χ
. (30)

Differentiating both sides of (16) and using the help of (20)
yield

∣∣∣φ′+
(
χ
)∣∣∣ =

∣∣∣1− τ′
(
χ
)
Ku+

∣∣∣

=
∣∣∣∣∣

χ

χ − τKu+

∣∣∣∣∣ =
∣∣∣∣∣∣

χ

φ+

(
χ
)
∣∣∣∣∣∣ ≤ 1.

(31)

If ε+ /= ε−, |φ′+(χ)| < 1 for all χ ∈ (0, +∞), but no limit cycle
exists in this case as we show. It seems to be contradiction
there and the reason is that for a = 0, φ+(χ) is not bounded
any more. This also shows the previous results for a > 0
cannot be simply extended to the double integral case here
by just letting a → 0.

Remark 2. The limit cycle forms after the first switching
but is marginally stable. This means the trajectory will
not remain at the original limit cycle even if a very small
disturbance is introduced. Nevertheless, it will form a new
limit cycle with different amplitude and period immediately
after the next switching.

Remark 3. The limit cycle is a parabolic curve with the sym-
metry of x′(ti) = −x′(ti+1), where ti is the switching time
for i = 1, 2, . . .. Its amplitude and period are only decided by

the initial conditions, which is also consistent with the result
from [6].

Example 1. Consider a double integral plant G(s) = 1/s2

under the relay feedback with ε = 1, u+ = 1.0 and u− = −0.8.
The initial conditions are assumed to be x1(t0) = 0.5 and
x2(t0) = 1. The simulated response of the system is shown in
Figure 5. By Theorem 1(iv), the amplitude and period of the
limit cycle occurred are also calculated. The comparison of
the results from the theory and the simulation as shown in
Table 1, where one can see the error, is quite minor.

3. Conclusion

In this paper, a double integral plants under relay feedback
is addressed. Complete results have been established on
uniqueness of solutions, existence, and stability of limit
cycles and its amplitude and period. Comparing with the
plant G(s) = K/[s(s + a)], a > 0 in [4], analytical expressions
for the amplitude and period of limit cycles with terms of
system parameters are available, but the conditions on the
existence of limit cycles are quite different. Reasons for such
differences as well as some explanations are provided.
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