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Occupational injury research depends on the ability to accurately assess workplace exposures
for large numbers of workers. This study used mixed modeling to identify observed and self-
reported predictors of mean, 90th percentile, and cumulative low back muscle activity to help
researchers efficiently assess physical exposures in epidemiological studies. Full-shift low back
electromyography (EMG) was measured for 133 worker-days in heavy industry. Additionally,
full-shift, 1-min interval work-sampling observations and post-shift interviews assessed expo-
sure to work tasks, trunk postures, and manual materials handling. Data were also collected
on demographic and job variables. Regression models using observed variables predicted
31–47% of the variability in the EMG activity measures, while self-reported variables pre-
dicted 21–36%. Observation-based models performed better than self-report-based models
and may provide an alternative to direct measurement of back injury risk factors.

Keywords: determinants of exposure; ergonomics; exposure assessment; exposure prediction; low back disorders;
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INTRODUCTION

Back disorders are a prevalent and expensive problem
in working life (Shelerud, 2006; Rubin, 2007). In or-
der to address the issue of back disorders, researchers
need accurate information on working exposures.
High-resolution direct measurement is often consid-
ered a preferred method for occupational exposure as-
sessment (Burdorf, 1992; Winkel and Mathiassen,
1994; Wells et al., 1997; van der Beek and Frings-
Dresen, 1998; Burdorf and van der Beek, 1999;

David, 2005). Although not a perfect measure of spi-
nal compression and risk for back injury, electromy-
ography (EMG) is a direct measurement method
that can be used to assess exposures of the low back
in contexts where traditional biomechanical methods,
such as video analysis or motion capture systems, are
not feasible. EMG has been used successfully in
workplace settings to estimate muscle loads (Keir
and MacDonell, 2004; Jones and Kumar, 2007) and
spinal compression (Village et al., 2005).

Direct measurement tends to be costly and time-
intensive, and while it has been used for large num-
bers of workers in the field (Hansson et al., 2001;
Balogh et al., 2004), it is more common to use such
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techniques for short durations, small numbers of
workers, (Cooper and Ghassemieh, 2007; Jones and
Kumar, 2007) or in simulated work tasks (Moore
and Garg, 1995; Keir and MacDonell, 2004; Lavender
et al., 2007). Herein lies a trade-off; large-scale epide-
miological studies require accurate methods that can
also be efficiently applied over large samples. Obser-
vation and worker self-reporting have been used as
less expensive ergonomic assessment tools for large
numbers of workers, although these methods (and
their costs) can vary substantially from postal surveys
(Sobti et al., 1997) to intensive multiday observa-
tional sampling (Village et al., 2009).

‘Determinants of exposure’ modeling offers
a method for assessing the relationship between di-
rect measurements and less costly observation or
self-report measurements of physical exposures.
This involves predicting a measured exposure (in
this study, direct measures of muscle activity by
EMG) using characteristics that directly or indirectly
increase or decrease that exposure (as measured by
observation or self-reports of physical exposures).
This methodology has long been used in industrial
hygiene to estimate a wide variety of airborne and
chemical exposures (Nieuwenhuijsen et al., 1995;
Preller et al., 1995; Burstyn et al., 1997; Burstyn
and Teschke, 1999; You et al., 2007). Exposure mod-
eling has also been attempted for physical exposures,
including modeling whole-body vibration using ob-
served and self-reported driver, route, and vehicle
characteristics (Chen et al., 2004), arm inclination
based on task diaries (Svendsen et al., 2005), and
trapezius EMG based on observed tasks or occupa-
tions (Mathiassen et al., 2005). More recently, this
methodology has been applied to model inclinome-
ter-assessed trunk posture using observed and self-
reported work exposures (Teschke et al., 2009).

The goal of this study was to develop exposure
prediction models for mean, 90th percentile, and cu-
mulative low back EMG activity using exposure
self-reports and observations. Two sets of models
were developed, one to identify observed predictors
of exposure and another to identify self-reported
predictors. The larger goal is to help researchers
efficiently and effectively measure physical expo-
sures for studies of work-related injury.

MATERIALS AND METHODS

Worker sample

This study measured full-shift EMG of the lumbar
muscles of workers from 50 different worksites in
British Columbia within the heavy industrial sectors

of construction, forestry, transportation, warehous-
ing, and wood and paper products from September
2004 to January 2006. Human subject procedures
were approved by the University of British Colum-
bia’s Behavioural Research Ethics Board. Workers
were selected at random from those with accepted
workers’ compensation back strain claims for the
year 2001 to identify jobs that would have exposure
to physical risk factors. Eligible workers were cur-
rently working in the five target industries and did
‘shop floor’ rather than administrative jobs. After sub-
jects agreed to participate, researchers contacted their
employers to obtain permission to conduct worksite
measurements and to recruit an additional one to four
coworkers. Set-up, measurements, and interviews
were conducted during regular work time. Concur-
rent measurements were made over a full work shift
using EMG, observations, and worker interviews.

Full-shift EMG measurements were successfully
completed on 92 individual workers and 45% were
% measured on 2 days for a total of 133 worker-days.
The lag between repeat measurement days on the
same worker ranged from 1 to 439 days (mean 5

93, SD 5 64). Observation and self-report data were
available for all worker-days. Demographic data and
job titles of the worker sample are summarized by
industry in Table 1.

EMG measurement

Full-shift EMG measurements were made using
a portable data collection system with on-board mem-
ory (ME3000P4/ME3000P8; Mega Electronics,
Kuopio, Finland) and disposable Ag–AgCl electro-
des (Blue Sensor N-00-S; Ambu, Ballerup, Den-
mark). Electrodes were placed bilaterally over the
erector spinae at approximately the level of L4/L5,
with a 20-mm interelectrode spacing and a ground
electrode and preamplifier placed on the posterior as-
pect of the iliac crest. Although additional electrodes
have been used in laboratory-based investigations to
account for coactivation and flexion-relaxation phe-
nomenon (Ferguson et al., 2002), this was impractical
for industrial settings (Village et al., 2005). Signals
were collected at 1000 Hz and filtered internally using
an 8- to 500-Hz band pass filter. Root-mean-square
values were data-logged at 10 Hz. During work
breaks, data from the portable system were down-
loaded to a laptop computer. EMG data were col-
lected for the full shift excluding breaks (mean
6.2 h, range of 5.5–10.3 h).

A submaximal reference contraction effort was
employed to calibrate EMG data collected during
the shift. The reference effort involved a static 45�
forward trunk flexion while holding an 11.5-kg
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weight. Trunk flexion was measured using a 12-inch
(30 cm) hand-held goniometer (Baseline Instruments
Inc.) with bubble level for vertical alignment. The
reference effort was performed twice for 5 s at
the beginning of the shift. In order to normalize
measurement data across workers, all EMG data
collected during the shift were expressed as a per-
centage of this reference voluntary effort (%RVE).

A detailed description of EMG data collection
challenges (including cable snags and loss of elec-
trode adhesion) have been reported elsewhere (Trask
et al., 2007). When interruptions were encountered,
the researchers applied new electrodes and recali-
brated. This was not always feasible and EMG meas-
ures were only included in this analysis if data were
available for at least half of the work shift. To iden-
tify motion artifacts, the data were visually inspected
and artifacts were excluded from analysis. After data
cleaning, the resulting sample used for this analysis
was 133 measurement days (75% of 178 attempted).

Three ‘exposure metrics’ were calculated for each
individual’s work shift data: mean represented cen-
tral tendency, 90th percentile represented peak expo-
sure levels, and cumulative exposure measured the
sum of daily exposures. The 90th percentile (mea-
sured in %RVE) has been used as a measure of
‘peak’ load in previous studies (Mathiassen et al.,
2002; Moller et al., 2004; Nordander et al., 2004).
Cumulative EMG activity was expressed in
%RVE-minutes exposure and was calculated over

the whole shift regardless of shift length. All three
EMG metrics are presented as they may each repre-
sent different aspects of back injury risk. In an epide-
miological study of auto workers, cumulative
exposure predicted back injury risk independently
of peak loading (Norman et al., 1998), and both
types of loading have been shown to damage tissues
during in vitro studies (Brinkmann et al., 1988;
Drake and Callaghan, 2009).

Investigation of EMG calibration

Additional calibration tests were conducted at the
beginning and end of the shift to identify any drift, fa-
tigue, or other differences occurring over the course
of a full shift. In addition to the 45� flexion reference
contraction with the 11.5-kg weight, muscle activity
was also recorded for standing upright, for 45�flexion
without a weight, and for 60� of flexion with an
11.5-kg weight to represent some typical positions
and weights seen in industrial tasks. Two samples of
each maneuver were collected both before and after
the shift. Altogether, 16 calibrations were planned
per subject per day: two sessions � four positions �
two repeats per position. These data collection re-
sulted in 916 pairs of pre-post calibration measure-
ments. Pairs of measurements were matched for
subject, measurement session, posture and weight,
etc. Rather than using null hypothesis statistical test-
ing, equivalence testing was used to compare the pre-
and post-shift calibration measurements (Ngatia

Table 1. Demographic characteristics and typical job titles for study participants in heavy industry

Exposure
metric

Construction Forestry Transportation Warehousing Wood
products

All
industries
combined

N (workers) 18 19 22 14 19 92

% Male 100 100 97.2 92.3 89.1 95.3

Mean Height
in cm (SD)

179 (6.1) 176 (7.3) 177.6 (8.9) 180.3 (8.9) 177.0 (7.3) 178.1 (7.9)

Mean Weight
in kg (SD)

80.9 (11.4) 89.9 (19.2) 83.6 (15.9) 85.7 (15.7) 84.9 (16.2) 85.2 (16.1)

Mean Age,
in years,
on sampling
day (SD)

43 7 (9.8) 48.5 (9.8) 38.9 (9.6) 38.8 (11.3) 43.0 (13.2) 42.2 (12)

Mean shift
length (SD)

8.39 (0.78) 7.97 (1.5) 9.6 (1.8) 8.3 (1.1) 8.3 (1.2) 8.5 (1.4)

Typical job
titles

Construction
carpenter,
construction
laborer,
construction
supervisor,
other
construction
trades

Boomman, faller,
heavy equipment
operator, heavy-
duty equipment
mechanic, logging
machinery
operators

Cabinet maker,
forklift operator,
lumber grader,
puller,
papermaking/
coating
operator

Air transport
ramp attendants,
automotive
mechanic, bus
driver, ferry
worker,
storekeepers
and parts clerks,
truck driver,
warehouse person

Forklift operator,
other
warehousing

—
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et al., 2009). The scientifically important limit ‘L’ was
set to 5 lV, since differences within –5 lV were
thought unlikely to influence the results in a substan-
tial way. In addition, linear regression models were
used to identify any relationships between muscle ac-
tivity (in microvolt) and pre- versus post-shift, con-
trolling for left versus right side, Trial 1 versus Trial
2, and reference positions 1 through 4. Multiple linear
regression mixed models were developed using ‘indi-
vidual’ and ‘electrode session’ as random effects. An
‘electrode session’ represents the unique electrode/
skin interface for each shift measurement of an indi-
vidual. Task condition, pre/post-shift, right/left side,
and trial number were fixed effects.

Observation data collection

Observations of physical exposures were made by
trained observers throughout the work shift (exclud-
ing breaks) starting after EMG instrumentation and
calibration and ending with deinstrumentation at
the shift’s completion. Observations were recorded
by trained research personnel once every minute us-
ing the BackEST (Back Exposure Sampling Tool)
observation tool (Village et al., 2009). In brief, these
variables were general task or activity, item or power
tool in hands, items worn (such as a tool belt), gen-
eral body posture (such as standing, walking, and
kneeling), trunk posture (twisting, lateral flexion,
and categories of trunk flexion), presence of trunk
support, and manual materials handling (type of
load, horizontal distance, weight, and force esti-
mate). The total observed time a worker was exposed
to a given risk factor was used as a predictive vari-
able for the cumulative EMG models, whereas pro-
portions of observed time exposed to risk factors
were used for mean and 90th percentile EMG mod-
els. For example, the sum of 1-min observations
spent standing was divided by the total number of
1-min observations to yield a percentage of time
spent standing. Pilot testing methods, validity and re-
liability data, and a sample of the BackEST observa-
tional tool are reported in Village et al. (2009).

Self-report data collection

A post-shift interview was conducted with each
worker to assess self-reported exposures during that
shift. The questionnaire instrument was pilot tested
on industrial workers prior to data collection and re-
sults based on this instrument have been published
elsewhere (Teschke et al., 2009). Using diagrams
of activities and postures as visual cues, workers
were asked to identify the presence or absence of
general activities such as standing, walking, kneel-
ing, trunk postures (including twisting, lateral flex-

ion, and categories of trunk flexion), and manual
materials handling activities (including type of load,
horizontal distance, weight, and force estimate). For
each exposure, workers were asked to estimate the
duration during the work day by selecting a time cat-
egory: (,5 min, 5–15 min, 15–30 min, 30–45 min,
45–60 min, 1–2 h, 2–4 h, 4–6 h, 6–8 h, and .8 h).
The questionnaire aimed to expand on previous
questionnaires where exposure categories were bi-
nary (Karlqvist et al., 1996) or qualitative (Unge
et al., 2005). Hours and minutes were selected be-
cause workers tended to report the time in hours
and minutes during pilot testing rather than as a per-
centage or fraction of the shift as in other question-
naires (Stock, 2005).

These times were converted to a percentage of
work time by taking the category midpoint and divid-
ing by the shift length. Job title, age, height, weight,
hours worked per shift, shifts worked per week, and
the number of consecutive shifts worked were also
determined during the interview. A copy of the inter-
view instrument can be obtained from the study web-
site at: www.cher.ubc.ca/backstudy.htm.

Statistical analysis: developing the models

Any differences in EMG metrics between indus-
tries were assessed using one-way analysis of vari-
ance and Tukey’s post hoc test. EMG exposure
prediction models were developed for each of the
three metrics: mean, 90th percentile, and cumulative
EMG. Separate models were constructed for ob-
served variables and for self-reported variables as
predictors of the EMG metrics. Initially, simple linear
regression was used to identify relationships between
EMG exposure metrics and each of the observed or
self-reported exposure variables. Observation varia-
bles were offered to subsequent multivariable models
if P , 0. 0.1, while self-reported variables were of-
fered ifP, 0.05 (more restrictive because there were
many more individual self-reported variables avail-
able). A correlation matrix of significant independent
variables was developed; if independent variables
were correlated at Pearson r� 0.70, then the variable
with the lowest bivariate P-value was selected for in-
put to the multivariable model. Supplementary tables
1 and 2 (available at Annals of Occupational Hygiene
online) show the pairs of variables with correlations
higher than 0.70 as well as which ones were elimi-
nated from the models due to these high correlations.
All statistical analyses were performed in SAS ver-
sion 9.1 (SAS Institute Inc., Cary, NC, USA).

When building the final multivariable models, var-
iables significant in bivariate modeling were offered
to the multivariable models in ‘conceptual groups’,
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in order of their expected relationship to muscle ac-
tivity, from most to least direct. For example, a model
was progressively built offering all postural varia-
bles, then all manual materials handling variables,
all demographic variables, and finally industry. A list
of observed and self-reported variables within their
respective conceptual groups can be seen in Tables
3 and 4. Variables that were significant within a con-
ceptual group model were forced into the subsequent
multivariable models. We chose to retain variables
that were significant when originally offered to the
model within their conceptual groups (even when
they were not in the final model) to allow variables
considered most directly related to exposure to re-
main in the model. This is similar to a two-stage ex-
posure assessment design (Armstrong, 1995; Duan
and Mage, 1997).

Finally, mixed modeling methods were used to ac-
count for repeated measurements on the same indi-
viduals (Burstyn and Teschke, 1999; Burdorf,
2005). For this study, ‘subject’ and ‘company’ were
initially offered as random effects to account for any
between-subject variability and between-company
variability (respectively) not accounted for in the
fixed effects; only ‘subject’ had a significant rela-
tionship with exposure and was retained in the mod-
els. The proportion of variance determined by
‘subject’ was calculated for each model. Mixed
effects modeling was conducted using backwards
stepwise multiple linear regression in SAS.

The proportion of variance explained by each
model was estimated by comparing the predicted ex-
posure levels to the actual measured exposure levels.

The R2 between estimated and observed EMG expo-
sures was used as an estimate of the proportion of
variance explained by the mixed model.

RESULTS

Investigation of EMG calibration

Pre-shift measures were, on average, 3.2 lV high-
er than post-shift measures for the same person, po-
sition, trial number, and side of the body. The lower
limit and upper limit of the equivalence test were 2.4
and 4.1 lV, respectively, within the predetermined
limits of –5 lV. The multivariate model of EMG
calibration maneuvers (controlling for subject and
measurement session as random effects) confirmed
this:

EMG in lV5 34:9 þ 3:06 ðpreshiftÞ
þ 1:0ðTrial 1Þ þ 1:5ðleft sideÞ
� 30:4ðstanding uprightÞ
� 7:5ðstanding at 45 �Þ
þ 1:7ðstanding at 45 � with weightÞ:

Position accounted for the largest proportion of
explained EMG variance at 23%, compared to
,0.4% for pre- versus post-shift.

EMG exposure metrics by industry

Mean, 90th percentile, and cumulative EMG ex-
posures are presented in Table 2. Overall, the ordinal
exposure ranking of the industries was fairly

Table 2. EMG exposure metrics for five heavy industries. All metrics are based on data collected over a full work shift and
summarized as mean of means within worker

Exposure
metric

Construction
(n 5 26
worker-days)

Forestry
(n 5 29
worker-days)

Transportation
(n 5 30
worker-days)

Warehousing
(n 5 22
worker-days)

Wood products
(n 5 26
worker-days)

All industries
combined
(n 5 133
worker-days)

Mean
%RVE (SD)

51.7 (13.6) 43.1 (26.4) 29 (12.4) 37.7 (20.2) 37.2 (20.4) 39.6 (20.1)

Fifth percentile
RVE (SD)

6.83 (4.91) 1.63 (3.13) 1.98 (4.17) 4.35 (6.98) 3.28 (5.61) 3.45 (5.26)

10th percentile
RVE (SD)

9.64 (5.80) 5.79 (6.37) 3.48 (5.79) 6.50 (6.86) 6.85 (6.16) 6.30 (6.42)

50th percentile
RVE (SD)

37.4 (14.1) 26.7 (20.7) 16.8 (7.53) 27.8 (17.2) 28.6 (21.2) 26.9 (17.8)

90th percentile
RVE (SD)

107.1 (26.0) 84.4 (41.1) 67.5 (27.6) 84.9 (45.0) 80.0 (45.0) 83.8 (36.6)

95th percentile
RVE (SD)

127 (33.4) 115 (47.8) 91.1 (38.4) 111 (58.4) 102 (54.2) 109 (47.8)

Cumulative
(%RVE�min)

1043 (350) 1264 (625) 967 (716) 931 (604) 1114 (548) 1069 (589)

Using observation and self-report to predict low back muscle activity 599

 at H
ogskolan i G

avle on A
ugust 11, 2010 

http://annhyg.oxfordjournals.org
D

ow
nloaded from

 

http://annhyg.oxfordjournals.org


consistent across the metrics. The construction in-
dustry had significantly higher measures of mean
and 90th percentile EMG activity compared to the

transportation industry, while the forestry industry
had significantly higher measures than the transpor-
tation industry for all three exposure metrics.

Table 3. Observed physical exposure variables associated with mean, 90th percentile, and cumulative EMG exposure in final
multiple linear regression models, with subject as a random effect

Variable Mean %RVE 90th percentile %RVE Cumulative %RVE�mina

Observation b (slope) P b (slope) P b (slope) P

Intercept (average for all subjects) 19.8 ,0.0001b 43.8 ,0.0001b 595895 ,0.0001b

Standing (% time) 0.115 ,0.001b 0.166 0.316

Sitting (% time) �3118 0.041b

Trunk position 10–20� (% time) 7295 0.0004b

Trunk position 20–45� (% time) 0.236 0.103 0.970 0.010

Trunk position 45–60� (% time) 17182 0.0004b

Trunk position .60� (% time) 0.612 0.0018b 1.25 0.0014

Handling load at extended
horizontal distance (% time)

0.134 0.633 0.659 0.229

4.5- to 10-kg load in hands (% time) 0.910 ,0.001b 0.987 0.009 22581 ,0.0001b

10- to 20-kg load in hands (% time) 0.325 0.0641 7535 0.114

‘Light’ Push/pull force (% time) 0.236 0.144

Handling loads with two hands 0.298 0.289

Estimated proportion of variance
explained by model

47.2% 42.9% 30.7%

aIndependent variables for cumulative EMG activity are in total time.
bVariables significant at P , 0.05.

Table 4. Self-reported physical exposure variables associated with mean, 90th percentile, and cumulative EMG exposure in final
multiple linear regression models, with subject as a random effect

Variable Mean %RVE 90th percentile %RVE Cumulative %RVE�mina

Self-report b (slope) P b (slope) P b (slope) P

Intercept (average
of subjects)

33.4 ,0.0001b 78.7 ,0.0001b 627029 ,0.0001b

Sitting (% time) �0.181 0.0023b �0.376 0.0009

Walking with trunk
twisted (% time)

22566 0.0012b

Crouching, kneeling,
or squatting (% time)

0.202 0.0543

Sitting and twisting (% time) �0.226 0.0664 �0.498 0.0403 �7157 0.0268b

Construction industry 14.8 0.0054b 24.3 0.0131b

Forestry industry 13.3 0.0109b 20.0 0.0323b

Wood product industry 4.44 0.369 4.15 0.650

Warehousing industry 8.75 0.102 13.8 0.158

Transportation industry 0 Reference 0 Reference

Manual materials
handling (% time)

1332 0.159

4.5- to 10-kg load in
hands (% time)

0.165 0.337

Handling load at extended
horizontal distance (% time)

0.710 0.0040b 5214 0.124

Estimated proportion of
variance explained by model

36.0% 36.0% 21.0%

aIndependent variables for cumulative EMG activity are in total time.
bVariables significant at P , 0.05.
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Prediction models

Tables 3 and 4 show mixed models using observed
or self-reported physical exposure variables to pre-
dict mean, 90th percentile, and cumulative EMG.
Figure 1 demonstrates the modeling process using
the observation-model predicted mean EMG as
a function of mean measured EMG. Bivariate results
were extensive and are not shown, but tables are
available on request to the corresponding author.
At the bivariate level, a large number of observed
postural variables were significant predictors of
EMG, but only a portion of the postural variables
that were significant in bivariate analysis were sig-
nificant in the final models. Fewer self-reported than
observed exposure variables were significant in bi-
variate analysis, though a number of self-reported
postural and manual material handling variables
were offered to the mixed models.

DISCUSSION

Performance of EMG prediction models

In the current study, models based on self-reported
variables predicted between 21 and 36% of the vari-
ability in EMG activity, whereas models based on ob-

served variables predicted between 30.7 and 47.2%.
Prior studies of positive relationships between back
disorders and self-reported and observed exposures
indicate face validity for these methods (Kumar,
1990; Knibbe and Friele, 1996; Macfarlane et al.,
1997; Myers et al., 1999). However, it is fair to ques-
tion whether explaining 20–50% of the variability in
EMG activity is adequate for epidemiological study.
In occupational hygiene, ‘determinants of exposure’
studies of airborne chemicals often explain 30–60%
of the variance in directly measured exposure and
have been used successfully for exposure assessment
in epidemiological studies (Burstyn and Teschke,
1999). EMG differs from airborne chemical expo-
sures in that it is dependent on multiple external fac-
tors (such as manual materials handling, or MMH,
and posture) and internal factors (muscle recruitment
patterns, fitness and muscle fatigue). Although Chen
et al. (2004) do not state the percentage of whole-
body vibration variability explained by their taxi-
driving model, they cite average relative prediction
errors of 11% and acknowledge that a substantial por-
tion of the variability (48%) is explained by the ran-
dom variable ‘subject’; the percentage explained by
observed and self-reported variables could not be
much .50%. The higher relative unexplained

Fig. 1. Scatter plot of predicted mean EMG as modeled by observed variables (y-axis) by mean measured EMG (x-axis), all in
%RVE. Regression equation: Observed EMG 5 0.538 (Measured EMG) þ 22.4. R2 5 0.67; P , 0.001.
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variance in the current study may be due to the general
nature of the observed determinants that were in-
tended to span multiple industries, job titles, and tasks
as compared to taxi-driver-specific determinants such
as vehicle, seat, tire, and fare characteristics. For
a measure of physical exposure as complex and mul-
tifactorial as EMG activity, it is not surprising that
the proportion of variability explained be lower than
typical.

The estimates of EMG activity given by the mod-
els presented do not (and are not expected to) deliver
a perfect estimate of an individual’s measured EMG
exposure. Rather, their value is for epidemiological
study of many workers. This has been acknowledged
in prior comparisons of direct measurements versus
observation and self-report methods. A study com-
paring spinal compression estimates from checklists,
video digitization, work sampling, and self-report in
a study of low back pain found that all methods gave
significant odds ratios, but questionnaires were
deemed more appropriate for large-scale studies
and biomechanical modeling for individual assess-
ments (Neumann et al., 1999).

This introduces a price-precision trade-off inher-
ent in selecting an exposure assessment method. In
this study, the models based on self-reports ex-
plained a lower percentage of variability and have
been previously shown to be poorer predictors of
physical exposure than models based on observed
variables (Barriera-Viruet et al., 2006). However,
self-report requires far less time and expense, mak-
ing it an attractive option for epidemiological stud-
ies when large samples are required (Trask et al.,
2007). The trade-off between exposure data quality
and quantity has been widely acknowledged
(Winkel and Mathiassen, 1994; Burdorf et al.,
1997; van der Beek and Frings-Dresen, 1998) and
has led to the suggestion of cost-effective ‘dual-
method’ or ‘validation’ exposure assessment strate-
gies where an affordable exposure assessment
method is used for the whole sample and concurrent
measurements with a more costly method are made
on a subsample to allow for modeling (Duan and
Mage, 1997).

For all models, the majority of significant relation-
ships with EMG metrics were with posture or man-
ual materials handling variables, both of which
require low back muscle activity. These exposures
are important to back injury as direct and indirect
risk factors; sustained and non-neutral postures and
manual materials handling are related to low back
disorders and pain reporting (Burdorf et al., 1991;
Keyserling, 2000; Kerr et al., 2001; da Costa and
Vieira, 2009).

Posture

The total time observed sitting was associated
with decreased cumulative EMG. Sitting requires
very little back muscle activity and workers are un-
likely to be performing manual materials handling
while seated. Four of five observed trunk flexion
variables were significant in bivariate analyses;
the 20–45� flexion category had the largest effect
estimates. Interestingly, the trunk flexion categories
of 20–45� and .60� were significant predictors of
mean and 90th percentile activity, but cumulative
activity was predicted by intermediate categories
of 10–20� and 45–60�. Although trunk flexion
clearly increases predicted EMG activity, the ranges
of flexion that are included differed between metrics,
most likely because of correlation between catego-
ries of posture.

Self-reported ‘sitting’ was associated with de-
creased mean and 90th percentile EMG, while self-
reported ‘sitting while twisting’ was associated with
decreased predicted mean, cumulative, and 90th per-
centile EMG. ‘Walking while twisting’ may be a sur-
rogate for carrying or loading tasks, and ‘sitting
while twisting’ may be a surrogate for extended
seated tasks but the inclusion of these variables
rather than other more general variables in the final
self-report model may be a consequence of poor pre-
cision of the self-reports, or chance, since these po-
sitions represent a small proportion of working
time. Self-reported trunk postures did not predict
EMG metrics in the final models; only ‘10–20�’
and ‘extended trunk’ were significant in bivariate
analyses and thus offered to the model.

Manual materials handling

Manual materials handling has a clear and docu-
mented relationship to muscle force and spinal
loads (Waters et al., 1993; da Costa and Vieira,
2009). As was expected, observed and self-reported
time spent handling loads were included in several
models. Overall, 3.7% of all observed time was spent
handling loads in the 4.5–10 kg range and 2.1% for
the next most common range, 10–20 kg. Although
this is not a large proportion of observed time, these
variables were fairly evenly distributed among the
workers, so that nearly all individuals handled such
weights for some time during a shift. All three
EMG metrics were also associated with observed
and/or self-reported handling of loads at extended dis-
tance from the body. The horizontal distance of loads
in the hands from the body increases the moment arm
at the lumbar joint and requires more torque to be gen-
erated by the back extensor muscles (Waters et al.,
1993).
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Industry

‘Industry’ explained a substantial amount of vari-
ance in mean and 90th percentile EMG in the self-
reported models; without the ‘industry’ variable,
the self-report-based 90th percentile model ex-
plained 33% and the mean model explained 29%
of the variance (compared to 36% with industry in-
cluded). EMG activity was significantly higher in
construction and forestry (jobs with frequent bend-
ing and MMH) than in transportation (jobs with sed-
entary vehicle operation). Several self-reported
posture and manual materials handling variables
were significant predictors in bivariate models and
were offered to the multivariate models. That they
were not included suggests that the ‘industry’ vari-
able is better at accounting for the differences be-
tween individuals than self-reported manual
materials handling or trunk posture. Industry is one
of the fastest, easiest, and most reliable pieces of in-
formation to acquire; it can be obtained from self-re-
port or workers’ compensation classification
registries. However, the inclusion of ‘industry’ in
the model limits the applicability of these models
to other heavy industries, such as mining or oil and
gas that might have comparable postural or manual
materials handing exposures. The small proportion
of variance explained by the self-report models and
the inclusion of unexpected or under-represented ac-
tivities (such as walking while twisting) may limit
the utility of the self-report model in any industry.

Measurement issues and limitations

EMG measurement has some limitations. Work-
site conditions like heat, cold, wet, dust, and vibra-
tion, as well as pressure or contact from tight
spaces, seat backs, or safety equipment, sweating
caused by extended exertion, or tugging on the elec-
trode cables (Trask et al., 2007). Although these fac-
tors can introduce noise and can result in
misclassification of exposure, care was taken to re-
move data with identifiable artifacts. The amount re-
moved ranged from 1 to 5% of the shift for roughly
30% of measured work shifts. It is hard to predict
how missing data affected the subsequent models.
If EMG data collection was interrupted only when
work became very strenuous due to sweating or in-
creased tugging on cables during dynamic move-
ments, then the net effect would be EMG measures
underestimating true working exposures.

Flexion-relaxation response may also have an im-
pact on the EMG measurements upon which the
models are based. Deep and sustained forward flex-
ion has been shown to inhibit back extensor muscle
activity (Solomonow et al., 2003). In lab studies, this

effect has been shown to decrease spinal loads esti-
mated by EMG (Mientjes et al., 1999). In cases
where forward flexion is frequent or sustained,
EMG could be indicating ‘low exposure’ even when
observed, self-reported, and biomechanically mod-
eled measures of exposure would estimate ‘high ex-
posure’. If this was the case, the mismatch would
decrease the ability of observed- and self-report-
based models to estimate the true exposures. This
does not appear to be the case in the current study;
observed ‘flexion of .60�’ accounted for �5% of
the total observed time and was positively related
to both mean and 90th percentile EMG activity.

The quality of observation and self-report may also
influence the models. Observation-based estimates,
although recorded by trained observers, are still sub-
ject to some level of interpretation and cannot be
considered completely objective. Difficulties were
encountered when trying to observe workers that were
moving throughout the worksite (e.g. maintenance
personnel or forklift drivers), resulting in some miss-
ing or incomplete observations. However, a validation
study of the observation technique used here showed
it compared well to direct measures of trunk posture
using an inclinometer (Village et al., 2009).

Care was taken during the interview to provide dia-
grams of the tasks, postures, and loads in question to
establish a level of trust that would facilitate candid
responses and not to influence worker responses.
Nonetheless, workers expressed difficulty in report-
ing cumulative exposures such as the ‘total amount
of time spent walking during the day’ or the ‘total
amount of time spent lifting, lowering, pushing, or
pulling’. This difficulty is reflected in self-reported
durations summing to over 100% of working time.
This identifiable misclassification at long durations
suggests that there is also unidentifiable misclassifi-
cation at shorter durations. In a recent review compar-
ing self-report to observation and direct measurement
(Barriera-Viruet et al., 2006), self-report was seen to
be feasible, economical, and easy to analyze, but it
was determined to have ‘questionable validity’ for
work-related physical variables due to its subjective
nature. Previous studies have that shown self-reports
are less precise than observation and direct measure
(Neumann et al., 1999) and that workers tend to over-
report physical exposures (Spielholz et al., 2001) or
under-report breaks (Unge et al., 2005); these differ-
ences are more pronounced when workers have pain
(Hansson et al., 2001; Balogh et al., 2004).

Limitations in generalizability

This study included a variety of industries,
worksites, jobs, and tasks, including non-cyclical,
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dynamic, and physically heavy work. Nonetheless,
the sample was not intended to be representative of
the included jobs or worksites and should be consid-
ered an introduction to working exposures in heavy
industry. Although the job titles and tasks included
in the study are likely to have overlap with those
in other industries and may help inform future stud-
ies of industries such as mining or agriculture, ex-
trapolating the results to other industries should be
done with caution. This is particularly true for the
self-report-based models that include industry as
a predictor of EMG.

Variables that were significant within their concep-
tual groups were retained in the final models to max-
imize their potential success when applied to
a different sample. These models were also analyzed
with these non-significant variables removed. The
models predicted, on average, 5% (range ,1–10%)
less of the variability in EMG exposure without these
variables. Nonetheless, these variables were retained
to allow posture and manual materials handling vari-
ables considered most directly related to exposure to
remain in the models. As with all regression models
developed on a certain dataset, the models presented
here capitalize on chance. That is, the performance
and specific slopes and intercepts from regression
analysis would not be exactly the same in another da-
taset. Certainly one would not expect these models to
perform as well on another dataset, even in another
sample from the same industries, companies, job ti-
tles, and workers as included in this study. The pro-
portions of variance explained by the models can
therefore be considered an upper limit or ‘best case’
for model performance. It would be possible to de-
velop models based on half the data available in the
current dataset, and then test the model on the remain-
ing half of the data. However, this would have been at
the expense of model quality and so was not under-
taken. The models presented here should be pilot
tested in the work settings of interest before a large-
scale epidemiological study is undertaken.

Conclusion

Predictive models of low back muscle activity
based on observed exposures provide low-cost alter-
natives to direct measures for epidemiological stud-
ies. Observed variables predicted 47 and 43% of
variability in mean and 90th percentile EMG activity,
respectively, but self-report models predicted only
21–36% of the variability in EMG activity using var-
iables such as ‘industry’ and ‘sitting while twisting’.
The self-report methodology used in this study had
one-tenth the cost of the observation method (Trask
et al., 2007) and would allow for a larger sample size

within a given budget. Unfortunately, self-report was
a poorer predictor and less precise method that would
therefore require a larger number of subjects to have
the power to identify relationships (Siemiatycki et al.,
1989). Differences in predictive power between the
models should be evaluated within the context of
a proposed study’s goals and hypotheses. The results
of this study indicate that observation-based esti-
mates of 90th percentile or mean EMG could be
expected to perform well, but self-report-based mod-
els, particularly for cumulative EMG, should be
treated with more caution.

The ability to identify exposure–response relation-
ships is dependent on the quality of the exposure as-
sessment. There are undoubtedly trade-offs between
the precision of exposure measurements, their cost,
and the number of measurements that can be made.
Future research should quantify the trade-off between
exposure assessment cost and precision.
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